JP3573157B2 - Gas enrichment equipment - Google Patents

Gas enrichment equipment Download PDF

Info

Publication number
JP3573157B2
JP3573157B2 JP2003315411A JP2003315411A JP3573157B2 JP 3573157 B2 JP3573157 B2 JP 3573157B2 JP 2003315411 A JP2003315411 A JP 2003315411A JP 2003315411 A JP2003315411 A JP 2003315411A JP 3573157 B2 JP3573157 B2 JP 3573157B2
Authority
JP
Japan
Prior art keywords
gas
enrichment
opening
closing
gas enrichment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003315411A
Other languages
Japanese (ja)
Other versions
JP2004170057A (en
Inventor
義和 西原
育雄 赤嶺
康裕 中村
徳哉 浅田
淳 竹内
博澄 伊藤
新一 佐藤
伸起 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003315411A priority Critical patent/JP3573157B2/en
Publication of JP2004170057A publication Critical patent/JP2004170057A/en
Application granted granted Critical
Publication of JP3573157B2 publication Critical patent/JP3573157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、空気中の所定のガス濃度を他のガスに対して相対的に向上させるガス富化装置およびこれを用いた空気調和機に関するものである。 The present invention relates to a gas enrichment device for improving a predetermined gas concentration in air relatively to other gases, and an air conditioner using the same .

従来、選択性ガス透過膜やPSA法などの吸着剤を用い、酸素や窒素などの特定ガスの濃度を相対的に向上させる装置として、酸素富化装置や窒素富化装置などが医療用富化装置、空気調和機、空気清浄機などの機器に用いられている。   Conventionally, oxygen-enriching devices and nitrogen-enriching devices have been used as medical enrichment devices that use a selective gas permeable membrane or an adsorbent such as the PSA method to relatively increase the concentration of specific gases such as oxygen and nitrogen. It is used in equipment such as equipment, air conditioners, and air purifiers.

例えば酸素濃度を向上させるものとして、分離型空気調和機の室外機に酸素富化手段を設け、酸素富化された空気を送出配管を介して室内機に送り、室内側に放出して被空調空間である室内の酸素濃度を向上させ居住者の快適性を維持向上させるものがに開示されている(特許文献1、2)。   For example, in order to improve the oxygen concentration, an outdoor unit of a separation type air conditioner is provided with oxygen enrichment means, and oxygen-enriched air is sent to an indoor unit via a delivery pipe, and discharged to the indoor side to be air-conditioned. Patent Documents 1 and 2 disclose a technique for improving the oxygen concentration in a room, which is a space, to maintain and improve the comfort of a resident.

一方、このような選択性ガス透過膜のひとつである酸素富化膜を用いて行う酸素富化操作において、酸素富化膜は空気成分の大半を占める窒素を酸素と分離させて、酸素を優先的に透過させる特性はあるものの、同時に空気中の水分をも透過させる特徴を持っている。   On the other hand, in an oxygen enrichment operation performed using an oxygen-enriched membrane that is one of such selective gas permeable membranes, the oxygen-enriched membrane separates nitrogen, which accounts for the majority of the air component, from oxygen, and gives priority to oxygen. Although it has the property of transmitting light, it also has the characteristic of transmitting moisture in the air at the same time.

したがって、酸素富化膜に入る1次側の空気に対して、酸素富化膜をを通過した後の2次側の空気では、窒素が分離された分だけ相対的に湿度が高くなる。そのため露点が1次側の空気に比べて上昇し、酸素富化膜を通過した後の2次側の送出配管中でしばしば結露水を発生させてしまう。   Therefore, the humidity of the secondary air after passing through the oxygen-enriched membrane becomes relatively higher than that of the primary air entering the oxygen-enriched membrane by the amount of nitrogen separated. As a result, the dew point rises compared to the air on the primary side, and condensed water is often generated in the delivery pipe on the secondary side after passing through the oxygen-enriched membrane.

そのため、このような結露水が空気調和機の室内機で放散されて、室内を濡らしたり、ユーザに降りかかって不快感を与えたりする。そこで、従来は、室内機の酸素富化空気の輸送経路中に冷却器を設け、含有水分を強制的に結露させるとともに水分離器を設けて、水分が室内に飛散するのを防止している。   For this reason, such dew water is diffused by the indoor unit of the air conditioner, causing the inside of the room to be wet or causing the user to feel uncomfortable. Therefore, conventionally, a cooler is provided in the transport path of the oxygen-enriched air of the indoor unit to forcibly dew the contained moisture and a water separator is provided to prevent the moisture from scattering into the room. .

このような、選択性ガス透過膜やPSA法などの吸着材を用いて行うガス富化操作では、酸素に限らず、ガス富化装置の2次側では必然的に相対湿度が上がって露点が上昇し、結露が発生しやすくなる。
特開平5−113227号公報 特開2002−39569号公報
In such a gas enrichment operation using a selective gas permeable membrane or an adsorbent such as a PSA method, not only oxygen but also the relative humidity inevitably rises on the secondary side of the gas enrichment apparatus and the dew point increases. And dew condensation tends to occur.
JP-A-5-113227 JP 2002-39569 A

しかしながら、上記の従来技術では、次のような課題が発生する。   However, the above-described conventional technology has the following problems.

すなわち、ガス富化装置を通過した2次側において、ガス富化された気体の輸送経路が屋外大気に曝されておりかつ大気温度が低い場合などは、輸送経路の内部で結露水が凍結してガス富化された気体が搬送できなくなるという課題がある。また、輸送経路中に結露水が発生すると、輸送経路中の気体の流れに脈動が生じて異音を発生したり、水滴が破裂する破裂音などが発生する。そのため、それらの音がユーザの居住する室内側に伝播してユーザに不快感を与えるという課題がある。更に、これらの結露水がガス富化装置に空気などを通過させるための駆動手段となる減圧ポンプなどに逆流すると、これらの内部部品の寿命に影響を及ぼしたり、結露水を圧縮する液圧縮により圧縮機構が破損するという課題を発生する。 That is, on the secondary side after passing through the gas enrichment device, when the transport route of the gas-enriched gas is exposed to the outdoor atmosphere and the atmospheric temperature is low, the dew condensation water freezes inside the transport route. Therefore, there is a problem that the gas-enriched gas cannot be transported. Further, when dew condensation water is generated in the transport route, pulsation occurs in the gas flow in the transport route, generating abnormal noise, and explosive sounds in which water droplets burst. Therefore, there is a problem that those sounds are propagated to the indoor side where the user lives and give the user discomfort. Further, when these dew water flows back to a decompression pump or the like which is a driving means for passing air or the like through the gas enrichment device, the life of these internal components is affected, or the liquid is compressed by compressing the dew water. There is a problem that the compression mechanism is damaged.

本発明は、このような問題点に鑑みてなされたものであり、ガス富化装置のガス富化された気体の輸送経路中において結露水の発生を極力低減させて、外気温の低い場合でも輸送経路中の結露水の凍結を防止し、輸送経路内部の流量を確保し、ポンプなどの安定運転が可能なガス富化装置と差圧発生装置およびそれらを用いた空気調和機を提供することを目的としている。   The present invention has been made in view of such a problem, and minimizes the generation of dew condensation water in a gas-enriched gas transport path of a gas enrichment device, even when the outside air temperature is low. To provide a gas enrichment device and a differential pressure generating device capable of preventing condensation of condensed water in a transport route, securing a flow rate in the transport route, and enabling stable operation of a pump and the like, and an air conditioner using the same. It is an object.

本発明のガス富化装置は、少なくともガス富化手段と、ガス富化手段に差圧を発生させる差圧発生手段と、第1の気体をガス富化手段に通過させてガス富化された第2の気体を送気する送気通路と、送気通路に第2の気体よりも相対湿度の小さい第3の気体を供給するための流路開閉手段とを備えている。   The gas enrichment device of the present invention is gas-enriched by passing at least a gas enrichment means, a differential pressure generating means for generating a differential pressure in the gas enrichment means, and passing the first gas through the gas enrichment means. An air supply passage for supplying the second gas and a flow path opening / closing unit for supplying a third gas having a lower relative humidity than the second gas to the air supply passage are provided.

本発明のガス富化装置、およびそれに用いる差圧発生装置、および空気調和機によれば、ガス富化されて相対湿度の高まった気体が送気通路で結露するのを防止したり、結露した結露水を排出したり、あるいは再蒸発させて、送気通路中での結露水の滞留や騒音発生などを抑制し、ガス富化装置の安定運転を実現することができる。   According to the gas enrichment device of the present invention, and the differential pressure generating device used therefor, and the air conditioner, the gas that has been enriched to increase the relative humidity is prevented from being condensed in the air supply passage, or the dew is condensed. The dew condensation water is discharged or re-evaporated, so that the dew condensation water stays in the air supply passage and the generation of noise can be suppressed, and the stable operation of the gas enrichment device can be realized.

以下、本発明の実施の形態について図面を用いて説明する。なお、以下の実施の形態では、ガス富化装置として酸素富化装置を居住空間の空気調和に用いる分離型の空気調和機に適用した場合について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, a case will be described in which an oxygen enrichment device is applied as a gas enrichment device to a separation-type air conditioner used for air conditioning in a living space.

(実施の形態1)
まず図1、図2、図3を用いて本発明の実施の形態1について説明する。図1は、本発明の実施の形態1におけるガス富化装置を示す斜視図である。実施の形態1ではガス富化手段に差圧を発生させる差圧発生手段として減圧ポンプを使用した場合について説明する。
(Embodiment 1)
First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view showing a gas enrichment device according to Embodiment 1 of the present invention. In the first embodiment, a case will be described in which a pressure reducing pump is used as a differential pressure generating means for generating a differential pressure in the gas enrichment means.

