WO2023109768A1 - 电动车及其热泵系统 - Google Patents

电动车及其热泵系统 Download PDF

Info

Publication number
WO2023109768A1
WO2023109768A1 PCT/CN2022/138431 CN2022138431W WO2023109768A1 WO 2023109768 A1 WO2023109768 A1 WO 2023109768A1 CN 2022138431 W CN2022138431 W CN 2022138431W WO 2023109768 A1 WO2023109768 A1 WO 2023109768A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
passage
valve body
heat exchanger
electric vehicle
Prior art date
Application number
PCT/CN2022/138431
Other languages
English (en)
French (fr)
Inventor
董军启
Original Assignee
北京车和家汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京车和家汽车科技有限公司 filed Critical 北京车和家汽车科技有限公司
Publication of WO2023109768A1 publication Critical patent/WO2023109768A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • H01M10/6564Gases with forced flow, e.g. by blowers using compressed gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to the technical field of vehicles, in particular to an electric vehicle and a heat pump system thereof.
  • the battery As the most important component in an electric vehicle, the battery provides power energy for the vehicle; therefore, efficient and accurate thermal management of the battery is very important.
  • the operating temperature range is relatively narrow, and precise temperature control of the batteries is required.
  • the optimum temperature working range of a ternary lithium battery is 20°C to 30°C. If the temperature is too low, it will affect the discharge and charging speed of the battery; if the temperature of the battery is too high, it will affect the life of the battery.
  • Embodiments of the present disclosure provide a heat pump system for an electric vehicle.
  • An embodiment of the present disclosure provides a heat pump system for an electric vehicle, including a compressor, a battery cooling passage, and an outdoor heat exchange passage; the battery cooling passage and the outdoor heat exchange passage are connected in parallel at the inlet of the compressor Between the pipeline and the outlet pipeline of the compressor; the outlet pipeline of the compressor is provided with a first valve body, and the outlet pipeline of the compressor located in the upstream part of the first valve body is connected to the outlet pipeline of the compressor.
  • a battery heating passage is communicated between downstream ends of the battery cooling passage, and a second valve body is provided on the battery heating passage.
  • a battery heat exchanger is provided on the battery cooling passage, and a first intermediate heat exchanger is connected between the inlet pipeline of the battery heat exchanger and the outlet pipeline of the battery heat exchanger ;
  • a first throttle valve is provided on the inlet pipeline of the battery heat exchanger and between the first intermediate heat exchanger and the battery heat exchanger;
  • a pressure regulating valve is provided at the downstream end of the first intermediate heat exchanger.
  • the passage of the outdoor heat exchanger is provided with a second throttle valve, and the second throttle valve is connected in parallel with a third valve body.
  • it further includes an electric drive system cooling passage and a heat exchange device, and the heat exchange device is connected between the outdoor heat exchange passage and the electric drive system cooling passage.
  • the upstream end of the outdoor heat exchange passage communicates with the upstream end of the battery heat dissipation passage through a first connection passage, and a fourth valve body is arranged on the first connection passage; the outdoor heat exchange passage The downstream end of the passage communicates with the upstream end of the battery heat dissipation passage through a second connection passage, and a fifth valve body is provided on the second connection passage; the downstream end of the outdoor heat exchange passage communicates with the battery cooling passage through a third connection passage.
  • the downstream end of the battery cooling passage is connected, and the third connecting passage is provided with a sixth valve body.
  • the fifth valve body is a one-way valve, and the one-way valve conducts in a direction toward the downstream end of the battery cooling passage.
  • the battery cooling passage When the first valve body is opened and the second valve body is closed, the battery cooling passage is positively connected, and the battery cooling passage cools the battery; when the first valve body is closed and the second valve body is opened, the battery cooling passage is reversed.
  • the battery cooling channel When it is turned on, the battery cooling channel does not play a cooling role, and the high-temperature and high-pressure refrigerant pumped out from the compressor dissipates heat to the battery cooling channel, thereby heating the battery. Therefore, the heat pump system of this embodiment can not only cool the battery, but also heat the battery, so that the temperature of the battery can be precisely controlled, and the battery can be kept in a better temperature working range.
  • FIG. 1 is a schematic diagram of a standard heating mode of a heat pump system of an electric vehicle according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a battery cooling fast charging mode of a heat pump system of an electric vehicle according to an embodiment of the present disclosure
  • the solid line in the figure indicates that the pipeline is connected, and the dotted line indicates that the pipeline is not connected.
  • a heat pump system for an electric vehicle provided by an embodiment of the present disclosure includes a compressor 1, a battery cooling channel 4 for cooling the battery, and an outdoor channel for cooling the refrigerant outside the cockpit.
  • Heat exchange passage 5 The first valve body 33 is provided on the outlet pipeline 2 of the compressor, and a battery heating passage is communicated between the outlet pipeline 2 of the compressor at the upstream part of the first valve body 33 and the downstream end of the battery cooling passage 4 ,
  • a second valve body 34 is provided on the battery heating passage.
  • a heat exchange device 6 and an electric drive system cooling passage 31 for cooling the motor and the electric control device are also included.
  • the battery cooling channel 4 and the outdoor heat exchange channel 5 are connected in series or in parallel between the inlet pipeline 3 of the compressor and the outlet pipeline 2 of the compressor; the outdoor heat exchange channel 5 is provided with a first radiator 16 to cool the electric drive system.
  • the passage 31 is provided with a second radiator 17 , and the heat exchange device 6 is connected in heat exchange between the outdoor heat exchange passage 5 and the cooling passage 31 of the electric drive system.
  • the outdoor heat exchange passage 5 is provided with a first radiator 16, the electric drive system cooling passage 31 is provided with a second radiator 17, and the heat exchange device 6 is connected to the outdoor heat exchange passage 5 and the electric drive system cooling passage. Between 31.
  • the refrigerant in the outdoor heat exchange passage 5 is radiated through the first radiator 16, part of the heat in the outdoor heat exchange passage 5 is transferred to the electric drive system cooling passage 31 through the heat exchange device 6, and then passed through
  • the second radiator 17 dissipates this part of the heat, thereby using the joint action of the first radiator 16 and the second radiator 17 to further reduce the temperature of the refrigerant and improve the cooling capacity of the system.
  • the second radiator 17 can exert a higher heat dissipation efficiency.
  • the heat exchange device 6 is a water-cooled heat exchanger, which has a simple structure, stable operation and low cost.
  • a battery heat exchanger 10 is provided on the battery cooling passage 4 , and a first intermediate heat exchanger 25 is connected between the inlet pipeline of the battery heat exchanger 10 and the outlet pipeline of the battery heat exchanger 10 .
  • the temperature difference between the inlet pipeline and the outlet pipeline of the battery heat exchanger 10 is reduced by the first intermediate heat exchanger 25 , so that the refrigerant is precooled before entering the battery heat exchanger 10 .
  • a first throttle valve 30 is provided on the inlet pipeline of the battery heat exchanger 10 and between the first intermediate heat exchanger 25 and the battery heat exchanger 10.
  • a first throttle valve 30 is provided on the outlet pipeline of the battery heat exchanger 10 and located The downstream end of the first intermediate heat exchanger 25 is provided with a pressure regulating valve 26 .
  • the superheat degree of the steam inside the first intermediate heat exchanger 25 can be controlled by adjusting the outlet pressure of the first intermediate heat exchanger 25 by the pressure regulating valve 26 and cooperating with the throttling of the first throttle valve 30 upstream of the battery heat exchanger 10 , to achieve effective control of battery cooling efficiency.
  • an indoor radiator 11 is provided on the outlet pipeline 2 of the compressor, and the indoor radiator 11 is used to dissipate part of the heat of the refrigerant into the vehicle to form heating. Moreover, it can also reduce the temperature of the refrigerant while heating, which is beneficial to improve the cooling effect on the battery.
  • an electric heating device 24 can also be arranged on the side of the indoor radiator 11 to form auxiliary heating.
  • the passage of the outdoor heat exchanger is provided with a second throttle valve 22 , and the second throttle valve 22 is connected with a third valve body 21 in parallel.
  • the third valve body 21 can be closed, and the refrigerant flows through the second throttle valve 22.
  • the first radiator 16 acts as an evaporator to absorb external heat, thereby improving the heating efficiency of the system.
  • the heat pump system further includes an indoor cooling passage 7, on which a throttling component 8 and an indoor evaporator 9 are arranged, and the indoor cooling passage 7 is connected in parallel with the battery cooling passage 4 for cooling the room.
  • the heat pump system further includes a valve assembly 29 and a short circuit 18 connected between the inlet pipeline of the second radiator 17 and the outlet pipeline of the second radiator 17, the valve assembly 29 is used to select sexually connect the outdoor radiator or short-circuit path 18.
  • the short-circuit passage 18 When the short-circuit passage 18 is connected, the refrigerant in the outdoor heat exchange passage 5 flows through the short-circuit passage 18 without flowing through the second radiator 17 . Since the temperature of the refrigerant in the outdoor heat exchange passage 5 decreases after passing through the first throttle valve 30, when it recirculates through the heat exchange device 6, the cooling capacity can be transferred to the cooling passage 31 of the electric drive system through the heat exchange device 6. The electric drive system 23 forms the cooling. At this time, choosing not to connect the second radiator 17 can avoid unnecessary cooling loss, thereby forming a better cooling effect on the electric drive system 23 .
  • a second intermediate heat exchanger 32 is connected between the inlet pipeline 3 of the compressor and the outdoor heat exchange passage 5.
  • the second intermediate heat exchanger 32 is used for precooling the refrigerant entering the battery cooling passage 4 when the outdoor heat exchange passage 5 is connected in series with the battery cooling passage 4 , thereby improving cooling efficiency.
  • the second intermediate heat exchanger 32 can also reduce the temperature difference between the two refrigerant paths before they merge.
  • the battery cooling passage 4 is connected in parallel with the outdoor heat exchange passage 5; when the fourth valve body 13 and the fifth valve body 19 are closed, the sixth When the valve body 20 is opened, the battery cooling passage 4 is connected in series with the outdoor heat exchange passage 5 , thereby realizing the switching between the battery cooling passage 4 and the outdoor heat exchange passage 5 in series or in parallel.
  • the fifth valve body 19 is preferably a one-way valve, which conducts in the direction toward the downstream end of the battery cooling passage 4 , the one-way valve does not need to be controlled, and the structure is simple.
  • the inlet pipeline 3 of the compressor is provided with a gas-liquid separator 28 for separating the liquid in the refrigerant flowing back into the compressor 1 to avoid liquid hammer or dry friction in the compressor 1 .
  • Embodiments of the present disclosure disclose an electric vehicle on the other hand, and the electric vehicle includes the above heat pump system of the electric vehicle.
  • the electric vehicle heat pump system can at least realize the following modes:
  • the third valve body 21 , the fifth valve body 19 and the throttling component 8 are closed, the valve assembly 29 selects to open the short-circuit passage 18 , and the rest of the passages are opened.
  • the high-temperature and high-pressure refrigerant pumped out by the compressor 1 enters the indoor radiator 11 through the outlet pipeline 2 of the compressor, and the fan corresponding to the indoor radiator 11 is turned on to blow hot air into the vehicle interior. After flowing through the indoor radiator 11 , part of the refrigerant flows to the battery cooling passage 4 through the first connection passage 12 , and the other part flows to the outdoor heat exchange passage 5 .
  • the refrigerant flowing to the battery cooling channel 4 first flows to the first intermediate heat exchanger 25, and then becomes a low-temperature and low-pressure state through the throttling of the first throttle valve 30, and then forms refrigeration in the battery heat exchanger 10;
  • the refrigerant flowing out of the battery heat exchanger 10 passes through the first intermediate heat exchanger 25 again, and is adjusted and controlled by the downstream pressure regulating valve 26 to avoid the generation of superheated steam, and cooperate with the first throttle valve 30 to realize the cooling of the battery. Control of cooling effectiveness.
  • the refrigerant flowing to the outdoor heat exchange passage 5 first passes through the throttling of the first throttle valve 30 to become a low-temperature and low-pressure state, so that part of the cooling capacity is transferred to the electric drive system cooling passage 31 through the downstream heat exchange device 6 , to form cooling for the electric drive system 23 , at this time, the second radiator 17 is short-circuited by the short-circuit path 18 in order to avoid loss of cooling capacity.
  • the refrigerant itself is heated while flowing through the heat exchange device 6 , so that the system temperature of the refrigerant rises, which is beneficial to improve the heating efficiency and realizes the utilization of waste heat of the electric drive system 23 .
  • the difference between the heating and dehumidification mode compared with the standard heating mode is that the throttling component 8 is opened time-sharingly.
  • the throttling part 8 can be opened, so that the indoor evaporator 9 forms a cold body, and placed in the air outlet direction of the indoor radiator 11, it flows through the indoor evaporator 9 Part of the moisture in the air on the surface is cooled and liquefied, so that the air humidity can be reduced after a period of circulation.
  • the entire heat pump system can be optimally combined in various modes to achieve the best energy efficiency and comprehensive waste heat utilization of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种电动车的热泵系统,包括压缩机(1)、电池冷却通路(4)和室外换热通路(5);电池冷却通路(4)和室外换热通路(5)并联在压缩机的入口管路(3)与压缩机的出口管路(2)之间;压缩机的出口管路(2)上设有第一阀体(33),位于第一阀体(33)的上游部分的压缩机的出口管路(2)与电池冷却通路(4)的下游端之间连通有电池供热通路,电池供热通路上设有第二阀体(34)。该热泵系统既可以对电池进行冷却,又可以对电池进行加热,从而可以对电池进行精确的温度控制,使电池保持在较佳的温度工作范围。

Description

电动车及其热泵系统
相关申请的交叉引用
本申请要求在2021年12月16日在中国提交的中国专利申请号202123171994.8的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及车辆技术领域,具体涉及一种电动车及其热泵系统。
背景技术
电动车中电池作为最重要的元件,为车辆行驶提供动力能源;因此对电池进行高效精确的热管理是非常重要。
现有电池因具有较高的能量密度,工作温度范围相对比较窄,需要对电池进行精确的温度控制。例如三元锂电池的最佳温度工作范围在20℃~30℃。温度太低影响电池电量释放和充电速度;电池温度太高,则影响电池的寿命。
发明内容
本公开的实施例提供了一种电动车的热泵系统。
本公开的实施例一方面提供了一种电动车的热泵系统,包括压缩机、电池冷却通路和室外换热通路;所述电池冷却通路和所述室外换热通路并联在所述压缩机的入口管路与所述压缩机的出口管路之间;所述压缩机的出口管路上设有第一阀体,位于所述第一阀体的上游的部分的所述压缩机的出口管路与所述电池冷却通路的下游端之间连通有电池供热通路,所述电池供热通路上设有第二阀体。
在一些实施例中,所述电池冷却通路上设有电池换热器,所述电池换热器的入口管路与所述电池换热器的出口管路之间连接有第一中间换热器;在所述电池换热器的入口管路上并位于所述第一中间换热器与所述电池换热器之间设有第一节流阀;在所述电池换热器的出口管路上并位于所述第一中间换热器的下游端设有调压阀。
在一些实施例中,所述压缩机的出口管路上设有室内散热器。
在一些实施例中,还包括室内制冷通路,所述室内制冷通路与所述电池冷却通路并联。
在一些实施例中,所述压缩机的入口管路与所述室外换热通路之间连接有第二中间换热器。
在一些实施例中,所述室外换热器通路上设有第二节流阀,所述第二节流阀并联有第三阀体。
在一些实施例中,还包括电驱动系统冷却通路和换热装置,所述换热装置换热连接在所述室外换热通路与所述电驱动系统冷却通路之间。
在一些实施例中,所述室外换热通路的上游端通过第一连接通路与所述电池散热通路的上游端连通,所述第一连接通路上设有第四阀体;所述室外换热通路的下游端通过第二连接通路与所述电池散热通路的上游端连通,所述第二连接通路上设有第五阀体;所述室外换热通路的下游端通过第三连接通路与所述电池散热通路的下游端连通,所述第三连接通路上设有第六阀体。
在一些实施例中,所述第五阀体为单向阀,所述单向阀在指向所述电池冷却通路的下游端的方向上导通。
本公开的实施例另一方面公开了一种电动车,该电动车包括如上所述的电动车的热泵系统。
当第一阀体打开、第二阀体关闭时,电池冷却通路被正向接通,电池冷却通路对电池进行制冷;当第一阀体关闭、第二阀体打开时,电池冷却通路被反向接通,电池冷却通路不发挥制冷作用,从压缩机泵出的高温高压冷媒对电池冷却通路散热,从而对电池起到加热效果。由此,本实施例的热泵系统既可以对电池进行冷却,又可以对电池进行加热,从而可以对电池进行精确的温度控制,使电池保持在较佳的温度工作范围。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例的一种电动车的热泵系统的标准制热模式示意图;
图2是本公开实施例的一种电动车的热泵系统的制热除湿模式示意图;
图3是本公开实施例的一种电动车的热泵系统的电池制冷快充模式示意图;
图4是本公开实施例的一种电动车的热泵系统的电池加热模式示意图。
其中,图中的实线表示管路接通,虚线表示管路未接通。
附图标记:
1、压缩机;2、压缩机的出口管路;3、压缩机的入口管路;4、电池冷却通路;5、室外换热通路;6、换热装置;7、室内制冷通路;8、节流部件;9、室内蒸发器;10、电池换热器;11、室内散热器;12、第一连接通路;13、第四阀体;14、第二连接通路;15、 第三连接通路;16、第一散热器;17、第二散热器;18、短接通路;19、第五阀体;20、第六阀体;21、第三阀体;22、第二节流阀;23、电驱动系统;24、电加热装置;25、第一中间换热器;26、调压阀;27、泵体;28、气液分离器;29、阀组件;30、第一节流阀;31、电驱动系统冷却通路;32、第二中间换热器;33、第一阀体;34、第二阀体。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。
如图4所示,本公开实施例提供的一种电动车的热泵系统,包括压缩机1、用于对电池形成冷却的电池冷却通路4和用于置于驾驶舱外对冷媒形成散热的室外换热通路5。压缩机的出口管路2上设有第一阀体33,位于第一阀体33的上游的部分的压缩机的出口管路2与电池冷却通路4的下游端之间连通有电池供热通路,电池供热通路上设有第二阀体34。
当第一阀体33打开、第二阀体34关闭时,电池冷却通路4被正向接通,电池冷却通路4对电池进行制冷;当第一阀体33关闭、第二阀体34打开时,电池冷却通路4被反向接通,电池冷却通路4不发挥制冷作用,从压缩机1泵出的高温高压冷媒对电池冷却通路4散热,从而对电池起到加热效果。由此,本实施例的热泵系统既可以对电池进行冷却,又可以对电池进行加热,从而可以对电池进行精确的温度控制,使电池保持在较佳的温度工作范围。
如图1所示,在一些实施例中,还包括换热装置6和用于对电机和电控装置等形成冷却的电驱动系统冷却通路31。电池冷却通路4和室外换热通路5串联或并联在压缩机的入口管路3与压缩机的出口管路2之间;室外换热通路5上设有第一散热器16,电驱动系统冷却通路31上设有第二散热器17,换热装置6换热连接在室外换热通路5与电驱动系统冷却通路31之间。
其中,室外换热通路5上设有第一散热器16,电驱动系统冷却通路31上设有第二散热器17,换热装置6换热连接在室外换热通路5与电驱动系统冷却通路31之间。这样一来,在通过第一散热器16对室外换热通路5内的冷媒进行散热时,室外换热通路5的部分热量通过换热装置6传递到电驱动系统冷却通路31上,进而再通过第二散热器17将此部 分热量散除,由此利用第一散热器16和第二散热器17的共同作用而更多的降低冷媒的温度,提高了系统的制冷能力。特别是在电池充电或快充时,由于电驱动系统23不工作产热,所以第二散热器17可发挥更高的散热效力。
在一些实施例中,电驱动系统冷却通路31为水循环通路,其上优选设置有泵体27,以加速冷却水的循环流通,提升散热效率。
在一些实施例中,换热装置6为水冷换热器,水冷换热器结构简单、运行稳定且成本低廉。
在一些实施例中,电池冷却通路4上设有电池换热器10,电池换热器10的入口管路与电池换热器10的出口管路之间连接有第一中间换热器25。通过第一中间换热器25缩小电池换热器10入口管路与出口管路之间的温差,使冷媒进入电池换热器10前提前被预冷。其中,在电池换热器10的入口管路上并位于第一中间换热器25与电池换热器10之间设有第一节流阀30;在电池换热器10的出口管路上并位于第一中间换热器25的下游端设有调压阀26。通过调压阀26对第一中间换热器25出口压力的调节,配合与电池换热器10上游第一节流阀30的节流,可以控制第一中间换热器25内部蒸汽的过热度,实现对电池冷却效力的有效控制。
在一些实施例中,压缩机的出口管路2上设有室内散热器11,室内散热器11用于将冷媒的部分热量散发到车内,形成制热。而且在制热的同时也能降低冷媒温度,有利于提高对电池的冷却效力。其中,为提升制热速度和制热效力,还可以在室内散热器11的一旁设置电加热装置24,形成辅助制热。
在进一步的实施例中,室外换热器通路上设有第二节流阀22,第二节流阀22并联有第三阀体21。在制热模式下,可关闭第三阀体21,冷媒流经第二节流阀22,此时第一散热器16充当蒸发器,吸收外界热量,从而提高系统的制热效力。
在一些实施例中,热泵系统还包括室内制冷通路7,室内制冷通路7上设有节流部件8和室内蒸发器9,室内制冷通路7与电池冷却通路4并联,用于对室内形成制冷。
在进一步的实施例中,热泵系统还包括阀组件29和连接在第二散热器17的入口管路与第二散热器17的出口管路之间的短接通路18,阀组件29用于选择性的接通室外散热器或短接通路18。当短接通路18被接通时,室外换热通路5的冷媒不流经第二散热器17而从短接通路18内流通。由于室外换热通路5中的冷媒经过第一节流阀30后温度降低,因此后续再流通经过换热装置6时,可通过换热装置6将冷量传递给电驱动系统冷却通路31,对电驱动系统23形成冷却。此时选择不接通第二散热器17,可以避免不必要的冷量损失,从而对电驱动系统23形成更好的冷却效果。
在一些实施例中,压缩机的入口管路3与室外换热通路5之间连接有第二中间换热器 32。第二中间换热器32用于在室外换热通路5与电池冷却通路4串联时,对进入电池冷却通路4的冷媒形成预冷,从而提高冷却效力。当然在室外换热通路5与电池冷却通路4并联时,第二中间换热器32也可以减小两路冷媒在汇合前的温差。
在一些实施例中,室外换热通路5的上游端通过第一连接通路12与电池冷却通路4的上游端连通,第一连接通路12上设有第四阀体13;室外换热通路5的下游端通过第二连接通路14与电池冷却通路4的上游端连通,第二连接通路14上设有第五阀体19;室外换热通路5的下游端通过第三连接通路15与电池冷却通路4的下游端连通,第三连接通路15上设有第六阀体20。当第四阀体13和第五阀体19打开、第六阀体20关闭时,电池冷却通路4与室外换热通路5并联;当第四阀体13和第五阀体19关闭、第六阀体20打开时,电池冷却通路4与室外换热通路5串联,由此实现了电池冷却通路4与室外换热通路5串、并联的切换。
其中,第五阀体19优选为单向阀,在在指向电池冷却通路4的下游端的方向导通,单向阀无需控制,结构简单。
在一些实施例中,压缩机的入口管路3上设有气液分离器28,用于分离回流压缩机1的冷媒中的液体,避免压缩机1出现液击或者干摩擦。
本公开的实施例另一方面公开了一种电动车,该电动车包括如上的电动车的热泵系统。
本电动车热泵系统至少可实现以下模式:
标准制热模式
如图1所示,该模式下,第三阀体21、第五阀体19和节流部件8关闭,阀组件29选择开启短接通路18,其余通路打开。压缩机1泵出的高温高压冷媒通过压缩机的出口管路2进入到室内散热器11,室内散热器11对应的风扇打开,将热风吹入到车室内。冷媒在流经室内散热器11后,一部分通过第一连接通路12流向电池冷却通路4,另一部分流向室外换热通路5。一方面,流向电池冷却通路4的冷媒首先流向第一中间换热器25,然后经过第一节流阀30的节流而变为低温低压状态,随后在电池换热器10中形成制冷;从电池换热器10中流出的冷媒再次穿过第一中间换热器25,并通过下游调压阀26的调节控制,避免过热蒸汽的产生,并与第一节流阀30的配合实现对电池冷却效力的控制。另一方面,流向室外换热通路5的冷媒首先经过第一节流阀30的节流而变为低温低压状态,从而通过下游的换热装置6将部分冷量传递给电驱动系统冷却通路31,对电驱动系统23形成冷却,此时利用短接通路18短接第二散热器17是为了避免冷量损失。其中,冷媒在流经换热装置6的同时自身也被加热,从而可是冷媒的系统温度升高,有益于提升制热效力,实现了电驱动系统23的余热利用。冷媒流经换热装置6后进入到第一散热器16,此时第一散热器16相当于蒸发器,吸收环境中的热量,提升冷媒的系统温度。流经第一散热器16的冷 媒在穿过第五阀体19后由第三连接通路15与电池冷却通路4中的冷媒汇合,汇合后流向压缩机的入口管路3。
制热除湿模式
如图2所示,制热除湿模式相比于标准制热模式的区别在于,分时打开了节流部件8。系统在制热运行时,为降低空气的湿度,可将节流部件8开启,使室内蒸发器9形成一个冷体,并置于室内散热器11的出风方向上,流经室内蒸发器9表面的部分空气中的水分被冷却液化,从而经过一段时间的循环后可降低空气湿度。
电池制冷快充模式
如图3所示,电池快充时会产生较大热量,因此需要更强效力的制冷,为使电池换热器10制得更低的冷量,相比于标准制热模式,室外换热通路5与电池冷却通路4采用串联的方式,即第四阀体13和第六阀体20关闭,第三阀体21开启而第一节流阀30关闭,阀组件29选择接通第二散热器17。室内散热器11和室内蒸发器9可视情况选择是否工作。相比于标准制热模式,全部冷媒被通向室外散热回路,通过换热装置6使第一散热器16和第二散热器17同时工作,对冷媒形成散热。随后冷媒通过第二连接通路14流向电池冷却通路4,由于进入电池冷却通路4的冷媒的初始温度较低,所以可以形成更强效的制冷效果。
电池加热模式
如图4所示,第一阀体33关闭,第二阀体34打开,由压缩机1泵出的冷媒通过电池供热通路被逆向通入到电池冷却通路4中,从而对电池形成加热。
由上可知,本实施例提供的一种电动车的热泵系统,整个热泵系统可在各种模式下,优化组合,实现系统最佳能效与综合余热利用。
本公开的实施例还提供了一种电动车,包括如上所述的电动车的热泵系统,由于本公开的实施例的热泵系统具备较高的电池制冷制热效力和较强的室内制热效力,因此可以使电动车更节能、舒适性更佳。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些 实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种电动车的热泵系统,其特征在于,包括压缩机(1)、电池冷却通路(4)和室外换热通路(5);所述电池冷却通路(4)和所述室外换热通路(5)并联在所述压缩机的入口管路(3)与所述压缩机的出口管路(2)之间;所述压缩机的出口管路(2)上设有第一阀体(33),位于所述第一阀体(33)的上游部分的所述压缩机的出口管路(2)与所述电池冷却通路(4)的下游端之间连通有电池供热通路,所述电池供热通路上设有第二阀体(34)。
  2. 根据权利要求1所述的电动车的热泵系统,其特征在于,所述电池冷却通路(4)上设有电池换热器(10),所述电池换热器(10)的入口管路与所述电池换热器(10)的出口管路之间连接有第一中间换热器(25);在所述电池换热器(10)的入口管路上并位于所述第一中间换热器(25)与所述电池换热器(10)之间设有第一节流阀(30);在所述电池换热器(10)的出口管路上并位于所述第一中间换热器(25)的下游端设有调压阀(26)。
  3. 根据权利要求1或2所述的电动车的热泵系统,其特征在于,所述压缩机的出口管路(2)上设有室内散热器(11)。
  4. 根据权利要求1至3中任一项所述的电动车的热泵系统,其特征在于,还包括室内制冷通路(7),所述室内制冷通路(7)与所述电池冷却通路(4)并联。
  5. 根据权利要求1至4中任一项所述的电动车的热泵系统,其特征在于,所述压缩机的入口管路(3)与所述室外换热通路(5)之间连接有第二中间换热器(32)。
  6. 根据权利要求1至5中任一项所述的电动车的热泵系统,其特征在于,所述室外换热器通路(5)上设有第二节流阀(22),所述第二节流阀(22)并联有第三阀体(21)。
  7. 根据权利要求1至6中任一项所述的电动车的热泵系统,其特征在于,还包括电驱动系统冷却通路(31)和换热装置(6),所述换热装置(6)换热连接在所述室外换热通路(5)与所述电驱动系统冷却通路(31)之间。
  8. 根据权利要求1至7中任一项所述的电动车的热泵系统,其特征在于,所述室外换热通路(5)的上游端通过第一连接通路(12)与所述电池散热通路的上游端连通,所述第一连接通路(12)上设有第四阀体(13);所述室外换热通路(5)的下游端通过第二连接通路(14)与所述电池散热通路的上游端连通,所述第二连接通路(14)上设有第五阀体(19);所述室外换热通路(5)的下游端通过第三连接通路(15)与所述电池散热通路的下游端连通,所述第三连接通路(15)上设有第六阀体(20)。
  9. 根据权利要求8所述的电动车的热泵系统,其特征在于,所述第五阀体(19)为单向阀,所述单向阀在指向所述电池冷却通路(4)的下游端的方向上导通。
  10. 一种电动车,其特征在于,包括权利要求1至9任一项所述的电动车的热泵系统。
PCT/CN2022/138431 2021-12-16 2022-12-12 电动车及其热泵系统 WO2023109768A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202123171994.8 2021-12-16
CN202123171994.8U CN217145571U (zh) 2021-12-16 2021-12-16 电动车及其热泵系统

Publications (1)

Publication Number Publication Date
WO2023109768A1 true WO2023109768A1 (zh) 2023-06-22

Family

ID=82683908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138431 WO2023109768A1 (zh) 2021-12-16 2022-12-12 电动车及其热泵系统

Country Status (2)

Country Link
CN (1) CN217145571U (zh)
WO (1) WO2023109768A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217145571U (zh) * 2021-12-16 2022-08-09 北京车和家汽车科技有限公司 电动车及其热泵系统
CN217532463U (zh) * 2021-12-16 2022-10-04 北京车和家汽车科技有限公司 电动车及其热泵系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107351627A (zh) * 2016-05-10 2017-11-17 比亚迪股份有限公司 汽车热管理系统和电动汽车
CN110758043A (zh) * 2018-07-25 2020-02-07 蔚来汽车有限公司 车用热管理系统、车用热管理方法及车辆
CN112339525A (zh) * 2020-11-10 2021-02-09 中国科学院广州能源研究所 一种电动汽车综合热管理系统
JP2021048750A (ja) * 2019-09-20 2021-03-25 株式会社ケーヒン 温度調節装置
CN113302780A (zh) * 2019-01-22 2021-08-24 三电汽车空调系统株式会社 车辆的电池温度调节装置及包括该装置的车用空调装置
CN215971023U (zh) * 2021-11-01 2022-03-08 广汽埃安新能源汽车有限公司 车辆热管理系统及车辆
CN217145571U (zh) * 2021-12-16 2022-08-09 北京车和家汽车科技有限公司 电动车及其热泵系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107351627A (zh) * 2016-05-10 2017-11-17 比亚迪股份有限公司 汽车热管理系统和电动汽车
CN110758043A (zh) * 2018-07-25 2020-02-07 蔚来汽车有限公司 车用热管理系统、车用热管理方法及车辆
CN113302780A (zh) * 2019-01-22 2021-08-24 三电汽车空调系统株式会社 车辆的电池温度调节装置及包括该装置的车用空调装置
JP2021048750A (ja) * 2019-09-20 2021-03-25 株式会社ケーヒン 温度調節装置
CN112339525A (zh) * 2020-11-10 2021-02-09 中国科学院广州能源研究所 一种电动汽车综合热管理系统
CN215971023U (zh) * 2021-11-01 2022-03-08 广汽埃安新能源汽车有限公司 车辆热管理系统及车辆
CN217145571U (zh) * 2021-12-16 2022-08-09 北京车和家汽车科技有限公司 电动车及其热泵系统

Also Published As

Publication number Publication date
CN217145571U (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
WO2023109768A1 (zh) 电动车及其热泵系统
CN110920465B (zh) 一种燃料电池组和空调联合热管理系统及其控制方法
CN110525168B (zh) 新能源汽车二次回路乘员舱及电池电机电控热管理系统
CN111251802B (zh) 车辆的热管理系统及车辆
CN108749513A (zh) 一种电动车热管理系统
WO2013135048A1 (zh) 一种热交换器及一种机柜
CN109830785B (zh) 一种新能源汽车电池冷却系统控制装置
CN111251813B (zh) 车辆的热管理系统及车辆
WO2023109767A1 (zh) 电动车及其热泵系统
CN111251809B (zh) 车辆的热管理系统及车辆
CN111251807B (zh) 整车热管理系统及具有其的车辆
CN208343853U (zh) 一种电动车热管理系统
WO2024074064A1 (zh) 一种间接式多层级余热回收的热泵空调系统及其控制方法
CN111251814A (zh) 车辆的热管理系统及车辆
US20230391160A1 (en) Thermal management system
CN112693363A (zh) 一种纯电动卡车整车热管理系统
CN111251801B (zh) 车辆的热管理系统及车辆
CN111251808B (zh) 车辆的热管理系统及车辆
KR20210070065A (ko) 차량용 히트펌프 시스템
CN116638912A (zh) 一种降低能耗的电池冷却系统及电池冷却方法
CN217235882U (zh) 变频空调系统
WO2023040160A1 (zh) 空调系统及具有其的车辆
CN111251812A (zh) 车辆的热管理系统及车辆
CN214564757U (zh) 一种纯电动卡车整车热管理系统
CN111251804B (zh) 车辆的热管理系统及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906513

Country of ref document: EP

Kind code of ref document: A1