WO2019103045A1 - Air-tightness evaluation device, in-compartment air conditioning device, and refrigeration device - Google Patents

Air-tightness evaluation device, in-compartment air conditioning device, and refrigeration device Download PDF

Info

Publication number
WO2019103045A1
WO2019103045A1 PCT/JP2018/043008 JP2018043008W WO2019103045A1 WO 2019103045 A1 WO2019103045 A1 WO 2019103045A1 JP 2018043008 W JP2018043008 W JP 2018043008W WO 2019103045 A1 WO2019103045 A1 WO 2019103045A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
evaluation
airtightness
pressure
unit
Prior art date
Application number
PCT/JP2018/043008
Other languages
French (fr)
Japanese (ja)
Inventor
秀徳 松井
紀考 亀井
直宏 田中
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2019103045A1 publication Critical patent/WO2019103045A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors

Definitions

  • the present invention relates to an airtightness evaluation device for evaluating the airtightness of a storage, and an in-compartment air conditioning device and a refrigeration system provided with the airtightness evaluation device.
  • Patent Document 1 discloses an in-compartment environment control system for supplying air having a low oxygen concentration to the inside of a transport container in order to lower the oxygen concentration of air inside the transport container lower than the oxygen concentration of the atmosphere. It is done. Further, this in-compartment environment control system includes a refrigerant circuit that performs a refrigeration cycle, and also performs temperature control of the in-compartment air.
  • storage containers such as a transport container
  • containers for sea transport may become progressively less airtight during repeated use processes.
  • outside air i.e., the atmosphere
  • the composition of the inside air for example, the oxygen concentration of the inside air
  • Temperature may not be reduced to the target temperature.
  • This invention is made in view of this point, The objective is to provide the apparatus which evaluates the airtightness of storage.
  • a first aspect of the present disclosure is directed to an airtightness evaluation device, wherein air is supplied to the storage (1) or the storage (1) in order to make the air pressure in the storage (1) different from the atmospheric pressure.
  • An air pressure regulator (131) for exhausting air from the air pressure sensor (103, 65, 45) for measuring the air pressure in the storage (1), and the air pressure during or after operation of the air pressure regulator (131)
  • An evaluation unit (116) configured to perform an evaluation operation to evaluate the airtightness of the storage (1) based on the measurement values of the sensors (103, 65, 45).
  • the air pressure in the storage case (1) becomes positive pressure or negative pressure by operating the air pressure adjusting device (131).
  • the pressure in the storage case (1) is a positive pressure
  • the air tightness of the storage case (1) is lower, the air flowing out of the storage case (1) through the gap of the storage case (1) Flow rate will increase.
  • the air pressure inside the storage case (1) is a negative pressure
  • the lower the airtightness of the storage case (1) the more it flows into the inside of the storage case (1) through the gap of the storage case (1)
  • the flow rate of air increases. For this reason, the lower the airtightness of the storage case (1), the greater the influence on the air pressure in the storage case (1). Therefore, the evaluation unit (116) evaluates the airtightness of the storage case (1) based on the measurement values of the air pressure sensor (103, 65, 45) during or after the operation of the air pressure adjustment device (131).
  • the evaluation unit (116) measures the airtightness of the storage (1) based on the measurement values of the pressure sensor (103, 65, 45). It is comprised so that the operation
  • the evaluation unit (116) in the evaluation operation is an air pressure sensor (103, 65, 45) of the air pressure adjustment device (131) during or after operation of the air pressure adjustment device (131). Judge based on the measured value. Then, the evaluation unit (116) determines that the airtightness of the storage case (1) has reached the reference level when the evaluation condition is satisfied, and the airtightness of the storage case (1) is the reference level when the evaluation condition is not satisfied. It is determined that has not been reached.
  • the evaluation unit (116) determines, in the evaluation operation, success or failure of one of a plurality of the evaluation conditions different from each other in the reference level.
  • An operator is provided with an input unit (113) for inputting information designating one of the plurality of evaluation conditions which are judged to be successful in the evaluation operation among the plurality of evaluation conditions.
  • the airtightness evaluation device (130) is provided with an input unit (113).
  • the information input to the input unit (113) by the operator designates one of a plurality of evaluation conditions having different reference levels.
  • the evaluation unit (116) determines whether the evaluation condition specified by the information input by the operator to the input unit (113) is met.
  • the evaluation unit (116) operates the air pressure adjustment device (131) as the evaluation operation, and the air pressure sensor
  • the air pressure adjusting device (131) is stopped, and measurement of the air pressure sensor (103, 65, 45) after stopping the air pressure adjusting device (131) It is comprised so that the operation
  • the evaluation unit (116) operates the air pressure adjustment device (131) to change the air pressure in the storage case (1), and measures the air pressure sensor (103, 65, 45) When the value reaches the reference pressure, the air pressure regulator (131) is stopped.
  • the air pressure in the storage case (1) is a positive pressure
  • the measurement value of the pressure sensor (103, 65, 45) after stopping the pressure control device (131) The rate of decline is faster.
  • the evaluation unit (116) evaluates the airtightness of the storage case (1) based on the change in the measurement value of the air pressure sensor (103, 65, 45) after the air pressure adjustment device (131) is stopped.
  • the evaluation unit (116) controls the air pressure adjustment device (131) as the evaluation operation to control the air pressure. After the measured value of the sensor (103, 65, 45) is maintained in the predetermined pressure range for a predetermined time, the measured value of the measured pressure sensor (103, 65, 45) during stoppage of the pressure adjusting device (131) It is comprised so that the operation
  • the evaluation unit (116) controls the air pressure adjusting device (131) to keep the measured value of the air pressure sensor (103, 65, 45) within a predetermined pressure range for a predetermined time. keep.
  • the air pressure in the storage case (1) is a positive pressure
  • the lower the air tightness of the storage case (1) the measurement value of the pressure sensor (103, 65, 45) after stopping the pressure control device (131)
  • the rate of decline is faster.
  • the air pressure in the storage case (1) is negative pressure
  • the rate of increase in value is faster.
  • the air pressure adjustment device (131) stops the pressure sensor The airtightness of the storage (1) is evaluated based on the change in the measured value of 103, 65, 45).
  • the evaluation unit (116) operates the air pressure adjustment device (131) as the evaluation operation to adjust the air pressure.
  • An operation is performed to evaluate the airtightness of the storage (1) based on the change in the measurement value of the air pressure sensor (103, 65, 45) during the operation of the device (131).
  • the evaluation unit (116) operates the air pressure adjustment device (131) to change the air pressure in the storage case (1).
  • the pressure in the storage case (1) is a positive pressure
  • the lower the air tightness of the storage case (1) the measurement value of the pressure sensor (103, 65, 45) during operation of the pressure control device (131) Rising speed slows down.
  • the air pressure in the storage case (1) is negative pressure
  • the lower the air tightness of the storage case (1) the measurement of the air pressure sensor (103, 65, 45) during operation of the air pressure adjustment device (131)
  • the rate of decrease in value becomes slower. Therefore, the evaluation unit (116) evaluates the airtightness of the storage case (1) based on the change in the measurement value of the air pressure sensor (103, 65, 45) during the operation of the air pressure adjustment device (131).
  • a seventh aspect of the present disclosure is directed to an in-compartment air conditioning device, in which the airtightness evaluation device (130) according to any one of the first to sixth aspects and the suctioned from the outside of the storage (1)
  • An air pump (36) for pressurizing and discharging the outside air and a supply air having a different composition from the outside air from the outside air discharged by the air pump (36) are separated, and the air for supply is separated.
  • the separation unit (41) for supplying the inside of the storage case (1), and the air pump (36) has the storage case (1) in order to make the pressure of the storage case (1) positive.
  • the air pressure adjusting device (131) of the above-mentioned airtightness evaluation device (130) is configured to supply the air.
  • the airtightness evaluation device (130) of any one of the first to sixth aspects is provided in the in-compartment air conditioning device (30).
  • the in-compartment air conditioning device (30) adjusts the composition of the in-compartment air by supplying supply air having a composition different from that of the outside-compartment air into the inside of the storage (1).
  • the air pump (36) with which the in-compartment air conditioning device (30) adjusts the composition of the in-compartment air doubles as the air pressure adjustment device (131) of the airtightness evaluation device (130).
  • the airtightness evaluation device (130) of this aspect supplies air to the storage case (1) by the air pump (36) which doubles as an air pressure adjustment device (131), and makes the air pressure in the storage case (1) a positive pressure.
  • the eighth aspect of the present disclosure is directed to an air conditioning device in a storage, and includes the airtightness evaluation device (130) according to any one of the first to sixth aspects, and the composition of air in the storage of the storage (1). And a composition control unit (40, 60) for adjusting the target composition to be different from the composition of the atmosphere, the evaluation unit (116) of the airtightness evaluation device (130) comprising the composition control unit (40). , 60), and the evaluation operation is performed when a failure condition indicating that the composition of the air in the storage (1) can not reach the target composition is satisfied.
  • the composition adjustment unit (40, 60) does not operate normally, the composition of the air in the storage (1) does not reach the target composition.
  • the composition control unit (40, 60) operates normally, if the airtightness of the storage case (1) is low, the flow rate of the air entering the inside from the outside of the storage case (1) increases. The composition of the air in the storage (1) may not reach the target composition.
  • the evaluation unit (116) of the airtightness evaluation device (130) performs the evaluation operation.
  • the evaluation unit (116) performs the evaluation operation, the airtightness of the storage case (1) is evaluated.
  • the cause of the composition of the air in the storage (1) not reaching the target composition is the failure of the composition adjustment unit (40, 60) or the airtightness of the storage (1). It becomes possible.
  • the ninth aspect of the present disclosure is directed to a refrigeration system, and the airtightness evaluation device (130) according to any one of the first to sixth aspects, and the temperature of air inside the storage compartment (1) have a target temperature And the refrigerant circuit (11) for performing the refrigeration cycle to cool the inside air by the refrigerant, and the evaluation unit (116) of the airtightness evaluation device (130) includes the refrigerant circuit (11).
  • the evaluation operation is configured to be performed when a failure condition indicating that the temperature of the air in the storage (1) can not reach the target temperature is satisfied by the operation of 2.).
  • the temperature of the air in the storage (1) does not reach the target temperature.
  • the refrigerant circuit (11) is operating normally, if the airtightness of the storage case (1) is low, the flow rate of the air entering the inside from the outside of the storage case (1) increases, and the storage case There is a possibility that the temperature of the inside air of (1) may not reach the target temperature.
  • the evaluation unit (116) of the airtightness evaluation device (130) performs the evaluation operation.
  • the evaluation unit (116) performs the evaluation operation, the airtightness of the storage case (1) is evaluated.
  • the cause of the composition of the air in the storage (1) not reaching the target composition is the failure of the refrigerant circuit (11) or the airtightness of the storage (1). .
  • the air pressure adjusting device (131) adjusts the air pressure in the storage case (1), and the evaluation unit (116) stores the storage case based on the measurement values of the air pressure sensors (103, 65, 45). 1) Evaluate air tightness. For this reason, according to this aspect, it is possible to automatically evaluate the airtightness of the storage case (1).
  • the evaluation unit (116) performs an evaluation operation of evaluating the airtightness of the storage case (1) using one evaluation condition designated by the worker among a plurality of evaluation conditions. Therefore, according to this aspect, the operator can select one evaluation condition used in the evaluation operation from among a plurality of evaluation conditions, and the usability of the in-compartment air conditioner (30) is improved.
  • the air pump (36) provided in the in-compartment air conditioner (30) doubles as the air pressure regulator (131) of the air tightness evaluation device (130). Therefore, according to this aspect, it is possible to reduce the number of parts of the in-compartment air conditioner (30) including the air tightness evaluation device (130).
  • the evaluation unit (116) of the airtightness evaluation device (130) performs an evaluation operation when a failure condition indicating that the composition of the air in the storage (1) does not reach the target composition is satisfied. To evaluate the airtightness of the storage cabinet (1). Therefore, according to this aspect, is the cause that the composition of the air in the storage (1) does not reach the target composition is the failure of the composition adjustment unit (40, 60) or the airtightness of the storage (1)? It is possible to determine
  • the evaluation unit (116) of the air tightness evaluation device (130) performs the evaluation operation when a failure condition indicating that the temperature of the air inside the storage (1) does not reach the target temperature is satisfied. To evaluate the airtightness of the storage cabinet (1). Therefore, according to this aspect, it is determined whether the cause that the temperature of the air inside the storage case (1) does not reach the target temperature is the failure of the refrigerant circuit (11) or the airtightness of the storage case (1). It becomes possible.
  • FIG. 1 is a schematic cross-sectional view of a transportation container provided with the in-compartment air conditioning device of the first embodiment.
  • FIG. 2 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit of a refrigerator provided in the transport container.
  • FIG. 3 is a piping system diagram showing the configuration of the in-compartment air conditioning device of the first embodiment.
  • FIG. 4 is a piping system diagram of the in-compartment air conditioning device of the first embodiment showing a state in which the airtightness evaluation device is under evaluation operation.
  • FIG. 5 is a block diagram showing the configuration of the controller of the first embodiment.
  • FIG. 6 is a flowchart showing the evaluation operation performed by the airtightness evaluation unit of the first embodiment.
  • FIG. 7 is a piping system diagram showing a configuration of the in-compartment air conditioning device of the second embodiment.
  • FIG. 8 is a flowchart showing the evaluation operation performed by the airtightness evaluation unit of the second embodiment.
  • FIG. 9 is a piping system diagram showing a configuration of the in-compartment air conditioning device of the third embodiment.
  • FIG. 10 is a flowchart showing the evaluation operation performed by the airtightness evaluation unit of the third embodiment.
  • FIG. 11 is a flowchart showing the evaluation operation performed by the airtightness evaluation unit of the fourth embodiment.
  • FIG. 12 is a piping system diagram showing a configuration of the in-compartment air conditioning device of the fifth embodiment.
  • FIG. 13 is a piping system diagram of the in-compartment air conditioning device of the fifth embodiment showing a state in which the air tightness evaluation device is under evaluation operation.
  • FIG. 14 is a piping diagram showing a configuration of the in-compartment air conditioning device of the sixth embodiment.
  • FIG. 15 is a piping system diagram of the in-compartment air conditioning device of the sixth embodiment, which shows the state during the evaluation operation of the airtightness evaluation device.
  • FIG. 16 is a piping diagram showing a configuration of the in-compartment air conditioning device of the seventh embodiment.
  • FIG. 17 is a piping diagram of the in-compartment air conditioning device of the seventh embodiment showing a state in which the air tightness evaluation device is under evaluation operation.
  • FIG. 18 is a flowchart showing the evaluation operation performed by the airtightness evaluation unit of the eighth embodiment.
  • FIG. 19 is a piping diagram showing the configuration of the inside air conditioning device of the ninth embodiment.
  • FIG. 20 is a piping diagram of the in-compartment air conditioning device, showing the state during first operation of the first composition regulation unit of the ninth embodiment.
  • FIG. 21 is a piping diagram of the in-compartment air conditioning device, showing the state during second operation of the first composition adjustment portion of the ninth embodiment.
  • FIG. 22 is a piping diagram of the in-compartment air conditioning device, showing a state during the outside air introduction operation of the first composition adjustment portion of the ninth embodiment.
  • Embodiment 1 The first embodiment will be described.
  • the in-compartment air conditioner (30) of the present embodiment is provided in the transport container (1) to perform so-called CA (Controlled Atmosphere) transport. Then, the in-compartment air conditioner (30) regulates the composition of air in the transport container (1) to be different from the composition of the atmosphere. Further, although the details will be described later, an airtightness evaluation device (130) is incorporated in the in-compartment air conditioning device (30).
  • CA Controlled Atmosphere
  • the transport container (1) constituting the storage includes a container body (2) and a refrigerator (10) for the container.
  • the transport container (1) is a reefer container capable of controlling the temperature inside the refrigerator.
  • the in-compartment air conditioner (30) of the present embodiment is installed in a refrigerator (10).
  • the transport container (1) is used to transport respirable plants that take in oxygen (O 2 ) in the air and release carbon dioxide (CO 2 ). Examples of plants include fruits such as banana and avocado, vegetables, grains, bulbs, fresh flowers and the like.
  • the container body (2) is formed in an elongated rectangular parallelepiped box shape.
  • the container body (2) is open at one end face, and the refrigerator (10) is attached so as to close the open end.
  • the internal space of the container body (2) constitutes a loading space (5) for storing the cargo (6).
  • a floor plate (3) for placing the cargo (6) is arranged.
  • an under-floor flow path (4) for flowing the air blown out by the refrigerator (10) is formed.
  • the underfloor channel (4) is a channel extending in the longitudinal direction of the container body (2) along the bottom plate of the container body (2).
  • the underfloor flow path (4) has one end connected to the outlet (27) of the refrigerator (10) and the other end is the space above the floor plate (3) (ie, the space in which the cargo (6) is accommodated) It communicates.
  • the refrigerator (10) comprises a casing (20), a refrigerant circuit (11) performing a refrigeration cycle, an external fan (16), and an internal fan (17). It is an apparatus.
  • the casing (20) includes a storage outer wall (21), a storage inner wall (22), a back plate (24), and a dividing plate (25). As described later, the casing (20) is provided with a refrigerant circuit (11), an external fan (16), and an internal fan (17).
  • the storage outer wall portion (21) is a plate-like member disposed so as to cover the open end of the container main body (2).
  • the lower portion of the storage outer wall (21) bulges to the inside of the container body (2).
  • the storage inner wall portion (22) is a plate-like member having a form along the storage outer wall portion (21).
  • the storage inner wall (22) is arranged to cover the inner surface of the container body (2) in the storage outer wall (21).
  • a heat insulating material (23) is filled in the space between the storage outer wall (21) and the storage inner wall (22).
  • the lower portion of the casing (20) is recessed inward of the container body (2).
  • the lower part of the casing (20) forms an external storage compartment (28) in communication with the external space of the transport container (1).
  • An extra-compartment fan (16) is disposed in the extra-compartment equipment room (28).
  • the back plate (24) is a substantially rectangular flat member.
  • the back plate (24) is disposed on the inner side of the container body (2) than the storage inner wall (22), and forms an internal air flow passage (29) with the storage inner wall (22).
  • the upper end of the in-compartment air flow passage (29) constitutes the suction port (26) of the casing (20), and the lower end thereof constitutes the blowout port (27) of the casing (20).
  • the partition plate (25) is a plate-like member arranged to partition the internal air flow passage (29) up and down.
  • the partition plate (25) is disposed in the upper part of the internal air flow passage (29).
  • the compartment air passage (29) is provided with the primary flow passage (29a) above the partition plate (25) and the secondary flow passage (29b) below the partition plate (25) by the partition plate (25).
  • Divided into The primary flow passage (29a) communicates with the loading space (5) through the suction port (26).
  • the secondary flow passage (29b) communicates with the underfloor flow passage (4) through the blowout port (27).
  • An internal fan (17) is attached to the partition plate (25).
  • the internal fan (17) is arranged to blow out the air drawn from the primary flow passage (29a) to the secondary flow passage (29b).
  • the refrigerant circuit (11) is formed by connecting the compressor (12), the condenser (13), the expansion valve (14), and the evaporator (15) by piping. Closed circuit.
  • the compressor (12) When the compressor (12) is operated, the refrigerant circulates through the refrigerant circuit (11) to perform a vapor compression refrigeration cycle.
  • the condenser (13) is disposed on the suction side of the external fan (16) in the external equipment chamber (28), and the evaporator (15) is an internal air flow path (29) Are arranged in the secondary flow path (29b) of Moreover, although illustration is abbreviate
  • the refrigerator (10) performs a cooling operation to cool the air in the storage container (1).
  • the compressor (12) of the refrigerant circuit (11) operates, and the refrigerant is circulated in the refrigerant circuit (11) to perform a vapor compression refrigeration cycle.
  • the refrigerant discharged from the compressor (12) passes through the condenser (13), the expansion valve (14) and the evaporator (15) in this order, and then to the compressor (12) It is inhaled and compressed.
  • the external fan (16) and the internal fan (17) operate.
  • the external fan (16) When the external fan (16) is activated, external air outside the transport container (1) is sucked into the external equipment chamber (28) and passes through the condenser (13). In the condenser (13), the refrigerant releases heat to air outside the storage and condenses.
  • the internal fan (17) When the internal fan (17) is activated, internal air in the cargo compartment (5) of the transport container (1) is sucked into the internal air flow path (29) and passes through the evaporator (15). In the evaporator (15), the refrigerant absorbs heat from outside air and evaporates.
  • the flow of air in the storage will be described.
  • the internal air present in the cargo compartment (5) flows into the primary flow path (29a) of the internal air flow path (29) through the suction port (26), and the secondary flow is performed by the internal fan (17) It is blown out to the road (29b).
  • the inside air flowing into the secondary flow passage (29b) is cooled when passing through the evaporator (15), and then blown out from the blowout port (27) to the underfloor flow passage (4). 4) Flow into the cargo room (5).
  • the primary flow path (29a) is located on the suction side of the internal fan (17), and the secondary flow path (29b) is located on the blowout side of the internal fan (17) . Therefore, during operation of the internal fan (17), the air pressure in the secondary flow passage (29b) is slightly higher than the air pressure in the primary flow passage (29a).
  • the in-compartment air conditioner (30) comprises a main body unit (31), a sensor unit (90), a ventilating exhaust pipe (100), and a controller (110).
  • the main body unit (31) is installed in the external equipment room (28) of the refrigerator (10).
  • the sensor unit (90) is installed in the in-compartment air flow path (29) of the transport container (1).
  • the ventilation exhaust pipe (100) is installed across the in-compartment air flow path (29) of the transport container (1) and the out-of-compartment equipment room (28).
  • the controller (110) is provided in the main body unit (31) to control constituent devices of the in-compartment air conditioner (30). Details of the sensor unit (90), the ventilation exhaust pipe (100), and the controller (110) will be described later.
  • the main body unit (31) of the in-compartment air conditioning device (30) includes a first composition regulation unit (40), a second composition regulation unit (60), and a pump unit (35).
  • a unit case (32) is provided.
  • the unit case (32) is a box-like closed container.
  • the first composition adjusting unit (40), the second composition adjusting unit (60), and the pump unit (35) are disposed in the internal space of the unit case (32). The details of the first composition adjusting unit (40), the second composition adjusting unit (60), and the pump unit (35) will be described later.
  • the in-compartment air conditioning device (30) includes a supply pipe (120), an in-compartment suction pipe (75), and a measurement pipe (125).
  • the supply pipe (120), the storage inner suction pipe (75), and the measurement pipe (125) are pipes for connecting the main body unit (31) to the internal air flow path (29) of the refrigerator (10). is there.
  • the supply pipe (120) is a pipe for supplying the air flowing out of the first composition control unit (40) and the second composition control unit (60) to the loading space (5).
  • the inlet end of the supply pipe (120) is connected to the first composition adjusting unit (40) and the second composition adjusting unit (60), and the outlet end is the secondary flow passage (29b) of the internal air flow passage (29) Open to
  • the storage inner suction pipe (75) is a pipe for supplying the storage internal air in the loading space (5) to the second composition adjustment section (60).
  • the inlet end of the storage inner suction pipe (75) opens to the secondary flow passage (29b) of the storage inner air flow passage (29), and the outlet end of the second pump of the second composition adjustment unit (60) 37) connected.
  • the inlet end of the storage inner suction pipe (75) is disposed upstream of the outlet end of the supply pipe (120).
  • the measurement pipe (125) is a pipe for supplying the air flowing through the supply pipe (120) to the sensor unit (90).
  • the measurement pipe (125) has an inlet end connected to the supply pipe (120) and an outlet end connected to the sensor unit (90). Further, the measurement pipe (125) is provided with a measurement on-off valve (126) consisting of a solenoid valve.
  • the measurement on-off valve (126) is housed in a unit case (32) of the main unit (31).
  • the pump unit (35) includes a first pump (36), a second pump (37), and a drive motor (38).
  • Each of the first pump (36) and the second pump (37) is an air pump for discharging the sucked air.
  • Each of the first pump (36) and the second pump (37) is constituted by, for example, a positive displacement fluid machine.
  • the first pump (36) and the second pump (37) are integrated.
  • the drive motor (38) is a motor connected to the first pump (36) and the second pump (37). The drive motor (38) drives both the first pump (36) and the second pump (37).
  • the first composition adjusting unit (40) is configured to separate the outside air (air outside the unprocessed room) sucked from the outside of the transport container (1) into the first outside air and the second outside air. Ru.
  • the first composition adjustment unit (40) of the present embodiment supplies the first outside air, which is supply air, to the loading space (5) and discharges the second outside air to the outside of the transportation container (1). Do.
  • the first composition control unit (40) includes an air filter (47), a first separation module (41), a first bypass valve (50), a first pressure sensor (45) and a first control valve (46). And have.
  • the first composition adjusting unit (40) includes a storage outside suction pipe (55), a first introduction pipe (52), a first primary side pipe (53), and a first secondary side pipe (54). , And a first bypass pipe (51).
  • the first pump (36) of the pump unit (35) constitutes this first composition adjustment section (40).
  • the air filter (47) is a membrane filter for capturing dust, salt and the like contained in the outside air.
  • the air filter (47) is attached to the unit case (32) of the main unit (31).
  • the air filter (47) is connected to the suction port of the first pump (36) via the outer storage suction pipe (55).
  • the first separation module (41) includes a first inlet (42), a first primary outlet (43), and a first secondary outlet (44).
  • the first inlet (42) is connected to the outlet of the first pump (36) through the first inlet pipe (52).
  • the first primary outlet (43) is connected to the supply pipe (120) via the first primary pipe (53).
  • One end of a first secondary side pipe (54) is connected to the first secondary side outlet (44).
  • the first secondary pipe (54) extends to the outside of the unit case (32).
  • the other end of the first secondary side pipe (54) opens to the suction side of the external fan (16) in the external equipment chamber (28).
  • the first bypass valve (50) is a switching valve having three ports, and constitutes a first bypass valve mechanism.
  • the first bypass valve (50) has a first state (shown by a solid line in FIG. 3) in which the first port is in communication with the second port and shut off from the third port; It is configured to be in communication with the third port and to switch to a second state (state shown by a broken line in FIG. 3) which is disconnected from the second port.
  • the first bypass valve (50) is disposed in the middle of the first introduction pipe (52).
  • the first bypass valve (50) has a first port connected to the discharge port of the first pump (36), and a second port connected to the first inlet (42) of the first separation module (41) .
  • the inlet end of the first bypass pipe (51) is connected to the third port of the first bypass valve (50).
  • the outlet end of the first bypass pipe (51) is connected to the first primary pipe (53).
  • the first bypass pipe (51) constitutes a first bypass passage.
  • the first pressure sensor (45) and the first control valve (46) are provided in the first primary pipe (53).
  • the first pressure sensor (45) and the first control valve (46) are closer to the first separation module (41) than the other end of the first bypass pipe (51) connected to the first primary pipe (53). Be placed. Further, the first pressure sensor (45) is disposed closer to the first separation module (41) than the first control valve (46).
  • the first pressure sensor (45) measures the pressure of the first outside air flowing out of the first primary outlet (43) of the first separation module (41).
  • the measurement value of the first pressure sensor (45) is substantially equal to the pressure of the outside air outside the storage, which the first pump (36) supplies to the first separation module (41).
  • the first control valve (46) is a motor-operated valve whose opening degree is variable, and constitutes a first valve mechanism. When the opening degree of the first control valve (46) is changed, the pressure of the air outside the unprocessed storage which the first pump (36) supplies to the first separation module (41) changes.
  • the first separation module (41) constitutes a first separation unit. Although the details will be described later, the first separation module (41) includes a gas separation membrane. Then, the first separation module (41) separates the untreated outside air into the first outside air that has not passed through the gas separation membrane and the second outside air that has passed through the gas separation membrane.
  • the first outside air has a nitrogen concentration higher than that of the untreated outside air, and an oxygen concentration lower than that of the untreated outside air.
  • the second outside air has a nitrogen concentration lower than that of the untreated outside air, and an oxygen concentration higher than that of the untreated outside air.
  • the concentration in the present specification means a volume ratio.
  • the second composition adjustment unit (60) is configured to separate the in-compartment air (untreated in-compartment air) sucked from the internal space of the transport container (1) into the first in-compartment air and the second in-compartment air. Be done.
  • the second composition adjustment unit (60) of the present embodiment supplies the first in-storage air to the loading space (5), and discharges the second in-storage air, which is discharge air, to the outside of the transport container (1). Do.
  • the second composition adjustment unit (60) includes a second separation module (61), a second bypass valve (70), a second pressure sensor (65), and a second adjustment valve (66).
  • the second composition adjusting unit (60) includes a second introduction pipe (72), a second primary side pipe (73), a second secondary side pipe (74), and a second bypass pipe (71). Is equipped.
  • the second pump (37) of the pump unit (35) constitutes this second composition adjustment unit (60).
  • the second separation module (61) includes a second inlet (62), a second primary outlet (63), and a second secondary outlet (64).
  • the second inlet (62) is connected to the outlet of the second pump (37) via the second inlet pipe (72).
  • the second primary outlet (63) is connected to the supply pipe (120) via the second primary pipe (73).
  • One end of a second secondary pipe (74) is connected to the second secondary outlet (64).
  • the second secondary pipe (74) extends to the outside of the unit case (32).
  • the other end of the second secondary side pipe (74) opens on the suction side of the external fan (16) in the external equipment chamber (28).
  • an inner suction pipe (75) is connected to the suction port of the second pump (37).
  • the second bypass valve (70) is a switching valve having three ports, and constitutes a second bypass valve mechanism.
  • the second bypass valve (70) has a first state (shown by a solid line in FIG. 3) in which the first port is in communication with the second port and is shut off from the third port; It is configured to be in communication with the third port and to switch to a second state (state shown by a broken line in FIG. 3) which is disconnected from the second port.
  • the second bypass valve (70) is disposed in the middle of the second introduction pipe (72).
  • the first port is connected to the discharge port of the second pump (37), and the second port is connected to the second inlet (62) of the second separation module (61) .
  • the inlet end of the second bypass pipe (71) is connected to the third port of the second bypass valve (70).
  • the outlet end of the second bypass pipe (71) is connected to the second primary pipe (73).
  • the second bypass pipe (71) constitutes a second bypass passage.
  • the second pressure sensor (65) and the second control valve (66) are provided in the second primary pipe (73).
  • the second pressure sensor (65) and the second control valve (66) are closer to the second separation module (61) than the other end of the second bypass pipe (71) connected to the second primary pipe (73). Be placed.
  • the second pressure sensor (65) is disposed closer to the second separation module (61) than the second control valve (66).
  • the second pressure sensor (65) measures the pressure of the second outside air flowing out of the second primary outlet (63) of the second separation module (61).
  • the measurement value of the second pressure sensor (65) is substantially equal to the pressure of the air in the non-processed storage that the second pump (37) supplies to the second separation module (61).
  • the second control valve (66) is a motor-operated valve whose opening degree is variable, and constitutes a second valve mechanism.
  • the degree of opening of the second control valve (66) is changed, the pressure of the air in the non-processed housing supplied to the second separation module (61) by the second pump (37) changes.
  • the second separation module (61) constitutes a second separation unit. Although the details will be described later, the second separation module (61) includes a gas separation membrane. Then, the second separation module (61) separates the air in the non-treated storage into the first air in the storage that has not permeated the gas separation membrane and the second air in the storage that has permeated the gas separation membrane.
  • the first interior air has a nitrogen concentration higher than that of the untreated interior air, and an oxygen concentration and a carbon dioxide concentration lower than that of the untreated interior air.
  • the second internal air has a nitrogen concentration lower than that of the untreated internal air, and an oxygen concentration and a carbon dioxide concentration higher than that of the untreated internal air.
  • Separation module The structures of the first separation module (41) and the second separation module (61) will be described.
  • the structures of the first separation module 41 and the second separation module 61 are identical to each other.
  • Each separation module (41, 61) is formed in an elongated cylindrical shape closed at both ends.
  • Each separation module (41, 61) has an inlet (42, 62) at one end, a primary outlet (43, 63) at the other end, and a secondary outlet (side) at the side. 44, 64) are arranged.
  • each separation module (41, 61) a large number of hollow fiber-shaped gas separation membranes are accommodated inside each separation module (41, 61).
  • the inlet (42, 62) communicates with the inlet end of the hollow fiber-shaped gas separation membrane
  • the primary side outlet (43, 63) is the outlet end of the hollow fiber-shaped gas separation membrane
  • the secondary side outlet (44, 64) communicates with a portion of the internal space of the separation module (41, 61) outside the hollow fiber-like gas separation membrane.
  • the gas separation membrane is a non-porous membrane made of a polymer.
  • the gas separation membrane of each separation module (41, 61) has a characteristic that the permeability of nitrogen is lower than both of the permeability of oxygen and the permeability of carbon dioxide. For this reason, in each separation module (41, 61), the air that has not permeated the gas separation membrane and reached the primary outlet (43, 63) is compared to the air that has flowed in from the inlet (42, 62) , High nitrogen concentration, low oxygen concentration and carbon dioxide concentration.
  • each separation module (41, 61) the air which permeates the gas separation membrane and reaches the secondary side outlet (44, 64) is compared with the air flowing in from the inlet (42, 62), Low nitrogen concentration, high oxygen concentration and carbon dioxide concentration.
  • the sensor unit (90) is disposed in the secondary flow passage (29b) of the in-compartment air flow passage (29) of the container refrigerator (10).
  • the sensor unit (90) includes an oxygen sensor (91), a carbon dioxide sensor (92), and a sensor case (93).
  • the oxygen sensor (91) is a zirconia current sensor that measures the oxygen concentration of a mixed gas such as air.
  • the carbon dioxide sensor (92) is a non dispersive infrared (NDIR: non dispersive infrared) type sensor that measures the carbon dioxide concentration of a mixed gas such as air.
  • NDIR non dispersive infrared
  • the sensor case (93) is a slightly elongated box-like member.
  • the outlet end of the measurement pipe (125) is connected to one end in the longitudinal direction, and one end of the outlet pipe (95) is connected to the other end.
  • the other end of the outlet pipe (95) opens into the primary flow passage (29a) of the internal air flow passage (29).
  • an air filter (94) is attached to the sensor case (93) for introducing the internal air flowing through the internal air flow path (29) into the internal space of the sensor case (93).
  • the air filter (94) is a membrane filter for capturing dust and the like contained in the air in the refrigerator.
  • the air pressure in the secondary flow passage (29b) is slightly higher than the air pressure in the primary flow passage (29a). For this reason, when the measurement on-off valve (126) is closed, the internal air of the secondary flow passage (29b) flows into the sensor case (93) through the air filter (94) and then the outlet pipe ( 95) through the primary channel (29a).
  • the oxygen sensor (91) measures the oxygen concentration of the air inside the storage
  • the carbon dioxide sensor (92) measures the carbon dioxide concentration of the air inside the storage.
  • the ventilation exhaust pipe (100) is a pipe for connecting the inside and the outside of the transportation container (1).
  • the ventilation exhaust pipe (100) constitutes a ventilation exhaust passage. As shown in FIG. 1, the ventilation exhaust pipe (100) penetrates the casing (20) of the refrigerator (10). One end of the ventilation exhaust pipe (100) opens to the secondary flow passage (29b) of the internal air flow passage (29). The other end of the ventilation exhaust pipe (100) opens to the suction side of the external fan (16) in the external equipment chamber (28).
  • an air filter (102) is attached to one end of the ventilation exhaust pipe (100).
  • the air filter (102) is a membrane filter for capturing dust and the like contained in the air in the refrigerator.
  • the ventilation exhaust pipe (100) is provided with a ventilation exhaust valve (101).
  • the ventilation exhaust valve (101) is an on-off valve composed of a solenoid valve.
  • the ventilation exhaust pipe (100) is provided with a third pressure sensor (103).
  • the third pressure sensor (103) is disposed between the air filter (102) and the ventilation exhaust valve (101), and measures the pressure in the ventilation exhaust pipe (100).
  • the air pressure in the ventilation exhaust pipe (100) is substantially equal to the air pressure in the secondary flow passage (29b) of the refrigerator (10).
  • the air pressure in the secondary flow passage (29b) is substantially equal to the air pressure in the loading space (5). For this reason, while the internal fan (17) is stopped, the measurement value of the third pressure sensor (103) substantially matches the air pressure in the loading space (5).
  • the controller (110) includes a CPU (111) that performs a control operation, and a memory (112) that stores data and the like necessary for the control operation. Measurement values of the oxygen sensor (91), the carbon dioxide sensor (92), the first pressure sensor (45), and the second pressure sensor (65) are input to the controller (110).
  • the controller (110) includes a pump unit (35), a first control valve (46), a second control valve (66), a first bypass valve (50), a second bypass valve (70), and an exhaust valve for ventilation. A control operation for operating (101) is performed.
  • the controller (110) includes an in-compartment environment control unit (115) and an airtightness evaluation unit (116).
  • the internal environment control unit (115) makes the composition of the air inside the cargo room (5) the target composition (specifically, the oxygen concentration and the carbon dioxide concentration of the air inside the To control the components of the in-compartment air conditioner (30).
  • the airtightness evaluation unit (116) will be described later.
  • the in-compartment air conditioning device (30) is for adjusting the composition of the in-compartment air (in the present embodiment, the oxygen concentration and the carbon dioxide concentration of the in-compartment air) in the cargo compartment (5) of the transport container (1).
  • the target range of the oxygen concentration of the air in the refrigerator is 5% ⁇ 1% and the target range of the carbon dioxide concentration of the air in the refrigerator is 2 for the operation of the air conditioner (30) of this embodiment.
  • the case of% ⁇ 1% will be described as an example.
  • the in-compartment air conditioning device (30) of the present embodiment includes an oxygen concentration reducing operation for reducing the oxygen concentration of the in-compartment air in the loading compartment (5), and the oxidation of the in-compartment air in the loading compartment (5).
  • the carbon dioxide concentration reducing operation for reducing the carbon concentration and the oxygen concentration increasing operation for increasing the oxygen concentration of the air in the storage compartment (5) are performed.
  • the composition of the air inside the cargo compartment (5) is the composition of the atmosphere (nitrogen concentration: 78%, oxygen concentration: 21) %, Substantially the same as the carbon dioxide concentration: 0.04%). Therefore, the in-compartment air conditioning device (30) performs an oxygen concentration reduction operation for reducing the oxygen concentration of the in-compartment air. When the oxygen concentration of the in-compartment air reaches the upper limit value (6%) of the target range, the in-compartment air conditioner (30) stops the oxygen concentration reduction operation.
  • the storage air conditioner (30) When the carbon dioxide concentration in the storage air reaches the upper limit (3%) of the target range, the storage air conditioner (30) performs a carbon dioxide concentration reduction operation to reduce the carbon dioxide concentration in the storage air. . When the carbon dioxide concentration in the storage air reaches the lower limit (1%) of the target range, the storage air regulator (30) stops the carbon dioxide concentration reduction operation.
  • the in-chamber air regulator (30) performs an oxygen concentration increasing operation for increasing the oxygen concentration of the in-chamber air.
  • the in-compartment air conditioner (30) stops the oxygen concentration increasing operation.
  • the in-compartment air conditioner (30) reduces the oxygen concentration reduction operation to lower the oxygen concentration of the in-compartment air in the cargo compartment (5) from 21% (oxygen concentration of the atmosphere) to the target range. Do.
  • the in-compartment air conditioner (30) operates to reduce carbon dioxide and increase oxygen concentration in order to maintain the oxygen concentration and carbon dioxide concentration of the in-compartment air in the cargo compartment (5) within their respective target ranges. And repeat as appropriate.
  • the internal environment control unit (115) of the controller (110) shows each of the first bypass valve (50) and the second bypass valve (70) in the first state (solid line in FIG. 3) State), the drive motor (38) of the pump unit (35) is energized to operate the first pump (36) and the second pump (37), and the ventilation exhaust valve (101) is set open Do.
  • the outside air existing outside the transport container (1) passes through the air filter (47) and the outside suction pipe (55) to the first pump (36). Sucked into The first pump (36) pressurizes and discharges the sucked outside air.
  • the pressure of the outside air discharged by the first pump (36) is about twice the atmospheric pressure.
  • the outside air discharged from the first pump (36) flows through the first introduction pipe (52) and flows into the first inlet (42) of the first separation module (41) as untreated outside air.
  • the untreated outside air flowing into the first separation module (41) is separated into the first outside air that has not passed through the gas separation membrane and the second outside air that has passed through the gas separation membrane.
  • the first outside air with low oxygen concentration flows into the supply pipe (120) sequentially through the first primary outlet (43) and the first primary pipe (53).
  • the second outside air with high oxygen concentration is discharged to the outside of the transport container (1) through the first secondary outlet (44) and the first secondary pipe (54) in this order.
  • the internal air present in the inside of the transport container (1) (specifically, the secondary flow path (29b) of the refrigerator (10)) It is drawn into the second pump (37) through the inner suction pipe (75).
  • the second pump (37) pressurizes and discharges the sucked storage air.
  • the pressure of the internal air discharged by the second pump (37) is slightly higher than the atmospheric pressure.
  • the internal air discharged from the second pump (37) flows through the second introduction pipe (72) and flows into the second introduction port (62) of the second separation module (61) as untreated internal air.
  • the untreated internal air flowing into the second separation module (61) is separated into the first internal air that has not permeated the gas separation membrane and the second internal air that has permeated the gas separation membrane.
  • the first storage air having a low oxygen concentration flows into the supply pipe (120) through the second primary outlet (63) and the second primary pipe (73) in order.
  • the second storage air having a high oxygen concentration is discharged to the outside of the transport container (1) through the second secondary outlet (64) and the second secondary pipe (74) in this order.
  • the first external air flowing out of the first separation module (41) and the first internal air flowing out of the second separation module (61) flow into the supply pipe (120). Then, the mixed air of the first outside air and the first inside air flowing through the supply pipe (120) flows into the secondary flow passage (29b) of the refrigerator (10), and the secondary flow passage (29b) It is supplied to the loading space (5) together with the flowing air.
  • the flow rate Q o1 of the first outside air supplied from the outside to the inside of the transport container (1) is discharged from the inside of the transport container (1) to the outside
  • the flow rate in the storage air is larger than the flow rate Q i2 (Q o1 > Q i2 ), and the air pressure in the transport container (1) becomes a positive pressure. Since the air pressure in the transport container (1) is a positive pressure, a part of the internal air is discharged to the outside of the transport container (1) through the ventilation exhaust pipe (100).
  • the container outside the cargo compartment (5) is transported through the ventilation exhaust pipe (100) at the same time as supplying the first outside air with lower oxygen concentration than the atmosphere.
  • the oxygen concentration of the air in the storage compartment in the cargo compartment (5) is reduced by discharging the air to the outside of (1) and replacing the air in the cargo compartment (5) with the air outside the first storage compartment.
  • the inside of the storage compartment in the cargo compartment (5) is discharged by discharging the second storage inside air having a high concentration of oxygen separated from the air inside the unprocessed storage outside the transportation container (1). Reduce the oxygen concentration of air.
  • the carbon dioxide concentration reduction operation of the in-compartment air conditioning device (30) will be described.
  • the first composition adjustment unit (40) supplies the first outside air with low oxygen concentration to the loading space (5)
  • the second composition adjustment unit (60) 1 Supply the air inside the storage room to the loading room (5).
  • the internal environment control unit (115) of the controller (110) sets each of the first bypass valve (50) and the second bypass valve (70) in the first state (solid line in FIG. 3)
  • the drive motor (38) of the pump unit (35) is energized to operate the first pump (36) and the second pump (37), and the ventilation exhaust valve (101) is opened.
  • the pressure of the outside air discharged by the first pump (36) and the pressure of the inside air discharged by the second pump (37) are both slightly higher than the atmospheric pressure. It is.
  • the first outside air flowing into the first separation module (41) has a nitrogen concentration higher than that of the untreated outside air and a lower oxygen concentration; It is separated into the second outside air, which is lower in nitrogen concentration and higher in oxygen concentration than untreated outside air. Then, the first outside air is supplied to the inside of the transport container (1), and the second outside air is discharged to the outside of the transport container (1).
  • the carbon dioxide concentration of the untreated outside air is substantially the same as the carbon dioxide concentration (0.04%) of the atmosphere. For this reason, the carbon dioxide concentration of the first outside air can be regarded as substantially zero.
  • the first storage air flowing into the second separation module (61) has a nitrogen concentration higher than that of the untreated storage air and a lower oxygen concentration and carbon dioxide concentration. It is separated into the internal air and the second internal air having a nitrogen concentration lower than that of the untreated internal air and a high oxygen concentration and carbon dioxide concentration. Then, the first internal air is supplied to the inside of the transport container (1), and the second internal air is discharged to the outside of the transport container (1).
  • the flow rate Q o1 of the first outside air is larger than the flow rate Q i2 of the second inside air (Q o1 > Q i2 ),
  • the pressure inside the shipping container (1) is positive. Since the air pressure in the transportation container (1) is a positive pressure, a part of the storage air in the cargo room (5) passes through the ventilation exhaust pipe (100) to the outside of the transportation container (1) Exhausted.
  • the inside air is discharged to the outside of the transport container (1) through the ventilation exhaust pipe (100).
  • the carbon dioxide concentration of the air inside the cargo room (5) is reduced by replacing the air of the cargo room (5) with the first outside air.
  • the air in the second storage room having a high carbon dioxide concentration separated from the air in the storage room is discharged to the outside of the transport container (1), whereby the inside of the cargo compartment (5) Reduce the concentration of carbon dioxide in the storage room air.
  • ⁇ Oxygen concentration increase operation The oxygen concentration increasing operation of the in-compartment air conditioning device (30) will be described.
  • the first composition adjustment unit (40) supplies the outside air taken in from the outside of the transport container (1) as it is to the loading space (5), and the second composition adjustment unit (60) The air inside the storage unit drawn from the inside of the transport container (1) is sent back to the loading room (5) as it is.
  • the internal environment control unit (115) of the controller (110) shows each of the first bypass valve (50) and the second bypass valve (70) in the second state (indicated by a broken line in FIG. 3). State), the drive motor (38) of the pump unit (35) is energized to operate the first pump (36) and the second pump (37), and the ventilation exhaust valve (101) is set open And the measurement on-off valve (126) is set in the closed state.
  • the outside air discharged from the first pump (36) flows into the first bypass pipe (51), and the first primary is maintained with its nitrogen concentration and oxygen concentration maintained. It flows into the side pipe (53) and thereafter is supplied to the inside of the transport container (1) through the supply pipe (120).
  • the second composition adjusting unit (60) the internal air sucked into the second pump (37) is discharged from the second pump (37) and then passes through the second bypass pipe (71) It flows into the primary side pipe (73) and thereafter returns to the inside of the transport container (1) through the supply pipe (120).
  • a part of the air inside the cargo compartment (5) is discharged to the outside of the transport container (1) through the ventilation exhaust pipe (100).
  • the oxygen concentration in the cargo compartment (5) is raised by supplying the outside air having a higher oxygen concentration than the inside air to the inside of the transport container (1).
  • the airtightness evaluation device (130) is incorporated in the in-compartment air conditioning device (30).
  • the first composition adjusting unit (40), the third pressure sensor (103), and the controller (110) constitute an airtightness evaluation device (130).
  • the first pump (36) of the first composition control unit (40) is an air pressure control device (131) for supplying air to the inside of the transport container (1) in order to make the atmospheric pressure in the transport container (1) a positive pressure. Configure). That is, in the present embodiment, the first pump (36) of the first composition adjusting unit (40) doubles as the air pressure adjusting device (131) of the air tightness evaluation device (130).
  • the third pressure sensor (103) constitutes an air pressure sensor that measures the air pressure in the loading space (5).
  • the airtightness evaluation unit (116) is configured to perform an evaluation operation to evaluate the airtightness of the transport container (1). In this evaluation operation, the airtightness evaluation unit (116) determines the success or failure of the “evaluation condition indicating that the airtightness of the transport container (1) has reached the standard level necessary to perform CA transport”. Do. Detailed contents of the evaluation operation of the air tightness evaluation unit (116) will be described later.
  • the airtightness evaluation unit (116) performs an evaluation operation when the refrigerator (10) and the in-compartment air conditioner (30) perform a pre-use inspection (so-called PTI / Pre-trip Inspection) operation.
  • the pre-use inspection operation is an operation for inspecting whether the refrigerator (10) and the in-compartment air conditioner (30) operate properly.
  • a container ship is usually loaded with a plurality of transport containers (1) stacked vertically.
  • the transport container (1) disposed at the lower side may be deformed by the weight of the transport container (1) placed thereon. Therefore, even if it is determined that the airtightness of the transport container (1) is satisfied in the evaluation operation performed by the airtightness evaluation unit (116) during the pre-use inspection operation, the use of the transport container (1) During the operation, the airtightness of the transport container (1) may be insufficient.
  • outside air atmosphere
  • the oxygen concentration and the carbon dioxide concentration of the inside air are set to the respective target concentrations, even if the inside air conditioner (30) is operating normally. It may not be possible to keep it in the range.
  • the temperature of the inside air may not be maintained within the target temperature range even if the refrigerator (10) is operating normally.
  • the airtightness evaluation unit (116) is not only performed during the pre-use inspection operation of the refrigerator (10) and the in-compartment air conditioner (30), but also during the use of the transport container (1).
  • the evaluation operation is also performed when the failure condition or the second failure condition is satisfied.
  • the first failure condition is a condition that indicates that the composition of the air in the storage compartment in the cargo compartment (5) can not reach the target composition by the operation of the storage compartment air conditioner (30).
  • the first failure condition for example, the condition that "during the time when the oxygen concentration of the air in the cold storage becomes the target concentration + 1% or more during the operation of the cold air conditioning device (30), the continuous time is 1 hour or longer" It can be used.
  • the condition that "the oxygen concentration of the air in the storage does not decrease to the target concentration even if 24 hours have passed from the time when the oxygen concentration in the storage air reaches the target concentration + 1%" May be used.
  • the second failure condition is a condition indicating that the air temperature in the loading space (5) can not be reached to the target temperature by the operation of the refrigerator (10).
  • a second failure condition for example, “during the operation of the in-compartment air conditioner (30), the temperature of the in-compartment air is 24 hours even after the time when the temperature of the in-compartment air reaches ⁇ 15 ° C.
  • the condition that “the temperature does not decrease to ⁇ 20 ° C.” can be used.
  • the evaluation operation of the airtightness evaluation unit (116) is an operation to determine whether the above-described evaluation condition is satisfied.
  • Airtightness evaluation unit of this embodiment (116) in the evaluation operation, "pump unit (35) of the second reference pressure pressure shipping the container (1) during the stop of the first reference pressure P H P L the time required for the drop to determine the success or failure of the evaluation condition of the is "evaluation time T R above.
  • FIG. 4 is referred to as appropriate.
  • step ST11 the air tightness evaluation unit (116) operates a valve provided in the internal air conditioning device (30). Specifically, the air tightness evaluation section (116) sets each of the first bypass valve (50) and the second bypass valve (70) to the second state, and the first control valve (46), the second control valve (66) The ventilation exhaust valve (101) and the measurement on-off valve (126) are set in the closed state (see FIG. 4).
  • the air tightness evaluation unit (116) energizes the drive motor (38) of the pump unit (35) to operate the first pump (36).
  • the first pump (36) pressurizes the outside air sucked through the air filter (47) and then discharges it. Outside air discharged from the first pump (36) passes through the first bypass valve (50), the first bypass pipe (51) and the supply pipe (120) in this order to the inside of the transport container (1) Supplied.
  • the airtightness evaluation unit (116) reads the measurement value of the third pressure sensor (103), and stores the read measurement value as the measurement value P of the air pressure in the transport container (1) (112) Remember to).
  • airtightness evaluation unit (116) the measured value P stored in the memory (112) in step ST13, compared with the first reference pressure P H of the memory (112) stores in advance.
  • the value of the first reference pressure P H is, for example, 490 Pa (gauge pressure).
  • step ST14 if the measured value P of the air pressure in the shipping container (1) does not reach the first reference pressure P H (P ⁇ P H), airtightness evaluation unit (116), the process returns to step ST13 The measurement value P of the third pressure sensor (103) is read again. On the other hand, in step ST14, if the measured value P of the air pressure in the shipping container (1) has reached the first reference pressure P H (P ⁇ P H), airtightness evaluation unit (116), to step ST15 Move to stop the pump unit (35).
  • the airtightness evaluation unit (116) starts to measure the elapsed time T after the pump unit (35) is stopped. At this point in time, the pressure inside the shipping container (1) is positive. For this reason, air flows out from the inside of the transport container (1) to the outside through the gap of the transport container (1), and the air pressure in the transport container (1) gradually decreases.
  • the airtightness evaluation unit (116) reads the measurement value of the third pressure sensor (103), and stores the read measurement value as the measurement value P of the air pressure in the transport container (1) (112) Remember to).
  • airtightness evaluation unit (116), the measured value P stored in the memory (112) in step ST17, compared to the second reference pressure P L to the memory (112) stores in advance.
  • the value of the second reference pressure P L is, for example, 245 Pa (gauge pressure).
  • step ST18 when the measured value P of the air pressure in the transport container (1) does not reach the second reference pressure P L (P> P L ), the airtightness evaluation unit (116) returns to step ST17.
  • the measurement value P of the third pressure sensor (103) is read again.
  • the airtightness evaluation unit (116) proceeds to step ST19. After the transition, the measurement of the elapsed time is ended, and the measured elapsed time T is stored in the memory (112).
  • airtightness evaluation unit (116), the elapsed time T measured, the memory (112) is compared with the evaluation time T R to be stored in advance.
  • the value of the evaluation time T R is, for example, 105 seconds.
  • the airtightness evaluation unit (116) proceeds to step ST21, and the airtightness of the transport container (1) is satisfied.
  • the information i.e., that the airtightness of the transport container (1) has reached the reference level
  • the airtightness evaluation unit (116) proceeds to step ST22, and the airtightness of the transport container (1) is insufficient.
  • the information i.e., the airtightness of the transport container (1) has not reached the reference level
  • the airtightness evaluation unit (116) constituting the airtightness evaluation device (130) of the present embodiment the first pump (36) supplies the outside air to the inside of the transportation container (1), and the transportation container (1) In a state in which the air pressure in the container is positive pressure, the airtightness of the transportation container (1) is evaluated based on the air pressure in the transportation container (1) measured by the third pressure sensor (103). For this reason, according to the present embodiment, it is possible to automatically evaluate the airtightness of the transport container (1).
  • the first pump (36) provided in the in-compartment air conditioning device (30) doubles as the air pressure regulation device (131) of the air tightness evaluation device (130). Therefore, according to the present embodiment, it is possible to reduce the number of parts of the in-compartment air conditioner (30) including the air tightness evaluation device (130).
  • the airtightness evaluation unit (116) constituting the airtightness evaluation device (130) of the present embodiment is a first defect that the composition of the air inside the container of the transport container (1) does not reach the target composition.
  • an evaluation operation is performed to evaluate the airtightness of the transport container (1). Therefore, according to the present embodiment, the reason why the composition of the air in the storage container for the transport (1) does not reach the target composition is the failure of the storage air conditioner (30) or the airtightness of the storage container (1) It becomes possible to determine what is.
  • the airtightness evaluation unit (116) constituting the airtightness evaluation device (130) of the present embodiment is a second defect indicating that the temperature of the air inside the storage container for transportation (1) does not reach the target temperature.
  • an evaluation operation is performed to evaluate the airtightness of the transport container (1). Therefore, according to the present embodiment, the reason why the temperature of the air inside the transport container (1) does not reach the target temperature is the failure of the refrigerator (10) or the airtightness of the storage (1) It becomes possible to distinguish.
  • the air tightness evaluation unit (116) of the air tightness evaluation device (130) of the present embodiment in the evaluation operation, the air pressure change amount in the transport container (1) within a predetermined time is evaluated as the pressure change amount.
  • the comparison may be configured to evaluate the airtightness of the shipping container (1).
  • the air-tightness evaluation unit (116) of this modification “in the predetermined time during which the pump unit (35) is stopped, the amount of reduction in atmospheric pressure in the transport container (1) is the pressure change amount ⁇ P for evaluation. It is judged whether the evaluation condition "is the following or not" is met.
  • the airtightness evaluation unit (116) of the present modification performs the operation from step ST11 to step ST15 of FIG. Then, airtightness evaluation unit (116), the measured value P M in the air pressure in the pump unit (35) a predetermined time from the time of stopping (for example, 120 seconds) shipping container at the time has elapsed (1) It is stored in the memory (112). Next, the airtightness evaluation unit (116) calculates the difference (P H -P M ) between the first reference pressure P H and the measurement value P M stored in the memory (112). The value of (P H -P M ) is the amount of change in air pressure in the transport container (1) within a predetermined time from when the pump unit (35) is stopped.
  • the airtightness evaluation unit (116) of this modification evaluates the airtightness of the transport container (1) based on the value of (P H -P M ).
  • the airtightness evaluation unit (116) indicates that the airtightness of the transport container (1) is Information is stored in the memory (112) indicating that the container is full (that is, the airtightness of the shipping container (1) has reached a reference level).
  • the airtightness evaluation unit (116) measures the airtightness of the transport container (1) Information is stored in the memory (112) indicating that the gender is lacking (ie, the airtightness of the shipping container (1) has not reached the reference level).
  • Embodiment 2 The second embodiment will be described.
  • the airtightness evaluation device (130) incorporated in the in-compartment air conditioning device (30) of the present embodiment evaluates a plurality of (three in the present embodiment) reference levels of airtightness of the storage case (1) mutually different. Among the conditions, the operator can select one of the evaluation conditions used in the evaluation operation of the airtightness evaluation unit (116).
  • points of the in-compartment air conditioning device (30) of the present embodiment different from the in-compartment air conditioning device (30) of the first embodiment will be described.
  • the control panel (113) of the refrigerator (10) is connected to the controller (110) via electrical wiring.
  • a display unit and a keypad or a liquid crystal touch panel are provided on the control panel (113) of the refrigerator (10).
  • the control panel (113) is provided in the refrigerator (10) in order for the operator to input a command value (for example, a set value of the air temperature of the luggage compartment (5)) relating to the operation of the refrigerator (10).
  • the airtightness evaluation device (130) is provided with an input unit.
  • the control panel (113) of the refrigerator (10) doubles as the input unit of the air tightness evaluation device (130).
  • the operator operates the operation panel (113) to input information specifying the evaluation conditions used in the evaluation operation of the airtightness evaluation unit (116).
  • an evaluation time corresponding to each of the three evaluation conditions is recorded in advance in the memory (112) of the controller (110).
  • the reference levels of the three evaluation conditions A to C are the highest in the evaluation condition A, lower in the order of the evaluation condition A, the evaluation condition B, and the evaluation condition C Become.
  • step ST10 the operator stands by until one of the evaluation conditions A to C is selected.
  • the airtightness evaluation part (116) of this embodiment performs operation from step ST11 to step ST22 as evaluation operation similarly to the airtightness evaluation part (116) of Embodiment 1, and transport container (1) Automatically assess the tightness of the
  • the airtightness evaluation unit (116) uses the one evaluation condition designated by the worker among the plurality of evaluation conditions to use the airtightness of the storage case (1). Perform evaluation operation to evaluate the gender. Therefore, according to the present embodiment, the operator can select one evaluation condition used in the evaluation operation from a plurality of evaluation conditions, and the usability of the in-compartment air conditioning device (30) is improved. .
  • Embodiment 3 The third embodiment will be described.
  • the airtightness evaluation device (130) incorporated in the in-compartment air conditioning device (30) of the present embodiment is the airtightness evaluation unit (116) of the controller (110) in the airtightness evaluation device (130) of the second embodiment. Is a change in the evaluation condition for judging success or failure in the evaluation operation.
  • the configuration of the first composition adjusting unit (40) is different from the in-compartment air conditioning device (30) of the second embodiment.
  • a difference of the in-compartment air conditioning device (30) of the present embodiment from the in-compartment air conditioning device (30) of the second embodiment will be described.
  • the check valve (48) is provided in the first primary side pipe (53).
  • the check valve (48) is disposed between the first separation module (41) and the first pressure sensor (45) in the first primary pipe (53).
  • the check valve (48) allows the flow of air in the direction of outflow from the first primary outlet (43) of the first separation module (41) and prevents the flow of air in the reverse direction.
  • the outlet end of the first bypass pipe (51) is a check valve (48) and a first pressure sensor (in the first primary side pipe (53)). Connected between 45).
  • the controller (110) of the present embodiment differs from the controller (110) of the second embodiment in the evaluation conditions under which the airtightness evaluation unit (116) determines the success or failure in the evaluation operation.
  • the airtightness evaluation unit (116) of the present embodiment sets “the flow rate (air supply flow rate) of air supplied to the inside of the transport container (1) by the pump unit (35) to a predetermined reference value in a state, until luggage compartment predetermined reference time T 0 from the start of the pressurization of the (5) elapses, the air pressure in the shipping container (1) reaches a predetermined evaluation for the pressure P R of " Determine the success or failure of the evaluation conditions.
  • the controller (110) of the present embodiment like the controller (110) of the second embodiment, has a plurality of (three in the present embodiment) reference levels of airtightness of the storage case (1) different from each other.
  • the operator can select one of the evaluation conditions used in the evaluation operation of the airtightness evaluation unit (116).
  • the evaluation condition A is “The pressure in the transportation container (1) is 490 Pa at the time when 5 minutes have elapsed from the start of pressurization of the loading space (5) with“ the air flow rate set at 10 liters per minute It is the condition that it is "gage pressure” or more.
  • the evaluation condition B “The pressure inside the transportation container (1) is 150 Pa (5 minutes after the start of pressurization of the loading space (5) in a state where the air supply flow rate is set to It is the condition that it is "gage pressure” or more.
  • the evaluation condition C is that “the pressure inside the transportation container (1) is 150 Pa (5 minutes after the start of pressurization of the loading space (5) with the air supply flow rate set at 25 liters per It is the condition that it is "gage pressure” or more.
  • the standard level of these three evaluation conditions A to C (the airtightness level of the storage (1)) is the highest in the evaluation condition A, and becomes lower in the order of the evaluation condition A, the evaluation condition B and the evaluation condition C.
  • the evaluation pressure and the control pressure corresponding to each of the three evaluation conditions are recorded in advance. Specifically, the memory (112), the evaluation conditions as the first evaluation pressure P R1 and the first control pressure P C1 corresponding to A, evaluation condition second evaluation pressure P R2 and a second control corresponding to the B and use the pressure P C2, and stores the third evaluation pressure P R3 and the third control pressure P C3 corresponding to the evaluation criteria C.
  • the first pump (36) of the pump unit (35) has a characteristic that “the volumetric flow rate (discharge flow rate) of the discharged air decreases as the pressure (discharge pressure) of the discharged air increases. ing. That is, in the first pump (36), the discharge pressure and the discharge flow rate correlate with each other. Therefore, the memory (112), is recorded "discharge pressure when the discharge flow rate of the first pump (36) is 10 liters per minute" as a first control pressure P C1 corresponding to the evaluation criteria A. In the memory (112), “the discharge pressure when the discharge flow rate of the first pump (36) is 20 liters per minute” is recorded as the second control pressure PC2 corresponding to the evaluation condition B. In the memory (112), “the discharge pressure when the discharge flow rate of the first pump (36) is 25 liters per minute” is recorded as the third control pressure PC3 corresponding to the evaluation condition C.
  • step ST30 the operator stands by until one of the evaluation conditions A to C is selected.
  • the airtightness evaluation unit (116) operates a valve provided in the in-compartment air conditioning device (30). Specifically, the air tightness evaluation unit (116) sets each of the first bypass valve (50) and the second bypass valve (70) to the second state (the state shown by the broken line in FIG. 9), and performs the first adjustment Set the opening degree of the valve (46) to a predetermined initial opening degree, set the ventilation exhaust valve (101) to the open state, and close the second control valve (66) and the measurement on-off valve (126) Set
  • the air tightness evaluation unit (116) energizes the drive motor (38) of the pump unit (35) to operate the first pump (36).
  • the first pump (36) pressurizes the outside air sucked through the air filter (47) and then discharges it. Outside air discharged from the first pump (36) passes through the first bypass valve (50), the first bypass pipe (51) and the supply pipe (120) in this order to the inside of the transport container (1) Supplied.
  • the ventilation exhaust valve (101) is open. Therefore, even if the outside air discharged from the first pump (36) is supplied to the inside of the transport container (1), the air pressure in the transport container (1) is kept substantially the same as the atmospheric pressure. Be That is, at this point, pressurization of the loading space (5) is not yet started.
  • the in-compartment air conditioning device (30) of the present embodiment the in-compartment air is sucked into the second pump (37) and the in-compartment air discharged from the second pump (37) as in the first embodiment. Is sent back inside the shipping container (1).
  • the air tightness evaluation unit (116) determines that the flow rate of the outside air discharged from the first pump (36) and supplied to the inside of the transport container (1) (ie, the air supply flow rate) is The opening degree of the first control valve (46) is adjusted to be a value corresponding to the evaluation condition selected by the operator.
  • the airtightness evaluation unit (116) opens the first control valve (46) so that the measurement value of the first pressure sensor (45) becomes the control pressure P C set in step ST30. Adjust the degree. When the measured value of the first pressure sensor (45) exceeds the control pressure P C , the airtightness evaluation unit (116) enlarges the opening degree of the first control valve (46), and the first pressure sensor (45) When the measured value of the pressure control value Pc is less than the control pressure P C , the opening degree of the first control valve (46) is reduced.
  • step ST34 the airtightness evaluation unit (116) fixes the opening degree of the first control valve (46), Thereafter, the process proceeds to step ST34.
  • step ST34 the airtightness evaluation unit (116) closes the ventilation exhaust valve (101).
  • the ventilation exhaust valve (101) When the ventilation exhaust valve (101) is closed, the air pressure in the transport container (1) gradually increases. That is, pressurization of the loading space (5) starts when the ventilation exhaust valve (101) is closed.
  • the airtightness evaluation unit (116) starts to measure the elapsed time T from the time when the ventilation exhaust valve (101) is closed (that is, when pressurization of the cargo space (5) is started).
  • the airtightness evaluation unit (116) reads the measurement value of the third pressure sensor (103), and stores the read measurement value as the measurement value P of the air pressure in the transport container (1) (112) Remember to).
  • step ST36 the airtightness evaluation unit (116) proceeds to step ST38. Then, the elapsed time T from the start of pressurization of the loading space (5) is compared with the reference time T 0 .
  • step ST35 If the elapsed time T has not reached the reference time T 0, airtightness evaluation unit (116), the process returns to step ST35, it performs the operations of steps ST35 and step ST36 in order.
  • the airtightness evaluation unit (116) proceeds to step ST39, and the airtightness of the transport container (1) is insufficient (that is, the airtightness of the transport container (1) becomes the standard level.
  • the information (not reached) is recorded in the memory (112).
  • Embodiment 4 The fourth embodiment will be described.
  • the airtightness evaluation device (130) incorporated in the in-compartment air conditioning system (30) of the present embodiment is the airtightness evaluation unit (116) of the controller (110) in the airtightness evaluation device (130) of the third embodiment. Is a change in the evaluation condition for judging success or failure in the evaluation operation.
  • points different from the in-compartment air conditioning device (30) of the third embodiment will be described with respect to the in-compartment air conditioning device (30) of the present embodiment.
  • the controller (110) of the present embodiment differs from the controller (110) of the third embodiment in the evaluation conditions under which the airtightness evaluation unit (116) determines the success or failure in the evaluation operation.
  • the airtightness evaluation unit (116) of the present embodiment “into the inside of the transport container (1) necessary for keeping the pressure in the transport container (1) within the predetermined reference pressure range It is determined whether the evaluation condition that the flow rate (air supply flow rate) of the air to be performed is equal to or less than a predetermined evaluation flow rate R R is met.
  • the controller (110) of the present embodiment like the controller (110) of the third embodiment, has a plurality of (three in the present embodiment) reference levels of airtightness of the storage case (1) different from each other.
  • the operator can select one of the evaluation conditions used in the evaluation operation of the airtightness evaluation unit (116).
  • Evaluation condition A is necessary to keep “the measured value P of the atmospheric pressure in the transport container (1) within a predetermined reference pressure range ( PR1 ⁇ P ⁇ PR1 + ⁇ , PR1 : first evaluation pressure)
  • the condition is that the air supply flow rate is equal to or less than the first evaluation flow rate QR1 .
  • the evaluation condition B is "the air supply necessary to keep the measured value P of the atmospheric pressure in the transport container (1) within the reference pressure range ( PR2 ? P? PR2 +?, PR2 : second evaluation pressure)
  • the condition is that the flow rate is less than or equal to the second evaluation flow rate QR2 .
  • the evaluation condition C is “the air supply necessary to keep the measured value P of the atmospheric pressure in the transport container (1) in the reference pressure range ( PR3 ⁇ P ⁇ PR3 + ⁇ , PR3 : third evaluation pressure)
  • the condition is that the flow rate is less than or equal to the third evaluation flow rate QR3 .
  • the value of “ ⁇ ” is set to, for example, 10 Pascal (Pa).
  • the standard level of these three evaluation conditions A to C (the airtightness level of the storage (1)) is the highest in the evaluation condition A, and becomes lower in the order of the evaluation condition A, the evaluation condition B and the evaluation condition C.
  • an evaluation pressure and an evaluation flow rate corresponding to each of the three evaluation conditions are recorded in advance.
  • the memory (112), the evaluation condition first evaluation pressure corresponding to A P R1 and the first evaluation flow Q R1, evaluation condition second evaluation pressure P R2 and a second evaluation corresponding to B the use flow rate Q R2 stores a third evaluation pressure P R3 and the third evaluation flow Q R3 corresponding to the evaluation criteria C.
  • the first to third evaluation pressure values stored in the memory (112) of the controller (110) of the present embodiment are the first values stored in the memory (112) of the controller (110) of the third embodiment. ⁇ Different from the value of the third evaluation pressure.
  • step ST50 the operator stands by until one of the evaluation conditions A to C is selected.
  • the airtightness evaluation unit (116) operates a valve provided in the in-compartment air conditioning device (30). Specifically, the air tightness evaluation unit (116) sets each of the first bypass valve (50) and the second bypass valve (70) to the second state (the state shown by the broken line in FIG. 9), and performs the first adjustment Set the opening degree of the valve (46) to a predetermined initial opening degree (for example, full opening state) and close the second control valve (66), the ventilation exhaust valve (101) and the measurement on-off valve (126) Set
  • the air tightness evaluation unit (116) energizes the drive motor (38) of the pump unit (35) to operate the first pump (36).
  • the first pump (36) pressurizes the outside air sucked through the air filter (47) and then discharges it. Outside air discharged from the first pump (36) passes through the first bypass valve (50), the first bypass pipe (51) and the supply pipe (120) in this order to the inside of the transport container (1) Supplied.
  • the in-compartment air conditioning device (30) of the present embodiment the in-compartment air is sucked into the second pump (37) and the in-compartment air discharged from the second pump (37) as in the first embodiment. Is sent back inside the shipping container (1).
  • airtightness evaluation unit (116) includes a measurement of the elapsed time T A by the timer A, a measurement of the elapsed time T B by the timer B, and started at the same time.
  • the airtightness evaluation unit (116) reads the measurement value of the third pressure sensor (103), and stores the read measurement value as the measurement value P of the air pressure in the transport container (1) (112) Remember to).
  • the memory (112) stores not only the measurement value of the third pressure sensor (103) at that time (ie, the latest measurement value P) but also the past measurement value P.
  • step ST55 airtightness evaluation unit (116), the measurement value is stored in the memory (112) in the immediately preceding step ST54 P (i.e., the latest measured value P) and a value of (P R + alpha) Compare.
  • P R is the evaluation pressure set in step ST50.
  • Step ST55 If exceeded the latest measured value P a (P R + alpha) in ST55 (P> P R + alpha) is in the pressure of the supply air flow rate is too high in a shipping container (1) is too high Obviously, in this case, the airtightness evaluation unit (116) proceeds to step ST56, and reduces the opening degree of the first control valve (46) to reduce the air supply flow rate. At this time, the airtightness evaluation unit (116) reduces the opening degree of the first control valve (46) by a predetermined constant value.
  • step ST55 the airtightness evaluation unit (116) proceeds to step ST57 and evaluates the latest measured value P. compared to the use pressure P R.
  • step ST 57 If the latest measurement value P is less than P R in step ST 57 (P ⁇ P R ), the air flow rate is too low, and the air pressure in the transport container (1) is not sufficiently increased. Therefore, in this case, the airtightness evaluation unit (116) proceeds to step ST58, and enlarges the opening degree of the first control valve (46) in order to increase the air supply flow rate. At that time, the airtightness evaluation unit (116) enlarges the opening degree of the first control valve (46) by a predetermined constant value.
  • step ST56 If the supply air flow rate is changed in step ST56 or step ST58, so that the measured value P of the air pressure in the shipping container (1) is outside the reference pressure range (P R ⁇ P ⁇ P R + ⁇ ) . Therefore, in this case, airtightness evaluation unit (116), the process proceeds to step ST59, the elapsed time T B the timer B is measured reset to zero and resumes elapsed time measurement T B by the timer B. Thereafter, the airtightness evaluation unit (116) proceeds to step ST60.
  • step ST 57 when the latest measured value P is greater than P R in step ST 57 (P (P R ), the measured value P of the atmospheric pressure in the transport container (1) is within the reference pressure range (P R ⁇ P ⁇ P R It will be in + ⁇ ). In this case, the airtightness evaluation unit (116) proceeds to step ST60.
  • step ST60 the airtightness evaluation unit (116) determines the flow rate of the outside air supplied to the inside of the transport container (1) by the first pump (36) at that time (that is, the air supply flow rate Q at that time). Calculate
  • the first pump (36) of the pump unit (35) sets the “volume flow (discharge flow) of the discharged air as the pressure (discharge pressure) of the discharged air increases.
  • the characteristic is that the Therefore, in step ST57, the air tightness evaluation unit (116) measures the correlation between the discharge pressure and the discharge flow rate of the first pump (36) and the measurement value of the first pressure sensor (45) (ie, the first pump (36).
  • the air supply flow rate Q is calculated using the measured value of the discharge pressure of.
  • step ST61 If the elapsed time T B has reached the reference time T B0 in (T B ⁇ T B0) step ST61, the air pressure in the shipping container (1) is over the reference time T B0 above, the reference pressure range ( P R ⁇ P ⁇ P R + ⁇ ) is maintained. That is, in this case, the air pressure in the transport container (1) is kept approximately constant. Therefore, in this case, the airtightness evaluation unit (116) proceeds to step ST62, and the air supply flow rate Q calculated in step ST60 (ie, the latest air supply flow rate Q) is set to the evaluation flow rate Q set in step ST50. Compare with R.
  • the airtightness evaluation unit (116) proceeds to step ST63, and the airtightness of the transport container (1) is satisfied (that is, the airtightness of the transport container (1) becomes the standard level.
  • the information to the effect is recorded in the memory (112).
  • Step ST62 if the latest of the supply flow rate Q over the evaluation flow Q R in Step ST62 (Q> Q R) is the reference pressure range pressure in the shipping container (1) (P R ⁇ P ⁇ P R + ⁇ supply flow rate required to keep) becomes that exceeds the evaluation flow Q R. Therefore, in this case, the airtightness evaluation unit (116) proceeds to step ST64, and the airtightness of the transport container (1) is insufficient (ie, the airtightness of the transport container (1) becomes the standard level. The information (not reached) is recorded in the memory (112).
  • step ST 65 If the elapsed time T A has reached the reference time T A 0 in step ST 65 (T A TT A 0 ), a relatively long time (20 minutes in the present embodiment) has already elapsed from the start of the evaluation operation. become. Therefore, in this case, the airtightness evaluation unit (116) proceeds to step ST66. On the other hand, if the elapsed time T A has not reached the reference time T A 0 in step ST 65 (T A ⁇ T A 0 ), the airtightness evaluation unit (116) returns to step ST 54 and performs the above-described series of operations again.
  • step ST66 air tightness evaluation unit (116) first calculates the average value Q m of the air supply flow rate Q during the period from that point until 10 minutes ago. At this time, airtightness evaluation unit (116) uses the past air supply flow rate Q which is recorded in the memory (112), calculates the average value Q m of the air supply flow rate Q. Then, airtightness evaluation unit (116), an average value Q m of the calculated air intake amount, compared to the evaluation flow Q R set in step ST50.
  • the airtightness evaluation unit (116) proceeds to step ST67, and the airtightness of the transport container (1) is satisfied (that is, the airtightness of the transport container (1) becomes the standard level.
  • the information to the effect is recorded in the memory (112).
  • the supply air flow rate required to maintain the air pressure in the shipping container (1) to the reference pressure range (P R ⁇ P ⁇ P R + ⁇ ) is greater than the substantially evaluation flow Q R It can be determined that Therefore, in this case, the airtightness evaluation unit (116) proceeds to step ST68, and the airtightness of the transport container (1) is insufficient (ie, the airtightness of the transport container (1) becomes the standard level. The information (not reached) is recorded in the memory (112).
  • the airtightness evaluation device (130) of the present embodiment may include a flow rate sensor for measuring the flow rate (air supply flow rate) of air supplied to the inside of the transport container (1).
  • This flow rate sensor is provided, for example, on the first primary side pipe (53) of the first composition adjustment unit (40), and measures the volumetric flow rate of air flowing through the first primary side pipe (53).
  • the airtightness evaluation unit (116) of the controller (110) of the present modification reads the measured value of the flow sensor at step ST60 of the flow chart of FIG. The measurement value is recorded in the memory (112).
  • Embodiment 5 The fifth embodiment will be described.
  • points of the in-compartment air conditioning device (30) of the present embodiment different from the in-compartment air conditioning device (30) of the first embodiment will be described.
  • the present embodiment can also be applied to the in-compartment air conditioning device (30) of the second to fourth embodiments.
  • the in-compartment air conditioning device (30) of the present embodiment is different from the in-compartment air conditioning device (30) of the first embodiment in the inlet side switching valve (140) and the inlet side branch pipe (141). And are added.
  • the inlet-side switching valve (140) and the inlet-side branch pipe (141) are provided with an air conditioner for controlling the inside of the storage container so that outside air can be supplied to the inside of the transport container (1) by the second pump (37). 30).
  • the inlet side switching valve (140) is a switching valve having three ports.
  • the inlet-side switching valve (140) has a first state (shown by a solid line in FIG. 12) in which the first port communicates with the second port and is shut off from the third port; It is configured to be in communication with the third port and to switch to a second state (state shown by a broken line in FIG. 12) which is shut off from the second port.
  • the inlet side switching valve (140) is disposed in the middle of the storage inner suction pipe (75).
  • the first port is connected to the suction port of the second pump (37), and the second port is connected to the secondary flow passage (29b) via the storage inner suction pipe (75) It communicates.
  • One end of an inlet side branch pipe (141) is connected to a third port of the inlet side switching valve (140).
  • the other end of the inlet side branch pipe (141) is connected to the storage outside suction pipe (55).
  • the inlet side switching valve (140) is set to the first state in the oxygen concentration reducing operation, the carbon dioxide concentration reducing operation, and the oxygen concentration increasing operation of the internal air conditioning device (30). Further, the inlet side switching valve (140) is set to the second state in the evaluation operation of the air tightness evaluation unit (116).
  • the airtightness evaluation device (130) of the present embodiment includes the airtightness of the first composition adjusting unit (40), the second composition adjusting unit (60), the third pressure sensor (103), and the controller (110). It comprises an evaluation part (116), an inlet side switching valve (140), and an inlet side branch pipe (141). Further, in the present embodiment, both the first pump (36) and the second pump (37) provided in the pump unit (35) are used for transportation in order to make the air pressure in the cargo compartment (5) a positive pressure.
  • the air pressure regulator (131) for supplying air to the inside of the container (1) is configured.
  • the airtightness evaluation unit (116) of the controller (110) sets the inlet-side switching valve (140) in the second state in the step corresponding to step ST11 in FIG. Set to As shown in FIG. 13, when the inlet side switching valve (140) is set to the second state, both the suction port of the first pump (36) and the suction port of the second pump (37) In communication with the pipe (55), both the first pump (36) and the second pump (37) suck outside air.
  • outside air discharged from the first pump (36) passes through the first bypass valve (50), the first bypass pipe (51) and the supply pipe (120) in this order to the inside of the transport container (1) Supplied.
  • the outside air discharged from the second pump (37) passes through the second bypass valve (70), the second bypass pipe (71) and the supply pipe (120) in this order to the inside of the transport container (1) Supplied.
  • the airtightness evaluation device (130) of the present embodiment supplies outside air to the inside of the transport container (1) by both the first pump (36) and the second pump (37). Can. Therefore, in the present embodiment, the air pressure in the transport container (1) (specifically, compared to the case where outside air is supplied to the inside of the transport container (1) only by the first pump (36) the third pressure sensor measurement value P (103)) is the time to reach the first reference pressure P H is shortened.
  • Embodiment 6 The sixth embodiment will be described. Here, a difference of the in-compartment air conditioning device (30) of the present embodiment from the in-compartment air conditioning device (30) of the fifth embodiment will be described.
  • the air conditioning device for internal storage (30) of the present embodiment differs from the air conditioning device for internal storage (30) of the fifth embodiment in the switching valve for pressure measurement (145) and piping for pressure measurement. (146) is added and the third pressure sensor (103) is omitted.
  • the air pressure measurement switching valve (145) and the air pressure measurement pipe (146) are provided with the in-compartment air conditioner (30) so that the air pressure in the transport container (1) can be measured by the second pressure sensor (65). Provided).
  • the air pressure measurement switching valve (145) is a switching valve having three ports.
  • the air pressure measurement switching valve (145) has a first state (shown by a solid line in FIG. 14) in which the first port communicates with the second port and is shut off from the third port; It is configured to be in communication with the third port and to switch to a second state (state shown by a broken line in FIG. 14) which is disconnected from the second port.
  • the air pressure measurement switching valve (145) is disposed between the second separation module (61) and the second pressure sensor (65) in the second primary side pipe (73).
  • the first port of the switching valve for air pressure measurement (145) is connected to the second control valve (66), and the second port is connected to the second primary outlet (63) of the second separation module (61) Do.
  • One end of a pressure measurement pipe (146) is connected to a third port of the pressure measurement switching valve (145).
  • the other end of the pressure measurement pipe (146) is connected to the storage inner suction pipe (75).
  • the air pressure measurement switching valve (145) is set to the first state in the oxygen concentration reduction operation, the carbon dioxide concentration reduction operation, and the oxygen concentration increase operation of the inside air conditioning device (30). Further, the air pressure measurement switching valve (145) is set to the second state in the evaluation operation of the air tightness evaluation unit (116).
  • the airtightness evaluation device (130) of the present embodiment includes the airtightness of the first composition adjusting unit (40), the second composition adjusting unit (60), the second pressure sensor (65), and the controller (110).
  • the air tightness evaluation unit (116) of the controller (110) performs the second air pressure measurement switching valve (145) in the step corresponding to step ST11 of FIG. Set to state.
  • the second pressure sensor (65) is connected to the air pressure measurement pipe (146) and the storage inner suction pipe (75). It communicates with the secondary flow passage (29b) of the in-compartment air flow passage (29).
  • the air pressure in the secondary flow passage (29b) is substantially equal to the air pressure in the loading space (5).
  • the measurement value of the second pressure sensor (65) substantially matches the air pressure in the loading space (5). Therefore, in the present embodiment, the second pressure sensor (65) constitutes an air pressure sensor that measures the air pressure in the loading space (5).
  • the airtightness evaluation unit (116) of the controller (110) of the present embodiment reads the measurement value of the second pressure sensor (65) in steps corresponding to step ST13 and step ST17 of FIG. The read measurement value is stored in the memory (112) as the measurement value P of the air pressure in the transport container (1).
  • the second pressure sensor (65) can be used to measure the air pressure in the transport container (1). Therefore, according to the present embodiment, it is possible to reduce the number of pressure sensors in the in-compartment air conditioner (30) in which the air tightness evaluation device (130) is incorporated.
  • Embodiment 7 The seventh embodiment will be described. Here, a difference of the in-compartment air conditioning device (30) of the present embodiment from the in-compartment air conditioning device (30) of the sixth embodiment will be described.
  • the difference between the in-compartment air conditioner (30) of the present embodiment and the in-compartment air conditioner (30) of the sixth embodiment is that the second composition control unit (60) (75), the point that the inlet side switching valve (140) and the inlet side branch pipe (141) are omitted, the arrangement of the atmospheric pressure measuring switching valve (145), and the configuration of the atmospheric pressure measuring pipe (146) is there.
  • the air pressure measurement switching valve (145) is between the first separation module (41) and the first pressure sensor (45) in the first primary side pipe (53). Will be placed.
  • the first port of the switching valve for air pressure measurement (145) is connected to the first control valve (46), and the second port is connected to the first primary outlet (43) of the first separation module (41) Do.
  • One end of a pressure measurement pipe (146) is connected to a third port of the pressure measurement switching valve (145).
  • the other end of the pressure measurement pipe (146) opens into the secondary flow passage (29b) of the internal air flow passage (29).
  • the airtightness evaluation device (130) of the present embodiment includes a first composition adjustment unit (40), a first pressure sensor (45), an airtightness evaluation unit (116) of the controller (110), and pressure measurement. It is comprised by the switching valve (145) and piping (146) for pressure measurement.
  • the air tightness evaluation unit (116) of the controller (110) performs the second air pressure measurement switching valve (145) in the step corresponding to step ST11 of FIG. Set to state.
  • the first pressure sensor (45) receives the air flow path in the storage via the air pressure measurement pipe (146). It communicates with the secondary flow path (29b) of (29).
  • the air pressure in the secondary flow passage (29b) is substantially equal to the air pressure in the loading space (5).
  • the measurement value of the first pressure sensor (45) substantially matches the air pressure in the loading space (5). Therefore, in the present embodiment, the first pressure sensor (45) constitutes an air pressure sensor that measures the air pressure in the loading space (5).
  • the airtightness evaluation part (116) of the controller (110) of this embodiment reads the measured value of the 1st pressure sensor (45) in the step corresponded to each of step ST13 and step ST17 of FIG. The read measurement value is stored in the memory (112) as the measurement value P of the air pressure in the transport container (1).
  • the first pressure sensor (45) can be used to measure the air pressure in the transport container (1). Therefore, according to the present embodiment, it is possible to reduce the number of pressure sensors in the in-compartment air conditioner (30) in which the air tightness evaluation device (130) is incorporated.
  • Embodiment 8 The eighth embodiment will be described.
  • the in-compartment air conditioning apparatus (30) of the present embodiment is a modification of the in-compartment air conditioning apparatus (30) of the first embodiment in the evaluation operation performed by the air-tightness evaluation unit (116).
  • points of the in-compartment air conditioning device (30) of the present embodiment different from the in-compartment air conditioning device (30) of the first embodiment will be described.
  • Airtightness evaluation unit of this embodiment (116) in the evaluation operation, the measured value P of the air pressure in the shipping container (1), the first reference pressure P H or more predetermined pressure range for a predetermined holding time The air tightness of the transport container (1) is evaluated based on the change in the measurement value P of the air pressure in the transport container (1).
  • the airtightness evaluation unit (116) of the present embodiment performs the operations shown in step ST15-1 and step ST15-2 in FIG. 18 instead of the operation shown in step ST15 in FIG.
  • step ST14 when the measured value P of the air pressure in the transport container (1) has reached the first reference pressure P H (P ⁇ P H ), the airtightness evaluation unit (116) of the present embodiment performs the step Move to ST15-1.
  • step ST15-1 the airtightness evaluation unit (116) monitors the measured value P of the air pressure in the transport container (1) (in this embodiment, the measured value of the third pressure sensor (103)),
  • the pump unit (35) is controlled so that the measured value P is maintained in the range (P H ⁇ P ⁇ P H ′) below the pressure value P H ′ at the first reference pressure P H or higher.
  • the value of the first reference pressure P H is, for example, 490 Pa (gauge pressure).
  • the value of the pressure value P H ′ is, for example, 500 Pa (gauge pressure).
  • the airtightness evaluation unit (116) stops the pump unit (35) when the measured value P exceeds the pressure value P H 'during operation of the pump unit (35), and When the measurement value P during the stop is below a first reference pressure P H, actuates the pump unit (35). The airtightness evaluation unit (116) performs this operation for a predetermined holding time T H (in this embodiment, 10 minutes).
  • step ST15-1 ends, the airtightness evaluation unit (116) proceeds to step ST15-2 and holds the pump unit (35) in the stop state. Specifically, when the pump unit (35) is operating at the end of step ST15-1, the airtightness evaluation unit (116) stops the pump unit (35) and stops the pump unit (35). keep. When the pump unit (35) is stopped at the end of step ST15-1, the air tightness evaluation unit (116) keeps the pump unit (35) in the stopped state.
  • step ST15-2 the airtightness evaluation unit (116) of the present embodiment performs the operation shown in steps ST16 to ST22 of FIG.
  • the operations shown in step ST16 to step ST22 of FIG. 18 are the same as the operations performed by the airtightness evaluation unit (116) of the first embodiment in step ST16 to step ST22 of FIG.
  • Embodiment 8- when the air pressure in the transport container (1) is raised to a pressure higher than the atmospheric pressure, the transport container (1) may be deformed so as to expand.
  • the transport container (1) expands, the internal volume of the transport container (1) increases and the air pressure in the transport container (1) decreases.
  • the air pressure in the transport container (1) increases, the amount of air entering the heat insulating material provided in the transport container (1) increases.
  • the air pressure in the shipping container (1) decreases.
  • the air pressure in each part may be transiently uneven. In this case, as time passes, the air pressure is equalized in the loading space (5) of the shipping container (1), and as a result, the measured value of the air pressure in the shipping container (1) changes.
  • airtightness evaluation unit (116) performs, when stopping the pump unit (35) immediately after the measured value P of the air pressure in the shipping container (1) has reached the first reference pressure P H, the previous paragraph Due to the reasons described in the above, the measured value P of the air pressure in the shipping container (1) may decrease.
  • the airtightness evaluation unit (116) actually ensures that the transport container (1) is airtight. Nevertheless, there is a risk that it may be misjudged that the airtightness of the transport container (1) is insufficient.
  • airtightness evaluation unit of this embodiment (116) after the measured value P of the air pressure in the shipping container (1) has reached the first reference pressure P H, the air pressure in the shipping container (1) The measured value P is maintained in a predetermined pressure range (P H ⁇ P ⁇ P H ′). Then, the airtightness evaluation unit (116) determines the airtightness of the transport container (1) after the transport container (1) is deformed due to the increase of the air pressure in the transport container (1). Therefore, according to the present embodiment, it is possible to reduce the possibility of erroneously determining that the airtightness is insufficient for the transport container (1) in which the airtightness is secured.
  • step ST15-1 and step ST15-2 of FIG. 18 performed by the airtightness evaluation unit (116) of the present embodiment may be performed by the airtightness evaluation unit (116) of the second embodiment.
  • the airtightness evaluation unit (116) of the second embodiment to which this modification is applied executes the operations of step ST15-1 and step ST15-2 of FIG. 18 instead of the operation of step ST15 of FIG.
  • Embodiment 9 An indoor air conditioner (30) of a ninth embodiment will be described.
  • the in-compartment air conditioning device (30) of the embodiment is obtained by modifying the first composition adjustment unit (40) and the controller (110) in the in-compartment air conditioning device (30) of the first embodiment.
  • points of the in-compartment air conditioning device (30) of the present embodiment different from the in-compartment air conditioning device (30) of the first embodiment will be described.
  • the first composition control unit (40) of the present embodiment like the first composition control unit (40) of the first embodiment, the outside air sucked from the outside of the transport container (1) (untreated outside air) ) Is separated into first outside air and second outside air.
  • the first composition adjustment unit (40) of the present embodiment is configured to separate untreated outside air into first outside air and second outside air by a so-called PSA (Pressure Swing Adsorption) method. This differs from the first composition adjusting unit (40) of the first embodiment in this respect.
  • PSA Pressure Swing Adsorption
  • the first composition adjusting unit (40) of the present embodiment includes an air pump (231) instead of the first pump (36) of the pump unit (35). That is, in the in-compartment air conditioning device (30) of the present embodiment, the pump unit (35) includes the second pump (37) and the drive motor (38) but does not include the first pump (36). In addition, the first composition adjustment unit (40) of the present embodiment includes the first direction control valve (232) and the second direction control valve (233), the first suction cylinder (234) and the second suction cylinder (235). And As described later, each adsorption column (234, 235) is provided with an adsorbent that adsorbs nitrogen in the air.
  • the air pump (231) is disposed in the internal space of the unit case (32).
  • the air pump (231) includes a first pump mechanism (231a) and a second pump mechanism (231b) that respectively suck, pressurize and discharge air.
  • the first pump mechanism (231a) and the second pump mechanism (231b) are oilless pumps that do not use lubricating oil.
  • the first pump mechanism (231a) of the first composition adjusting unit (40) doubles as an air pressure adjusting device (131) of the air tightness evaluation device (130).
  • Both of the first pump mechanism (231a) as the pressurizing part and the second pump mechanism (231b) as the depressurizing part are connected to the drive shaft of the drive motor (231c).
  • Each of the first pump mechanism (231a) and the second pump mechanism (231b) is rotationally driven by the drive motor (231c) to suck and pressurize air from the suction port and pressurize the air Are discharged from the discharge port.
  • One end of an outer trachea (241) forming an outer air passage is connected to the suction port of the first pump mechanism (231a).
  • the outer trachea (241) is provided to penetrate the unit case (32).
  • the other end of the outer trachea (241) located outside the unit case (32) is connected to the filter unit (220).
  • the filter unit (220) comprises an air filter (47).
  • the air filter (47) is a filter for capturing dust, salt and the like contained in the outside air.
  • a membrane filter having breathability and waterproofness is used as the air filter (47).
  • the filter unit (220) is a box-shaped member and introduces the air (outside storage air) that has passed through the air filter (47) into the outer trachea (241).
  • the filter unit (220) is disposed downstream of the condenser (13) in the external storage compartment (28).
  • One end of a discharge pipe (242) forming a discharge passage is connected to the discharge port of the first pump mechanism (231a).
  • the discharge pipe (242) branches into two branch pipes at the other end side, one branch pipe to the first direction control valve (232) and the other branch pipe to the second direction control valve (233). , Each connected.
  • One end of a suction pipe (243) forming a suction passage is connected to the suction port of the second pump mechanism (231b).
  • the suction pipe (243) branches into two branch pipes at the other end side, one branch pipe to the first direction control valve (232) and the other branch pipe to the second direction control valve (233). , Each connected.
  • One end of a supply connection pipe (244) forming a supply passage is connected to the discharge port of the second pump mechanism (231b).
  • the other end of the supply connection pipe (244) is connected to the supply pipe (120).
  • the supply connection pipe (244) is provided with a check valve (264) and a supply side on-off valve (273) in this order from one end to the other end.
  • the check valve (264) allows only the flow of air from one end of the supply connection pipe (244) to the other end, and prevents backflow of air.
  • the supply side on-off valve (273) is an on-off valve composed of a solenoid valve.
  • Each of the first direction control valve (232) and the second direction control valve (233) is a switching valve having three ports.
  • Each directional control valve (232, 233) has a first state in which the first port communicates with the second port and is shut off from the third port, and the first port communicates with the third port in the second state And a second state where it is disconnected from the port of.
  • the first direction control valve (232) has a first port connected to one end of the first suction cylinder (234).
  • the branch pipe of the discharge pipe (242) is connected to the second port, and the branch pipe of the suction pipe (243) is connected to the third port.
  • the first direction control valve (232) switches the first suction cylinder (234) between the state in which it is in communication with the first pump mechanism (231a) and the state in which it is in communication with the second pump mechanism (231b).
  • the second direction control valve (233) has a first port connected to one end of a second suction cylinder (235).
  • the branch pipe of the discharge pipe (242) is connected to the second port, and the branch pipe of the suction pipe (243) is connected to the third port.
  • the second direction control valve (233) switches the second suction cylinder (235) between the state of communicating with the first pump mechanism (231a) and the state of communicating with the second pump mechanism (231b).
  • Each of the first adsorption column (234) and the second adsorption column (235) is a member provided with a cylindrical container whose both ends are closed and an adsorbent filled in the container.
  • the adsorbent filled in these adsorption columns (234, 235) has the property of adsorbing the nitrogen component in a pressurized state where the pressure is higher than atmospheric pressure and desorbing the nitrogen component in a decompressed state where the pressure is lower than atmospheric pressure.
  • an adsorbent for example, a porous zeolite having pores with a pore diameter smaller than the molecular diameter (3.0 angstroms) of nitrogen molecules and larger than the molecular diameter (2.8 angstroms) of oxygen molecules. Is used.
  • the first adsorption cylinder (234) and the second adsorption cylinder (235) constitute a first separation unit (41).
  • the two adsorption cylinders (234, 235) constituting the first separation part (41) are the first outside air, which has a nitrogen concentration higher than that of the untreated outside air and a lower oxygen concentration than the untreated outside air. It separates into 2nd outside air whose nitrogen concentration is lower than processing outside air and oxygen concentration is high.
  • the oxygen discharge pipe (245) forming the oxygen discharge passage is branched into two branch pipes at one end side, one branch pipe being the other end of the first adsorption column (234), the other branch pipe being the first 2. Connected to the suction cylinder (235) respectively.
  • One check valve (261) is provided in each branch pipe of the oxygen discharge pipe (245). Each check valve (261) permits the flow of air directed out of the corresponding adsorption column (234, 235) and blocks the flow of air in the opposite direction.
  • An oxygen discharge pipe (245) is provided to penetrate the unit case (32).
  • the other end of the oxygen discharge pipe (245) opens to the outside space of the transport container (1).
  • the collecting portion of the oxygen discharge pipe (245) is provided with a check valve (262) and an orifice (263).
  • the check valve (262) is disposed closer to the other end of the oxygen discharge pipe (245) than the orifice (263).
  • the check valve (262) allows the flow of air toward the other end of the oxygen discharge pipe (245) and blocks the flow of air in the opposite direction.
  • a purge pipe (250) forming a purge passage is connected to each branch pipe of the oxygen discharge pipe (245).
  • the purge pipe (250) is connected to a branch pipe having one end connected to the first adsorption column (234) and the other end connected to a branch pipe connected to the second adsorption column (235).
  • One end of the purge pipe (250) is connected between the first adsorption cylinder (234) and the check valve (261).
  • the other end of the purge pipe (250) is connected between the second adsorption cylinder (235) and the check valve (261).
  • the purge pipe (250) is provided with a purge valve (251).
  • the purge valve (251) is an on-off valve composed of a solenoid valve.
  • the purge valve (251) is opened when the first adsorption cylinder (234) and the second adsorption cylinder (235) are equalized.
  • one orifice (252) is provided on each side of the purge valve (251) in the purge pipe (250).
  • An exhaust connection pipe (271) forming an exhaust connection passage is connected to the supply connection pipe (244).
  • One end of the exhaust connection pipe (271) is connected to the supply connection pipe (244), and the other end is connected to the oxygen discharge pipe (245).
  • One end of the exhaust connection pipe (271) is connected between the second pump mechanism (231 b) and the check valve (264) in the supply connection pipe (244).
  • the other end of the exhaust connection pipe (271) is connected outside the check valve (262) of the oxygen discharge pipe (245).
  • the exhaust connection pipe (271) is provided with an exhaust on-off valve (272).
  • the exhaust on-off valve (272) is an on-off valve composed of a solenoid valve.
  • the exhaust on-off valve (272) is opened when the air flowing through the supply connection pipe (244) is exhausted out of the storage.
  • the supply connection pipe (244) is connected to a measurement connection pipe (281) which forms a measurement passage.
  • the measurement connection pipe (281) is a pipe for connecting the first composition adjusting unit (40) to the sensor unit (90).
  • One end of the measurement connection pipe (281) is connected to the supply connection pipe (244), and the other end is connected to the measurement pipe (125).
  • One end of the measurement connection pipe (281) is connected between the check valve (264) and the supply side on-off valve (273) in the supply connection pipe (244).
  • the other end of the measurement connection pipe (281) is connected between the measurement on-off valve (126) and the sensor unit (90) in the measurement pipe (125).
  • the measurement connection pipe (281) is provided with a measurement on-off valve (282).
  • the measurement on-off valve (282) is an on-off valve composed of a solenoid valve.
  • the measurement on-off valve (282) is opened when air flowing through the supply connection pipe (244) is sent to the sensor unit (90).
  • a bypass connection pipe (255) forming a bypass passage is connected to the discharge pipe (242).
  • One end of the bypass connection pipe (255) is connected to the discharge pipe (242), and the other end is connected to the measurement connection pipe (281).
  • One end of the bypass connection pipe (255) is connected closer to the first pump mechanism (231a) than the branch point of the discharge pipe (242).
  • the other end of the bypass connection pipe (255) is connected between one end of the measurement connection pipe (281) and the measurement on-off valve (282).
  • the bypass connection pipe (255) is a first bypass for bypassing the first suction cylinder (234) and the second suction cylinder (235) to supply the outside air to the inside space of the transport container (1).
  • the bypass connection pipe (255) is provided with a bypass on-off valve (256).
  • the bypass on-off valve (256) is an on-off valve composed of a solenoid valve.
  • the bypass on-off valve (256) constitutes a first bypass valve mechanism for changing the flow rate of the outside air flowing into the bypass connection pipe (255).
  • the bypass on-off valve (256) is opened when supplying the outside air discharged by the first pump mechanism (231a) to the loading space (5) without changing its composition.
  • the first composition adjustment unit (40) of the present embodiment repeats the first operation and the second operation described later alternately by predetermined time (for example, 14.5 seconds) for each time. 1 Separate the air outside the storage and the air outside the second storage.
  • the first composition control unit (40) of the present embodiment is, similar to the first composition control unit (40) of the first embodiment, in the oxygen concentration reduction operation and the carbon dioxide concentration reduction operation of the in-compartment air control device (30). In each of them, an operation is performed to separate untreated outside air into first outside air and second outside air.
  • the first composition adjusting unit (40) of the present embodiment performs an outside air introducing operation described later.
  • the outside air introducing operation is an operation of supplying the outside air sucked from the outside of the transportation container (1) as it is into the inside of the transportation container (1).
  • the first composition adjusting unit (40) of the present embodiment performs the outside air introducing operation in the oxygen concentration increasing operation.
  • the first composition adjustment unit (40) of the present embodiment performs the outside air introduction operation as necessary.
  • the first direction control valve (232) is set to the first state
  • the second direction control valve (233) is set to the second state.
  • the discharge port of the first pump mechanism (231a) is connected to the first suction cylinder (234)
  • the second suction cylinder (235) is connected to the suction port of the second pump mechanism (231b).
  • the supply side on-off valve (273) is opened and the remaining on-off valves (251, 256, 272, 282) are closed.
  • an adsorption operation for the first adsorption cylinder (234) and a detachment operation for the second adsorption cylinder (235) are performed.
  • the first pump mechanism (231a) sucks in and evacuates untreated outside air from the outer trachea (241), and supplies the pressurized outside air to the first adsorption cylinder (234).
  • nitrogen contained in the supplied outside air outside the storage is adsorbed by the adsorbent.
  • the second outside air having a lower nitrogen concentration and a higher oxygen concentration than the untreated outside air is generated.
  • the second outside air flows out of the first adsorption column (234), flows through the oxygen discharge pipe (245), and is discharged to the outside space as discharge air.
  • the second pump mechanism (231b) sucks air from the second adsorption cylinder (235).
  • the pressure inside thereof decreases and nitrogen is desorbed from the adsorbent.
  • the first outside air having a nitrogen concentration higher than that of the untreated outside air and a lower oxygen concentration is generated.
  • the first outside air flows from the first adsorption cylinder (234) into the suction pipe (243) and is sucked into the second pump mechanism (231b).
  • the second pump mechanism (231b) pressurizes the sucked first outside air and discharges it to the supply connection pipe (244).
  • the first outside air flows through the supply connection pipe (244) as supply air, and is supplied to the inside space after merging with the air flowing through the supply pipe (120).
  • ⁇ 2nd operation> As shown in FIG. 21, in the second operation, the first direction control valve (232) is set to the second state, and the second direction control valve (233) is set to the first state. As a result, the discharge port of the first pump mechanism (231a) is connected to the second suction cylinder (235), and the first suction cylinder (234) is connected to the suction port of the second pump mechanism (231b). In the second operation, the supply side on-off valve (273) is opened and the remaining on-off valves (251, 256, 272, 282) are closed. Then, in the second operation, the detachment operation for the first adsorption cylinder (234) and the adsorption operation for the second adsorption cylinder (235) are performed.
  • the first pump mechanism (231a) sucks in and pressurizes untreated outside air from the outer trachea (241), and supplies the pressurized outside air to the second adsorption cylinder (235).
  • the second adsorption column (235) nitrogen contained in the supplied outside air outside the storage is adsorbed by the adsorbent.
  • the second outside air having a lower nitrogen concentration and a higher oxygen concentration than the untreated outside air is generated.
  • the second outside air flows out of the second adsorption column (235), flows through the oxygen discharge pipe (245), and is discharged to the outside space as discharge air.
  • the second pump mechanism (231b) sucks air from the first adsorption column (234).
  • the pressure inside thereof decreases and nitrogen is desorbed from the adsorbent.
  • the first outside air having a nitrogen concentration higher than that of the untreated outside air and a lower oxygen concentration is generated.
  • the first outside air flows from the first adsorption cylinder (234) into the suction pipe (243) and is sucked into the second pump mechanism (231b).
  • the second pump mechanism (231b) pressurizes the sucked first outside air and discharges it to the supply connection pipe (244).
  • the first outside air flows through the supply connection pipe (244) as supply air, and is supplied to the inside space after merging with the air flowing through the supply pipe (120).
  • the controller (110) indicates each of the first direction control valve (232) and the second direction control valve (233) in the second state (solid line in FIG. 22) And the motor (231c) of the air pump (231) is energized to operate the first pump mechanism (231a). Further, the controller (110) sets the first bypass valve (256), the exhaust on-off valve (272), the supply side on-off valve (273), and the purge valve (251) to the open state, and the measurement on-off valve. (282) and the measurement on / off valve (126) of the second composition adjustment unit (60) are set in the closed state. The second composition control unit (60) pauses.
  • the outside air discharged from the first pump mechanism (231a) is transported through the first bypass pipe (255), the supply connection pipe (244) and the supply pipe (120) in this order. Flows into the storage space of the container (1).
  • the outside air sucked into the first pump mechanism (231a) from the outside of the transport container (1) is supplied as it is to the inside space of the transport container (1).
  • the airtightness evaluation unit (116) of the present embodiment adjusts the air pressure in the transport container (1) by causing the in-compartment air conditioning device (30) to perform the outside air introduction. Specifically, the airtightness evaluation unit (116) activates the first pump mechanism (231a) of the air pump (231) in the step corresponding to step ST12 of FIG. Then, the airtightness evaluation unit (116) raises the air pressure in the transport container (1) by supplying the outside air to the interior space of the transport container (1).
  • the airtightness evaluation unit (116) of the airtightness evaluation device (130) of each of the above embodiments is based on the rate of change of the air pressure in the transport container (1) during operation of the pump unit (35) in its evaluation operation. It may be configured to evaluate the airtightness of the shipping container (1).
  • the airtightness evaluation unit (116) of the present modification is configured such that the container for transport (the case where the rate of increase in air pressure in the container for transport (1) during operation of the pump unit (35) is equal to or higher It is judged that the airtightness of 1) is satisfied.
  • the airtightness evaluation unit (116) of this modification is used for transportation when the rate of increase in air pressure in the transportation container (1) during operation of the pump unit (35) is lower than a predetermined reference speed. Judge that the airtightness of the container (1) is insufficient.
  • the airtightness evaluation device (130) of each of the above embodiments discharges air from the internal space of the transport container (1), and makes the air pressure in the transport container (1) negative pressure, whereby the transport container ( It may be configured to evaluate the airtightness of 1).
  • a pump or a fan for discharging air from the internal space of the transport container (1) is provided as an air pressure adjustment device (131).
  • the air pressure in the transport container (1) When air is exhausted from the internal space of the transport container (1), the air pressure in the transport container (1) gradually decreases. At that time, the lower the airtightness of the transport container (1), the slower the rate of decrease of the air pressure in the transport container (1). In addition, after the exhaust from the transport container (1) is stopped in a state where the atmospheric pressure in the transport container (1) is a negative pressure, the atmospheric pressure in the transport container (1) gradually increases. At that time, the lower the air tightness of the transport container (1), the faster the rise speed of the air pressure in the transport container (1).
  • the airtightness evaluation device (130) of this modification evaluates the airtightness of the transport container (1) using such a phenomenon.
  • the airtightness evaluation unit (116) is the external air that is discharged from the first pump (36) and supplied to the inside of the transport container (1). Even if the adjustment of the flow rate (the charge air flow rate) is performed not by the adjustment of the opening degree of the first control valve (46), but by the adjustment of the rotational speed of the drive motor (38) of the pump unit (35) Good.
  • the alternating current output from the inverter is supplied to the drive motor (38) of the pump unit (35).
  • the output frequency of the inverter is changed, the rotational speed of the drive motor (38) changes, and the flow rate of the air discharged from the first pump (36) changes.
  • the airtightness evaluation unit (116) is not limited to the reference level (the airtightness level of the storage case (1)) but a plurality of different physical quantities to be determined.
  • One of the evaluation conditions of may be configured to be selected by the worker.
  • the airtightness evaluation unit (116) of the present modification includes three evaluation conditions A to C selectable in the airtightness evaluation unit (116) of the third embodiment, and the airtightness evaluation unit (116) of the fourth embodiment.
  • the operator may be configured to select one of three evaluation conditions A to C (that is, six evaluation conditions) selectable at.
  • each of the first composition control unit (40) and the second composition control unit (60) is sucked by a so-called PSA (Pressure Swing Adsorption) method.
  • the air may be configured to be separated into two types of air having different compositions.
  • the composition adjusting unit (40, 60) adsorbs nitrogen contained in the sucked air to the adsorbent to generate air having a low nitrogen concentration and a high oxygen concentration and carbon dioxide concentration; And desorbing nitrogen from the agent to generate air having a high nitrogen concentration and a low oxygen concentration and a low carbon dioxide concentration.
  • the refrigerator (10) provided with the in-compartment air conditioning device (30) of each of the above embodiments may be provided in a stationary refrigerator or freezer.
  • the refrigerator (10) provided with the in-compartment air conditioning apparatus (30) of each said embodiment may be provided in the refrigeration and refrigeration container for land transportation transported by a truck, a railway, etc.
  • the refrigerator (10) provided with the in-compartment air conditioning apparatus (30) of each said embodiment may be provided in the refrigeration / refrigeration truck with which the box which forms a cargo compartment was united with the chassis. .
  • the present invention is useful for an airtightness evaluation device for evaluating the airtightness of a storage case, and an in-compartment air conditioning device and a refrigeration system provided with the airtightness evaluation device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

An air-tightness evaluation device (130) is incorporated in an in-compartment air conditioning device (30) that adjusts the composition of in-compartment air of a transport container (1), which is a storage compartment. The air-tightness evaluation device (130) is constituted of: an air pressure adjustment apparatus (131); a third pressure sensor (103); and an air-tightness evaluation unit of a controller (110). The air pressure adjustment apparatus (131) is an air pump (36) that supplies air into the transport container (1). The third pressure sensor (103) measures the air pressure within the transport container (1). The air-tightness evaluation unit of the controller (110) evaluates the air-tightness of the transport container (1) on the basis of a measurement value of the transport container (1).

Description

気密性評価装置、庫内空気調節装置、及び冷凍装置Airtightness evaluation device, internal air conditioning device, and refrigeration device
 本発明は、収納庫の気密性を評価する気密性評価装置と、この気密性評価装置を備えた庫内空気調節装置および冷凍装置に関するものである。 The present invention relates to an airtightness evaluation device for evaluating the airtightness of a storage, and an in-compartment air conditioning device and a refrigeration system provided with the airtightness evaluation device.
 農産物等の鮮度低下の抑制を目的として、農産物等を収容する倉庫や輸送用コンテナの庫内空気の酸素濃度を大気の酸素濃度よりも低くなるように調節する技術が知られている。特許文献1には、輸送用コンテナの庫内空気の酸素濃度を大気の酸素濃度よりも低くするために、酸素濃度の低い空気を輸送用コンテナの庫内へ供給する庫内環境制御システムが開示されている。また、この庫内環境制御システムは、冷凍サイクルを行う冷媒回路を備え、庫内空気の温度調節も行う。 There is known a technique for adjusting the oxygen concentration of air in a storage container for storing produce etc. to be lower than the oxygen concentration of the atmosphere for the purpose of suppressing a decrease in freshness of the produce etc. Patent Document 1 discloses an in-compartment environment control system for supplying air having a low oxygen concentration to the inside of a transport container in order to lower the oxygen concentration of air inside the transport container lower than the oxygen concentration of the atmosphere. It is done. Further, this in-compartment environment control system includes a refrigerant circuit that performs a refrigeration cycle, and also performs temperature control of the in-compartment air.
特開平08-000166号公報Japanese Patent Application Laid-Open No. 08-000166
 ところで、輸送用コンテナ等の収納庫は、その気密性が常に確保されているとは限らない。また、例えば海上輸送用のコンテナは、繰り返し使用される過程で気密性が次第に低下する可能性がある。収納庫の気密性が低いと、収納庫の隙間を通って庫外空気(即ち、大気)が収納庫の内部へ侵入する可能性がある。そして、収納庫の内部へ侵入する庫外空気の量が多くなると、庫内空気の組成(例えば、庫内空気の酸素濃度)を目標とする組成に到達させることができなくなったり、庫内空気の温度を目標温度にまで引き下げられないおそれがある。 By the way, storage containers, such as a transport container, do not always ensure the airtightness. Also, for example, containers for sea transport may become progressively less airtight during repeated use processes. If the air tightness of the storage is low, outside air (i.e., the atmosphere) may enter the inside of the storage through the gap of the storage. When the amount of outside air entering the inside of the storage increases, the composition of the inside air (for example, the oxygen concentration of the inside air) can not reach the target composition, Temperature may not be reduced to the target temperature.
 このように、収納庫の気密性を確保することは、収納庫の庫内環境を適切に制御する上で重要である。しかし、収納庫の気密性を評価するための装置は、これまで存在しなかった。 As described above, ensuring the airtightness of the storage is important in appropriately controlling the storage environment of the storage. However, no device for evaluating the tightness of storage has ever existed.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、収納庫の気密性を評価する装置を提供することにある。 This invention is made in view of this point, The objective is to provide the apparatus which evaluates the airtightness of storage.
 本開示の第1の態様は、気密性評価装置を対象とし、収納庫(1)内の気圧を大気圧と異ならせるために上記収納庫(1)へ給気し又は上記収納庫(1)から排気する気圧調節機器(131)と、上記収納庫(1)内の気圧を計測する気圧センサ(103,65,45)と、上記気圧調節機器(131)の作動中または停止後における上記気圧センサ(103,65,45)の計測値に基づいて上記収納庫(1)の気密性を評価する評価動作を行うように構成された評価部(116)とを備えるものである。 A first aspect of the present disclosure is directed to an airtightness evaluation device, wherein air is supplied to the storage (1) or the storage (1) in order to make the air pressure in the storage (1) different from the atmospheric pressure. An air pressure regulator (131) for exhausting air from the air pressure sensor (103, 65, 45) for measuring the air pressure in the storage (1), and the air pressure during or after operation of the air pressure regulator (131) An evaluation unit (116) configured to perform an evaluation operation to evaluate the airtightness of the storage (1) based on the measurement values of the sensors (103, 65, 45).
 第1の態様では、気圧調節機器(131)が作動することによって、収納庫(1)内の気圧が陽圧または陰圧となる。収納庫(1)内の気圧が陽圧である場合は、収納庫(1)の気密性が低いほど、収納庫(1)の隙間を通って収納庫(1)の外部へ流出する空気の流量が多くなる。また、収納庫(1)内の気圧が陰圧である場合は、収納庫(1)の気密性が低いほど、収納庫(1)の隙間を通って収納庫(1)の内部へ流入する空気の流量が多くなる。このため、収納庫(1)の気密性が低いほど、収納庫(1)内の気圧が受ける影響が大きくなる。そこで、評価部(116)は、気圧調節機器(131)の作動中または停止後に、気圧センサ(103,65,45)の計測値に基づいて収納庫(1)の気密性を評価する。 In the first aspect, the air pressure in the storage case (1) becomes positive pressure or negative pressure by operating the air pressure adjusting device (131). When the pressure in the storage case (1) is a positive pressure, the air tightness of the storage case (1) is lower, the air flowing out of the storage case (1) through the gap of the storage case (1) Flow rate will increase. In addition, when the air pressure inside the storage case (1) is a negative pressure, the lower the airtightness of the storage case (1), the more it flows into the inside of the storage case (1) through the gap of the storage case (1) The flow rate of air increases. For this reason, the lower the airtightness of the storage case (1), the greater the influence on the air pressure in the storage case (1). Therefore, the evaluation unit (116) evaluates the airtightness of the storage case (1) based on the measurement values of the air pressure sensor (103, 65, 45) during or after the operation of the air pressure adjustment device (131).
 本開示の第2の態様は、上記第1の態様において、上記評価部(116)は、上記気圧センサ(103,65,45)の計測値に基づいて、上記収納庫(1)の気密性が基準レベルに達していることを示す評価条件の成否を判断する動作を、上記評価動作として行うように構成されるものである。 According to a second aspect of the present disclosure, in the first aspect, the evaluation unit (116) measures the airtightness of the storage (1) based on the measurement values of the pressure sensor (103, 65, 45). It is comprised so that the operation | movement which judges the success or failure of the evaluation condition which shows that it has reached to the reference level may be performed as said evaluation operation | movement.
 第2の態様において、評価動作中の評価部(116)は、評価条件が成立するか否かを、気圧調節機器(131)の作動中または停止後における気圧センサ(103,65,45)の計測値に基づいて判断する。そして、評価部(116)は、評価条件が成立すると収納庫(1)の気密性が基準レベルに達していると判断し、評価条件が成立しないと収納庫(1)の気密性が基準レベルに達していないと判断する。 In the second aspect, the evaluation unit (116) in the evaluation operation is an air pressure sensor (103, 65, 45) of the air pressure adjustment device (131) during or after operation of the air pressure adjustment device (131). Judge based on the measured value. Then, the evaluation unit (116) determines that the airtightness of the storage case (1) has reached the reference level when the evaluation condition is satisfied, and the airtightness of the storage case (1) is the reference level when the evaluation condition is not satisfied. It is determined that has not been reached.
 本開示の第3の態様は、上記第2の態様において、上記評価部(116)は、上記基準レベルが互いに異なる複数の上記評価条件のうちの一つの成否を、上記評価動作において判断するように構成される一方、複数の上記評価条件うち上記評価動作において成否が判断される一つの上記評価条件を指定する情報を作業者が入力する入力部(113)を備えるものである。 According to a third aspect of the present disclosure, in the second aspect, the evaluation unit (116) determines, in the evaluation operation, success or failure of one of a plurality of the evaluation conditions different from each other in the reference level. An operator is provided with an input unit (113) for inputting information designating one of the plurality of evaluation conditions which are judged to be successful in the evaluation operation among the plurality of evaluation conditions.
 第3の態様では、気密性評価装置(130)に入力部(113)が設けられる。作業者が入力部(113)へ入力した情報によって、基準レベルが互いに異なる複数の評価条件のうちの一つが指定される。評価部(116)は、評価動作において、作業者が入力部(113)へ入力した情報によって指定された評価条件の成否を判断する。 In the third aspect, the airtightness evaluation device (130) is provided with an input unit (113). The information input to the input unit (113) by the operator designates one of a plurality of evaluation conditions having different reference levels. In the evaluation operation, the evaluation unit (116) determines whether the evaluation condition specified by the information input by the operator to the input unit (113) is met.
 本開示の第4の態様は、上記第1~第3のいずれか一つの態様において、上記評価部(116)は、上記評価動作として、上記気圧調節機器(131)を作動させ、上記気圧センサ(103,65,45)の計測値が基準圧力に達すると上記気圧調節機器(131)を停止させ、上記気圧調節機器(131)の停止後における上記気圧センサ(103,65,45)の計測値の変化に基づいて上記収納庫(1)の気密性を評価する動作を行うように構成されるものである。 According to a fourth aspect of the present disclosure, in any one of the first to third aspects, the evaluation unit (116) operates the air pressure adjustment device (131) as the evaluation operation, and the air pressure sensor When the measured value of (103, 65, 45) reaches the reference pressure, the air pressure adjusting device (131) is stopped, and measurement of the air pressure sensor (103, 65, 45) after stopping the air pressure adjusting device (131) It is comprised so that the operation | movement which evaluates the airtightness of the said storage (1) based on the change of a value may be performed.
 第4の態様の評価動作において、評価部(116)は、収納庫(1)内の気圧を変化させるために気圧調節機器(131)を作動させ、気圧センサ(103,65,45)の計測値が基準圧力に達すると気圧調節機器(131)を停止させる。収納庫(1)内の気圧が陽圧の場合は、収納庫(1)の気密性が低いほど、気圧調節機器(131)の停止後における気圧センサ(103,65,45)の計測値の低下速度が速くなる。また、収納庫(1)内の気圧が陰圧の場合は、収納庫(1)の気密性が低いほど、気圧調節機器(131)の停止後における気圧センサ(103,65,45)の計測値の上昇速度が速くなる。そこで、評価部(116)は、気圧調節機器(131)の停止後における気圧センサ(103,65,45)の計測値の変化に基づいて、収納庫(1)の気密性を評価する。 In the evaluation operation of the fourth aspect, the evaluation unit (116) operates the air pressure adjustment device (131) to change the air pressure in the storage case (1), and measures the air pressure sensor (103, 65, 45) When the value reaches the reference pressure, the air pressure regulator (131) is stopped. When the air pressure in the storage case (1) is a positive pressure, the lower the air tightness of the storage case (1), the measurement value of the pressure sensor (103, 65, 45) after stopping the pressure control device (131) The rate of decline is faster. In addition, when the air pressure in the storage case (1) is negative pressure, the lower the air tightness of the storage case (1), the measurement of the air pressure sensor (103, 65, 45) after stopping the air pressure adjustment device (131) The rate of increase in value is faster. Therefore, the evaluation unit (116) evaluates the airtightness of the storage case (1) based on the change in the measurement value of the air pressure sensor (103, 65, 45) after the air pressure adjustment device (131) is stopped.
 本開示の第5の態様は、上記第1~第3のいずれか一つの態様において、上記評価部(116)は、上記評価動作として、上記気圧調節機器(131)を制御することによって上記気圧センサ(103,65,45)の計測値を所定時間に亘って所定圧力範囲に保った後に、上記気圧調節機器(131)の停止中における上記気圧センサ(103,65,45)の計測値の変化に基づいて上記収納庫(1)の気密性を評価する動作を行うように構成されるものである。 According to a fifth aspect of the present disclosure, in any one of the first to third aspects, the evaluation unit (116) controls the air pressure adjustment device (131) as the evaluation operation to control the air pressure. After the measured value of the sensor (103, 65, 45) is maintained in the predetermined pressure range for a predetermined time, the measured value of the measured pressure sensor (103, 65, 45) during stoppage of the pressure adjusting device (131) It is comprised so that the operation | movement which evaluates the airtightness of the said storage (1) based on a change may be performed.
 第5の態様の評価動作において、評価部(116)は、気圧調節機器(131)を制御することによって、気圧センサ(103,65,45)の計測値を所定時間に亘って所定圧力範囲に保つ。収納庫(1)内の気圧が陽圧の場合は、収納庫(1)の気密性が低いほど、気圧調節機器(131)の停止後における気圧センサ(103,65,45)の計測値の低下速度が速くなる。また、収納庫(1)内の気圧が陰圧の場合は、収納庫(1)の気密性が低いほど、気圧調節機器(131)の停止後における気圧センサ(103,65,45)の計測値の上昇速度が速くなる。そこで、評価部(116)は、気圧センサ(103,65,45)の計測値を所定時間に亘って所定圧力範囲に保ったのちにおいて、気圧調節機器(131)の停止中における上記気圧センサ(103,65,45)の計測値の変化に基づいて上記収納庫(1)の気密性を評価する。 In the evaluation operation of the fifth aspect, the evaluation unit (116) controls the air pressure adjusting device (131) to keep the measured value of the air pressure sensor (103, 65, 45) within a predetermined pressure range for a predetermined time. keep. When the air pressure in the storage case (1) is a positive pressure, the lower the air tightness of the storage case (1), the measurement value of the pressure sensor (103, 65, 45) after stopping the pressure control device (131) The rate of decline is faster. In addition, when the air pressure in the storage case (1) is negative pressure, the lower the air tightness of the storage case (1), the measurement of the air pressure sensor (103, 65, 45) after stopping the air pressure adjustment device (131) The rate of increase in value is faster. Therefore, after the evaluation unit (116) keeps the measurement values of the air pressure sensor (103, 65, 45) in the predetermined pressure range for a predetermined time, the air pressure adjustment device (131) stops the pressure sensor The airtightness of the storage (1) is evaluated based on the change in the measured value of 103, 65, 45).
 本開示の第6の態様は、上記第1~第3のいずれか一つの態様において、上記評価部(116)は、上記評価動作として、上記気圧調節機器(131)を作動させ、上記気圧調節機器(131)の運転中における上記気圧センサ(103,65,45)の計測値の変化に基づいて上記収納庫(1)の気密性を評価する動作を行うように構成されるものである。 According to a sixth aspect of the present disclosure, in any one of the first to third aspects, the evaluation unit (116) operates the air pressure adjustment device (131) as the evaluation operation to adjust the air pressure. An operation is performed to evaluate the airtightness of the storage (1) based on the change in the measurement value of the air pressure sensor (103, 65, 45) during the operation of the device (131).
 第6の態様の評価動作において、評価部(116)は、収納庫(1)内の気圧を変化させるために気圧調節機器(131)を作動させる。収納庫(1)内の気圧が陽圧の場合は、収納庫(1)の気密性が低いほど、気圧調節機器(131)の作動中における気圧センサ(103,65,45)の計測値の上昇速度が遅くなる。また、収納庫(1)内の気圧が陰圧の場合は、収納庫(1)の気密性が低いほど、気圧調節機器(131)の作動中における気圧センサ(103,65,45)の計測値の低下速度が遅くなる。そこで、評価部(116)は、気圧調節機器(131)の作動中における気圧センサ(103,65,45)の計測値の変化に基づいて、収納庫(1)の気密性を評価する。 In the evaluation operation of the sixth aspect, the evaluation unit (116) operates the air pressure adjustment device (131) to change the air pressure in the storage case (1). When the pressure in the storage case (1) is a positive pressure, the lower the air tightness of the storage case (1), the measurement value of the pressure sensor (103, 65, 45) during operation of the pressure control device (131) Rising speed slows down. Moreover, when the air pressure in the storage case (1) is negative pressure, the lower the air tightness of the storage case (1), the measurement of the air pressure sensor (103, 65, 45) during operation of the air pressure adjustment device (131) The rate of decrease in value becomes slower. Therefore, the evaluation unit (116) evaluates the airtightness of the storage case (1) based on the change in the measurement value of the air pressure sensor (103, 65, 45) during the operation of the air pressure adjustment device (131).
 本開示の第7の態様は、庫内空気調節装置を対象とし、第1~第6のいずれか一つの態様の気密性評価装置(130)と、上記収納庫(1)の外部から吸入した庫外空気を加圧して吐出する空気ポンプ(36)と、上記空気ポンプ(36)が吐出した上記庫外空気から該庫外空気とは組成が異なる供給用空気を分離し、該供給用空気を上記収納庫(1)の内部へ供給する分離部(41)とを備え、上記空気ポンプ(36)は、上記収納庫(1)の気圧を陽圧にするために上記収納庫(1)へ給気するように構成されて上記気密性評価装置(130)の気圧調節機器(131)を兼ねるものである。 A seventh aspect of the present disclosure is directed to an in-compartment air conditioning device, in which the airtightness evaluation device (130) according to any one of the first to sixth aspects and the suctioned from the outside of the storage (1) An air pump (36) for pressurizing and discharging the outside air and a supply air having a different composition from the outside air from the outside air discharged by the air pump (36) are separated, and the air for supply is separated. And the separation unit (41) for supplying the inside of the storage case (1), and the air pump (36) has the storage case (1) in order to make the pressure of the storage case (1) positive. The air pressure adjusting device (131) of the above-mentioned airtightness evaluation device (130) is configured to supply the air.
 第7の態様では、第1~第6のいずれか一つの態様の気密性評価装置(130)が、庫内空気調節装置(30)に設けられる。庫内空気調節装置(30)は、庫外空気とは組成が異なる供給用空気を収納庫(1)の内部へ供給することによって、庫内空気の組成を調節する。この態様では、庫内空気調節装置(30)が庫内空気の組成を調節するために備える空気ポンプ(36)が、気密性評価装置(130)の気圧調節機器(131)を兼ねる。この態様の気密性評価装置(130)は、気圧調節機器(131)を兼ねる空気ポンプ(36)によって収納庫(1)へ給気し、収納庫(1)内の気圧を陽圧にする。 In the seventh aspect, the airtightness evaluation device (130) of any one of the first to sixth aspects is provided in the in-compartment air conditioning device (30). The in-compartment air conditioning device (30) adjusts the composition of the in-compartment air by supplying supply air having a composition different from that of the outside-compartment air into the inside of the storage (1). In this aspect, the air pump (36) with which the in-compartment air conditioning device (30) adjusts the composition of the in-compartment air doubles as the air pressure adjustment device (131) of the airtightness evaluation device (130). The airtightness evaluation device (130) of this aspect supplies air to the storage case (1) by the air pump (36) which doubles as an air pressure adjustment device (131), and makes the air pressure in the storage case (1) a positive pressure.
 本開示の第8の態様は、庫内空気調節装置を対象とし、第1~第6のいずれか一つの態様の気密性評価装置(130)と、収納庫(1)の庫内空気の組成を、大気の組成と異なる目標組成となるように調節する組成調節部(40,60)とを備え、上記気密性評価装置(130)の上記評価部(116)は、上記組成調節部(40,60)の動作によって上記収納庫(1)の庫内空気の組成を上記目標組成に到達させられないことを示す不具合条件が成立すると、上記評価動作を行うように構成されるものである。 The eighth aspect of the present disclosure is directed to an air conditioning device in a storage, and includes the airtightness evaluation device (130) according to any one of the first to sixth aspects, and the composition of air in the storage of the storage (1). And a composition control unit (40, 60) for adjusting the target composition to be different from the composition of the atmosphere, the evaluation unit (116) of the airtightness evaluation device (130) comprising the composition control unit (40). , 60), and the evaluation operation is performed when a failure condition indicating that the composition of the air in the storage (1) can not reach the target composition is satisfied.
 第8の態様において、組成調節部(40,60)が正常に作動していなければ、収納庫(1)の庫内空気の組成が目標組成に到達しない。また、組成調節部(40,60)が正常に作動していても、収納庫(1)の気密性が低い場合は、収納庫(1)の外部から内部へ侵入する大気の流量が多くなり、収納庫(1)の庫内空気の組成が目標組成に到達しないおそれがある。 In the eighth aspect, if the composition adjustment unit (40, 60) does not operate normally, the composition of the air in the storage (1) does not reach the target composition. In addition, even if the composition control unit (40, 60) operates normally, if the airtightness of the storage case (1) is low, the flow rate of the air entering the inside from the outside of the storage case (1) increases. The composition of the air in the storage (1) may not reach the target composition.
 そこで、第8の態様では、不具合条件が成立した場合に、気密性評価装置(130)の評価部(116)が評価動作を行う。評価部(116)が評価動作を行うと、収納庫(1)の気密性が評価される。その結果、収納庫(1)の庫内空気の組成が目標組成に到達しない原因が、組成調節部(40,60)の故障なのか収納庫(1)の気密性なのかを判別することが可能となる。 Therefore, in the eighth aspect, when the failure condition is satisfied, the evaluation unit (116) of the airtightness evaluation device (130) performs the evaluation operation. When the evaluation unit (116) performs the evaluation operation, the airtightness of the storage case (1) is evaluated. As a result, it can be determined whether the cause of the composition of the air in the storage (1) not reaching the target composition is the failure of the composition adjustment unit (40, 60) or the airtightness of the storage (1). It becomes possible.
 本開示の第9の態様は、冷凍装置を対象とし、第1~第6のいずれか一つの態様の気密性評価装置(130)と、収納庫(1)の庫内空気の温度が目標温度となるように、冷凍サイクルを行って上記庫内空気を冷媒によって冷却する冷媒回路(11)とを備え、上記気密性評価装置(130)の上記評価部(116)は、上記冷媒回路(11)の動作によって上記収納庫(1)の庫内空気の温度を目標温度に到達させられないことを示す不具合条件が成立すると、上記評価動作を行うように構成されるものである。 The ninth aspect of the present disclosure is directed to a refrigeration system, and the airtightness evaluation device (130) according to any one of the first to sixth aspects, and the temperature of air inside the storage compartment (1) have a target temperature And the refrigerant circuit (11) for performing the refrigeration cycle to cool the inside air by the refrigerant, and the evaluation unit (116) of the airtightness evaluation device (130) includes the refrigerant circuit (11). The evaluation operation is configured to be performed when a failure condition indicating that the temperature of the air in the storage (1) can not reach the target temperature is satisfied by the operation of 2.).
 第9の態様では、冷媒回路(11)が正常に作動していなければ、収納庫(1)の庫内空気の温度が目標温度に到達しない。また、冷媒回路(11)が正常に作動していても、収納庫(1)の気密性が低い場合は、収納庫(1)の外部から内部へ侵入する大気の流量が多くなり、収納庫(1)の庫内空気の温度が目標温度に到達しないおそれがある。 In the ninth aspect, if the refrigerant circuit (11) does not operate normally, the temperature of the air in the storage (1) does not reach the target temperature. In addition, even if the refrigerant circuit (11) is operating normally, if the airtightness of the storage case (1) is low, the flow rate of the air entering the inside from the outside of the storage case (1) increases, and the storage case There is a possibility that the temperature of the inside air of (1) may not reach the target temperature.
 そこで、第9の態様では、不具合条件が成立した場合に、気密性評価装置(130)の評価部(116)が評価動作を行う。評価部(116)が評価動作を行うと、収納庫(1)の気密性が評価される。その結果、収納庫(1)の庫内空気の組成が目標組成に到達しない原因が、冷媒回路(11)の故障なのか収納庫(1)の気密性なのかを判別することが可能となる。 Therefore, in the ninth aspect, when the failure condition is satisfied, the evaluation unit (116) of the airtightness evaluation device (130) performs the evaluation operation. When the evaluation unit (116) performs the evaluation operation, the airtightness of the storage case (1) is evaluated. As a result, it becomes possible to determine whether the cause of the composition of the air in the storage (1) not reaching the target composition is the failure of the refrigerant circuit (11) or the airtightness of the storage (1). .
 上記第1の態様では、気圧調節機器(131)が収納庫(1)内の気圧を調節し、評価部(116)が気圧センサ(103,65,45)の計測値に基づいて収納庫(1)の気密性を評価する。このため、本態様によれば、収納庫(1)の気密性を自動的に評価することが可能となる。 In the first aspect, the air pressure adjusting device (131) adjusts the air pressure in the storage case (1), and the evaluation unit (116) stores the storage case based on the measurement values of the air pressure sensors (103, 65, 45). 1) Evaluate air tightness. For this reason, according to this aspect, it is possible to automatically evaluate the airtightness of the storage case (1).
 第3の態様において、評価部(116)は、複数の評価条件のうち作業者によって指定された一つの評価条件を用いて、収納庫(1)の気密性を評価する評価動作を行う。従って、この態様によれば、評価動作において用いられる一つの評価条件を、複数の評価条件の中から作業者が選択することが可能となり、庫内空気調節装置(30)の使い勝手が向上する。 In the third aspect, the evaluation unit (116) performs an evaluation operation of evaluating the airtightness of the storage case (1) using one evaluation condition designated by the worker among a plurality of evaluation conditions. Therefore, according to this aspect, the operator can select one evaluation condition used in the evaluation operation from among a plurality of evaluation conditions, and the usability of the in-compartment air conditioner (30) is improved.
 上記第6の態様では、庫内空気調節装置(30)に設けられた空気ポンプ(36)が、気密性評価装置(130)の気圧調節機器(131)を兼ねる。従って、この態様によれば、気密性評価装置(130)を備える庫内空気調節装置(30)の部品点数を削減できる。 In the sixth aspect, the air pump (36) provided in the in-compartment air conditioner (30) doubles as the air pressure regulator (131) of the air tightness evaluation device (130). Therefore, according to this aspect, it is possible to reduce the number of parts of the in-compartment air conditioner (30) including the air tightness evaluation device (130).
 上記第7の態様において、気密性評価装置(130)の評価部(116)は、収納庫(1)の庫内空気の組成が目標組成に到達しないことを示す不具合条件が成立すると、評価動作を行って収納庫(1)の気密性を評価する。そのため、この態様によれば、収納庫(1)の庫内空気の組成が目標組成に到達しない原因が、組成調節部(40,60)の故障なのか収納庫(1)の気密性なのかを判別することが可能となる。 In the seventh aspect, the evaluation unit (116) of the airtightness evaluation device (130) performs an evaluation operation when a failure condition indicating that the composition of the air in the storage (1) does not reach the target composition is satisfied. To evaluate the airtightness of the storage cabinet (1). Therefore, according to this aspect, is the cause that the composition of the air in the storage (1) does not reach the target composition is the failure of the composition adjustment unit (40, 60) or the airtightness of the storage (1)? It is possible to determine
 上記第8の態様では、気密性評価装置(130)の評価部(116)は、収納庫(1)の庫内空気の温度が目標温度に到達しないことを示す不具合条件が成立すると、評価動作を行って収納庫(1)の気密性を評価する。そのため、この態様によれば、収納庫(1)の庫内空気の温度が目標温度に到達しない原因が、冷媒回路(11)の故障なのか収納庫(1)の気密性なのかを判別することが可能となる。 In the eighth aspect, the evaluation unit (116) of the air tightness evaluation device (130) performs the evaluation operation when a failure condition indicating that the temperature of the air inside the storage (1) does not reach the target temperature is satisfied. To evaluate the airtightness of the storage cabinet (1). Therefore, according to this aspect, it is determined whether the cause that the temperature of the air inside the storage case (1) does not reach the target temperature is the failure of the refrigerant circuit (11) or the airtightness of the storage case (1). It becomes possible.
図1は、実施形態1の庫内空気調節装置を備えた輸送用コンテナの概略断面図である。FIG. 1 is a schematic cross-sectional view of a transportation container provided with the in-compartment air conditioning device of the first embodiment. 図2は、輸送用コンテナに設けられた冷凍機の冷媒回路の構成を示す冷媒回路図である。FIG. 2 is a refrigerant circuit diagram showing a configuration of a refrigerant circuit of a refrigerator provided in the transport container. 図3は、実施形態1の庫内空気調節装置の構成を示す配管系統図である。FIG. 3 is a piping system diagram showing the configuration of the in-compartment air conditioning device of the first embodiment. 図4は、気密性評価装置の評価動作中の状態を示す実施形態1の庫内空気調節装置の配管系統図である。FIG. 4 is a piping system diagram of the in-compartment air conditioning device of the first embodiment showing a state in which the airtightness evaluation device is under evaluation operation. 図5は、実施形態1の制御器の構成を示すブロック図である。FIG. 5 is a block diagram showing the configuration of the controller of the first embodiment. 図6は、実施形態1の気密性評価部が行う評価動作を示すフロー図である。FIG. 6 is a flowchart showing the evaluation operation performed by the airtightness evaluation unit of the first embodiment. 図7は、実施形態2の庫内空気調節装置の構成を示す配管系統図である。FIG. 7 is a piping system diagram showing a configuration of the in-compartment air conditioning device of the second embodiment. 図8は、実施形態2の気密性評価部が行う評価動作を示すフロー図である。FIG. 8 is a flowchart showing the evaluation operation performed by the airtightness evaluation unit of the second embodiment. 図9は、実施形態3の庫内空気調節装置の構成を示す配管系統図である。FIG. 9 is a piping system diagram showing a configuration of the in-compartment air conditioning device of the third embodiment. 図10は、実施形態3の気密性評価部が行う評価動作を示すフロー図である。FIG. 10 is a flowchart showing the evaluation operation performed by the airtightness evaluation unit of the third embodiment. 図11は、実施形態4の気密性評価部が行う評価動作を示すフロー図である。FIG. 11 is a flowchart showing the evaluation operation performed by the airtightness evaluation unit of the fourth embodiment. 図12は、実施形態5の庫内空気調節装置の構成を示す配管系統図である。FIG. 12 is a piping system diagram showing a configuration of the in-compartment air conditioning device of the fifth embodiment. 図13は、気密性評価装置の評価動作中の状態を示す実施形態5の庫内空気調節装置の配管系統図である。FIG. 13 is a piping system diagram of the in-compartment air conditioning device of the fifth embodiment showing a state in which the air tightness evaluation device is under evaluation operation. 図14は、実施形態6の庫内空気調節装置の構成を示す配管系統図である。FIG. 14 is a piping diagram showing a configuration of the in-compartment air conditioning device of the sixth embodiment. 図15は、気密性評価装置の評価動作中の状態を示す実施形態6の庫内空気調節装置の配管系統図である。FIG. 15 is a piping system diagram of the in-compartment air conditioning device of the sixth embodiment, which shows the state during the evaluation operation of the airtightness evaluation device. 図16は、実施形態7の庫内空気調節装置の構成を示す配管系統図である。FIG. 16 is a piping diagram showing a configuration of the in-compartment air conditioning device of the seventh embodiment. 図17は、気密性評価装置の評価動作中の状態を示す実施形態7の庫内空気調節装置の配管系統図である。FIG. 17 is a piping diagram of the in-compartment air conditioning device of the seventh embodiment showing a state in which the air tightness evaluation device is under evaluation operation. 図18は、実施形態8の気密性評価部が行う評価動作を示すフロー図である。FIG. 18 is a flowchart showing the evaluation operation performed by the airtightness evaluation unit of the eighth embodiment. 図19は、実施形態9の庫内空気調節装置の構成を示す配管系統図である。FIG. 19 is a piping diagram showing the configuration of the inside air conditioning device of the ninth embodiment. 図20は、実施形態9の第1組成調節部の第1動作中の状態を示す庫内空気調節装置の配管系統図である。FIG. 20 is a piping diagram of the in-compartment air conditioning device, showing the state during first operation of the first composition regulation unit of the ninth embodiment. 図21は、実施形態9の第1組成調節部の第2動作中の状態を示す庫内空気調節装置の配管系統図である。FIG. 21 is a piping diagram of the in-compartment air conditioning device, showing the state during second operation of the first composition adjustment portion of the ninth embodiment. 図22は、実施形態9の第1組成調節部の外気導入動作中の状態を示す庫内空気調節装置の配管系統図である。FIG. 22 is a piping diagram of the in-compartment air conditioning device, showing a state during the outside air introduction operation of the first composition adjustment portion of the ninth embodiment.
 本発明の実施形態を図面に基づいて詳細に説明する。なお、以下で説明する実施形態および変形例は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。また、以下で説明する実施形態および変形例は、気密性評価装置(130)、庫内空気調節装置(30)、及び冷凍機(10)の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。 Embodiments of the present invention will be described in detail based on the drawings. Note that the embodiments and modifications described below are essentially preferred examples, and are not intended to limit the scope of the present invention, its applications, or its applications. Moreover, the embodiments and modifications described below can be combined or replaced as appropriate as long as the functions of the airtightness evaluation device (130), the internal air conditioning device (30), and the refrigerator (10) are not impaired. You may
 《実施形態1》
 実施形態1について説明する。本実施形態の庫内空気調節装置(30)は、いわゆるCA(Controlled Atmosphere)輸送を行うために輸送用コンテナ(1)に設けられる。そして、庫内空気調節装置(30)は、輸送用コンテナ(1)内の空気の組成を、大気の組成と異なるように調節する。また、詳しくは後述するが、庫内空気調節装置(30)には、気密性評価装置(130)が組み込まれている。
Embodiment 1
The first embodiment will be described. The in-compartment air conditioner (30) of the present embodiment is provided in the transport container (1) to perform so-called CA (Controlled Atmosphere) transport. Then, the in-compartment air conditioner (30) regulates the composition of air in the transport container (1) to be different from the composition of the atmosphere. Further, although the details will be described later, an airtightness evaluation device (130) is incorporated in the in-compartment air conditioning device (30).
 図1に示すように、収納庫を構成する輸送用コンテナ(1)は、コンテナ本体(2)と、コンテナ用の冷凍機(10)とを備えている。この輸送用コンテナ(1)は、庫内の温度管理が可能なリーファーコンテナ(reefer container)である。本実施形態の庫内空気調節装置(30)は、冷凍機(10)に設置される。この輸送用コンテナ(1)は、空気中の酸素(O)を取り込んで二酸化炭素(CO)を放出する呼吸を行う植物を輸送するために用いられる。植物の例としては、バナナやアボカド等の果物、野菜、穀物、球根、生花等が挙げられる。 As shown in FIG. 1, the transport container (1) constituting the storage includes a container body (2) and a refrigerator (10) for the container. The transport container (1) is a reefer container capable of controlling the temperature inside the refrigerator. The in-compartment air conditioner (30) of the present embodiment is installed in a refrigerator (10). The transport container (1) is used to transport respirable plants that take in oxygen (O 2 ) in the air and release carbon dioxide (CO 2 ). Examples of plants include fruits such as banana and avocado, vegetables, grains, bulbs, fresh flowers and the like.
 コンテナ本体(2)は、細長い直方体形状の箱状に形成されている。コンテナ本体(2)は、一方の端面が開口し、この開口端を塞ぐように冷凍機(10)が取り付けられる。コンテナ本体(2)の内部空間は、貨物(6)を収納するための荷室(5)を構成する。 The container body (2) is formed in an elongated rectangular parallelepiped box shape. The container body (2) is open at one end face, and the refrigerator (10) is attached so as to close the open end. The internal space of the container body (2) constitutes a loading space (5) for storing the cargo (6).
 荷室(5)の底部には、貨物(6)を載せるための床板(3)が配置される。この床板(3)とコンテナ本体(2)の底板との間には、冷凍機(10)が吹き出した空気を流すための床下流路(4)が形成される。床下流路(4)は、コンテナ本体(2)の底板に沿ってコンテナ本体(2)の長手方向へ延びる流路である。床下流路(4)は、一端が冷凍機(10)の吹出口(27)に接続し、他端が床板(3)の上側の空間(即ち、貨物(6)が収容される空間)と連通する。 At the bottom of the loading space (5), a floor plate (3) for placing the cargo (6) is arranged. Between the floor plate (3) and the bottom plate of the container body (2), an under-floor flow path (4) for flowing the air blown out by the refrigerator (10) is formed. The underfloor channel (4) is a channel extending in the longitudinal direction of the container body (2) along the bottom plate of the container body (2). The underfloor flow path (4) has one end connected to the outlet (27) of the refrigerator (10) and the other end is the space above the floor plate (3) (ie, the space in which the cargo (6) is accommodated) It communicates.
  -冷凍機の構成-
 図1に示すように、冷凍機(10)は、ケーシング(20)と、冷凍サイクルを行う冷媒回路(11)と、庫外ファン(16)と、庫内ファン(17)とを備えた冷凍装置である。
-Configuration of refrigerator-
As shown in FIG. 1, the refrigerator (10) comprises a casing (20), a refrigerant circuit (11) performing a refrigeration cycle, an external fan (16), and an internal fan (17). It is an apparatus.
 ケーシング(20)は、庫外壁部(21)と、庫内壁部(22)と、背面板(24)と、区画板(25)とを備えている。後述するように、このケーシング(20)には、冷媒回路(11)と、庫外ファン(16)と、庫内ファン(17)とが設けられる。 The casing (20) includes a storage outer wall (21), a storage inner wall (22), a back plate (24), and a dividing plate (25). As described later, the casing (20) is provided with a refrigerant circuit (11), an external fan (16), and an internal fan (17).
 庫外壁部(21)は、コンテナ本体(2)の開口端を覆うように配置される板状の部材である。庫外壁部(21)は、下部がコンテナ本体(2)の内側へ膨出している。庫内壁部(22)は、庫外壁部(21)に沿った形態の板状の部材である。庫内壁部(22)は、庫外壁部(21)におけるコンテナ本体(2)の内側の面を覆うように配置される。庫外壁部(21)と庫内壁部(22)の間の空間には、断熱材(23)が充填されている。 The storage outer wall portion (21) is a plate-like member disposed so as to cover the open end of the container main body (2). The lower portion of the storage outer wall (21) bulges to the inside of the container body (2). The storage inner wall portion (22) is a plate-like member having a form along the storage outer wall portion (21). The storage inner wall (22) is arranged to cover the inner surface of the container body (2) in the storage outer wall (21). A heat insulating material (23) is filled in the space between the storage outer wall (21) and the storage inner wall (22).
 ケーシング(20)は、その下部がコンテナ本体(2)の内側へ窪んだ形状となっている。ケーシング(20)の下部は、輸送用コンテナ(1)の外部空間と連通する庫外機器室(28)を形成する。この庫外機器室(28)には、庫外ファン(16)が配置される。 The lower portion of the casing (20) is recessed inward of the container body (2). The lower part of the casing (20) forms an external storage compartment (28) in communication with the external space of the transport container (1). An extra-compartment fan (16) is disposed in the extra-compartment equipment room (28).
 背面板(24)は、概ね矩形の平板状の部材である。背面板(24)は、庫内壁部(22)よりもコンテナ本体(2)の内側に配置され、庫内壁部(22)との間に庫内空気流路(29)を形成する。この庫内空気流路(29)は、その上端がケーシング(20)の吸込口(26)を構成し、その下端がケーシング(20)の吹出口(27)を構成する。 The back plate (24) is a substantially rectangular flat member. The back plate (24) is disposed on the inner side of the container body (2) than the storage inner wall (22), and forms an internal air flow passage (29) with the storage inner wall (22). The upper end of the in-compartment air flow passage (29) constitutes the suction port (26) of the casing (20), and the lower end thereof constitutes the blowout port (27) of the casing (20).
 区画板(25)は、庫内空気流路(29)を上下に区画するように配置された板状の部材である。区画板(25)は、庫内空気流路(29)の上部に配置される。この区画板(25)によって、庫内空気流路(29)は、区画板(25)の上側の一次流路(29a)と、区画板(25)の下側の二次流路(29b)に区画される。一次流路(29a)は、吸込口(26)を介して荷室(5)と連通する。二次流路(29b)は、吹出口(27)を介して床下流路(4)と連通する。区画板(25)には、庫内ファン(17)が取り付けられる。庫内ファン(17)は、一次流路(29a)から吸い込んだ空気を二次流路(29b)へ吹き出すように配置される。 The partition plate (25) is a plate-like member arranged to partition the internal air flow passage (29) up and down. The partition plate (25) is disposed in the upper part of the internal air flow passage (29). The compartment air passage (29) is provided with the primary flow passage (29a) above the partition plate (25) and the secondary flow passage (29b) below the partition plate (25) by the partition plate (25). Divided into The primary flow passage (29a) communicates with the loading space (5) through the suction port (26). The secondary flow passage (29b) communicates with the underfloor flow passage (4) through the blowout port (27). An internal fan (17) is attached to the partition plate (25). The internal fan (17) is arranged to blow out the air drawn from the primary flow passage (29a) to the secondary flow passage (29b).
 図2に示すように、冷媒回路(11)は、圧縮機(12)と、凝縮器(13)と,膨張弁(14)と、蒸発器(15)とを配管で接続することによって形成された閉回路である。圧縮機(12)を作動させると、冷媒回路(11)を冷媒が循環し、蒸気圧縮冷凍サイクルが行われる。図1に示すように、凝縮器(13)は、庫外機器室(28)における庫外ファン(16)の吸込側に配置され、蒸発器(15)は、庫内空気流路(29)の二次流路(29b)に配置される。また、図1では図示を省略するが、圧縮機(12)は、庫外機器室(28)に配置される。 As shown in FIG. 2, the refrigerant circuit (11) is formed by connecting the compressor (12), the condenser (13), the expansion valve (14), and the evaporator (15) by piping. Closed circuit. When the compressor (12) is operated, the refrigerant circulates through the refrigerant circuit (11) to perform a vapor compression refrigeration cycle. As shown in FIG. 1, the condenser (13) is disposed on the suction side of the external fan (16) in the external equipment chamber (28), and the evaporator (15) is an internal air flow path (29) Are arranged in the secondary flow path (29b) of Moreover, although illustration is abbreviate | omitted in FIG. 1, a compressor (12) is arrange | positioned at an outside storage chamber (28).
  -冷凍機の運転動作-
 冷凍機(10)は、輸送用コンテナ(1)の庫内空気を冷却する冷却運転を行う。
-Operation of the refrigerator-
The refrigerator (10) performs a cooling operation to cool the air in the storage container (1).
 冷却運転では、冷媒回路(11)の圧縮機(12)が作動し、冷媒回路(11)において冷媒が循環することによって蒸気圧縮冷凍サイクルが行われる。冷媒回路(11)では、圧縮機(12)から吐出された冷媒が、凝縮器(13)と膨張弁(14)と蒸発器(15)とを順に通過し、その後に圧縮機(12)へ吸入されて圧縮される。 In the cooling operation, the compressor (12) of the refrigerant circuit (11) operates, and the refrigerant is circulated in the refrigerant circuit (11) to perform a vapor compression refrigeration cycle. In the refrigerant circuit (11), the refrigerant discharged from the compressor (12) passes through the condenser (13), the expansion valve (14) and the evaporator (15) in this order, and then to the compressor (12) It is inhaled and compressed.
 また、冷却運転では、庫外ファン(16)と庫内ファン(17)とが作動する。庫外ファン(16)が作動すると、輸送用コンテナ(1)の外部の庫外空気が庫外機器室(28)へ吸い込まれて凝縮器(13)を通過する。凝縮器(13)では、冷媒が庫外空気へ放熱して凝縮する。庫内ファン(17)が作動すると、輸送用コンテナ(1)の荷室(5)内の庫内空気が庫内空気流路(29)へ吸い込まれて蒸発器(15)を通過する。蒸発器(15)では、冷媒が庫外空気から吸熱して蒸発する。 Further, in the cooling operation, the external fan (16) and the internal fan (17) operate. When the external fan (16) is activated, external air outside the transport container (1) is sucked into the external equipment chamber (28) and passes through the condenser (13). In the condenser (13), the refrigerant releases heat to air outside the storage and condenses. When the internal fan (17) is activated, internal air in the cargo compartment (5) of the transport container (1) is sucked into the internal air flow path (29) and passes through the evaporator (15). In the evaporator (15), the refrigerant absorbs heat from outside air and evaporates.
 庫内空気の流れについて説明する。荷室(5)に存在する庫内空気は、吸込口(26)を通って庫内空気流路(29)の一次流路(29a)へ流入し、庫内ファン(17)によって二次流路(29b)へ吹き出される。二次流路(29b)へ流入した庫内空気は、蒸発器(15)を通過する際に冷却され、その後に吹出口(27)から床下流路(4)へ吹き出され、床下流路(4)を通って荷室(5)へ流入する。 The flow of air in the storage will be described. The internal air present in the cargo compartment (5) flows into the primary flow path (29a) of the internal air flow path (29) through the suction port (26), and the secondary flow is performed by the internal fan (17) It is blown out to the road (29b). The inside air flowing into the secondary flow passage (29b) is cooled when passing through the evaporator (15), and then blown out from the blowout port (27) to the underfloor flow passage (4). 4) Flow into the cargo room (5).
 庫内空気流路(29)において、一次流路(29a)は庫内ファン(17)の吸い込み側に位置し、二次流路(29b)は庫内ファン(17)の吹き出し側に位置する。このため、庫内ファン(17)の作動中は、二次流路(29b)の気圧が一次流路(29a)の気圧よりも若干高くなる。 In the internal air flow path (29), the primary flow path (29a) is located on the suction side of the internal fan (17), and the secondary flow path (29b) is located on the blowout side of the internal fan (17) . Therefore, during operation of the internal fan (17), the air pressure in the secondary flow passage (29b) is slightly higher than the air pressure in the primary flow passage (29a).
  -庫内空気調節装置-
 図1に示すように、庫内空気調節装置(30)は、本体ユニット(31)と、センサユニット(90)と、換気用排気管(100)と、制御器(110)とを備えている。本体ユニット(31)は、冷凍機(10)の庫外機器室(28)に設置される。センサユニット(90)は、輸送用コンテナ(1)の庫内空気流路(29)に設置される。換気用排気管(100)は、輸送用コンテナ(1)の庫内空気流路(29)と庫外機器室(28)に亘って設置される。制御器(110)は、本体ユニット(31)に設けられて、庫内空気調節装置(30)の構成機器を制御する。センサユニット(90)、換気用排気管(100)、及び制御器(110)の詳細は、後述する。
-Inside air conditioner-
As shown in FIG. 1, the in-compartment air conditioner (30) comprises a main body unit (31), a sensor unit (90), a ventilating exhaust pipe (100), and a controller (110). . The main body unit (31) is installed in the external equipment room (28) of the refrigerator (10). The sensor unit (90) is installed in the in-compartment air flow path (29) of the transport container (1). The ventilation exhaust pipe (100) is installed across the in-compartment air flow path (29) of the transport container (1) and the out-of-compartment equipment room (28). The controller (110) is provided in the main body unit (31) to control constituent devices of the in-compartment air conditioner (30). Details of the sensor unit (90), the ventilation exhaust pipe (100), and the controller (110) will be described later.
 図3に示すように、庫内空気調節装置(30)の本体ユニット(31)は、第1組成調節部(40)と、第2組成調節部(60)と、ポンプユニット(35)と、ユニットケース(32)とを備えている。ユニットケース(32)は、箱状の密閉容器である。第1組成調節部(40)と、第2組成調節部(60)と、ポンプユニット(35)とは、このユニットケース(32)の内部空間に配置される。第1組成調節部(40)、第2組成調節部(60)、及びポンプユニット(35)の詳細は、後述する。 As shown in FIG. 3, the main body unit (31) of the in-compartment air conditioning device (30) includes a first composition regulation unit (40), a second composition regulation unit (60), and a pump unit (35). A unit case (32) is provided. The unit case (32) is a box-like closed container. The first composition adjusting unit (40), the second composition adjusting unit (60), and the pump unit (35) are disposed in the internal space of the unit case (32). The details of the first composition adjusting unit (40), the second composition adjusting unit (60), and the pump unit (35) will be described later.
 また、庫内空気調節装置(30)は、供給管(120)と、庫内側吸入管(75)と、測定用配管(125)とを備えている。供給管(120)、庫内側吸入管(75)、及び測定用配管(125)は、本体ユニット(31)を冷凍機(10)の庫内空気流路(29)に接続するための配管である。 In addition, the in-compartment air conditioning device (30) includes a supply pipe (120), an in-compartment suction pipe (75), and a measurement pipe (125). The supply pipe (120), the storage inner suction pipe (75), and the measurement pipe (125) are pipes for connecting the main body unit (31) to the internal air flow path (29) of the refrigerator (10). is there.
 供給管(120)は、第1組成調節部(40)及び第2組成調節部(60)から流出した空気を荷室(5)へ供給するための配管である。供給管(120)は、入口端が第1組成調節部(40)及び第2組成調節部(60)に接続され、出口端が庫内空気流路(29)の二次流路(29b)に開口する。 The supply pipe (120) is a pipe for supplying the air flowing out of the first composition control unit (40) and the second composition control unit (60) to the loading space (5). The inlet end of the supply pipe (120) is connected to the first composition adjusting unit (40) and the second composition adjusting unit (60), and the outlet end is the secondary flow passage (29b) of the internal air flow passage (29) Open to
 庫内側吸入管(75)は、荷室(5)内の庫内空気を第2組成調節部(60)へ供給するための配管である。庫内側吸入管(75)は、入口端が庫内空気流路(29)の二次流路(29b)に開口し、出口端が後述する第2組成調節部(60)の第2ポンプ(37)に接続される。なお、庫内空気流路(29)の二次流路(29b)において、庫内側吸入管(75)の入口端は、供給管(120)の出口端の上流側に配置される。 The storage inner suction pipe (75) is a pipe for supplying the storage internal air in the loading space (5) to the second composition adjustment section (60). The inlet end of the storage inner suction pipe (75) opens to the secondary flow passage (29b) of the storage inner air flow passage (29), and the outlet end of the second pump of the second composition adjustment unit (60) 37) connected. In the secondary flow passage (29b) of the in-compartment air flow passage (29), the inlet end of the storage inner suction pipe (75) is disposed upstream of the outlet end of the supply pipe (120).
 測定用配管(125)は、供給管(120)を流れる空気をセンサユニット(90)へ供給するための配管である。測定用配管(125)は、入口端が供給管(120)に接続され、出口端がセンサユニット(90)に接続される。また、測定用配管(125)には、電磁弁からなる測定用開閉弁(126)が設けられる。この測定用開閉弁(126)は、本体ユニット(31)のユニットケース(32)に収容される。 The measurement pipe (125) is a pipe for supplying the air flowing through the supply pipe (120) to the sensor unit (90). The measurement pipe (125) has an inlet end connected to the supply pipe (120) and an outlet end connected to the sensor unit (90). Further, the measurement pipe (125) is provided with a measurement on-off valve (126) consisting of a solenoid valve. The measurement on-off valve (126) is housed in a unit case (32) of the main unit (31).
   〈ポンプユニット〉
 図3に示すように、ポンプユニット(35)は、第1ポンプ(36)と、第2ポンプ(37)と、駆動モータ(38)とを備えている。
<Pumping unit>
As shown in FIG. 3, the pump unit (35) includes a first pump (36), a second pump (37), and a drive motor (38).
 第1ポンプ(36)と第2ポンプ(37)のそれぞれは、吸い込んだ空気を吐出する空気ポンプである。第1ポンプ(36)と第2ポンプ(37)のそれぞれは、例えば容積型の流体機械によって構成される。第1ポンプ(36)と第2ポンプ(37)は、一体化されている。駆動モータ(38)は、第1ポンプ(36)及び第2ポンプ(37)に連結された電動機である。駆動モータ(38)は、第1ポンプ(36)と第2ポンプ(37)の両方を駆動する。 Each of the first pump (36) and the second pump (37) is an air pump for discharging the sucked air. Each of the first pump (36) and the second pump (37) is constituted by, for example, a positive displacement fluid machine. The first pump (36) and the second pump (37) are integrated. The drive motor (38) is a motor connected to the first pump (36) and the second pump (37). The drive motor (38) drives both the first pump (36) and the second pump (37).
   〈第1組成調節部〉
 第1組成調節部(40)は、輸送用コンテナ(1)の外部から吸い込んだ庫外空気(未処理庫外空気)を第1庫外空気と第2庫外空気に分離するように構成される。本実施形態の第1組成調節部(40)は、供給用空気である第1庫外空気を荷室(5)へ供給し、第2庫外空気を輸送用コンテナ(1)の外部へ排出する。
<First composition adjustment unit>
The first composition adjusting unit (40) is configured to separate the outside air (air outside the unprocessed room) sucked from the outside of the transport container (1) into the first outside air and the second outside air. Ru. The first composition adjustment unit (40) of the present embodiment supplies the first outside air, which is supply air, to the loading space (5) and discharges the second outside air to the outside of the transportation container (1). Do.
 第1組成調節部(40)は、エアフィルタ(47)と、第1分離モジュール(41)と、第1バイパス弁(50)と、第1圧力センサ(45)と第1調節弁(46)とを備えている。また、第1組成調節部(40)は、庫外側吸入管(55)と、第1導入管(52)と、第1一次側管(53)と、第1二次側管(54)と、第1バイパス管(51)とを備えている。また、ポンプユニット(35)の第1ポンプ(36)は、この第1組成調節部(40)を構成する。 The first composition control unit (40) includes an air filter (47), a first separation module (41), a first bypass valve (50), a first pressure sensor (45) and a first control valve (46). And have. In addition, the first composition adjusting unit (40) includes a storage outside suction pipe (55), a first introduction pipe (52), a first primary side pipe (53), and a first secondary side pipe (54). , And a first bypass pipe (51). In addition, the first pump (36) of the pump unit (35) constitutes this first composition adjustment section (40).
 エアフィルタ(47)は、庫外空気に含まれる塵埃や塩分などを捕捉するためのメンブレンフィルタである。エアフィルタ(47)は、本体ユニット(31)のユニットケース(32)に取り付けられる。エアフィルタ(47)は、庫外側吸入管(55)を介して第1ポンプ(36)の吸入口に接続する。 The air filter (47) is a membrane filter for capturing dust, salt and the like contained in the outside air. The air filter (47) is attached to the unit case (32) of the main unit (31). The air filter (47) is connected to the suction port of the first pump (36) via the outer storage suction pipe (55).
 第1分離モジュール(41)は、第1導入口(42)と、第1一次側導出口(43)と、第1二次側導出口(44)とを備える。第1導入口(42)は、第1導入管(52)を介して第1ポンプ(36)の吐出口に接続する。第1一次側導出口(43)は、第1一次側管(53)を介して供給管(120)に接続する。第1二次側導出口(44)には、第1二次側管(54)の一端が接続する。第1二次側管(54)は、ユニットケース(32)の外部へ延びている。第1二次側管(54)の他端は、庫外機器室(28)における庫外ファン(16)の吸込側に開口する。 The first separation module (41) includes a first inlet (42), a first primary outlet (43), and a first secondary outlet (44). The first inlet (42) is connected to the outlet of the first pump (36) through the first inlet pipe (52). The first primary outlet (43) is connected to the supply pipe (120) via the first primary pipe (53). One end of a first secondary side pipe (54) is connected to the first secondary side outlet (44). The first secondary pipe (54) extends to the outside of the unit case (32). The other end of the first secondary side pipe (54) opens to the suction side of the external fan (16) in the external equipment chamber (28).
 第1バイパス弁(50)は、三つのポートを有する切換弁であって、第1バイパス弁機構を構成する。第1バイパス弁(50)は、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態(図3に実線で示す状態)と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態(図3に破線で示す状態)とに切り換わるように構成される。 The first bypass valve (50) is a switching valve having three ports, and constitutes a first bypass valve mechanism. The first bypass valve (50) has a first state (shown by a solid line in FIG. 3) in which the first port is in communication with the second port and shut off from the third port; It is configured to be in communication with the third port and to switch to a second state (state shown by a broken line in FIG. 3) which is disconnected from the second port.
 第1バイパス弁(50)は、第1導入管(52)の途中に配置される。第1バイパス弁(50)は、第1のポートが第1ポンプ(36)の吐出口に接続し、第2のポートが第1分離モジュール(41)の第1導入口(42)に接続する。第1バイパス弁(50)の第3のポートには、第1バイパス管(51)の入口端が接続する。第1バイパス管(51)の出口端は、第1一次側管(53)に接続する。第1バイパス管(51)は、第1バイパス通路を構成する。 The first bypass valve (50) is disposed in the middle of the first introduction pipe (52). The first bypass valve (50) has a first port connected to the discharge port of the first pump (36), and a second port connected to the first inlet (42) of the first separation module (41) . The inlet end of the first bypass pipe (51) is connected to the third port of the first bypass valve (50). The outlet end of the first bypass pipe (51) is connected to the first primary pipe (53). The first bypass pipe (51) constitutes a first bypass passage.
 第1圧力センサ(45)と第1調節弁(46)とは、第1一次側管(53)に設けられる。第1圧力センサ(45)と第1調節弁(46)とは、第1一次側管(53)に接続する第1バイパス管(51)の他端よりも第1分離モジュール(41)寄りに配置される。また、第1圧力センサ(45)は、第1調節弁(46)よりも第1分離モジュール(41)寄りに配置される。 The first pressure sensor (45) and the first control valve (46) are provided in the first primary pipe (53). The first pressure sensor (45) and the first control valve (46) are closer to the first separation module (41) than the other end of the first bypass pipe (51) connected to the first primary pipe (53). Be placed. Further, the first pressure sensor (45) is disposed closer to the first separation module (41) than the first control valve (46).
 第1圧力センサ(45)は、第1分離モジュール(41)の第1一次側導出口(43)から流出した第1庫外空気の圧力を計測する。第1圧力センサ(45)の計測値は、第1ポンプ(36)が第1分離モジュール(41)へ供給する未処理庫外空気の圧力と実質的に等しい。 The first pressure sensor (45) measures the pressure of the first outside air flowing out of the first primary outlet (43) of the first separation module (41). The measurement value of the first pressure sensor (45) is substantially equal to the pressure of the outside air outside the storage, which the first pump (36) supplies to the first separation module (41).
 第1調節弁(46)は、開度可変の電動弁であって、第1弁機構を構成する。第1調節弁(46)の開度を変更すると、第1ポンプ(36)が第1分離モジュール(41)へ供給する未処理庫外空気の圧力が変化する。 The first control valve (46) is a motor-operated valve whose opening degree is variable, and constitutes a first valve mechanism. When the opening degree of the first control valve (46) is changed, the pressure of the air outside the unprocessed storage which the first pump (36) supplies to the first separation module (41) changes.
 第1分離モジュール(41)は、第1分離部を構成する。詳しくは後述するが、第1分離モジュール(41)は、ガス分離膜を備えている。そして、第1分離モジュール(41)は、未処理庫外空気を、ガス分離膜を透過しなかった第1庫外空気と、ガス分離膜を透過した第2庫外空気に分離する。 The first separation module (41) constitutes a first separation unit. Although the details will be described later, the first separation module (41) includes a gas separation membrane. Then, the first separation module (41) separates the untreated outside air into the first outside air that has not passed through the gas separation membrane and the second outside air that has passed through the gas separation membrane.
 第1庫外空気は、窒素濃度が未処理庫外空気よりも高く、酸素濃度が未処理庫外空気よりも低い。第2庫外空気は、窒素濃度が未処理庫外空気よりも低く、酸素濃度が未処理庫外空気よりも高い。このように、第1庫外空気と第2庫外空気は、それぞれを構成する物質の濃度が互いに異なる。なお、本明細書における濃度は、体積割合を意味する。 The first outside air has a nitrogen concentration higher than that of the untreated outside air, and an oxygen concentration lower than that of the untreated outside air. The second outside air has a nitrogen concentration lower than that of the untreated outside air, and an oxygen concentration higher than that of the untreated outside air. Thus, the concentrations of the substances constituting the first external air and the second external air are different from each other. The concentration in the present specification means a volume ratio.
   〈第2組成調節部〉
 第2組成調節部(60)は、輸送用コンテナ(1)の内部空間から吸い込んだ庫内空気(未処理庫内空気)を第1庫内空気と第2庫内空気に分離するように構成される。本実施形態の第2組成調節部(60)は、第1庫内空気を荷室(5)へ供給し、排出用空気である第2庫内空気を輸送用コンテナ(1)の外部へ排出する。
<2nd composition adjustment part>
The second composition adjustment unit (60) is configured to separate the in-compartment air (untreated in-compartment air) sucked from the internal space of the transport container (1) into the first in-compartment air and the second in-compartment air. Be done. The second composition adjustment unit (60) of the present embodiment supplies the first in-storage air to the loading space (5), and discharges the second in-storage air, which is discharge air, to the outside of the transport container (1). Do.
 第2組成調節部(60)は、第2分離モジュール(61)と、第2バイパス弁(70)と、第2圧力センサ(65)と第2調節弁(66)とを備えている。また、第2組成調節部(60)は、第2導入管(72)と、第2一次側管(73)と、第2二次側管(74)と、第2バイパス管(71)とを備えている。また、ポンプユニット(35)の第2ポンプ(37)は、この第2組成調節部(60)を構成する。 The second composition adjustment unit (60) includes a second separation module (61), a second bypass valve (70), a second pressure sensor (65), and a second adjustment valve (66). In addition, the second composition adjusting unit (60) includes a second introduction pipe (72), a second primary side pipe (73), a second secondary side pipe (74), and a second bypass pipe (71). Is equipped. In addition, the second pump (37) of the pump unit (35) constitutes this second composition adjustment unit (60).
 第2分離モジュール(61)は、第2導入口(62)と、第2一次側導出口(63)と、第2二次側導出口(64)とを備える。第2導入口(62)は、第2導入管(72)を介して第2ポンプ(37)の吐出口に接続する。第2一次側導出口(63)は、第2一次側管(73)を介して供給管(120)に接続する。第2二次側導出口(64)には、第2二次側管(74)の一端が接続する。第2二次側管(74)は、ユニットケース(32)の外部へ延びている。第2二次側管(74)の他端は、庫外機器室(28)における庫外ファン(16)の吸込側に開口する。また、第2ポンプ(37)の吸入口には、庫内側吸入管(75)が接続する。 The second separation module (61) includes a second inlet (62), a second primary outlet (63), and a second secondary outlet (64). The second inlet (62) is connected to the outlet of the second pump (37) via the second inlet pipe (72). The second primary outlet (63) is connected to the supply pipe (120) via the second primary pipe (73). One end of a second secondary pipe (74) is connected to the second secondary outlet (64). The second secondary pipe (74) extends to the outside of the unit case (32). The other end of the second secondary side pipe (74) opens on the suction side of the external fan (16) in the external equipment chamber (28). In addition, an inner suction pipe (75) is connected to the suction port of the second pump (37).
 第2バイパス弁(70)は、三つのポートを有する切換弁であって、第2バイパス弁機構を構成する。第2バイパス弁(70)は、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態(図3に実線で示す状態)と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態(図3に破線で示す状態)とに切り換わるように構成される。 The second bypass valve (70) is a switching valve having three ports, and constitutes a second bypass valve mechanism. The second bypass valve (70) has a first state (shown by a solid line in FIG. 3) in which the first port is in communication with the second port and is shut off from the third port; It is configured to be in communication with the third port and to switch to a second state (state shown by a broken line in FIG. 3) which is disconnected from the second port.
 第2バイパス弁(70)は、第2導入管(72)の途中に配置される。第2バイパス弁(70)は、第1のポートが第2ポンプ(37)の吐出口に接続し、第2のポートが第2分離モジュール(61)の第2導入口(62)に接続する。第2バイパス弁(70)の第3のポートには、第2バイパス管(71)の入口端が接続する。第2バイパス管(71)の出口端は、第2一次側管(73)に接続する。第2バイパス管(71)は、第2バイパス通路を構成する。 The second bypass valve (70) is disposed in the middle of the second introduction pipe (72). In the second bypass valve (70), the first port is connected to the discharge port of the second pump (37), and the second port is connected to the second inlet (62) of the second separation module (61) . The inlet end of the second bypass pipe (71) is connected to the third port of the second bypass valve (70). The outlet end of the second bypass pipe (71) is connected to the second primary pipe (73). The second bypass pipe (71) constitutes a second bypass passage.
 第2圧力センサ(65)と第2調節弁(66)とは、第2一次側管(73)に設けられる。第2圧力センサ(65)と第2調節弁(66)とは、第2一次側管(73)に接続する第2バイパス管(71)の他端よりも第2分離モジュール(61)寄りに配置される。また、第2圧力センサ(65)は、第2調節弁(66)よりも第2分離モジュール(61)寄りに配置される。 The second pressure sensor (65) and the second control valve (66) are provided in the second primary pipe (73). The second pressure sensor (65) and the second control valve (66) are closer to the second separation module (61) than the other end of the second bypass pipe (71) connected to the second primary pipe (73). Be placed. In addition, the second pressure sensor (65) is disposed closer to the second separation module (61) than the second control valve (66).
 第2圧力センサ(65)は、第2分離モジュール(61)の第2一次側導出口(63)から流出した第2庫外空気の圧力を計測する。第2圧力センサ(65)の計測値は、第2ポンプ(37)が第2分離モジュール(61)へ供給する未処理庫内空気の圧力と実質的に等しい。 The second pressure sensor (65) measures the pressure of the second outside air flowing out of the second primary outlet (63) of the second separation module (61). The measurement value of the second pressure sensor (65) is substantially equal to the pressure of the air in the non-processed storage that the second pump (37) supplies to the second separation module (61).
 第2調節弁(66)は、開度可変の電動弁であって、第2弁機構を構成する。第2調節弁(66)の開度を変更すると、第2ポンプ(37)が第2分離モジュール(61)へ供給する未処理庫内空気の圧力が変化する。 The second control valve (66) is a motor-operated valve whose opening degree is variable, and constitutes a second valve mechanism. When the degree of opening of the second control valve (66) is changed, the pressure of the air in the non-processed housing supplied to the second separation module (61) by the second pump (37) changes.
 第2分離モジュール(61)は、第2分離部を構成する。詳しくは後述するが、第2分離モジュール(61)は、ガス分離膜を備えている。そして、第2分離モジュール(61)は、未処理庫内空気を、ガス分離膜を透過しなかった第1庫内空気と、ガス分離膜を透過した第2庫内空気に分離する。 The second separation module (61) constitutes a second separation unit. Although the details will be described later, the second separation module (61) includes a gas separation membrane. Then, the second separation module (61) separates the air in the non-treated storage into the first air in the storage that has not permeated the gas separation membrane and the second air in the storage that has permeated the gas separation membrane.
 第1庫内空気は、窒素濃度が未処理庫内空気よりも高く、酸素濃度および二酸化炭素濃度が未処理庫内空気よりも低い。第2庫内空気は、窒素濃度が未処理庫内空気よりも低く、酸素濃度および二酸化炭素濃度が未処理庫内空気よりも高い。このように、第1庫内空気と第2庫内空気は、それぞれを構成する物質の濃度が互いに異なる。 The first interior air has a nitrogen concentration higher than that of the untreated interior air, and an oxygen concentration and a carbon dioxide concentration lower than that of the untreated interior air. The second internal air has a nitrogen concentration lower than that of the untreated internal air, and an oxygen concentration and a carbon dioxide concentration higher than that of the untreated internal air. Thus, the concentrations of the materials constituting the first internal air and the second internal air differ from each other.
   〈分離モジュール〉
 第1分離モジュール(41)及び第2分離モジュール(61)の構造について説明する。第1分離モジュール(41)と第2分離モジュール(61)の構造は、互いに同じである。
Separation module
The structures of the first separation module (41) and the second separation module (61) will be described. The structures of the first separation module 41 and the second separation module 61 are identical to each other.
 各分離モジュール(41,61)は、両端が閉塞された細長い円筒状に形成される。各分離モジュール(41,61)は、一端部に導入口(42,62)が配置され、他端部に一次側導出口(43,63)が配置され、側部に二次側導出口(44,64)が配置される。 Each separation module (41, 61) is formed in an elongated cylindrical shape closed at both ends. Each separation module (41, 61) has an inlet (42, 62) at one end, a primary outlet (43, 63) at the other end, and a secondary outlet (side) at the side. 44, 64) are arranged.
 図示しないが、各分離モジュール(41,61)の内部には、多数の中空糸状のガス分離膜が収容される。各分離モジュール(41,61)において、導入口(42,62)は中空糸状のガス分離膜の入口端に連通し、一次側導出口(43,63)は中空糸状のガス分離膜の出口端に連通し、二次側導出口(44,64)は分離モジュール(41,61)の内部空間のうち中空糸状のガス分離膜の外側の部分に連通する。 Although not shown, a large number of hollow fiber-shaped gas separation membranes are accommodated inside each separation module (41, 61). In each separation module (41, 61), the inlet (42, 62) communicates with the inlet end of the hollow fiber-shaped gas separation membrane, and the primary side outlet (43, 63) is the outlet end of the hollow fiber-shaped gas separation membrane The secondary side outlet (44, 64) communicates with a portion of the internal space of the separation module (41, 61) outside the hollow fiber-like gas separation membrane.
 ガス分離膜は、高分子からなる非多孔膜である。各分離モジュール(41,61)のガス分離膜は、窒素の透過率が酸素の透過率と二酸化炭素の透過率の両方よりも低いという特性を有している。このため、各分離モジュール(41,61)において、ガス分離膜を透過せずに一次側導出口(43,63)に至った空気は、導入口(42,62)から流入した空気に比べて、窒素濃度が高く、酸素濃度と二酸化炭素濃度が低い。また、各分離モジュール(41,61)において、ガス分離膜を透過して二次側導出口(44,64)に至った空気は、導入口(42,62)から流入した空気に比べて、窒素濃度が低く、酸素濃度と二酸化炭素濃度が高い。 The gas separation membrane is a non-porous membrane made of a polymer. The gas separation membrane of each separation module (41, 61) has a characteristic that the permeability of nitrogen is lower than both of the permeability of oxygen and the permeability of carbon dioxide. For this reason, in each separation module (41, 61), the air that has not permeated the gas separation membrane and reached the primary outlet (43, 63) is compared to the air that has flowed in from the inlet (42, 62) , High nitrogen concentration, low oxygen concentration and carbon dioxide concentration. Further, in each separation module (41, 61), the air which permeates the gas separation membrane and reaches the secondary side outlet (44, 64) is compared with the air flowing in from the inlet (42, 62), Low nitrogen concentration, high oxygen concentration and carbon dioxide concentration.
   〈センサユニット〉
 図1及び図3に示すように、センサユニット(90)は、コンテナ用冷凍機(10)の庫内空気流路(29)の二次流路(29b)に配置される。図3に示すように、センサユニット(90)は、酸素センサ(91)と、二酸化炭素センサ(92)と、センサケース(93)とを備えている。
<Sensor unit>
As shown in FIGS. 1 and 3, the sensor unit (90) is disposed in the secondary flow passage (29b) of the in-compartment air flow passage (29) of the container refrigerator (10). As shown in FIG. 3, the sensor unit (90) includes an oxygen sensor (91), a carbon dioxide sensor (92), and a sensor case (93).
 酸素センサ(91)は、空気等の混合気体の酸素濃度を計測するジルコニア電流方式のセンサである。二酸化炭素センサ(92)は、空気等の混合気体の二酸化炭素濃度を計測する非分散型赤外線吸収(NDIR:non dispersive infrared)方式のセンサである。酸素センサ(91)及び二酸化炭素センサ(92)は、センサケース(93)に収容される。 The oxygen sensor (91) is a zirconia current sensor that measures the oxygen concentration of a mixed gas such as air. The carbon dioxide sensor (92) is a non dispersive infrared (NDIR: non dispersive infrared) type sensor that measures the carbon dioxide concentration of a mixed gas such as air. The oxygen sensor (91) and the carbon dioxide sensor (92) are housed in a sensor case (93).
 センサケース(93)は、やや細長い箱状の部材である。センサケース(93)は、長手方向の一方の端部に測定用配管(125)の出口端が接続され、他方の端部に出口管(95)の一端が接続される。出口管(95)の他端は、庫内空気流路(29)の一次流路(29a)に開口する。また、センサケース(93)には、庫内空気流路(29)を流れる庫内空気をセンサケース(93)の内部空間へ導入するためのエアフィルタ(94)が取り付けられる。エアフィルタ(94)は、庫内空気に含まれる塵埃などを捕捉するためのメンブレンフィルタである。 The sensor case (93) is a slightly elongated box-like member. In the sensor case (93), the outlet end of the measurement pipe (125) is connected to one end in the longitudinal direction, and one end of the outlet pipe (95) is connected to the other end. The other end of the outlet pipe (95) opens into the primary flow passage (29a) of the internal air flow passage (29). In addition, an air filter (94) is attached to the sensor case (93) for introducing the internal air flowing through the internal air flow path (29) into the internal space of the sensor case (93). The air filter (94) is a membrane filter for capturing dust and the like contained in the air in the refrigerator.
 後述するように、庫内ファン(17)の作動中は、二次流路(29b)の気圧が一次流路(29a)の気圧よりも若干高くなる。このため、測定用開閉弁(126)が閉じた状態では、二次流路(29b)の庫内空気がエアフィルタ(94)を通ってセンサケース(93)へ流入し、その後に出口管(95)を通って一次流路(29a)へ流入する。この状態で、センサユニット(90)は、酸素センサ(91)が庫内空気の酸素濃度を計測し、二酸化炭素センサ(92)が庫内空気の二酸化炭素濃度を計測する。 As described later, during operation of the internal fan (17), the air pressure in the secondary flow passage (29b) is slightly higher than the air pressure in the primary flow passage (29a). For this reason, when the measurement on-off valve (126) is closed, the internal air of the secondary flow passage (29b) flows into the sensor case (93) through the air filter (94) and then the outlet pipe ( 95) through the primary channel (29a). In this state, in the sensor unit (90), the oxygen sensor (91) measures the oxygen concentration of the air inside the storage, and the carbon dioxide sensor (92) measures the carbon dioxide concentration of the air inside the storage.
   〈換気用排気管〉
 換気用排気管(100)は、輸送用コンテナ(1)の内部と外部を繋ぐための配管である。この換気用排気管(100)は、換気用排気通路を構成する。図1に示すように、換気用排気管(100)は、冷凍機(10)のケーシング(20)を貫通する。換気用排気管(100)の一端は、庫内空気流路(29)の二次流路(29b)に開口する。換気用排気管(100)の他端は、庫外機器室(28)における庫外ファン(16)の吸入側に開口する。
<Ventilation exhaust pipe>
The ventilation exhaust pipe (100) is a pipe for connecting the inside and the outside of the transportation container (1). The ventilation exhaust pipe (100) constitutes a ventilation exhaust passage. As shown in FIG. 1, the ventilation exhaust pipe (100) penetrates the casing (20) of the refrigerator (10). One end of the ventilation exhaust pipe (100) opens to the secondary flow passage (29b) of the internal air flow passage (29). The other end of the ventilation exhaust pipe (100) opens to the suction side of the external fan (16) in the external equipment chamber (28).
 図3に示すように、換気用排気管(100)の一端には、エアフィルタ(102)が取り付けられる。エアフィルタ(102)は、庫内空気に含まれる塵埃などを捕捉するためのメンブレンフィルタである。また、換気用排気管(100)には、換気用排気弁(101)が設けられる。換気用排気弁(101)は、電磁弁からなる開閉弁である。 As shown in FIG. 3, an air filter (102) is attached to one end of the ventilation exhaust pipe (100). The air filter (102) is a membrane filter for capturing dust and the like contained in the air in the refrigerator. The ventilation exhaust pipe (100) is provided with a ventilation exhaust valve (101). The ventilation exhaust valve (101) is an on-off valve composed of a solenoid valve.
 換気用排気管(100)には、第3圧力センサ(103)が設けられる。第3圧力センサ(103)は、エアフィルタ(102)と換気用排気弁(101)の間に配置され、換気用排気管(100)内の気圧を計測する。換気用排気管(100)内の気圧は、冷凍機(10)の二次流路(29b)の気圧と実質的に等しい。また、庫内ファン(17)の停止中において、二次流路(29b)の気圧は、荷室(5)内の気圧と実質的に等しい。このため、庫内ファン(17)の停止中には、第3圧力センサ(103)の計測値が荷室(5)内の気圧と実質的に一致する。 The ventilation exhaust pipe (100) is provided with a third pressure sensor (103). The third pressure sensor (103) is disposed between the air filter (102) and the ventilation exhaust valve (101), and measures the pressure in the ventilation exhaust pipe (100). The air pressure in the ventilation exhaust pipe (100) is substantially equal to the air pressure in the secondary flow passage (29b) of the refrigerator (10). In addition, while the internal fan (17) is stopped, the air pressure in the secondary flow passage (29b) is substantially equal to the air pressure in the loading space (5). For this reason, while the internal fan (17) is stopped, the measurement value of the third pressure sensor (103) substantially matches the air pressure in the loading space (5).
   〈制御器〉
 図3に示すように、制御器(110)は、制御動作を行うCPU(111)と、制御動作に必要なデータ等を記憶するメモリ(112)とを備える。制御器(110)には、酸素センサ(91)、二酸化炭素センサ(92)、第1圧力センサ(45)、及び第2圧力センサ(65)の計測値が入力される。制御器(110)は、ポンプユニット(35)、第1調節弁(46)、第2調節弁(66)、第1バイパス弁(50)、第2バイパス弁(70)、及び換気用排気弁(101)を操作するための制御動作を行う。
Controller
As shown in FIG. 3, the controller (110) includes a CPU (111) that performs a control operation, and a memory (112) that stores data and the like necessary for the control operation. Measurement values of the oxygen sensor (91), the carbon dioxide sensor (92), the first pressure sensor (45), and the second pressure sensor (65) are input to the controller (110). The controller (110) includes a pump unit (35), a first control valve (46), a second control valve (66), a first bypass valve (50), a second bypass valve (70), and an exhaust valve for ventilation. A control operation for operating (101) is performed.
 また、図5に示すように、制御器(110)は、庫内環境制御部(115)と、気密性評価部(116)とを備えている。庫内環境制御部(115)は、荷室(5)内の庫内空気の組成が目標組成となるように(具体的には、庫内空気の酸素濃度と二酸化炭素濃度がそれぞれの目標範囲となるように)、庫内空気調節装置(30)の構成機器を制御するように構成されている。気密性評価部(116)については、後述する。 Further, as shown in FIG. 5, the controller (110) includes an in-compartment environment control unit (115) and an airtightness evaluation unit (116). The internal environment control unit (115) makes the composition of the air inside the cargo room (5) the target composition (specifically, the oxygen concentration and the carbon dioxide concentration of the air inside the To control the components of the in-compartment air conditioner (30). The airtightness evaluation unit (116) will be described later.
  -庫内空気調節装置の運転動作-
 庫内空気調節装置(30)は、輸送用コンテナ(1)の荷室(5)内の庫内空気の組成(本実施形態では、庫内空気の酸素濃度と二酸化炭素濃度)を調節するための運転を行う。ここでは、本実施形態の庫内空気調節装置(30)の運転動作について、庫内空気の酸素濃度の目標範囲が5%±1%であり、庫内空気の二酸化炭素濃度の目標範囲が2%±1%である場合を例に説明する。
-Operation of the air conditioning system in the storage room-
The in-compartment air conditioning device (30) is for adjusting the composition of the in-compartment air (in the present embodiment, the oxygen concentration and the carbon dioxide concentration of the in-compartment air) in the cargo compartment (5) of the transport container (1). Do the driving. Here, the target range of the oxygen concentration of the air in the refrigerator is 5% ± 1% and the target range of the carbon dioxide concentration of the air in the refrigerator is 2 for the operation of the air conditioner (30) of this embodiment. The case of% ± 1% will be described as an example.
   〈庫内空気調節装置の運転動作の概要〉
 本実施形態の庫内空気調節装置(30)は、荷室(5)内の庫内空気の酸素濃度を低下させるための酸素濃度低減動作と、荷室(5)内の庫内空気の二酸化炭素濃度を低下させるための二酸化炭素濃度低減動作と、荷室(5)内の庫内空気の酸素濃度を上昇させるための酸素濃度増加動作とを行う。
<Outline of the operation of the air conditioning system in the cold storage>
The in-compartment air conditioning device (30) of the present embodiment includes an oxygen concentration reducing operation for reducing the oxygen concentration of the in-compartment air in the loading compartment (5), and the oxidation of the in-compartment air in the loading compartment (5). The carbon dioxide concentration reducing operation for reducing the carbon concentration and the oxygen concentration increasing operation for increasing the oxygen concentration of the air in the storage compartment (5) are performed.
 輸送用コンテナ(1)への貨物(6)の積み込みが完了した時点において、荷室(5)内に存在する庫内空気の組成は、大気の組成(窒素濃度:78%、酸素濃度:21%、二酸化炭素濃度:0.04%)と実質的に同じである。そこで、庫内空気調節装置(30)は、庫内空気の酸素濃度を低下させるための酸素濃度低減動作を行う。庫内空気の酸素濃度が目標範囲の上限値(6%)に達すると、庫内空気調節装置(30)は、酸素濃度低減動作を停止する。 When the loading of the cargo (6) into the transportation container (1) is completed, the composition of the air inside the cargo compartment (5) is the composition of the atmosphere (nitrogen concentration: 78%, oxygen concentration: 21) %, Substantially the same as the carbon dioxide concentration: 0.04%). Therefore, the in-compartment air conditioning device (30) performs an oxygen concentration reduction operation for reducing the oxygen concentration of the in-compartment air. When the oxygen concentration of the in-compartment air reaches the upper limit value (6%) of the target range, the in-compartment air conditioner (30) stops the oxygen concentration reduction operation.
 庫内空気の酸素濃度が6%に達して庫内空気調節装置(30)の酸素濃度停止動作が停止した後は、貨物(6)である植物が呼吸することによって、庫内空気の酸素濃度が次第に低下してゆくと同時に、庫内空気の二酸化炭素濃度が次第に上昇する。 After the oxygen concentration of the storage air reaches 6% and the oxygen concentration stopping operation of the storage air conditioning device (30) is stopped, the plant which is the cargo (6) breathes, the oxygen concentration of the storage air The carbon dioxide concentration of the air in the storage increases gradually as
 庫内空気の二酸化炭素濃度が目標範囲の上限値(3%)に達すると、庫内空気調節装置(30)は、庫内空気の二酸化炭素濃度を低下させるための二酸化炭素濃度低減動作を行う。庫内空気の二酸化炭素濃度が目標範囲の下限値(1%)に達すると、庫内空気調節装置(30)は、二酸化炭素濃度低減動作を停止する。 When the carbon dioxide concentration in the storage air reaches the upper limit (3%) of the target range, the storage air conditioner (30) performs a carbon dioxide concentration reduction operation to reduce the carbon dioxide concentration in the storage air. . When the carbon dioxide concentration in the storage air reaches the lower limit (1%) of the target range, the storage air regulator (30) stops the carbon dioxide concentration reduction operation.
 また、庫内空気の酸素濃度が目標範囲の下限値(4%)に達すると、庫内空気調節装置(30)は、庫内空気の酸素濃度を上昇させるための酸素濃度増加動作を行う。庫内空気の酸素濃度が目標範囲の上限値(6%)に達すると、庫内空気調節装置(30)は、酸素濃度増加動作を停止する。 In addition, when the oxygen concentration of the in-chamber air reaches the lower limit value (4%) of the target range, the in-chamber air regulator (30) performs an oxygen concentration increasing operation for increasing the oxygen concentration of the in-chamber air. When the oxygen concentration of the in-compartment air reaches the upper limit value (6%) of the target range, the in-compartment air conditioner (30) stops the oxygen concentration increasing operation.
 このように、庫内空気調節装置(30)は、荷室(5)内の庫内空気の酸素濃度を21%(大気の酸素濃度)から目標範囲にまで引き下げるために、酸素濃度低減動作を行う。また、庫内空気調節装置(30)は、荷室(5)内の庫内空気の酸素濃度と二酸化炭素濃度を、それぞれの目標範囲に維持するために、二酸化炭素低減動作と酸素濃度増加動作とを適宜繰り返して行う。 Thus, the in-compartment air conditioner (30) reduces the oxygen concentration reduction operation to lower the oxygen concentration of the in-compartment air in the cargo compartment (5) from 21% (oxygen concentration of the atmosphere) to the target range. Do. In addition, the in-compartment air conditioner (30) operates to reduce carbon dioxide and increase oxygen concentration in order to maintain the oxygen concentration and carbon dioxide concentration of the in-compartment air in the cargo compartment (5) within their respective target ranges. And repeat as appropriate.
   〈酸素濃度低減動作〉
 庫内空気調節装置(30)の酸素濃度低減動作について説明する。この酸素濃度低減動作では、第1組成調節部(40)が酸素濃度の低い第1庫外空気を荷室(5)へ供給し、第2組成調節部(60)が酸素濃度の低い第1庫内空気を荷室(5)へ供給する。
<Oxygen concentration reduction operation>
The oxygen concentration reduction operation of the in-compartment air conditioning device (30) will be described. In this oxygen concentration reduction operation, the first composition adjusting unit (40) supplies the first outside air with low oxygen concentration to the loading space (5), and the second composition adjusting unit (60) generates the first oxygen with low oxygen concentration. Supply the storage air to the loading space (5).
 酸素濃度低減動作において、制御器(110)の庫内環境制御部(115)は、第1バイパス弁(50)と第2バイパス弁(70)のそれぞれを第1状態(図3に実線で示す状態)に設定し、ポンプユニット(35)の駆動モータ(38)に通電して第1ポンプ(36)及び第2ポンプ(37)を作動させ、換気用排気弁(101)を開状態に設定する。 In the oxygen concentration reduction operation, the internal environment control unit (115) of the controller (110) shows each of the first bypass valve (50) and the second bypass valve (70) in the first state (solid line in FIG. 3) State), the drive motor (38) of the pump unit (35) is energized to operate the first pump (36) and the second pump (37), and the ventilation exhaust valve (101) is set open Do.
 先ず、第1ポンプ(36)が作動すると、輸送用コンテナ(1)の外部に存在する庫外空気が、エアフィルタ(47)と庫外側吸入管(55)を通って第1ポンプ(36)に吸い込まれる。第1ポンプ(36)は、吸い込んだ庫外空気を加圧して吐出する。第1ポンプ(36)が吐出する庫外空気の圧力は、大気圧の2倍程度である。第1ポンプ(36)から吐出された庫外空気は、第1導入管(52)を流れ、第1分離モジュール(41)の第1導入口(42)へ未処理庫外空気として流入する。 First, when the first pump (36) operates, the outside air existing outside the transport container (1) passes through the air filter (47) and the outside suction pipe (55) to the first pump (36). Sucked into The first pump (36) pressurizes and discharges the sucked outside air. The pressure of the outside air discharged by the first pump (36) is about twice the atmospheric pressure. The outside air discharged from the first pump (36) flows through the first introduction pipe (52) and flows into the first inlet (42) of the first separation module (41) as untreated outside air.
 第1分離モジュール(41)へ流入した未処理庫外空気は、ガス分離膜を透過しなかった第1庫外空気と、ガス分離膜を透過した第2庫外空気に分離される。酸素濃度の低い第1庫外空気は、第1一次側導出口(43)と第1一次側管(53)を順に通って供給管(120)へ流入する。一方、酸素濃度の高い第2庫外空気は、第1二次側導出口(44)と第1二次側管(54)を順に通って輸送用コンテナ(1)の外部へ排出される。 The untreated outside air flowing into the first separation module (41) is separated into the first outside air that has not passed through the gas separation membrane and the second outside air that has passed through the gas separation membrane. The first outside air with low oxygen concentration flows into the supply pipe (120) sequentially through the first primary outlet (43) and the first primary pipe (53). On the other hand, the second outside air with high oxygen concentration is discharged to the outside of the transport container (1) through the first secondary outlet (44) and the first secondary pipe (54) in this order.
 次に、第2ポンプ(37)が作動すると、輸送用コンテナ(1)の内部(具体的には、冷凍機(10)の二次流路(29b))に存在する庫内空気が、庫内側吸入管(75)を通って第2ポンプ(37)に吸い込まれる。第2ポンプ(37)は、吸い込んだ庫内空気を加圧して吐出する。第2ポンプ(37)が吐出する庫内空気の圧力は、大気圧よりも若干高い程度である。第2ポンプ(37)から吐出された庫内空気は、第2導入管(72)を流れ、第2分離モジュール(61)の第2導入口(62)へ未処理庫内空気として流入する。 Next, when the second pump (37) is operated, the internal air present in the inside of the transport container (1) (specifically, the secondary flow path (29b) of the refrigerator (10)) It is drawn into the second pump (37) through the inner suction pipe (75). The second pump (37) pressurizes and discharges the sucked storage air. The pressure of the internal air discharged by the second pump (37) is slightly higher than the atmospheric pressure. The internal air discharged from the second pump (37) flows through the second introduction pipe (72) and flows into the second introduction port (62) of the second separation module (61) as untreated internal air.
 第2分離モジュール(61)へ流入した未処理庫内空気は、ガス分離膜を透過しなかった第1庫内空気と、ガス分離膜を透過した第2庫内空気に分離される。酸素濃度の低い第1庫内空気は、第2一次側導出口(63)と第2一次側管(73)を順に通って供給管(120)へ流入する。一方、酸素濃度の高い第2庫内空気は、第2二次側導出口(64)と第2二次側管(74)を順に通って輸送用コンテナ(1)の外部へ排出される。 The untreated internal air flowing into the second separation module (61) is separated into the first internal air that has not permeated the gas separation membrane and the second internal air that has permeated the gas separation membrane. The first storage air having a low oxygen concentration flows into the supply pipe (120) through the second primary outlet (63) and the second primary pipe (73) in order. On the other hand, the second storage air having a high oxygen concentration is discharged to the outside of the transport container (1) through the second secondary outlet (64) and the second secondary pipe (74) in this order.
 上述したように、供給管(120)には、第1分離モジュール(41)から流出した第1庫外空気と、第2分離モジュール(61)から流出した第1庫内空気とが流入する。そして、供給管(120)を流れる第1庫外空気と第1庫内空気の混合空気は、冷凍機(10)の二次流路(29b)へ流入し、二次流路(29b)を流れる空気と共に荷室(5)へ供給される。 As described above, the first external air flowing out of the first separation module (41) and the first internal air flowing out of the second separation module (61) flow into the supply pipe (120). Then, the mixed air of the first outside air and the first inside air flowing through the supply pipe (120) flows into the secondary flow passage (29b) of the refrigerator (10), and the secondary flow passage (29b) It is supplied to the loading space (5) together with the flowing air.
 通常、酸素濃度低減動作中は、輸送用コンテナ(1)の外部から内部へ供給される第1庫外空気の流量Qo1が、輸送用コンテナ(1)の内部から外部へ排出される第2庫内空気の流量Qi2よりも大きくなっており(Qo1>Qi2)、輸送用コンテナ(1)内の気圧が陽圧となる。輸送用コンテナ(1)内の気圧が陽圧であるため、庫内空気の一部は、換気用排気管(100)を通って輸送用コンテナ(1)の外部へ排出される。 Normally, during the operation for reducing the oxygen concentration, the flow rate Q o1 of the first outside air supplied from the outside to the inside of the transport container (1) is discharged from the inside of the transport container (1) to the outside The flow rate in the storage air is larger than the flow rate Q i2 (Q o1 > Q i2 ), and the air pressure in the transport container (1) becomes a positive pressure. Since the air pressure in the transport container (1) is a positive pressure, a part of the internal air is discharged to the outside of the transport container (1) through the ventilation exhaust pipe (100).
 このように、酸素濃度低減動作では、大気に比べて酸素濃度の低い第1庫外空気を供給すると同時に、換気用排気管(100)を通じて荷室(5)内の庫内空気を輸送用コンテナ(1)の外部へ排出し、荷室(5)の空気を第1庫外空気に入れ替えることによって、荷室(5)内の庫内空気の酸素濃度を低下させる。また、酸素濃度低減動作では、未処理庫内空気から分離された酸素濃度の高い第2庫内空気を輸送用コンテナ(1)の外部へ排出することによって、荷室(5)内の庫内空気の酸素濃度を低下させる。 As described above, in the oxygen concentration reduction operation, the container outside the cargo compartment (5) is transported through the ventilation exhaust pipe (100) at the same time as supplying the first outside air with lower oxygen concentration than the atmosphere. The oxygen concentration of the air in the storage compartment in the cargo compartment (5) is reduced by discharging the air to the outside of (1) and replacing the air in the cargo compartment (5) with the air outside the first storage compartment. In addition, in the oxygen concentration reduction operation, the inside of the storage compartment in the cargo compartment (5) is discharged by discharging the second storage inside air having a high concentration of oxygen separated from the air inside the unprocessed storage outside the transportation container (1). Reduce the oxygen concentration of air.
   〈二酸化炭素濃度低減動作〉
 庫内空気調節装置(30)の二酸化炭素濃度低減動作について説明する。この二酸化炭素低減動作では、第1組成調節部(40)が酸素濃度の低い第1庫外空気を荷室(5)へ供給し、第2組成調節部(60)が二酸化炭素濃度の低い第1庫内空気を荷室(5)へ供給する。
<Operation to reduce carbon dioxide concentration>
The carbon dioxide concentration reduction operation of the in-compartment air conditioning device (30) will be described. In the carbon dioxide reduction operation, the first composition adjustment unit (40) supplies the first outside air with low oxygen concentration to the loading space (5), and the second composition adjustment unit (60) 1 Supply the air inside the storage room to the loading room (5).
 二酸化炭素濃度低減動作において、制御器(110)の庫内環境制御部(115)は、第1バイパス弁(50)と第2バイパス弁(70)のそれぞれを第1状態(図3に実線で示す状態)に設定し、ポンプユニット(35)の駆動モータ(38)に通電して第1ポンプ(36)及び第2ポンプ(37)を作動させ、換気用排気弁(101)を開状態に設定し、測定用開閉弁(126)を閉状態に設定する。そして、第1組成調節部(40)と第2組成調節部(60)のそれぞれにおいて、空気は、酸素濃度低減動作と同様に流れる。ただし、二酸化炭素濃度低減動作において、第1ポンプ(36)が吐出する庫外空気の圧力と、第2ポンプ(37)が吐出する庫内空気の圧力は、いずれも大気圧よりも若干高い程度である。 In the carbon dioxide concentration reduction operation, the internal environment control unit (115) of the controller (110) sets each of the first bypass valve (50) and the second bypass valve (70) in the first state (solid line in FIG. 3) In the condition shown, the drive motor (38) of the pump unit (35) is energized to operate the first pump (36) and the second pump (37), and the ventilation exhaust valve (101) is opened. Set and set the measurement on / off valve (126) in the closed state. Then, in each of the first composition adjusting unit (40) and the second composition adjusting unit (60), air flows in the same manner as the oxygen concentration reducing operation. However, in the carbon dioxide concentration reduction operation, the pressure of the outside air discharged by the first pump (36) and the pressure of the inside air discharged by the second pump (37) are both slightly higher than the atmospheric pressure. It is.
 第1組成調節部(40)では、第1分離モジュール(41)へ流入した未処理庫外空気が、未処理庫外空気よりも窒素濃度が高くて酸素濃度が低い第1庫外空気と、未処理庫外空気よりも窒素濃度が低くて酸素濃度が高い第2庫外空気とに分離される。そして、第1庫外空気が輸送用コンテナ(1)の内部へ供給され、第2庫外空気が輸送用コンテナ(1)の外部へ排出される。なお、未処理庫外空気の二酸化炭素濃度は、大気の二酸化炭素濃度(0.04%)と実質的に同じである。このため、第1庫外空気の二酸化炭素濃度は実質的にゼロと見なせる。 In the first composition adjusting unit (40), the first outside air flowing into the first separation module (41) has a nitrogen concentration higher than that of the untreated outside air and a lower oxygen concentration; It is separated into the second outside air, which is lower in nitrogen concentration and higher in oxygen concentration than untreated outside air. Then, the first outside air is supplied to the inside of the transport container (1), and the second outside air is discharged to the outside of the transport container (1). The carbon dioxide concentration of the untreated outside air is substantially the same as the carbon dioxide concentration (0.04%) of the atmosphere. For this reason, the carbon dioxide concentration of the first outside air can be regarded as substantially zero.
 第2組成調節部(60)では、第2分離モジュール(61)へ流入した未処理庫内空気が、未処理庫内空気よりも窒素濃度が高くて酸素濃度および二酸化炭素濃度が低い第1庫内空気と、未処理庫内空気よりも窒素濃度が低くて酸素濃度および二酸化炭素濃度が高い第2庫内空気とに分離される。そして、第1庫内空気が輸送用コンテナ(1)の内部へ供給され、第2庫内空気が輸送用コンテナ(1)の外部へ排出される。 In the second composition control unit (60), the first storage air flowing into the second separation module (61) has a nitrogen concentration higher than that of the untreated storage air and a lower oxygen concentration and carbon dioxide concentration. It is separated into the internal air and the second internal air having a nitrogen concentration lower than that of the untreated internal air and a high oxygen concentration and carbon dioxide concentration. Then, the first internal air is supplied to the inside of the transport container (1), and the second internal air is discharged to the outside of the transport container (1).
 通常、二酸化炭素濃度低減動作中は、酸素濃度低減動作中と同様に、第1庫外空気の流量Qo1が第2庫内空気の流量Qi2よりも大きくなっており(Qo1>Qi2)、輸送用コンテナ(1)内の気圧が陽圧となる。輸送用コンテナ(1)内の気圧が陽圧であるため、荷室(5)内の庫内空気の一部は、換気用排気管(100)を通って輸送用コンテナ(1)の外部へ排出される。 Normally, during the carbon dioxide concentration reduction operation, as in the oxygen concentration reduction operation, the flow rate Q o1 of the first outside air is larger than the flow rate Q i2 of the second inside air (Q o1 > Q i2 ), The pressure inside the shipping container (1) is positive. Since the air pressure in the transportation container (1) is a positive pressure, a part of the storage air in the cargo room (5) passes through the ventilation exhaust pipe (100) to the outside of the transportation container (1) Exhausted.
 このように、二酸化炭素濃度低減動作では、二酸化炭素濃度の極めて低い第1庫外空気を供給すると同時に、換気用排気管(100)を通じて庫内空気を輸送用コンテナ(1)の外部へ排出し、荷室(5)の空気を第1庫外空気に入れ替えることによって、荷室(5)内の庫内空気の二酸化炭素濃度を低下させる。また、二酸化炭素濃度低減動作では、未処理庫内空気から分離された二酸化炭素濃度の高い第2庫内空気を輸送用コンテナ(1)の外部へ排出することによって、荷室(5)内の庫内空気の二酸化炭素濃度を低下させる。 As described above, in the carbon dioxide concentration reduction operation, at the same time as supplying the first outside air with a very low carbon dioxide concentration, the inside air is discharged to the outside of the transport container (1) through the ventilation exhaust pipe (100). The carbon dioxide concentration of the air inside the cargo room (5) is reduced by replacing the air of the cargo room (5) with the first outside air. Further, in the carbon dioxide concentration reduction operation, the air in the second storage room having a high carbon dioxide concentration separated from the air in the storage room is discharged to the outside of the transport container (1), whereby the inside of the cargo compartment (5) Reduce the concentration of carbon dioxide in the storage room air.
   〈酸素濃度増加動作〉
 庫内空気調節装置(30)の酸素濃度増加動作について説明する。この酸素濃度増加動作では、第1組成調節部(40)が輸送用コンテナ(1)の外部から吸い込んだ庫外空気をそのまま荷室(5)へ供給し、第2組成調節部(60)が輸送用コンテナ(1)の内部から吸い込んだ庫内空気をそのまま荷室(5)へ送り返す。
<Oxygen concentration increase operation>
The oxygen concentration increasing operation of the in-compartment air conditioning device (30) will be described. In this oxygen concentration increasing operation, the first composition adjustment unit (40) supplies the outside air taken in from the outside of the transport container (1) as it is to the loading space (5), and the second composition adjustment unit (60) The air inside the storage unit drawn from the inside of the transport container (1) is sent back to the loading room (5) as it is.
 酸素濃度増加動作において、制御器(110)の庫内環境制御部(115)は、第1バイパス弁(50)と第2バイパス弁(70)のそれぞれを第2状態(図3に破線で示す状態)に設定し、ポンプユニット(35)の駆動モータ(38)に通電して第1ポンプ(36)及び第2ポンプ(37)を作動させ、換気用排気弁(101)を開状態に設定し、測定用開閉弁(126)を閉状態に設定する。 In the oxygen concentration increasing operation, the internal environment control unit (115) of the controller (110) shows each of the first bypass valve (50) and the second bypass valve (70) in the second state (indicated by a broken line in FIG. 3). State), the drive motor (38) of the pump unit (35) is energized to operate the first pump (36) and the second pump (37), and the ventilation exhaust valve (101) is set open And the measurement on-off valve (126) is set in the closed state.
 第1組成調節部(40)において、第1ポンプ(36)から吐出された庫外空気は、第1バイパス管(51)へ流入し、その窒素濃度と酸素濃度を保った状態で第1一次側管(53)へ流入し、その後に供給管(120)を通って輸送用コンテナ(1)の内部へ供給される。一方、第2組成調節部(60)において、第2ポンプ(37)へ吸い込まれた庫内空気は、第2ポンプ(37)から吐出された後に第2バイパス管(71)を通って第2一次側管(73)へ流入し、その後に供給管(120)を通って輸送用コンテナ(1)の内部へ戻る。また、荷室(5)内の庫内空気の一部は、換気用排気管(100)を通って輸送用コンテナ(1)の外部へ排出される。 In the first composition adjustment unit (40), the outside air discharged from the first pump (36) flows into the first bypass pipe (51), and the first primary is maintained with its nitrogen concentration and oxygen concentration maintained. It flows into the side pipe (53) and thereafter is supplied to the inside of the transport container (1) through the supply pipe (120). On the other hand, in the second composition adjusting unit (60), the internal air sucked into the second pump (37) is discharged from the second pump (37) and then passes through the second bypass pipe (71) It flows into the primary side pipe (73) and thereafter returns to the inside of the transport container (1) through the supply pipe (120). In addition, a part of the air inside the cargo compartment (5) is discharged to the outside of the transport container (1) through the ventilation exhaust pipe (100).
 このように、酸素濃度増加動作では、庫内空気よりも酸素濃度の高い庫外空気を輸送用コンテナ(1)の内部へ供給することによって、荷室(5)内の酸素濃度を上昇させる。 As described above, in the oxygen concentration increasing operation, the oxygen concentration in the cargo compartment (5) is raised by supplying the outside air having a higher oxygen concentration than the inside air to the inside of the transport container (1).
  -気密性評価装置-
 上述したように、気密性評価装置(130)は、庫内空気調節装置(30)に組み込まれている。本実施形態では、第1組成調節部(40)と、第3圧力センサ(103)と、制御器(110)とが、気密性評価装置(130)を構成する。
-Airtightness evaluation device-
As described above, the airtightness evaluation device (130) is incorporated in the in-compartment air conditioning device (30). In the present embodiment, the first composition adjusting unit (40), the third pressure sensor (103), and the controller (110) constitute an airtightness evaluation device (130).
 第1組成調節部(40)の第1ポンプ(36)は、輸送用コンテナ(1)内の気圧を陽圧とするために輸送用コンテナ(1)の内部へ給気する気圧調節機器(131)を構成する。つまり、本実施形態では、第1組成調節部(40)の第1ポンプ(36)が気密性評価装置(130)の気圧調節機器(131)を兼ねる。 The first pump (36) of the first composition control unit (40) is an air pressure control device (131) for supplying air to the inside of the transport container (1) in order to make the atmospheric pressure in the transport container (1) a positive pressure. Configure). That is, in the present embodiment, the first pump (36) of the first composition adjusting unit (40) doubles as the air pressure adjusting device (131) of the air tightness evaluation device (130).
 上述したように、庫内ファン(17)の停止中には、第3圧力センサ(103)の計測値が荷室(5)内の気圧と実質的に一致する。そして、この第3圧力センサ(103)は、荷室(5)内の気圧を計測する気圧センサを構成する。 As described above, while the internal fan (17) is stopped, the measurement value of the third pressure sensor (103) substantially matches the air pressure in the loading space (5). The third pressure sensor (103) constitutes an air pressure sensor that measures the air pressure in the loading space (5).
 気密性評価部(116)は、輸送用コンテナ(1)の気密性を評価する評価動作を行うように構成される。この評価動作において、気密性評価部(116)は、“輸送用コンテナ(1)の気密性がCA輸送を実行するために必要な基準レベルに達していることを示す評価条件”の成否を判断する。気密性評価部(116)の評価動作の詳細な内容は、後述する。 The airtightness evaluation unit (116) is configured to perform an evaluation operation to evaluate the airtightness of the transport container (1). In this evaluation operation, the airtightness evaluation unit (116) determines the success or failure of the “evaluation condition indicating that the airtightness of the transport container (1) has reached the standard level necessary to perform CA transport”. Do. Detailed contents of the evaluation operation of the air tightness evaluation unit (116) will be described later.
 気密性評価部(116)は、冷凍機(10)及び庫内空気調節装置(30)が使用前検査(いわゆるPTI/Pre-trip Inspection)運転を行う際に、評価動作を実行する。使用前検査運転は、冷凍機(10)及び庫内空気調節装置(30)が正常に作動するかどうかを検査するための運転である。 The airtightness evaluation unit (116) performs an evaluation operation when the refrigerator (10) and the in-compartment air conditioner (30) perform a pre-use inspection (so-called PTI / Pre-trip Inspection) operation. The pre-use inspection operation is an operation for inspecting whether the refrigerator (10) and the in-compartment air conditioner (30) operate properly.
 ここで、通常、コンテナ船には、複数の輸送用コンテナ(1)が上下に積み重なった状態で積み込まれる。下段に配置された輸送用コンテナ(1)は、その上に載った輸送用コンテナ(1)の重量によって変形する場合がある。このため、使用前検査運転中に気密性評価部(116)が行う評価動作において輸送用コンテナ(1)の気密性が充足されていると判断された場合でも、輸送用コンテナ(1)の使用中に輸送用コンテナ(1)の気密性が不足することがあり得る。 Here, a container ship is usually loaded with a plurality of transport containers (1) stacked vertically. The transport container (1) disposed at the lower side may be deformed by the weight of the transport container (1) placed thereon. Therefore, even if it is determined that the airtightness of the transport container (1) is satisfied in the evaluation operation performed by the airtightness evaluation unit (116) during the pre-use inspection operation, the use of the transport container (1) During the operation, the airtightness of the transport container (1) may be insufficient.
 輸送用コンテナ(1)の気密性が不足した状態では、輸送用コンテナ(1)の隙間を通って庫外空気(大気)が輸送用コンテナ(1)の内部へ侵入するおそれがある。そして、輸送用コンテナ(1)の内部へ庫外空気が侵入すると、庫内空気調節装置(30)が正常に作動していても、庫内空気の酸素濃度と二酸化炭素濃度をそれぞれの目標濃度範囲に保てなくなる場合がある。また、輸送用コンテナ(1)の内部へ庫外空気が侵入すると、冷凍機(10)が正常に作動していても、庫内空気の温度を目標温度範囲に保てなくなる場合がある。 When the airtightness of the transport container (1) is insufficient, outside air (atmosphere) may intrude into the interior of the transport container (1) through the gap of the transport container (1). Then, when the outside air enters the inside of the transport container (1), the oxygen concentration and the carbon dioxide concentration of the inside air are set to the respective target concentrations, even if the inside air conditioner (30) is operating normally. It may not be possible to keep it in the range. In addition, when the outside air intrudes into the inside of the transport container (1), the temperature of the inside air may not be maintained within the target temperature range even if the refrigerator (10) is operating normally.
 そこで、気密性評価部(116)は、冷凍機(10)及び庫内空気調節装置(30)の使用前検査運転の実行中だけで無く、輸送用コンテナ(1)の使用中に第1の不具合条件または第2の不具合条件が成立した場合も、評価動作を行う。 Therefore, the airtightness evaluation unit (116) is not only performed during the pre-use inspection operation of the refrigerator (10) and the in-compartment air conditioner (30), but also during the use of the transport container (1). The evaluation operation is also performed when the failure condition or the second failure condition is satisfied.
 第1の不具合条件は、庫内空気調節装置(30)の運転によって荷室(5)内の庫内空気の組成を目標組成に到達させられないことを示す条件である。第1不具合条件としては、例えば“庫内空気調節装置(30)の運転中に、庫内空気の酸素濃度が目標濃度+1%以上となる状態の継続時間が1時間以上になる”という条件を用いることができる。また、第1不具合条件としては、“庫内空気の酸素濃度が目標濃度+1%に達した時点から24時間が経過しても、庫内空気の酸素濃度が目標濃度にまで低下しない”という条件を用いてもよい。 The first failure condition is a condition that indicates that the composition of the air in the storage compartment in the cargo compartment (5) can not reach the target composition by the operation of the storage compartment air conditioner (30). As the first failure condition, for example, the condition that "during the time when the oxygen concentration of the air in the cold storage becomes the target concentration + 1% or more during the operation of the cold air conditioning device (30), the continuous time is 1 hour or longer" It can be used. Further, as the first fault condition, the condition that "the oxygen concentration of the air in the storage does not decrease to the target concentration even if 24 hours have passed from the time when the oxygen concentration in the storage air reaches the target concentration + 1%" May be used.
 第2の不具合条件は、冷凍機(10)の運転によって荷室(5)内の気温を目標温度に到達させられないことを示す条件である。第2不具合条件としては、例えば“庫内空気調節装置(30)の運転中に、庫内空気の温度が-15℃に達した時点から24時間が経過しても、庫内空気の温度が-20℃にまで低下しない”という条件を用いることができる。 The second failure condition is a condition indicating that the air temperature in the loading space (5) can not be reached to the target temperature by the operation of the refrigerator (10). As a second failure condition, for example, “during the operation of the in-compartment air conditioner (30), the temperature of the in-compartment air is 24 hours even after the time when the temperature of the in-compartment air reaches −15 ° C. The condition that “the temperature does not decrease to −20 ° C.” can be used.
  -気密性評価部の評価動作-
 気密性評価部(116)の評価動作は、上述した評価条件が成立するか否かを判断する動作である。本実施形態の気密性評価部(116)は、評価動作において、“ポンプユニット(35)の停止中に輸送用コンテナ(1)内の気圧が第1基準圧力Pから第2基準圧力Pにまで低下するのに要する時間が評価用時間T以上である”という評価条件の成否を判断する。
-Evaluation operation of air tightness evaluation unit-
The evaluation operation of the airtightness evaluation unit (116) is an operation to determine whether the above-described evaluation condition is satisfied. Airtightness evaluation unit of this embodiment (116), in the evaluation operation, "pump unit (35) of the second reference pressure pressure shipping the container (1) during the stop of the first reference pressure P H P L the time required for the drop to determine the success or failure of the evaluation condition of the is "evaluation time T R above.
 ここでは、気密性評価部(116)の評価動作について、図6のフロー図を参照しながら説明する。また、この説明では、図4を適宜参照する。 Here, the evaluation operation of the airtightness evaluation unit (116) will be described with reference to the flow chart of FIG. Further, in this description, FIG. 4 is referred to as appropriate.
 気密性評価部(116)は、評価動作を開始すると、先ず、ステップST11において、庫内空気調節装置(30)に設けられた弁の操作を行う。具体的に、気密性評価部(116)は、第1バイパス弁(50)と第2バイパス弁(70)のそれぞれを第2状態に設定し、第1調節弁(46)、第2調節弁(66)、換気用排気弁(101)、及び測定用開閉弁(126)を閉状態に設定する(図4を参照)。 When the air tightness evaluation unit (116) starts the evaluation operation, first, in step ST11, the air tightness evaluation unit (116) operates a valve provided in the internal air conditioning device (30). Specifically, the air tightness evaluation section (116) sets each of the first bypass valve (50) and the second bypass valve (70) to the second state, and the first control valve (46), the second control valve (66) The ventilation exhaust valve (101) and the measurement on-off valve (126) are set in the closed state (see FIG. 4).
 次のステップST12において、気密性評価部(116)は、ポンプユニット(35)の駆動モータ(38)に通電して第1ポンプ(36)を作動させる。第1ポンプ(36)は、エアフィルタ(47)を通じて吸い込んだ庫外空気を加圧してから吐出する。第1ポンプ(36)から吐出された庫外空気は、第1バイパス弁(50)と第1バイパス管(51)と供給管(120)とを順に通って輸送用コンテナ(1)の内部へ供給される。 In the next step ST12, the air tightness evaluation unit (116) energizes the drive motor (38) of the pump unit (35) to operate the first pump (36). The first pump (36) pressurizes the outside air sucked through the air filter (47) and then discharges it. Outside air discharged from the first pump (36) passes through the first bypass valve (50), the first bypass pipe (51) and the supply pipe (120) in this order to the inside of the transport container (1) Supplied.
 なお、本実施形態では、駆動モータ(38)に通電すると、第1ポンプ(36)だけでなく第2ポンプ(37)も作動する。このため、庫内空気が庫内側吸入管(75)を通って第2ポンプ(37)へ吸い込まれる。第2ポンプ(37)から吐出された庫内空気は、第2バイパス弁(70)と第2バイパス管(71)と供給管(120)とを順に通って輸送用コンテナ(1)の内部へ送り返される。 In the present embodiment, when the drive motor (38) is energized, not only the first pump (36) but also the second pump (37) operates. For this reason, internal air is drawn into the second pump (37) through the internal suction pipe (75). The internal air discharged from the second pump (37) passes through the second bypass valve (70), the second bypass pipe (71) and the supply pipe (120) in this order to the inside of the transport container (1) Will be sent back.
 次のステップST13において、気密性評価部(116)は、第3圧力センサ(103)の計測値を読み込み、読み込んだ計測値を輸送用コンテナ(1)内の気圧の計測値Pとしてメモリ(112)に記憶させる。次のステップST14において、気密性評価部(116)は、ステップST13においてメモリ(112)に記憶させた計測値Pを、メモリ(112)が予め記憶する第1基準圧力Pと比較する。第1基準圧力Pの値は、例えば490Pa(ゲージ圧)である。 In the next step ST13, the airtightness evaluation unit (116) reads the measurement value of the third pressure sensor (103), and stores the read measurement value as the measurement value P of the air pressure in the transport container (1) (112) Remember to). In the next step ST14, airtightness evaluation unit (116), the measured value P stored in the memory (112) in step ST13, compared with the first reference pressure P H of the memory (112) stores in advance. The value of the first reference pressure P H is, for example, 490 Pa (gauge pressure).
 ステップST14において、輸送用コンテナ(1)内の気圧の計測値Pが第1基準圧力Pに達していない場合(P<P)、気密性評価部(116)は、ステップST13へ戻って第3圧力センサ(103)の計測値Pを再び読み込む。一方、ステップST14において、輸送用コンテナ(1)内の気圧の計測値Pが第1基準圧力Pに達している場合(P≧P)、気密性評価部(116)は、ステップST15へ移行してポンプユニット(35)を停止させる。 In step ST14, if the measured value P of the air pressure in the shipping container (1) does not reach the first reference pressure P H (P <P H), airtightness evaluation unit (116), the process returns to step ST13 The measurement value P of the third pressure sensor (103) is read again. On the other hand, in step ST14, if the measured value P of the air pressure in the shipping container (1) has reached the first reference pressure P H (P ≧ P H), airtightness evaluation unit (116), to step ST15 Move to stop the pump unit (35).
 次のステップST16において、気密性評価部(116)は、ポンプユニット(35)が停止してからの経過時間Tの計測を開始する。この時点において、輸送用コンテナ(1)内の気圧は陽圧となっている。このため、輸送用コンテナ(1)の隙間を通って輸送用コンテナ(1)の内部から外部へ空気が流出し、輸送用コンテナ(1)内の気圧が次第に低下してゆく。 In the next step ST16, the airtightness evaluation unit (116) starts to measure the elapsed time T after the pump unit (35) is stopped. At this point in time, the pressure inside the shipping container (1) is positive. For this reason, air flows out from the inside of the transport container (1) to the outside through the gap of the transport container (1), and the air pressure in the transport container (1) gradually decreases.
 次のステップST17において、気密性評価部(116)は、第3圧力センサ(103)の計測値を読み込み、読み込んだ計測値を輸送用コンテナ(1)内の気圧の計測値Pとしてメモリ(112)に記憶させる。次のステップST18において、気密性評価部(116)は、ステップST17においてメモリ(112)に記憶させた計測値Pを、メモリ(112)が予め記憶する第2基準圧力Pと比較する。第2基準圧力Pの値は、例えば245Pa(ゲージ圧)である。 In the next step ST17, the airtightness evaluation unit (116) reads the measurement value of the third pressure sensor (103), and stores the read measurement value as the measurement value P of the air pressure in the transport container (1) (112) Remember to). In the next step ST18, airtightness evaluation unit (116), the measured value P stored in the memory (112) in step ST17, compared to the second reference pressure P L to the memory (112) stores in advance. The value of the second reference pressure P L is, for example, 245 Pa (gauge pressure).
 ステップST18において、輸送用コンテナ(1)内の気圧の計測値Pが第2基準圧力Pに達していない場合(P>P)、気密性評価部(116)は、ステップST17へ戻って第3圧力センサ(103)の計測値Pを再び読み込む。一方、ステップST18において、輸送用コンテナ(1)内の気圧の計測値Pが第2基準圧力Pに達している場合(P≦P)、気密性評価部(116)は、ステップST19へ移行して経過時間の計測を終了し、計測した経過時間Tをメモリ(112)に記憶させる。 In step ST18, when the measured value P of the air pressure in the transport container (1) does not reach the second reference pressure P L (P> P L ), the airtightness evaluation unit (116) returns to step ST17. The measurement value P of the third pressure sensor (103) is read again. On the other hand, when the measured value P of the air pressure in the transport container (1) has reached the second reference pressure P L (P ≦ P L ) in step ST18, the airtightness evaluation unit (116) proceeds to step ST19. After the transition, the measurement of the elapsed time is ended, and the measured elapsed time T is stored in the memory (112).
 次のステップST20において、気密性評価部(116)は、計測した経過時間Tを、メモリ(112)が予め記憶する評価用時間Tと比較する。評価用時間Tの値は、例えば105秒である。 In the next step ST20, airtightness evaluation unit (116), the elapsed time T measured, the memory (112) is compared with the evaluation time T R to be stored in advance. The value of the evaluation time T R is, for example, 105 seconds.
 計測した経過時間Tが評価用時間T以上である場合(T≧T)、気密性評価部(116)は、ステップST21へ移行し、輸送用コンテナ(1)の気密性が充足されている(即ち、輸送用コンテナ(1)の気密性が基準レベルに達している)旨の情報をメモリ(112)に記録する。一方、計測した経過時間Tが評価用時間T未満である場合(T<T)、気密性評価部(116)は、ステップST22へ移行し、輸送用コンテナ(1)の気密性が不足している(即ち、輸送用コンテナ(1)の気密性が基準レベルに達していない)旨の情報をメモリ(112)に記録する。 If the measured elapsed time T is equal to or more than the evaluation time T R (T ≧ T R ), the airtightness evaluation unit (116) proceeds to step ST21, and the airtightness of the transport container (1) is satisfied. The information (i.e., that the airtightness of the transport container (1) has reached the reference level) is recorded in the memory (112). On the other hand, if the measured elapsed time T is less than the evaluation time T R (T <T R ), the airtightness evaluation unit (116) proceeds to step ST22, and the airtightness of the transport container (1) is insufficient. The information (i.e., the airtightness of the transport container (1) has not reached the reference level) is recorded in the memory (112).
  -実施形態1の効果-
 本実施形態の気密性評価装置(130)を構成する気密性評価部(116)は、第1ポンプ(36)が輸送用コンテナ(1)の内部へ庫外空気を供給することによって輸送用コンテナ(1)内の気圧を陽圧とした状態で、第3圧力センサ(103)が計測した輸送用コンテナ(1)内の気圧に基づいて、輸送用コンテナ(1)の気密性を評価する。このため、本実施形態によれば、輸送用コンテナ(1)の気密性を自動的に評価することが可能となる。
-Effect of Embodiment 1-
The airtightness evaluation unit (116) constituting the airtightness evaluation device (130) of the present embodiment, the first pump (36) supplies the outside air to the inside of the transportation container (1), and the transportation container (1) In a state in which the air pressure in the container is positive pressure, the airtightness of the transportation container (1) is evaluated based on the air pressure in the transportation container (1) measured by the third pressure sensor (103). For this reason, according to the present embodiment, it is possible to automatically evaluate the airtightness of the transport container (1).
 また、本実施形態では、庫内空気調節装置(30)に設けられた第1ポンプ(36)が、気密性評価装置(130)の気圧調節機器(131)を兼ねる。従って、本実施形態によれば、気密性評価装置(130)を備える庫内空気調節装置(30)の部品点数を削減できる。 Further, in the present embodiment, the first pump (36) provided in the in-compartment air conditioning device (30) doubles as the air pressure regulation device (131) of the air tightness evaluation device (130). Therefore, according to the present embodiment, it is possible to reduce the number of parts of the in-compartment air conditioner (30) including the air tightness evaluation device (130).
 また、本実施形態の気密性評価装置(130)を構成する気密性評価部(116)は、輸送用コンテナ(1)の庫内空気の組成が目標組成に到達しないことを示す第1の不具合条件が成立すると、評価動作を行って輸送用コンテナ(1)の気密性を評価する。そのため、本実施形態によれば、輸送用コンテナ(1)の庫内空気の組成が目標組成に到達しない原因が、庫内空気調節装置(30)の故障なのか収納庫(1)の気密性なのかを判別することが可能となる。 In addition, the airtightness evaluation unit (116) constituting the airtightness evaluation device (130) of the present embodiment is a first defect that the composition of the air inside the container of the transport container (1) does not reach the target composition. When the condition is satisfied, an evaluation operation is performed to evaluate the airtightness of the transport container (1). Therefore, according to the present embodiment, the reason why the composition of the air in the storage container for the transport (1) does not reach the target composition is the failure of the storage air conditioner (30) or the airtightness of the storage container (1) It becomes possible to determine what is.
 また、本実施形態の気密性評価装置(130)を構成する気密性評価部(116)は、輸送用コンテナ(1)の庫内空気の温度が目標温度に到達しないことを示す第2の不具合条件が成立すると、評価動作を行って輸送用コンテナ(1)の気密性を評価する。そのため、本実施形態によれば、輸送用コンテナ(1)の庫内空気の温度が目標温度に到達しない原因が、冷凍機(10)の故障なのか収納庫(1)の気密性なのかを判別することが可能となる。 In addition, the airtightness evaluation unit (116) constituting the airtightness evaluation device (130) of the present embodiment is a second defect indicating that the temperature of the air inside the storage container for transportation (1) does not reach the target temperature. When the condition is satisfied, an evaluation operation is performed to evaluate the airtightness of the transport container (1). Therefore, according to the present embodiment, the reason why the temperature of the air inside the transport container (1) does not reach the target temperature is the failure of the refrigerator (10) or the airtightness of the storage (1) It becomes possible to distinguish.
  -実施形態1の変形例-
 本実施形態の気密性評価装置(130)の気密性評価部(116)は、その評価動作において、所定の時間内における輸送用コンテナ(1)内の気圧の変化量を評価用圧力変化量と比較することによって、輸送用コンテナ(1)の気密性を評価するように構成されていてもよい。本変形例の気密性評価部(116)は、評価動作において、“ポンプユニット(35)が停止中の所定時間内における輸送用コンテナ(1)内の気圧の低下量が評価用圧力変化量ΔP以下である”という評価条件の成否を判断する。
-Modification of Embodiment 1-
In the air tightness evaluation unit (116) of the air tightness evaluation device (130) of the present embodiment, in the evaluation operation, the air pressure change amount in the transport container (1) within a predetermined time is evaluated as the pressure change amount. The comparison may be configured to evaluate the airtightness of the shipping container (1). In the evaluation operation, the air-tightness evaluation unit (116) of this modification “in the predetermined time during which the pump unit (35) is stopped, the amount of reduction in atmospheric pressure in the transport container (1) is the pressure change amount ΔP for evaluation. It is judged whether the evaluation condition "is the following or not" is met.
 具体的に、本変形例の気密性評価部(116)は、その評価動作において、図6のステップST11からステップST15までの動作を行う。次に、気密性評価部(116)は、ポンプユニット(35)を停止させた時点から所定時間(例えば120秒)が経過した時点の輸送用コンテナ(1)内の気圧の計測値Pをメモリ(112)に記憶させる。次に、気密性評価部(116)は、第1基準圧力Pとメモリ(112)が記憶する計測値Pの差(P-P)を算出する。(P-P)の値は、ポンプユニット(35)を停止させた時点から所定時間内における輸送用コンテナ(1)内の気圧の変化量である。 Specifically, in the evaluation operation, the airtightness evaluation unit (116) of the present modification performs the operation from step ST11 to step ST15 of FIG. Then, airtightness evaluation unit (116), the measured value P M in the air pressure in the pump unit (35) a predetermined time from the time of stopping (for example, 120 seconds) shipping container at the time has elapsed (1) It is stored in the memory (112). Next, the airtightness evaluation unit (116) calculates the difference (P H -P M ) between the first reference pressure P H and the measurement value P M stored in the memory (112). The value of (P H -P M ) is the amount of change in air pressure in the transport container (1) within a predetermined time from when the pump unit (35) is stopped.
 本変形例の気密性評価部(116)は、(P-P)の値に基づいて、輸送用コンテナ(1)の気密性を評価する。(P-P)の値が所定の評価用圧力変化量ΔP以下の場合(P-P≦ΔP)、気密性評価部(116)は、輸送用コンテナ(1)の気密性が充足されている(即ち、輸送用コンテナ(1)の気密性が基準レベルに達している)旨の情報をメモリ(112)に記録する。一方、(P-P)の値が所定の評価用圧力変化量ΔPを上回る場合(P-P>ΔP)、気密性評価部(116)は、輸送用コンテナ(1)の気密性が不足している(即ち、輸送用コンテナ(1)の気密性が基準レベルに達していない)旨の情報をメモリ(112)に記録する。 The airtightness evaluation unit (116) of this modification evaluates the airtightness of the transport container (1) based on the value of (P H -P M ). When the value of (P H -P M ) is equal to or less than the predetermined pressure change amount for evaluation ΔP (P H -P M ≦ ΔP), the airtightness evaluation unit (116) indicates that the airtightness of the transport container (1) is Information is stored in the memory (112) indicating that the container is full (that is, the airtightness of the shipping container (1) has reached a reference level). On the other hand, when the value of (P H -P M ) exceeds the predetermined pressure change amount for evaluation ΔP (P H -P M > ΔP), the airtightness evaluation unit (116) measures the airtightness of the transport container (1) Information is stored in the memory (112) indicating that the gender is lacking (ie, the airtightness of the shipping container (1) has not reached the reference level).
 《実施形態2》
 実施形態2について説明する。本実施形態の庫内空気調節装置(30)に組み込まれた気密性評価装置(130)は、収納庫(1)の気密性の基準レベルが互いに異なる複数(本実施形態では三つ)の評価条件の中から、気密性評価部(116)の評価動作において用いられる一つの評価条件を、作業者が選択できるように構成される。ここでは、本実施形態の庫内空気調節装置(30)について、実施形態1の庫内空気調節装置(30)と異なる点を説明する。
<< Embodiment 2 >>
The second embodiment will be described. The airtightness evaluation device (130) incorporated in the in-compartment air conditioning device (30) of the present embodiment evaluates a plurality of (three in the present embodiment) reference levels of airtightness of the storage case (1) mutually different. Among the conditions, the operator can select one of the evaluation conditions used in the evaluation operation of the airtightness evaluation unit (116). Here, points of the in-compartment air conditioning device (30) of the present embodiment different from the in-compartment air conditioning device (30) of the first embodiment will be described.
 図7に示すように、本実施形態の庫内空気調節装置(30)では、制御器(110)に対して、冷凍機(10)の操作盤(113)が電気配線を介して接続される。図示しないが、冷凍機(10)の操作盤(113)には、表示部とキーパッド、あるいは液晶タッチパネルが設けられる。操作盤(113)は、冷凍機(10)の運転に関する指令値(例えば、荷室(5)の気温の設定値)などを作業者が入力するために、冷凍機(10)に設けられる。 As shown in FIG. 7, in the internal air conditioning apparatus (30) of the present embodiment, the control panel (113) of the refrigerator (10) is connected to the controller (110) via electrical wiring. . Although not shown, a display unit and a keypad or a liquid crystal touch panel are provided on the control panel (113) of the refrigerator (10). The control panel (113) is provided in the refrigerator (10) in order for the operator to input a command value (for example, a set value of the air temperature of the luggage compartment (5)) relating to the operation of the refrigerator (10).
 気密性評価装置(130)には、入力部が設けられる。本実施形態では、冷凍機(10)の操作盤(113)が、気密性評価装置(130)の入力部を兼ねる。作業者は、操作盤(113)を操作することによって、気密性評価部(116)の評価動作において用いられる評価条件を指定する情報を入力する。 The airtightness evaluation device (130) is provided with an input unit. In the present embodiment, the control panel (113) of the refrigerator (10) doubles as the input unit of the air tightness evaluation device (130). The operator operates the operation panel (113) to input information specifying the evaluation conditions used in the evaluation operation of the airtightness evaluation unit (116).
 本実施形態の庫内空気調節装置(30)において、制御器(110)のメモリ(112)には、三つの評価条件のそれぞれに対応する評価用時間が予め記録される。メモリ(112)は、例えば、評価条件Aに対応する第1評価用時間TR1として120秒を記憶し(TR1=120秒)、評価条件Bに対応する第2評価用時間TR2として105秒を記憶し(TR2=105秒)、評価条件Cに対応する第3評価用時間TR3として90秒を記憶する(TR3=90秒)。本実施形態において、三つの評価条件A~Cの基準レベル(収納庫(1)の気密性のレベル)は、評価条件Aが最も高く、評価条件A,評価条件B,評価条件Cの順に低くなる。 In the in-compartment air conditioning system (30) of the present embodiment, an evaluation time corresponding to each of the three evaluation conditions is recorded in advance in the memory (112) of the controller (110). The memory (112) stores, for example, 120 seconds as the first evaluation time TR1 corresponding to the evaluation condition A ( TR1 = 120 seconds), and 105 as the second evaluation time TR2 corresponding to the evaluation condition B. The second is stored ( TR2 = 105 seconds), and 90 seconds is stored as the third evaluation time TR3 corresponding to the evaluation condition C ( TR3 = 90 seconds). In the present embodiment, the reference levels of the three evaluation conditions A to C (the airtightness level of the storage (1)) are the highest in the evaluation condition A, lower in the order of the evaluation condition A, the evaluation condition B, and the evaluation condition C Become.
  -気密性評価部の評価動作-
 ここでは、本実施形態の気密性評価部(116)の評価動作について、実施形態1の気密性評価部(116)の評価動作と異なる点を説明する。また、ここでは、本実施形態の気密性評価部(116)の評価動作について、図8のフロー図を参照しながら説明する。図8のフロー図は、図6のフロー図にステップST10を追加したものである。
-Evaluation operation of air tightness evaluation unit-
Here, the evaluation operation of the airtightness evaluation unit (116) of the present embodiment will be described in terms of differences from the evaluation operation of the airtightness evaluation unit (116) of the first embodiment. Also, here, the evaluation operation of the airtightness evaluation unit (116) of the present embodiment will be described with reference to the flow chart of FIG. The flowchart of FIG. 8 is obtained by adding step ST10 to the flowchart of FIG.
 気密性評価部(116)は、評価動作を開始すると、先ず、ステップST10において、作業者が評価条件A~Cのうちの一つを選択するまで待機する。 When the air tightness evaluation unit (116) starts the evaluation operation, first, in step ST10, the operator stands by until one of the evaluation conditions A to C is selected.
 作業者が操作盤(113)を操作して評価条件A~Cのうちの一つを選択する情報を入力すると、気密性評価部(116)は、評価用時間Tを、選択された評価条件に対応する値に設定する。評価条件Aが選択された場合、気密性評価部(116)は、評価用時間Tを第1評価用時間TR1とする(T=TR1)。評価条件Bが選択された場合、気密性評価部(116)は、評価用時間Tを第2評価用時間TR2とする(T=TR2)。評価条件Cが選択された場合、気密性評価部(116)は、評価用時間Tを第3評価用時間TR3とする(T=TR3)。 When the operator operates the operation panel (113) and inputs information for selecting one of the evaluation conditions A to C, the airtightness evaluation unit (116) evaluates the evaluation time T R as the selected evaluation. Set to the value corresponding to the condition. If the evaluation condition A is selected, airtightness evaluation unit (116), the evaluation time T R and the first evaluation time T R1 (T R = T R1 ). If the evaluation conditions B is selected, airtightness evaluation unit (116), the evaluation time T R and the second evaluation time T R2 (T R = T R2 ). If the evaluation condition C is selected, airtightness evaluation unit (116), the evaluation time T R and the third evaluation time T R3 (T R = T R3 ).
 そして、本実施形態の気密性評価部(116)は、実施形態1の気密性評価部(116)と同様に、ステップST11からステップST22までの動作を評価動作として行い、輸送用コンテナ(1)の気密性を自動的に評価する。 And the airtightness evaluation part (116) of this embodiment performs operation from step ST11 to step ST22 as evaluation operation similarly to the airtightness evaluation part (116) of Embodiment 1, and transport container (1) Automatically assess the tightness of the
  -実施形態2の効果-
 本実施形態の庫内空気調節装置(30)において、気密性評価部(116)は、複数の評価条件のうち作業者によって指定された一つの評価条件を用いて、収納庫(1)の気密性を評価する評価動作を行う。従って、本実施形態によれば、評価動作において用いられる一つの評価条件を、複数の評価条件の中から作業者が選択することが可能となり、庫内空気調節装置(30)の使い勝手が向上する。
-Effect of Embodiment 2-
In the in-compartment air conditioning device (30) of the present embodiment, the airtightness evaluation unit (116) uses the one evaluation condition designated by the worker among the plurality of evaluation conditions to use the airtightness of the storage case (1). Perform evaluation operation to evaluate the gender. Therefore, according to the present embodiment, the operator can select one evaluation condition used in the evaluation operation from a plurality of evaluation conditions, and the usability of the in-compartment air conditioning device (30) is improved. .
 《実施形態3》
 実施形態3について説明する。本実施形態の庫内空気調節装置(30)に組み込まれた気密性評価装置(130)は、実施形態2の気密性評価装置(130)において、制御器(110)の気密性評価部(116)が評価動作において成否を判断する評価条件を変更したものである。また、本実施形態の庫内空気調節装置(30)では、第1組成調節部(40)の構成が、実施形態2の庫内空気調節装置(30)と異なる。ここでは、本実施形態の庫内空気調節装置(30)について、実施形態2の庫内空気調節装置(30)と異なる点を説明する。
Embodiment 3
The third embodiment will be described. The airtightness evaluation device (130) incorporated in the in-compartment air conditioning device (30) of the present embodiment is the airtightness evaluation unit (116) of the controller (110) in the airtightness evaluation device (130) of the second embodiment. Is a change in the evaluation condition for judging success or failure in the evaluation operation. Further, in the in-compartment air conditioning device (30) of the present embodiment, the configuration of the first composition adjusting unit (40) is different from the in-compartment air conditioning device (30) of the second embodiment. Here, a difference of the in-compartment air conditioning device (30) of the present embodiment from the in-compartment air conditioning device (30) of the second embodiment will be described.
  -庫内空気調節装置の第1組成調節部-
 本実施形態の第1組成調節部(40)について、実施形態2の第1組成調節部(40)と異なる点を説明する。
-First composition control unit of air conditioning system in storage-
Regarding the first composition adjusting unit (40) of the present embodiment, differences from the first composition adjusting unit (40) of the second embodiment will be described.
 図9に示すように、本実施形態庫の第1組成調節部(40)では、第1一次側管(53)に逆止弁(48)が設けられる。この逆止弁(48)は、第1一次側管(53)における第1分離モジュール(41)と第1圧力センサ(45)の間に配置される。この逆止弁(48)は、第1分離モジュール(41)の第1一次側導出口(43)から流出する方向の空気の流通を許容し、逆方向の空気の流通を阻止する。 As shown in FIG. 9, in the first composition adjustment unit (40) of the embodiment, the check valve (48) is provided in the first primary side pipe (53). The check valve (48) is disposed between the first separation module (41) and the first pressure sensor (45) in the first primary pipe (53). The check valve (48) allows the flow of air in the direction of outflow from the first primary outlet (43) of the first separation module (41) and prevents the flow of air in the reverse direction.
 また、本実施形態庫の庫内空気調節装置(30)において、第1バイパス管(51)の出口端は、第1一次側管(53)における逆止弁(48)と第1圧力センサ(45)の間に接続される。 Further, in the in-compartment air conditioning device (30) of the embodiment, the outlet end of the first bypass pipe (51) is a check valve (48) and a first pressure sensor (in the first primary side pipe (53)). Connected between 45).
  -制御器-
 本実施形態の制御器(110)は、気密性評価部(116)が評価動作において成否を判断する評価条件が、実施形態2の制御器(110)と異なる。本実施形態の気密性評価部(116)は、評価動作において、“ポンプユニット(35)が輸送用コンテナ(1)の内部へ供給する空気の流量(給気流量)を所定の基準値に設定した状態で、荷室(5)の加圧の開始から所定の基準時間Tが経過するまでの間に、輸送用コンテナ(1)内の気圧が所定の評価用圧力Pに達する” という評価条件の成否を判断する。
-Controller-
The controller (110) of the present embodiment differs from the controller (110) of the second embodiment in the evaluation conditions under which the airtightness evaluation unit (116) determines the success or failure in the evaluation operation. In the evaluation operation, the airtightness evaluation unit (116) of the present embodiment sets “the flow rate (air supply flow rate) of air supplied to the inside of the transport container (1) by the pump unit (35) to a predetermined reference value in a state, until luggage compartment predetermined reference time T 0 from the start of the pressurization of the (5) elapses, the air pressure in the shipping container (1) reaches a predetermined evaluation for the pressure P R of " Determine the success or failure of the evaluation conditions.
 また、本実施形態の制御器(110)は、実施形態2の制御器(110)と同様に、収納庫(1)の気密性の基準レベルが互いに異なる複数(本実施形態では三つ)の評価条件の中から、気密性評価部(116)の評価動作において用いられる一つの評価条件を、作業者が選択できるように構成される。 Moreover, the controller (110) of the present embodiment, like the controller (110) of the second embodiment, has a plurality of (three in the present embodiment) reference levels of airtightness of the storage case (1) different from each other. Among the evaluation conditions, the operator can select one of the evaluation conditions used in the evaluation operation of the airtightness evaluation unit (116).
 評価条件Aは、“給気流量を毎分10リットルに設定した状態で、荷室(5)の加圧の開始から5分間が経過した時点における輸送用コンテナ(1)内の気圧が490Pa(ゲージ圧)以上である”という条件である。評価条件Bは、“給気流量を毎分20リットルに設定した状態で、荷室(5)の加圧の開始から5分間が経過した時点における輸送用コンテナ(1)内の気圧が150Pa(ゲージ圧)以上である”という条件である。評価条件Cは、“給気流量を毎分25リットルに設定した状態で、荷室(5)の加圧の開始から5分間が経過した時点における輸送用コンテナ(1)内の気圧が150Pa(ゲージ圧)以上である”という条件である。これら三つの評価条件A~Cの基準レベル(収納庫(1)の気密性のレベル)は、評価条件Aが最も高く、評価条件A,評価条件B,評価条件Cの順に低くなる。 The evaluation condition A is “The pressure in the transportation container (1) is 490 Pa at the time when 5 minutes have elapsed from the start of pressurization of the loading space (5) with“ the air flow rate set at 10 liters per minute It is the condition that it is "gage pressure" or more. In the evaluation condition B, “The pressure inside the transportation container (1) is 150 Pa (5 minutes after the start of pressurization of the loading space (5) in a state where the air supply flow rate is set to It is the condition that it is "gage pressure" or more. The evaluation condition C is that “the pressure inside the transportation container (1) is 150 Pa (5 minutes after the start of pressurization of the loading space (5) with the air supply flow rate set at 25 liters per It is the condition that it is "gage pressure" or more. The standard level of these three evaluation conditions A to C (the airtightness level of the storage (1)) is the highest in the evaluation condition A, and becomes lower in the order of the evaluation condition A, the evaluation condition B and the evaluation condition C.
 制御器(110)のメモリ(112)には、三つの評価条件のそれぞれに対応する評価用圧力および制御用圧力が予め記録される。具体的に、メモリ(112)は、評価条件Aに対応する第1評価用圧力PR1および第1制御用圧力PC1と、評価条件Bに対応する第2評価用圧力PR2および第2制御用圧力PC2と、評価条件Cに対応する第3評価用圧力PR3および第3制御用圧力PC3とを記憶する。 In the memory (112) of the controller (110), the evaluation pressure and the control pressure corresponding to each of the three evaluation conditions are recorded in advance. Specifically, the memory (112), the evaluation conditions as the first evaluation pressure P R1 and the first control pressure P C1 corresponding to A, evaluation condition second evaluation pressure P R2 and a second control corresponding to the B and use the pressure P C2, and stores the third evaluation pressure P R3 and the third control pressure P C3 corresponding to the evaluation criteria C.
 ここで、ポンプユニット(35)の第1ポンプ(36)は、“吐出する空気の圧力(吐出圧力)が高くなるほど、吐出する空気の体積流量(吐出流量)が少なくなる”という特性を有している。つまり、第1ポンプ(36)は、吐出圧力と吐出流量が互いに相関する。そこで、メモリ(112)には、評価条件Aに対応する第1制御用圧力PC1として“第1ポンプ(36)の吐出流量が毎分10リットルであるときの吐出圧力”が記録される。また、メモリ(112)には、評価条件Bに対応する第2制御用圧力PC2として“第1ポンプ(36)の吐出流量が毎分20リットルであるときの吐出圧力”が記録される。また、メモリ(112)には、評価条件Cに対応する第3制御用圧力PC3として“第1ポンプ(36)の吐出流量が毎分25リットルであるときの吐出圧力”が記録される。 Here, the first pump (36) of the pump unit (35) has a characteristic that “the volumetric flow rate (discharge flow rate) of the discharged air decreases as the pressure (discharge pressure) of the discharged air increases. ing. That is, in the first pump (36), the discharge pressure and the discharge flow rate correlate with each other. Therefore, the memory (112), is recorded "discharge pressure when the discharge flow rate of the first pump (36) is 10 liters per minute" as a first control pressure P C1 corresponding to the evaluation criteria A. In the memory (112), “the discharge pressure when the discharge flow rate of the first pump (36) is 20 liters per minute” is recorded as the second control pressure PC2 corresponding to the evaluation condition B. In the memory (112), “the discharge pressure when the discharge flow rate of the first pump (36) is 25 liters per minute” is recorded as the third control pressure PC3 corresponding to the evaluation condition C.
  -気密性評価部の評価動作-
 本実施形態の気密性評価部(116)が行う評価動作について、図10のフロー図を参照しながら説明する。
-Evaluation operation of air tightness evaluation unit-
The evaluation operation performed by the airtightness evaluation unit (116) of the present embodiment will be described with reference to the flow chart of FIG.
 気密性評価部(116)は、評価動作を開始すると、先ず、ステップST30において、作業者が評価条件A~Cのうちの一つを選択するまで待機する。 When the air tightness evaluation unit (116) starts the evaluation operation, first, in step ST30, the operator stands by until one of the evaluation conditions A to C is selected.
 作業者が操作盤(113)を操作して評価条件A~Cのうちの一つを選択する情報を入力すると、気密性評価部(116)は、評価用圧力Pと制御用圧力Pのそれぞれを、選択された評価条件に対応する値に設定する。評価条件Aが選択された場合、気密性評価部(116)は、評価用圧力Pを第1評価用圧力PR1とし(P=PR1)、制御用圧力Pを第1制御用圧力PC1とする(P=PC1)。評価条件Bが選択された場合、気密性評価部(116)は、評価用圧力Pを第2評価用圧力PR2とし(P=PR2)、制御用圧力Pを第2制御用圧力PC2とする(P=PC2)。評価条件Cが選択された場合、気密性評価部(116)は、評価用圧力Pを第3評価用圧力PR3とし(P=PR3)、制御用圧力Pを第3制御用圧力PC3とする(P=PC3)。 When the operator inputs information for selecting one of the evaluation criteria A ~ C by operating the operation panel (the 113), airtightness evaluation unit (116) is evaluated for the pressure P R and the control pressure P C Are set to values corresponding to the selected evaluation condition. If the evaluation condition A is selected, airtightness evaluation unit (116), an evaluation pressure P R as a first evaluation pressure P R1 (P R = P R1), a first control for control pressure P C The pressure is P C1 (P C = P C1 ). When the evaluation condition B is selected, the airtightness evaluation unit (116) sets the evaluation pressure P R as the second evaluation pressure P R2 (P R = P R2 ), and the control pressure P C for the second control. Let pressure P C2 be (P C = P C2 ). If the evaluation condition C is selected, airtightness evaluation unit (116), an evaluation pressure P R as a third evaluation pressure P R3 (P R = P R3), a third control for control pressure P C The pressure is P C3 (P C = P C3 ).
 次のステップST31において、気密性評価部(116)は、庫内空気調節装置(30)に設けられた弁の操作を行う。具体的に、気密性評価部(116)は、第1バイパス弁(50)と第2バイパス弁(70)のそれぞれを第2状態(図9に破線で示す状態)に設定し、第1調節弁(46)の開度を所定の初期開度に設定し、換気用排気弁(101)を開状態に設定し、第2調節弁(66)及び測定用開閉弁(126)を閉状態に設定する。 In the next step ST31, the airtightness evaluation unit (116) operates a valve provided in the in-compartment air conditioning device (30). Specifically, the air tightness evaluation unit (116) sets each of the first bypass valve (50) and the second bypass valve (70) to the second state (the state shown by the broken line in FIG. 9), and performs the first adjustment Set the opening degree of the valve (46) to a predetermined initial opening degree, set the ventilation exhaust valve (101) to the open state, and close the second control valve (66) and the measurement on-off valve (126) Set
 次のステップST32において、気密性評価部(116)は、ポンプユニット(35)の駆動モータ(38)に通電して第1ポンプ(36)を作動させる。第1ポンプ(36)は、エアフィルタ(47)を通じて吸い込んだ庫外空気を加圧してから吐出する。第1ポンプ(36)から吐出された庫外空気は、第1バイパス弁(50)と第1バイパス管(51)と供給管(120)とを順に通って輸送用コンテナ(1)の内部へ供給される。 In the next step ST32, the air tightness evaluation unit (116) energizes the drive motor (38) of the pump unit (35) to operate the first pump (36). The first pump (36) pressurizes the outside air sucked through the air filter (47) and then discharges it. Outside air discharged from the first pump (36) passes through the first bypass valve (50), the first bypass pipe (51) and the supply pipe (120) in this order to the inside of the transport container (1) Supplied.
 ただし、この時点では換気用排気弁(101)が開いている。そのため、第1ポンプ(36)から吐出された庫外空気が輸送用コンテナ(1)の内部へ供給されても、輸送用コンテナ(1)内の気圧は大気圧と実質的に同じに保たれる。つまり、この時点では、荷室(5)の加圧は、まだ開始されない。 However, at this time, the ventilation exhaust valve (101) is open. Therefore, even if the outside air discharged from the first pump (36) is supplied to the inside of the transport container (1), the air pressure in the transport container (1) is kept substantially the same as the atmospheric pressure. Be That is, at this point, pressurization of the loading space (5) is not yet started.
 なお、本実施形態の庫内空気調節装置(30)では、実施形態1と同様に、庫内空気が第2ポンプ(37)へ吸い込まれ、第2ポンプ(37)から吐出された庫内空気が輸送用コンテナ(1)の内部へ送り返される。 In the in-compartment air conditioning device (30) of the present embodiment, the in-compartment air is sucked into the second pump (37) and the in-compartment air discharged from the second pump (37) as in the first embodiment. Is sent back inside the shipping container (1).
 次のステップST33において、気密性評価部(116)は、第1ポンプ(36)から吐出されて輸送用コンテナ(1)の内部へ供給される庫外空気の流量(即ち、給気流量)が、作業者によって選択された評価条件に対応した値となるように、第1調節弁(46)の開度を調節する。 In the next step ST33, the air tightness evaluation unit (116) determines that the flow rate of the outside air discharged from the first pump (36) and supplied to the inside of the transport container (1) (ie, the air supply flow rate) is The opening degree of the first control valve (46) is adjusted to be a value corresponding to the evaluation condition selected by the operator.
 具体的に、気密性評価部(116)は、第1圧力センサ(45)の計測値が、ステップST30において設定された制御用圧力Pとなるように、第1調節弁(46)の開度を調節する。気密性評価部(116)は、第1圧力センサ(45)の計測値が制御用圧力Pを上回る場合は第1調節弁(46)の開度を拡大し、第1圧力センサ(45)の計測値が制御用圧力Pを下回っている場合は第1調節弁(46)の開度を縮小する。 Specifically, the airtightness evaluation unit (116) opens the first control valve (46) so that the measurement value of the first pressure sensor (45) becomes the control pressure P C set in step ST30. Adjust the degree. When the measured value of the first pressure sensor (45) exceeds the control pressure P C , the airtightness evaluation unit (116) enlarges the opening degree of the first control valve (46), and the first pressure sensor (45) When the measured value of the pressure control value Pc is less than the control pressure P C , the opening degree of the first control valve (46) is reduced.
 第1圧力センサ(45)の計測値が実質的に制御用圧力Pに保たれた状態になると、気密性評価部(116)は、第1調節弁(46)の開度を固定し、その後にステップST34へ移行する。 When the measurement value of the first pressure sensor (45) is substantially maintained at the control pressure P C , the airtightness evaluation unit (116) fixes the opening degree of the first control valve (46), Thereafter, the process proceeds to step ST34.
 ステップST34において、気密性評価部(116)は、換気用排気弁(101)を閉じる。換気用排気弁(101)が閉じると、輸送用コンテナ(1)内の気圧が次第に上昇してゆく。つまり、換気用排気弁(101)が閉じた時点で荷室(5)の加圧が始まる。また、気密性評価部(116)は、換気用排気弁(101)を閉じた時点(即ち、荷室(5)の加圧を開始した時点)からの経過時間Tの計測を開始する。 In step ST34, the airtightness evaluation unit (116) closes the ventilation exhaust valve (101). When the ventilation exhaust valve (101) is closed, the air pressure in the transport container (1) gradually increases. That is, pressurization of the loading space (5) starts when the ventilation exhaust valve (101) is closed. In addition, the airtightness evaluation unit (116) starts to measure the elapsed time T from the time when the ventilation exhaust valve (101) is closed (that is, when pressurization of the cargo space (5) is started).
 次のステップST35において、気密性評価部(116)は、第3圧力センサ(103)の計測値を読み込み、読み込んだ計測値を輸送用コンテナ(1)内の気圧の計測値Pとしてメモリ(112)に記憶させる。次のステップST36において、気密性評価部(116)は、ステップST35においてメモリ(112)に記憶させた計測値Pを、ステップST30において設定した評価用圧力Pと比較する。 In the next step ST35, the airtightness evaluation unit (116) reads the measurement value of the third pressure sensor (103), and stores the read measurement value as the measurement value P of the air pressure in the transport container (1) (112) Remember to). In the next step ST36, airtightness evaluation unit (116), the measured value P stored in the memory (112) in step ST35, compared to the evaluation pressure P R, which is set at step ST30.
 ステップST36において、輸送用コンテナ(1)内の気圧の計測値Pが評価用圧力Pに達している場合(P≧P)は、荷室(5)の加圧を開始した時点から基準時間T(本実施形態ではT=5分)が経過する前に、輸送用コンテナ(1)内の気圧が評価用圧力Pに達していることになる。そこで、この場合、気密性評価部(116)は、ステップST37へ移行し、輸送用コンテナ(1)の気密性が充足されている(即ち、輸送用コンテナ(1)の気密性が基準レベルに達している)旨の情報をメモリ(112)に記録する。 In step ST36, when the measured value P of the atmospheric pressure in the transport container (1) has reached the evaluation pressure P R (P P P R ), the reference is taken from the time when pressurization of the loading space (5) is started. Before the time T 0 (in this embodiment, T 0 = 5 minutes) elapses, the air pressure in the transport container (1) has reached the evaluation pressure P R. Therefore, in this case, the airtightness evaluation unit (116) proceeds to step ST37, and the airtightness of the transport container (1) is satisfied (that is, the airtightness of the transport container (1) becomes the standard level. The information to the effect is recorded in the memory (112).
 一方、ステップST36において、輸送用コンテナ(1)内の気圧の計測値Pが評価用圧力Pに達していない場合(P<P)、気密性評価部(116)は、ステップST38へ移行し、荷室(5)の加圧を開始した時点からの経過時間Tを、基準時間Tと比較する。 On the other hand, when the measured value P of the atmospheric pressure in the transport container (1) does not reach the evaluation pressure P R in step ST36 (P <P R ), the airtightness evaluation unit (116) proceeds to step ST38. Then, the elapsed time T from the start of pressurization of the loading space (5) is compared with the reference time T 0 .
 経過時間Tが基準時間Tに達していない場合、気密性評価部(116)は、ステップST35へ戻り、ステップST35とステップST36の動作を順に行う。一方、経過時間Tが基準時間Tに達している場合、荷室(5)の加圧を開始した時点から基準時間Tが経過しても、計測値Pが評価用圧力Pに達していないことになる。そこで、この場合、気密性評価部(116)は、ステップST39へ移行し、輸送用コンテナ(1)の気密性が不足している(即ち、輸送用コンテナ(1)の気密性が基準レベルに達していない)旨の情報をメモリ(112)に記録する。 If the elapsed time T has not reached the reference time T 0, airtightness evaluation unit (116), the process returns to step ST35, it performs the operations of steps ST35 and step ST36 in order. On the other hand, if the elapsed time T has reached the reference time T 0, even if the reference time T 0 from the time of starting the pressure of the luggage compartment (5) has passed, the measured value P reaches the evaluation pressure P R It will not be. Therefore, in this case, the airtightness evaluation unit (116) proceeds to step ST39, and the airtightness of the transport container (1) is insufficient (that is, the airtightness of the transport container (1) becomes the standard level. The information (not reached) is recorded in the memory (112).
 《実施形態4》
 実施形態4について説明する。本実施形態の庫内空気調節装置(30)に組み込まれた気密性評価装置(130)は、実施形態3の気密性評価装置(130)において、制御器(110)の気密性評価部(116)が評価動作において成否を判断する評価条件を変更したものである。ここでは、本実施形態の庫内空気調節装置(30)について、実施形態3の庫内空気調節装置(30)と異なる点を説明する。
<< Embodiment 4 >>
The fourth embodiment will be described. The airtightness evaluation device (130) incorporated in the in-compartment air conditioning system (30) of the present embodiment is the airtightness evaluation unit (116) of the controller (110) in the airtightness evaluation device (130) of the third embodiment. Is a change in the evaluation condition for judging success or failure in the evaluation operation. Here, points different from the in-compartment air conditioning device (30) of the third embodiment will be described with respect to the in-compartment air conditioning device (30) of the present embodiment.
  -制御器-
 本実施形態の制御器(110)は、気密性評価部(116)が評価動作において成否を判断する評価条件が、実施形態3の制御器(110)と異なる。本実施形態の気密性評価部(116)は、評価動作において、“輸送用コンテナ(1)内の気圧を所定の基準圧力範囲に保つために必要な、輸送用コンテナ(1)の内部へ供給される空気の流量(給気流量)が、所定の評価用流量Q以下である” という評価条件の成否を判断する。
-Controller-
The controller (110) of the present embodiment differs from the controller (110) of the third embodiment in the evaluation conditions under which the airtightness evaluation unit (116) determines the success or failure in the evaluation operation. In the evaluation operation, the airtightness evaluation unit (116) of the present embodiment “into the inside of the transport container (1) necessary for keeping the pressure in the transport container (1) within the predetermined reference pressure range It is determined whether the evaluation condition that the flow rate (air supply flow rate) of the air to be performed is equal to or less than a predetermined evaluation flow rate R R is met.
 また、本実施形態の制御器(110)は、実施形態3の制御器(110)と同様に、収納庫(1)の気密性の基準レベルが互いに異なる複数(本実施形態では三つ)の評価条件の中から、気密性評価部(116)の評価動作において用いられる一つの評価条件を、作業者が選択できるように構成される。 Further, the controller (110) of the present embodiment, like the controller (110) of the third embodiment, has a plurality of (three in the present embodiment) reference levels of airtightness of the storage case (1) different from each other. Among the evaluation conditions, the operator can select one of the evaluation conditions used in the evaluation operation of the airtightness evaluation unit (116).
 評価条件Aは、“輸送用コンテナ(1)内の気圧の計測値Pを所定の基準圧力範囲(PR1≦P≦PR1+α、PR1:第1評価用圧力)に保つために必要な給気流量が、第1評価用流量QR1以下である”という条件である。評価条件Bは、“輸送用コンテナ(1)内の気圧の計測値Pを基準圧力範囲(PR2≦P≦PR2+α、PR2:第2評価用圧力)に保つために必要な給気流量が、第2評価用流量QR2以下である”という条件である。評価条件Cは、“輸送用コンテナ(1)内の気圧の計測値Pを基準圧力範囲(PR3≦P≦PR3+α、PR3:第3評価用圧力)に保つために必要な給気流量が、第3評価用流量QR3以下である”という条件である。なお、本実施形態において、「α」の値は、例えば10パスカル(Pa)に設定される。これら三つの評価条件A~Cの基準レベル(収納庫(1)の気密性のレベル)は、評価条件Aが最も高く、評価条件A,評価条件B,評価条件Cの順に低くなる。 Evaluation condition A is necessary to keep “the measured value P of the atmospheric pressure in the transport container (1) within a predetermined reference pressure range ( PR1 ≦ P ≦ PR1 + α, PR1 : first evaluation pressure) The condition is that the air supply flow rate is equal to or less than the first evaluation flow rate QR1 . The evaluation condition B is "the air supply necessary to keep the measured value P of the atmospheric pressure in the transport container (1) within the reference pressure range ( PR2 ? P? PR2 +?, PR2 : second evaluation pressure) The condition is that the flow rate is less than or equal to the second evaluation flow rate QR2 . The evaluation condition C is “the air supply necessary to keep the measured value P of the atmospheric pressure in the transport container (1) in the reference pressure range ( PR3 ≦ P ≦ PR3 + α, PR3 : third evaluation pressure) The condition is that the flow rate is less than or equal to the third evaluation flow rate QR3 . In the present embodiment, the value of “α” is set to, for example, 10 Pascal (Pa). The standard level of these three evaluation conditions A to C (the airtightness level of the storage (1)) is the highest in the evaluation condition A, and becomes lower in the order of the evaluation condition A, the evaluation condition B and the evaluation condition C.
 制御器(110)のメモリ(112)には、三つの評価条件のそれぞれに対応する評価用圧力および評価用流量が予め記録される。具体的に、メモリ(112)は、評価条件Aに対応する第1評価用圧力PR1および第1評価用流量QR1と、評価条件Bに対応する第2評価用圧力PR2および第2評価用流量QR2と、評価条件Cに対応する第3評価用圧力PR3および第3評価用流量QR3とを記憶する。ただし、本実施形態の制御器(110)のメモリ(112)が記憶する第1~第3評価用圧力の値は、実施形態3の制御器(110)のメモリ(112)が記憶する第1~第3評価用圧力の値と異なる。 In the memory (112) of the controller (110), an evaluation pressure and an evaluation flow rate corresponding to each of the three evaluation conditions are recorded in advance. Specifically, the memory (112), the evaluation condition first evaluation pressure corresponding to A P R1 and the first evaluation flow Q R1, evaluation condition second evaluation pressure P R2 and a second evaluation corresponding to B the use flow rate Q R2, stores a third evaluation pressure P R3 and the third evaluation flow Q R3 corresponding to the evaluation criteria C. However, the first to third evaluation pressure values stored in the memory (112) of the controller (110) of the present embodiment are the first values stored in the memory (112) of the controller (110) of the third embodiment. ~ Different from the value of the third evaluation pressure.
  -気密性評価部の評価動作-
 本実施形態の気密性評価部(116)が行う評価動作について、図11のフロー図を参照しながら説明する。
-Evaluation operation of air tightness evaluation unit-
The evaluation operation performed by the airtightness evaluation unit (116) of the present embodiment will be described with reference to the flow chart of FIG.
 気密性評価部(116)は、評価動作を開始すると、先ず、ステップST50において、作業者が評価条件A~Cのうちの一つを選択するまで待機する。 When the air tightness evaluation unit (116) starts the evaluation operation, first, in step ST50, the operator stands by until one of the evaluation conditions A to C is selected.
 作業者が操作盤(113)を操作して評価条件A~Cのうちの一つを選択する情報を入力すると、気密性評価部(116)は、評価用圧力Pと評価用流量Qのそれぞれを、選択された評価条件に対応する値に設定する。評価条件Aが選択された場合、気密性評価部(116)は、評価用圧力Pを第1評価用圧力PR1とし(P=PR1)、評価用流量Qを第1評価用流量QR1とする(Q=QR1)。評価条件Bが選択された場合、気密性評価部(116)は、評価用圧力Pを第2評価用圧力PR2とし(P=PR2)、評価用流量Qを第2評価用流量QR2とする(Q=QR2)。評価条件Cが選択された場合、気密性評価部(116)は、評価用圧力Pを第3評価用圧力PR3とし(P=PR3)、評価用流量Qを第3評価用流量QR3とする(Q=QR3)。 When the operator inputs information for selecting one of the evaluation criteria A ~ C by operating the operation panel (the 113), airtightness evaluation unit (116) is evaluated for the pressure P R for evaluation flow Q R Are set to values corresponding to the selected evaluation condition. If the evaluation condition A is selected, airtightness evaluation unit (116), an evaluation pressure P R as a first evaluation pressure P R1 (P R = P R1), a first evaluation of the evaluation rate Q R It is assumed that the flow rate Q R1 (Q R = Q R1 ). If the evaluation conditions B is selected, airtightness evaluation unit (116), an evaluation pressure P R as a second evaluation pressure P R2 (P R = P R2), a second evaluation of the evaluation rate Q R It is assumed that the flow rate Q R2 (Q R = Q R2 ). If the evaluation condition C is selected, airtightness evaluation unit (116), an evaluation pressure P R as a third evaluation pressure P R3 (P R = P R3), a third evaluation the evaluation flow Q R It is assumed that the flow rate Q R3 (Q R = Q R3 ).
 次のステップST51において、気密性評価部(116)は、庫内空気調節装置(30)に設けられた弁の操作を行う。具体的に、気密性評価部(116)は、第1バイパス弁(50)と第2バイパス弁(70)のそれぞれを第2状態(図9に破線で示す状態)に設定し、第1調節弁(46)の開度を所定の初期開度(例えば、全開状態)に設定し、第2調節弁(66)、換気用排気弁(101)及び測定用開閉弁(126)を閉状態に設定する。 In the next step ST51, the airtightness evaluation unit (116) operates a valve provided in the in-compartment air conditioning device (30). Specifically, the air tightness evaluation unit (116) sets each of the first bypass valve (50) and the second bypass valve (70) to the second state (the state shown by the broken line in FIG. 9), and performs the first adjustment Set the opening degree of the valve (46) to a predetermined initial opening degree (for example, full opening state) and close the second control valve (66), the ventilation exhaust valve (101) and the measurement on-off valve (126) Set
 次のステップST52において、気密性評価部(116)は、ポンプユニット(35)の駆動モータ(38)に通電して第1ポンプ(36)を作動させる。第1ポンプ(36)は、エアフィルタ(47)を通じて吸い込んだ庫外空気を加圧してから吐出する。第1ポンプ(36)から吐出された庫外空気は、第1バイパス弁(50)と第1バイパス管(51)と供給管(120)とを順に通って輸送用コンテナ(1)の内部へ供給される。 In the next step ST52, the air tightness evaluation unit (116) energizes the drive motor (38) of the pump unit (35) to operate the first pump (36). The first pump (36) pressurizes the outside air sucked through the air filter (47) and then discharges it. Outside air discharged from the first pump (36) passes through the first bypass valve (50), the first bypass pipe (51) and the supply pipe (120) in this order to the inside of the transport container (1) Supplied.
 なお、本実施形態の庫内空気調節装置(30)では、実施形態1と同様に、庫内空気が第2ポンプ(37)へ吸い込まれ、第2ポンプ(37)から吐出された庫内空気が輸送用コンテナ(1)の内部へ送り返される。 In the in-compartment air conditioning device (30) of the present embodiment, the in-compartment air is sucked into the second pump (37) and the in-compartment air discharged from the second pump (37) as in the first embodiment. Is sent back inside the shipping container (1).
 次のステップST53において、気密性評価部(116)は、タイマーAによる経過時間Tの計測と、タイマーBによる経過時間Tの計測とを、同時に開始する。 In the next step ST53, airtightness evaluation unit (116) includes a measurement of the elapsed time T A by the timer A, a measurement of the elapsed time T B by the timer B, and started at the same time.
 次のステップST54において、気密性評価部(116)は、第3圧力センサ(103)の計測値を読み込み、読み込んだ計測値を輸送用コンテナ(1)内の気圧の計測値Pとしてメモリ(112)に記憶させる。なお、メモリ(112)は、その時点における第3圧力センサ(103)の計測値(即ち、最新の計測値P)だけでなく、過去の計測値Pも記憶する。 In the next step ST54, the airtightness evaluation unit (116) reads the measurement value of the third pressure sensor (103), and stores the read measurement value as the measurement value P of the air pressure in the transport container (1) (112) Remember to). The memory (112) stores not only the measurement value of the third pressure sensor (103) at that time (ie, the latest measurement value P) but also the past measurement value P.
 次のステップST55において、気密性評価部(116)は、直前のステップST54においてメモリ(112)に記憶させた計測値P(即ち、最新の計測値P)を、(P+α)の値と比較する。Pは、ステップST50において設定した評価用圧力である。 In the next step ST55, airtightness evaluation unit (116), the measurement value is stored in the memory (112) in the immediately preceding step ST54 P (i.e., the latest measured value P) and a value of (P R + alpha) Compare. P R is the evaluation pressure set in step ST50.
 ステップST55において最新の計測値Pが(P+α)を上回る場合(P>P+α)は、給気流量が多すぎて輸送用コンテナ(1)内の気圧が高くなり過ぎていることになる。そこで、この場合、気密性評価部(116)は、ステップST56へ移行し、給気流量を減らすために第1調節弁(46)の開度を縮小する。その際、気密性評価部(116)は、第1調節弁(46)の開度を、予め定められた一定値だけ縮小する。 Step If exceeded the latest measured value P a (P R + alpha) in ST55 (P> P R + alpha) is in the pressure of the supply air flow rate is too high in a shipping container (1) is too high Become. Therefore, in this case, the airtightness evaluation unit (116) proceeds to step ST56, and reduces the opening degree of the first control valve (46) to reduce the air supply flow rate. At this time, the airtightness evaluation unit (116) reduces the opening degree of the first control valve (46) by a predetermined constant value.
 一方、ステップST55において最新の計測値Pが(P+α)以下である場合(P≦P+α)、気密性評価部(116)は、ステップST57へ移行し、最新の計測値Pを評価用圧力Pと比較する。 On the other hand, if the latest measured value P is less than (P R + α) in step ST55 (P ≦ P R + α), the airtightness evaluation unit (116) proceeds to step ST57 and evaluates the latest measured value P. compared to the use pressure P R.
 ステップST57において最新の計測値PがP未満である場合(P<P)は、給気流量が少なすぎて輸送用コンテナ(1)内の気圧が充分に上昇していないことになる。そこで、この場合、気密性評価部(116)は、ステップST58へ移行し、給気流量を増やすために第1調節弁(46)の開度を拡大する。その際、気密性評価部(116)は、第1調節弁(46)の開度を、予め定められた一定値だけ拡大する。 If the latest measurement value P is less than P R in step ST 57 (P <P R ), the air flow rate is too low, and the air pressure in the transport container (1) is not sufficiently increased. Therefore, in this case, the airtightness evaluation unit (116) proceeds to step ST58, and enlarges the opening degree of the first control valve (46) in order to increase the air supply flow rate. At that time, the airtightness evaluation unit (116) enlarges the opening degree of the first control valve (46) by a predetermined constant value.
 ステップST56またはステップST58において給気流量が変更された場合は、輸送用コンテナ(1)内の気圧の計測値Pが基準圧力範囲(P≦P≦P+α)から外れていることになる。そこで、この場合、気密性評価部(116)は、ステップST59へ移行し、タイマーBが計測した経過時間Tをゼロにリセットし、タイマーBによる経過時間Tの計測を再開する。その後、気密性評価部(116)は、ステップST60へ移行する。 If the supply air flow rate is changed in step ST56 or step ST58, so that the measured value P of the air pressure in the shipping container (1) is outside the reference pressure range (P R ≦ P ≦ P R + α) . Therefore, in this case, airtightness evaluation unit (116), the process proceeds to step ST59, the elapsed time T B the timer B is measured reset to zero and resumes elapsed time measurement T B by the timer B. Thereafter, the airtightness evaluation unit (116) proceeds to step ST60.
 一方、ステップST57において最新の計測値PがP以上である場合(P≧P)は、輸送用コンテナ(1)内の気圧の計測値Pが基準圧力範囲(P≦P≦P+α)に入っていることになる。この場合、気密性評価部(116)は、ステップST60へ移行する。 On the other hand, when the latest measured value P is greater than P R in step ST 57 (P (P R ), the measured value P of the atmospheric pressure in the transport container (1) is within the reference pressure range (P R ≦ P ≦ P R It will be in + α). In this case, the airtightness evaluation unit (116) proceeds to step ST60.
 ステップST60において、気密性評価部(116)は、その時点で第1ポンプ(36)が輸送用コンテナ(1)の内部へ供給する庫外空気の流量(即ち、その時点における給気流量Q)を算出する。 In step ST60, the airtightness evaluation unit (116) determines the flow rate of the outside air supplied to the inside of the transport container (1) by the first pump (36) at that time (that is, the air supply flow rate Q at that time). Calculate
 実施形態3についての説明で述べたように、ポンプユニット(35)の第1ポンプ(36)は、“吐出する空気の圧力(吐出圧力)が高くなるほど、吐出する空気の体積流量(吐出流量)が少なくなる”という特性を有している。そこで、ステップST57において、気密性評価部(116)は、第1ポンプ(36)の吐出圧力と吐出流量の相関式と、第1圧力センサ(45)の計測値(即ち、第1ポンプ(36)の吐出圧力の実測値)とを用いて、給気流量Qを算出する。 As described in the description of the third embodiment, the first pump (36) of the pump unit (35) sets the “volume flow (discharge flow) of the discharged air as the pressure (discharge pressure) of the discharged air increases. The characteristic is that the Therefore, in step ST57, the air tightness evaluation unit (116) measures the correlation between the discharge pressure and the discharge flow rate of the first pump (36) and the measurement value of the first pressure sensor (45) (ie, the first pump (36). The air supply flow rate Q is calculated using the measured value of the discharge pressure of.
 次のステップST61において、気密性評価部(116)は、タイマーBが計測した経過時間Tを、所定の基準時間TB0(本実施形態では、TB0=10分)と比較する。 In the next step ST61, the airtightness evaluation unit (116) compares the elapsed time TB measured by the timer B with a predetermined reference time TB0 (in this embodiment, TB0 = 10 minutes).
 ステップST61において経過時間Tが基準時間TB0に達している場合(T≧TB0)は、輸送用コンテナ(1)内の気圧が、基準時間TB0以上に亘って、基準圧力範囲(P≦P≦P+α)に保たれていることになる。つまり、この場合は、輸送用コンテナ(1)内の気圧が概ね一定に保たれていることになる。そこで、この場合、気密性評価部(116)は、ステップST62へ移行し、ステップST60で算出した給気流量Q(即ち、最新の給気流量Q)を、ステップST50において設定した評価用流量Qと比較する。 If the elapsed time T B has reached the reference time T B0 in (T BT B0) step ST61, the air pressure in the shipping container (1) is over the reference time T B0 above, the reference pressure range ( P R ≦ P ≦ P R + α) is maintained. That is, in this case, the air pressure in the transport container (1) is kept approximately constant. Therefore, in this case, the airtightness evaluation unit (116) proceeds to step ST62, and the air supply flow rate Q calculated in step ST60 (ie, the latest air supply flow rate Q) is set to the evaluation flow rate Q set in step ST50. Compare with R.
 ステップST62において最新の給気流量Qが評価用流量Q以下である場合(Q≦Q)は、輸送用コンテナ(1)内の気圧を基準圧力範囲(P≦P≦P+α)に保つために必要な給気流量が、評価用流量Q以下であることになる。そこで、この場合、気密性評価部(116)は、ステップST63へ移行し、輸送用コンテナ(1)の気密性が充足されている(即ち、輸送用コンテナ(1)の気密性が基準レベルに達している)旨の情報をメモリ(112)に記録する。 If the latest air supply flow rate Q is less than or equal to the evaluation flow rate Q R in step ST 62 (Q Q Q R ), the atmospheric pressure in the transport container (1) is set to the reference pressure range (P R ≦ P ≦ P R + α) supply flow rate required to keep the results in at most evaluation flow Q R. Therefore, in this case, the airtightness evaluation unit (116) proceeds to step ST63, and the airtightness of the transport container (1) is satisfied (that is, the airtightness of the transport container (1) becomes the standard level. The information to the effect is recorded in the memory (112).
 一方、ステップST62において最新の給気流量Qが評価用流量Qを上回る場合(Q>Q)は、輸送用コンテナ(1)内の気圧を基準圧力範囲(P≦P≦P+α)に保つために必要な給気流量が、評価用流量Qを上回っていることになる。そこで、この場合、気密性評価部(116)は、ステップST64へ移行し、輸送用コンテナ(1)の気密性が不足している(即ち、輸送用コンテナ(1)の気密性が基準レベルに達していない)旨の情報をメモリ(112)に記録する。 On the other hand, if the latest of the supply flow rate Q over the evaluation flow Q R in Step ST62 (Q> Q R) is the reference pressure range pressure in the shipping container (1) (P R ≦ P ≦ P R + α supply flow rate required to keep) becomes that exceeds the evaluation flow Q R. Therefore, in this case, the airtightness evaluation unit (116) proceeds to step ST64, and the airtightness of the transport container (1) is insufficient (ie, the airtightness of the transport container (1) becomes the standard level. The information (not reached) is recorded in the memory (112).
 ステップST61において経過時間Tが基準時間TB0に達していない場合(T<TB0)、気密性評価部(116)は、ステップST65へ移行し、タイマーAが計測した経過時間Tを、所定の基準時間TA0(本実施形態では、TA0=20分)と比較する。 If the elapsed time T B in step ST61 does not reach the reference time T B0 (T B <T B0), airtightness evaluation unit (116), the process proceeds to step ST65, the elapsed time T A timer A is measured , And a predetermined reference time T A0 (in the present embodiment, T A0 = 20 minutes).
 ステップST65において経過時間Tが基準時間TA0に達している場合(T≧TA0)は、評価動作の開始から比較的長時間(本実施形態では20分間)が既に経過していることになる。そこで、この場合、気密性評価部(116)は、ステップST66へ移行する。一方、ステップST65において経過時間Tが基準時間TA0に達していない場合(T<TA0)、気密性評価部(116)は、ステップST54へ戻り、上述した一連の動作を再び行う。 If the elapsed time T A has reached the reference time T A 0 in step ST 65 (T A TT A 0 ), a relatively long time (20 minutes in the present embodiment) has already elapsed from the start of the evaluation operation. become. Therefore, in this case, the airtightness evaluation unit (116) proceeds to step ST66. On the other hand, if the elapsed time T A has not reached the reference time T A 0 in step ST 65 (T A <T A 0 ), the airtightness evaluation unit (116) returns to step ST 54 and performs the above-described series of operations again.
 ステップST66において、気密性評価部(116)は、先ず、その時点から10分前までの間における給気流量Qの平均値Qを算出する。その際、気密性評価部(116)は、メモリ(112)に記録されている過去の給気流量Qを用いて、給気流量Qの平均値Qを算出する。そして、気密性評価部(116)は、算出した給気流量の平均値Qを、ステップST50において設定した評価用流量Qと比較する。 In step ST66, air tightness evaluation unit (116) first calculates the average value Q m of the air supply flow rate Q during the period from that point until 10 minutes ago. At this time, airtightness evaluation unit (116) uses the past air supply flow rate Q which is recorded in the memory (112), calculates the average value Q m of the air supply flow rate Q. Then, airtightness evaluation unit (116), an average value Q m of the calculated air intake amount, compared to the evaluation flow Q R set in step ST50.
 ステップST66において給気流量の平均値Qが評価用流量Q以下である場合(Q≦Q)は、比較的長時間(本実施形態では20分間)に亘って給気流量を調節し続けた状態において、給気流量の平均値Qが比較的低い値に抑えられていることになる。そのため、この場合は、輸送用コンテナ(1)内の気圧を基準圧力範囲(P≦P≦P+α)に保つために必要な給気流量が、実質的に評価用流量Q以下であると判断できる。そこで、この場合、気密性評価部(116)は、ステップST67へ移行し、輸送用コンテナ(1)の気密性が充足されている(即ち、輸送用コンテナ(1)の気密性が基準レベルに達している)旨の情報をメモリ(112)に記録する。 When the average value Q m of the air intake amount is less evaluation flow Q R in Step ST66 (Q m ≦ Q R) is a relatively long time adjusting the supply air flow over (20 minutes in this embodiment) to in the state in which continued, so that the average value Q m of the air intake amount is suppressed to a relatively low value. Therefore, in this case, the supply air flow rate required to maintain the air pressure in the shipping container (1) to the reference pressure range (P R ≦ P ≦ P R + α) is, at substantially less than the evaluation flow Q R It can be determined that there is. Therefore, in this case, the airtightness evaluation unit (116) proceeds to step ST67, and the airtightness of the transport container (1) is satisfied (that is, the airtightness of the transport container (1) becomes the standard level. The information to the effect is recorded in the memory (112).
 一方、ステップST66において給気流量の平均値Qが評価用流量Qを上回る場合(Q>Q)は、比較的長時間(本実施形態では20分間)に亘って給気流量を調節し続けた状態において、給気流量の平均値Qが比較的高い値となっていることになる。そのため、この場合は、輸送用コンテナ(1)内の気圧を基準圧力範囲(P≦P≦P+α)に保つために必要な給気流量が、実質的に評価用流量Qを上回っていると判断できる。そこで、この場合、気密性評価部(116)は、ステップST68へ移行し、輸送用コンテナ(1)の気密性が不足している(即ち、輸送用コンテナ(1)の気密性が基準レベルに達していない)旨の情報をメモリ(112)に記録する。 On the other hand, when the average value Q m of the air intake amount is greater than an evaluation flow Q R (Q m> Q R ) is a step ST66, the supply air flow rate over a relatively long time (20 minutes in this embodiment) in the state continued to adjust, so that the average value Q m of the air intake amount is a relatively high value. Therefore, in this case, the supply air flow rate required to maintain the air pressure in the shipping container (1) to the reference pressure range (P R ≦ P ≦ P R + α) is greater than the substantially evaluation flow Q R It can be determined that Therefore, in this case, the airtightness evaluation unit (116) proceeds to step ST68, and the airtightness of the transport container (1) is insufficient (ie, the airtightness of the transport container (1) becomes the standard level. The information (not reached) is recorded in the memory (112).
  -実施形態4の変形例-
 本実施形態の気密性評価装置(130)は、輸送用コンテナ(1)の内部へ供給される空気の流量(給気流量)を計測するための流量センサを備えていてもよい。この流量センサは、例えば第1組成調節部(40)の第1一次側管(53)に設けられ、第1一次側管(53)を流れる空気の体積流量を計測する。本変形例の制御器(110)の気密性評価部(116)は、図11のフロー図のステップST60において、流量センサの計測値を読み込み、読み込んだ流量センサの計測値を給気流量Qの計測値としてメモリ(112)に記録する。
-Modification of Embodiment 4-
The airtightness evaluation device (130) of the present embodiment may include a flow rate sensor for measuring the flow rate (air supply flow rate) of air supplied to the inside of the transport container (1). This flow rate sensor is provided, for example, on the first primary side pipe (53) of the first composition adjustment unit (40), and measures the volumetric flow rate of air flowing through the first primary side pipe (53). The airtightness evaluation unit (116) of the controller (110) of the present modification reads the measured value of the flow sensor at step ST60 of the flow chart of FIG. The measurement value is recorded in the memory (112).
 《実施形態5》
 実施形態5について説明する。ここでは、本実施形態の庫内空気調節装置(30)について、実施形態1の庫内空気調節装置(30)と異なる点を説明する。なお、本実施形態は、実施形態2~4の庫内空気調節装置(30)に適用することも可能である。
Embodiment 5
The fifth embodiment will be described. Here, points of the in-compartment air conditioning device (30) of the present embodiment different from the in-compartment air conditioning device (30) of the first embodiment will be described. The present embodiment can also be applied to the in-compartment air conditioning device (30) of the second to fourth embodiments.
 図12に示すように、本実施形態の庫内空気調節装置(30)は、実施形態1の庫内空気調節装置(30)に、入口側切換弁(140)と入口側分岐管(141)とを追加したものである。入口側切換弁(140)及び入口側分岐管(141)は、第2ポンプ(37)によって庫外空気を輸送用コンテナ(1)の内部へ供給可能とするために、庫内空気調節装置(30)に設けられる。 As shown in FIG. 12, the in-compartment air conditioning device (30) of the present embodiment is different from the in-compartment air conditioning device (30) of the first embodiment in the inlet side switching valve (140) and the inlet side branch pipe (141). And are added. The inlet-side switching valve (140) and the inlet-side branch pipe (141) are provided with an air conditioner for controlling the inside of the storage container so that outside air can be supplied to the inside of the transport container (1) by the second pump (37). 30).
 入口側切換弁(140)は、三つのポートを有する切換弁である。入口側切換弁(140)は、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態(図12に実線で示す状態)と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態(図12に破線で示す状態)とに切り換わるように構成される。 The inlet side switching valve (140) is a switching valve having three ports. The inlet-side switching valve (140) has a first state (shown by a solid line in FIG. 12) in which the first port communicates with the second port and is shut off from the third port; It is configured to be in communication with the third port and to switch to a second state (state shown by a broken line in FIG. 12) which is shut off from the second port.
 入口側切換弁(140)は、庫内側吸入管(75)の途中に配置される。入口側切換弁(140)は、第1のポートが第2ポンプ(37)の吸入口に接続し、第2のポートが庫内側吸入管(75)を介して二次流路(29b)と連通する。入口側切換弁(140)の第3のポートには、入口側分岐管(141)の一端が接続する。入口側分岐管(141)の他端は、庫外側吸入管(55)に接続する。 The inlet side switching valve (140) is disposed in the middle of the storage inner suction pipe (75). In the inlet side switching valve (140), the first port is connected to the suction port of the second pump (37), and the second port is connected to the secondary flow passage (29b) via the storage inner suction pipe (75) It communicates. One end of an inlet side branch pipe (141) is connected to a third port of the inlet side switching valve (140). The other end of the inlet side branch pipe (141) is connected to the storage outside suction pipe (55).
 入口側切換弁(140)は、庫内空気調節装置(30)の酸素濃度低減動作、二酸化炭素濃度低減動作、及び酸素濃度増加動作において、第1状態に設定される。また、入口側切換弁(140)は、気密性評価部(116)の評価動作において、第2状態に設定される。 The inlet side switching valve (140) is set to the first state in the oxygen concentration reducing operation, the carbon dioxide concentration reducing operation, and the oxygen concentration increasing operation of the internal air conditioning device (30). Further, the inlet side switching valve (140) is set to the second state in the evaluation operation of the air tightness evaluation unit (116).
 本実施形態の気密性評価装置(130)は、第1組成調節部(40)と、第2組成調節部(60)と、第3圧力センサ(103)と、制御器(110)の気密性評価部(116)と、入口側切換弁(140)と、入口側分岐管(141)とによって構成される。また、本実施形態では、ポンプユニット(35)に設けられた第1ポンプ(36)と第2ポンプ(37)の両方が、荷室(5)内の気圧を陽圧とするために輸送用コンテナ(1)の内部へ給気する気圧調節機器(131)を構成する。 The airtightness evaluation device (130) of the present embodiment includes the airtightness of the first composition adjusting unit (40), the second composition adjusting unit (60), the third pressure sensor (103), and the controller (110). It comprises an evaluation part (116), an inlet side switching valve (140), and an inlet side branch pipe (141). Further, in the present embodiment, both the first pump (36) and the second pump (37) provided in the pump unit (35) are used for transportation in order to make the air pressure in the cargo compartment (5) a positive pressure. The air pressure regulator (131) for supplying air to the inside of the container (1) is configured.
 本実施形態の気密性評価装置(130)において、制御器(110)の気密性評価部(116)は、図6のステップST11に相当するステップにおいて、入口側切換弁(140)を第2状態に設定する。図13に示すように、入口側切換弁(140)が第2状態に設定されると、第1ポンプ(36)の吸入口と第2ポンプ(37)の吸入口の両方が、庫外側吸入管(55)に連通し、第1ポンプ(36)と第2ポンプ(37)の両方が庫外空気を吸い込む。 In the airtightness evaluation device (130) of the present embodiment, the airtightness evaluation unit (116) of the controller (110) sets the inlet-side switching valve (140) in the second state in the step corresponding to step ST11 in FIG. Set to As shown in FIG. 13, when the inlet side switching valve (140) is set to the second state, both the suction port of the first pump (36) and the suction port of the second pump (37) In communication with the pipe (55), both the first pump (36) and the second pump (37) suck outside air.
 第1ポンプ(36)から吐出された庫外空気は、第1バイパス弁(50)と第1バイパス管(51)と供給管(120)とを順に通って輸送用コンテナ(1)の内部へ供給される。第2ポンプ(37)から吐出された庫外空気は、第2バイパス弁(70)と第2バイパス管(71)と供給管(120)とを順に通って輸送用コンテナ(1)の内部へ供給される。 Outside air discharged from the first pump (36) passes through the first bypass valve (50), the first bypass pipe (51) and the supply pipe (120) in this order to the inside of the transport container (1) Supplied. The outside air discharged from the second pump (37) passes through the second bypass valve (70), the second bypass pipe (71) and the supply pipe (120) in this order to the inside of the transport container (1) Supplied.
 このように、本実施形態の気密性評価装置(130)は、第1ポンプ(36)と第2ポンプ(37)の両方によって、庫外空気を輸送用コンテナ(1)の内部へ供給することができる。そのため、本実施形態では、第1ポンプ(36)だけによって庫外空気を輸送用コンテナ(1)の内部へ供給する場合に比べて、輸送用コンテナ(1)内の気圧(具体的には、第3圧力センサ(103)の計測値P)が第1基準圧力Pに達するまでの時間が短縮される。 Thus, the airtightness evaluation device (130) of the present embodiment supplies outside air to the inside of the transport container (1) by both the first pump (36) and the second pump (37). Can. Therefore, in the present embodiment, the air pressure in the transport container (1) (specifically, compared to the case where outside air is supplied to the inside of the transport container (1) only by the first pump (36) the third pressure sensor measurement value P (103)) is the time to reach the first reference pressure P H is shortened.
 《実施形態6》
 実施形態6について説明する。ここでは、本実施形態の庫内空気調節装置(30)について、実施形態5の庫内空気調節装置(30)と異なる点を説明する。
Embodiment 6
The sixth embodiment will be described. Here, a difference of the in-compartment air conditioning device (30) of the present embodiment from the in-compartment air conditioning device (30) of the fifth embodiment will be described.
 図14に示すように、本実施形態の庫内空気調節装置(30)が実施形態5の庫内空気調節装置(30)と異なる点は、気圧測定用切換弁(145)及び気圧測定用配管(146)が追加されている点と、第3圧力センサ(103)が省略されている点である。気圧測定用切換弁(145)及び気圧測定用配管(146)は、第2圧力センサ(65)によって輸送用コンテナ(1)内の気圧を計測可能とするために、庫内空気調節装置(30)に設けられる。 As shown in FIG. 14, the air conditioning device for internal storage (30) of the present embodiment differs from the air conditioning device for internal storage (30) of the fifth embodiment in the switching valve for pressure measurement (145) and piping for pressure measurement. (146) is added and the third pressure sensor (103) is omitted. The air pressure measurement switching valve (145) and the air pressure measurement pipe (146) are provided with the in-compartment air conditioner (30) so that the air pressure in the transport container (1) can be measured by the second pressure sensor (65). Provided).
 気圧測定用切換弁(145)は、三つのポートを有する切換弁である。気圧測定用切換弁(145)は、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態(図14に実線で示す状態)と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態(図14に破線で示す状態)とに切り換わるように構成される。 The air pressure measurement switching valve (145) is a switching valve having three ports. The air pressure measurement switching valve (145) has a first state (shown by a solid line in FIG. 14) in which the first port communicates with the second port and is shut off from the third port; It is configured to be in communication with the third port and to switch to a second state (state shown by a broken line in FIG. 14) which is disconnected from the second port.
 気圧測定用切換弁(145)は、第2一次側管(73)における第2分離モジュール(61)と第2圧力センサ(65)の間に配置される。気圧測定用切換弁(145)は、第1のポートが第2調節弁(66)に接続し、第2のポートが第2分離モジュール(61)の第2一次側導出口(63)に接続する。気圧測定用切換弁(145)の第3のポートには、気圧測定用配管(146)の一端が接続する。気圧測定用配管(146)の他端は、庫内側吸入管(75)に接続する。 The air pressure measurement switching valve (145) is disposed between the second separation module (61) and the second pressure sensor (65) in the second primary side pipe (73). The first port of the switching valve for air pressure measurement (145) is connected to the second control valve (66), and the second port is connected to the second primary outlet (63) of the second separation module (61) Do. One end of a pressure measurement pipe (146) is connected to a third port of the pressure measurement switching valve (145). The other end of the pressure measurement pipe (146) is connected to the storage inner suction pipe (75).
 気圧測定用切換弁(145)は、庫内空気調節装置(30)の酸素濃度低減動作、二酸化炭素濃度低減動作、及び酸素濃度増加動作において、第1状態に設定される。また、気圧測定用切換弁(145)は、気密性評価部(116)の評価動作において、第2状態に設定される。 The air pressure measurement switching valve (145) is set to the first state in the oxygen concentration reduction operation, the carbon dioxide concentration reduction operation, and the oxygen concentration increase operation of the inside air conditioning device (30). Further, the air pressure measurement switching valve (145) is set to the second state in the evaluation operation of the air tightness evaluation unit (116).
 本実施形態の気密性評価装置(130)は、第1組成調節部(40)と、第2組成調節部(60)と、第2圧力センサ(65)と、制御器(110)の気密性評価部(116)と、入口側切換弁(140)と、入口側分岐管(141)と、気圧測定用切換弁(145)と、気圧測定用配管(146)とによって構成される。 The airtightness evaluation device (130) of the present embodiment includes the airtightness of the first composition adjusting unit (40), the second composition adjusting unit (60), the second pressure sensor (65), and the controller (110). The evaluation unit (116), the inlet side switching valve (140), the inlet side branch pipe (141), the air pressure measurement switching valve (145), and the air pressure measurement piping (146).
 本実施形態の気密性評価装置(130)において、制御器(110)の気密性評価部(116)は、図6のステップST11に相当するステップにおいて、気圧測定用切換弁(145)を第2状態に設定する。図15に示すように、気圧測定用切換弁(145)が第2状態に設定されると、第2圧力センサ(65)が、気圧測定用配管(146)及び庫内側吸入管(75)を介して、庫内空気流路(29)の二次流路(29b)と連通する。 In the air tightness evaluation device (130) of the present embodiment, the air tightness evaluation unit (116) of the controller (110) performs the second air pressure measurement switching valve (145) in the step corresponding to step ST11 of FIG. Set to state. As shown in FIG. 15, when the air pressure measurement switching valve (145) is set to the second state, the second pressure sensor (65) is connected to the air pressure measurement pipe (146) and the storage inner suction pipe (75). It communicates with the secondary flow passage (29b) of the in-compartment air flow passage (29).
 上述したように、庫内ファン(17)の停止中において、二次流路(29b)の気圧は、荷室(5)内の気圧と実質的に等しい。このため、庫内ファン(17)の停止中には、第2圧力センサ(65)の計測値が荷室(5)内の気圧と実質的に一致する。従って、本実施形態では、第2圧力センサ(65)が、荷室(5)内の気圧を計測する気圧センサを構成する。そして、本実施形態の制御器(110)の気密性評価部(116)は、図6のステップST13とステップST17のそれぞれに相当するステップにおいて、第2圧力センサ(65)の計測値を読み込み、読み込んだ計測値を輸送用コンテナ(1)内の気圧の計測値Pとしてメモリ(112)に記憶させる。 As described above, during the stop of the internal fan (17), the air pressure in the secondary flow passage (29b) is substantially equal to the air pressure in the loading space (5). For this reason, while the internal fan (17) is stopped, the measurement value of the second pressure sensor (65) substantially matches the air pressure in the loading space (5). Therefore, in the present embodiment, the second pressure sensor (65) constitutes an air pressure sensor that measures the air pressure in the loading space (5). Then, the airtightness evaluation unit (116) of the controller (110) of the present embodiment reads the measurement value of the second pressure sensor (65) in steps corresponding to step ST13 and step ST17 of FIG. The read measurement value is stored in the memory (112) as the measurement value P of the air pressure in the transport container (1).
 本実施形態では、第2圧力センサ(65)を、輸送用コンテナ(1)内の気圧を計測するために利用できる。従って、本実施形態によれば、気密性評価装置(130)が組み込まれた庫内空気調節装置(30)の圧力センサの数を削減できる。 In the present embodiment, the second pressure sensor (65) can be used to measure the air pressure in the transport container (1). Therefore, according to the present embodiment, it is possible to reduce the number of pressure sensors in the in-compartment air conditioner (30) in which the air tightness evaluation device (130) is incorporated.
 《実施形態7》
 実施形態7について説明する。ここでは、本実施形態の庫内空気調節装置(30)について、実施形態6の庫内空気調節装置(30)と異なる点を説明する。
Embodiment 7
The seventh embodiment will be described. Here, a difference of the in-compartment air conditioning device (30) of the present embodiment from the in-compartment air conditioning device (30) of the sixth embodiment will be described.
 図16に示すように、本実施形態の庫内空気調節装置(30)が実施形態6の庫内空気調節装置(30)と異なる点は、第2組成調節部(60)、庫内側吸入管(75)、入口側切換弁(140)、及び入口側分岐管(141)が省略されている点と、気圧測定用切換弁(145)の配置と、気圧測定用配管(146)の構成である。 As shown in FIG. 16, the difference between the in-compartment air conditioner (30) of the present embodiment and the in-compartment air conditioner (30) of the sixth embodiment is that the second composition control unit (60) (75), the point that the inlet side switching valve (140) and the inlet side branch pipe (141) are omitted, the arrangement of the atmospheric pressure measuring switching valve (145), and the configuration of the atmospheric pressure measuring pipe (146) is there.
 本実施形態の庫内空気調節装置(30)において、気圧測定用切換弁(145)は、第1一次側管(53)における第1分離モジュール(41)と第1圧力センサ(45)の間に配置される。気圧測定用切換弁(145)は、第1のポートが第1調節弁(46)に接続し、第2のポートが第1分離モジュール(41)の第1一次側導出口(43)に接続する。気圧測定用切換弁(145)の第3のポートには、気圧測定用配管(146)の一端が接続する。気圧測定用配管(146)の他端は、庫内空気流路(29)の二次流路(29b)に開口する。 In the cold air control apparatus (30) of the present embodiment, the air pressure measurement switching valve (145) is between the first separation module (41) and the first pressure sensor (45) in the first primary side pipe (53). Will be placed. The first port of the switching valve for air pressure measurement (145) is connected to the first control valve (46), and the second port is connected to the first primary outlet (43) of the first separation module (41) Do. One end of a pressure measurement pipe (146) is connected to a third port of the pressure measurement switching valve (145). The other end of the pressure measurement pipe (146) opens into the secondary flow passage (29b) of the internal air flow passage (29).
 本実施形態の気密性評価装置(130)は、第1組成調節部(40)と、第1圧力センサ(45)と、制御器(110)の気密性評価部(116)と、気圧測定用切換弁(145)と、気圧測定用配管(146)とによって構成される。 The airtightness evaluation device (130) of the present embodiment includes a first composition adjustment unit (40), a first pressure sensor (45), an airtightness evaluation unit (116) of the controller (110), and pressure measurement. It is comprised by the switching valve (145) and piping (146) for pressure measurement.
 本実施形態の気密性評価装置(130)において、制御器(110)の気密性評価部(116)は、図6のステップST11に相当するステップにおいて、気圧測定用切換弁(145)を第2状態に設定する。図17に示すように、気圧測定用切換弁(145)が第2状態に設定されると、第1圧力センサ(45)が、気圧測定用配管(146)を介して、庫内空気流路(29)の二次流路(29b)と連通する。 In the air tightness evaluation device (130) of the present embodiment, the air tightness evaluation unit (116) of the controller (110) performs the second air pressure measurement switching valve (145) in the step corresponding to step ST11 of FIG. Set to state. As shown in FIG. 17, when the air pressure measurement switching valve (145) is set to the second state, the first pressure sensor (45) receives the air flow path in the storage via the air pressure measurement pipe (146). It communicates with the secondary flow path (29b) of (29).
 上述したように、庫内ファン(17)の停止中において、二次流路(29b)の気圧は、荷室(5)内の気圧と実質的に等しい。このため、庫内ファン(17)の停止中には、第1圧力センサ(45)の計測値が荷室(5)内の気圧と実質的に一致する。従って、本実施形態では、第1圧力センサ(45)が、荷室(5)内の気圧を計測する気圧センサを構成する。そして、本実施形態の制御器(110)の気密性評価部(116)は、図6のステップST13とステップST17のそれぞれに相当するステップにおいて、第1圧力センサ(45)の計測値を読み込み、読み込んだ計測値を輸送用コンテナ(1)内の気圧の計測値Pとしてメモリ(112)に記憶させる。 As described above, during the stop of the internal fan (17), the air pressure in the secondary flow passage (29b) is substantially equal to the air pressure in the loading space (5). For this reason, while the internal fan (17) is stopped, the measurement value of the first pressure sensor (45) substantially matches the air pressure in the loading space (5). Therefore, in the present embodiment, the first pressure sensor (45) constitutes an air pressure sensor that measures the air pressure in the loading space (5). And the airtightness evaluation part (116) of the controller (110) of this embodiment reads the measured value of the 1st pressure sensor (45) in the step corresponded to each of step ST13 and step ST17 of FIG. The read measurement value is stored in the memory (112) as the measurement value P of the air pressure in the transport container (1).
 本実施形態では、第1圧力センサ(45)を、輸送用コンテナ(1)内の気圧を計測するために利用できる。従って、本実施形態によれば、気密性評価装置(130)が組み込まれた庫内空気調節装置(30)の圧力センサの数を削減できる。 In the present embodiment, the first pressure sensor (45) can be used to measure the air pressure in the transport container (1). Therefore, according to the present embodiment, it is possible to reduce the number of pressure sensors in the in-compartment air conditioner (30) in which the air tightness evaluation device (130) is incorporated.
 《実施形態8》
 実施形態8について説明する。本実施形態の庫内空気調節装置(30)は、上記実施形態1の庫内空気調節装置(30)において、気密性評価部(116)が行う評価動作を変更したものである。ここでは、本実施形態の庫内空気調節装置(30)について、実施形態1の庫内空気調節装置(30)と異なる点を説明する。
<< Embodiment 8 >>
The eighth embodiment will be described. The in-compartment air conditioning apparatus (30) of the present embodiment is a modification of the in-compartment air conditioning apparatus (30) of the first embodiment in the evaluation operation performed by the air-tightness evaluation unit (116). Here, points of the in-compartment air conditioning device (30) of the present embodiment different from the in-compartment air conditioning device (30) of the first embodiment will be described.
 本実施形態の気密性評価部(116)は、評価動作において、輸送用コンテナ(1)内の気圧の計測値Pを、所定の保持時間に亘って第1基準圧力P以上の所定圧力範囲に保った後に、輸送用コンテナ(1)内の気圧の計測値Pの変化に基づいて、輸送用コンテナ(1)の気密性を評価する。 Airtightness evaluation unit of this embodiment (116), in the evaluation operation, the measured value P of the air pressure in the shipping container (1), the first reference pressure P H or more predetermined pressure range for a predetermined holding time The air tightness of the transport container (1) is evaluated based on the change in the measurement value P of the air pressure in the transport container (1).
 本実施形態の気密性評価部(116)が行う評価動作について、図18のフロー図を参照しながら説明する。本実施形態の気密性評価部(116)は、評価動作において、図6のステップST15に示す動作に代えて、図18のステップST15-1及びステップST15-2に示す動作を行う。 The evaluation operation performed by the airtightness evaluation unit (116) of the present embodiment will be described with reference to the flow chart of FIG. In the evaluation operation, the airtightness evaluation unit (116) of the present embodiment performs the operations shown in step ST15-1 and step ST15-2 in FIG. 18 instead of the operation shown in step ST15 in FIG.
 本実施形態の気密性評価部(116)が図18のステップST11からステップST14において行う動作は、実施形態1の気密性評価部(116)が図6のステップST11からステップST14において行う動作と同じである。ステップST14において、輸送用コンテナ(1)内の気圧の計測値Pが第1基準圧力Pに達している場合(P≧P)、本実施形態の気密性評価部(116)は、ステップST15-1へ移行する。 The operations performed by the airtightness evaluation unit (116) of this embodiment in steps ST11 to ST14 of FIG. 18 are the same as the operations performed by the airtightness evaluation unit (116) of the first embodiment in steps ST11 to ST14 of FIG. It is. In step ST14, when the measured value P of the air pressure in the transport container (1) has reached the first reference pressure P H (P ≧ P H ), the airtightness evaluation unit (116) of the present embodiment performs the step Move to ST15-1.
 ステップST15-1において、気密性評価部(116)は、輸送用コンテナ(1)内の気圧の計測値P(本実施形態では、第3圧力センサ(103)の計測値)を監視し、この計測値Pが第1基準圧力P以上で圧力値P’以下の範囲(P≦P≦P’)に保たれるように、ポンプユニット(35)を制御する。第1基準圧力Pの値は、例えば490Pa(ゲージ圧)である。圧力値P’ の値は、例えば500Pa(ゲージ圧)である。 In step ST15-1, the airtightness evaluation unit (116) monitors the measured value P of the air pressure in the transport container (1) (in this embodiment, the measured value of the third pressure sensor (103)), The pump unit (35) is controlled so that the measured value P is maintained in the range (P H ≦ P ≦ P H ′) below the pressure value P H ′ at the first reference pressure P H or higher. The value of the first reference pressure P H is, for example, 490 Pa (gauge pressure). The value of the pressure value P H ′ is, for example, 500 Pa (gauge pressure).
 具体的に、気密性評価部(116)は、ポンプユニット(35)の作動中に計測値Pが圧力値P’を上回ると、ポンプユニット(35)を停止させ、ポンプユニット(35)の停止中に計測値Pが第1基準圧力Pを下回ると、ポンプユニット(35)を作動させる。気密性評価部(116)は、この動作を、所定の保持時間T(本実施形態では、10分間)に亘って行う。 Specifically, the airtightness evaluation unit (116) stops the pump unit (35) when the measured value P exceeds the pressure value P H 'during operation of the pump unit (35), and When the measurement value P during the stop is below a first reference pressure P H, actuates the pump unit (35). The airtightness evaluation unit (116) performs this operation for a predetermined holding time T H (in this embodiment, 10 minutes).
 ステップST15-1が終了すると、気密性評価部(116)は、ステップST15-2へ移行し、ポンプユニット(35)を停止状態に保持する。具体的に、ステップST15-1の終了時にポンプユニット(35)が作動している場合、気密性評価部(116)は、ポンプユニット(35)を停止させ、ポンプユニット(35)を停止状態に保つ。また、ステップST15-1の終了時にポンプユニット(35)が停止している場合、気密性評価部(116)は、そのままポンプユニット(35)を停止状態に保つ。 When step ST15-1 ends, the airtightness evaluation unit (116) proceeds to step ST15-2 and holds the pump unit (35) in the stop state. Specifically, when the pump unit (35) is operating at the end of step ST15-1, the airtightness evaluation unit (116) stops the pump unit (35) and stops the pump unit (35). keep. When the pump unit (35) is stopped at the end of step ST15-1, the air tightness evaluation unit (116) keeps the pump unit (35) in the stopped state.
 ステップST15-2が終了すると、本実施形態の気密性評価部(116)は、図18のステップST16からステップST22に示す動作を行う。図18のステップST16からステップST22に示す動作は、実施形態1の気密性評価部(116)が図6のステップST16からステップST22において行う動作と同じである。 When step ST15-2 ends, the airtightness evaluation unit (116) of the present embodiment performs the operation shown in steps ST16 to ST22 of FIG. The operations shown in step ST16 to step ST22 of FIG. 18 are the same as the operations performed by the airtightness evaluation unit (116) of the first embodiment in step ST16 to step ST22 of FIG.
  -実施形態8の効果-
 ここで、輸送用コンテナ(1)内の気圧を大気圧よりも高い圧力にまで上昇させると、輸送用コンテナ(1)が膨らむように変形することがある。輸送用コンテナ(1)が膨らむと、輸送用コンテナ(1)の内容積が増加し、輸送用コンテナ(1)内の気圧が下がる。また、輸送用コンテナ(1)内の気圧が高くなるほど、輸送用コンテナ(1)に設けられた断熱材に入り込む空気の量が増える。輸送用コンテナ(1)の断熱材に空気が入り込むと、輸送用コンテナ(1)内の気圧が下がる。また、輸送用コンテナ(1)の荷室(5)では、その各部における気圧が過渡的に不均一となる場合がある。この場合は、時間が経過するにつれて、輸送用コンテナ(1)の荷室(5)において気圧が均一化され、その結果、輸送用コンテナ(1)内の気圧の計測値が変化する。
-Effect of Embodiment 8-
Here, when the air pressure in the transport container (1) is raised to a pressure higher than the atmospheric pressure, the transport container (1) may be deformed so as to expand. When the transport container (1) expands, the internal volume of the transport container (1) increases and the air pressure in the transport container (1) decreases. In addition, as the air pressure in the transport container (1) increases, the amount of air entering the heat insulating material provided in the transport container (1) increases. When air enters the insulation of the shipping container (1), the air pressure in the shipping container (1) decreases. Moreover, in the loading chamber (5) of the transport container (1), the air pressure in each part may be transiently uneven. In this case, as time passes, the air pressure is equalized in the loading space (5) of the shipping container (1), and as a result, the measured value of the air pressure in the shipping container (1) changes.
 気密性評価部(116)が行う評価動作において、輸送用コンテナ(1)内の気圧の計測値Pが第1基準圧力Pに達した直後にポンプユニット(35)を停止させると、前段落で説明した原因によって、輸送用コンテナ(1)内の気圧の計測値Pが低下することがある。輸送用コンテナ(1)の変形によって輸送用コンテナ(1)内の気圧が低下した場合、気密性評価部(116)は、実際には輸送用コンテナ(1)の気密性が確保されているにも拘わらず、輸送用コンテナ(1)の気密性が不充分だと誤判断するおそれがある。 In the evaluation operation airtightness evaluation unit (116) performs, when stopping the pump unit (35) immediately after the measured value P of the air pressure in the shipping container (1) has reached the first reference pressure P H, the previous paragraph Due to the reasons described in the above, the measured value P of the air pressure in the shipping container (1) may decrease. When the air pressure in the transport container (1) is lowered due to the deformation of the transport container (1), the airtightness evaluation unit (116) actually ensures that the transport container (1) is airtight. Nevertheless, there is a risk that it may be misjudged that the airtightness of the transport container (1) is insufficient.
 そこで、本実施形態の気密性評価部(116)は、輸送用コンテナ(1)内の気圧の計測値Pが第1基準圧力Pに達した後に、輸送用コンテナ(1)内の気圧の計測値Pを所定圧力範囲(P≦P≦P’)に保つ。そして、気密性評価部(116)は、輸送用コンテナ(1)内の気圧の上昇に起因して輸送用コンテナ(1)が変形した後に、輸送用コンテナ(1)の気密性を判定する。従って、本実施形態によれば、気密性が確保された輸送用コンテナ(1)について、その気密性が不充分だと誤判断する可能性を低減できる。 Therefore, airtightness evaluation unit of this embodiment (116), after the measured value P of the air pressure in the shipping container (1) has reached the first reference pressure P H, the air pressure in the shipping container (1) The measured value P is maintained in a predetermined pressure range (P H ≦ P ≦ P H ′). Then, the airtightness evaluation unit (116) determines the airtightness of the transport container (1) after the transport container (1) is deformed due to the increase of the air pressure in the transport container (1). Therefore, according to the present embodiment, it is possible to reduce the possibility of erroneously determining that the airtightness is insufficient for the transport container (1) in which the airtightness is secured.
  -実施形態8の変形例-
 本実施形態の気密性評価部(116)が行う図18のステップST15-1及びステップST15-2の動作を、実施形態2の気密性評価部(116)に実行させてもよい。この変形例を適用した実施形態2の気密性評価部(116)は、図8のステップST15の動作に代えて、図18のステップST15-1及びステップST15-2の動作を実行する。
-Modification of Embodiment 8-
The operation of step ST15-1 and step ST15-2 of FIG. 18 performed by the airtightness evaluation unit (116) of the present embodiment may be performed by the airtightness evaluation unit (116) of the second embodiment. The airtightness evaluation unit (116) of the second embodiment to which this modification is applied executes the operations of step ST15-1 and step ST15-2 of FIG. 18 instead of the operation of step ST15 of FIG.
 《実施形態9》
 実施形態9の庫内空気調節装置(30)について説明する。実施形態の庫内空気調節装置(30)は、実施形態1の庫内空気調節装置(30)において、第1組成調節部(40)及び制御器(110)を変更したものである。ここでは、本実施形態の庫内空気調節装置(30)について、実施形態1の庫内空気調節装置(30)と異なる点を説明する。
Embodiment 9
An indoor air conditioner (30) of a ninth embodiment will be described. The in-compartment air conditioning device (30) of the embodiment is obtained by modifying the first composition adjustment unit (40) and the controller (110) in the in-compartment air conditioning device (30) of the first embodiment. Here, points of the in-compartment air conditioning device (30) of the present embodiment different from the in-compartment air conditioning device (30) of the first embodiment will be described.
  -第1組成調節部の構成-
 本実施形態の第1組成調節部(40)は、実施形態1の第1組成調節部(40)と同様に、輸送用コンテナ(1)の外部から吸い込んだ庫外空気(未処理庫外空気)を第1庫外空気と第2庫外空気に分離するように構成される。本実施形態の第1組成調節部(40)は、いわゆるPSA(Pressure Swing Adsorption)法によって、未処理庫外空気を第1庫外空気と第2庫外空気に分離するように構成されており、この点で実施形態1の第1組成調節部(40)と相違する。
-Configuration of first composition control unit-
The first composition control unit (40) of the present embodiment, like the first composition control unit (40) of the first embodiment, the outside air sucked from the outside of the transport container (1) (untreated outside air) ) Is separated into first outside air and second outside air. The first composition adjustment unit (40) of the present embodiment is configured to separate untreated outside air into first outside air and second outside air by a so-called PSA (Pressure Swing Adsorption) method. This differs from the first composition adjusting unit (40) of the first embodiment in this respect.
 図19に示すように、本実施形態の第1組成調節部(40)は、ポンプユニット(35)の第1ポンプ(36)に代えて、エアポンプ(231)を備える。つまり、本実施形態の庫内空気調節装置(30)において、ポンプユニット(35)は、第2ポンプ(37)及び駆動モータ(38)を備えるが、第1ポンプ(36)を備えていない。また、本実施形態の第1組成調節部(40)は、第1方向制御弁(232)及び第2方向制御弁(233)と、第1吸着筒(234)及び第2吸着筒(235)とを備える。後述するように、各吸着筒(234,235)には、空気中の窒素を吸着する吸着剤が設けられる。 As shown in FIG. 19, the first composition adjusting unit (40) of the present embodiment includes an air pump (231) instead of the first pump (36) of the pump unit (35). That is, in the in-compartment air conditioning device (30) of the present embodiment, the pump unit (35) includes the second pump (37) and the drive motor (38) but does not include the first pump (36). In addition, the first composition adjustment unit (40) of the present embodiment includes the first direction control valve (232) and the second direction control valve (233), the first suction cylinder (234) and the second suction cylinder (235). And As described later, each adsorption column (234, 235) is provided with an adsorbent that adsorbs nitrogen in the air.
   〈エアポンプ〉
 エアポンプ(231)は、ユニットケース(32)の内部空間に配置される。エアポンプ(231)は、それぞれが空気を吸引して加圧して吐出する第1ポンプ機構(231a)及び第2ポンプ機構(231b)を備える。第1ポンプ機構(231a)及び第2ポンプ機構(231b)は、潤滑油を使用しないオイルレスのポンプである。本実施形態では、第1組成調節部(40)の第1ポンプ機構(231a)が気密性評価装置(130)の気圧調節機器(131)を兼ねる。
<air pump>
The air pump (231) is disposed in the internal space of the unit case (32). The air pump (231) includes a first pump mechanism (231a) and a second pump mechanism (231b) that respectively suck, pressurize and discharge air. The first pump mechanism (231a) and the second pump mechanism (231b) are oilless pumps that do not use lubricating oil. In the present embodiment, the first pump mechanism (231a) of the first composition adjusting unit (40) doubles as an air pressure adjusting device (131) of the air tightness evaluation device (130).
 加圧部である第1ポンプ機構(231a)と、減圧部である第2ポンプ機構(231b)とは、それらの両方が駆動モータ(231c)の駆動軸に接続される。第1ポンプ機構(231a)及び第2ポンプ機構(231b)のぞれぞれは、駆動モータ(231c)によって回転駆動されることによって、吸込口から空気を吸引して加圧し、加圧した空気を吐出口から吐出する。 Both of the first pump mechanism (231a) as the pressurizing part and the second pump mechanism (231b) as the depressurizing part are connected to the drive shaft of the drive motor (231c). Each of the first pump mechanism (231a) and the second pump mechanism (231b) is rotationally driven by the drive motor (231c) to suck and pressurize air from the suction port and pressurize the air Are discharged from the discharge port.
   〈外気管、吐出管、フィルタユニット〉
 第1ポンプ機構(231a)の吸込口には、外気通路を形成する外気管(241)の一端が接続される。外気管(241)は、ユニットケース(32)を貫通するように設けられる。ユニットケース(32)の外部に位置する外気管(241)の他端は、フィルタユニット(220)に接続される。
<External trachea, discharge pipe, filter unit>
One end of an outer trachea (241) forming an outer air passage is connected to the suction port of the first pump mechanism (231a). The outer trachea (241) is provided to penetrate the unit case (32). The other end of the outer trachea (241) located outside the unit case (32) is connected to the filter unit (220).
 フィルタユニット(220)は、エアフィルタ(47)を備える。エアフィルタ(47)は、庫外空気に含まれる塵埃や塩分などを捕捉するためのフィルタである。本実施形態では、通気性と防水性を有するメンブレンフィルタが、エアフィルタ(47)として用いられる。フィルタユニット(220)は、箱状に形成された部材であり、エアフィルタ(47)を通過した空気(庫外空気)を外気管(241)へ導入する。図示しないが、フィルタユニット(220)は、庫外機器室(28)における凝縮器(13)の下流側に配置される。 The filter unit (220) comprises an air filter (47). The air filter (47) is a filter for capturing dust, salt and the like contained in the outside air. In the present embodiment, a membrane filter having breathability and waterproofness is used as the air filter (47). The filter unit (220) is a box-shaped member and introduces the air (outside storage air) that has passed through the air filter (47) into the outer trachea (241). Although not shown, the filter unit (220) is disposed downstream of the condenser (13) in the external storage compartment (28).
 第1ポンプ機構(231a)の吐出口には、吐出通路を形成する吐出管(242)の一端が接続される。吐出管(242)は、他端側で二つの分岐管に分岐しており、一方の分岐管が第1方向制御弁(232)に、他方の分岐管が第2方向制御弁(233)に、それぞれ接続される。 One end of a discharge pipe (242) forming a discharge passage is connected to the discharge port of the first pump mechanism (231a). The discharge pipe (242) branches into two branch pipes at the other end side, one branch pipe to the first direction control valve (232) and the other branch pipe to the second direction control valve (233). , Each connected.
   〈吸引管、供給管〉
 第2ポンプ機構(231b)の吸込口には、吸引通路を形成する吸引管(243)の一端が接続される。吸引管(243)は、他端側で二つの分岐管に分岐しており、一方の分岐管が第1方向制御弁(232)に、他方の分岐管が第2方向制御弁(233)に、それぞれ接続される。
<Suction pipe, supply pipe>
One end of a suction pipe (243) forming a suction passage is connected to the suction port of the second pump mechanism (231b). The suction pipe (243) branches into two branch pipes at the other end side, one branch pipe to the first direction control valve (232) and the other branch pipe to the second direction control valve (233). , Each connected.
 第2ポンプ機構(231b)の吐出口には、供給通路を形成する供給用接続管(244)の一端が接続される。供給用接続管(244)の他端は、供給管(120)に接続される。 One end of a supply connection pipe (244) forming a supply passage is connected to the discharge port of the second pump mechanism (231b). The other end of the supply connection pipe (244) is connected to the supply pipe (120).
 供給用接続管(244)には、その一端から他端へ向かって順に、逆止弁(264)と供給側開閉弁(273)とが設けられる。逆止弁(264)は、供給用接続管(244)の一端から他端へ向かう向きの空気の流通のみを許容し、空気の逆流を防止する。供給側開閉弁(273)は、電磁弁からなる開閉弁である。 The supply connection pipe (244) is provided with a check valve (264) and a supply side on-off valve (273) in this order from one end to the other end. The check valve (264) allows only the flow of air from one end of the supply connection pipe (244) to the other end, and prevents backflow of air. The supply side on-off valve (273) is an on-off valve composed of a solenoid valve.
   〈方向制御弁〉
 第1方向制御弁(232)及び第2方向制御弁(233)のそれぞれは、三つのポートを有する切換弁である。各方向制御弁(232,233)は、第1のポートが第2のポートと連通して第3のポートから遮断される第1状態と、第1のポートが第3のポートと連通して第2のポートから遮断される第2状態とに切り換わるように構成される。
<Direction control valve>
Each of the first direction control valve (232) and the second direction control valve (233) is a switching valve having three ports. Each directional control valve (232, 233) has a first state in which the first port communicates with the second port and is shut off from the third port, and the first port communicates with the third port in the second state And a second state where it is disconnected from the port of.
 第1方向制御弁(232)は、第1のポートが第1吸着筒(234)の一端に接続される。また、第1方向制御弁(232)は、第2のポートに吐出管(242)の分岐管が接続され、第3のポートに吸引管(243)の分岐管が接続される。第1方向制御弁(232)は、第1吸着筒(234)を、第1ポンプ機構(231a)に連通する状態と、第2ポンプ機構(231b)に連通する状態とに切り換える。 The first direction control valve (232) has a first port connected to one end of the first suction cylinder (234). In the first direction control valve (232), the branch pipe of the discharge pipe (242) is connected to the second port, and the branch pipe of the suction pipe (243) is connected to the third port. The first direction control valve (232) switches the first suction cylinder (234) between the state in which it is in communication with the first pump mechanism (231a) and the state in which it is in communication with the second pump mechanism (231b).
 第2方向制御弁(233)は、第1のポートが第2吸着筒(235)の一端に接続される。また、第2方向制御弁(233)は、第2のポートに吐出管(242)の分岐管が接続され、第3のポートに吸引管(243)の分岐管が接続される。第2方向制御弁(233)は、第2吸着筒(235)を、第1ポンプ機構(231a)に連通する状態と、第2ポンプ機構(231b)に連通する状態とに切り換える。 The second direction control valve (233) has a first port connected to one end of a second suction cylinder (235). In the second direction control valve (233), the branch pipe of the discharge pipe (242) is connected to the second port, and the branch pipe of the suction pipe (243) is connected to the third port. The second direction control valve (233) switches the second suction cylinder (235) between the state of communicating with the first pump mechanism (231a) and the state of communicating with the second pump mechanism (231b).
   〈吸着筒〉
 第1吸着筒(234)及び第2吸着筒(235)のそれぞれは、両端が閉塞された円筒状の容器と、その容器に充填された吸着剤とを備える部材である。
<Suction cylinder>
Each of the first adsorption column (234) and the second adsorption column (235) is a member provided with a cylindrical container whose both ends are closed and an adsorbent filled in the container.
 これら吸着筒(234,235)に充填された吸着剤は、圧力が大気圧よりも高い加圧状態において窒素成分を吸着し、圧力が大気圧よりも低い減圧状態において窒素成分を脱着させる性質を有する。本実施形態では、吸着剤として、例えば、窒素分子の分子径(3.0オングストローム)よりも小さく且つ酸素分子の分子径(2.8オングストローム)よりも大きな孔径の細孔を有する多孔体のゼオライトが用いられる。 The adsorbent filled in these adsorption columns (234, 235) has the property of adsorbing the nitrogen component in a pressurized state where the pressure is higher than atmospheric pressure and desorbing the nitrogen component in a decompressed state where the pressure is lower than atmospheric pressure. In the present embodiment, as an adsorbent, for example, a porous zeolite having pores with a pore diameter smaller than the molecular diameter (3.0 angstroms) of nitrogen molecules and larger than the molecular diameter (2.8 angstroms) of oxygen molecules. Is used.
 本実施形態の第1組成調節部(40)では、第1吸着筒(234)及び第2吸着筒(235)が第1分離部(41)を構成する。第1分離部(41)を構成する二つの吸着筒(234,235)は、未処理庫外空気を、未処理庫外空気よりも窒素濃度が高くて酸素濃度が低い第1庫外空気と、未処理庫外空気よりも窒素濃度が低くて酸素濃度が高い第2庫外空気に分離する。 In the first composition adjustment unit (40) of the present embodiment, the first adsorption cylinder (234) and the second adsorption cylinder (235) constitute a first separation unit (41). The two adsorption cylinders (234, 235) constituting the first separation part (41) are the first outside air, which has a nitrogen concentration higher than that of the untreated outside air and a lower oxygen concentration than the untreated outside air. It separates into 2nd outside air whose nitrogen concentration is lower than processing outside air and oxygen concentration is high.
   〈酸素排出管〉
 酸素排出通路を形成する酸素排出管(245)は、一端側で二つの分岐管に分岐しており、一方の分岐管が第1吸着筒(234)の他端に、他方の分岐管が第2吸着筒(235)にそれぞれ接続される。酸素排出管(245)の各分岐管には、逆止弁(261)が一つずつ設けられる。各逆止弁(261)は、対応する吸着筒(234,235)から流出する向きの空気の流れを許容し、逆向きの空気の流れを遮断する。
<Oxygen exhaust tube>
The oxygen discharge pipe (245) forming the oxygen discharge passage is branched into two branch pipes at one end side, one branch pipe being the other end of the first adsorption column (234), the other branch pipe being the first 2. Connected to the suction cylinder (235) respectively. One check valve (261) is provided in each branch pipe of the oxygen discharge pipe (245). Each check valve (261) permits the flow of air directed out of the corresponding adsorption column (234, 235) and blocks the flow of air in the opposite direction.
 酸素排出管(245)は、ユニットケース(32)を貫通するように設けられる。酸素排出管(245)の他端は、輸送用コンテナ(1)の庫外空間に開口する。酸素排出管(245)の集合部分には、逆止弁(262)とオリフィス(263)とが設けられる。逆止弁(262)は、オリフィス(263)よりも酸素排出管(245)の他端寄りに配置される。この逆止弁(262)は、酸素排出管(245)の他端へ向かう空気の流れを許容し、逆向きの空気の流れを遮断する。 An oxygen discharge pipe (245) is provided to penetrate the unit case (32). The other end of the oxygen discharge pipe (245) opens to the outside space of the transport container (1). The collecting portion of the oxygen discharge pipe (245) is provided with a check valve (262) and an orifice (263). The check valve (262) is disposed closer to the other end of the oxygen discharge pipe (245) than the orifice (263). The check valve (262) allows the flow of air toward the other end of the oxygen discharge pipe (245) and blocks the flow of air in the opposite direction.
   〈パージ管〉
 酸素排出管(245)の各分岐管には、パージ通路を形成するパージ管(250)が接続される。パージ管(250)は、一端が第1吸着筒(234)に接続する分岐管に接続され、他端が第2吸着筒(235)に接続する分岐管に接続される。パージ管(250)の一端は、第1吸着筒(234)と逆止弁(261)の間に接続される。パージ管(250)の他端は、第2吸着筒(235)と逆止弁(261)の間に接続される。
<Purge pipe>
A purge pipe (250) forming a purge passage is connected to each branch pipe of the oxygen discharge pipe (245). The purge pipe (250) is connected to a branch pipe having one end connected to the first adsorption column (234) and the other end connected to a branch pipe connected to the second adsorption column (235). One end of the purge pipe (250) is connected between the first adsorption cylinder (234) and the check valve (261). The other end of the purge pipe (250) is connected between the second adsorption cylinder (235) and the check valve (261).
 パージ管(250)には、パージ弁(251)が設けられる。パージ弁(251)は、電磁弁からなる開閉弁である。パージ弁(251)は、第1吸着筒(234)と第2吸着筒(235)を均圧する際に開かれる。また、パージ管(250)におけるパージ弁(251)の両側には、オリフィス(252)が一つずつ設けられる。 The purge pipe (250) is provided with a purge valve (251). The purge valve (251) is an on-off valve composed of a solenoid valve. The purge valve (251) is opened when the first adsorption cylinder (234) and the second adsorption cylinder (235) are equalized. Further, one orifice (252) is provided on each side of the purge valve (251) in the purge pipe (250).
   〈排気用接続管〉
 供給用接続管(244)には、排気用接続通路を形成する排気用接続管(271)が接続される。排気用接続管(271)は、一端が供給用接続管(244)に接続され、他端が酸素排出管(245)に接続される。排気用接続管(271)の一端は、供給用接続管(244)における第2ポンプ機構(231b)と逆止弁(264)の間に接続される。排気用接続管(271)の他端は、酸素排出管(245)の逆止弁(262)よりも庫外側に接続される。
<Connection pipe for exhaust>
An exhaust connection pipe (271) forming an exhaust connection passage is connected to the supply connection pipe (244). One end of the exhaust connection pipe (271) is connected to the supply connection pipe (244), and the other end is connected to the oxygen discharge pipe (245). One end of the exhaust connection pipe (271) is connected between the second pump mechanism (231 b) and the check valve (264) in the supply connection pipe (244). The other end of the exhaust connection pipe (271) is connected outside the check valve (262) of the oxygen discharge pipe (245).
 排気用接続管(271)には、排気用開閉弁(272)が設けられる。排気用開閉弁(272)は、電磁弁からなる開閉弁である。排気用開閉弁(272)は、供給用接続管(244)を流れる空気を庫外へ排出する際に開かれる。 The exhaust connection pipe (271) is provided with an exhaust on-off valve (272). The exhaust on-off valve (272) is an on-off valve composed of a solenoid valve. The exhaust on-off valve (272) is opened when the air flowing through the supply connection pipe (244) is exhausted out of the storage.
   〈測定用接続管〉
 供給用接続管(244)には、測定用通路を形成する測定用接続管(281)が接続される。この測定用接続管(281)は、第1組成調節部(40)をセンサユニット(90)に接続するための配管である。
<Connection pipe for measurement>
The supply connection pipe (244) is connected to a measurement connection pipe (281) which forms a measurement passage. The measurement connection pipe (281) is a pipe for connecting the first composition adjusting unit (40) to the sensor unit (90).
 測定用接続管(281)は、一端が供給用接続管(244)に接続され、他端が測定用配管(125)に接続される。測定用接続管(281)の一端は、供給用接続管(244)における逆止弁(264)と供給側開閉弁(273)の間に接続される。測定用接続管(281)の他端は、測定用配管(125)における測定用開閉弁(126)とセンサユニット(90)の間に接続される。 One end of the measurement connection pipe (281) is connected to the supply connection pipe (244), and the other end is connected to the measurement pipe (125). One end of the measurement connection pipe (281) is connected between the check valve (264) and the supply side on-off valve (273) in the supply connection pipe (244). The other end of the measurement connection pipe (281) is connected between the measurement on-off valve (126) and the sensor unit (90) in the measurement pipe (125).
 測定用接続管(281)には、測定用開閉弁(282)が設けられる。測定用開閉弁(282)は、電磁弁からなる開閉弁である。測定用開閉弁(282)は、供給用接続管(244)を流れる空気をセンサユニット(90)へ送る際に開かれる。 The measurement connection pipe (281) is provided with a measurement on-off valve (282). The measurement on-off valve (282) is an on-off valve composed of a solenoid valve. The measurement on-off valve (282) is opened when air flowing through the supply connection pipe (244) is sent to the sensor unit (90).
   〈バイパス管〉
 吐出管(242)には、バイパス通路を形成するバイパス接続管(255)が接続される。バイパス接続管(255)は、一端が吐出管(242)に接続され、他端が測定用接続管(281)に接続される。バイパス接続管(255)の一端は、吐出管(242)の分岐箇所よりも第1ポンプ機構(231a)寄りに接続される。バイパス接続管(255)の他端は、測定用接続管(281)の一端と測定用開閉弁(282)の間に接続される。このバイパス接続管(255)は、第1吸着筒(234)及び第2吸着筒(235)をバイパスさせて庫外空気を輸送用コンテナ(1)の庫内空間へ供給するための第1バイパス通路を形成する。
<Bypass pipe>
A bypass connection pipe (255) forming a bypass passage is connected to the discharge pipe (242). One end of the bypass connection pipe (255) is connected to the discharge pipe (242), and the other end is connected to the measurement connection pipe (281). One end of the bypass connection pipe (255) is connected closer to the first pump mechanism (231a) than the branch point of the discharge pipe (242). The other end of the bypass connection pipe (255) is connected between one end of the measurement connection pipe (281) and the measurement on-off valve (282). The bypass connection pipe (255) is a first bypass for bypassing the first suction cylinder (234) and the second suction cylinder (235) to supply the outside air to the inside space of the transport container (1). Form a passage.
 バイパス接続管(255)には、バイパス開閉弁(256)が設けられる。バイパス開閉弁(256)は、電磁弁からなる開閉弁である。バイパス開閉弁(256)は、バイパス接続管(255)へ流入する庫外空気の流量を変更するための第1バイパス弁機構を構成する。このバイパス開閉弁(256)は、第1ポンプ機構(231a)が吐出した庫外空気を、その組成を変更せずに荷室(5)へ供給する際に開かれる。 The bypass connection pipe (255) is provided with a bypass on-off valve (256). The bypass on-off valve (256) is an on-off valve composed of a solenoid valve. The bypass on-off valve (256) constitutes a first bypass valve mechanism for changing the flow rate of the outside air flowing into the bypass connection pipe (255). The bypass on-off valve (256) is opened when supplying the outside air discharged by the first pump mechanism (231a) to the loading space (5) without changing its composition.
  -第1組成調節部の運転動作-
 本実施形態の第1組成調節部(40)の運転動作を説明する。
-Driving operation of the first composition adjustment unit-
The driving | operation operation | movement of the 1st composition adjustment part (40) of this embodiment is demonstrated.
 本実施形態の第1組成調節部(40)は、後述する第1動作と第2動作を所定の時間(例えば、14.5秒)ずつ交互に繰り返し行うことによって、未処理庫外空気を第1庫外空気と第2庫外空気に分離する。本実施形態の第1組成調節部(40)は、実施形態1の第1組成調節部(40)と同様に、庫内空気調節装置(30)の酸素濃度低減動作と二酸化炭素濃度低減動作のそれぞれにおいて、未処理庫外空気を第1庫外空気と第2庫外空気に分離する動作を行う。 The first composition adjustment unit (40) of the present embodiment repeats the first operation and the second operation described later alternately by predetermined time (for example, 14.5 seconds) for each time. 1 Separate the air outside the storage and the air outside the second storage. The first composition control unit (40) of the present embodiment is, similar to the first composition control unit (40) of the first embodiment, in the oxygen concentration reduction operation and the carbon dioxide concentration reduction operation of the in-compartment air control device (30). In each of them, an operation is performed to separate untreated outside air into first outside air and second outside air.
 また、本実施形態の第1組成調節部(40)は、後述する外気導入動作を行う。外気導入動作は、輸送用コンテナ(1)の外部から吸い込んだ庫外空気をそのまま輸送用コンテナ(1)の庫内へ供給する動作である。本実施形態の第1組成調節部(40)は、酸素濃度増加動作において、外気導入動作を行う。また、制御器(110)の気密性評価部(116)が行う評価動作においても、本実施形態の第1組成調節部(40)は、必要に応じて外気導入動作を行う。 Further, the first composition adjusting unit (40) of the present embodiment performs an outside air introducing operation described later. The outside air introducing operation is an operation of supplying the outside air sucked from the outside of the transportation container (1) as it is into the inside of the transportation container (1). The first composition adjusting unit (40) of the present embodiment performs the outside air introducing operation in the oxygen concentration increasing operation. Also, in the evaluation operation performed by the airtightness evaluation unit (116) of the controller (110), the first composition adjustment unit (40) of the present embodiment performs the outside air introduction operation as necessary.
   〈第1動作〉
 図20に示すように、第1動作では、第1方向制御弁(232)が第1状態に設定され、第2方向制御弁(233)が第2状態に設定される。その結果、第1ポンプ機構(231a)の吐出口が第1吸着筒(234)に接続し、第2吸着筒(235)が第2ポンプ機構(231b)の吸込口に接続する。また、第1動作では、供給側開閉弁(273)が開かれ、残りの開閉弁(251,256,272,282)が閉じられる。そして、第1動作では、第1吸着筒(234)を対象とする吸着動作と、第2吸着筒(235)を対象とする脱離動作とが行われる。
<First action>
As shown in FIG. 20, in the first operation, the first direction control valve (232) is set to the first state, and the second direction control valve (233) is set to the second state. As a result, the discharge port of the first pump mechanism (231a) is connected to the first suction cylinder (234), and the second suction cylinder (235) is connected to the suction port of the second pump mechanism (231b). In the first operation, the supply side on-off valve (273) is opened and the remaining on-off valves (251, 256, 272, 282) are closed. Then, in the first operation, an adsorption operation for the first adsorption cylinder (234) and a detachment operation for the second adsorption cylinder (235) are performed.
 第1ポンプ機構(231a)は、外気管(241)から未処理庫外空気を吸い込んで加圧し、加圧した未処理庫外空気を第1吸着筒(234)へ供給する。第1吸着筒(234)では、供給された未処理庫外空気に含まれる窒素が吸着剤に吸着される。その結果、第1吸着筒(234)では、未処理庫外空気よりも窒素濃度が低くて酸素濃度が高い第2庫外空気が生成する。第2庫外空気は、第1吸着筒(234)から流出して酸素排出管(245)を流れ、排出用空気として庫外空間へ排出される。 The first pump mechanism (231a) sucks in and evacuates untreated outside air from the outer trachea (241), and supplies the pressurized outside air to the first adsorption cylinder (234). In the first adsorption column (234), nitrogen contained in the supplied outside air outside the storage is adsorbed by the adsorbent. As a result, in the first adsorption column (234), the second outside air having a lower nitrogen concentration and a higher oxygen concentration than the untreated outside air is generated. The second outside air flows out of the first adsorption column (234), flows through the oxygen discharge pipe (245), and is discharged to the outside space as discharge air.
 一方、第2ポンプ機構(231b)は、第2吸着筒(235)から空気を吸引する。第2吸着筒(235)では、その内部の圧力が低下して吸着剤から窒素が脱離する。その結果、第2吸着筒(235)では、未処理庫外空気よりも窒素濃度が高くて酸素濃度が低い第1庫外空気が生成する。第1庫外空気は、第1吸着筒(234)から吸引管(243)へ流入して第2ポンプ機構(231b)へ吸い込まれる。第2ポンプ機構(231b)は、吸い込んだ第1庫外空気を加圧して供給用接続管(244)へ吐出する。第1庫外空気は、供給用空気として供給用接続管(244)を流れ、供給管(120)を流れる空気と合流後に庫内空間へ供給される。 On the other hand, the second pump mechanism (231b) sucks air from the second adsorption cylinder (235). In the second adsorption column (235), the pressure inside thereof decreases and nitrogen is desorbed from the adsorbent. As a result, in the second adsorption column (235), the first outside air having a nitrogen concentration higher than that of the untreated outside air and a lower oxygen concentration is generated. The first outside air flows from the first adsorption cylinder (234) into the suction pipe (243) and is sucked into the second pump mechanism (231b). The second pump mechanism (231b) pressurizes the sucked first outside air and discharges it to the supply connection pipe (244). The first outside air flows through the supply connection pipe (244) as supply air, and is supplied to the inside space after merging with the air flowing through the supply pipe (120).
   〈第2動作〉
 図21に示すように、第2動作では、第1方向制御弁(232)が第2状態に設定され、第2方向制御弁(233)が第1状態に設定される。その結果、第1ポンプ機構(231a)の吐出口が第2吸着筒(235)に接続し、第1吸着筒(234)が第2ポンプ機構(231b)の吸込口に接続する。また、第2動作では、供給側開閉弁(273)が開かれ、残りの開閉弁(251,256,272,282)が閉じられる。そして、第2動作では、第1吸着筒(234)を対象とする脱離動作と、第2吸着筒(235)を対象とする吸着動作とが行われる。
<2nd operation>
As shown in FIG. 21, in the second operation, the first direction control valve (232) is set to the second state, and the second direction control valve (233) is set to the first state. As a result, the discharge port of the first pump mechanism (231a) is connected to the second suction cylinder (235), and the first suction cylinder (234) is connected to the suction port of the second pump mechanism (231b). In the second operation, the supply side on-off valve (273) is opened and the remaining on-off valves (251, 256, 272, 282) are closed. Then, in the second operation, the detachment operation for the first adsorption cylinder (234) and the adsorption operation for the second adsorption cylinder (235) are performed.
 第1ポンプ機構(231a)は、外気管(241)から未処理庫外空気を吸い込んで加圧し、加圧した未処理庫外空気を第2吸着筒(235)へ供給する。第2吸着筒(235)では、供給された未処理庫外空気に含まれる窒素が吸着剤に吸着される。その結果、第2吸着筒(235)では、未処理庫外空気よりも窒素濃度が低くて酸素濃度が高い第2庫外空気が生成する。第2庫外空気は、第2吸着筒(235)から流出して酸素排出管(245)を流れ、排出用空気として庫外空間へ排出される。 The first pump mechanism (231a) sucks in and pressurizes untreated outside air from the outer trachea (241), and supplies the pressurized outside air to the second adsorption cylinder (235). In the second adsorption column (235), nitrogen contained in the supplied outside air outside the storage is adsorbed by the adsorbent. As a result, in the second adsorption column (235), the second outside air having a lower nitrogen concentration and a higher oxygen concentration than the untreated outside air is generated. The second outside air flows out of the second adsorption column (235), flows through the oxygen discharge pipe (245), and is discharged to the outside space as discharge air.
 一方、第2ポンプ機構(231b)は、第1吸着筒(234)から空気を吸引する。第1吸着筒(234)では、その内部の圧力が低下して吸着剤から窒素が脱離する。その結果、第1吸着筒(234)では、未処理庫外空気よりも窒素濃度が高くて酸素濃度が低い第1庫外空気が生成する。第1庫外空気は、第1吸着筒(234)から吸引管(243)へ流入して第2ポンプ機構(231b)へ吸い込まれる。第2ポンプ機構(231b)は、吸い込んだ第1庫外空気を加圧して供給用接続管(244)へ吐出する。第1庫外空気は、供給用空気として供給用接続管(244)を流れ、供給管(120)を流れる空気と合流後に庫内空間へ供給される。 On the other hand, the second pump mechanism (231b) sucks air from the first adsorption column (234). In the first adsorption column (234), the pressure inside thereof decreases and nitrogen is desorbed from the adsorbent. As a result, in the first adsorption column (234), the first outside air having a nitrogen concentration higher than that of the untreated outside air and a lower oxygen concentration is generated. The first outside air flows from the first adsorption cylinder (234) into the suction pipe (243) and is sucked into the second pump mechanism (231b). The second pump mechanism (231b) pressurizes the sucked first outside air and discharges it to the supply connection pipe (244). The first outside air flows through the supply connection pipe (244) as supply air, and is supplied to the inside space after merging with the air flowing through the supply pipe (120).
   〈外気導入動作〉
 図22に示すように、外気導入動作では、制御器(110)が、第1方向制御弁(232)と第2方向制御弁(233)のそれぞれを第2状態(図22に実線で示す状態)に設定し、エアポンプ(231)のモータ(231c)に通電して第1ポンプ機構(231a)を作動させる。また、制御器(110)は、第1バイパス弁(256)、排気用開閉弁(272)、供給側開閉弁(273)、及びパージ弁(251)を開状態に設定し、測定用開閉弁(282)と第2組成調節部(60)の測定用開閉弁(126)とを閉状態に設定する。第2組成調節部(60)は休止する。
<External air introduction operation>
As shown in FIG. 22, in the outside air introducing operation, the controller (110) indicates each of the first direction control valve (232) and the second direction control valve (233) in the second state (solid line in FIG. 22) And the motor (231c) of the air pump (231) is energized to operate the first pump mechanism (231a). Further, the controller (110) sets the first bypass valve (256), the exhaust on-off valve (272), the supply side on-off valve (273), and the purge valve (251) to the open state, and the measurement on-off valve. (282) and the measurement on / off valve (126) of the second composition adjustment unit (60) are set in the closed state. The second composition control unit (60) pauses.
 この外気供給動作において、第1ポンプ機構(231a)から吐出された庫外空気は、第1バイパス管(255)と供給用接続管(244)と供給管(120)とを順に通って、輸送用コンテナ(1)の庫内空間に流入する。このように、外気供給動作では、輸送用コンテナ(1)の外部から第1ポンプ機構(231a)へ吸い込まれた庫外空気が、そのまま輸送用コンテナ(1)の庫内空間へ供給される。 In this outside air supply operation, the outside air discharged from the first pump mechanism (231a) is transported through the first bypass pipe (255), the supply connection pipe (244) and the supply pipe (120) in this order. Flows into the storage space of the container (1). Thus, in the outside air supply operation, the outside air sucked into the first pump mechanism (231a) from the outside of the transport container (1) is supplied as it is to the inside space of the transport container (1).
  -気密性評価部の評価動作-
 評価動作において、本実施形態の気密性評価部(116)は、庫内空気調節装置(30)に外気導入を実行させることによって、輸送用コンテナ(1)内の気圧を調節する。具体的に、この気密性評価部(116)は、図6のステップST12に対応するステップにおいて、エアポンプ(231)の第1ポンプ機構(231a)を起動させる。そして、気密性評価部(116)は、輸送用コンテナ(1)の庫内空間へ庫外空気を供給することによって、輸送用コンテナ(1)内の気圧を上昇させる。
-Evaluation operation of air tightness evaluation unit-
In the evaluation operation, the airtightness evaluation unit (116) of the present embodiment adjusts the air pressure in the transport container (1) by causing the in-compartment air conditioning device (30) to perform the outside air introduction. Specifically, the airtightness evaluation unit (116) activates the first pump mechanism (231a) of the air pump (231) in the step corresponding to step ST12 of FIG. Then, the airtightness evaluation unit (116) raises the air pressure in the transport container (1) by supplying the outside air to the interior space of the transport container (1).
 《その他の実施形態》
 上記各実施形態の庫内空気調節装置(30)については、次のような変形例を適用してもよい。
<< Other Embodiments >>
The following modification may be applied to the in-compartment air conditioning device (30) of each of the above embodiments.
  -第1変形例-
 上記各実施形態の気密性評価装置(130)の気密性評価部(116)は、その評価動作において、ポンプユニット(35)の作動中における輸送用コンテナ(1)内の気圧の変化速度に基づいて、輸送用コンテナ(1)の気密性を評価するように構成されていてもよい。
-First modification-
The airtightness evaluation unit (116) of the airtightness evaluation device (130) of each of the above embodiments is based on the rate of change of the air pressure in the transport container (1) during operation of the pump unit (35) in its evaluation operation. It may be configured to evaluate the airtightness of the shipping container (1).
 本変形例の気密性評価部(116)は、ポンプユニット(35)の作動中における輸送用コンテナ(1)内の気圧の上昇速度が所定の基準速度を以上である場合に、輸送用コンテナ(1)の気密性が充足されていると判断する。また、本変形例の気密性評価部(116)は、ポンプユニット(35)の作動中における輸送用コンテナ(1)内の気圧の上昇速度が所定の基準速度を下回っている場合に、輸送用コンテナ(1)の気密性が不足していると判断する。 The airtightness evaluation unit (116) of the present modification is configured such that the container for transport (the case where the rate of increase in air pressure in the container for transport (1) during operation of the pump unit (35) is equal to or higher It is judged that the airtightness of 1) is satisfied. In addition, the airtightness evaluation unit (116) of this modification is used for transportation when the rate of increase in air pressure in the transportation container (1) during operation of the pump unit (35) is lower than a predetermined reference speed. Judge that the airtightness of the container (1) is insufficient.
  -第2変形例-
 上記各実施形態の気密性評価装置(130)は、輸送用コンテナ(1)の内部空間から空気を排出し、輸送用コンテナ(1)内の気圧を陰圧にすることによって、輸送用コンテナ(1)の気密性を評価するように構成されていてもよい。本変形例の気密性評価装置(130)には、輸送用コンテナ(1)の内部空間から空気を排出するためのポンプ又はファンが、気圧調節機器(131)として設けられる。
-Second modification-
The airtightness evaluation device (130) of each of the above embodiments discharges air from the internal space of the transport container (1), and makes the air pressure in the transport container (1) negative pressure, whereby the transport container ( It may be configured to evaluate the airtightness of 1). In the airtightness evaluation device (130) of the present modification, a pump or a fan for discharging air from the internal space of the transport container (1) is provided as an air pressure adjustment device (131).
 輸送用コンテナ(1)の内部空間から排気すると、輸送用コンテナ(1)内の気圧が次第に低下してゆく。その際、輸送用コンテナ(1)の気密性が低いほど、輸送用コンテナ(1)内の気圧の低下速度は遅くなる。また、輸送用コンテナ(1)内の気圧が陰圧となった状態で輸送用コンテナ(1)からの排気を停止した後は、輸送用コンテナ(1)内の気圧が次第に上昇してゆく。その際、輸送用コンテナ(1)の気密性が低いほど、輸送用コンテナ(1)内の気圧の上昇速度は早くなる。本変形例の気密性評価装置(130)は、このような現象を利用して、輸送用コンテナ(1)の気密性を評価する。 When air is exhausted from the internal space of the transport container (1), the air pressure in the transport container (1) gradually decreases. At that time, the lower the airtightness of the transport container (1), the slower the rate of decrease of the air pressure in the transport container (1). In addition, after the exhaust from the transport container (1) is stopped in a state where the atmospheric pressure in the transport container (1) is a negative pressure, the atmospheric pressure in the transport container (1) gradually increases. At that time, the lower the air tightness of the transport container (1), the faster the rise speed of the air pressure in the transport container (1). The airtightness evaluation device (130) of this modification evaluates the airtightness of the transport container (1) using such a phenomenon.
  -第3変形例-
 実施形態3及び4の気密性評価装置(130)において、気密性評価部(116)は、第1ポンプ(36)から吐出されて輸送用コンテナ(1)の内部へ供給される庫外空気の流量(給気流量)の調節を、第1調節弁(46)の開度の調節ではなく、ポンプユニット(35)の駆動モータ(38)の回転速度の調節によって行うように構成されていてもよい。本変形例において、ポンプユニット(35)の駆動モータ(38)には、インバータから出力された交流が供給される。インバータの出力周波数を変更すると、駆動モータ(38)の回転速度が変化し、第1ポンプ(36)から吐出される空気の流量が変化する。
-Third modification-
In the airtightness evaluation device (130) of the third and fourth embodiments, the airtightness evaluation unit (116) is the external air that is discharged from the first pump (36) and supplied to the inside of the transport container (1). Even if the adjustment of the flow rate (the charge air flow rate) is performed not by the adjustment of the opening degree of the first control valve (46), but by the adjustment of the rotational speed of the drive motor (38) of the pump unit (35) Good. In this modification, the alternating current output from the inverter is supplied to the drive motor (38) of the pump unit (35). When the output frequency of the inverter is changed, the rotational speed of the drive motor (38) changes, and the flow rate of the air discharged from the first pump (36) changes.
  -第4変形例-
 上記各実施形態の気密性評価装置(130)において、気密性評価部(116)は、基準レベル(収納庫(1)の気密性のレベル)だけでなく、判断の対象となる物理量が異なる複数の評価条件のうちの一つを、作業者が選択できるように構成されていてもよい。例えば、本変形例の気密性評価部(116)は、実施形態3の気密性評価部(116)において選択可能な三つの評価条件A~Cと、実施形態4の気密性評価部(116)において選択可能な三つの評価条件A~C(即ち、六つの評価条件)のうちの一つを、作業者が選択できるように構成されていてもよい。
-Fourth modification-
In the airtightness evaluation device (130) of each of the above embodiments, the airtightness evaluation unit (116) is not limited to the reference level (the airtightness level of the storage case (1)) but a plurality of different physical quantities to be determined. One of the evaluation conditions of may be configured to be selected by the worker. For example, the airtightness evaluation unit (116) of the present modification includes three evaluation conditions A to C selectable in the airtightness evaluation unit (116) of the third embodiment, and the airtightness evaluation unit (116) of the fourth embodiment. The operator may be configured to select one of three evaluation conditions A to C (that is, six evaluation conditions) selectable at.
  -第5変形例-
 上記実施形態1~8の庫内空気調節装置(30)において、第1組成調節部(40)と第2組成調節部(60)のそれぞれは、いわゆるPSA(Pressure Swing Adsorption)法によって、吸い込んだ空気を互いに組成が異なる二種類の空気に分離するように構成されていてもよい。この場合、組成調節部(40,60)は、吸い込んだ空気に含まれる窒素を吸着剤に吸着させることによって、窒素濃度が低くて酸素濃度および二酸化炭素濃度が高い空気を生成する工程と、吸着剤から窒素を脱離させて窒素濃度が高くて酸素濃度及び二酸化炭素濃度が低い空気を生成する工程とを繰り返し行う。
-Fifth modification-
In the in-compartment air conditioner (30) according to the first to eighth embodiments, each of the first composition control unit (40) and the second composition control unit (60) is sucked by a so-called PSA (Pressure Swing Adsorption) method. The air may be configured to be separated into two types of air having different compositions. In this case, the composition adjusting unit (40, 60) adsorbs nitrogen contained in the sucked air to the adsorbent to generate air having a low nitrogen concentration and a high oxygen concentration and carbon dioxide concentration; And desorbing nitrogen from the agent to generate air having a high nitrogen concentration and a low oxygen concentration and a low carbon dioxide concentration.
  -第6変形例-
 上記各実施形態の庫内空気調節装置(30)を備えた冷凍機(10)は、定置型の冷蔵庫または冷凍庫に設けられてもよい。また、上記各実施形態の庫内空気調節装置(30)を備えた冷凍機(10)は、トラックや鉄道などで輸送される陸上輸送用の冷蔵・冷凍コンテナに設けられていてもよい。また、上記各実施形態の庫内空気調節装置(30)を備えた冷凍機(10)は、荷室を形成する箱体が車台と一体になった冷蔵・冷凍トラックに設けられていてもよい。
-Sixth modification-
The refrigerator (10) provided with the in-compartment air conditioning device (30) of each of the above embodiments may be provided in a stationary refrigerator or freezer. Moreover, the refrigerator (10) provided with the in-compartment air conditioning apparatus (30) of each said embodiment may be provided in the refrigeration and refrigeration container for land transportation transported by a truck, a railway, etc. Moreover, the refrigerator (10) provided with the in-compartment air conditioning apparatus (30) of each said embodiment may be provided in the refrigeration / refrigeration truck with which the box which forms a cargo compartment was united with the chassis. .
 以上説明したように、本発明は、収納庫の気密性を評価する気密性評価装置と、この気密性評価装置を備えた庫内空気調節装置および冷凍装置について有用である。 As described above, the present invention is useful for an airtightness evaluation device for evaluating the airtightness of a storage case, and an in-compartment air conditioning device and a refrigeration system provided with the airtightness evaluation device.
   1  輸送用コンテナ(収納庫)
  10  コンテナ用の冷凍機(冷凍装置)
  11  冷媒回路
  36  第1ポンプ(空気ポンプ)
  40  第1組成調節部
  45  第1圧力センサ(気圧センサ)
  60  第2組成調節部
  65  第2圧力センサ(気圧センサ)
  103  第3圧力センサ(気圧センサ)
  113  操作盤(入力部)
  116  気密性評価部
  130  気密性評価装置
  131  気圧調節機器
1 Container for transportation (storage)
10 Refrigerator for container (freezer)
11 Refrigerant circuit 36 1st pump (air pump)
40 1st composition adjustment part 45 1st pressure sensor (air pressure sensor)
60 second composition adjustment unit 65 second pressure sensor (air pressure sensor)
103 3rd pressure sensor (air pressure sensor)
113 Operation panel (input section)
116 Airtightness evaluation unit 130 Airtightness evaluation device 131 Barometric pressure regulator

Claims (9)

  1.  収納庫(1)内の気圧を大気圧と異ならせるために上記収納庫(1)へ給気し又は上記収納庫(1)から排気する気圧調節機器(131)と、
     上記収納庫(1)内の気圧を計測する気圧センサ(103,65,45)と、
     上記気圧調節機器(131)の運転中または停止後における上記気圧センサ(103,65,45)の計測値に基づいて上記収納庫(1)の気密性を評価する評価動作を行うように構成された評価部(116)とを備えている
    ことを特徴とする気密性評価装置。
    An air pressure regulator (131) for supplying air to the storage case (1) or exhausting air from the storage case (1) in order to make the air pressure in the storage case (1) different from the atmospheric pressure;
    A barometric pressure sensor (103, 65, 45) for measuring the barometric pressure in the storage (1);
    An evaluation operation is performed to evaluate the airtightness of the storage case (1) based on the measurement values of the air pressure sensor (103, 65, 45) during or after operation of the air pressure adjustment device (131). And an evaluation unit (116).
  2.  請求項1において、
     上記評価部(116)は、
      上記気圧センサ(103,65,45)の計測値に基づいて、上記収納庫(1)の気密性が基準レベルに達していることを示す評価条件の成否を判断する動作を、上記評価動作として行うように構成されている
    ことを特徴とする気密性評価装置。
    In claim 1,
    The evaluation unit (116)
    An operation of judging success or failure of an evaluation condition indicating that the airtightness of the storage (1) has reached a reference level based on the measurement values of the air pressure sensor (103, 65, 45) is the evaluation operation. An airtightness evaluation device characterized in that it is configured to perform.
  3.  請求項2において、
     上記評価部(116)は、上記基準レベルが互いに異なる複数の上記評価条件のうちの一つの成否を、上記評価動作において判断するように構成される一方、
     複数の上記評価条件うち上記評価動作において成否が判断される一つの上記評価条件を指定する情報を作業者が入力する入力部(113)を備えている
    ことを特徴とする気密性評価装置。
    In claim 2,
    While the evaluation unit (116) is configured to determine success or failure of one of the plurality of evaluation conditions different from each other in the reference level in the evaluation operation,
    An airtightness evaluation device comprising: an input unit (113) through which a worker inputs information for specifying one of the plurality of evaluation conditions among the plurality of evaluation conditions for which success or failure is determined in the evaluation operation.
  4.  請求項1乃至3のいずれか一つにおいて、
     上記評価部(116)は、上記評価動作として、上記気圧調節機器(131)を作動させ、上記気圧センサ(103,65,45)の計測値が基準圧力に達すると上記気圧調節機器(131)を停止させ、上記気圧調節機器(131)の停止後における上記気圧センサ(103,65,45)の計測値の変化に基づいて上記収納庫(1)の気密性を評価する動作を行うように構成されている
    ことを特徴とする気密性評価装置。
    In any one of claims 1 to 3,
    The evaluation unit (116) operates the air pressure adjustment device (131) as the evaluation operation, and when the measurement value of the air pressure sensor (103, 65, 45) reaches the reference pressure, the air pressure adjustment device (131) So that the air tightness of the storage case (1) is evaluated based on the change in the measured value of the air pressure sensor (103, 65, 45) after the air pressure adjustment device (131) is stopped. An airtightness evaluation device characterized in that it is configured.
  5.  請求項1乃至3のいずれか一つにおいて、
     上記評価部(116)は、上記評価動作として、上記気圧調節機器(131)を制御することによって上記気圧センサ(103,65,45)の計測値を所定時間に亘って所定圧力範囲に保った後に、上記気圧調節機器(131)の停止中における上記気圧センサ(103,65,45)の計測値の変化に基づいて上記収納庫(1)の気密性を評価する動作を行うように構成されている
    ことを特徴とする気密性評価装置。
    In any one of claims 1 to 3,
    As the evaluation operation, the evaluation unit (116) keeps the measurement value of the air pressure sensor (103, 65, 45) in a predetermined pressure range for a predetermined time by controlling the air pressure adjustment device (131). After that, it is configured to perform an operation of evaluating the airtightness of the storage case (1) based on the change of the measurement value of the air pressure sensor (103, 65, 45) while the air pressure adjustment device (131) is stopped. Airtightness evaluation device characterized in that.
  6.  請求項1乃至3のいずれか一つにおいて、
     上記評価部(116)は、上記評価動作として、上記気圧調節機器(131)を作動させ、上記気圧調節機器(131)の運転中における上記気圧センサ(103,65,45)の計測値の変化に基づいて上記収納庫(1)の気密性を評価する動作を行うように構成されている
    ことを特徴とする気密性評価装置。
    In any one of claims 1 to 3,
    The evaluation unit (116) operates the air pressure adjustment device (131) as the evaluation operation, and changes in measured values of the air pressure sensor (103, 65, 45) during operation of the air pressure adjustment device (131). An airtightness evaluation device characterized by performing operation which evaluates airtightness of said storage (1) based on a.
  7.  請求項1乃至6のいずれか一つに記載の気密性評価装置(130)と、
     上記収納庫(1)の外部から吸入した庫外空気を加圧して吐出する空気ポンプ(36)と、
     上記空気ポンプ(36)が吐出した上記庫外空気から該庫外空気とは組成が異なる供給用空気を分離し、該供給用空気を上記収納庫(1)の内部へ供給する分離部(41)とを備え、
     上記空気ポンプ(36)は、上記収納庫(1)の気圧を陽圧にするために上記収納庫(1)へ給気するように構成されて上記気密性評価装置(130)の気圧調節機器(131)を兼ねている
    ことを特徴とする庫内空気調節装置。
    The airtightness evaluation device (130) according to any one of claims 1 to 6,
    An air pump (36) for pressurizing and discharging the outside air sucked from the outside of the storage case (1);
    A separator (41) for separating supply air having a different composition from the outside air discharged from the outside air discharged by the air pump (36), and supplying the air for supply into the inside of the storage case (1) And),
    The air pump (36) is configured to supply air to the storage (1) in order to make the pressure of the storage (1) positive, and the pressure adjustment device of the airtightness evaluation device (130) An internal air conditioner characterized in that it also serves as (131).
  8.  請求項1乃至6のいずれか一つに記載の気密性評価装置(130)と、
     収納庫(1)の庫内空気の組成を、大気の組成と異なる目標組成となるように調節する組成調節部(40,60)とを備え、
     上記気密性評価装置(130)の上記評価部(116)は、上記組成調節部(40,60)の動作によって上記収納庫(1)の庫内空気の組成を上記目標組成に到達させられないことを示す不具合条件が成立すると、上記評価動作を行うように構成されている
    ことを特徴とする庫内空気調節装置。
    The airtightness evaluation device (130) according to any one of claims 1 to 6,
    A composition adjustment unit (40, 60) for adjusting the composition of the air in the storage (1) to a target composition different from the composition of the atmosphere;
    The evaluation unit (116) of the air tightness evaluation device (130) can not cause the composition of the air inside the storage (1) to reach the target composition by the operation of the composition adjustment unit (40, 60) An internal air conditioning system configured to perform the evaluation operation when a failure condition indicating that the condition is satisfied is established.
  9.  請求項1乃至6のいずれか一つに記載の気密性評価装置(130)と、
     収納庫(1)の庫内空気の温度が目標温度となるように、冷凍サイクルを行って上記庫内空気を冷媒によって冷却する冷媒回路(11)とを備え、
     上記気密性評価装置(130)の上記評価部(116)は、上記冷媒回路(11)の動作によって上記収納庫(1)の庫内空気の温度を目標温度に到達させられないことを示す不具合条件が成立すると、上記評価動作を行うように構成されている
    ことを特徴とする冷凍装置。
    The airtightness evaluation device (130) according to any one of claims 1 to 6,
    And a refrigerant circuit (11) for performing a refrigeration cycle to cool the air in the storage with a refrigerant so that the temperature of the air in the storage (1) becomes a target temperature,
    The evaluation unit (116) of the air tightness evaluation device (130) has a problem that the temperature of the air inside the storage (1) can not reach the target temperature by the operation of the refrigerant circuit (11) A refrigeration apparatus characterized in that the evaluation operation is performed when a condition is satisfied.
PCT/JP2018/043008 2017-11-22 2018-11-21 Air-tightness evaluation device, in-compartment air conditioning device, and refrigeration device WO2019103045A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-224397 2017-11-22
JP2017224397 2017-11-22

Publications (1)

Publication Number Publication Date
WO2019103045A1 true WO2019103045A1 (en) 2019-05-31

Family

ID=66631446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043008 WO2019103045A1 (en) 2017-11-22 2018-11-21 Air-tightness evaluation device, in-compartment air conditioning device, and refrigeration device

Country Status (2)

Country Link
JP (1) JP2019095448A (en)
WO (1) WO2019103045A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486104A (en) * 2022-01-26 2022-05-13 中家院(北京)检测认证有限公司 System and method for detecting sealing performance of refrigerating device and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7354485B1 (en) 2022-03-17 2023-10-03 株式会社マツナガ Airflow meter set for airtightness performance measurement method and airtightness performance measurement device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0385287A (en) * 1989-08-25 1991-04-10 Mitsubishi Kakoki Kaisha Ltd Ca storage container
JPH0457780A (en) * 1990-06-20 1992-02-25 Sumitomo Seika Chem Co Ltd Container and transportation method using same
JPH06288857A (en) * 1993-04-02 1994-10-18 Shizukou Kk Method for testing container
JPH09280990A (en) * 1996-04-15 1997-10-31 Toyoda Mach Works Ltd Method for testing leakage
JP2001235387A (en) * 2000-02-24 2001-08-31 Ogawa Giken Kk Leak inspecting device
JP2012026675A (en) * 2010-07-26 2012-02-09 Daikin Industries Ltd Refrigeration device
JP2012154687A (en) * 2011-01-24 2012-08-16 Ntn Corp Defect checkup method and defect checkup device
JP2014109508A (en) * 2012-12-03 2014-06-12 Dmg Mori Seiki Co Ltd Method and device for detecting airtight state of machine tool window part
JP2014147643A (en) * 2013-02-04 2014-08-21 Olympus Medical Systems Corp Endoscope leakage inspection device and endoscope leakage inspection method
JP2015049159A (en) * 2013-09-02 2015-03-16 大成建設株式会社 Inspection method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149774A (en) * 1974-10-25 1976-04-30 Fukuda Kk Kukimoreshikentono anteiatsuryokukyokyusochi
JPH10185749A (en) * 1996-12-24 1998-07-14 Gas Mitsukusu Kogyo Kk Method and apparatus for leak inspection
JP2004309160A (en) * 2003-04-02 2004-11-04 Shimizu Corp Clean room airtightness performance testing method
US20140354426A1 (en) * 2013-05-30 2014-12-04 Andrey LUYBYANITSKY Device for container leakage detection and method for the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0385287A (en) * 1989-08-25 1991-04-10 Mitsubishi Kakoki Kaisha Ltd Ca storage container
JPH0457780A (en) * 1990-06-20 1992-02-25 Sumitomo Seika Chem Co Ltd Container and transportation method using same
JPH06288857A (en) * 1993-04-02 1994-10-18 Shizukou Kk Method for testing container
JPH09280990A (en) * 1996-04-15 1997-10-31 Toyoda Mach Works Ltd Method for testing leakage
JP2001235387A (en) * 2000-02-24 2001-08-31 Ogawa Giken Kk Leak inspecting device
JP2012026675A (en) * 2010-07-26 2012-02-09 Daikin Industries Ltd Refrigeration device
JP2012154687A (en) * 2011-01-24 2012-08-16 Ntn Corp Defect checkup method and defect checkup device
JP2014109508A (en) * 2012-12-03 2014-06-12 Dmg Mori Seiki Co Ltd Method and device for detecting airtight state of machine tool window part
JP2014147643A (en) * 2013-02-04 2014-08-21 Olympus Medical Systems Corp Endoscope leakage inspection device and endoscope leakage inspection method
JP2015049159A (en) * 2013-09-02 2015-03-16 大成建設株式会社 Inspection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486104A (en) * 2022-01-26 2022-05-13 中家院(北京)检测认证有限公司 System and method for detecting sealing performance of refrigerating device and storage medium

Also Published As

Publication number Publication date
JP2019095448A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
JP6930564B2 (en) Air conditioner in the refrigerator
JP6958669B2 (en) Air composition regulator
US11144024B2 (en) Inside air control system
JP6590058B2 (en) Air composition controller
JP2020128862A5 (en)
WO2019065879A1 (en) Compartment interior air-conditioning device
WO2019168055A1 (en) Interior air-conditioning device
WO2019103045A1 (en) Air-tightness evaluation device, in-compartment air conditioning device, and refrigeration device
JP6662427B2 (en) Cabin air conditioner
JP2017219287A (en) Gas supply device and container freezing device including the same
WO2022224616A1 (en) In-compartment air conditioner, refrigeration device, and transport container
JP7064154B2 (en) Air composition adjusting device, refrigerating device, container, and air composition adjusting method
JP7161116B2 (en) Air composition conditioners, refrigeration equipment, and containers
JP7339567B2 (en) Indoor air conditioners, refrigeration equipment, and shipping containers
WO2022065165A1 (en) Ripening control device, air composition adjustment device, container, and freezer
JP7185132B2 (en) Indoor air conditioner
JP2022165574A (en) Inside air adjusting device, refrigerator, and transporting container
JP2022040585A (en) Air composition regulator, freezer, and transport container
JP2022040583A (en) Air composition regulator, freezer, and transport container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881789

Country of ref document: EP

Kind code of ref document: A1