ガス富化装置30は、ガス富化手段となる酸素富化ユニット1と、差圧発生手段となる減圧ポンプ2と、送気通路3と、流路開閉手段である流路開閉弁4と、温度検知手段である温度センサ5と制御手段6などより構成され、全体が筐体7内に収納されている。また、減圧ポンプ2の吐出側には吐出主管8が接続され、ガス富化された気体をそれらが使用される場所に供給している。流路開閉弁4は送気通路3より分岐された分岐管9によって送気通路3と接続されるとともに、流通抵抗部材10と導入管11が接続されている。酸素富化ユニット1は特定のガスを選択的に透過する選択透過膜であっても良いし、あるいは特定のガスを吸着する選択吸着膜であっても良い。   The gas enrichment device 30 includes an oxygen enrichment unit 1 serving as a gas enrichment unit, a pressure reducing pump 2 serving as a differential pressure generating unit, an air supply passage 3, and a flow passage opening / closing valve 4 serving as a flow passage opening / closing device. It is composed of a temperature sensor 5 as a temperature detecting means, a control means 6 and the like, and is entirely housed in a housing 7. A discharge main pipe 8 is connected to the discharge side of the decompression pump 2 to supply gas-enriched gas to a place where they are used. The flow path on-off valve 4 is connected to the air supply passage 3 by a branch pipe 9 branched from the air supply passage 3, and the flow resistance member 10 and the introduction pipe 11 are connected. The oxygen enrichment unit 1 may be a permselective membrane that selectively permeates a specific gas, or may be a selective adsorption membrane that adsorbs a specific gas.

このように構成されたガス富化装置30において、ガス富化される第1の気体である大気12が、酸素富化ユニット1の出口側に設けられた減圧ポンプ2の吸込みによって酸素富化ユニット1に入り、酸素富化ユニット1内の選択透過膜などによって酸素が選択的に透過され、酸素濃度の高い第2の気体となって送気通路3に入る。酸素濃度の高い第2の気体は送気通路3から減圧ポンプ2を経て、吐出主管8に吐出される。   In the gas enrichment device 30 configured as described above, the atmosphere 12 as the first gas to be gas-enriched is sucked by the decompression pump 2 provided on the outlet side of the oxygen enrichment unit 1 so that the oxygen enrichment unit 1, oxygen is selectively permeated by a permselective membrane or the like in the oxygen enrichment unit 1, and becomes a second gas having a high oxygen concentration to enter the air supply passage 3. The second gas having a high oxygen concentration is discharged from the air supply passage 3 to the discharge main pipe 8 via the pressure reducing pump 2.

なお、酸素富化ユニット1の吸込み側すなわち大気側には、酸素富化ユニット1によって滞留する窒素濃度の高い空気を掃気するためのファン(図示せず)を配置し、ガス富化
装置30の運転に連動して動作させることが可能である。また、例えばガス富化装置30を空気調和機に用いた場合には、酸素富化ユニット1の配置構成を室外機の送風回路内に配置し、室外ファンと共用させることも可能である。
A fan (not shown) for scavenging air having a high nitrogen concentration retained by the oxygen enrichment unit 1 is arranged on the suction side of the oxygen enrichment unit 1, that is, on the atmosphere side. It is possible to operate in conjunction with driving. Further, for example, when the gas enrichment device 30 is used in an air conditioner, the arrangement of the oxygen enrichment unit 1 can be arranged in a blower circuit of an outdoor unit and shared with an outdoor fan.

また、分岐管9に接続された流路開閉弁4は電磁二方弁などの開閉弁を用いることができ、流通抵抗部材10はキャピラリチューブなどを用いることができる。流路開閉弁4の開閉制御は温度検知手段である温度センサ5により検出された温度にもとづき、制御手段6の信号によって開閉制御される。また、このようなガス富化装置30が他の機器と接続されて使用される場合などは、それらの機器からの外部の制御信号によって流路開閉弁4の開閉を制御することも可能である。流路開閉弁4はON−OFFの開閉動作のみを行う。また一方、温度センサ5は、ガス富化装置30が設置される大気温度、酸素富化ユニット1近傍の温度、あるいはガス富化装置30を構成する送気通路3や吐出主管8などの配管温度など任意の温度を検知することが可能である。 In addition, an on-off valve such as an electromagnetic two-way valve can be used as the flow-path on-off valve 4 connected to the branch pipe 9, and a capillary tube or the like can be used as the flow resistance member 10. Opening / closing control of the flow path opening / closing valve 4 is controlled based on a temperature detected by a temperature sensor 5 serving as a temperature detecting means, based on a signal of the control means 6. Further, when such a gas enrichment device 30 is used by being connected to other devices, the opening and closing of the flow path on-off valve 4 can be controlled by an external control signal from those devices. . The flow path opening / closing valve 4 performs only ON / OFF opening / closing operation. On the other hand, the temperature sensor 5 detects the atmospheric temperature at which the gas enrichment device 30 is installed, the temperature in the vicinity of the oxygen enrichment unit 1, or the temperature of the piping such as the air supply passage 3 and the discharge main pipe 8 constituting the gas enrichment device 30. For example, any temperature can be detected.

次に上記構成のガス富化装置30を外気中に配置して、大気を酸素富化する動作について図1、図2、図3を用いて説明する。   Next, the operation of enriching the atmosphere with oxygen by arranging the gas enrichment device 30 having the above configuration in the outside air will be described with reference to FIGS.

減圧ポンプ2が運転されると、第1の気体である外気12が酸素富化ユニット1に吸込まれ、酸素富化ユニット1を通過して酸素濃度が高くなった空気が送気通路3を通過して減圧ポンプ2に吸い込まれ、さらに吐出主管6を介して送出される。   When the pressure reducing pump 2 is operated, the outside air 12 as the first gas is sucked into the oxygen enrichment unit 1, and the air having a high oxygen concentration after passing through the oxygen enrichment unit 1 passes through the air supply passage 3. Then, it is sucked into the decompression pump 2 and further sent out through the discharge main pipe 6.

次に送気通路3に設けられた分岐管9に介装された流路開閉弁4の動作について図2、図3を用いて説明する。図2は実施の形態1におけるガス富化装置の流路開閉弁の制御仕様を示す図であり、図3は同制御仕様での流路開閉弁と減圧ポンプの動作を示すタイムチャートである。   Next, the operation of the flow path on-off valve 4 interposed in the branch pipe 9 provided in the air supply passage 3 will be described with reference to FIGS. FIG. 2 is a diagram showing control specifications of the flow path on-off valve of the gas enrichment device in the first embodiment, and FIG. 3 is a time chart showing operations of the flow path on-off valve and the pressure reducing pump under the same control specification.

流路開閉弁4は運転開始時の状態では閉状態になっている。減圧ポンプ2が運転され酸素富化操作が行われると、制御手段6が温度センサ5により検知された外気温度により流路開閉弁4の開閉動作を制御する。   The flow path opening / closing valve 4 is in a closed state when the operation is started. When the pressure reducing pump 2 is operated and the oxygen enrichment operation is performed, the control means 6 controls the opening / closing operation of the flow path opening / closing valve 4 based on the outside air temperature detected by the temperature sensor 5.

図2においては上方が検知された外気温度が高く、下方ほど外気温度が低いことを示している。図2、図3に示すように、まず、検知された外気温度Tがa点にあり、所定温度T1よりも高い場合には流路開閉弁4は閉状態になっている。一方、外気温度Tが低下してb点の状態になり、所定温度T1よりも低くなった場合には外気の相対湿度も上昇するため、酸素富化された第2の気体はその相対湿度が更に上昇する。そのため、送気通路3や吐出主管8で結露し易くなり、結露水の凍結などによりこれらの配管経路を閉塞する現象などが発生する。 FIG. 2 shows that the detected outside air temperature is higher in the upper part and lower in the lower part. As shown in FIGS. 2 and 3, first, when the detected outside air temperature T is at the point a and is higher than the predetermined temperature T1, the flow path on-off valve 4 is in a closed state. On the other hand, when the outside air temperature T falls to the state at the point b and becomes lower than the predetermined temperature T1, the relative humidity of the outside air also increases, so that the oxygen-enriched second gas has a relative humidity of Further rise. For this reason, dew condensation easily occurs in the air supply passage 3 and the discharge main pipe 8, and a phenomenon such as blockage of these piping paths due to freezing of dew condensation water or the like occurs.

そこで、流路開閉弁4を開にすると、少なくともガス富化されて送気通路3を通過する気体に比べて相対湿度の小さい第3の気体となる外気13が導入管11を介して送気通路3に導入される。そのため、吐出主管8に送出される気体は、相対的に湿度の低い外気と混合して結露状態を緩和する方向に変化する。   Therefore, when the flow path opening / closing valve 4 is opened, the outside air 13 that becomes at least gas-enriched and becomes a third gas having a lower relative humidity than the gas passing through the air supply passage 3 is supplied through the introduction pipe 11. It is introduced into the passage 3. Therefore, the gas delivered to the discharge main pipe 8 is mixed with the outside air having a relatively low humidity and changes in a direction to ease the dew condensation state.

このとき、酸素富化ユニット1を通過する場合よりも導入管11を通過する場合の流通抵抗が小さくなるように構成している。従って、流路開閉弁4を開状態にすれば外気は酸素富化ユニット1側ではなく導入管11側から優先的に導入される。このように、これらの導入管11、流通抵抗部材10、流路開閉弁4、および分岐管9の流通抵抗を、酸素富化ユニット1の流通抵抗よりも小さくすることによって、より高流量の外気が導入可能となる。そのため、吐出主管8などに滞留する結露水を、その管路の風速を上昇させること
によって外部に排出させることができるとともに、結露水の蒸発も促進させることができる。更には、万一結露水が吐出主管8などで凍結した場合でも、これらの高速気流で外部に排除することが可能となる。
At this time, the configuration is such that the flow resistance when passing through the introduction pipe 11 is smaller than when passing through the oxygen enrichment unit 1. Therefore, when the flow path opening / closing valve 4 is opened, the outside air is preferentially introduced not from the oxygen enrichment unit 1 side but from the introduction pipe 11 side. In this way, by setting the flow resistance of the introduction pipe 11, the flow resistance member 10, the flow path opening / closing valve 4, and the branch pipe 9 smaller than the flow resistance of the oxygen enrichment unit 1, a higher flow rate of outside air can be obtained. Can be introduced. Therefore, the dew water remaining in the discharge main pipe 8 and the like can be discharged to the outside by increasing the wind speed of the pipe, and the evaporation of the dew water can be promoted. Furthermore, even if the condensed water is frozen in the discharge main pipe 8 or the like, it is possible to remove the condensed water to the outside by these high-speed airflows.

本実施の形態1では、導入管11に導入される流量を制御するために、流通抵抗部材10を設けて、最適流量になるようにすることもできる。なお、第3の気体として、酸素富化ユニット1に吸込まれる第1の気体よりも高温の気体を導入することにより、結露水の蒸発や結露水の凍結防止をより確実に行うことができる。   In the first embodiment, in order to control the flow rate introduced into the introduction pipe 11, the flow resistance member 10 may be provided so that the flow rate becomes optimum. By introducing a gas having a higher temperature than the first gas sucked into the oxygen enrichment unit 1 as the third gas, it is possible to more reliably prevent condensation water from evaporating and freezing the condensation water. .

一方、図3に示すように、外気温度Tが再度上昇してきた場合には流路開閉弁4を開閉する所定温度にヒステリシスを設けている。すなわち、外気温度が下降してくる場合には流路開閉弁4が開状態となるように設定された外気温度Tが、次に外気温度が上昇する過程のc点でも開閉弁の開状態が閉状態に復帰せず、外気温度Tがd点の状態まで上昇した時に閉状態に戻すように制御している。無論、T1=T2としてもよいが、ヒステリシスを設定することによって、流路開閉弁4がT1付近で開閉を頻繁に繰り返し弁の信頼性を損なったり、頻繁な切替音でユーザが不快に感じたりすることがなくなる。   On the other hand, as shown in FIG. 3, a hysteresis is provided at a predetermined temperature at which the flow path on-off valve 4 is opened and closed when the outside air temperature T rises again. That is, when the outside air temperature decreases, the outside air temperature T set so that the flow path opening / closing valve 4 is opened, and the opening state of the opening / closing valve at the point c in the process of increasing the outside air temperature next. Control is performed so as not to return to the closed state, but to return to the closed state when the outside air temperature T rises to the state at the point d. Of course, T1 = T2 may be set. However, by setting the hysteresis, the flow path on-off valve 4 frequently opens and closes near T1, thereby impairing the reliability of the valve, and the frequent switching noises that make the user feel uncomfortable. Will not be done.

また、外気温度による検知温度を複数の設定外気温度と比較し、流路開閉弁4の開閉動作として、外気温度が低くなるほど開時間を増やす様にして、これら経路内の結露水の凍結防止を図ることも可能である。   Further, the detection temperature based on the outside air temperature is compared with a plurality of set outside air temperatures, and as the opening / closing operation of the flow path opening / closing valve 4, the opening time is increased as the outside air temperature becomes lower, thereby preventing freezing of dew condensation water in these paths. It is also possible to aim.

また、本実施の形態1では図1に示すように、導入管11に流通抵抗部材10を設けている。流通抵抗部材10がない場合には、流路開閉弁4の開制御を行ったときに、減圧ポンプ2の急激な吸入圧力変動によって大きな異音が発生するが、この流通抵抗部材10を接続することによって圧力変動を小さくし、このような異音を低減することが可能となる。さらに、前述のように、この流通抵抗部材10は流量を制限することも可能であり、酸素富化ユニット1よりも流通抵抗の小さいもので構成することによって、結露水の排除などに有効となる。   In the first embodiment, as shown in FIG. 1, the flow resistance member 10 is provided in the introduction pipe 11. If the flow resistance member 10 is not provided, when the opening control of the flow path opening / closing valve 4 is performed, a large noise is generated due to a sudden change in the suction pressure of the pressure reducing pump 2, but the flow resistance member 10 is connected. This makes it possible to reduce pressure fluctuations and reduce such abnormal noise. Further, as described above, the flow resistance member 10 can also restrict the flow rate, and is constituted by a material having a flow resistance smaller than that of the oxygen enrichment unit 1, which is effective in eliminating dew condensation water and the like. .

上述の説明では、温度センサ5が検出する温度として外気温度としているが、送気通路3や吐出主管8などの通路温度またはその近傍の外気温度を用いることにより、それらの経路での結露水発生や結露水の凍結防止などを確実に行うことが可能となる。   In the above description, the temperature detected by the temperature sensor 5 is the outside air temperature. However, by using the temperature of the passage such as the air supply passage 3 and the discharge main pipe 8 or the outside air temperature in the vicinity thereof, the generation of dew condensation water on those passages And freezing of dew condensation water can be reliably performed.

また、流路開閉弁4を外気温度と関係なく、所定時間などに基づいて間欠的に開閉動作するように制御することも可能である。このような制御によって、例えば空気調和機などにガス富化装置を設け、新鮮な大気の室内への導入と酸素富化空気の送気とを切り替えて行うこともでき、換気機能を持たせることも可能である。   It is also possible to control the flow path on-off valve 4 to open and close intermittently based on a predetermined time or the like irrespective of the outside air temperature. By such a control, for example, a gas enrichment device is provided in an air conditioner or the like, and it is possible to switch between introducing fresh air into a room and sending oxygen-enriched air, thereby providing a ventilation function. Is also possible.

さらに、このような構成のガス富化装置を空気調和機などに用いた場合、空気調和機自体が有する温度センサを共用して温度センサ5とすることも可能であり、また、制御手段6を空気調和機の室外機の制御装置に組み込んで配置してもよいことはいうまでもない。   Further, when the gas enrichment device having such a configuration is used for an air conditioner or the like, the temperature sensor 5 included in the air conditioner itself can be shared and used as the temperature sensor 5, and the control means 6 can be used. It goes without saying that the control unit of the outdoor unit of the air conditioner may be incorporated and disposed.

(実施の形態2)
次に実施の形態2について図4を用いて説明する。図4は、本発明の実施の形態2におけるガス富化装置を示す斜視図である。
(Embodiment 2)
Next, a second embodiment will be described with reference to FIG. FIG. 4 is a perspective view showing a gas enrichment device according to Embodiment 2 of the present invention.

実施の形態1では送気通路3に分岐管9を設けて構成していたが、本実施の形態では図4に示す様に、減圧ポンプ2自体の吸込み側流路に直接気体導入部である分岐管20が接続されている。さらに、その分岐管20に流路開閉弁4などが接続されている構成であり、その他の構成は実施の形態1と共通である。   In the first embodiment, the branch pipe 9 is provided in the air supply passage 3. However, in the present embodiment, as shown in FIG. 4, a gas inlet is provided directly in the suction side flow path of the pressure reducing pump 2 itself. A branch pipe 20 is connected. Further, the configuration is such that the flow path on-off valve 4 and the like are connected to the branch pipe 20, and the other configuration is common to the first embodiment.

このように本発明の実施の形態2によれば、分岐管20を減圧ポンプ2側に設けて加工しておくことで、酸素富化ユニット1から減圧ポンプ2までの間の送気通路3に分岐の加工をすることが不要になる。一方、減圧ポンプ2の生産時において、流路開閉弁4や分岐管20などのユニットを予め組みつけておくことができ、結露水抑制機能のついた減圧ポンプ2として生産できる。   As described above, according to the second embodiment of the present invention, the branch pipe 20 is provided on the side of the decompression pump 2 and processed, so that the air supply passage 3 from the oxygen enrichment unit 1 to the decompression pump 2 is provided. It becomes unnecessary to process the branch. On the other hand, at the time of production of the decompression pump 2, units such as the flow path on-off valve 4 and the branch pipe 20 can be assembled in advance, and can be produced as the decompression pump 2 having the dew condensation water suppressing function.

実施の形態1では、外気温度を検知して流路開閉弁4の動作を制御しているが、例えば減圧ポンプ2にかかる負荷電流を検知して、結露水の発生や凍結による吐出主管8の流路閉塞を判断して動作させるようにしてもよい。   In the first embodiment, the operation of the flow path on-off valve 4 is controlled by detecting the outside air temperature. However, for example, the load current applied to the pressure reducing pump 2 is detected, and the discharge main pipe 8 due to the generation or freezing of dew condensation water is detected. The operation may be performed by judging the passage blockage.

なお、実施の形態1では分岐管9を送気通路3に設け、実施の形態2では、分岐管20を減圧ポンプ2の吸込み側流路に直結する構成としたが、酸素富化ユニット1に直接設ける構成も可能である。   In the first embodiment, the branch pipe 9 is provided in the air supply passage 3, and in the second embodiment, the branch pipe 20 is configured to be directly connected to the suction side flow path of the pressure reducing pump 2. A configuration provided directly is also possible.

(実施の形態3)
次に実施の形態3について図5を用いて説明する。図5は、本発明の実施の形態3におけるガス富化装置を示す斜視図である。
(Embodiment 3)
Next, a third embodiment will be described with reference to FIG. FIG. 5 is a perspective view showing a gas enrichment device according to Embodiment 3 of the present invention.

実施の形態1および2では、ガス富化手段となる酸素富化ユニット1に差圧を発生させる差圧発生手段として減圧装置である減圧ポンプを用いていた。本実施の形態3では減圧装置でなく加圧装置を用いている。すなわち、図5に示すように、加圧装置である例えばターボファン40によって、第1の気体である外気12を加圧し、送風経路41を経てガス富化手段である酸素富化ユニット42に供給する。酸素富化ユニット42より吐出された第2の気体である酸素濃度の高くなった気体は、送気通路43に吐出される。ここで、酸素富化ユニット42としては選択性ガス透過膜やPSA法などの吸着剤などが使用可能であることは実施の形態1、2と同様であるが、特に中空糸膜などの場合には、本実施の形態3による加圧ポンプ、あるいは送風装置を差圧発生手段として用いることが有効である。 In Embodiments 1 and 2, a pressure reducing pump, which is a pressure reducing device, is used as a differential pressure generating means for generating a differential pressure in the oxygen enrichment unit 1 serving as a gas enriching means. In the third embodiment, a pressure device is used instead of the pressure reducing device. That is, as shown in FIG. 5, the outside air 12 which is the first gas is pressurized by, for example, a turbo fan 40 which is a pressurizing device, and supplied to an oxygen enriching unit 42 which is a gas enriching means via a blowing path 41. I do. The gas having a high oxygen concentration, which is the second gas discharged from the oxygen enrichment unit 42, is discharged to the air supply passage 43. Here, as in the first and second embodiments, it is possible to use a selective gas permeable membrane or an adsorbent such as a PSA method as the oxygen enrichment unit 42 as in the first and second embodiments. It is effective to use the pressure pump or the blower according to the third embodiment as the differential pressure generating means.

また、酸素富化ユニット42と並列に流路開閉弁44が設けられ、送風経路41と送気通路43に接続されたバイパス回路45が設けられている。なお、このバイパス回路45には加熱ヒータ(図示せず)を設け、バイパス回路45を通過する気体を加熱することも可能である。また、流路開閉弁44は実施の形態1および2と同様に、温度センサ5によって検出された温度によって、制御手段6を用いてその開閉が制御されることは、実施の形態1および2と同様である。   A flow path opening / closing valve 44 is provided in parallel with the oxygen enrichment unit 42, and a bypass circuit 45 connected to the air supply path 41 and the air supply path 43 is provided. Note that a heater (not shown) may be provided in the bypass circuit 45 to heat the gas passing through the bypass circuit 45. Further, similarly to the first and second embodiments, the opening and closing of the flow passage opening / closing valve 44 using the control means 6 is controlled by the temperature detected by the temperature sensor 5 in the same manner as in the first and second embodiments. The same is true.

したがって、このような差圧発生装置として加圧装置を用いた場合でも、酸素富化ユニット42を通過した後に発生する結露水の排除や、凍結防止を、流路開閉弁44の開閉動作で実現できる。   Therefore, even when a pressurizing device is used as such a differential pressure generating device, the elimination of dew condensation water generated after passing through the oxygen enrichment unit 42 and the prevention of freezing are realized by the opening / closing operation of the flow path opening / closing valve 44. it can.

さらに、本実施の形態3によれば、実施の形態1および2のように減圧ポンプの吸込み側に大量の気体を吸入する必要がなく、吸込みによって発生する異音発生などを抑制できるとともに、外気状態すなわち大気圧に影響されずに差圧を発生することができる。   Further, according to the third embodiment, it is not necessary to suck a large amount of gas into the suction side of the decompression pump as in the first and second embodiments. The differential pressure can be generated without being affected by the state, that is, the atmospheric pressure.

(実施の形態4)
図2、図6を用いて流路開閉弁の開閉動作に関する実施の形態4について説明する。図6は、本実施の形態4における流路開閉弁と減圧ポンプの動作を示すタイムチャートである。ガス富化装置の構成は実施の形態1で述べた構成と同様であり説明は省く。
(Embodiment 4)
A fourth embodiment relating to the opening / closing operation of the flow path opening / closing valve will be described with reference to FIGS. FIG. 6 is a time chart showing the operation of the flow path on-off valve and the pressure reducing pump in the fourth embodiment. The configuration of the gas enrichment device is the same as the configuration described in the first embodiment, and a description thereof will be omitted.

また、本実施の形態4では、温度センサ5によって所定外気温度T1が検知された場合に、流路開閉弁4の開閉動作を断続運転させ、酸素富化ユニット1を通過してできた相対湿度の高い空気が結露する前に、多量の相対湿度が低く乾いた外気を導入して凍結防止している。   Further, in the fourth embodiment, when the predetermined outside air temperature T1 is detected by the temperature sensor 5, the opening / closing operation of the flow path opening / closing valve 4 is intermittently operated, and the relative humidity generated through the oxygen enrichment unit 1 is obtained. Before the high-condensed air condenses, a large amount of low-humidity dry air is introduced to prevent freezing.

ここでいう外気とは大気の空気であり、大気または減圧ポンプが配置されている周囲の空気でも良い。 The outside air referred to here is atmospheric air, and may be air or ambient air in which a decompression pump is arranged.

流路開閉弁4の断続運転は、外気温度がT1より低下すると開動作(ON運転)をta時間行い、その後tb時間閉動作(OFF運転)を行う。そして、外気温度がT2より高くなった時に、流路開閉弁4を閉として開閉の断続運転を終了する。   In the intermittent operation of the flow path on-off valve 4, when the outside air temperature falls below T1, the opening operation (ON operation) is performed for ta time, and thereafter the closing operation (OFF operation) is performed for tb time. Then, when the outside air temperature becomes higher than T2, the flow path opening / closing valve 4 is closed and the intermittent operation of opening / closing is ended.

また、外気温度による検知温度を複数の設定外気温度と比較し、流路開閉弁4の開閉動作の運転率を外気温度が低くなるほど増やす様にして、管路内結露水の凍結防止効果の向上を図ることも可能である。なお、ここで開閉動作の運転率とは、断続運転時間中の開動作時間の割合である。   Further, the detection temperature based on the outside air temperature is compared with a plurality of set outside air temperatures, and the operation rate of the opening / closing operation of the flow path on-off valve 4 is increased as the outside air temperature becomes lower, thereby improving the effect of preventing dew condensation water in the pipeline from freezing. It is also possible to plan. Here, the operation rate of the opening / closing operation is a ratio of the opening operation time during the intermittent operation time.

(実施の形態5)
図7、図8を用いて流路開閉弁の開閉動作に関する実施の形態5について説明する。ガス富化装置の構成は実施の形態1で述べた構成と同様であり説明は省く。
(Embodiment 5)
Embodiment 5 relating to the opening / closing operation of the flow path opening / closing valve will be described with reference to FIGS. 7 and 8. The configuration of the gas enrichment device is the same as the configuration described in the first embodiment, and a description thereof will be omitted.

図7は温度センサ5によって検出された外気温度と設定温度との比較を用いた流路開閉弁4の制御仕様を示す図であり、図8は温度センサ5により検知された外気温による流路開閉弁4と減圧ポンプ2の動作を示すタイムチャートである。   FIG. 7 is a diagram showing control specifications of the flow path opening / closing valve 4 using a comparison between the outside air temperature detected by the temperature sensor 5 and the set temperature, and FIG. 8 shows a flow path based on the outside air temperature detected by the temperature sensor 5. 5 is a time chart showing the operation of the on-off valve and the pressure reducing pump.

実施の形態4で述べたのと同様に、外気温度が低下すると酸素富化ユニット1を通過してできた相対湿度の大きい気体の結露水が凍結し、空気の通路を閉塞する。このため、温度センサ5が低外気温度を検知すると流路開閉弁4の開閉動作の断続運転を行い、ガス富化ユニット2を通過した相対湿度の大きい空気が結露する前に、風量の多い乾いた外気を導入し凍結防止を図る。このとき、外気温度の違いに応じ、外気温度がより低くなる場合は、流路開閉弁4の開閉動作による断続運転の運転率を増加させるようにして流路内の凍結防止を行っている。   As described in the fourth embodiment, when the outside air temperature decreases, the dew water of the gas having a high relative humidity formed through the oxygen enrichment unit 1 freezes, and blocks the air passage. For this reason, when the temperature sensor 5 detects a low outside air temperature, an intermittent operation of the opening and closing operation of the flow path on-off valve 4 is performed, and before the air having a large relative humidity passing through the gas enrichment unit 2 is condensed, a large amount of air is dried. Introduce fresh air to prevent freezing. At this time, when the outside air temperature becomes lower according to the difference in outside air temperature, the freezing in the flow passage is performed by increasing the operation rate of the intermittent operation due to the opening / closing operation of the flow passage opening / closing valve 4.

図7および図8に示すように、本実施の形態5において流路開閉弁4は、外気温度がT3より低下すると流路開閉弁4の開動作(ON運転)をta時間行い、その後tb時間の閉動作(OFF運転)を行う開閉A運転を行う。外気温度がT4より高くなると、この流路開閉弁4は閉として開閉の断続運転は行わない弁閉運転を行う。一方、さらに外気温度がT1より低下した場合には、流路開閉弁4の開動作(ON運転)をtc時間行い、その後td時間流路開閉弁4の閉動作(OFF運転)を行う開閉B運転を行う。この時の流路開閉弁4の開動作時間であるtaとtcの時間の関係は、ta<tcとしさらにtc>tdとしている。   As shown in FIGS. 7 and 8, in Embodiment 5, the flow path on-off valve 4 performs the opening operation (ON operation) of the flow path on-off valve 4 for ta time when the outside air temperature falls below T3, and thereafter for tb time Opening / closing A operation for performing the closing operation (OFF operation) of. When the outside air temperature becomes higher than T4, the flow path on-off valve 4 is closed to perform a valve closing operation in which the intermittent operation of opening and closing is not performed. On the other hand, when the outside air temperature further falls below T1, the opening operation (ON operation) of the flow path on-off valve 4 is performed for tc time, and thereafter, the opening / closing operation B for performing the closing operation (OFF operation) of the flow path on-off valve 4 for td time. Drive. At this time, the relationship between the time ta and the time tc, which is the opening operation time of the flow path on-off valve 4, is set to ta <tc and further to tc> td.

この様にすることにより、外気温が低温の場合には、送記通路や吐出主管での結露水が確実に排除され、安定運転と異音などの発生がないガス富化装置を実現することができる。 By doing so, when the outside air temperature is low, dew condensation in the feed passage and the discharge main pipe is reliably eliminated, and a gas enrichment device that is stable and free of abnormal noise is realized. Can be.

(実施の形態6)
以下、実施の形態6として本発明の実施の形態1から5におけるガス富化装置を備えた空気調和機について、室外ユニットと室内ユニットから構成される分離型の空気調和機を例に説明する。
(Embodiment 6)
Hereinafter, as a sixth embodiment, an air conditioner including the gas enrichment device according to the first to fifth embodiments of the present invention will be described with reference to an example of a separate type air conditioner including an outdoor unit and an indoor unit.

図9は本発明の実施の形態6におけるガス富化装置を備えた空気調和機の構成を示す斜視図である。図9において、空気調和機は室内ユニット50と室外ユニット51より構成され、冷媒ガスが循環するように接続配管(図示せず)で接続されている。室内ユニット50には室内ファン52が配置されている。室外ユニット51には圧縮機53、室外熱交換器54、室外ファン55が配置されるとともに、一室を隔してガス富化装置としての酸素富化装置56が室外ユニット51の上部に載置されている。   FIG. 9 is a perspective view illustrating a configuration of an air conditioner including a gas enrichment device according to Embodiment 6 of the present invention. In FIG. 9, the air conditioner includes an indoor unit 50 and an outdoor unit 51, and is connected by a connection pipe (not shown) so that the refrigerant gas circulates. An indoor fan 52 is arranged in the indoor unit 50. In the outdoor unit 51, a compressor 53, an outdoor heat exchanger 54, and an outdoor fan 55 are arranged, and an oxygen enrichment device 56 as a gas enrichment device is mounted on an upper portion of the outdoor unit 51 with one room therebetween. Have been.

酸素冨化装置56は実施の形態1で述べたガス富化装置30であり、吐出主管8を介してガス富化された酸素濃度の高い第2の気体である空気が室内ユニット50の筐体内部またはその近傍に吐出されるように、放出手段としての吐出口57を備えている。室内ユニット50の筐体内の送風回路に面して吐出口57が配置された場合には、室内ファン52の動作により、室内空間に吹き出される送風に吐出口57から吹出された酸素富化空気が添加されて、吹出し口58より被空調空間に送出される。したがって、室内ファン52はガス富化された気体を拡散させる拡散手段でもある。 The oxygen enrichment device 56 is the gas enrichment device 30 described in the first embodiment, and the air, which is the second gas having a high oxygen concentration, which is gas-enriched through the discharge main pipe 8, is used as the housing of the indoor unit 50. A discharge port 57 is provided as discharge means so as to be discharged into or near the inside. When the discharge port 57 is arranged facing the air blow circuit in the housing of the indoor unit 50, the operation of the indoor fan 52 causes the oxygen-enriched air blown out from the discharge port 57 to be blown into the indoor space. Is added to the air-conditioned space. Therefore, the indoor fan 52 is also a diffusion means for diffusing the gas-enriched gas .

ここで、空気調和機の冷凍サイクルの構成及び動作については本願発明に関連しないため詳細な説明は省略する。   Here, since the configuration and operation of the refrigeration cycle of the air conditioner are not related to the present invention, a detailed description thereof will be omitted.

このように構成された本実施の形態における空気調和機によれば、酸素富化装置56として、実施の形態1から5に述べたガス富化装置と差圧発生装置あるいは流路開閉弁の制御方法を用いることができる。そのため、いわゆる空気調和機の基本機能を実現する運転の他に、被空調空間に酸素供給を行い、居住者の快適性を高めることができる。   According to the air conditioner of the present embodiment thus configured, as the oxygen enrichment device 56, the gas enrichment device described in Embodiments 1 to 5 and the control of the differential pressure generation device or the flow path on-off valve A method can be used. Therefore, in addition to the operation for realizing the so-called basic function of the air conditioner, oxygen can be supplied to the air-conditioned space, and the comfort of the occupants can be improved.

酸素富化装置56によって、酸素濃度の高い空気を被空調空間である室内に送出する際に、例えば夏場の外気自体の相対湿度が大きい場合、あるいは冬場の外気が低い場合には吐出主管8に結露水が発生し易くなり、特に冬場はそれらが凍結する場合がある。しかしながら、本実施の形態によれば、相対湿度の大きい酸素富化された空気に相対湿度の小さい外気などを間欠的にあるいは大量に導入することによって、結露水の発生や結露水の凍結を防止することができる。そのため、被空調空間に安定確実に酸素濃度の高い空気を供給することができる。   When the oxygen-enriching device 56 sends air having a high oxygen concentration into the room to be air-conditioned, for example, when the relative humidity of the outside air itself in summer is high, or when the outside air in winter is low, the air is supplied to the discharge main pipe 8. Condensation water is more likely to form, especially in winter, when they may freeze. However, according to the present embodiment, the generation of dew condensation water and the freezing of dew condensation water are prevented by intermittently introducing a large amount of outside air having a small relative humidity or the like into the oxygen-enriched air having a large relative humidity. can do. Therefore, air with a high oxygen concentration can be supplied to the air-conditioned space stably and reliably.

また、吐出主管8などで結露したり、凍結した氷結などを押し出す場合に、それらが吐出口57から直接被空調空間に吹き出されないように、吐出口57の手前に拡大容積部を設け、そこで融解、蒸発させることも可能である。   Also, when dew condensation or frozen icing is pushed out by the discharge main pipe 8 or the like, an expanded volume portion is provided in front of the discharge port 57 so that they are not blown directly from the discharge port 57 into the air-conditioned space. It is also possible to evaporate.

(実施の形態7)
ガス富化装置を備えた空気調和機として他の実施の形態について述べる。図10は本発明の実施の形態7におけるガス富化装置を備えた空気調和機の構成を示す斜視図である。
(Embodiment 7)
Another embodiment will be described as an air conditioner equipped with a gas enrichment device. FIG. 10 is a perspective view illustrating a configuration of an air conditioner including a gas enrichment device according to Embodiment 7 of the present invention.

図10において、空気調和機の主要構成は実施の形態6に示す空気調和機と同一であり、同一符号を付している。   In FIG. 10, the main configuration of the air conditioner is the same as that of the air conditioner shown in Embodiment 6, and the same reference numerals are given.

図10において、室外ユニット51は、圧縮機53、四方弁(図示せず)などが配置された圧縮機室60と、酸素富化ユニット61や減圧ポンプ62等からなる酸素富化装置と、空気調和機を制御する制御装置63などが配置された電装部品室64を有し、これらを合わせて機械室を構成している。さらに室外ファン55と室外熱交換器54からなる熱交換器室65を有している。   In FIG. 10, an outdoor unit 51 includes a compressor chamber 60 in which a compressor 53, a four-way valve (not shown) and the like are disposed, an oxygen enrichment device including an oxygen enrichment unit 61, a decompression pump 62, and the like. There is an electrical component room 64 in which a control device 63 for controlling the harmony machine is arranged, and these constitute a machine room together. Further, a heat exchanger chamber 65 including an outdoor fan 55 and an outdoor heat exchanger 54 is provided.

室内ユニット50は、室内ファン52を有するとともに、酸素富化装置56の吐出口57を設けている。   The indoor unit 50 has an indoor fan 52 and a discharge port 57 of an oxygen enrichment device 56.

酸素富化装置は、選択性ガス透過膜である酸素富化ユニット61と、酸素富化ユニット61の二次側を減圧する減圧ポンプ62と、その間を通気可能に連結する酸素供給主管66と、その酸素供給主管66の途中に大気導入管67が接続された三方弁68と、減圧ポンプ62の吐出側に連結された吐出主管69とを備えている。ここで大気導入管67の末端の大気導入口70は圧縮機室60内に延出して配置されている。   The oxygen enrichment device includes an oxygen enrichment unit 61 that is a selective gas permeable membrane, a decompression pump 62 that decompresses the secondary side of the oxygen enrichment unit 61, and an oxygen supply main pipe 66 that connects the air between them, The oxygen supply main pipe 66 includes a three-way valve 68 to which an air introduction pipe 67 is connected, and a discharge main pipe 69 connected to the discharge side of the decompression pump 62. Here, the air introduction port 70 at the end of the air introduction pipe 67 extends into the compressor chamber 60.

送風管71は、吐出主管69と吐出口57とを接続する配管であり、室外ユニット51から導出し室内ユニット50内に導入されている。   The blower pipe 71 is a pipe connecting the main discharge pipe 69 and the discharge port 57, and is led out of the outdoor unit 51 and introduced into the indoor unit 50.

なお、酸素富化ユニット61の1次側(大気側)には、滞留する窒素富化空気を掃気するためのファン(図示せず)を配置しておき、酸素富化装置の運転に連動して動作させるとよい。ここでは、酸素富化ユニット61の一次側を、室外ユニット51の室外ファン55を有する熱交換器室65の送風回路内に配置し、室外ファン55の送風によって酸素富化ユニット61の1次側の窒素富化空気を掃気するようにしている。   A fan (not shown) for scavenging the staying nitrogen-enriched air is arranged on the primary side (atmosphere side) of the oxygen enrichment unit 61, and is linked with the operation of the oxygen enrichment apparatus. It is good to operate it. Here, the primary side of the oxygen enrichment unit 61 is disposed in the air blower circuit of the heat exchanger room 65 having the outdoor fan 55 of the outdoor unit 51, and the primary side of the oxygen enrichment unit 61 is blown by the outdoor fan 55. Of nitrogen-enriched air.

上記構成において、減圧ポンプ62が運転されると、第1の気体である熱交換器室65内の空気が吸い込まれ酸素富化ユニット61を通過し、酸素富化された第2の気体として酸素供給主管66、三方弁68を通過して減圧ポンプ62に吸い込まれ、吐出主管69、送風管71を順次通過して吐出口57から室内ユニット50内に送出される。

In the above configuration, when the pressure reducing pump 62 is operated, the air in the heat exchanger chamber 65 as the first gas is sucked and passed through the oxygen enrichment unit 61, and the oxygen is supplied as the oxygen-enriched second gas. The air passes through the supply main pipe 66 and the three-way valve 68 and is sucked into the decompression pump 62, passes through the discharge main pipe 69 and the blower pipe 71, and is sent out from the discharge port 57 into the indoor unit 50.

なお、三方弁68が開の状態(大気導入管67と減圧ポンプ62の酸素供給主管66が連通する状態をいう)での流通抵抗が、三方弁68が閉の状態(酸素富化ユニット61側の酸素供給主管66と減圧ポンプ62側の酸素供給主管66が連通する状態をいう)での流通抵抗より小さくなるように構成されている。従って、三方弁68を開状態にすれば、大気は酸素富化ユニット61側ではなく大気導入管67の大気導入口70から優先的に導入される。更には、抵抗が小さい分、酸素富化ユニット61を通過する場合よりもより多量の空気が導入可能であるため、吐出主管69などに滞留する結露水は管路の風速が向上し、吐出口57側に押し出されやすくなるとともに、風速向上で蒸発量も向上するため結露水の低減を図ることができる。更には、万一結露水が経路内で凍結してしまう場合でも、風速によって結氷を吐出口57に押し出すこともできる。   The flow resistance in the state where the three-way valve 68 is open (meaning the state where the air introduction pipe 67 and the oxygen supply main pipe 66 of the decompression pump 62 communicate with each other) is the state where the three-way valve 68 is closed (the oxygen enrichment unit 61 side). (A state in which the oxygen supply main pipe 66 communicates with the oxygen supply main pipe 66 on the side of the pressure reducing pump 62). Therefore, when the three-way valve 68 is opened, the air is preferentially introduced from the atmosphere introduction port 70 of the atmosphere introduction pipe 67 instead of the oxygen enrichment unit 61 side. Further, since the resistance is small, a larger amount of air can be introduced than in the case where the air passes through the oxygen enrichment unit 61, so that the dew water remaining in the discharge main pipe 69 and the like increases the wind speed of the pipe, and the discharge port It is easy to be pushed to the 57 side, and the amount of evaporation can be improved by improving the wind speed, so that the dew condensation water can be reduced. Further, even if dew condensation water freezes in the path, the icing can be pushed out to the discharge port 57 by the wind speed.

本実施の形態7では、大気導入口70は圧縮機室60内に設けた例を示している。圧縮機室60内の温度は、圧縮機53などの放熱の影響により、室外ユニット51の外部環境温度よりも高くなっている。そのため、結露水の蒸発を促進させて、吐出主管69や送風管71を乾燥させることができる。また三方弁68を間欠的に適宜制御すれば、結露水の発生・蒸発の繰り返しとなり、結露水が大量にたまることはないし、結露を発生しないように制御することも可能である。   In the seventh embodiment, an example is shown in which the air introduction port 70 is provided in the compressor chamber 60. The temperature in the compressor room 60 is higher than the external environment temperature of the outdoor unit 51 due to the influence of heat radiation of the compressor 53 and the like. Therefore, the evaporation of the dew condensation water is promoted, and the discharge main pipe 69 and the blower pipe 71 can be dried. If the three-way valve 68 is intermittently and appropriately controlled, the generation and evaporation of dew condensation water will be repeated, so that a large amount of dew condensation water does not accumulate, and control can be performed so that dew condensation does not occur.

大気導入口70は電装部品室64内に設けても制御装置63などの発熱により、同様の効果を発揮することができる。このように大気導入口70を室外ユニット51の機械室内に設けることで、室外ユニット51外から直接大気を導入する場合よりも、ほこりやごみを吸いこむことはなく、風雨による影響も避けることが可能となる。   Even if the air introduction port 70 is provided in the electrical component room 64, the same effect can be exerted by heat generated by the control device 63 and the like. By providing the air inlet 70 in the machine room of the outdoor unit 51 in this manner, dust and dirt are not sucked in and the influence of wind and rain can be avoided as compared with the case where air is directly introduced from outside the outdoor unit 51. It becomes possible.

また大気導入口70を室内空間に設けることが好ましい。室内空間の大気(空気)は温度・湿度等が安定しており、室外空間より大気を導入する場合より、室内環境への影響度が少ない。この場合は送風管71を二重管とし、その外周側に大気導入管67を接続し、外周側の他端は送風管71が室内空間に入ったところで開放しておくことにより容易に実現が可能である。   Further, it is preferable to provide the air inlet 70 in the indoor space. The atmosphere (air) in the indoor space is stable in temperature and humidity, and has less influence on the indoor environment than when air is introduced from the outdoor space. In this case, it is easy to realize by making the blower pipe 71 a double pipe, connecting the air introduction pipe 67 to the outer peripheral side, and opening the other end on the outer peripheral side when the blower pipe 71 enters the indoor space. It is possible.

なお大気導入口70は熱交換器室65内に設けることも可能である。   Note that the air introduction port 70 can be provided in the heat exchanger chamber 65.

本発明のガス富化装置と差圧発生装置およびそれらを用いた空気調和機は、ガス富化された気体の輸送経路中において結露水の滞留や発生を極力低減させて、外気温の低い場合でも輸送経路中の結露水の凍結を防止し、輸送経路内部の流量を確保し、ポンプなどの安定運転が可能なを提供することができる。よって、分離型の空気調和機、車両用空気調和機、一体形空気調和機をはじめ、空気清浄器、医療用酸素富化装置、携帯用酸素富化装置、燃焼用酸素富化装置、などのガス富化機能を有する装置にも適用することができる。   The gas enrichment device and the differential pressure generating device of the present invention and the air conditioner using them reduce the stagnation and generation of dew condensation water in the gas-enriched gas transportation route as much as possible, when the outside air temperature is low. However, it is possible to prevent freezing of dew condensation water in the transport route, secure a flow rate in the transport route, and provide a stable operation of the pump and the like. Therefore, air purifiers, medical oxygen enrichment devices, portable oxygen enrichment devices, combustion oxygen enrichment devices, etc., including separated air conditioners, vehicle air conditioners, integrated air conditioners, etc. The present invention can be applied to an apparatus having a gas enrichment function.

本発明の実施の形態1におけるガス富化装置を示す斜視図FIG. 1 is a perspective view showing a gas enrichment device according to Embodiment 1 of the present invention. 同ガス富化装置の流路開閉弁の制御仕様を示す図Diagram showing control specifications of flow path on-off valve of the gas enrichment device 同ガス富化装置の流路開閉弁と減圧ポンプの動作を示すタイムチャートTime chart showing the operation of the flow path on-off valve and pressure reducing pump of the gas enrichment device 本発明の実施の形態2におけるガス富化装置を示す斜視図Perspective view showing a gas enrichment device according to Embodiment 2 of the present invention. 本発明の実施の形態3におけるガス富化装置を示す斜視図Perspective view showing a gas enrichment device according to Embodiment 3 of the present invention. 本発明の実施の形態4における流路開閉弁と減圧ポンプの動作を示すタイムチャート4 is a time chart showing the operation of the flow path on-off valve and the pressure reducing pump in Embodiment 4 of the present invention. 本発明の実施の形態5における流路開閉弁の制御仕様を示す図The figure which shows the control specification of the flow-path on-off valve in Embodiment 5 of this invention. 本発明の実施の形態5におけるで流路開閉弁と減圧ポンプの動作を示すタイムチャート5 is a time chart showing the operation of the flow path on-off valve and the pressure reducing pump according to the fifth embodiment of the present invention. 本発明の実施の形態6における空気調和機の構成をを示す斜視図Perspective view showing a configuration of an air conditioner according to Embodiment 6 of the present invention. 本発明の実施の形態7における空気調和機の構成を示す斜視図Perspective view showing a configuration of an air conditioner according to Embodiment 7 of the present invention.

符号の説明Explanation of reference numerals

1、42、61 酸素富化ユニット
2、62 減圧ポンプ
3 送気通路
4、44、68 流路開閉弁
5 温度センサ
6 制御手段
8 吐出主管
10 流通抵抗部材
11、70 大気導入口
30、56 ガス(酸素)富化装置
40 加圧ポンプ
45 バイパス回路
50 室内ユニット
51 室外ユニット
57 吐出口
1, 42, 61 Oxygen enrichment unit 2, 62 Pressure reducing pump 3 Air supply passage 4, 44, 68 Flow path opening / closing valve 5 Temperature sensor 6 Control means 8 Discharge main pipe 10 Flow resistance member 11, 70 Atmospheric inlet 30, 56 Gas (Oxygen) enrichment device 40 Pressurizing pump 45 Bypass circuit 50 Indoor unit 51 Outdoor unit 57 Discharge port

Claims (29)

少なくともガス富化膜を用いたガス富化手段と、前記ガス富化手段に差圧を発生させる差圧発生手段と、第1の気体を前記ガス富化手段に通過させてガス富化された第2の気体を送気する送気通路と、前記送気通路に前記ガス富化手段を通過するよりも高流量の第3の気体を供給するための開度固定型の流路開閉手段とを具備したことを特徴とするガス富化装置。 Gas enrichment means using at least a gas enrichment membrane, differential pressure generation means for generating a differential pressure in the gas enrichment means, and gas enriched by passing a first gas through the gas enrichment means An air supply passage for supplying the second gas, and a fixed opening degree channel opening / closing means for supplying a third gas having a higher flow rate than the gas supply means passes through the gas supply passage. A gas enrichment device comprising: 少なくともガス富化膜を用いたガス富化手段と、前記ガス富化手段に差圧を発生させる差圧発生手段と、第1の気体を前記ガス富化手段に通過させてガス富化された第2の気体を送気する送気通路と、前記送気通路に前記ガス富化手段を通過するよりも高流量の第3の気体を供給するためのON−OFFの開閉動作のみを行う流路開閉手段とを具備したことを特徴とするガス富化装置。 Gas enrichment means using at least a gas enrichment membrane, differential pressure generation means for generating a differential pressure in the gas enrichment means, and gas enriched by passing a first gas through the gas enrichment means A gas supply passage for supplying the second gas, and a flow for performing only an ON-OFF opening / closing operation for supplying a third gas having a higher flow rate than that passing through the gas enrichment means to the gas supply passage. A gas enrichment device comprising a road opening and closing means . 少なくともガス富化手段と、前記ガス富化手段に差圧を発生させる差圧発生手段と、第1の気体を前記ガス富化手段に通過させてガス富化された第2の気体を送気する送気通路と、前記送気通路に前記第1の気体より高温の第3の気体を供給するための開度固定型の流路開閉手段とを具備したことを特徴とするガス富化装置。 At least a gas enrichment means, a differential pressure generating means for generating a differential pressure in the gas enrichment means, and a second gas enriched by passing a first gas through the gas enrichment means A gas supply device for supplying a third gas having a higher temperature than the first gas to the gas supply passage. . 少なくともガス富化手段と、前記ガス富化手段に差圧を発生させる差圧発生手段と、第1の気体を前記ガス富化手段に通過させてガス富化された第2の気体を送気する送気通路と、前記送気通路に前記第1の気体より高温の第3の気体を供給するためのON−OFFの開閉動作のみを行う流路開閉手段とを具備したことを特徴とするガス富化装置。 At least a gas enrichment means, a differential pressure generating means for generating a differential pressure in the gas enrichment means, and a second gas enriched by passing a first gas through the gas enrichment means And a flow path opening / closing means for performing only an ON / OFF opening / closing operation for supplying a third gas having a higher temperature than the first gas to the air supply passage. Gas enrichment equipment. 少なくともガス富化膜を用いたガス富化手段と、前記ガス富化手段に差圧を発生させる差圧発生手段と、第1の気体を前記ガス富化手段に通過させてガス富化された第2の気体を送気する送気通路と、前記送気通路に前記第2の気体よりも相対湿度の小さい第3の気体を供給するための開度固定型の流路開閉手段とを具備したことを特徴とするガス富化装置。 Gas enrichment means using at least a gas enrichment membrane, differential pressure generation means for generating a differential pressure in the gas enrichment means, and gas enriched by passing a first gas through the gas enrichment means An air supply passage for supplying the second gas; and a fixed opening degree channel opening / closing means for supplying a third gas having a lower relative humidity than the second gas to the air supply passage. A gas enrichment device characterized by: 少なくともガス富化膜を用いたガス富化手段と、前記ガス富化手段に差圧を発生させる差圧発生手段と、第1の気体を前記ガス富化手段に通過させてガス富化された第2の気体を送気する送気通路と、前記送気通路に前記第2の気体よりも相対湿度の小さい第3の気体を供給するためのON−OFFの開閉動作のみを行う流路開閉手段とを具備したことを特徴とするガス富化装置。 Gas enrichment means using at least a gas enrichment membrane, differential pressure generation means for generating a differential pressure in the gas enrichment means, and gas enriched by passing a first gas through the gas enrichment means An air supply passage for supplying a second gas, and a flow path opening and closing operation for ON / OFF only for supplying a third gas having a lower relative humidity than the second gas to the air supply passage. And a gas enrichment device. 前記差圧発生手段は前記ガス富化手段の一方の側を減圧して前記第1の気体を吸込む減圧手段であり、前記流路開閉手段によって前記減圧手段の吸込み側流路に第3の気体を供給させることを特徴とする請求項1から請求項6のいずれかに記載のガス富化装置。 The pressure difference generating means is a pressure reducing means for reducing the pressure on one side of the gas enrichment means and sucking the first gas, and the third gas is supplied to the suction side flow path of the pressure reducing means by the flow path opening / closing means. The gas enrichment device according to any one of claims 1 to 6 , wherein the gas is supplied . 前記差圧発生手段は前記ガス富化手段の一方の側を加圧して前記第1の気体を押し込む加圧手段であり、前記ガス富化手段と並列に前記流路開閉手段を配置したことを特徴とする請求項1から請求項6のいずれかに記載のガス富化装置。 The pressure difference generating means is a pressurizing means for pressurizing one side of the gas enrichment means to push in the first gas, and that the channel opening / closing means is arranged in parallel with the gas enrichment means. The gas enrichment device according to any one of claims 1 to 6 , characterized in that: 外部からの制御信号によって前記流路開閉手段の開閉が制御されることを特徴とする請求項1から請求項6のいずれかに記載のガス富化装置。 The gas enrichment device according to any one of claims 1 to 6 , wherein the opening and closing of the flow path opening and closing means is controlled by an external control signal . 前記第3の気体の通過流路に流通抵抗部材が設けられていることを特徴とする請求項1から請求項6のいずれかに記載のガス富化装置。 The gas enrichment device according to any one of claims 1 to 6 , wherein a flow resistance member is provided in the passage of the third gas . 前記ガス富化手段近傍の大気温度を検出する温度検知手段を有し、前記温度検知手段で検出した大気温度に応じて前記流路開閉手段の開閉を制御することを特徴とする請求項1から請求項6のいずれかに記載のガス富化装置。 2. The apparatus according to claim 1 , further comprising a temperature detection unit configured to detect an atmospheric temperature in the vicinity of the gas enrichment unit, wherein opening and closing of the flow path opening and closing unit is controlled according to the atmospheric temperature detected by the temperature detection unit. The gas enrichment device according to claim 6 . 前記送気通路または当該送気通路近傍の大気温度を検出する温度検知手段を有し、前記温度検知手段で検出した送気通路温度または大気温度に応じて前記流路開閉手段の開閉を制御することを特徴とする請求項1から請求項6のいずれかに記載のガス富化装置。 A temperature detecting unit that detects an air temperature in the air supply passage or in the vicinity of the air supply passage, and controls opening and closing of the flow passage opening and closing unit according to the air supply passage temperature or the atmospheric temperature detected by the temperature detection unit. The gas enrichment device according to any one of claims 1 to 6 , wherein: 前記流路開閉手段を間欠的に開閉動作させることを特徴とする請求項11または12のいずれか一項に記載のガス富化装置。 13. The gas enrichment device according to claim 11, wherein the flow passage opening / closing means is intermittently opened / closed . 前記流路開閉手段の間欠開閉動作の運転率を制御することを特徴とする請求項13に記載のガス富化装置 14. The gas enrichment device according to claim 13, wherein an operation rate of an intermittent opening / closing operation of the flow passage opening / closing means is controlled . 少なくともガス富化膜を用いたガス富化手段と、前記ガス富化手段に差圧を発生させる差圧発生手段と、第1の気体を前記ガス富化手段に通過させてガス富化された第2の気体を送気する送気通路と、前記送気通路に前記ガス富化手段を通過するよりも高流量の第3の気体を供給するための開度固定型の流路開閉手段とを具備したことを特徴とする空気調和機。Gas enrichment means using at least a gas enrichment membrane, differential pressure generation means for generating a differential pressure in the gas enrichment means, and gas enriched by passing a first gas through the gas enrichment means An air supply passage for supplying the second gas, and a fixed opening degree channel opening / closing means for supplying a third gas having a higher flow rate than the gas supply means passes through the gas supply passage. An air conditioner comprising: 少なくともガス富化膜を用いたガス富化手段と、前記ガス富化手段に差圧を発生させる差圧発生手段と、第1の気体を前記ガス富化手段に通過させてガス富化された第2の気体を送気する送気通路と、前記送気通路に前記ガス富化手段を通過するよりも高流量の第3の気体を供給するためのON−OFFの開閉動作のみを行う流路開閉手段とを具備したことを特徴とする空気調和機。Gas enrichment means using at least a gas enrichment membrane, differential pressure generation means for generating a differential pressure in the gas enrichment means, and gas enriched by passing a first gas through the gas enrichment means A gas supply passage for supplying the second gas, and a flow for performing only an ON-OFF opening / closing operation for supplying a third gas having a higher flow rate than that passing through the gas enrichment means to the gas supply passage. An air conditioner comprising a road opening / closing means. 少なくともガス富化手段と、前記ガス富化手段に差圧を発生させる差圧発生手段と、第1の気体を前記ガス富化手段に通過させてガス富化された第2の気体を送気する送気通路と、前記送気通路に前記第1の気体より高温の第3の気体を供給するための開度固定型の流路開閉手段とを具備したことを特徴とする空気調和機。At least a gas enrichment means, a differential pressure generating means for generating a differential pressure in the gas enrichment means, and a second gas enriched by passing a first gas through the gas enrichment means An air conditioner comprising: an air supply passage for supplying a third gas having a higher temperature than the first gas to the air supply passage; 少なくともガス富化手段と、前記ガス富化手段に差圧を発生させる差圧発生手段と、第1の気体を前記ガス富化手段に通過させてガス富化された第2の気体を送気する送気通路と、前記送気通路に前記第1の気体より高温の第3の気体を供給するためのON−OFFの開閉動作のみを行う流路開閉手段とを具備したことを特徴とする空気調和機。At least a gas enrichment means, a differential pressure generating means for generating a differential pressure in the gas enrichment means, and a second gas enriched by passing a first gas through the gas enrichment means And a flow path opening / closing means for performing only an ON / OFF opening / closing operation for supplying a third gas having a higher temperature than the first gas to the air supply passage. Air conditioner. 少なくともガス富化膜を用いたガス富化手段と、前記ガス富化手段に差圧を発生させる差圧発生手段と、第1の気体を前記ガス富化手段に通過させてガス富化された第2の気体を送気する送気通路と、前記送気通路に前記第2の気体よりも相対湿度が小さい第3の気体を供給するための開度固定型の流路開閉手段とを具備したことを特徴とする空気調和機。 Gas enrichment means using at least a gas enrichment membrane, differential pressure generation means for generating a differential pressure in the gas enrichment means, and gas enriched by passing a first gas through the gas enrichment means An air supply passage for supplying a second gas; and a fixed opening degree channel opening / closing means for supplying a third gas having a lower relative humidity than the second gas to the air supply passage. An air conditioner characterized by: 少なくともガス富化膜を用いたガス富化手段と、前記ガス富化手段に差圧を発生させる差圧発生手段と、第1の気体を前記ガス富化手段に通過させてガス富化された第2の気体を送気する送気通路と、前記送気通路に前記第2の気体よりも相対湿度が小さい第3の気体を供給するためのON−OFFの開閉動作のみを行う流路開閉手段とを具備したことを特徴とする空気調和機。 Gas enrichment means using at least a gas enrichment membrane, differential pressure generation means for generating a differential pressure in the gas enrichment means, and gas enriched by passing a first gas through the gas enrichment means An air supply passage for supplying a second gas, and a flow passage opening / closing operation for ON / OFF only for supplying a third gas having a lower relative humidity than the second gas to the air supply passage. And an air conditioner. 前記差圧発生手段は前記ガス富化手段の一方の側を減圧して前記第1の気体を吸込む減圧手段であり、前記流路開閉手段によって前記減圧手段の吸込み側流路に第3の気体を供給させることを特徴とする請求項15から請求項20のいずれかに記載の空気調和機。 The pressure difference generating means is a pressure reducing means for reducing the pressure on one side of the gas enrichment means and sucking the first gas, and the third gas is supplied to the suction side flow path of the pressure reducing means by the flow path opening / closing means. The air conditioner according to any one of claims 15 to 20 , wherein the air conditioner is supplied . 前記差圧発生手段は前記ガス富化手段の一方の側を加圧して前記第1の気体を押し込む加圧手段であり、前記ガス富化手段と並列に 前記流路開閉手段を配置したことを特徴とする請求項15から請求項20のいずれかに記載の空気調和機。 The pressure difference generating means is a pressurizing means for pressurizing one side of the gas enrichment means to push in the first gas, and that the channel opening / closing means is arranged in parallel with the gas enrichment means. The air conditioner according to any one of claims 15 to 20 , wherein: 外部からの制御信号によって前記流路開閉手段の開閉が制御されることを特徴とする請求項15から請求項20のいずれかに記載の空気調和機。 The air conditioner according to any one of claims 15 to 20 , wherein the opening and closing of the flow path opening and closing means is controlled by an external control signal . 前記第3の気体の通過流路に流通抵抗部材が設けられていることを特徴とする請求項15から請求項20のいずれかに記載の空気調和機。 The air conditioner according to any one of claims 15 to 20 , wherein a flow resistance member is provided in the passage of the third gas . 前記ガス富化手段近傍の大気温度を検出する温度検知手段を有し、前記温度検知手段で検出した大気温度に応じて前記流路開閉手段の開閉を制御することを特徴とする請求項15から請求項20のいずれかに記載の空気調和機。 16. The apparatus according to claim 15 , further comprising a temperature detection unit configured to detect an atmospheric temperature in the vicinity of the gas enrichment unit, wherein opening and closing of the flow path opening / closing unit is controlled according to the atmospheric temperature detected by the temperature detection unit. The air conditioner according to claim 20 . 前記送気通路または当該送気通路近傍の大気温度を検出する温度検知手段を有し、前記温度検知手段で検出した送気通路温度または大気温度に応じて前記流路開閉手段の開閉を制御することを特徴とする請求項15から請求項20のいずれかに記載の空気調和機。 A temperature detecting unit that detects an air temperature in the air supply passage or in the vicinity of the air supply passage, and controls opening and closing of the flow passage opening and closing unit according to the air supply passage temperature or the atmospheric temperature detected by the temperature detection unit. The air conditioner according to any one of claims 15 to 20 , wherein: 室内ユニットと室外ユニットにより構成される空気調和機であって、前記室外ユニットは圧縮機を配置した機械室を構成し、前記第3の気体が前記機械室内の大気であることを特徴とする請求項15から請求項20のいずれかに記載の空気調和機。 An air conditioner configured by the indoor unit and the outdoor unit, the outdoor unit constitutes a machine room disposed compressor, wherein said third gas is the air of the machine room according The air conditioner according to any one of items 15 to 20 . 室内ユニットと室外ユニットにより構成される空気調和機であって、前記室外ユニットは電装部品を配置した電装部品室を構成し、前記第3の気体が前記電装部品室の大気であることを特徴とする請求項15から請求項20のいずれかに記載の空気調和機。 An air conditioner including an indoor unit and an outdoor unit, wherein the outdoor unit forms an electrical component room in which electrical components are arranged, and the third gas is the atmosphere of the electrical component room. The air conditioner according to any one of claims 15 to 20 , wherein 室内ユニットと室外ユニットにより構成される空気調和機であって、前記第3の気体は前記室内ユニットが配置される室内空間の大気であることを特徴とする請求項15から請求項20のいずれかに記載の空気調和機。 An air conditioner configured by the indoor unit and the outdoor unit, the third gas claim 20 claim 15 which is a air of the indoor space where the indoor unit is arranged An air conditioner according to item 1.
JP2003315411A 2002-10-24 2003-09-08 Gas enrichment equipment Expired - Fee Related JP3573157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003315411A JP3573157B2 (en) 2002-10-24 2003-09-08 Gas enrichment equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002309327 2002-10-24
JP2002318175 2002-10-31
JP2002318181 2002-10-31
JP2003315411A JP3573157B2 (en) 2002-10-24 2003-09-08 Gas enrichment equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003403922A Division JP2004170066A (en) 2002-10-24 2003-12-03 Gas enriching device

Publications (2)

Publication Number Publication Date
JP2004170057A JP2004170057A (en) 2004-06-17
JP3573157B2 true JP3573157B2 (en) 2004-10-06

Family

ID=32719342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003315411A Expired - Fee Related JP3573157B2 (en) 2002-10-24 2003-09-08 Gas enrichment equipment

Country Status (1)

Country Link
JP (1) JP3573157B2 (en)

Also Published As

Publication number Publication date
JP2004170057A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP3573157B2 (en) Gas enrichment equipment
JP2004170066A (en) Gas enriching device
WO2004038299A1 (en) Gas enrichment device, differential pressure generating devcie used therefor, and air conditioner
JP3537814B1 (en) Selective gas enrichment device
JP3512037B1 (en) Gas enrichment device and blower
JP3534116B1 (en) Air conditioner
JP3952030B2 (en) Gas enrichment equipment
JP7360071B2 (en) Air conditioning equipment, refrigeration equipment, and shipping containers
JP3551197B2 (en) Gas enrichment device and blower
JP3616626B2 (en) Air conditioner
JP2004148243A (en) Selective gas enriching apparatus
JP7348546B2 (en) Air conditioning equipment, refrigeration equipment, and shipping containers
JP3571332B2 (en) Selective gas enrichment device
JP3551966B1 (en) Selective gas enrichment device and air conditioner using the same
KR101088979B1 (en) Gas enrichment device and air conditioner utilizing same
JP2006112678A (en) Gas enriching device
JP2005111399A (en) Gas enrichment apparatus
JP2004209467A (en) Gas enrichment device and blowing apparatus
JP2005265370A (en) Oxygen enriching device and air conditioner
JP2005113827A (en) Blowing apparatus
JP2004219068A (en) Selective gas enriching device
WO2004040199A1 (en) Gas enrichment device and blowing device using the device
KR20040038628A (en) Gas enriched device and blasting device using the same
JP2005155990A (en) Air conditioner
JP2005201556A (en) Air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees