WO2023112197A1 - 空中映像表示装置 - Google Patents

空中映像表示装置 Download PDF

Info

Publication number
WO2023112197A1
WO2023112197A1 PCT/JP2021/046247 JP2021046247W WO2023112197A1 WO 2023112197 A1 WO2023112197 A1 WO 2023112197A1 JP 2021046247 W JP2021046247 W JP 2021046247W WO 2023112197 A1 WO2023112197 A1 WO 2023112197A1
Authority
WO
WIPO (PCT)
Prior art keywords
retroreflective
image display
light
aerial image
display device
Prior art date
Application number
PCT/JP2021/046247
Other languages
English (en)
French (fr)
Inventor
勇人 菊田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/046247 priority Critical patent/WO2023112197A1/ja
Priority to JP2023567382A priority patent/JP7562016B2/ja
Priority to CN202180104406.2A priority patent/CN118318202A/zh
Publication of WO2023112197A1 publication Critical patent/WO2023112197A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images

Definitions

  • the present disclosure relates to an aerial image display device.
  • An aerial image display device has been proposed that displays an aerial image obtained by re-imaging the image light emitted from the image display unit in space by means of an imaging optical system that combines a retroreflective member and a beam splitter. See, for example, Patent Literature 1 and Non-Patent Literature 1.
  • an observer may visually recognize stray light (specifically, specular reflection light) different from image light formed as an aerial image due to the layout design of the imaging optical system. prevented.
  • stray light specifically, specular reflection light
  • slit-shaped or grid-shaped openings are provided in the retroreflective member, and the retroreflective member and the beam splitter are arranged in layers, thereby increasing the size of the device. prevented.
  • Non-Patent Document 1 in an aerial image display device having a retroreflective member including an aperture, there is a problem that stray light different from the specularly reflected light described in Patent Document 1 is generated. Specifically, in Non-Patent Document 1, stray light is also generated due to the structure of the optical element in the retroreflective member. Also, stray light is generated when the image light passes through the opening. When such stray light travels along the optical path for forming an aerial image, the visibility of the aerial image for the observer is significantly reduced.
  • An object of the present disclosure is to provide an aerial image display device capable of suppressing deterioration in visibility of an aerial image.
  • An aerial image display device includes a retroreflective member including an image display unit that displays an image, a plurality of openings through which image light emitted from the image display unit passes, and a plurality of retroreflective surfaces. and an optical member that includes a light separation surface that reflects and transmits incident light and that reflects the image light that has passed through the plurality of openings and directs the image light toward the plurality of retroreflection surfaces; The image light retroreflected by the reflecting surface is transmitted through the optical member, and the directions of the plurality of retroreflecting surfaces are different from each other.
  • An aerial image display device includes an image display unit that displays an image, a plurality of first openings that allow image light emitted from the image display unit to pass therethrough, and a single or multiple first openings. and a light separation surface that reflects and transmits incident light, and reflects the image light that has passed through the plurality of first openings to the single or and an optical member directed toward the plurality of first retroreflective surfaces, wherein the image light retroreflected by the single or plurality of first retroreflective surfaces passes through the optical member and is directed to the plurality of first retroreflective surfaces. It is characterized in that the widths of the openings of 1 are different from each other.
  • FIG. 1 is a configuration diagram schematically showing an example of configuration of an aerial image display device according to Embodiment 1;
  • FIG. 2 is a perspective view schematically showing an example of the configuration of the retroreflective member shown in FIG. 1;
  • FIG. FIG. 5 is an explanatory diagram for explaining a comparison between the size of the casing of the aerial image display device according to Embodiment 1 and the size of the casing of the aerial image display device according to the comparative example;
  • FIG. 2 is an explanatory diagram illustrating a configuration in which the orientations of a plurality of retroreflective surfaces shown in FIG. 1 are different from each other;
  • FIG. 2 is a configuration diagram schematically showing an example of configuration of an aerial image display device according to a modification of Embodiment 1; 2 is a block diagram showing the configuration of an aerial image display device according to a modification of Embodiment 1;
  • FIG. 3A is a block diagram schematically showing an example of a hardware configuration of a control section of the aerial image display device according to a modification of Embodiment 1;
  • FIG. 3B is a block diagram schematically showing another example of the hardware configuration of the controller of the aerial image display device according to the modified example of Embodiment 1;
  • FIG. 10 is an explanatory diagram illustrating an example of control of a plurality of retroreflective surfaces in the aerial image display device according to the modified example of Embodiment 1;
  • FIG. 10 is an explanatory diagram illustrating another example of control of a plurality of retroreflective surfaces in the aerial image display device according to the modified example of Embodiment 1;
  • FIG. 10 is a configuration diagram schematically showing an example of configuration of an aerial image display device according to Embodiment 2;
  • FIG. 10 is a configuration diagram schematically showing an example of configuration of an aerial image display device according to Modification 1 of Embodiment 2;
  • FIG. 10 is a configuration diagram schematically showing an example of configuration of an aerial image display device according to Modification 2 of Embodiment 2;
  • FIG. 11 is a perspective view showing the configuration of a retroreflective member of the aerial image display device according to Embodiment 3;
  • FIG. 11 is a perspective view showing the configuration of a retroreflective member of an aerial image display device according to a modification of Embodiment 3;
  • FIG. 12 is a perspective view showing another example of the configuration of the retroreflective member of the aerial image display device according to the modified example of the third embodiment;
  • the X axis is a coordinate axis that indicates the width direction of the aerial image display device.
  • the Y-axis is a coordinate axis that indicates the axis in the depth direction of the aerial image display device.
  • the Z-axis is a coordinate axis indicating the vertical axis of the aerial image display device.
  • “upper”, “lower”, “front” and “rear” mean upper, lower, front and rear, respectively, when the aerial image display device is viewed from the front.
  • the terms “upper”, “lower”, “front” and “rear” are terms that indicate directions to facilitate understanding of the description of each part. The definition of this direction does not limit the shape, position, etc. of the members constituting the aerial image display device according to the embodiment of the present disclosure.
  • FIG. 1 is a configuration diagram schematically showing an example of configuration of an aerial image display device 100 according to Embodiment 1.
  • the aerial image display device 100 has an image display unit 10, a retroreflection member 20, a beam splitter 30 as an optical member, and a housing 80.
  • the housing 80 accommodates the image display section 10 , the retroreflective member 20 and the beam splitter 30 .
  • the configuration of the image display unit 10, the retroreflection member 20, and the beam splitter 30, and the optical path of light for forming the aerial image A displayed by the aerial image display device 100 will be described below.
  • the image display unit 10 is a display device that displays an image 11 accompanied by light emission.
  • the image display unit 10 emits image light L1.
  • the image light L1 is diffused light.
  • the image display unit 10 is, for example, a display device having a two-dimensional planar light source.
  • the image display unit 10 is, for example, a display device having a liquid crystal display (liquid crystal element) and a backlight.
  • the image display unit 10 may be a display device having a self-luminous element such as an organic EL (Electro Luminescence) element or an LED (Light Emitting Diode) element, or a projection apparatus having a projector and a screen.
  • the image display unit 10 is not limited to a display device having a two-dimensional flat light source, and may be a display having a curved surface, a stereoscopically arranged display, a stereoscopic display having LEDs, or the like. Furthermore, the image display unit 10 may be a display that utilizes stereoscopic vision due to binocular parallax or motion parallax of the observer 90 by having a lens optical system and a barrier control unit.
  • retroreflective member 20 includes a plurality of apertures 51, 52, 53, 54 and a plurality of retroreflective elements 61, 62, 63, 64, 65.
  • the plurality of openings 51 to 54 and the plurality of retroreflective elements 61 to 65 are arranged alternately in the X-axis direction (first direction), which is the arrangement direction.
  • the plurality of retroreflective elements 61-65 face the beam splitter 30 in the Y-axis direction (second direction) orthogonal to the arrangement direction of the plurality of openings 51-54.
  • the plurality of openings 51 to 54 allow the image light L1 emitted from the image display section 10 to pass therethrough.
  • each of the plurality of openings 51 to 54 has a slit shape elongated in the Z-axis direction (third direction).
  • the plurality of openings 51 to 54 are collectively referred to as "the plurality of openings 50" when there is no need to distinguish between the plurality of openings 51 to 54.
  • a plurality of retroreflective elements 61 to 65 retroreflect incident light.
  • the multiple retroreflective elements 61 to 65 have multiple retroreflective surfaces 61a to 65a, respectively.
  • the plurality of retroreflection surfaces 61a to 65a are arranged at positions facing a light separation surface 30b of the beam splitter 30, which will be described later, in the Y-axis direction.
  • the plurality of retroreflective elements 61 to 65 are also collectively referred to as "the plurality of retroreflective elements 60" when there is no need to distinguish between the plurality of retroreflective elements 61 to 65.
  • the plurality of retroreflective surfaces 61a to 65a will be collectively referred to as "the plurality of retroreflective surfaces 60a".
  • the retroreflective element 60 has a retroreflective function of reflecting incident light in the incident direction of the incident light.
  • the retroreflective element 60 is a sheet-like optical element.
  • the retroreflective element 60 is, for example, a so-called bead type retroreflective sheet.
  • a bead type retroreflective sheet contains a plurality of minute glass beads, and the glass beads have a spherical mirror surface.
  • a bead-type retroreflective sheet refracts incident light on a spherical mirror surface and reflects it on the bottom of the bead. Light reflected at the bottom of the bead is refracted again at the specular surface. As a result, the bead-type retroreflective sheet emits retroreflected light.
  • the retroreflective element 60 may be a so-called prism-type retroreflective sheet.
  • a prism-type retroreflective sheet a plurality of minute microprisms are arranged, and the microprisms have mirror surfaces.
  • the microprisms are, for example, convex triangular pyramidal prisms or hollow triangular pyramidal prisms.
  • a prism-type retroreflective sheet emits retroreflected light by reflecting incident light multiple times on the mirror surfaces inside the triangular prism.
  • the retroreflective member 20 further includes support portions 25 that support both ends of the plurality of retroreflective elements 60 in the Z-axis direction.
  • the beam splitter 30 reflects the image light L1 emitted from the image display section 10 .
  • the beam splitter 30 has a light separation function of separating incident light into reflected light and transmitted light.
  • the beam splitter 30 includes a light separation surface 30b that reflects and transmits the incident image light L1.
  • the light separation surface 30 b faces the retroreflective member 20 .
  • the light separation surface 30b reflects the image light L1 transmitted through the plurality of first openings 51 to 54 and directs it toward the plurality of retroreflection surfaces 60a.
  • the beam splitter 30 is made of, for example, a resin transparent plate (for example, an acrylic plate) or a glass plate.
  • a resin transparent plate for example, an acrylic plate
  • the intensity of transmitted light is higher than the intensity of reflected light. Therefore, when the beam splitter 30 is formed from a resin-made transparent plate, the reflection intensity may be improved by adding a metal film to the transparent plate.
  • the beam splitter 30 is, for example, a half mirror.
  • the beam splitter 30 may be a reflective polarizing plate that transmits or reflects light incident from a liquid crystal element or a thin film element, depending on the polarization state of the light.
  • the beam splitter 30 may be a reflective polarizing plate in which the ratio of transmittance and reflectance changes according to the polarization state of incident light.
  • the image light L1 of the image 11 displayed on the display surface 10a of the image display unit 10 by the image display unit 10 and the imaging optical system 70 configured by the beam splitter 30 and the retroreflection member 20. is formed as an aerial image A.
  • the image light L1 incident on the beam splitter 30 from the image display unit 10 is separated into reflected light (that is, light L2) and transmitted light (not shown).
  • the retroreflective surface retroreflects the incident light L2 and emits it as light L3.
  • Light L3 enters beam splitter 30 .
  • the beam splitter 30 transmits the light L3 and emits it as light L4 directed toward the eyes of the observer 90 . Thereby, the light L4 forms an image in the air where the display element does not exist.
  • the image light L1 emitted from the image display unit 10 is reflected by the light separation surface 30b of the beam splitter 30 and then retroreflected by the retroreflection surface 63a, so that the optical path passing through the beam splitter 30 is follow.
  • the image light L1 is diffused light as described above. Therefore, the image light L1 emitted from the image display unit 10 reconverges at a plane-symmetrical position with respect to the beam splitter 30 .
  • the re-converged light L4 is diffused again from the converged position and enters the eyes of the observer 90 .
  • the aerial image A based on the image 11 is displayed, so that the observer 90 can visually recognize the aerial image A.
  • the rear surface (that is, the rear surface facing the image display unit 10) 60b of the retroreflective element 60 shown in FIG. 2 may be subjected to matte surface coating or optical processing. As a result, it is possible to prevent the generation of light traveling along an optical path different from the optical path used to form the aerial image A due to reflection of light on the back surface 60 b of the retroreflective element 60 .
  • FIG. 3 is an explanatory diagram for explaining a comparison between the size of the housing 80 of the aerial image display device 100 according to Embodiment 1 and the size of the housing 80A of the aerial image display device 100A according to the comparative example.
  • An aerial image display device 100A according to the comparative example has an image display section 10, a retroreflective member 20A, a beam splitter 30, and a housing 80A.
  • a retroreflective member 20 ⁇ /b>A of the comparative example differs from the retroreflective member 20 of the first embodiment in that it does not have a plurality of openings 50 .
  • the aerial image display device 100A according to the comparative example it is possible to form an aerial image A because the optical path of the image light incident on the beam splitter and the optical path of the reflected light reflected by the beam splitter incident on the retroreflective member are different from each other. can. Therefore, in the aerial image display device 100A according to the comparative example, the image formation of the aerial image A is realized by arranging the image display unit 10 and the retroreflective member 20 at spatially separated positions. However, the aerial image display device 100A according to the comparative example has a problem that the housing 80A is enlarged.
  • the dimension from the front surface 30a of the beam splitter 30 to the back surface 60b of the retroreflective element 60 is defined as the depth dimension E11
  • the dimension from the front surface 30a of the beam splitter 30 to the back surface 20b of the retroreflective member 20A is defined as the depth dimension E12.
  • the vertical dimensions of the housings 80 and 80A are E21 and E22.
  • the depth dimension E12 of the aerial image display device 100A according to the comparative example is about twice the depth dimension E11 of the aerial image display device 100.
  • the image display unit 10 is arranged below the beam splitter 30 as seen from the observer 90 .
  • the vertical dimension E22 of the housing 80A of the comparative example is larger than the vertical dimension E21 of the housing 80 of the first embodiment.
  • the vertical dimension E22 of the housing 80A is, for example, about 1.2 times the vertical dimension E21 of the housing 80A.
  • the retroreflective member 20 includes a plurality of openings 50 that transmit the image light L1, and a plurality of retroreflective surfaces 60a arranged at positions facing the light separating surface 30b. This allows the image light L1 to enter the beam splitter 30 through the aperture 50 . Therefore, the aerial image display device 100 according to Embodiment 1 can form the aerial image A while downsizing the housing 80 compared to the aerial image display device 100A according to the comparative example.
  • the optical path of the light that forms the aerial image A includes the optical path of the image light L1 that has passed through the plurality of apertures 50 described above. A can be seen.
  • the aerial image display device 100 there is light called "stray light" that travels along an optical path different from the optical path for forming the aerial image A. The stray light reduces the visibility of the aerial image A.
  • Stray light is generated, for example, by specular reflection in the retroreflective element 60. Specifically, part of the light L2 incident on the retroreflective element 60 may be specularly reflected due to the surface processing of the retroreflective element 60 . As described above, the image light L1 emitted from the image display unit 10 is reflected by the beam splitter 30 and then mirror-reflected by the retroreflection surface 60a, thereby forming an optical path of stray light incident on the eyes of the observer 90 in some cases. be. In this case, the observer 90 visually recognizes the virtual image at the rear of the housing 80 which is plane-symmetrical to the aerial image A with the retroreflective surface 60a as a mirror surface.
  • stray light may be generated, for example, by diffraction of the image light L1 when it passes through the aperture 50.
  • the stray light is slit-shaped diffracted light.
  • the image light L ⁇ b>1 emitted from the image display unit 10 passes through the opening 50
  • the image light L ⁇ b>1 spreads according to the width of the opening 50 .
  • the spread of the diffracted light generated by passing through the aperture 50 increases as the width of the aperture 50 narrows.
  • the spread of the diffracted light from the ideal light imaging position increases according to the distance traveled by the light after diffraction (in other words, “optical path length”).
  • the diffracted light traces the optical path along which the aerial image A is formed, the image is formed at a position different from the ideal imaging position depending on the width of the aperture 50 and the optical path length.
  • blurring of light occurs around the image information to be visually recognized as the aerial image A, and the visibility of the aerial image A deteriorates.
  • Stray light is also generated by diffraction that occurs when the image light L1 enters the retroreflective element 60, for example.
  • the retroreflective element 60 also has a retroreflective surface 60a having a constant width in the X-axis direction.
  • the width for retroreflecting the incident light (the light L2 shown in FIG. 1) changes according to the incident angle of the light. Therefore, the width of the retroreflective surface 60a, which contributes to the spread of light caused by diffraction, changes according to the incident angle of the light L2 with respect to the retroreflective element 60.
  • stray light is generated by multiple reflections of light between the beam splitter 30 and the retroreflective element 60, for example.
  • the light retroreflected by the retroreflective element 60 may be reflected by the retroreflective element 60 without passing through the beam splitter 30 and may enter the retroreflective element 60 again.
  • the light that passes through the beam splitter 30 and enters the eye of the observer 90 forms an image at a position different from the ideal imaging position. In this case, the observer 90 may see unnecessary video information.
  • the brightness of the stray light incident on the eye of the observer 90 due to repeated reflection between the beam splitter 30 and the retroreflective element 60 is reduced by the reflectance of the beam splitter 30 or the retroreflectance of the retroreflective element 60. . Therefore, the higher the brightness of the image 11 displayed on the image display unit 10, the easier it is for the observer 90 to visually recognize the stray light.
  • stray light is, for example, light that is directly incident on the eye of the observer 90 without being reflected by the beam splitter 30 .
  • the image light L1 emitted from the image display unit 10 passes through the opening 50 of the retroreflective member 20, it may be directly incident on the eye of the observer 90 by being transmitted through the beam splitter 30 without being reflected.
  • the image light L1 that has directly entered the eyes of the observer 90 and the light L4 that forms the aerial image A are viewed at a short distance from the observer 90 . In this case, the visibility of the aerial image A deteriorates. This decrease in visibility becomes more pronounced as the space between the image display unit 10 and the aerial image A is narrowed by downsizing the casing 80 of the aerial image display device 100 .
  • the stray light described above is generated based on the image light L1 emitted from the image display unit 10, it is not limited to this.
  • external light such as illumination light or sunlight may enter the housing 80 and be visually recognized as stray light.
  • the retroreflective member 20 is configured such that the orientations of the plurality of retroreflective surfaces 61a to 65a are different from each other in order to prevent deterioration of the visibility of the aerial image A due to the stray light described above.
  • FIG. 4 is an explanatory diagram for explaining a configuration in which the directions of the plurality of retroreflective surfaces 61a to 65a are different from each other.
  • a reference plane S is a plane extending in the depth direction of the aerial image display device 100, in other words, a plane extending in the X-axis direction and the Z-axis direction.
  • Angles ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , and ⁇ 5 formed between the reference plane S and the retroreflective surfaces 61a-65a are the arrangement angles of the retroreflective elements 61-65.
  • the angles ⁇ 1 to ⁇ 5 are different from each other. This makes it difficult for the stray light to travel along the optical path of the light forming the aerial image A.
  • the observer 90 may see the stray light depending on the orientation of the retroreflective surfaces 61a to 65a. Therefore, by setting the orientation of the retroreflective surfaces 61a to 65a so that the observer 90 does not visually recognize the stray light, it is possible to suppress deterioration in the visibility of the aerial image A.
  • the orientations of the retroreflective surfaces 61a to 65a are set so that the plurality of observers 90 do not see stray light.
  • the orientation of the retroreflective surfaces 61a to 65a is parallel to the light separation surface 30b, the observer 90 can easily visually recognize stray light due to specular reflection on the retroreflective surfaces 61a to 65a. Therefore, some of the plurality of retroreflective surfaces 61a to 65a (retroreflective surfaces 61a, 62a, 64a, and 65a in the example shown in FIG. 4) are made non-parallel to the light separation surface 30b, thereby A decrease in visibility can be suppressed. At least one of the plurality of retroreflection surfaces 61a to 65a should be non-parallel to the light separating surface 30b.
  • the stray light is diffracted light generated by diffraction when passing through the aperture 50
  • the orientations of the retroreflective surfaces 61a to 65a it is possible to prevent the occurrence of light blurring around the aerial image A. can be suppressed.
  • the magnitude of the diffraction effect is determined by the width of the aperture 50 (hereinafter also referred to as "aperture width"), and the wider the aperture width, the less the diffraction effect. Therefore, by setting the directions of the plurality of retroreflective surfaces 61a to 65a so that the observer 90 is positioned in the normal direction of each of the plurality of retroreflective surfaces 61a to 65a, the influence of diffraction can be minimized. can do.
  • the stray light is diffracted light when passing through the aperture 50, the way the light spreads and the way the light spreads for each color of light changes. If diffracted light is generated in a configuration in which the plurality of retroreflective surfaces 61a to 65a are oriented in the same direction, the observer 90 visually recognizes that patterned light is generated. Therefore, by making the directions of the plurality of retroreflective surfaces 61a to 65a different from each other, that is, by constructing the retroreflective member 20 in which the arrangement angles of the retroreflective elements 61 to 65 are non-uniform, the plurality of openings 50 are formed. Since the widths are different from each other, it is possible to make the pattern light invisible.
  • the different orientations of the retroreflective surfaces 61a to 65a cause the observer 90 to can minimize the area where the stray light is seen.
  • the light reflection direction between the beam splitter 30 and the retroreflection surface 61a is different from the light reflection direction between the beam splitter 30 and the retroreflection surface 62a. This can prevent the observer 90 from visually recognizing the entire beam splitter 30 as if it were shining due to stray light. Therefore, the visibility of the aerial image A can be improved.
  • the retroreflective surface 60a is preferably inclined with respect to the reference plane S toward the beam splitter 30 side or the image display section 10 side by 45° or less.
  • an example of a method for setting the orientation of the plurality of retroreflective surfaces 61a to 65a is that the support portion 25 shown in FIG. It can be realized by rotatably supporting.
  • the support portion 25 is configured such that the plurality of retroreflective surfaces 61a to 65a can rotate around an axis extending in the Z-axis direction (a rotation axis Ra shown in FIG. 5 to be described later). It supports the reflective surfaces 61a-65a.
  • the orientations of the plurality of retroreflective surfaces 61a to 65a are different from each other.
  • the aerial image display device 100 can suppress deterioration in the visibility of the aerial image A.
  • the orientation of at least one of the plurality of retroreflective surfaces 61a to 65a is non-parallel to the light separating surface 30b.
  • the aerial image display device 100 can further suppress deterioration in the visibility of the aerial image A.
  • the plurality of retroreflection surfaces 61a to 65a are arranged at positions facing the light separation surface 30b of the beam splitter 30 in the Y-axis direction orthogonal to the arrangement direction of the plurality of openings 51 to 54. It is Thereby, the aerial image display device 100 can be miniaturized.
  • FIG. 5 is a diagram schematically showing an example of the configuration of aerial image display device 101 according to a modification of Embodiment 1.
  • FIG. 6 is a block diagram showing the configuration of the aerial image display device 101 according to the modification of the first embodiment. 5 and 6, the same reference numerals as those shown in FIG. 1 are attached to the same or corresponding components as those shown in FIG.
  • the aerial image display device 101 according to the modification of the first embodiment differs from the aerial image display device 100 according to the first embodiment in that it further includes a viewpoint information acquiring unit 111, a driving unit 112 and a control unit 113.
  • Aerial image display device 101 according to the modification of Embodiment 1 is the same as aerial image display device 100 according to Embodiment 1 except for this point.
  • the aerial image display device 101 includes an image display unit 10, a beam splitter 30, a retroreflection member 20, a viewpoint information acquisition unit 111, a drive unit 112, and a control unit 113.
  • the optical path of the light for forming the aerial image A is the same as that of Embodiment 1, so the description thereof will be omitted.
  • the viewpoint information acquisition unit 111 acquires viewpoint information indicating the positions of the eyes of the observer 90 .
  • the viewpoint information acquisition unit 111 is, for example, an imaging device such as a camera.
  • the viewpoint information acquisition unit 111 is, for example, a device that detects an object existing in a three-dimensional space using infrared pattern light.
  • the viewpoint information acquisition unit 111 measures the distance to the object based on the time from the start of infrared irradiation to the reception of return infrared light reflected by the object (also referred to as “reflection time”). It may be a dimension measuring device. Thereby, the position of the viewpoint of the observer 90 in space can be detected.
  • the viewpoint information acquisition unit 111 estimates the position of a moving object (for example, the eye of the observer 90) in a three-dimensional spatial coordinate system based on optical flow. , the three-dimensional positional relationship of the observer 90 with respect to the aerial image display device 101 can be measured.
  • the viewpoint information acquisition unit 111 is composed of a plurality of two-dimensional imaging devices, it can measure the position of the observer 90 with respect to the aerial image display device 101 based on the three-dimensional distance acquired by triangulation.
  • the viewpoint information acquisition unit 111 is not limited to an imaging device, and may be a beacon device that outputs the position of the observer 90 or the like.
  • the viewpoint information acquisition unit 111 may be a device that acquires spatial position information such as a GPS (Global Positioning System) provided in a device possessed by the observer 90 .
  • GPS Global Positioning System
  • the drive unit 112 drives the plurality of retroreflective elements 61-65.
  • the drive unit 112 is, for example, a motor.
  • the plurality of retroreflective elements 61 to 65 rotate around the rotation axis Ra extending in the Z-axis direction, for example. 5 and FIGS. 8 and 9, which will be described later, the +RZ direction is the clockwise direction when facing the +Z-axis direction, and the ⁇ RZ direction is the counterclockwise direction opposite to the +RZ direction.
  • the control unit 113 controls the driving unit 112 based on the viewpoint information acquired by the viewpoint information acquisition unit 111 . Based on the viewpoint information, the control unit 113 causes the driving unit 112 to change the directions of the plurality of retroreflective surfaces 61a to 65a.
  • FIG. 7A is a diagram schematically showing an example of the hardware configuration of the controller 113 of the aerial image display device 101.
  • the control unit 113 of the aerial image display device 101 includes, for example, a memory 113a as a storage device for storing a program as software, and information for implementing the program stored in the memory 113a. It can be implemented (for example, by a computer) using the processor 113b as a processing unit. Note that part of the control unit 113 may be implemented by the memory 113a shown in FIG. 7A and the processor 113b that executes the program. Also, the control unit 113 may be realized by an electric circuit.
  • FIG. 7B is a diagram schematically showing another example of the hardware configuration of the controller 113 of the aerial image display device 101.
  • the control unit 113 may be implemented using a processing circuit 113c as dedicated hardware such as a single circuit or a composite circuit. In this case, the functions of the control unit 113 are realized by the processing circuit.
  • An example of controlling the orientations of the plurality of retroreflective surfaces 61a to 65a based on the viewpoint information of the observer 90 will be described below.
  • FIG. 8 is an explanatory diagram for explaining an example of controlling the directions of the plurality of retroreflective surfaces 61a to 65a in the aerial image display device 101 according to the modification of the first embodiment.
  • FIG. 9 is an explanatory diagram illustrating another example of orientation control of the plurality of retroreflective surfaces 61a to 65a in the aerial image display device 101 according to the modification of the first embodiment. 8 and 9, the position of the observer 90 in space, in other words, the line of sight of the observer 90 with respect to the aerial image A is different.
  • the control unit 113 controls the driving unit 112 so that the plurality of retroreflective surfaces 61a to 65a face the reference position P set as the position of the observer's 90 viewpoint. Specifically, the control unit 113 causes the drive unit 112 to set the plurality of retroreflection surfaces 61a so that the eyes of the observer 90 are on the normals V1 to V5 of each of the plurality of retroreflection surfaces 61a to 65a. 65a is set. As a result, the width between the two openings 50 adjacent to each other in the X-axis direction is widened, so that the influence of stray light due to diffraction when passing through the openings 50 is minimized, and blurring that appears around the aerial image A is suppressed. can be suppressed.
  • the controller 113 controls the directions of the plurality of retroreflective surfaces 61a to 65a based on the viewpoint information, so that the stray light generated by specular reflection on the retroreflective surfaces 61a to 65a forms an aerial image A. It is possible to suppress the light from traveling along the optical path. In other words, overlapping of the specular reflection image and the aerial image A can be prevented. Therefore, the aerial image display device 101 can suppress deterioration in the visibility of the aerial image A for the observer 90 .
  • the orientation of the retroreflective surfaces 61a to 65a that minimizes the influence of diffracted light is uniquely determined by the position of the observer 90.
  • the drive unit 112 continuously changes the orientations of the plurality of retroreflective surfaces 61a to 65a per unit time.
  • the observer 90 may perceive the diffracted light as patterned light.
  • the orientations of the plurality of retroreflective surfaces 61a to 65a per unit time are continuously (that is, dynamically) changed so as to be non-uniform, so that the observer 90 can see the pattern. Visual recognition of light can be suppressed.
  • the control unit 113 controls the driving unit 112 to rotate the plurality of retroreflective surfaces 61a to 65a around the rotation axis Ra based on the viewpoint information of the observer 90. Control. Specifically, the control unit 113 controls the driving unit 112 so that the plurality of retroreflective surfaces 61a to 65a face the reference position P set as the position of the observer's 90 viewpoint.
  • the aerial image display device 101 can suppress a decrease in the visibility of the aerial image A.
  • FIG. 10 is a configuration diagram schematically showing an example of configuration of an aerial image display device 200 according to Embodiment 2.
  • the same or corresponding components as those shown in FIG. 1 are given the same reference numerals as those shown in FIG.
  • the aerial image display device 200 according to the second embodiment suppresses deterioration of the visibility of the aerial image A by making the widths W1, W2, W3, and W4 of the plurality of openings 251, 252, 253, and 254 different from each other. It is different from the aerial image display device 100 according to the first embodiment in this respect.
  • Aerial image display device 200 according to Embodiment 2 is the same as aerial image display device 100 according to Embodiment 1 except for this point. Therefore, FIG. 1 will be referred to in the following description.
  • the aerial image display device 200 has an image display section 10, a retroreflective member 220, and a beam splitter 30. Note that the illustration of the housing 80 (see FIG. 1) is omitted in the example shown in FIG.
  • the retroreflective member 220 includes multiple openings 251 to 254 and multiple retroreflective elements 261 , 262 , 263 , 264 , and 265 .
  • the retroreflective member 220 is also called "first retroreflective member 220".
  • the plurality of openings 251 to 254 allow the image light L1 (see FIG. 1) emitted from the image display section 10 to pass therethrough.
  • Each of the plurality of openings 251 to 254 has a slit shape elongated in the Z-axis direction.
  • a plurality of retroreflective elements 261 to 265 retroreflect incident light.
  • the multiple retroreflective elements 261 to 265 have multiple retroreflective surfaces 261a to 265a as multiple first retroreflective surfaces, respectively.
  • the plurality of retroreflective surfaces 261a to 265a are located at positions facing the light separation surface 30b (see FIG. 1) of the beam splitter 30 in the Y-axis direction orthogonal to the arrangement direction of the plurality of openings 251 to 254 (that is, the X-axis direction).
  • the plurality of retroreflective elements 261 to 265 will also be collectively referred to as “a plurality of retroreflective elements 260" when there is no need to distinguish between the plurality of retroreflective elements 261 to 265. Further, when it is not necessary to distinguish between the plurality of retroreflective surfaces 261a to 265a, the plurality of retroreflective surfaces 261a to 265a will be collectively referred to as "the plurality of retroreflective surfaces 260a”.
  • the widths W1 to W4 of the plurality of openings 251 to 254 are different from each other.
  • the influence of stray light generated by diffraction when the image light L1 (see FIG. 1) passes through the openings 251-254 can be reduced.
  • the narrower the aperture the greater the spread of light due to diffraction. Therefore, the widths of the apertures (widths W3 and W4 of the apertures 253 and 254 in FIG. 10) used in the optical paths of the light for forming the aerial image A are replaced by the widths of the other apertures (the widths of the apertures 251 and 252 in FIG. 10).
  • the magnitude of the influence of the diffracted light on the aerial image A also depends on the aperture width in the direction (that is, the X-axis direction) orthogonal to the ray direction of the light directed to the observer's 90 eyes.
  • the widths W1 to W4 of the plurality of openings 251 to 254 are the same, the closer the angle at which the aerial image display device 200 is viewed by the observer 90 is, the more the light passing through the openings 251 to 254 spreads. is large, and the observer 90 viewing the aerial image A is less likely to be affected by the diffracted light.
  • the pattern light can be made invisible. If the widths of the openings 251 to 254 are too wide, the amount of the image light L1 that has passed through the openings 251 to 254 and travels along the optical path for forming the aerial image A is reduced. is preferably about twice the width of the retroreflective surfaces 261a to 265a. In other words, the width of the openings 251-254 is preferably twice or less than the width of the retroreflective surfaces 261a-265a.
  • the widths W1 to W4 of the plurality of openings 251 to 254 are different from each other, it is possible to prevent the image light L1 from being directly recognized by the observer's 90 eyes.
  • the magnitude of the influence of direct light on the aerial image A also depends on the aperture width in the direction perpendicular to the direction of the light directed toward the eyes of the observer 90 .
  • the widths W1 to W4 of the plurality of openings 251 to 254 are the same, the closer the angle at which the aerial image display device 200 is viewed by the observer 90, the more direct light passing through the openings 251 to 254.
  • the amount of light is large, and an observer 90 viewing the aerial image A is likely to be affected by direct light.
  • the angle at which the aerial image display device 200 is viewed by the observer 90 is closer to the horizontal, the amount of direct light passing through the openings 251 to 254 is smaller, and the observer 90 viewing the aerial image A is less affected by the direct light. unacceptable. Therefore, by varying the widths W1 to W4 of the plurality of openings 251 to 254 based on the positional relationship between the observer 90 and the aerial image display device 200, the influence of direct light can be reduced.
  • the arrangement angle of the retroreflective surfaces 61a to 65a is 45° or less, it is possible to suppress deterioration in the visibility of the aerial image A due to stray light.
  • the retroreflective member 220 if the widths W1 to W4 of the openings 251 to 254 are approximately twice or less than the widths of the retroreflective surfaces 261a to 265a, it is possible to suppress deterioration in visibility of the aerial image A due to stray light.
  • the aerial image display devices 100 and 200 according to Embodiments 1 and 2 can be widely applied to, for example, small image display devices used in financial institutions and the like, and large image display devices installed outdoors. can.
  • the widths of the openings 251 to 254 and the arrangement angles of the retroreflective surfaces 261a to 265a may be appropriately changed according to the use of the aerial image display devices 100 and 200.
  • FIG. For example, when the aerial image display devices 100 and 200 are large, the widths W1 to W4 of the openings 251 to 254 and the arrangement angles of the retroreflective surfaces 261a to 265a may exceed the above ranges.
  • the widths W1 to W4 of the plurality of openings 251 to 254 are different from each other. This makes it difficult for the observer 90, for example, to visually recognize pattern light due to diffraction. Therefore, the aerial image display device 200 can suppress deterioration in the visibility of the aerial image A.
  • FIG. 11 is a configuration diagram schematically showing an example of configuration of an aerial image display device 201 according to Modification 1 of Embodiment 2.
  • the aerial image display device 201 according to Modification 1 of Embodiment 2 differs from the aerial image display device 200 according to Embodiment 2 in that it further includes a second retroreflective member 240 .
  • the aerial image display device 201 according to the first modification of the second embodiment is the same as the aerial image display device 200 according to the second embodiment.
  • the aerial image display device 201 has an image display section 10, a first retroreflective member 220, a beam splitter 30, and a second retroreflective member 240.
  • the second retroreflective member 240 is arranged closer to the beam splitter 30 than the first retroreflective member 220 is.
  • the second retroreflective member 240 is arranged at a position facing the first retroreflective member 220 .
  • the second retroreflective members 240 are arranged side by side with the first retroreflective members 230 in the Y-axis direction, which is the depth direction.
  • the second retroreflective member 240 includes a plurality of second openings 271, 272 and a plurality of second retroreflective elements 281, 282, 283.
  • the plurality of second retroreflective elements 281, 282, and 283 are collectively referred to as the "second Also referred to as "retroreflective element 280".
  • the plurality of second apertures 271 and 272 allow the image light L1 that passes through the plurality of first apertures 251 and 252 toward the beam splitter 30 to pass therethrough. Widths W21 and W22 of the plurality of second openings 271 and 272 are different from each other.
  • the plurality of second retroreflective elements 281, 282, 283 respectively have a plurality of second retroreflective surfaces 281a, 282a, 283a.
  • the plurality of second retroreflective elements 281, 282, 283 face the plurality of first retroreflective elements 261, 262, 263, respectively.
  • the plurality of second retroreflective elements 281, 282, 283 face a portion of the plurality of first retroreflective elements 261, 262, 263, respectively.
  • the aerial image display device 201 includes the retroreflective elements 260 of the first row 5a arranged in the X-axis direction and the second retroreflective elements 280 of the second row 5b arranged in the X-axis direction. including.
  • the second retroreflective elements 280 are arranged to be shifted in the X-axis direction with respect to the adjacent first retroreflective elements 260 . Therefore, in the example shown in FIG. 11, the plurality of second retroreflective elements 282 and 283 face the plurality of first openings 251 and 252, respectively.
  • the image light L1 emitted from the image display unit 10 passes through the first openings 251 and 252 and the second openings 271 and 272. In this case, the image light L1 advances while being inclined to the +X-axis side (or -X-axis side) with respect to the Y-axis direction.
  • the image light L1 traveling at an angle with respect to the Y-axis direction is formed as the aerial image A. FIG. Therefore, visibility can be improved when the observer 90 views the aerial image A in an oblique direction.
  • the second retroreflective element 280 is displaced in the X-axis direction with respect to the adjacent first retroreflective element 260, so that the first openings 251 and 252 It is possible to suppress deterioration in the visibility of the aerial image A due to diffracted light generated when passing through.
  • the longer the optical path length until the diffracted light forms an image the greater the spread of the diffracted light. Therefore, the size of the stray light spreading around the aerial image A changes depending on the positional relationship between the first retroreflective element 260 and the second retroreflective element 280 .
  • the second retroreflective element 280 is displaced in the X-axis direction with respect to the adjacent first retroreflective element 260 .
  • aerial image display device 201 includes second retroreflective elements including a plurality of second openings 271 and 272 and a plurality of second retroreflective elements 280 . Further having a reflective member 240 , the plurality of second retroreflective elements 280 are arranged to be shifted in the X-axis direction with respect to the adjacent first retroreflective elements 260 . Thereby, when the observer 90 visually recognizes the aerial image A, it is possible to suppress the pattern light from being generated. Therefore, the aerial image display device 201 can suppress deterioration in the visibility of the aerial image A.
  • FIG. 12 is a configuration diagram schematically showing an example of configuration of an aerial image display device 202 according to Modification 2 of Embodiment 2.
  • the aerial image display device 202 according to Modification 2 of Embodiment 2 is similar to the aerial image display device 201 according to Modification 1 of Embodiment 2 in that it further includes a viewpoint information acquisition unit 111, a drive unit 212, and a control unit 213.
  • Aerial image display device 202 according to Modification 2 of Embodiment 2 is the same as aerial image display device 201 according to Modification 1 of Embodiment 2 except for this point.
  • the aerial image display device 202 includes an image display unit 10, a first retroreflection member 220, a beam splitter 30, a second retroreflection member 240, and a viewpoint information acquisition unit 111. , a drive unit 212 and a control unit 213 .
  • the drive unit 212 slides the plurality of second retroreflective surfaces 281a, 282a, 283a in the X-axis direction, which is the direction in which the plurality of second openings 271, 272 are arranged.
  • the plurality of first retroreflective elements 261, 262, 263 are fixed.
  • the control unit 213 controls the driving unit 212 based on the viewpoint information acquired by the viewpoint information acquisition unit 111 . Specifically, the control unit 213 controls the driving unit 212 so that the light forming the aerial image A passes through the first openings 251 and 252 and the second openings 271 and 272 .
  • the hardware configuration of the control unit 213 is the same as that of FIGS. 7A and 7B described above, so description thereof will be omitted.
  • the aerial image display device 202 includes the viewpoint information acquiring section 111, the driving section 212 that slides the second retroreflective surfaces 281a, 282a, and 283a, and a control unit 213 that controls the driving unit 212 based on the viewpoint information.
  • the viewpoint information acquiring section 111 the driving section 212 that slides the second retroreflective surfaces 281a, 282a, and 283a
  • a control unit 213 that controls the driving unit 212 based on the viewpoint information.
  • FIG. 13 is a perspective view showing a configuration of a retroreflective member of the aerial image display device according to Embodiment 3.
  • FIG. The aerial image display device according to Embodiment 3 differs from the aerial image display devices 100 and 200 according to Embodiments 1 and 2 in that the retroreflective sheet 321 as the retroreflective member has a single retroreflective surface 361. differ. Except for this, the aerial image display device 300 according to the third embodiment is the same as the aerial image display devices 100 and 200 according to the first or second embodiment. Therefore, FIG. 1 will be referred to in the following description.
  • the retroreflective sheet 321 of Embodiment 3 includes multiple openings 351 and 352 and a single retroreflective surface 361 .
  • the retroreflective sheet 321 is also called “first retroreflective sheet 321”
  • the plurality of openings 351 and 352 are also called “first plurality of openings 351 and 352”.
  • the plurality of openings 351 and 352 allow the image light L1 (see FIG. 1) emitted from the image display section 10 to pass therethrough.
  • the shape of the plurality of openings 351 and 352 is, for example, a rectangular shape expanding in the X-axis direction and the Y-axis direction.
  • the shape of the plurality of openings 351 and 352 is not limited to a rectangular shape, and may be another shape such as a circular shape.
  • the widths W11 and W12 in the X-axis direction of the plurality of openings 351 and 352 are different from each other. This makes it possible to make the pattern light invisible when the image light L1 passes through the plurality of openings 351 and 252 . Therefore, it is possible to suppress deterioration of the visibility of the aerial image A (see FIG. 1).
  • the width W12 of the opening 352 is wider than the width W11 of the opening 351.
  • a plurality of openings 351 and 352 are arranged in a grid pattern, that is, in a matrix pattern of multiple rows and multiple columns.
  • the plurality of openings 351 and 352 are formed by drilling the retroreflective surface 361, for example.
  • the plurality of openings 351 and 352 are formed (molded), for example, by punching or laser processing the retroreflective surface 361 .
  • FIG. 14 is a perspective view showing a configuration of a retroreflective member 320A of a modified example of the aerial image display device according to the third embodiment.
  • the retroreflective member 320A may be composed of a first retroreflective sheet 321 and a second retroreflective sheet 322 laminated in the depth direction.
  • the second retroreflective sheet 322 is arranged on the -Y axis side (beam splitter 30 side shown in FIG. 1) from the first retroreflective sheet 321 .
  • the second retroreflective sheet 322 includes multiple second openings 371 and 372 and a single second retroreflective surface 381 .
  • Widths W21 and W22 in the X-axis direction of the plurality of second openings 371 and 372 are different from each other.
  • the width W22 of the second opening 372 is wider than the width W21 of the second opening 371.
  • the plurality of second openings 371 and 372 are arranged in a matrix of multiple rows and multiple columns.
  • the plurality of second openings 371 overlap the plurality of first openings 351, and the plurality of second openings 372 are It overlaps with the plurality of first openings 352 .
  • the plurality of first openings 351 and 352 arranged in matrix and the plurality of second openings 371 and 372 arranged in matrix may be arranged to face each other. This allows the second retroreflective sheet 322 to block diffracted light generated when the image light L1 passes through the first openings 351 and 352 . Further, direct light from the image display section 10 can be blocked by the first retroreflective sheet 321 . As a result, deterioration in the visibility of the aerial image A is suppressed.
  • FIG. 15 is a perspective view showing another example of the configuration of the retroreflective member 320B of the modification of the aerial image display device according to the third embodiment.
  • the retroreflective member 320B has a first retroreflective sheet 321B and a second retroreflective sheet 322B.
  • the first retroreflective sheet 321B includes a plurality of slit-like first openings 351B and 352B elongated in the Z-axis direction, and a plurality of first retroreflective surfaces 360B elongated in the Z-axis direction. Widths W31 and W32 of the plurality of first openings 351B and 352B are different from each other.
  • the second retroreflective sheet 322B is arranged on the -Y axis side (that is, the beam splitter 30 side shown in FIG. 1) from the first retroreflective sheet 321B.
  • the second retroreflective sheet 322B includes a plurality of slit-like first openings 371B and 372B elongated in the X-axis direction and a plurality of second retroreflective surfaces 380B elongated in the X-axis direction.
  • the multiple second retroreflective surfaces 380B extend in the X-axis direction so as to face the multiple first retroreflective surfaces 360B. In this way, by arranging the plurality of second retroreflective surfaces 380B long in the X-axis direction to face the plurality of first retroreflective surfaces 360B long in the Z-axis direction, the plurality of lattice-shaped openings can be formed. A formed retroreflective member 320B can be realized.
  • the retroreflective sheet 321 as a retroreflective member has a plurality of grid-like openings 351 and 352 provided on a single retroreflective surface 361, and the plurality of openings Widths W31 and W32 of 351 and 352 are different from each other. This makes it difficult for the observer 90 to see, for example, pattern light due to diffraction. Therefore, the aerial image display device according to Embodiment 3 can suppress deterioration in the visibility of the aerial image A.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

空中映像表示装置(100)は、映像(11)を表示する映像表示部(10)と、再帰反射部材(20)と、光学部材(30)と、を有する。再帰反射部材(20)は、映像表示部(10)から出射した映像光を通過させる複数の開口(51、52、53、54)と、複数の再帰反射面(61a、62a、63a、64a、65a)とを含む。光学部材(30)は、入射した光を反射及び透過させる光分離面(30b)を含み、複数の開口(51、52、53、54)を通過した映像光を反射させて複数の再帰反射面(61a、62a、63a、64a、65a)に向ける。複数の再帰反射面(61a、62a、63a、64a、65a)で再帰反射した映像光は、光学部材(30)を透過し、複数の再帰反射面(61a、62a、63a、64a、65a)の向きは、互いに異なる。

Description

空中映像表示装置
 本開示は、空中映像表示装置に関する。
 再帰反射部材とビームスプリッタとを組み合わせた結像光学系によって、映像表示部から出射された映像光を空間上に再結像させた空中映像を表示する空中映像表示装置が提案されている。例えば、特許文献1及び非特許文献1を参照。
 特許文献1の空中映像表示装置では、結像光学系の配置設計によって、空中映像として結像する映像光とは異なる迷光(具体的には、鏡面反射光)が観察者に視認されることが防止される。また、非特許文献1の空中映像表示装置では、スリット状又は格子状の開口が再帰反射部材に設けられ、且つ当該再帰反射部材及びビームスプリッタを積層して配置することで、装置の大型化が防止される。
特許第6638450号公報
「Aerial Display by Use of a Full-Color LED Panel Covered with Apertured Retro-Reflector」、2020年
 しかしながら、非特許文献1のように、開口を含む再帰反射部材を有する空中映像表示装置においては、特許文献1で述べられている鏡面反射光とは異なる迷光が発生するという課題がある。具体的には、非特許文献1では、再帰反射部材における光学素子の構造によっても迷光が発生する。また、映像光が開口を通過する際にも迷光が発生する。このような迷光が、空中映像を結像する光路を進む場合、空中映像に対する観察者の視認性が著しく低下する。
 本開示は、空中映像に対する視認性の低下を抑制することができる空中映像表示装置を提供することを目的としている。
 本開示の一態様に係る空中映像表示装置は、映像を表示する映像表示部と、前記映像表示部から出射した映像光を通過させる複数の開口と、複数の再帰反射面とを含む再帰反射部材と、入射した光を反射及び透過させる光分離面を含み、前記複数の開口を通過した前記映像光を反射させて前記複数の再帰反射面に向ける光学部材と、を有し、前記複数の再帰反射面で再帰反射した前記映像光は、前記光学部材を透過し、前記複数の再帰反射面の向きは、互いに異なる、ことを特徴とする。
 本開示の他の態様に係る空中映像表示装置は、映像を表示する映像表示部と、前記映像表示部から出射した映像光を通過させる複数の第1の開口と、単一又は複数の第1の再帰反射面とを含む第1の再帰反射部材と、入射した光を反射及び透過させる光分離面を含み、前記複数の第1の開口を通過した前記映像光を反射させて前記単一又は複数の第1の再帰反射面に向ける光学部材と、を有し、前記単一又は複数の第1の再帰反射面で再帰反射した前記映像光は、前記光学部材を透過し、前記複数の第1の開口の幅は、互いに異なる、ことを特徴とする。
 本開示によれば、空中映像に対する視認性の低下を抑制することができる。
実施の形態1に係る空中映像表示装置の構成の一例を概略的に示す構成図である。 図1に示される再帰反射部材の構成の一例を概略的に示す斜視図である。 実施の形態1に係る空中映像表示装置の筐体の大きさと比較例に係る空中映像表示装置の筐体の大きさとの比較を説明する説明図である。 図1に示される複数の再帰反射面の向きが互いに異なる構成を説明する説明図である。 実施の形態1の変形例に係る空中映像表示装置の構成の一例を概略的に示す構成図である。 実施の形態1の変形例に係る空中映像表示装置の構成を示すブロック図である。 (A)は、実施の形態1の変形例に係る空中映像表示装置の制御部のハードウェア構成の一例を概略的に示すブロック図である。(B)は、実施の形態1の変形例に係る空中映像表示装置の制御部のハードウェア構成の他の例を概略的に示すブロック図である。 実施の形態1の変形例に係る空中映像表示装置における複数の再帰反射面の制御の一例を説明する説明図である。 実施の形態1の変形例に係る空中映像表示装置における複数の再帰反射面の制御の他の例を説明する説明図である。 実施の形態2に係る空中映像表示装置の構成の一例を概略的に示す構成図である。 実施の形態2の変形例1に係る空中映像表示装置の構成の一例を概略的に示す構成図である。 実施の形態2の変形例2に係る空中映像表示装置の構成の一例を概略的に示す構成図である。 実施の形態3に係る空中映像表示装置の再帰反射部材の構成を示す斜視図である。 実施の形態3の変形例に係る空中映像表示装置の再帰反射部材の構成を示す斜視図である。 実施の形態3の変形例に係る空中映像表示装置の再帰反射部材の構成の他の例を示す斜視図である。
 以下に、本開示の実施の形態に係る空中映像表示装置を、図面を参照しながら説明する。以下の実施の形態は、例にすぎず、実施の形態を適宜組み合わせること及び各実施の形態を適宜変更することが可能である。
 図面の一部には、説明の理解を容易にするためにXYZ直交座標系の座標軸が示されている。X軸は、空中映像表示装置の幅方向の軸を示す座標軸である。Y軸は、空中映像表示装置の奥行方向の軸を示す座標軸である。Z軸は、空中映像表示装置の上下方向の軸を示す座標軸である。また、以下の説明において、「上」、「下」、「前」及び「後」は、空中映像表示装置を正面から見たときの上、下、前及び後をそれぞれ意味する。なお、「上」、「下」、「前」及び「後」は、各部の説明の理解を容易にするための方向を表す用語である。この方向の定義によって、本開示の実施の形態に係る空中映像表示装置を構成する部材の形状及び位置などは限定されない。
《実施の形態1》
〈空中映像表示装置100の構成〉
 図1は、実施の形態1に係る空中映像表示装置100の構成の一例を概略的に示す構成図である。図1に示されるように、空中映像表示装置100は、映像表示部10と、再帰反射部材20と、光学部材としてのビームスプリッタ30と、筐体80とを有する。筐体80は、映像表示部10、再帰反射部材20及びビームスプリッタ30を収容している。以下では、映像表示部10、再帰反射部材20及びビームスプリッタ30の各構成並びに空中映像表示装置100が表示する空中映像Aを結像する光の光路について説明する。
 映像表示部10は、発光を伴う映像11を表示する表示装置である。映像表示部10は、映像光L1を出射する。映像光L1は、拡散光である。映像表示部10は、例えば、2次元の平面光源を有する表示装置である。映像表示部10は、例えば、液晶ディスプレイ(液晶素子)とバックライトとを有する表示装置である。映像表示部10は、有機EL(Electro Luminescence)素子若しくはLED(Light Emitting Diode)素子などの自発光素子を有する表示装置、又はプロジェクタ及びスクリーンを有する投影装置であってもよい。
 また、映像表示部10は、2次元の平面光源を有する表示装置に限られず、曲面を有するディスプレイ、立体的に配置されたディスプレイ及びLEDを有する立体表示ディスプレイなどであってもよい。さらに、映像表示部10は、レンズ光学系及びバリア制御部を有することで観察者90の両眼視差又は運動視差による立体視覚を利用するディスプレイであってもよい。
 図2は、図1に示される再帰反射部材20の構成の一例を概略的に示す斜視図である。図1及び2に示されるように、再帰反射部材20は、複数の開口51、52、53、54と、複数の再帰反射素子61、62、63、64、65とを含む。複数の開口51~54及び複数の再帰反射素子61~65は、配列方向であるX軸方向(第1の方向)に交互に並んで配列されている。複数の再帰反射素子61~65は、複数の開口51~54の配列方向に直交するY軸方向(第2の方向)において、ビームスプリッタ30と向かい合っている。
 複数の開口51~54は、映像表示部10から出射した映像光L1を透過させる。図2に示す例では、複数の開口51~54の各開口の形状は、Z軸方向(第3の方向)に長いスリット状である。なお、以下の説明において、複数の開口51~54を区別する必要がない場合には、複数の開口51~54をまとめて、「複数の開口50」とも呼ぶ。
 複数の再帰反射素子61~65は、入射した光を再帰反射する。複数の再帰反射素子61~65は、複数の再帰反射面61a~65aをそれぞれ有する。複数の再帰反射面61a~65aは、Y軸方向において、後述するビームスプリッタ30の光分離面30bと向き合う位置に配置されている。なお、以下の説明において、複数の再帰反射素子61~65を区別する必要がない場合には、複数の再帰反射素子61~65をまとめて、「複数の再帰反射素子60」とも呼ぶ。また、複数の再帰反射面61a~65aを区別する必要がない場合には、複数の再帰反射面61a~65aをまとめて、「複数の再帰反射面60a」とも呼ぶ。
 再帰反射素子60は、入射光を、当該入射光の入射方向に反射する再帰反射機能を有する。再帰反射素子60は、シート状の光学素子である。再帰反射素子60は、例えば、いわゆるビーズタイプの再帰反射シートである。ビーズタイプの再帰反射シートには、複数の微小なガラスビーズが封入されており、当該ガラスビーズは、球面状の鏡面を有する。ビーズタイプの再帰反射シートは、入射した光を球面状の鏡面で屈折させて且つビーズの底部で反射させる。ビーズの底部で反射した光は、鏡面で再度屈折する。これにより、ビーズタイプの再帰反射シートは、再帰反射光を出射する。なお、再帰反射素子60は、いわゆるプリズムタイプの再帰反射シートであってもよい。プリズムタイプの再帰反射シートでは、複数の微小なマイクロプリズムが配列されており、当該マイクロプリズムは、鏡面を有する。マイクロプリズムは、例えば、凸形状である三角錐プリズム又は中空の三角錐プリズムである。プリズムタイプの再帰反射シートは、入射した光を三角錐プリズムの内部の鏡面で複数回反射させることで、再帰反射光を出射する。
 再帰反射部材20は、複数の再帰反射素子60のZ軸方向両側の端部を支持する支持部25を更に含む。
 次に、図1に戻って、ビームスプリッタ30の構成について説明する。ビームスプリッタ30は、映像表示部10から出射された映像光L1を反射する。ビームスプリッタ30は、入射した光を、反射光及び透過光に分離する光分離機能を有する。ビームスプリッタ30は、入射した映像光L1を反射及び透過させる光分離面30bを含む。光分離面30bは、再帰反射部材20を向いている。光分離面30bは、複数の第1の開口51~54を透過した映像光L1を反射させて複数の再帰反射面60aに向ける。
 ビームスプリッタ30は、例えば、樹脂製の透明板(例えば、アクリル板)又はガラス板から形成されている。一般的に、樹脂製の透明板では、透過光の強度が反射光の強度より高い。そのため、ビームスプリッタ30が樹脂製の透明板から形成される場合、当該透明板に金属膜を付加することで反射強度を向上させてもよい。この場合、ビームスプリッタ30は、例えば、ハーフミラーである。また、ビームスプリッタ30は、例えば、液晶素子又は薄膜素子から入射する光の偏光状態に応じて、当該光を透過又は反射する反射型偏光板であってもよい。また、ビームスプリッタ30は、入射する光の偏光状態に応じて、透過率と反射率との比が変化する反射型偏光板であってもよい。
 次に、図1を用いて、観察者90が存在する空間に、映像光L1が空中映像Aとして結像する原理について説明する。実施の形態1では、映像表示部10と、ビームスプリッタ30及び再帰反射部材20によって構成された結像光学系70とによって、映像表示部10の表示面10aに表示された映像11の映像光L1が空中映像Aとして結像する。具体的には、映像表示部10からビームスプリッタ30に入射した映像光L1は、反射光(すなわち、光L2)及び透過光(図示せず)に分離される。再帰反射面(図1では、再帰反射面63a)は、入射した光L2を再帰反射して光L3として出射する。光L3は、ビームスプリッタ30に入射する。ビームスプリッタ30は、光L3を透過して、観察者90の眼に向かう光L4として出射する。これにより、光L4は、表示素子が存在しない空中に結像する。
 このように、映像表示部10から出射した映像光L1の一部が、ビームスプリッタ30の光分離面30bで反射した後に再帰反射面63aで再帰反射することによって、当該ビームスプリッタ30を透過する光路を辿る。ここで、映像光L1は、上述した通り、拡散光である。そのため、映像表示部10から出射した映像光L1は、当該ビームスプリッタ30を基準にして面対称の位置に再収束する。再収束した光L4は、その収束した位置から再度拡散して観察者90の眼に入射する。これにより、映像11に基づく空中映像Aが表示されるため、観察者90は当該空中映像Aを視認することができる。
 なお、図2に示される再帰反射素子60の背面(すなわち、映像表示部10を向く後面)60bには、艶消しの表面塗装又は光学加工が施されていてもよい。これにより、再帰反射素子60の背面60bにおける光の反射によって、空中映像Aを結像させる光路と異なる光路を進む光の発生を防止することができる。
〈筐体80の小型化〉
 次に、比較例と対比しながら、再帰反射部材20が複数の開口50を含むことによる効果について説明する。図3は、実施の形態1に係る空中映像表示装置100の筐体80の大きさと比較例に係る空中映像表示装置100Aの筐体80Aの大きさとの比較を説明する説明図である。比較例に係る空中映像表示装置100Aは、映像表示部10と、再帰反射部材20Aと、ビームスプリッタ30と、筐体80Aとを有する。比較例の再帰反射部材20Aは、複数の開口50を有しない点で、実施の形態1の再帰反射部材20と異なる。
 一般的に、映像光がビームスプリッタに入射するまでの光路と、ビームスプリッタで反射した反射光が再帰反射部材に入射するまでの光路とが互いに異なることによって、空中映像Aを結像することができる。そのため、比較例に係る空中映像表示装置100Aでは、映像表示部10と再帰反射部材20とを空間的に離れた位置に配置することで空中映像Aの結像を実現している。しかしながら、比較例に係る空中映像表示装置100Aでは、筐体80Aが大型化するという課題がある。
 ここで、ビームスプリッタ30の前面30aから再帰反射素子60の背面60bまでの寸法を奥行寸法E11、ビームスプリッタ30の前面30aから再帰反射部材20Aの背面20bまでの寸法を奥行寸法E12とする。また、筐体80、80Aの上下方向の寸法E21、E22とする。比較例に係る空中映像表示装置100Aの奥行寸法E12は、空中映像表示装置100の奥行寸法E11の約2倍である。また、比較例に係る空中映像表示装置100Aでは、観察者90から見て、映像表示部10がビームスプリッタ30より下側に配置されている。そのため、比較例の筐体80Aの上下方向の寸法E22は、実施の形態1の筐体80の上下方向の寸法E21より大きくなる。筐体80Aの上下方向の寸法E22は、例えば、筐体80の上下方向の寸法E21の約1.2倍である。このように、再帰反射部材20が複数の開口50を有していない場合、筐体80Aが大型化する。
 一方、実施の形態1では、再帰反射部材20が、映像光L1を透過する複数の開口50と、光分離面30bと向き合う位置に配置された複数の再帰反射面60aとを含む。これにより、映像光L1を、開口50を介してビームスプリッタ30に入射させることができる。よって、実施の形態1に係る空中映像表示装置100は、比較例に係る空中映像表示装置100Aと比較して筐体80を小型化しつつ、空中映像Aを結像することができる。
〈迷光〉
 次に、図1を用いて、迷光による空中映像Aの視認性の低下について説明する。実施の形態1では、空中映像Aを結像する光の光路は、上述した複数の開口50を通過した映像光L1の光路を含むため、観察者90は、開口50の形状に対応する空中映像Aを視認することができる。しかしながら、空中映像表示装置100では、「迷光」と呼ばれる空中映像Aを結像する光路と異なる光路を進む光が存在する。迷光は、空中映像Aの視認性を低下させる。
 迷光は、例えば、再帰反射素子60における鏡面反射によって発生する。具体的には、再帰反射素子60における表面加工によって、再帰反射素子60に入射する光L2の一部が鏡面反射する場合がある。このように、映像表示部10から出射した映像光L1がビームスプリッタ30で反射した後に再帰反射面60aで鏡面反射することで、観察者90の眼に入射する迷光の光路が形成される場合がある。この場合、観察者90は、再帰反射面60aを鏡面として、空中映像Aと面対称の位置である筐体80の後部に虚像を視認する。
 また、迷光は、例えば、映像光L1の開口50の通過時の回折によって発生する場合がある。この場合、迷光は、スリット状の回折光である。映像表示部10から出射した映像光L1が開口50を通過するとき、当該映像光L1は、開口50の幅に応じた広がりを持つ。開口50を通過することで発生する回折光の広がりは、開口50の幅が狭いほど大きくなる。また、回折光の広がりは、回折が発生した後に光が進む距離(言い換えれば、「光路長」)に応じて理想的な光の結像位置からの広がりが大きくなる。そのため、回折光が空中映像Aを結像する光路を辿ると、開口50の幅及び光路長に応じて、理想的な結像位置と異なる位置に結像する。これにより、空中映像Aとしての視認すべき映像情報の周囲に、光のぼかしが発生し、空中映像Aに対する視認性が悪化する。
 また、迷光は、例えば、映像光L1が再帰反射素子60を入射する際に発生する回折によっても発生する。再帰反射素子60も、開口50と同様に、X軸方向に一定の幅を持つ再帰反射面60aを有しているためである。ここで、再帰反射面60aにおいて、入射した光(図1に示される光L2)を再帰反射させるための幅の大きさは、光の入射角に応じて変化する。そのため、回折によって生じる光の広がりに関与する再帰反射面60aの幅は、再帰反射素子60に対する光L2の入射角に応じて変化する。
 また、迷光は、例えば、ビームスプリッタ30と再帰反射素子60との間での光の複数回の反射によって発生する。具体的には、結像光学系70において、再帰反射素子60で再帰反射した光がビームスプリッタ30を透過せずに反射した光が、再帰反射素子60に再度入射する場合がある。ビームスプリッタ30と再帰反射素子60との間を繰り返し反射した後に、ビームスプリッタ30を透過して観察者90の眼に入射する光は、理想的な結像位置と異なる位置に結像する。この場合、観察者90は、不要な映像情報を視覚するおそれがある。なお、ビームスプリッタ30と再帰反射素子60との間を繰り返し反射することで観察者90の眼に入射した迷光の輝度は、ビームスプリッタ30の反射率又は再帰反射素子60の再帰反射率によって低下する。よって、映像表示部10に表示された映像11が高輝度であるほど、観察者90は、迷光を視認し易くなる。
 また、迷光は、例えば、ビームスプリッタ30で反射せずに観察者90の眼に直接、入射した光である。例えば、映像表示部10から出射した映像光L1が再帰反射部材20の開口50を通過した後に、ビームスプリッタ30で反射せずに透過することで観察者90の眼に直接、入射する場合がある。実施の形態1では、観察者90の眼に直接入射した映像光L1及び空中映像Aを結像する光L4が、観察者90から近い距離で視覚される。この場合、空中映像Aに対する視認性が低下する。この視認性の低下は、空中映像表示装置100の筐体80を小型化することで、映像表示部10と空中映像Aとの間の間隔が狭まるほど顕著となる。
 なお、上述した迷光は、映像表示部10から出射した映像光L1に基づいて発生する例について述べたが、これに限られない。例えば、空中映像表示装置100が設置される周辺の環境によっては、照明光又は太陽光などの外光が筐体80内部に入射することで、迷光として視認される場合もある。
 実施の形態1では、上述した迷光による空中映像Aに対する視認性の低下を防止するために、複数の再帰反射面61a~65aの向きが互いに異なるように、再帰反射部材20が構成されている。
〈複数の再帰反射面61a~65aの向き〉
 図4は、複数の再帰反射面61a~65aの向きが互いに異なる構成を説明する説明図である。図4に示されるように、実施の形態1では、複数の再帰反射面61a~65aの向きは互いに異なる。図4において、空中映像表示装置100の奥行方向に延びる面、言い換えれば、X軸方向及びZ軸方向に広がる面を、基準面Sとする。基準面Sと各再帰反射面61a~65aとがなす角度θ、θ、θ、θ、θは、再帰反射素子61~65の各々の配置角度である。図4に示す例では、角度θ~θは、互いに異なる。これにより、迷光が、空中映像Aを結像する光の光路上を進み難くなる。
 例えば、迷光が、再帰反射面61a~65aにおける鏡面反射によって発生する場合、再帰反射面61a~65aの向きに応じて、観察者90が当該迷光を視認するおそれがある。そのため、観察者90が当該迷光を視認しないように、再帰反射面61a~65aの向きが設定されることで、空中映像Aに対する視認性の低下を抑制できる。
 また、空中映像Aを視認する複数の観察者90が存在する場合、当該複数の観察者90が迷光を視認しないように、再帰反射面61a~65aの向きが設定される。例えば、再帰反射面61a~65aの向きが光分離面30bと平行である場合、観察者90は、再帰反射面61a~65aにおける鏡面反射による迷光の視認し易い。そのため、複数の再帰反射面61a~65aの一部(図4に示す例では、再帰反射面61a、62a、64a、65a)を、光分離面30bと非平行にすることで、空中映像Aに対する視認性の低下を抑制できる。なお、複数の再帰反射面61a~65aのうちの少なくとも1つの再帰反射面が、光分離面30bと非平行であればよい。
 また、迷光が、開口50を通過したときの回折によって発生する回折光である場合、再帰反射面61a~65aの向きを設定することで、空中映像Aの周辺に光のぼかしが発生することを抑制できる。具体的には、回折の影響の大きさは、開口50の幅(以下、「開口幅」とも呼ぶ。)によって決まり、開口幅が広いほど、回折の影響は少ない。そのため、複数の再帰反射面61a~65aの各々の法線方向に観察者90が位置するように、複数の再帰反射面61a~65aの向きが設定されることで、回折の影響を最小限にすることができる。これは、複数の再帰反射面61a~65aの各々の法線(例えば、後述する図8及び9に示される法線V1~V5)上に観察者90の眼が存在する場合、隣接する2つの開口50の幅が広がるためである。
 また、迷光が、開口50を通過したときの回折光である場合、光の広がり方及び光の色ごとの光の広がり方が変化する。仮に、複数の再帰反射面61a~65aの向きが同じである構成において、回折光が発生した場合、観察者90は、パターン光が発生しているように視認する。そのため、複数の再帰反射面61a~65aの向きを互いに異ならせることによって、すなわち、再帰反射素子61~65の配置角度が非均一である再帰反射部材20を構成することによって、複数の開口50の幅が互いに異なるため、パターン光の不可視化を実現することができる。
 また、迷光が、ビームスプリッタ30と再帰反射素子61~65との間での光の複数回の反射によって発生する場合、複数の再帰反射面61a~65aの向きが互いに異なることによって、観察者90が迷光を視認する領域を最小化することができる。図4に示す例では、ビームスプリッタ30と再帰反射面61aとの間における光の反射方向と、ビームスプリッタ30と再帰反射面62aとの間における光の反射方向とが互いに異なる。これにより、観察者90が、迷光によってビームスプリッタ30全体が光っているように視認することを抑制できる。よって、空中映像Aに対する視認性を向上させることができる。
 なお、観察者90から見たときの再帰反射面61a~65aの向きが光分離面30bと平行であれば、再帰反射精度が悪く、空中映像Aの視認性が低下する。そのため、再帰反射面60aは、基準面Sに対してビームスプリッタ30側又は映像表示部10側に45°以下で傾いていることが好ましい。また、開口50の形状がスリット状である場合、複数の再帰反射面61a~65aの向きを設定する方法の一例は、図2に示される支持部25が、複数の再帰反射面61a~65aを回転可能に支持することで実現することができる。具体的には、支持部25は、複数の再帰反射面61a~65aがZ軸方向に延びる軸(後述する図5に示される回転軸Ra)周りに回転可能となるように、当該複数の再帰反射面61a~65aを支持する。
〈実施の形態1の効果〉
 以上に説明した実施の形態1によれば、複数の再帰反射面61a~65aの向きは、互いに異なる。これにより、例えば、迷光が再帰反射面61a~65aにおける鏡面反射によって発生する場合、観察者90による迷光の視認を抑制できる。よって、空中映像表示装置100は、空中映像Aに対する視認性の低下を抑制できる。
 また、実施の形態1によれば、複数の再帰反射面61a~65aのうちの少なくとも1つの再帰反射面の向きは、光分離面30bと非平行である。これにより、例えば、観察者90が、再帰反射面61a~65aにおける鏡面反射によって発生した迷光を視認し難くなる。よって、空中映像表示装置100は、空中映像Aに対する視認性の低下を一層抑制できる。
 また、実施の形態1によれば、複数の再帰反射面61a~65aは、複数の開口51~54の配列方向に直交するY軸方向において、ビームスプリッタ30の光分離面30bと向き合う位置に配置されている。これにより、空中映像表示装置100を小型化することができる。
《実施の形態1の変形例》
 図5は、実施の形態1の変形例に係る空中映像表示装置101の構成の一例を概略的に示す図である。図6は、実施の形態1の変形例に係る空中映像表示装置101の構成を示すブロック図である。図5及び6において、図1に示される構成要素と同一又は対応する構成要素には、図1に示される符号と同じ符号が付される。実施の形態1の変形例に係る空中映像表示装置101は、視点情報取得部111、駆動部112及び制御部113を更に有する点で実施の形態1に係る空中映像表示装置100と相違する。これ以外の点については、実施の形態1の変形例に係る空中映像表示装置101は、実施の形態1に係る空中映像表示装置100と同じである。
 図5及び6に示されるように、空中映像表示装置101は、映像表示部10と、ビームスプリッタ30と、再帰反射部材20と、視点情報取得部111と、駆動部112と、制御部113とを有する。なお、実施の形態1の変形例において、空中映像Aを結像する光の光路は、実施の形態1と同様であるため、その説明を省略する。
 視点情報取得部111は、観察者90の眼の位置を示す視点情報を取得する。視点情報取得部111は、例えば、カメラなどの撮像装置である。視点情報取得部111は、例えば、赤外線のパターン光によって、3次元空間内に存在する物体を検知する装置である。また、視点情報取得部111は、赤外線の照射開始時点から物体で反射した赤外線の戻り光の受光時点までの時間(「反射時間」とも呼ぶ。)に基づいて、物体までの距離を計測する3次元測定装置であってもよい。これにより、空間における観察者90の視点の位置を検出できる。
 また、視点情報取得部111は、可視光を検出する2次元の撮像装置である場合には、オプティカルフローによる3次元空間座標系における移動体(例えば、観察者90の眼)の位置の推定によって、空中映像表示装置101に対する観察者90の3次元の位置関係を測定できる。また、視点情報取得部111は、複数の2次元撮像装置によって構成されている場合、三角測量によって取得された3次元距離に基づいて、空中映像表示装置101に対する観察者90の位置を測定できる。なお、視点情報取得部111は、撮像装置に限られず、観察者90の位置を出力するビーコン機器などであってもよい。例えば、観察者90が、空間を伝播する電波を受信するビーコン機器を所持することで、空中映像表示装置101に対するビーコン機器の位置に基づいて観察者90の視点情報を取得することができる。また、視点情報取得部111は、観察者90が所持する機器に備えられたGPS(Global Positioning System)などの空間位置情報を取得する装置であってもよい。
 駆動部112は、複数の再帰反射素子61~65を駆動させる。駆動部112は、例えば、モータである。図5に示す例では、複数の再帰反射素子61~65は、例えば、Z軸方向に延びる回転軸Ra周りに回転する。図5、後述する図8及び9において、+RZ方向は、+Z軸方向を向いたときにおける時計回り方向であり、-RZ方向は、+RZ方向の逆方向である反時計回り方向である。
 制御部113は、視点情報取得部111によって取得された視点情報に基づいて駆動部112を制御する。制御部113は、視点情報に基づいて、駆動部112に複数の再帰反射面61a~65aの向きを互いに異ならせる。
 図7(A)は、空中映像表示装置101の制御部113のハードウェア構成の一例を概略的に示す図である。図7(A)に示されるように、空中映像表示装置101の制御部113は、例えば、ソフトウェアとしてのプログラムを格納する記憶装置としてのメモリ113aと、メモリ113aに格納されたプログラムを実現する情報処理部としてのプロセッサ113bとを用いて(例えば、コンピュータによって)実現することができる。なお、制御部113の一部が、図7(A)に示されるメモリ113aと、プログラムを実行するプロセッサ113bとによって実現されてもよい。また、制御部113は、電気回路によって実現されてもよい。
 図7(B)は、空中映像表示装置101の制御部113のハードウェア構成の他の例を概略的に示す図である。図7(B)に示されるように、制御部113は、単一回路又は複合回路等の専用のハードウェアとしての処理回路113cを用いて実現されていてもよい。この場合、制御部113の機能は、処理回路で実現される。以下では、観察者90の視点情報に基づいて、複数の再帰反射面61a~65aの向きを制御する例について説明する。
 図8は、実施の形態1の変形例に係る空中映像表示装置101における複数の再帰反射面61a~65aの向きの制御の一例を説明する説明図である。図9は、実施の形態1の変形例に係る空中映像表示装置101における複数の再帰反射面61a~65aの向きの制御の他の例を説明する説明図である。図8及び9では、空間における観察者90の位置、言い換えれば、空中映像Aに対する観察者90の視線が異なる。
 制御部113は、複数の再帰反射面61a~65aが観察者90の視点の位置として設定された基準位置Pを向くように、駆動部112を制御する。具体的には、制御部113は、複数の再帰反射面61a~65aの各々の法線V1~V5上に観察者90の眼が存在するように、駆動部112に、複数の再帰反射面61a~65aの向きを設定させる。これにより、X軸方向に隣接する2つの開口50の間の幅が広がるため、開口50を通過するときの回折による迷光の影響を最小限に抑え、空中映像Aの周辺に現れるぼかしの発生を抑制できる。
 また、制御部113が、視点情報に基づいて複数の再帰反射面61a~65aの向きを制御することにより、再帰反射面61a~65aで鏡面反射することによって発生した迷光が空中映像Aを結像する光路を進むことを抑制できる。言い換えれば、鏡面反射像と空中映像Aとの重なりを防止できる。よって、空中映像表示装置101は、空中映像Aに対する観察者90の視認性の低下を抑制できる。
 ここで、回折光の影響が最小限となる再帰反射面61a~65aの向きは、観察者90の位置によって一意的に決まる。実施の形態1の変形例では、駆動部112は、単位時間当たりの複数の再帰反射面61a~65aの向きを連続的に変化させる。これにより、複数の観察者90が存在する場合、当該複数の観察者90のそれぞれが視認する回折光の影響を平滑化することができ、空中映像Aに対する視認性の低下を抑制できる。
 また、仮に、単位時間当たりの複数の再帰反射面61a~65aの向きが均一に変化する場合、観察者90は、回折光をパターン光のように視認するおそれがある。実施の形態1の変形例では、単位時間当たりの複数の再帰反射面61a~65aの向きが非均一となるように連続的に(すなわち、動的に)変化させることで、観察者90がパターン光を視認することを抑制できる。
〈実施の形態1の変形例の効果〉
 以上に説明した実施の形態1の変形例によれば、制御部113は、観察者90の視点情報に基づいて、複数の再帰反射面61a~65aを回転軸Ra周りに回転させる駆動部112を制御する。具体的には、制御部113は、複数の再帰反射面61a~65aが観察者90の視点の位置として設定された基準位置Pを向くように、駆動部112を制御する。これにより、例えば、再帰反射面61a~65aにおける鏡面反射によって発生する迷光が、空中映像Aを結像する光路を進むことを抑制できる。よって、空中映像表示装置101は、空中映像Aに対する視認性の低下を抑制できる。
《実施の形態2》
 図10は、実施の形態2に係る空中映像表示装置200の構成の一例を概略的に示す構成図である。図10において、図1に示される構成要素と同一又は対応する構成要素には、図1に示される符号と同じ符号が付される。実施の形態2に係る空中映像表示装置200は、複数の開口251、252、253、254の幅W1、W2、W3、W4を互いに異ならせることで、空中映像Aに対する視認性の低下を抑制する点で、実施の形態1に係る空中映像表示装置100と相違する。これ以外の点については、実施の形態2に係る空中映像表示装置200は、実施の形態1に係る空中映像表示装置100と同じである。そのため、以下の説明では、図1を参照する。
 図10に示されるように、空中映像表示装置200は、映像表示部10と、再帰反射部材220と、ビームスプリッタ30とを有する。なお、図10に示す例では、筐体80(図1参照)の図示が省略されている。
 再帰反射部材220は、複数の開口251~254と、複数の再帰反射素子261、262、263、264、265とを含む。なお、以下の説明では、再帰反射部材220を「第1の再帰反射部材220」とも呼ぶ。
 複数の開口251~254は、映像表示部10から出射した映像光L1(図1参照)を透過させる。複数の開口251~254の各開口の形状は、Z軸方向に長いスリット状である。
 複数の再帰反射素子261~265は、入射した光を再帰反射する。複数の再帰反射素子261~265は、複数の第1の再帰反射面としての複数の再帰反射面261a~265aをそれぞれ有する。複数の再帰反射面261a~265aは、複数の開口251~254の配列方向(すなわち、X軸方向)に直交するY軸方向において、ビームスプリッタ30の光分離面30b(図1参照)と向き合う位置に配置されている。なお、以下の説明において、複数の再帰反射素子261~265を区別する必要がない場合には、複数の再帰反射素子261~265をまとめて、「複数の再帰反射素子260」とも呼ぶ。また、複数の再帰反射面261a~265aを区別する必要がない場合には、複数の再帰反射面261a~265aをまとめて、「複数の再帰反射面260a」とも呼ぶ。
 実施の形態2では、複数の開口251~254の各々の幅W1~W4は、互いに異なる。これにより、映像光L1(図1参照)が開口251~254を通過するときの回折によって発生する迷光の影響を低減することができる。一般的に、開口の幅が狭いほど、回折による光の広がりは大きくなる。そのため、空中映像Aを結像する光の光路に利用される開口の幅(図10では、開口253、254の幅W3、W4)を他の開口の幅(図10では、開口251、252の幅W1、W2)より広くすることで、空中映像Aの周辺に現れる迷光(すなわち、回折光)の光量を減少させることができる。
 また、空中映像Aに対する回折光の影響の大きさは、観察者90の眼へと向かう光の光線方向と直交する方向(すなわち、X軸方向)における開口幅にも依存する。言い換えれば、仮に、複数の開口251~254の幅W1~W4が同じである場合、観察者90が空中映像表示装置200を見る角度が直角に近いほど、開口251~254を通過する光の広がりが大きく、空中映像Aを視認する観察者90は、回折光の影響を受け難くなる。一方、観察者90が空中映像表示装置200を見る角度が水平に近いほど、開口251~254を通過する光の広がりが小さく、空中映像Aを視認する観察者90は、回折光の影響を受け易い。よって、観察者90と空中映像表示装置200との位置関係に基づいて、複数の開口251~254の幅W1~W4を互いに異ならせることで、空中映像Aに対する迷光の影響を低減することができる。
 また、複数の開口251~254の幅W1~W4が互いに異なることによって、パターン光の不可視化を実現することができる。なお、開口251~254の幅が広すぎると、開口251~254を通過した映像光L1のうち空中映像Aを結像する光路を進む光が少なくなるため、開口251~254の幅の最大値は、再帰反射面261a~265aの幅の2倍程度であることが好ましい。言い換えれば、開口251~254の幅は、再帰反射面261a~265aの幅の2倍以下であることが好ましい。
 また、複数の開口251~254の幅W1~W4が互いに異なることによって、映像光L1が直接、観察者90の眼に視認されることを抑制できる。ここで、開口251~254の幅W1~W4が広いほど、映像光L1のうち観察者90の眼に直接、入射する光(以下、「直接光」とも呼ぶ。)が通過する領域が大きくなる。そのため、観察者90が空中映像Aを視認する領域の周辺で直接光が視認されないように、空中映像Aを結像する光路上における開口251~254の幅を狭めることで、空中映像Aに対する視認性の低下を抑制できる。
 なお、空中映像Aに対する直接光の影響の大きさも、観察者90の眼に向かう光の光線方向と直交する方向における開口幅に依存する。言い換えれば、仮に、複数の開口251~254の幅W1~W4が同じである場合、観察者90が空中映像表示装置200を見る角度が垂直に近いほど、開口251~254を通過する直接光の光量が多く、空中映像Aを視認する観察者90は、直接光の影響を受け易い。一方、観察者90が空中映像表示装置200を見る角度が水平に近いほど、開口251~254を通過する直接光の光量が少なく、空中映像Aを視認する観察者90は、直接光の影響を受け難い。よって、観察者90と空中映像表示装置200との位置関係に基づいて、複数の開口251~254の幅W1~W4を互いに異ならせることで直接光の影響を低減することができる。
 上述した通り、空中映像Aに対する回折光の影響を低減するためには、開口251~254の幅W1~W4を広げる方がよい。このように、回折光の影響を低減することと、直接光の影響を低減することは、トレードオフの関係にある。そのため、空中映像表示装置200が配置される環境及び観察者90の眼の位置に基づいて、回折光及び直接光のどちらの影響が大きいかを判断して、複数の開口251~254の幅W1~W4を設定する必要がある。
 上述した実施の形態1では、再帰反射面61a~65aの配置角度が45°以下であれば、迷光による空中映像Aに対する視認性の低下を抑制できる。また、再帰反射部材220において、開口251~254の幅W1~W4が再帰反射面261a~265aの幅の約2倍以下であれば、迷光による空中映像Aに対する視認性の低下を抑制できる。なお、実施の形態1及び2に係る空中映像表示装置100、200は、例えば、金融機関等で用いられる小型の映像表示装置から、屋外に設置される大型の映像表示装置まで幅広く適用することができる。そのため、空中映像表示装置100、200の用途に応じて、開口251~254の幅及び再帰反射面261a~265aの配置角度は適宜、変更されてもよい。例えば、空中映像表示装置100、200が大型である場合、開口251~254の幅W1~W4及び再帰反射面261a~265aの配置角度は、上記の範囲を超えてもよい。
〈実施の形態2の効果〉
 以上に説明した実施の形態2によれば、複数の開口251~254の幅W1~W4は、互いに異なる。これにより、例えば、観察者90は、回折によるパターン光を視認し難くなる。よって、空中映像表示装置200は、空中映像Aに対する視認性の低下を抑制できる。
《実施の形態2の変形例1》
 図11は、実施の形態2の変形例1に係る空中映像表示装置201の構成の一例を概略的に示す構成図である。図11において、図10に示される構成要素と同一又は対応する構成要素には、図10に示される符号と同じ符号が付される。実施の形態2の変形例1に係る空中映像表示装置201は、第2の再帰反射部材240を更に有する点で、実施の形態2に係る空中映像表示装置200と相違する。これ以外の点については、実施の形態2の変形例1に係る空中映像表示装置201は、実施の形態2に係る空中映像表示装置200と同じである。
 図11に示されるように、空中映像表示装置201は、映像表示部10と、第1の再帰反射部材220と、ビームスプリッタ30と、第2の再帰反射部材240とを有する。
 第2の再帰反射部材240は、第1の再帰反射部材220よりビームスプリッタ30側に配置されている。第2の再帰反射部材240は、第1の再帰反射部材220と向かい合う位置に配置されている。言い換えれば、第2の再帰反射部材240は、奥行方向であるY軸方向において、第1の再帰反射部材230と並んで配列されている。
 第2の再帰反射部材240は、複数の第2の開口271、272と、複数の第2の再帰反射素子281、282、283とを含む。なお、以下の説明において、複数の第2の再帰反射素子281、282、283を区別する必要がない場合には、複数の第2の再帰反射素子281、282、283をまとめて、「第2の再帰反射素子280」とも呼ぶ。
 複数の第2の開口271、272は、複数の第1の開口251、252を通過してビームスプリッタ30に向かう映像光L1を通過させる。複数の第2の開口271、272の幅W21、W22は、互いに異なる。
 複数の第2の再帰反射素子281、282、283は、複数の第2の再帰反射面281a、282a、283aをそれぞれ有する。複数の第2の再帰反射素子281、282、283は、複数の第1の再帰反射素子261、262、263とそれぞれ向かい合っている。図11に示す例では、複数の第2の再帰反射素子281、282、283は、複数の第1の再帰反射素子261、262、263の一部とそれぞれ向かい合っている。このように、空中映像表示装置201は、X軸方向に配列された第1の列5aの再帰反射素子260と、X軸方向に配列された第2の列5bの第2の再帰反射素子280とを含む。第2の再帰反射素子280は、隣接する第1の再帰反射素子260に対して、X軸方向にずれて配列されている。そのため、図11に示す例では、複数の第2の再帰反射素子282、283は、複数の第1の開口251、252とそれぞれ向かい合っている。
 映像表示部10から出射した映像光L1は、第1の開口251、252及び第2の開口271、272を通過する。この場合、映像光L1は、Y軸方向に対して+X軸側(又は、-X軸側)に傾斜して進む。このように、実施の形態2の変形例1では、Y軸方向に対して傾斜して進む映像光L1を、空中映像Aとして結像させる。よって、観察者90が空中映像Aを斜め方向に見るときに、視認性を高めることができる。
 また、図11に示す例では、映像表示部10から出射した映像光L1が、ビームスプリッタ30で反射せずに観察者90の眼に直接、入射することを抑制できる。これは、映像表示部10から出射した映像光L1のうちの直接光が、第2の再帰反射素子280の背面280bで遮光されるためである。
 また、図11に示す例では、第2の再帰反射素子280が、隣接する第1の再帰反射素子260に対してX軸方向にずれて配置されていることにより、第1の開口251、252を通過する際に発生する回折光による空中映像Aの視認性の低下を抑制できる。ここで、回折光が結像するまでの光路長が長いほど、回折光の広がりは大きくなる。そのため、空中映像Aの周辺に広がる迷光の大きさは、第1の再帰反射素子260と第2の再帰反射素子280との配置関係によって変化する。実施の形態2の変形例1では、第2の再帰反射素子280は、隣接する第1の再帰反射素子260に対してX軸方向にずれて配置されている。これにより、パターン光の不可視化を実現することができ、空中映像Aに対する視認性の低下を抑制できる。
〈実施の形態2の変形例1の効果〉
 以上に説明した実施の形態2の変形例1によれば、空中映像表示装置201は、複数の第2の開口271、272と、複数の第2の再帰反射素子280とを含む第2の再帰反射部材240を更に有し、複数の第2の再帰反射素子280は、隣接する第1の再帰反射素子260に対してX軸方向にずれて配置されている。これにより、観察者90が、空中映像Aを視認する際に、パターン光が発生することを抑制できる。よって、空中映像表示装置201は、空中映像Aに対する視認性の低下を抑制できる。
《実施の形態2の変形例2》
 図12は、実施の形態2の変形例2に係る空中映像表示装置202の構成の一例を概略的に示す構成図である。図12において、図6及び11に示される構成要素と同一又は対応する構成要素には、図6及び11に示される符号と同じ符号が付される。実施の形態2の変形例2に係る空中映像表示装置202は、視点情報取得部111、駆動部212及び制御部213を更に有する点で実施の形態2の変形例1に係る空中映像表示装置201と相違する。これ以外の点については、実施の形態2の変形例2に係る空中映像表示装置202は、実施の形態2の変形例1に係る空中映像表示装置201と同じである。
 図12に示されるように、空中映像表示装置202は、映像表示部10と、第1の再帰反射部材220と、ビームスプリッタ30と、第2の再帰反射部材240と、視点情報取得部111と、駆動部212と、制御部213とを有する。
 駆動部212は、複数の第2の再帰反射面281a、282a、283aを、複数の第2の開口271、272の配列方向であるX軸方向にスライド移動させる。図12に示す例では、複数の第1の再帰反射素子261、262、263は、固定されている。
 制御部213は、視点情報取得部111によって取得された視点情報に基づいて駆動部212を制御する。具体的には、制御部213は、空中映像Aを結像する光が第1の開口251、252及び第2の開口271、272を通過するように、駆動部212を制御する。制御部213のハードウェア構成は、上述した図7(A)及び(B)と同様であるため、説明を省略する。
 実施の形態2の変形例2では、迷光は、第1の再帰反射素子260の背面260bで遮光される。よって、映像表示部10から出射した映像光L1がビームスプリッタ30で反射せずに直接、観察者90に入射することを防止できる。また、第1の再帰反射素子260の再帰反射面で鏡面反射した光は、第2の再帰反射素子280の背面280bで遮光される。よって、空中映像表示装置202は、空中映像Aに対する視認性の低下を抑制できる。
〈実施の形態2の変形例2の効果〉
 以上に説明した実施の形態2の変形例2によれば、空中映像表示装置202は、視点情報取得部111と、第2の再帰反射面281a、282a、283aをスライド移動させる駆動部212と、視点情報に基づいて駆動部212を制御する制御部213とを有する。これにより、空中映像Aを結像する光のみが第1の開口251、252及び第2の開口271、272を通過させることができる。言い換えれば、迷光が、空中映像Aを結像する光の光路上を進むことを抑制できる。よって、空中映像表示装置202は、空中映像Aに対する視認性の低下を抑制できる。
《実施の形態3》
 図13は、実施の形態3に係る空中映像表示装置の再帰反射部材の構成を示す斜視図である。実施の形態3に係る空中映像表示装置は、再帰反射部材としての再帰反射シート321が単一の再帰反射面361を有する点で、実施の形態1又は2に係る空中映像表示装置100、200と相違する。これ以外の点については、実施の形態3に係る空中映像表示装置300は、実施の形態1又は2に係る空中映像表示装置100、200と同じである。そのため、以下の説明では、図1を参照する。
 図13に示されるように、実施の形態3の再帰反射シート321は、複数の開口351、352と、単一の再帰反射面361とを含む。なお、以下の説明において、再帰反射シート321を、「第1の再帰反射シート321」とも呼び、複数の開口351、352を「複数の第1の開口351、352」とも呼ぶ。
 複数の開口351、352は、映像表示部10から出射した映像光L1(図1参照)を通過させる。複数の開口351、352の形状は、例えば、X軸方向及びY軸方向に広がる矩形状である。なお、複数の開口351、352の形状は、矩形状に限られず、円形状などの他の形状であってもよい。
 複数の開口351、352の各々のX軸方向の幅W11、W12は、互いに異なる。これにより、映像光L1が複数の開口351、252を通過する際に、パターン光の不可視化を実現することができる。よって、空中映像A(図1参照)に対する視認性の低下を抑制できる。図13に示す例では、開口352の幅W12は、開口351の幅W11より広い。
 複数の開口351、352は、格子状、すなわち、複数行複数列のマトリクス状に配列されている。複数の開口351、352は、例えば、再帰反射面361を穴あけ加工することによって形成される。複数の開口351、352は、例えば、再帰反射面361をパンチング加工又はレーザ加工によって形成(成型)される。
《変形例》
 図14は、実施の形態3に係る空中映像表示装置の変形例の再帰反射部材320Aの構成を示す斜視図である。図14に示されるように、再帰反射部材320Aは、奥行方向に積層された第1の再帰反射シート321と第2の再帰反射シート322とによって構成されていてもよい。第2の再帰反射シート322は、第1の再帰反射シート321より-Y軸側(図1に示されるビームスプリッタ30側)に配置されている。
 第2の再帰反射シート322は、複数の第2の開口371、372と、単一の第2の再帰反射面381とを含む。複数の第2の開口371、372の各々のX軸方向の幅W21、W22は、互いに異なる。図14に示す例では、第2の開口372の幅W22は、第2の開口371の幅W21より広い。
 複数の第2の開口371、372は、複数行複数列のマトリクス状に配列されている。第2の再帰反射シート322を奥行方向にY軸方向に見たときに、複数の第2の開口371は、複数の第1の開口351と重なっていて、複数の第2の開口372は、複数の第1の開口352と重なっている。このように、マトリクス状に配列された複数の第1の開口351、352と、マトリクス状に配列された複数の第2の開口371、372とが向かい合って配置されていてもよい。これにより、映像光L1が第1の開口351、352が通過したときに発生した回折光を第2の再帰反射シート322で遮光できる。また、映像表示部10からの直接光を第1の再帰反射シート321で遮光できる。これにより、空中映像Aの視認性の低下が抑制される。
 図15は、実施の形態3に係る空中映像表示装置の変形例の再帰反射部材320Bの構成の他の例を示す斜視図である。図15に示されるように、再帰反射部材320Bは、第1の再帰反射シート321Bと、第2の再帰反射シート322Bとを有する。
 第1の再帰反射シート321Bは、Z軸方向に長いスリット状の複数の第1の開口351B、352Bと、Z軸方向に長い複数の第1の再帰反射面360Bとを含む。複数の第1の開口351B、352Bの幅W31、W32は、互いに異なる。第2の再帰反射シート322Bは、第1の再帰反射シート321Bより-Y軸側(すなわち、図1に示されるビームスプリッタ30側)に配置されている。第2の再帰反射シート322Bは、X軸方向に長いスリット状の複数の第1の開口371B、372Bと、X軸方向に長い複数の第2の再帰反射面380Bを含む。
 複数の第2の再帰反射面380Bは、複数の第1の再帰反射面360Bと向かい合うようにX軸方向に伸びている。このように、X軸方向に長い複数の第2の再帰反射面380Bを、Z軸方向に長い複数の第1の再帰反射面360Bと向かい合う位置に配置することで、格子状の複数の開口が形成された再帰反射部材320Bを実現することができる。
〈実施の形態3の効果〉
 以上に説明した実施の形態3によれば、再帰反射部材としての再帰反射シート321は、単一の再帰反射面361に設けられた格子状の複数の開口351、352を有し、複数の開口351、352の幅W31、W32は、互いに異なる。これにより、観察者90が、例えば、回折によるパターン光を視認し難くなる。よって、実施の形態3に係る空中映像表示装置は、空中映像Aに対する視認性の低下を抑制できる。
 10 映像表示部、 10a 表示面、 11 映像、 20、220、320A、320B、321 再帰反射部材、 25 支持部、 30 ビームスプリッタ(光学部材)、 30a 前面、 30b 光分離面、 50~54 開口、 60~65、260~265 再帰反射素子(第1の再帰反射素子)、 60a、61a、62a、63a、64a、65a 再帰反射面、 60b、260b、280b 背面、 70 結像光学系、 80 筐体、 90 観察者、 100、101、200、201、202 空中映像表示装置、 111 視点情報取得部、 112、212 駆動部、 113、213 制御部、 113a メモリ、 113b プロセッサ、 113c 処理回路、 240 第2の再帰反射部材、 251~254、351B、352B 第1の開口、 271、272、371、372、371B、372B 第2の開口、 281~283 第2の再帰反射素子、 321 第1の再帰反射シート、 322 第2の再帰反射シート、 321B 第1の再帰反射部材、 322B 第2の再帰反射部材、 361、360B 第1の再帰反射面、 381、380B 第2の再帰反射面、 A 空中映像、 L1 映像光、 L2、L3、L4 光、 P 基準位置、 Ra 軸、 S 基準面、 W1~W4、W10~W12、W21、W22、W31、W32 幅。

Claims (15)

  1.  映像を表示する映像表示部と、
     前記映像表示部から出射した映像光を通過させる複数の開口と、複数の再帰反射面とを含む再帰反射部材と、
     入射した光を反射及び透過させる光分離面を含み、前記複数の開口を通過した前記映像光を反射させて前記複数の再帰反射面に向ける光学部材と、
     を有し、
     前記複数の再帰反射面で再帰反射した前記映像光は、前記光学部材を透過し、
     前記複数の再帰反射面の向きは、互いに異なる、
     ことを特徴とする、空中映像表示装置。
  2.  前記複数の再帰反射面は、前記複数の開口の配列方向である第1の方向に直交する第2の方向において、前記光分離面と向き合う位置に配置されている、
     ことを特徴とする、請求項1に記載の空中映像表示装置。
  3.  前記複数の再帰反射面のうちの少なくとも1つの再帰反射面は、前記光分離面と非平行である、
     ことを特徴とする、請求項2に記載の空中映像表示装置。
  4.  前記複数の開口の各開口の形状は、前記第1の方向及び前記第2の方向に直交する第3の方向に長いスリット状である、
     ことを特徴とする、請求項2又は3に記載の空中映像表示装置。
  5.  観察者の眼の位置を示す視点情報を取得する視点情報取得部と、
     前記複数の再帰反射面を前記第3の方向に延びる軸周りに回転させる駆動部と、
     前記視点情報に基づいて前記駆動部を制御する制御部と、
     を有する、
     ことを特徴とする、請求項4に記載の空中映像表示装置。
  6.  前記制御部は、前記複数の再帰反射面が前記観察者の前記眼の位置として設定された基準位置を向くように、前記駆動部を制御する、
     ことを特徴とする、請求項5に記載の空中映像表示装置。
  7.  前記複数の開口の幅は、互いに異なる、
     ことを特徴とする請求項1から6のいずれか1項に記載の空中映像表示装置。
  8.  映像を表示する映像表示部と、
     前記映像表示部から出射した映像光を通過させる複数の第1の開口と、単一又は複数の第1の再帰反射面とを含む第1の再帰反射部材と、
     入射した光を反射及び透過させる光分離面を含み、前記複数の第1の開口を通過した前記映像光を反射させて前記単一又は複数の第1の再帰反射面に向ける光学部材と、
     を有し、
     前記単一又は複数の第1の再帰反射面で再帰反射した前記映像光は、前記光学部材を透過し、
     前記複数の第1の開口の幅は、互いに異なる、
     ことを特徴とする、空中映像表示装置。
  9.  前記複数の第1の再帰反射面は、前記複数の第1の開口の配列方向である第1の方向に直交する第2の方向において、前記光分離面と向き合う位置に配置されている、
     ことを特徴とする、請求項8に記載の空中映像表示装置。
  10.  前記単一又は複数の第1の再帰反射面は、複数の第1の再帰反射面であり、
     前記複数の第1の開口の各第1の開口の幅は、前記複数の第1の再帰反射面の各第1の再帰反射面の幅の2倍以下である、
     ことを特徴とする、請求項8又は9に記載の空中映像表示装置。
  11.  前記複数の第1の開口を通過して前記光学部材に向かう前記映像光を通過させる複数の第2の開口と、前記複数の第1の再帰反射面とそれぞれ向かい合う複数の第2の再帰反射面とを含む第2の再帰反射部材を更に有し、
     前記第2の再帰反射部材は、前記第1の再帰反射部材より前記光学部材側に配置されている、
     ことを特徴とする請求項10に記載の空中映像表示装置。
  12.  観察者の眼の位置を示す視点情報を取得する視点情報取得部と、
     前記複数の第2の再帰反射面を、前記複数の第2の開口の配列方向に移動させる駆動部と、
     前記視点情報に基づいて前記駆動部を制御する制御部と、
     を更に有する、
     ことを特徴とする請求項11に記載の空中映像表示装置。
  13.  前記単一又は複数の第1の再帰反射面は、単一の第1の再帰反射面であり、
     前記複数の第1の開口は、マトリクス状に配列されている、
     ことを特徴とする、請求項8に記載の空中映像表示装置。
  14.  前記複数の第1の開口を通過して前記光学部材に向かう前記映像光を通過させる複数の第2の開口と、前記単一の第1の再帰反射面と向かい合う位置に配置された第2の再帰反射面とを含む第2の再帰反射部材を更に有し、
     前記複数の第2の開口は、前記複数の第1の開口と重なるようにマトリクス状に配列されている、
     ことを特徴とする、請求項13に記載の空中映像表示装置。
  15.  前記複数の第1の開口を通過して前記光学部材に向かう前記映像光を通過させる複数の第2の開口と、前記光学部材で反射した前記映像光を再帰反射させる複数の第2の再帰反射面とを含む第2の再帰反射部材を更に有し、
     前記第2の再帰反射部材は、前記複数の第1の開口の配列方向である第1の方向に直交する第2の方向において、前記第1の再帰反射部材と向かい合う位置に配置されていて、
     前記複数の第1の開口の各第1の開口の形状は、前記第1の方向及び前記第2の方向に直交する第3の方向に長いスリット状であり、
     前記複数の第2の再帰反射面は、前記複数の第1の開口と向かい合うように前記第1の方向に延びている、
     ことを特徴とする、請求項8に記載の空中映像表示装置。
PCT/JP2021/046247 2021-12-15 2021-12-15 空中映像表示装置 WO2023112197A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/046247 WO2023112197A1 (ja) 2021-12-15 2021-12-15 空中映像表示装置
JP2023567382A JP7562016B2 (ja) 2021-12-15 2021-12-15 空中映像表示装置
CN202180104406.2A CN118318202A (zh) 2021-12-15 2021-12-15 空中影像显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046247 WO2023112197A1 (ja) 2021-12-15 2021-12-15 空中映像表示装置

Publications (1)

Publication Number Publication Date
WO2023112197A1 true WO2023112197A1 (ja) 2023-06-22

Family

ID=86773763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046247 WO2023112197A1 (ja) 2021-12-15 2021-12-15 空中映像表示装置

Country Status (3)

Country Link
JP (1) JP7562016B2 (ja)
CN (1) CN118318202A (ja)
WO (1) WO2023112197A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59500189A (ja) * 1982-02-12 1984-02-02 カシ−ス,ミシエル 実像投影デバイス
US5583695A (en) * 1994-03-05 1996-12-10 Central Research Laboratories Limited Apparatus including directidal selective screening means for displaying an image of an object
JP2017107165A (ja) * 2015-12-07 2017-06-15 国立大学法人宇都宮大学 表示装置及び空中像の表示方法
WO2018043673A1 (ja) * 2016-08-31 2018-03-08 国立大学法人宇都宮大学 表示装置及び空中像の表示方法
JP2018081138A (ja) * 2016-11-14 2018-05-24 日本カーバイド工業株式会社 画像表示装置
JP2018136453A (ja) * 2017-02-22 2018-08-30 株式会社ジャパンディスプレイ 表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59500189A (ja) * 1982-02-12 1984-02-02 カシ−ス,ミシエル 実像投影デバイス
US5583695A (en) * 1994-03-05 1996-12-10 Central Research Laboratories Limited Apparatus including directidal selective screening means for displaying an image of an object
JP2017107165A (ja) * 2015-12-07 2017-06-15 国立大学法人宇都宮大学 表示装置及び空中像の表示方法
WO2018043673A1 (ja) * 2016-08-31 2018-03-08 国立大学法人宇都宮大学 表示装置及び空中像の表示方法
JP2018081138A (ja) * 2016-11-14 2018-05-24 日本カーバイド工業株式会社 画像表示装置
JP2018136453A (ja) * 2017-02-22 2018-08-30 株式会社ジャパンディスプレイ 表示装置

Also Published As

Publication number Publication date
JPWO2023112197A1 (ja) 2023-06-22
CN118318202A (zh) 2024-07-09
JP7562016B2 (ja) 2024-10-04

Similar Documents

Publication Publication Date Title
JP7067809B2 (ja) 表示装置
US11340475B2 (en) Display device for aerial image having retro-reflective part
JP7437068B2 (ja) 表示装置
US8212744B2 (en) See-through display
CN107850701B (zh) 光学器件及显示单元
US20200073136A1 (en) System for use in imaging in air
WO2010131622A1 (ja) 表示装置
US10775625B2 (en) Real time algorithmic calibration and compensation of virtual and augmented reality systems and optimized semi-transparent and transparent retroreflective display systems and methods
JP5365957B2 (ja) 表示装置
US11243410B2 (en) Display device
KR20220098262A (ko) 지향성 백라이트
CN103033972B (zh) 显示装置
CN110262051B (zh) 一种基于方向性光源的逆反射立体显示装置
JPWO2009017134A1 (ja) 多視点空中映像表示装置
US10185132B2 (en) Floating image display device
CN113917701B (zh) 一种投影光场立体显示装置
KR20140144617A (ko) 공간 영상 투영 장치
WO2012161073A1 (ja) 表示装置
WO2023112197A1 (ja) 空中映像表示装置
JP2023003980A (ja) 空中映像表示装置
CN116348806A (zh) 空间悬浮影像显示装置以及光源装置
JP2014013319A (ja) 光学システム
JP2022150245A (ja) 表示装置
JP2000352695A (ja) 映像表示装置
JP2001013450A (ja) 映像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968114

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567382

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180104406.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE