WO2023111443A1 - Materiau refractaire multicouche a haute tenue thermomecanique et resistance a l'erosion pour applications en environnement extreme et procede de fabrication - Google Patents

Materiau refractaire multicouche a haute tenue thermomecanique et resistance a l'erosion pour applications en environnement extreme et procede de fabrication Download PDF

Info

Publication number
WO2023111443A1
WO2023111443A1 PCT/FR2022/052326 FR2022052326W WO2023111443A1 WO 2023111443 A1 WO2023111443 A1 WO 2023111443A1 FR 2022052326 W FR2022052326 W FR 2022052326W WO 2023111443 A1 WO2023111443 A1 WO 2023111443A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractory
ceramic
tungsten
refractory material
coating
Prior art date
Application number
PCT/FR2022/052326
Other languages
English (en)
Inventor
Louise SEVIN
Aurélie JANKOWIAK
Jean-François JUSTIN
Nicolas Pelletier
Matthieu GARCIA
Pierre Bertrand
Cécile LANGLADE
Original Assignee
Office National D'etudes Et De Recherches Aerospatiales
Cnes
Universite De Technologie De Belfort-Montbeliard
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office National D'etudes Et De Recherches Aerospatiales, Cnes, Universite De Technologie De Belfort-Montbeliard filed Critical Office National D'etudes Et De Recherches Aerospatiales
Publication of WO2023111443A1 publication Critical patent/WO2023111443A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • C23C4/185Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3

Definitions

  • the invention relates to the field of materials with high thermomechanical resistance and resistance to erosion in extreme environments such as very high temperatures and/or atmospheres rich in oxidizing species.
  • Such materials generally include a high melting point metal substrate or body and a ceramic coating.
  • the dimensional conservation of the internal profile of the combustion chamber is an additional aspect to be taken into account in order to guarantee propulsion performance for the thousands of maneuvering cycles used during the lifetime of a satellite, with a duration maximum continuous fire for several minutes, and with cooling between each cycle at very low temperatures of the order of 10 K.
  • the need also exists in hot parts for electrothermal thrusters.
  • CN106001554 relates to the preparation of a rhenium-iridium combustion chamber by the following steps: preparation of a rhenium combustion chamber with shaping by powder metallurgy; preparation of iridium coatings on combustion chamber surfaces by electric arc deposition; preparing a platinum-rhodium ring by spinning and assembling the platinum-rhodium ring on the interior surface of the combustion chamber; and preparing a high radiation metal oxide coating on the exterior surface of the combustion chamber by plasma spraying.
  • Re and Ir are noble metals and, therefore, Re/lr chambers are very expensive. Processes such as CVD are slow and very expensive. Similarly, some new propellants can generate water vapor at very high temperatures, which affects the resistance to oxidation of the Ir layer.
  • US4917968 describes a structure resistant to stress and oxidation in the presence of combustion gases.
  • a vapor phase deposition (CVD) process is used to form successive layers.
  • a layer composed of metals from the platinum group, preferably iridium, is used for its resistance to corrosion for temperatures above 1500°C.
  • a second layer composed of ultra-refractory metals, preferably rhenium, is used with a tensile strength greater than 34 MPa for temperatures greater than 1500°C.
  • a final ceramic layer either hafnia or zirconia, is used to reduce the rate of iridium recession but with no effect on oxidation. The ceramic layer is not sufficient.
  • thermostructural materials have been considered, cf. US7297368, such as Carbon/Carbon composites reinforced with SiC, HfC or ZrC but the application temperatures do not exceed 1600°C. Indeed, beyond that, the oxide layers formed in situ with the combustion gases are either too liquid and can be blown by gases in the case of SiC not allowing the conservation of the geometry of the chamber, or solid but with expansions greater than carbides and a not insignificant volume expansion during the formation of the oxide which lead to decohesion and significant spalling in a gas stream, in the case of HfC or ZrC.
  • the processes used are the reactive infiltration of molten metal Si, Hf or Zr or the infiltration of suspensions or ceramic precursors, which requires bulky tools and significant costs without guaranteeing very high performance.
  • the Applicant realized that a need existed to obtain a material with a property gradient consisting of a ceramic phase acting as an environmental barrier and a metallic phase made of ultra-refractory metal ensuring the resistance structure which is stable in volume, inexpensive in terms of raw materials and production and which resists temperatures above 1600°C in oxidizing environments for 2500 hours of operation.
  • the refractory material with high thermomechanical strength and resistance to erosion for applications in extreme environments comprises a body, a coating and an intermediate region between the body and the coating.
  • the body comprises a surface made of a metallic material chosen from among: rhenium, tantalum, niobium, molybdenum, iridium, tungsten and their alloys.
  • the coating is made of a refractory ceramic material comprising hafnium and having a cubic phase, a perovskite phase or a rhombohedral phase.
  • the intermediate region is made of a refractory material with a melting temperature greater than 2700 K and comprising said metallic material and said ceramic material.
  • the body may be solid and made of said material or comprise several parts, one of the parts made of said material forming said surface.
  • the proposed solution offers a ceramic protective layer and a structural part made of preferentially non-noble refractory metal.
  • the difference of expansion between said two layers is accommodated by the introduction of a composition gradient between said two layers, which greatly reduces the risk of delamination.
  • the thickness of each layer can be chosen according to other requirements.
  • the composition gradient between the ceramic layer and the metal layer forms an intermediate layer.
  • the ceramic layer can be a hafnia stabilized in cubic phase by rare earth oxides (preferably Y2O3, LU2O3, Gd20s, etc.) or a combination of these oxides in order to eliminate reversible allotropic phase transitions during temperature variations (monoclinic / tetragonal / cubic) and in particular the tetragonal to monoclinic transition which induces a harmful increase in volume during cooling.
  • the ceramic layer can also consist of a high temperature perovskite phase such as SrHfOs or BaHfOs or of a rhombohedral phase, in particular YbsHf40i2.
  • the structural metal layer is advantageously made of tungsten, tungsten alloys or tungsten-based compounds (W-Re, W-Ni, W-Y2O3, W-La2Os, etc.) which, due to the point very high melting point of this element (3400 K) to withstand temperatures higher than that obtained with rhenium.
  • Other refractory metals or refractory alloys can be used for the structural part (e.g. rhenium, tantalum, niobium, molybdenum, iridium).
  • Tungsten like rhenium, can oxidize under certain operating conditions.
  • the addition of the ceramic protective layer mentioned above is desirable.
  • ceramic In order to play its protective role, ceramic is as impermeable as possible to oxygen ions. Since the ceramic is already oxidized, volume stability is expected during use due to the absence of potential oxidation of said ceramic. This makes it possible to further ensure the stability of the system and to limit the scaling phenomena that may occur following oxidation.
  • the body is made of a metallic material chosen from: W, W-Re, W-Ni, W-Y2O3 with 97 to 99 mol% of W, W-La2Os with 97 to 99% mol de W.
  • Tungsten makes it possible to offer materials resistant to temperatures higher than current solutions and at competitive costs.
  • the ceramic material comprises hafnia and/or a rare earth or alkaline-earth oxide, and hafnium, in particular SrHfOs, BaHfOs, LusHf40i2, YbsHf40i2. Reversible allotropic phase transitions during temperature variations with volume variation are reduced.
  • the ceramic material comprises from 10 to 50% mol of a stabilizer comprising at least one rare earth or alkaline earth oxide, preferably from 25 to 40%. Reversible allotropic phase transitions during temperature variations with volume variation are reduced. In the preferred range, an increase in the level of yttrin Y2O3 makes it possible to reduce the coefficient of thermal expansion and the ionic conductivity.
  • the stabilizer comprises at least one of: Y2O3, LU2O3, Gd2C>3.
  • Yttrin present in the ceramic of the intermediate layer, helps stabilize the intermediate layer by reducing mass loss during operation. Lutetium oxide and gadolinium oxide provide similar benefits.
  • the material is devoid of Zr. A higher temperature resistance is obtained.
  • the intermediate region has a thickness of between 5 and 60% of the total thickness of the intermediate region and of the coating.
  • the intermediate region has a composition ranging from the composition of said surface of the body to the composition of the coating, optionally with doping with at least one rare earth or alkaline-earth oxide. A high level cohesion is obtained.
  • the invention proposes a method for manufacturing a refractory material with high thermomechanical strength and resistance to erosion for applications in extreme environments, comprising: mixing a powder of a metallic material chosen from: rhenium, tantalum, niobium, molybdenum, iridium, tungsten and their alloys; and a powder of a refractory ceramic material comprising hafnium and exhibiting a cubic phase, a perovskite phase or a rhombohedral phase, then
  • a body comprising a surface made of a metallic material chosen from: rhenium, tantalum, niobium, molybdenum, iridium, tungsten and their alloys, to form a region of refractory material with a melting temperature greater than 2700 K and comprising said metallic material and said ceramic material, then
  • the agglomeration is carried out by means of a binder, in particular organic, or without a binder.
  • the method comprises, after the addition, a heat treatment at at least 1600°C. Residual porosity is substantially eliminated.
  • the method comprises manufacturing the body by projection onto a sacrificial support.
  • the support can be made of Mo.
  • the molybdenum can be removed by an acid that does not react with the body metal.
  • the addition by projection of said granules onto the body to form a region of refractory material with a melting temperature greater than 2700 K and comprising said metallic material and said ceramic material is carried out in layers, preferably in layers. constant or changing thicknesses, and ceramic content progressing, preferably according to a geometric law, starting from the body.
  • the tungsten oxides are removed by a low pressure treatment at a temperature below 1100°C.
  • the material is produced by air-blown arc plasma spraying, which makes it possible to reduce costs.
  • FIG.1 is a sectional view of a test material without gradient for comparison.
  • FIG.2 is a sectional view of a final material according to one aspect of the invention.
  • FIG.3 is an axial sectional view of an unfinished part made with the process.
  • FIG.4 is a sectional view of a material made with unmixed powders before consolidation.
  • FIG.5 is a sectional view of a material made with premixed powders before consolidation.
  • FIG.6 is a diagram showing composition curves of a material obtained by plasma projection according to a gradient following a power law.
  • FIG.7 is a sectional view of a material made with premixed powders with 11 mol%. of yttria in the hafnia of the intermediate layer.
  • FIG.8 is a sectional view of a material made with premixed powders with 33% mol. of yttria in the hafnia of the intermediate layer.
  • FIG.9 is a diagram showing curves of metal content in the samples of Figures 7 and 8 as a function of depth in the intermediate layer.
  • FIG.10 shows the condition of four samples after fire testing.
  • FIG.1 1 is a schematic view of a laser test bench.
  • FIG.12 is a diagram showing temperature curves during the test on the laser bench of Figure 1 1 .
  • FIG.13 is a mass loss diagram of the samples tested.
  • a gradient layer is proposed to smooth this difference and allow accommodation of the stresses between the two layers.
  • the direct contact between two materials having different coefficients of expansion results in strong delamination between the two layers.
  • a layer of HfC with a coefficient of expansion 11.2.10 6 /K is formed on a layer of W with a coefficient of expansion of 6.6.10' 6 /K.
  • the HfC>2 layer separates from the metallic W layer entirely.
  • Figure 2 is shown a section of a material according to one aspect of the invention.
  • the material is manufactured by thermal spraying - air plasma - then consolidation heat treatment.
  • An intermediate layer between ceramic and metal is obtained with a gradually varying composition. It is an enrichment in metal and a depletion in ceramic as one approaches the structural metal.
  • the composition of the intermediate layer is stable in operation. The stresses resulting from the differential expansion in the material are smoothed and distributed over the thickness of the intermediate layer.
  • delamination is avoided under identical operating conditions, here 2000°C under Argon for 1 hour at 5°C/minute up and down.
  • the complete structure of the material - from metal to ceramic - can advantageously be manufactured by thermal spraying by blown arc over several millimeters in thickness.
  • the projection can be carried out under air, under low pressure or under neutral atmosphere.
  • the deposition efficiency of the oxide ceramic phase is favored in air.
  • metals can oxidize. Spraying in air is advantageous for forming low-porosity layers and thus limiting dimensional variations during the consolidation heat treatment(s).
  • the metal is chosen from: rhenium, tantalum, niobium, molybdenum, iridium, tungsten and their alloys.
  • the alloys are preferred: W-Re, W-Ni, W-Y2O3 with 97 to 99% mol of W, W-La2 ⁇ 3 with 97 to 99% mol of W.
  • the ceramics are preferred: HfC>2, SrHfOs , BaHfOs, LusHf40i2, YbsHf40i2 or mixtures thereof.
  • two powder dispensers can be used during spraying and thus two powders of different types can be introduced into the torch at the same time.
  • This can lead to a gradient that is almost linear and devoid of stratification.
  • stratification may appear in cases where the two projected powders have very different densities.
  • the density of tungsten, rhenium and iridium is twice that of ceramics.
  • Stratification would lead to the formation of successive layers of metal then ceramic instead of forming a layer containing the intended mixture of metal and ceramic. This phenomenon has been eliminated by preparing powder mixtures before spraying. Indeed, metal/ceramic pre-alloyed powders have been prepared by agglomeration-drying or by granulation.
  • the powders may comprise an organic binder, for example polyvinyl alcohol, polyethylene glycol, or, more generally, a binder chosen from: thermoplastic polymers, thermosetting polymers, acrylic polymers, styrene acrylic polymers, epoxy polymers, polyurethane polymers, polymers based on monomers of ethylene, vinylene and/or vinyl acetate, polymers based on styrene and/or butadiene monomers, promoting agglomeration and/or granulation.
  • the powders are devoid of binder. Such mixtures, called composite powders, thus make it possible to better control the composition of the coating.
  • pre-alloyed powders are obtained by intimately associating, by means of an organic binder, metal powders and ceramic powders of equivalent size, in order to obtain granules whose size is preferably less than 63 ⁇ m.
  • the powders are of chosen size and composition.
  • the composite powders can be sprayed alone or in association with a metal powder or a ceramic powder.
  • Abacuses making it possible to know the mass composition of the metal and the ceramic in the deposits according to the initial flow rate of the powders facilitate the control of the final composition.
  • powders of 100% W, 75% W and 25% HfO 2 , 50% W and 50% HfO 2 , 33% W and 66% HfO 2 , 100% HfO 2 , i.e. five different powders were implemented. Powders at 100% W, 75% W and 25% HfO 2 , 33% W and 66% HfO 2 , 100% HfO 2 , ie four different powders can also be used.
  • the residual porosity is eliminated during a heat treatment at very high temperature, in particular between 1600 and 2200°C.
  • the heat treatment also eliminates any tungsten oxides that may form during air spraying. This elimination is carried out under secondary vacuum, approximately 10' 2 to 10' 3 Pa, at a temperature below 1100° C. carried out before said heat treatment at very high temperature.
  • Thermal spraying also makes it possible to produce structures of complex shape such as those necessary to produce an engine combustion chamber for placing and maintaining the satellite position, cf. figure 3 in raw tungsten.
  • the thicknesses of the final part can be achieved by this technique.
  • Such a combustion chamber has a shape of revolution, with a frustoconical convergent and a divergent in the form of an arc of a circle connected by their small diameter, the divergent continuing through a tubular region of large diameter.
  • the combustion chamber was made of tungsten, stabilized hafnia and the intermediate tungsten and hafnia region.
  • the advantage of thermal spraying is its modularity and its much lower cost compared to CVD used to conventionally produce Re/lr parts.
  • the part produced by the process can have a very small radius of curvature, for example as low as 2 mm.
  • the deposits are made on sacrificial supports in Mo.
  • the support is then dissolved in HNOs acid to keep only the W/gradient/HfO2 stack. Indeed, tungsten and stabilized hafnia are not attacked by nitric acid under the time/temperature conditions used.
  • the materials developed were tested in different configurations and demonstrated high resistance capacities, in particular in oxidizing environments.
  • the Applicant has carried out two comparative tests for the manufacture of a W/gradient/HfC>2 part according to one aspect of the invention.
  • the gradient part is produced by blown arc plasma thermal spraying.
  • the powders used are prepared either by agglomeration drying or by granulation.
  • the objective is to intimately link the tungsten and the hafnia constituting the gradient in order to prevent a segregation of their trajectories in the plasma.
  • the volume distribution of the metallic and ceramic oxide elements present in the gradient follows a power law.
  • the thickness of the intermediate layer is set at a sufficient value to allow a maximum stress value that is low enough to avoid delamination.
  • the number of beds or sub-layers of the intermediate layer is fixed, in particular according to the characteristics of the production machines in terms of minimum thickness of projected powder. The minimum thickness depends on the grain size.
  • the ratio of the geometric law of the ceramic content is chosen so that the ceramic content of the bed of rank p is equal to n times the ceramic content of the bed of rank p-1.
  • Vc (z/h) A n with Vc the volume fraction of ceramic, h the thickness of the gradient, z the distance from the start of the gradient and n the ratio of the power law.
  • FIG. 7 presents a material produced by thermal spraying in air of gradient materials with a ceramic layer in hafnia stabilized with 11 mol%. of yttrium oxide (MGP-11), on a tungsten body before consolidation heat treatment.
  • the intermediate layer then also has 11 mol%. of yttrium oxide relative to the total of yttrium oxide and other oxides.
  • Figure 8 shows a material produced by thermal spraying in air of gradient materials with a ceramic layer in hafnia stabilized with 33 mol%. of yttrium oxide (MGP-33) on a tungsten body before consolidation heat treatment.
  • the yttrin is added to the hafnia before deposition.
  • Yttrin and hafnia are prepared together before agglomeration-drying or granulation.
  • the tungsten-rich zone is to the left of the figures and the ceramic-rich zone is to the right of the figures.
  • a body comprises several parts, for example a carbon-carbon composite part and a tungsten part forming a tungsten surface on which the intermediate layer and then the ceramic layer are formed.
  • Figure 9 shows the mass distribution of tungsten in the intermediate layer with a gradient of tungsten and materials MGP-11 at 11% molar yttrium oxide and MGP-33 at 33% molar yttrium oxide on the ordinate and the inverse of the depth on the abscissa. The higher the abscissa value, the further the position is from the tungsten body. The tungsten mass distribution is close for the two yttrin levels. This shows the reproducibility of the method for different levels of dopant in the ceramic of the intermediate layer.
  • the gradient materials were then tested on a combustion bench under realistic conditions.
  • the samples are positioned on one of the walls of a chamber of the bench in a specially designed false sample holder porthole.
  • the samples are subjected to parietal flow.
  • the flame temperature is managed by the H2/O2 ratio at a pressure of 10 bars.
  • the flame temperatures generated during these tests are 1500, 2000 and 2300 K.
  • the maximum temperatures reached on the surface of the samples are measured by a pyrometer and are 1145 K and 1473 K for the first two tests respectively and did not could not be measured for the third.
  • An example of thermal cycle is presented. On ignition, much higher temperatures can be reached before the stabilization of the flame which is considered as the start of the test.
  • the above temperatures are the temperatures measured during the stable phase.
  • the tests last 25 seconds because the chamber is not cooled and are repeated 4 times successively for each sample for a total duration of 100 seconds.
  • the samples after consolidation heat treatment at 2000°C are shown in Figure 10 from left to right: before test, after test for 100 seconds at 1500K in the presence of steam, after test for 100 seconds at 2000K in the presence of water vapour, after testing for 50 seconds at 2300K in the presence of water vapour.
  • the first row shows the exterior views.
  • the second row shows top views.
  • the third row consists of cross-sectional views in which there is no observation of delamination. No major degradation or oxidation of tungsten could be observed whereas the oxidation of bare tungsten starts from 773-873 K under the same conditions.
  • Sample MGP-B as well as sample MGP-D has thicknesses of 1000 ⁇ m of tungsten, 150 ⁇ m of ceramic and 450 ⁇ m of intermediate layer.
  • Sample MGP-A has thicknesses of 500 ⁇ m of tungsten, 300 ⁇ m of ceramic and 1000 ⁇ m of interlayer.
  • the MGP-C sample has thicknesses of 500 ⁇ m of tungsten, 200 ⁇ m of ceramic and 1000 ⁇ m of intermediate layer.
  • the results of the MGP-A and MGP-C samples overlapping with those of the MGP-B sample have not been shown.
  • the sensitivity of the material to the thickness of each of the tungsten, ceramic and intermediate layers is low. This indicates that the optimization of the composition of the thermal barrier associated with that of the composition gradient makes it possible to achieve better performance of the system.
  • a minimum stabilizer value, Y2O3, LU2O3 and/or Gd2C>3, is chosen at 10%. Below, the risk of mass loss is too high. A minimum value of 25% is preferred to limit mass loss.
  • a maximum stabilizer value, Y2O3, LU2O3 or Gd2Os is chosen at 50%. Above 50%, noting TR for rare earth, the Hf2TR2O phase?
  • the stabilizer allows to stabilize the hafnia in the cubic phase. It is sought to eliminate any reversible allotropic phase transitions during temperature variations (cubic tetragonal monoclinic) and in particular the tetragonal to monoclinic transition which induces a harmful increase in volume during cooling.
  • the implementation of the method is even easier with tantalum, niobium, molybdenum, iridium because of their lower density than the density of tungsten.
  • the implementation of a W-Re or W-Ni alloy improves the mechanical performance of the material.
  • the implementation of a commercially available compound W-Y2O3 with 97-99 mol%. of W or W-LasOs with 97 to 99 mol%. of W offers better sintering and increased resistance to oxidation.
  • SrHfOs, BaHfOs, LusHf40i2, YbsHf40i2, instead of hafnia provides a ceramic with a coefficient of expansion close to tungsten and with a high melting temperature. This allows thin layers. The ionic conductivity is reduced. SrHfOs and BaHfOs exhibit a high temperature perovskite phase with satisfactory performance. YbsHf40i2 exhibits a rhombohedral phase.
  • the LU2O3 stabilizer allows, compared to Y2O3, improved temperature resistance due to its more refractory character.
  • the stabilizer GdsOs allows, compared to Y2O3, to reduce the ionic conductivity.
  • the ceramic is devoid of Zr.
  • the ceramic is C-free to prevent chipping.
  • the invention provides a refractory material with a body, one surface of which is made of a metallic material chosen from highly refractory metals.
  • the test carried out with tungsten is sufficient to qualify the other metals chosen.
  • the coating is made of a refractory ceramic material based on hafnium. The tests carried out are sufficient to qualify the other ceramics chosen, which include hafnia.
  • the coating has a cubic phase, a perovskite phase or a rhombohedral phase.
  • the refractory material of the lining has a melting temperature greater than 2700 K and comprises said metallic material and said ceramic material. A material refractory with high thermomechanical resistance is produced. Erosion resistance for extreme environment applications is achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Matériau réfractaire à haute tenue thermomécanique et résistance à l'érosion pour applications en environnement extrême, comprenant un corps, un revêtement et une région intermédiaire entre le corps et le revêtement, le corps comprenant une surface réalisée en un matériau métallique choisi parmi : rhénium, tantale, niobium, molybdène, iridium, tungstène et leurs alliages, le revêtement étant réalisé en un matériau céramique réfractaire comprenant du hafnium et présentant une phase cubique, une phase pérovskite ou une phase rhomboédrique, la région intermédiaire étant réalisée en un matériau réfractaire de température de fusion supérieure à 2700 K et comprenant ledit matériau métallique et ledit matériau céramique

Description

MATERIAU REFRACTAIRE MULTICOUCHE A HAUTE TENUE THERMOMECANIQUE ET RESISTANCE A L'EROSION POUR APPLICATIONS EN ENVIRONNEMENT EXTREME ET PROCEDE DE FABRICATION
[0001] L’invention concerne le domaine des matériaux à haute tenue thermomécanique et résistants à l’érosion en environnement extrême tel que des températures très élevées et/ou des ambiances riches en espèces oxydantes. De tels matériaux comprennent en général un substrat ou corps en métal à haut point de fusion et un revêtement en céramique.
[0002] De plus en plus d’applications nécessitent l’emploi de matériaux pouvant résister à très haute température, notamment plus de 1600 °C, dans des conditions pouvant être oxydantes. Le besoin existe dans les chambres de combustion des moteurs de mise et de maintien à poste des satellites. Le besoin de nouveaux matériaux est généré par le développement et la mise sur le marché de nouveaux ergols plus verts, c’est-à-dire moins toxiques, mais également beaucoup plus énergétiques que l’hydrazine de formule N2H4 actuellement utilisée. Ces nouveaux ergols engendrent des gaz de combustion contenant des espèces oxydantes et peuvent générer des températures de flamme atteignant plusieurs milliers de Kelvins. De plus, la conservation dimensionnelle du profil interne de la chambre de combustion est un aspect supplémentaire à prendre en compte afin de garantir les performances de propulsion pour les milliers de cycles de manœuvres utilisées durant la durée de vie d’un satellite, avec une durée maximale continue à feu de plusieurs minutes, et avec un refroidissement entre chaque cycle à des températures très faibles de l'ordre de 10 K. Le besoin existe aussi dans les pièces chaudes des propulseurs électrothermiques.
[0003] Les chambres actuelles sont principalement constituées de bicouches Re/lr, l’iridium permettant d’assurer la résistance à l’oxydation jusqu’à 1600°C, comme le montre US4917968, CN106001554. Pour des températures supérieures, certaines solutions ont consisté à rajouter une couche supplémentaire de zircone ZrÛ2 ou d’hafnie HfC . Cependant, ces couches supplémentaires s’écaillent rapidement et ne permettent pas de garantir longtemps l’intégrité de l’ensemble. La couche supérieure peut être constituée d’autres éléments tels que le platine ou le rhodium, cf. US5613299, qui sont également extrêmement coûteux.
[0004] CN106001554 concerne la préparation d'une chambre de combustion de rhénium-iridium par les étapes suivantes : préparation d'une chambre de combustion au rhénium avec mise en forme par métallurgie des poudres ; préparation de revêtements d'iridium sur les surfaces de la chambre de combustion par dépôt à l'arc électrique ; préparation d'un anneau de platine- rhodium par filage et assemblage de l'anneau de platine-rhodium sur la surface intérieure de la chambre de combustion ; et préparation d'un revêtement d'oxyde métallique à fort rayonnement sur la surface extérieure de la chambre de combustion par pulvérisation au plasma.
[0005] De plus, Re et Ir sont des métaux nobles et, de ce fait, les chambres Re/lr sont très coûteuses. Les procédés mis en œuvre comme la CVD sont lents et très onéreux. De même, certains nouveaux ergols peuvent générer de la vapeur d’eau à très haute température ce qui nuit à la résistance à l’oxydation de la couche d’Ir.
[0006] A l’heure actuelle, les chambres Re/lr utilisées ne permettent donc pas d’exploiter les performances maximales des nouveaux ergols développés. Les performances d’utilisation sont donc dégradées afin de conserver les matériaux.
[0007] US4917968 décrit une structure résistante aux contraintes et à l’oxydation en présence des gaz de combustion. Un procédé de dépôt en phase vapeur (CVD) est utilisé afin de former des couches successives. Une couche composée de métaux issus du groupe platine, préférentiellement de l’iridium, est utilisée pour sa résistance à la corrosion pour des températures supérieures à 1500 °C. Une seconde couche composée de métaux ultra-réfractaires, préférentiellement du rhénium, est utilisée avec une résistance à la traction supérieure à 34 MPa pour des températures supérieures à 1500 °C. Une dernière couche en céramique, soit de l’hafnie, soit de la zircone, est utilisée afin de réduire le taux de récession de l’iridium mais sans effet sur l’oxydation. La couche céramique n’est pas suffisante.
[0008] D’autres matériaux thermostructuraux ont été considérés, cf. US7297368, comme des composites Carbone/Carbone renforcés de SiC, de HfC ou de ZrC mais les températures d’applications ne dépassent pas les 1600 °C. En effet, au- delà, les couches d’oxydes formées in situ avec les gaz de combustion sont soit trop liquides et peuvent être soufflées par les gaz dans le cas du SiC ne permettant pas la conservation de la géométrie de la chambre, soit solides mais avec des dilatations supérieures aux carbures et une expansion volumique non négligeable lors de la formation de l’oxyde qui entraînent des décohésions et un écaillage important dans un flux de gaz, dans le cas du HfC ou du ZrC. Pour ces matériaux, les procédés utilisés sont l’infiltration réactive de métal fondu Si, Hf ou Zr ou l’infiltration de suspensions ou de précurseurs céramiques ce qui requiert des outillages volumineux et des coûts importants sans garantir des performances très élevées.
[0009] Après les avoir analysés, le Demandeur a cherché à obvier à ces inconvénients.
[0010] Le Demandeur s’est rendu compte qu’un besoin existait d’obtenir un matériau à gradient de propriétés constitué d’une phase céramique jouant le rôle de barrière environnementale et d’une phase métallique en métal ultra -réfractaire assurant la tenue structurale qui soit stable en volume, peu coûteux en matières premières et en production et qui résiste à des températures supérieures à 1600 °C dans des ambiances oxydantes pendant 2500 heures de fonctionnement.
[0011 ] Selon un aspect de l’invention, le matériau réfractaire à haute tenue thermomécanique et résistance à l’érosion pour applications en environnement extrême, comprend un corps, un revêtement et une région intermédiaire entre le corps et le revêtement. Le corps comprend une surface réalisée en un matériau métallique choisi parmi parmi : rhénium, tantale, niobium, molybdène, iridium, tungstène et leurs alliages. Le revêtement est réalisé en un matériau céramique réfractaire comprenant de l’hafnium et présentant une phase cubique, une phase pérovskite ou une phase rhomboédrique. La région intermédiaire est réalisée en un matériau réfractaire de température de fusion supérieure à 2700 K et comprenant ledit matériau métallique et ledit matériau céramique.
[0012] Le corps peut être massif et réalisé dans ledit matériau ou comprendre plusieurs parties, l’une des parties réalisée dans ledit matériau formant ladite surface.
[0013] La solution proposée offre une couche protectrice en céramique et une partie structurale en métal réfractaire préférentiellement non noble. La différence de dilatation entre lesdites deux couches est accommodée par l’introduction d’un gradient de composition entre lesdites deux couches, ce qui permet de réduire fortement le risque de délaminage. L’épaisseur de chaque couche peut être choisie en fonction d’autres exigences. Le gradient de composition entre la couche céramique et la couche métallique forme une couche intermédiaire.
[0014] La couche céramique peut être une hafnie stabilisée en phase cubique par des oxydes de terre rares (Y2O3 préférentiellement, LU2O3, Gd20s, ...) ou une combinaison de ces oxydes afin d’éliminer les transitions de phase allotropiques réversibles lors des variations de température (monoclinique / tétragonale / cubique) et notamment la transition tétragonale vers monoclinique qui induit une augmentation de volume néfaste lors du refroidissement. La couche céramique peut également être constituée d’une phase pérovskite haute température comme SrHfOs ou BaHfOs ou d’une phase rhomboédrique, notamment YbsHf40i2. La couche métallique structurale est avantageusement constituée de tungstène, d’alliages de tungstène ou de composés à base de tungstène (W-Re, W-Ni, W- Y2O3, W-La2Os, ...) qui permettent, en raison du point de fusion très élevé de cet élément (3400 K) de résister à des températures supérieures à celle obtenue avec le rhénium. D’autres métaux réfractaires ou alliages réfractaires peuvent être utilisés pour la partie structurale (e.g. rhénium, tantale, niobium, molybdène, iridium...).
[0015] Le tungstène, comme le rhénium, peut s’oxyder dans certaines conditions opératoires. L’ajout de la couche protectrice en céramique mentionnée ci-dessus est souhaitable. Afin de jouer son rôle protecteur, la céramique est la plus imperméable possible aux ions oxygène. La céramique étant déjà oxydée, une stabilité du volume est attendue en cours d’utilisation en raison de l’absence d’oxydation potentielle de ladite céramique. Ceci permet d’assurer plus encore la stabilité du système et de limiter les phénomènes d’écaillage pouvant survenir suite à une oxydation.
[0016] Dans un mode de réalisation, le corps est réalisé en un matériau métallique choisi parmi : W, W-Re, W-Ni, W-Y2O3 avec 97 à 99% mol de W, W-La2Os avec 97 à 99% mol de W. Le tungstène permet de proposer des matériaux résistant à des températures supérieures aux solutions actuelles et à des coûts compétitifs. [0017] Dans un mode de réalisation, le matériau céramique comprend de l’hafnie et/ou un oxyde de terre rare ou d’alcalino-terreux, et d’hafnium, notamment SrHfOs, BaHfOs, LusHf40i2, YbsHf40i2. Les transitions de phase allotropiques réversibles lors des variations de température avec variation de volume sont réduites.
[0018] Dans un mode de réalisation, le matériau céramique comprend de 10 à 50% mol d’un stabilisateur comprenant au moins un oxyde de terre rare ou d’alcalino- terreux, préférablement de 25 à 40%. Les transitions de phase allotropiques réversibles lors des variations de température avec variation de volume sont réduites. Dans la plage préférée, une augmentation du taux d’yttrine Y2O3 permet de réduire le coefficient d’expansion thermique et la conductivité ionique.
[0019] Dans un mode de réalisation, le stabilisateur comprend au moins un parmi: Y2O3, LU2O3, Gd2C>3. L’yttrine, présente dans la céramique de la couche intermédiaire, permet de stabiliser la couche intermédiaire en réduisant la perte de masse lors du fonctionnement. L’oxyde de lutétium et l’oxyde de gadolinium offrent des avantages similaires.
[0020] Dans un mode de réalisation, le matériau est dépourvu de Zr. Une tenue en température plus élevée est obtenue.
[0021 ] Dans un mode de réalisation, la région intermédiaire présente une épaisseur comprise entre 5 et 60% de l’épaisseur totale de la région intermédiaire et du revêtement.
[0022] Dans un mode de réalisation, la région intermédiaire présente une composition allant de la composition de ladite surface du corps à la composition du revêtement, avec éventuellement un dopage avec au moins un oxyde de terre rare ou d’alcalino-terreux. Une cohésion de haut niveau est obtenue.
[0023] L’invention propose un procédé de fabrication d’un matériau réfractaire à haute tenue thermomécanique et résistance à l’érosion pour applications en environnement extrême, comprenant : le mélange d’une poudre d’un matériau métallique choisi parmi : rhénium, tantale, niobium, molybdène, iridium, tungstène et leurs alliages ; et d’une poudre d’un matériau céramique réfractaire comprenant du hafnium et présentant une phase cubique, une phase pérovskite ou une phase rhomboédrique, puis
- l’agglomération desdites poudres en granules de composition choisie, puis
- l’apport par projection desdites granules sur un corps comprenant une surface réalisée en un matériau métallique choisi parmi : rhénium, tantale, niobium, molybdène, iridium, tungstène et leurs alliages, pour former une région en matériau réfractaire de température de fusion supérieure à 2700 K et comprenant ledit matériau métallique et ledit matériau céramique, puis
- l’apport par projection de granules dudit matériau céramique réfractaire pour former un revêtement.
[0024] Dans un mode de réalisation, l’agglomération est effectuée au moyen d’un liant, notamment organique, ou sans liant.
[0025] Dans un mode de réalisation, le procédé comprend, après l’apport, un traitement thermique à au moins 1600 °C. La porosité résiduelle est sensiblement éliminée.
[0026] Dans un mode de réalisation, le procédé comprend la fabrication du corps par projection sur un support sacrificiel. Le support peut être réalisé en Mo. Le molybdène peut être éliminé par un acide ne réagissant pas avec le métal du corps.
[0027] Dans un mode de réalisation, l’apport par projection desdites granules sur le corps pour former une région en matériau réfractaire de température de fusion supérieure à 2700 K et comprenant ledit matériau métallique et ledit matériau céramique est effectué par couches, préférablement d’épaisseurs constantes ou évolutives, et de teneur en céramique progressant, préférablement selon une loi géométrique, en partant du corps .
[0028] Dans un mode de réalisation, les oxydes de tungstène sont éliminés par un traitement basse pression à une température inférieure à 1 100 °C.
[0029] Dans un mode de réalisation, le matériau est réalisé par projection à plasma d’arc soufflé sous air, ce qui permet de réduire les coûts.
[0030] D’autres caractéristiques et avantages de l’invention apparaîtront à l’examen de la description détaillée ci-après, et des dessins annexés, sur lesquels : [0031 ] [Fig.1 ] est une vue en coupe d’un matériau d’essai sans gradient pour comparaison.
[0032] [Fig.2] est une vue en coupe d’un matériau final selon un aspect de l’invention.
[0033] [Fig.3] est une vue en coupe axiale d’une pièce non finie réalisée avec le procédé.
[0034] [Fig.4] est une vue en coupe d’un matériau réalisé avec des poudres non mélangées avant consolidation.
[0035] [Fig.5] est une vue en coupe d’un matériau réalisé avec des poudres pré mélangées avant consolidation.
[0036] [Fig.6] est un schéma montrant des courbes de composition d’un matériau obtenu par projection plasma selon un gradient suivant une loi puissance.
[0037] [Fig.7] est une vue en coupe d’un matériau réalisé avec des poudres pré mélangées avec 11 % mol. d’yttrine dans l’hafnie de la couche intermédiaire.
[0038] [Fig.8] est une vue en coupe d’un matériau réalisé avec des poudres pré mélangées avec 33% mol. d’yttrine dans l’hafnie de la couche intermédiaire.
[0039] [Fig.9] est un schéma montrant des courbes de teneur en métal dans les échantillons des Figures 7 et 8 en fonction de la profondeur dans la couche intermédiaire.
[0040] [Fig.10] montre l’état de quatre échantillons après essai au feu.
[0041 ] [Fig.1 1 ] est une vue schématique d’un banc d’essai laser.
[0042] [Fig.12] est un schéma montrant des courbes de température lors de l’essai sur le banc laser de la figure 1 1 .
[0043] [Fig.13] est un diagramme de perte de masse des échantillons testés.
[0044] Les deux matériaux associés, l’un de structure, l’autre de revêtement, ayant un écart de coefficient de dilatation, une couche à gradient est proposée pour lisser cette différence et permettre une accommodation des contraintes entre les deux couches. En l’absence de couche à gradient formant une transition, le contact direct entre deux matériaux présentant des coefficients de dilation différents se traduit par un fort délaminage entre les deux couches. Dans l’exemple de la figure 1 , une couche de HfC de coefficient de dilation 11 ,2.106/K est formée sur une couche de W de coefficient de dilation 6,6.10’6 /K. La couche de HfC>2 se sépare de la couche métallique de W en totalité.
[0045] Sur la figure 2 est montrée une coupe d’un matériau selon un aspect de l’invention. Le matériau est fabriqué par projection thermique - plasma sous air - puis traitement thermique de consolidation. Une couche intermédiaire entre la céramique et le métal est obtenue avec une composition variant progressivement. Il s’agit d’un enrichissement en métal et d’un appauvrissement en céramique à mesure que l’on se rapproche du métal structurel. La composition de la couche intermédiaire est stable en fonctionnement. Les contraintes résultant de la dilation différentielle dans le matériau sont lissées et réparties sur l’épaisseur de la couche intermédiaire. Par rapport à un matériau céramique sur métal sans couche intermédiaire, le délaminage est évité à conditions de fonctionnement identiques, ici 2000 °C sous Argon pendant 1 heure à 5°C/minute en montée et descente.
[0046] La structure complète du matériau - du métal à la céramique - peut avantageusement être fabriquée par projection thermique par arc soufflé sur plusieurs millimètres d’épaisseur. La projection peut être réalisée sous air, sous basse pression ou sous atmosphère neutre. Le rendement de dépôt de la phase céramique oxyde est favorisé sous air. Cependant, sous air, les métaux peuvent s’oxyder. La projection sous air est intéressante pour former des couches peu poreuses et ainsi limiter les variations dimensionnelles lors du ou des traitements thermiques de consolidation. Le métal est choisi parmi : rhénium, tantale, niobium, molybdène, iridium, tungstène et leurs alliages. Parmi les alliages, sont préférés : W-Re, W-Ni, W-Y2O3 avec 97 à 99% mol de W, W-La2Û3 avec 97 à 99% mol de W. Parmi les céramiques sont préférées : HfC>2, SrHfOs, BaHfOs, LusHf40i2, YbsHf40i2 ou leurs mélanges.
[0047] Dans un mode de réalisation, deux distributeurs de poudres peuvent être utilisés lors de la projection et ainsi deux poudres de natures différentes peuvent être introduites en même temps dans la torche. Ceci peut permettre d’aboutir à un gradient presque linéaire et dépourvu de stratification. Toutefois, une stratification peut apparaître dans des cas où les deux poudres projetées ont des densités très différentes. Or la densité du tungstène, du rhénium et de l’iridium est deux fois supérieure à celle de la céramique. La stratification conduirait à la formation de couches successives de métal puis de céramique au lieu de former une couche contenant le mélange prévu de métal et de céramique. Ce phénomène a été éliminé par la préparation de mélanges de poudre en amont de la projection. En effet, des poudres pré-alliées métal/céramique ont été préparées par agglomération-séchage ou par granulation. Les poudres peuvent comprendre un liant organique, par exemple alcool polyvinylique, polyéthylène glycol, ou, plus généralement un liant choisi parmi : polymères thermoplastiques, polymères thermodurcissables, polymères acryliques, polymères styrène acryliques, polymères époxydiques, polymères polyuréthanes, polymères à base de monomères d'éthylène, de vinylène et/ou d'acétate de vinyle, polymères à base de monomères de styrène et/ou de butadiène, favorisant l’agglomération et/ou la granulation. Alternativement, les poudres sont dépourvues de liant. De tels mélanges, appelés poudres composites, permettent ainsi de mieux contrôler la composition du revêtement. Ces poudres pré-alliées sont obtenues en associant intimement au moyen d’un liant organique des poudres métalliques et des poudres céramiques de taille équivalente, afin de d’obtenir des granules dont la taille est préférentiellement inférieure à 63 pm. Les poudres sont de taille et composition choisies.
[0048] Ainsi, lors de la projection, en fonction de la composition de la couche intermédiaire recherchée, les poudres composites peuvent être projetées seules ou en associant avec, une poudre de métal ou une poudre de céramique. Des abaques permettant de connaître la composition massique du métal et de la céramique dans les dépôts en fonction du débit initial des poudres facilitent la maîtrise de la composition finale. Lors des essais, des poudres de 100% W, 75% W et 25% HfO2, 50% W et 50% HfO2, 33% W et 66% HfO2, 100% HfO2, soit cinq poudres différentes, ont été mises en œuvre. Des poudres à 100% W, 75% W et 25% HfO2, 33% W et 66% HfO2, 100% HfO2, soit quatre poudres différentes peuvent aussi être mises en œuvre. Une production avec seulement trois poudres est possible mais poserait des difficultés relatives à l’homogénéité du matériau final. La possibilité de mettre en œuvre autant de distributeurs que de poudres différentes permet de couvrir l’ensemble des compositions entre le métal pur et la céramique pure de manière continue. Dans le cas de projection à basse pression dite sous vide, un rendement de projection élevé est obtenu pour le tungstène. Dans le cas de projection sous gaz neutre, le tungstène est très peu oxydé. Dans le cas de projection sous air, des oxydes de tungstène sont formés puis éliminés par le traitement thermique ci-dessous qui constitue un frittage. Ceci rapproche les taux de porosité du tungstène et de la céramique. Le rapprochement des taux de porosité offre un retrait plus homogène lors du frittage ultérieur.
[0049] Après projection, la porosité résiduelle est éliminée lors d’un traitement thermique à très haute température, notamment entre 1600 et 2200 °C. Le traitement thermique permet également d’éliminer d’éventuels oxydes de tungstène qui peuvent se former lors de la projection sous air. Cette élimination est effectuée sous vide secondaire, environ 10’2 à 10’3 Pa, à une température inférieure à 1100 °C effectué avant ledit traitement thermique à très haute température.
[0050] La projection thermique permet également de réaliser des structures de forme complexe telles que celles nécessaires pour réaliser une chambre de combustion de moteur de mise et de maintien à poste de satellite, cf. figure 3 en tungstène brut. Les épaisseurs de la pièce finale peuvent être atteintes par cette technique. Une telle chambre de combustion présente une forme de révolution, avec un convergent tronconique et un divergent en arc de cercle reliés par leur petit diamètre, le divergent se poursuivant par une région tubulaire de grand diamètre. Lors des essais, la chambre de combustion a été réalisée en tungstène, hafnie stabilisée et région intermédiaire tungstène et hafnie. L’avantage de la projection thermique est sa modularité et son coût très inférieur par rapport à la CVD employée pour réaliser de manière conventionnelle des pièces en Re/lr. La pièce réalisée par le procédé peut présenter un rayon de courbure très faible, par exemple aussi bas que 2 mm.
[0051] De manière avantageuse, les dépôts sont réalisés sur des supports sacrificiels en Mo. Le support est ensuite dissous dans de l’acide HNOs pour ne garder que l’empilement W/gradient/HfO2. En effet, le tungstène et l’hafnie stabilisée ne sont pas attaqués par l’acide nitrique dans les conditions temps/température utilisées.
[0052] Les matériaux élaborés ont été testés dans différentes configurations et ont démontré des capacités élevées de résistance notamment dans des ambiances oxydantes. [0053] Le Demandeur a effectué deux essais comparatifs de fabrication d’une pièce en W/gradient/HfC>2 selon un aspect de l’invention. La pièce à gradient est élaborée par projection thermique à plasma d’arc soufflé. Les poudres utilisées sont préparées soit par agglomération séchage, soit par granulation. Dans les deux essais, l’objectif est de lier intimement le tungstène et l’hafnie constituant le gradient afin de prévenir une ségrégation de leurs trajectoires dans le plasma. Dans l’essai avec de la poudre de tungstène et de la poudre d’hafnie, la forte différence de densité entre le tungstène et l’hafnie contribue à une ségrégation qui conduit à une morphologie du revêtement qui présente des strates tel que décrit dans la figure 4. Il en résulte une alternance de lits riches en tungstène et de lits riches en hafnie. La figure 4, comme la figure 5, est une vue en coupe avant traitement thermique.
[0054] A l’inverse, l’élaboration de plusieurs poudres composites de tungstène et d’hafnie possédant plusieurs compositions différentes, puis leur projection séquencée permet de faire évoluer de manière continue la composition au sein de la région intermédiaire, voir figure 5. Les poudres composites sont injectées soit seules, soit en combinant plusieurs poudres composites, soit en combinant une poudre composite et une poudre de tungstène ou d’hafnie. La région intermédiaire obtenue présente une composition évoluant de manière sensiblement monotone avec un taux de tungstène décroissant et un taux d’hafnie croissant vers la surface extérieure.
[0055] La distribution volumique des éléments métallique et céramique oxyde présents dans le gradient suit une loi en puissance. L’utilisation d’une loi géométrique avec une raison supérieure à 1 dans le cas de la distribution volumique en céramique oxyde dans le gradient favorise un enrichissement en métal dans la couche intermédiaire à gradient de propriétés apportant une meilleure ténacité de cette couche. A titre d’exemple, on choisit la raison n=1 ,5 et n=3.
[0056] En d’autres termes, l’épaisseur de la couche intermédiaire est fixée à une valeur suffisante pour permettre une valeur de contrainte maximale suffisamment basse pour éviter un délaminage. Le nombre de lits ou sous couches de la couche intermédiaire est fixé, notamment en fonction des caractéristiques des machines de production en termes d’épaisseur minimale de poudre projetée. L’épaisseur minimale dépend de la granulométrie. Puis on choisit la raison de la loi géométrique de la teneur en céramique de sorte que la teneur en céramique du lit de rang p soit égale à n fois la teneur en céramique du lit de rang p-1 . En d’autres termes, Vc = (z/h)An avec Vc la fraction volumique de céramique, h l'épaisseur du gradient, z la distance par rapport au début du gradient et n la raison de la loi puissance.
[0057] Sur la figure 6 sont représentées les compositions mesurées de deux couches intermédiaires avec les raisons n=1 ,5 et n=3. Les courbes sont globalement croissantes même si une légère décroissance locale est visible sur la courbe n=1 ,5. La mention HfSY signifie hafnie stabilisée à l’yttrine. En fonction des performances recherchées et des matériaux sélectionnés, plusieurs paramètres peuvent être optimisés : nombre de lits de composition échelonnée, raison, épaisseur de la couche intermédiaire en plus des paramètres d’épaisseur de la couche métallique et d’épaisseur de la couche céramique.
[0058] Ainsi, la composition de la couche de céramique peut être modifiée afin de mieux s’adapter en termes de dilatation à la partie structurale sous-jacente. La figure 7 présente un matériau réalisé par projection thermique sous air de matériaux à gradient avec une couche céramique en hafnie stabilisée avec 11% mol. d’oxyde d’yttrium (MGP-11 ), sur un corps en tungstène avant traitement thermique de consolidation. La couche intermédiaire présente alors aussi 11 % mol. d’oxyde d’yttrium par rapport au total d’oxyde d’yttrium et autres oxydes. La figure 8 montre un matériau réalisé par projection thermique sous air de matériaux à gradient avec une couche céramique en hafnie stabilisée avec 33% mol. d’oxyde d’yttrium (MGP-33) sur un corps en tungstène avant traitement thermique de consolidation. Dans les deux cas l’yttrine est ajoutée à l’hafnie avant le dépôt. L’yttrine et l’hafnie sont préparées ensemble avant l’agglomération- séchage ou la granulation. La zone riche en tungstène est à gauche des figures et la zone riche en céramique est à droite des figures.
[0059] Les essais ont été menés avec un corps massif en tungstène. En variante, un corps comprend plusieurs parties, par exemple une partie en composite carbone- carbone et une partie en tungstène formant une surface de tungstène sur laquelle la couche intermédiaire puis la couche de céramique sont formées. [0060] Le fait d’augmenter le taux d’yttrium à 33% permet de réduire l’écart de dilatation thermique avec le corps métallique et ainsi de réduire le niveau de contrainte dans le gradient. Ainsi les fissures pénètrent moins en profondeur dans le gradient.
[0061] La figure 9 montre la distribution massique en tungstène dans la couche intermédiaire à gradient de tungstène et de matériaux MGP-11 à 11 % molaire d’oxyde d’yttrium et MGP-33 à 33% molaire d’oxyde d’yttrium en ordonnée et l’inverse de la profondeur en abscisse. Plus la valeur en abscisse est élevée, plus la position est éloignée du corps en tungstène. La distribution massique en tungstène est proche pour les deux taux d’yttrine. Ceci montre la reproductibilité du procédé pour des taux différents de dopant dans la céramique de la couche intermédiaire.
[0062] Les matériaux à gradient ont ensuite été testés sur un banc de combustion dans des conditions réalistes. Les échantillons sont positionnés sur une des parois d’une chambre du banc dans un faux hublot porte échantillon spécialement conçu. Les échantillons sont soumis à un flux pariétal. La température de la flamme est gérée par le ratio H2/O2 à une pression de 10 bars. Les températures de flammes générées au cours de ces essais sont de 1500, 2000 et 2300 K. Les températures maximales atteintes en surface des échantillons sont mesurées par un pyromètre et sont de 1145 K et 1473 K pour les deux premiers essais respectivement et n’a pas pu être mesurée pour le troisième. Un exemple de cycle thermique est présenté. A l’allumage, des températures très supérieures peuvent être atteintes avant la stabilisation de la flamme qui est considérée comme le début du test. Les températures ci-dessus sont les températures mesurées pendant la phase stable. Les tests durent 25 secondes car la chambre n’est pas refroidie et sont répétés 4 fois successivement pour chaque échantillon pour une durée totale de 100 secondes.
[0063] Les échantillons après traitement thermique de consolidation à 2000 °C sont présentés sur la figure 10 de gauche à droite : avant essai, après essai de 100 secondes à 1500K en présence de vapeur d’eau, après essai de 100 secondes à 2000K en présence de vapeur d’eau, après essai de 50 secondes à 2300K en présence de vapeur d’eau. La première rangée montre les vues extérieures. La deuxième rangée montre des vues de dessus. La troisième rangée est constituée de vues en coupe dans lesquelles il n’y a pas d’observation de délaminage. Aucune dégradation majeure ni oxydation du tungstène n’a pu être observée alors que l’oxydation du tungstène nu commence dès 773-873 K dans les mêmes conditions.
[0064] Pour tester les matériaux dans des conditions de températures plus sévères, un autre banc a été utilisé, cf. figure 1 1 . Les essais ont consisté à tester les échantillons précédemment présentés face à des conditions oxydantes représentatives des conditions auxquelles ils seront soumis dans les moteurs de mise et de maintien à poste, soit 15% vol. de vapeur d’eau. Les échantillons ont été portés jusqu’à 1900°C avec des incréments de température à partir de 1200 °C. La température en surface des échantillons en fonction de la puissance incrémentale sélectionnée pour chacun des cycles est montrée en figure 12. Entre chaque incrément, la masse de l’échantillon est mesurée. L’échantillon MGP-D comportant l’hafnie stabilisée avec 33% mol. d’Y2Os présente une perte de masse négligeable en comparaison avec l’échantillon MGP-B dont l’hafnie est stabilisée avec 1 1 % mol d’Y2Os, cf. figure 13. L’échantillon MGP-B de même que l’échantillon MGP-D présente des épaisseurs de 1000 pm de tungstène, 150 pm de céramique et 450 pm de couche intermédiaire. L’échantillon MGP-A présente des épaisseurs de 500 pm de tungstène, 300 pm de céramique et 1000 pm de couche intermédiaire. L’échantillon MGP-C présente des épaisseurs de 500 pm de tungstène, 200 pm de céramique et 1000 pm de couche intermédiaire. Les résultats des échantillons MGP-A et MGP-C se confondant avec ceux de l’échantillon MGP-B n’ont pas été représentés. La sensibilité du matériau à l’épaisseur de chacune des couches de tungstène, de céramique et intermédiaire est faible. Ceci indique que l’optimisation de la composition de la barrière thermique associée à celle du gradient de composition permet d’aboutir à de meilleures performances du système. Une valeur minimale de stabilisateur, Y2O3, LU2O3 et/ou Gd2C>3, est choisie à 10%. En dessous, le risque de perte de masse est trop élevé. Une valeur minimale de 25% est préférée pour limiter la perte de masse. Une valeur maximale de stabilisateur, Y2O3, LU2O3 ou Gd2Os, est choisie à 50%. Au-dessus de 50%, en notant TR pour terre rare, la phase Hf2TR2O? formée est en équilibre avec TR2O3 et la couche est biphasée. Une valeur maximale de 40% est préférée pour obtenir une couche Hf2TR2O? pure. Le stabilisateur permet de stabiliser l’hafnie en phase cubique. On cherche à éliminer d’éventuelles transitions de phase allotropiques réversibles lors des variations de température (monoclinique tétragonale cubique) et notamment la transition tétragonale vers monoclinique qui induit une augmentation de volume néfaste lors du refroidissement.
[0065] La mise en œuvre du procédé est plus aisée encore avec tantale, niobium, molybdène, iridium en raison de leur densité inférieure à la densité du tungstène. La mise en œuvre d’un alliage W-Re ou W-Ni permet d’améliorer les performances mécaniques du matériau. La mise en œuvre d’un composé disponible dans le commerce W-Y2O3 avec 97 à 99% mol. de W ou W-LasOs avec 97 à 99% mol. de W offre un meilleur frittage et une résistance accrue à l’oxydation.
[0066] La mise en œuvre de SrHfOs, BaHfOs, LusHf40i2, YbsHf40i2, à la place de l’hafnie, fournit une céramique à coefficient de dilatation proche du tungstène et à température de fusion élevée. Ceci permet des couches de faible épaisseur. La conductivité ionique est réduite. SrHfOs et BaHfOs présentent une phase pérovskite haute température de performances satisfaisantes. YbsHf40i2 présente une phase rhomboédrique.
[0067] Le stabilisateur LU2O3 permet, par rapport à Y2O3, une tenue en température améliorée en raison de son caractère plus réfractaire. Le stabilisateur GdsOs permet, par rapport à Y2O3, de réduire la conductivité ionique.
[0068] La céramique est dépourvue de Zr. La céramique est dépourvue de C afin d’éviter l’écaillage.
[0069] Ainsi l’invention propose un matériau réfractaire à corps dont une surface est réalisée en un matériau métallique choisi parmi les métaux très réfractaires. L’essai effectué avec du tungstène est suffisant pour qualifier les autres métaux choisis. Le revêtement est réalisé en un matériau céramique réfractaire à base d’hafnium. Les essais réalisés sont suffisants pour qualifier les autres céramiques choisies lesquelles comprennent de l’hafnie. Le revêtement présente une phase cubique, une phase pérovskite ou une phase rhomboédrique. Le matériau réfractaire du revêtement présente une température de fusion supérieure à 2700 K et comprend ledit matériau métallique et ledit matériau céramique. Un matériau réfractaire à haute tenue thermomécanique est réalisé. Une résistance à l’érosion pour applications en environnement extrême est obtenue.

Claims

Revendications
[Revendication 1] Matériau réfractaire à haute tenue thermomécanique et résistance à l’érosion pour applications en environnement extrême, comprenant un corps, un revêtement et une région intermédiaire entre le corps et le revêtement, le corps comprenant une surface réalisée en un matériau métallique choisi parmi : rhénium, tantale, niobium, molybdène, iridium, tungstène et leurs alliages, le revêtement étant réalisé en un matériau céramique réfractaire comprenant du hafnium et présentant une phase cubique, une phase pérovskite ou une phase rhomboédrique, la région intermédiaire étant réalisée en un matériau réfractaire de température de fusion supérieure à 2700 K et comprenant ledit matériau métallique et ledit matériau céramique.
[Revendication 2] Matériau réfractaire selon la revendication 1 , dans lequel le corps est réalisé en un matériau métallique choisi parmi : W, W-Re, W-Ni, W-Y2O3 avec 97 à 99% mol de W, W-La2Os avec 97 à 99% mol de W.
[Revendication 3] Matériau réfractaire selon la revendication 1 ou 2, dans lequel le matériau céramique comprend de l’hafnie et/ou un oxyde de terre rare ou d’alcalino-terreux, et d’hafnium, notamment SrHfOs, BaHfOs, Lu3Hf40i2, Yb3Hf40i2.
[Revendication 4] Matériau réfractaire selon la revendication 1 ou 2, dans lequel le matériau céramique comprend de 10 à 50% mol d’un stabilisateur comprenant au moins un oxyde de terre rare, préférablement de 25 à 40%.
[Revendication 5] Matériau réfractaire selon la revendication 4, dans lequel le stabilisateur comprend au moins un parmi: Y2O3, LU2O3, Gd2O3.
[Revendication 6] Matériau réfractaire selon l’une des revendications précédentes, dépourvu de Zr.
[Revendication 7] Matériau réfractaire selon l’une des revendications précédentes, dans lequel la région intermédiaire présente une épaisseur comprise entre 5 et 60% de l’épaisseur totale de la région intermédiaire et du revêtement et la région intermédiaire présente une composition allant de la composition de ladite surface du corps à la composition du revêtement, avec éventuellement un dopage avec au moins un oxyde de terre rare.
[Revendication 8] Procédé de fabrication d’un matériau réfractaire à haute tenue thermomécanique et résistance à l’érosion pour applications en environnement extrême, comprenant :
- le mélange d’une poudre d’un matériau métallique choisi parmi : rhénium, tantale, niobium, molybdène, iridium, tungstène et leurs alliages ; et d’une poudre d’un matériau céramique réfractaire comprenant du hafnium et présentant une phase cubique, une phase pérovskite ou une phase rhomboédrique, puis
- l’agglomération desdites poudres en granules de composition choisie, puis
- l’apport par projection desdites granules sur un corps comprenant une surface réalisée en un matériau métallique choisi parmi : rhénium, tantale, niobium, molybdène, iridium, tungstène et leurs alliages, pour former une région intermédiaire en matériau réfractaire de température de fusion supérieure à 2700 K et comprenant ledit matériau métallique et ledit matériau céramique, puis
- l’apport par projection de granules dudit matériau céramique réfractaire pour former un revêtement.
[Revendication 9] Procédé selon la revendication précédente, comprenant, après l’apport, un traitement thermique à au moins 1600 °C.
[Revendication 10] Procédé selon la revendication 8 ou 9, comprenant la fabrication du corps par projection sur un support sacrificiel, préférablement en Mo.
[Revendication 11] Procédé selon la revendication 8, 9 ou 10, dans lequel l’apport par projection desdites granules sur le corps pour former une région en matériau réfractaire de température de fusion supérieure à 2700 K et comprenant ledit matériau métallique et ledit matériau céramique est effectué par lits, préférablement d’épaisseurs constantes, et de teneur en céramique progressant, préférablement selon une loi géométrique, en partant du corps.
[Revendication 12] Procédé selon l’une des revendications 8 à 11 , dans lequel la projection est effectuée par plasma, notamment sous air.
PCT/FR2022/052326 2021-12-14 2022-12-13 Materiau refractaire multicouche a haute tenue thermomecanique et resistance a l'erosion pour applications en environnement extreme et procede de fabrication WO2023111443A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2113521 2021-12-14
FR2113521A FR3130193B1 (fr) 2021-12-14 2021-12-14 Matériau réfractaire à haute tenue thermomécanique et résistance à l’érosion pour applications en environnement extrême et procédé de fabrication

Publications (1)

Publication Number Publication Date
WO2023111443A1 true WO2023111443A1 (fr) 2023-06-22

Family

ID=81327086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/052326 WO2023111443A1 (fr) 2021-12-14 2022-12-13 Materiau refractaire multicouche a haute tenue thermomecanique et resistance a l'erosion pour applications en environnement extreme et procede de fabrication

Country Status (2)

Country Link
FR (1) FR3130193B1 (fr)
WO (1) WO2023111443A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917968A (en) 1988-04-15 1990-04-17 Ultramet High temperature corrosion resistant composite structure
US5613299A (en) 1994-11-09 1997-03-25 Ring; Peter J. Method of fabricating a rocket thrust chamber
US5705283A (en) * 1996-06-13 1998-01-06 Hughes Electronics Tungsten-copper composite material with rhenium protective layer, and its preparation
US20050013994A1 (en) * 2003-07-16 2005-01-20 Honeywell International Inc. Thermal barrier coating with stabilized compliant microstructure
US7297368B2 (en) 2003-04-15 2007-11-20 Ultramet Method of making carbon fiber-carbon matrix reinforced ceramic composites
CN106001554A (zh) 2016-06-29 2016-10-12 航天材料及工艺研究所 一种铼铱燃烧室的制备方法
WO2020128401A1 (fr) * 2018-12-20 2020-06-25 Safran Piece aeronautique resistante au sable fondu

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917968A (en) 1988-04-15 1990-04-17 Ultramet High temperature corrosion resistant composite structure
US5613299A (en) 1994-11-09 1997-03-25 Ring; Peter J. Method of fabricating a rocket thrust chamber
US5705283A (en) * 1996-06-13 1998-01-06 Hughes Electronics Tungsten-copper composite material with rhenium protective layer, and its preparation
US7297368B2 (en) 2003-04-15 2007-11-20 Ultramet Method of making carbon fiber-carbon matrix reinforced ceramic composites
US20050013994A1 (en) * 2003-07-16 2005-01-20 Honeywell International Inc. Thermal barrier coating with stabilized compliant microstructure
CN106001554A (zh) 2016-06-29 2016-10-12 航天材料及工艺研究所 一种铼铱燃烧室的制备方法
WO2020128401A1 (fr) * 2018-12-20 2020-06-25 Safran Piece aeronautique resistante au sable fondu

Also Published As

Publication number Publication date
FR3130193A1 (fr) 2023-06-16
FR3130193B1 (fr) 2024-05-24

Similar Documents

Publication Publication Date Title
EP1085109B1 (fr) Composition de barrière thermique de faible conductivité thermique, pièce mécanique en superalliage protégée par un revêtement de céramique ayant une telle composition, et méthode de réalisation du revêtement de céramique
CA2828792C (fr) Procede de realisation d'une barriere thermique dans un systeme multicouche de protection de piece metallique et piece munie d'un tel systeme de protection
CA1335439C (fr) Pieces de machine thermique en alliage comportant un revetement protecteur metalloceramique
EP2751049B1 (fr) Materiau ultra-refractaire stable en environnement humide et son procede de fabrication
EP1505042B1 (fr) Composition de barrière thermique, pièce mécanique en superalliage munie d'un revêtement ayant une telle composition, revêtement de céramique, et procédé de fabrication du revêtement
CA2481932C (fr) Cible destinee a etre evaporee sous faisceau d'electrons, son procede de fabrication, barriere thermique et revetement obtenus a partir d'une cible, et piece mecanique comportant un tel revetement
JP2006193828A (ja) 遮熱コート材料、遮熱部材、遮熱コーティング部材及びその製造方法
EP1357201A1 (fr) Formation d'un revêtement céramique à gradient de composition par dépot physique en phase vapeur sous faisceau d'électrons
CA3066848A1 (fr) Piece de turbomachine revetue et procede de fabrication associe
CA2284384C (fr) Revetement de barriere thermique a faible conductivite thermique, piece metallique protegee par ce revetement, procede de depot de ce revetement
WO2012076797A1 (fr) Materiaux et pieces resistants a haute temperature en milieu oxydant et leur procede de fabrication
JP5737682B1 (ja) 耐熱性金属部材、耐熱性金属部材の製造方法、合金皮膜、合金皮膜の製造方法、ロケットエンジン、人工衛星および発電用ガスタービン
WO2023111443A1 (fr) Materiau refractaire multicouche a haute tenue thermomecanique et resistance a l'erosion pour applications en environnement extreme et procede de fabrication
Patterson et al. Advanced HfC-TaC oxidation resistant composite rocket thruster
CN108588637B (zh) 一种多元梯度改性铱涂层及其制备方法
WO2012146864A1 (fr) Pièce comportant un revêtement sur un substrat métallique en superalliaae, le revêtement comprenant une sous-couche métallique
FR3075692A1 (fr) Piece revetue d'une composition de protection contre les cmas a fissuration controlee, et procede de traitement correspondant
Fortini et al. Advanced materials for chemical propulsion-Oxide-iridium/rhenium combustion chambers
FR3053076A1 (fr) Piece de turbomachine revetue d'une barriere thermique et d'un revetement de protection contre les cmas et procede pour l'obtenir
JP5411460B2 (ja) バリア性能評価方法及びバリア性能評価装置
EP3849735A1 (fr) Procede d'assemblage d'une piece de metal et d'une piece de ceramique, et dispositif electrique, en particulier capteur capacitif, realise par le procede
McKechnie et al. High temperature combustion chambers produced by electroforming
FR2530088A1 (fr) Cathode de laser a gaz et procede de fabrication de ladite cathode
FR2993901A1 (fr) Methode de fabrication d'une barriere thermique
FR3030751A1 (fr) Procede de controle de l'etat d'une barriere thermique par endoscopie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22840263

Country of ref document: EP

Kind code of ref document: A1