WO2023109601A1 - 镜头驱动组件和摄像模组 - Google Patents

镜头驱动组件和摄像模组 Download PDF

Info

Publication number
WO2023109601A1
WO2023109601A1 PCT/CN2022/137085 CN2022137085W WO2023109601A1 WO 2023109601 A1 WO2023109601 A1 WO 2023109601A1 CN 2022137085 W CN2022137085 W CN 2022137085W WO 2023109601 A1 WO2023109601 A1 WO 2023109601A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
shake
chip
magnet
focus
Prior art date
Application number
PCT/CN2022/137085
Other languages
English (en)
French (fr)
Inventor
孔艳霞
鲁晓峰
赵波杰
姚立锋
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Publication of WO2023109601A1 publication Critical patent/WO2023109601A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations

Definitions

  • the invention relates to an optical imaging device, in particular to a lens driving assembly and a camera module.
  • mobile electronic devices When using mobile electronic devices to take pictures, due to the physiological tremors of a certain frequency and the shaking caused by movement in the human body under normal conditions, the picture quality will be reduced, especially for ordinary consumers who lack professional training. It is more likely to cause jitter and the jitter amplitude is larger. Therefore, mobile electronic devices are usually equipped with an anti-shake motor (ie, a driving component) to drive the movement of the optical lens to realize the anti-shake function.
  • an anti-shake motor ie, a driving component
  • the volume and weight of optical lenses are getting larger and larger, and the driving force requirements for driving components are also getting higher and higher.
  • the volume occupied by the anti-shake motor increases with the increase of the lens. And the corresponding increase.
  • the current development trend of thinner and lighter mobile electronic devices also has a great limitation on the volume of the camera module, resulting in the camera module gradually being unable to meet the configuration requirements of the electronic device.
  • the trend of optical lenses being larger and heavier, it is difficult to increase the driving force provided by the driving components accordingly.
  • the heavier the lens the shorter the stroke that the driving component can drive the optical lens to move, which affects the anti-shake capability.
  • the heavier the optical lens the slower the drive assembly can drive the optical lens to move, and the longer it takes for the optical lens to reach a predetermined compensation position, which will also affect the anti-shake effect.
  • An object of the present invention is to provide a lens driving assembly and a camera module, wherein the lens driving assembly can realize focusing and anti-shake of the camera module.
  • One object of the present invention is to provide a lens drive assembly and a camera module, wherein the lens drive assembly can drive an optical lens of the camera module to translate, and the chip drive assembly can drive a photosensitive lens of the camera module The component translates and/or rotates, thus improving the anti-shake effect of the camera module.
  • An object of the present invention is to provide a lens driving assembly and a camera module, wherein when the lens driving assembly drives the translation of the optical lens, the chip driving assembly can drive the photosensitive assembly to move and/or rotate, so The anti-shake effect of the camera module can be greatly improved.
  • An object of the present invention is to provide a lens drive assembly and a camera module, wherein the lens drive assembly and the chip drive assembly can be magnetically isolated, thus avoiding magnetic interference between the two and ensuring the reliability of the camera module and stability.
  • the present invention provides a lens driving assembly, which includes:
  • a lens focusing inner frame wherein the lens focusing inner frame is suspended on the side of the lens focusing outer frame;
  • a lens anti-shake carrier wherein the lens anti-shake carrier is suspended below the lens anti-shake inner frame
  • a lens focus drive unit wherein the lens focus drive unit includes at least one lens focus magnet and at least one lens focus coil, each of the lens focus magnets is respectively arranged on the lens focus outer frame, and each of the lens focus The coils are respectively arranged on the lens focusing inner frame, and the position of the lens focusing magnet corresponds to the position of the lens focusing coil; and
  • a lens anti-shake driving unit wherein the lens anti-shake driving unit includes at least one lens anti-shake magnet and at least one lens anti-shake coil, each of the lens anti-shake magnets is respectively arranged on the lens anti-shake carrier, each The lens anti-shake coils are respectively arranged on the lens anti-shake inner frame, and the positions of the lens anti-shake magnets correspond to the positions of the lens anti-shake coils.
  • the lens driving assembly further includes at least one lens focus magnetic attraction unit and a lens focus support unit, wherein the lens focus magnetic attraction unit is arranged on the lens focus inner frame, and the The position of the lens focus magnetic attraction unit corresponds to the position of the lens focus magnet, so that a horizontal magnetic force is generated between the two, wherein the lens focus support unit is arranged between the lens focus outer frame and the lens
  • the lens focusing inner frame is between the sides of the lens focusing inner frame, so that the lens focusing inner frame is suspended on the side of the lens focusing outer frame.
  • the height dimension of the lens focus magnet unit is greater than or equal to the height dimension of the lens focus magnet.
  • the lens focus magnetic attraction unit always cover the focus magnet on the lens.
  • the lens drive assembly further includes at least one lens focus yoke unit, wherein the lens focus yoke unit at least shields a side of the lens focus magnet away from the lens focus coil.
  • the lens focusing yoke unit further includes a yoke plate, a yoke upper arm, and a yoke lower arm, and the yoke upper arm and the yoke lower arm respectively integrally extend The upper side and the lower side of the yoke plate to form a yoke space between the yoke plate, the yoke upper arm and the yoke lower arm, wherein the lens focusing magnet is arranged on the The yoke space of the lens focus yoke unit, and the side of the lens focus yoke unit away from the lens focus coil is attached to the yoke plate, the yoke upper arm and the yoke
  • the lower arms respectively block at least a part of the upper side and the lower side of the focus magnet of the lens.
  • the magnetic isolation upper wall and the yoke lower arm of the lens focus yoke unit are attached to the upper side and the lower side of the lens focus magnet, respectively.
  • the lens driving assembly further includes at least one lens anti-shake magnetic attraction unit and a lens anti-shake support unit, wherein the lens anti-shake magnetic attraction unit is arranged on the lens anti-shake inner frame
  • the top of a lens anti-shake inner frame, and the lens anti-shake magnetic attraction unit corresponds to the lens anti-shake magnet, so that a magnetic attraction force in the height direction is generated between the two, wherein the lens anti-shake support unit is held It is arranged between the lens anti-shake carrier and the top of the lens focusing inner frame of the lens focusing inner frame, so that the lens anti-shaking carrier is suspended under the lens focusing inner frame.
  • the lens driving assembly further includes a lens focusing circuit board, wherein the lens focusing circuit board includes a mounting part and a connecting part, and the mounting part is mounted on the lens Focusing outer frame, the connection part is integrally extended to the mounting part, and the connection part is electrically connected to the lens anti-shake magnetic suction unit, and the lens anti-shake magnetic suction unit is electrically connected to the The lens focus magnetic attraction unit, the lens focus coil is electrically connected to the lens focus magnetic attraction unit.
  • the number of the lens focus coils and the number of the lens focus magnets are two respectively, and the two lens focus coils are formed by winding a conductive wire.
  • the lens driving assembly further includes a lens anti-shake circuit board, wherein each of the lens anti-shake coils is mounted on the lens anti-shake circuit board, and the lens anti-shake circuit The board is arranged on the top of the lens focusing inner frame, and the lens anti-shake circuit board is electrically connected to the lens anti-shake magnetic attraction unit.
  • the lens driving assembly further includes a lens focus sensing unit, wherein the lens focus sensing unit includes a lens focus sensing magnet and a lens focus position sensing element, and the lens focus The sensing magnet is fixed on the lens focusing inner frame, the lens focusing position sensing element is mounted on the mounting part of the lens focusing circuit board, and the position of the lens focusing sensing magnet and the Corresponds to the position of the lens focus position sensing element.
  • the lens focus sensing unit includes a lens focus sensing magnet and a lens focus position sensing element, and the lens focus The sensing magnet is fixed on the lens focusing inner frame, the lens focusing position sensing element is mounted on the mounting part of the lens focusing circuit board, and the position of the lens focusing sensing magnet and the Corresponds to the position of the lens focus position sensing element.
  • the lens driving assembly further includes a lens focus sensing unit, wherein the lens focus sensing unit includes a lens focus sensing magnet and a lens focus position sensing element, and the lens focus The sensing magnet is fixed on the lens focus outer frame, the lens focus position sensing element is attached to the lens focus magnet unit, and the position of the lens focus sensing magnet and the lens focus position sensor corresponding to the position of the components.
  • the lens focus sensing unit includes a lens focus sensing magnet and a lens focus position sensing element, and the lens focus The sensing magnet is fixed on the lens focus outer frame, the lens focus position sensing element is attached to the lens focus magnet unit, and the position of the lens focus sensing magnet and the lens focus position sensor corresponding to the position of the components.
  • the lens driving assembly further includes at least one lens anti-shake position sensing element, wherein the lens anti-shake position sensing element is mounted on the lens anti-shake circuit board, and the The lens anti-shake position sensing element and the lens anti-shake coil are respectively located on opposite sides of the lens anti-shake circuit board.
  • the lens focus support unit includes at least two lens focus tracks and at least two lens focus movable elements, wherein each lens focus track includes an inner groove track and an outer groove track respectively,
  • the inner groove track is formed on the side of the lens focusing inner frame of the lens focusing inner frame
  • the outer groove track is formed on the lens focusing outer frame
  • the groove track is corresponding and the extension direction of the two is consistent, wherein the inside and outside of the lens focus movable element are respectively movably held on the inner groove track and the outer groove track, and the lens focus movable element are balls, so that the inner and outer portions of the lens focusing movable member are rollably held in the inner grooved track and the outer grooved track, respectively.
  • the lens focusing support unit includes four lens focusing movable elements, and each of the lens focusing rails is respectively provided with two lens focusing movable elements.
  • the lens anti-shake support unit includes at least three lens anti-shake tracks and at least three lens anti-shake movable elements, wherein each of the lens anti-shake tracks includes a lower groove track and an upper concave groove track respectively.
  • the lower groove track is formed on the carrier top surface of the lens anti-shake carrier
  • the upper groove track is formed on the inner frame bottom surface of the lens focusing inner frame
  • the lower groove track and the The upper groove track is corresponding and the extension directions of the two are perpendicular to each other, wherein the bottom and the top of the lens anti-shake ball are respectively movably held on the lower groove track and the upper groove track, so that the The bottom and top of the lens anti-shake movable element are respectively rollably held on the lower groove track and the upper groove track.
  • the present invention further provides a camera module, which includes:
  • optical lens wherein the optical lens is held in the photosensitive path of the photosensitive element
  • a lens driving assembly wherein the lens driving assembly further includes:
  • a lens focusing inner frame wherein the lens focusing inner frame is suspended on the side of the lens focusing outer frame;
  • a lens anti-shake carrier wherein the lens anti-shake carrier is suspended below the lens anti-shake inner frame
  • a lens focus drive unit wherein the lens focus drive unit includes at least one lens focus magnet and at least one lens focus coil, each of the lens focus magnets is respectively arranged on the lens focus outer frame, and each of the lens focus The coils are respectively arranged on the lens focusing inner frame, and the position of the lens focusing magnet corresponds to the position of the lens focusing coil; and
  • a lens anti-shake driving unit wherein the lens anti-shake driving unit includes at least one lens anti-shake magnet and at least one lens anti-shake coil, each of the lens anti-shake magnets is respectively arranged on the lens anti-shake carrier, each The lens anti-shake coils are respectively arranged on the lens anti-shake inner frame, and the position of the lens anti-shake magnet corresponds to the position of the lens anti-shake coil, wherein the lens anti-shake carrier has a carrier channel, the optical lens is arranged on the carrier channel of the lens anti-shake carrier.
  • the lens driving assembly further includes a lens driving base and a lens driving housing, and the lens driving housing is installed on the lens driving base so that the lens driving housing An accommodating space is formed between the body and the lens driving base, wherein the lens focusing outer frame is arranged on the lens driving base, and the lens focusing outer frame, the lens focusing inner frame and the lens The lens anti-shake carriers are located in the accommodating space.
  • the camera module further includes a chip driving component, the photosensitive component is drivably arranged on the chip driving component, wherein the chip driving component is located below the lens driving component .
  • the chip driver assembly further includes:
  • At least one chip anti-shake magnetic conductive member At least one chip anti-shake magnetic conductive member
  • a chip anti-shake fixing part wherein the chip anti-shake fixing part has a receiving cavity and a top opening connected to the receiving cavity;
  • a chip anti-shake movable part wherein the chip anti-shake movable part is suspended in the receiving cavity of the chip anti-shake fixed part;
  • a chip anti-shake driving part wherein the chip anti-shake driving part includes a plurality of oppositely arranged chip anti-shake magnets and a plurality of chip anti-shake coils, and these chip anti-shake magnets are respectively arranged on the chip anti-shake fixing
  • the chip anti-shake coils are respectively arranged on the chip anti-shake movable part, wherein the chip anti-shake magnetic permeable member is covered by the anti-shake magnet.
  • the chip anti-shake magnetic member is arranged on the chip anti-shake fixing part, and the chip anti-shake magnet is arranged on the chip anti-shake magnetic member, so that the chip The anti-shake magnet is arranged on the chip anti-shake fixing part through the chip anti-shake magnetic conductive member.
  • the chip anti-shake fixing part includes a base and an upper cover, and the base and the upper cover are fastened and installed, wherein the chip magnetically permeable member is arranged on the upper cover. cover, the chip anti-shake magnet is arranged on the chip anti-shake magnetic permeable member.
  • the lens driving base is mounted on the upper cover, and at least a part of the lens driving base is made of magnetically permeable material.
  • FIG. 1A is a schematic perspective view of a camera module according to a preferred embodiment of the present invention.
  • FIG. 1B shows a cross-sectional view of the camera module.
  • Fig. 2 shows a perspective view of a lens driving assembly of the camera module.
  • 3A and 3B respectively show exploded views of the lens driving assembly of the camera module from different viewing angles.
  • FIG. 4 is an enlarged schematic diagram of a partial position of FIG. 3B .
  • Fig. 5 shows a cross-sectional view of the first position of the lens driving assembly of the camera module.
  • 6A and 6B are enlarged schematic diagrams of different positions in FIG. 5 , respectively.
  • Fig. 7 shows a cross-sectional view of the second position of the lens driving assembly of the camera module.
  • FIG. 8 is an enlarged schematic view of a position of FIG. 7 .
  • Fig. 9 shows a cross-sectional view of the third position of the lens driving assembly of the camera module.
  • FIG. 10 is an enlarged schematic view of a position of FIG. 9 .
  • Fig. 11 shows a cross-sectional view of the fourth position of the lens driving assembly of the camera module.
  • FIG. 12 is an enlarged schematic view of a position of FIG. 11 .
  • Fig. 13 shows a perspective view of a partial structure of the lens driving assembly of the camera module.
  • FIG. 14 shows a perspective view of a chip driver component of the camera module.
  • FIG. 15 shows an exploded view of the chip driver assembly of the camera module.
  • 16A and 16B respectively show cross-sectional views of different positions of the chip driver assembly of the camera module.
  • FIG. 17 shows a perspective view of a partial structure of the chip driver assembly of the camera module.
  • FIG. 18 shows a top view of a partial structure of the chip driver assembly of the camera module.
  • Fig. 19 shows a top view of a partial structure of a modified example of the chip drive assembly of the camera module.
  • the terms “vertical”, “transverse”, “upper”, “lower”, “front”, “rear”, “left”, “right”, “vertical” , “horizontal”, “top”, “bottom”, “inner”, “outer” and other indicated orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, which are only for the convenience of describing the present invention and simplifying the description, Rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, the above terms cannot be construed as limiting the present invention; in the second aspect, the term “a” should be understood as “at least one "or “one or more”, that is, in one embodiment, the number of an element can be one, while in another embodiment, the number of the element can be multiple, and the term “one” cannot be understood as a logarithmic number limits.
  • a camera module according to a preferred embodiment of the present invention will be disclosed and explained in the following description, wherein the camera module includes a Lens assembly 20, a photosensitive assembly 30 and a lens drive assembly 40, the lens assembly 20 includes an optical lens 21, the optical lens 21 is arranged on the photosensitive path of the photosensitive assembly 30, and the lens drive assembly 40 It is configured to drive the optical lens 21 to translate to realize the anti-shake of the camera module, and to drive the optical lens 21 to move along the optical axis of the camera module to realize the focus of the camera module.
  • the camera module further includes a chip drive assembly 10, wherein the photosensitive assembly 30 is drivably arranged on the chip drive assembly 10, so as to be driven by the The chip driving component 10 drives the photosensitive component 30 to move to realize the anti-shake of the camera module.
  • the chip drive assembly 10 is configured to drive the photosensitive assembly 30 to move, so the lens drive assembly 40 is configured to drive the optical lens 21 to move,
  • the anti-shake effect of the camera module is greatly improved in this way.
  • the lens drive assembly 40 includes a lens anti-shake carrier 410, a lens focusing inner frame 420 and a lens focusing outer frame 430, wherein the optical lens 21 is arranged on the lens anti-shake
  • the carrier 410, the lens anti-shake carrier 410 is drivably connected to the lens focusing inner frame 420, and the lens focusing inner frame 420 is drivably connected to the lens focusing outer frame 430, wherein the lens focusing
  • the outer frame 430 can be directly or indirectly arranged on the photosensitive assembly 30, so that the optical lens 21 can be kept on the photosensitive path of the photosensitive assembly 30 by the lens driving assembly 40, or the lens focusing outer frame 430 can It is directly or indirectly arranged on the chip drive assembly 10 , so that the lens drive assembly 40 maintains the optical lens 21 on the light-sensing path of the light-sensing assembly 30 .
  • the lens anti-shake carrier 410 can drive the optical lens 21 Movement relative to the photosensitive assembly 30 is performed in a direction perpendicular to the optical axis of the camera module to achieve anti-shake of the camera module, that is, the optical lens 21 can be translated.
  • the lens anti-shake carrier 410 can form a movable part of a lens anti-shake part 41 of the lens driving assembly 40, so that the lens anti-shake carrier 410 forms a lens anti-shake part of the lens anti-shake part 41
  • the movable unit 411 correspondingly, the lens focusing inner frame 420 can form the fixed part of the lens anti-shake part 41 of the lens driving assembly 40, so that the lens focusing inner frame 420 forms the lens anti-shake part A lens anti-shake fixing unit 412 of 41 .
  • the lens focusing inner frame 420 passes through the lens anti-shake carrier 410 drives the optical lens 21 to move in the direction of the optical axis of the camera module to achieve focusing of the camera module.
  • the lens focusing inner frame 420 can form a movable part of a lens focusing part 42 of the lens driving assembly 40 , so that the lens focusing inner frame 420 forms a lens focusing movable unit of the lens focusing part 42 421 .
  • the lens focusing outer frame 430 can form a fixed part of the lens focusing part 42 , so that the lens focusing outer frame 430 forms a lens focusing fixing unit 422 of the lens focusing part 42 .
  • the lens driving assembly 40 includes a lens anti-shake part 41 and the lens focusing part 42 .
  • the lens anti-shake part 41 includes the lens anti-shake movable unit 411 and the lens anti-shake fixed unit 412, the optical lens 21 is arranged on the lens anti-shake movable unit 411, when the lens anti-shake
  • the shake movable unit 411 is driven to move relative to the lens anti-shake fixing unit 412 in a direction perpendicular to the optical axis of the camera module, and the camera module realizes anti-shake.
  • the lens focus part 42 includes the lens focus movable unit 421 and the lens focus fixed unit 422, when the lens focus movable unit 421 is driven in the direction of the optical axis of the camera module relative to the When the lens focus fixing unit 422 moves, the camera module achieves focus.
  • the lens anti-shake movable unit 411 includes the lens anti-shake carrier 410
  • the lens anti-shake fixed unit 412 includes the lens focusing inner frame 420
  • the lens focus movable unit 421 includes the lens focus inner frame 420
  • the lens focus fixed unit 422 includes the lens focus outer frame 430, that is, the lens focus inner frame 420 also serves as the lens anti-shake part 41 and a part of the lens focusing part 42, so that the lens driving assembly 40 has a compact structure, which is beneficial to reduce the overall volume of the camera module.
  • the lens anti-shake part 41 further includes a lens anti-shake driving unit 413, wherein the lens anti-shake driving unit 413 includes at least one lens anti-shake magnet 4131 and At least one lens anti-shake coil 4132, the lens anti-shake magnet 4131 is arranged on the lens anti-shake carrier 410, the lens anti-shake coil 4132 is arranged on the lens focusing inner frame 420, and the lens anti-shake
  • the position of the magnet 4131 corresponds to the position of the lens anti-shake coil 4132, so that when the lens anti-shake coil 4132 is fed with a current to make the lens anti-shake coil 4132 generate a magnetic field, the lens anti-shake coil 4132
  • the magnetic field of the lens anti-shake magnet 4131 interacts to drive the lens anti-shake carrier 410 to drive the optical lens 21 to translate along the direction perpendicular to the optical axis of the camera module, thereby realizing the Anti-shake of the camera module.
  • the lens anti-shake carrier 410 the lens anti-shake The positions of the carriers 410 need to be changed; for the lens focusing inner frame 420, the lens focusing inner frame 420 needs to be changed only when the camera module realizes focusing, and the camera focusing inner frame 420 needs to be changed. During the anti-shake process of the module, the lens focusing inner frame 420 remains still.
  • the camera module of the present invention arranges the lens anti-shake magnet 4131 on the lens anti-shake carrier 410 and the lens anti-shake coil 4132 on the lens focusing inner frame 420, The circuit design of the camera module can be simplified and the reliability of the camera module in use can be guaranteed.
  • the lens anti-shake magnet 4131 of the lens anti-shake driving unit 413 can be arranged on the lens focusing inner frame 420, and correspondingly, the The lens anti-shake coil 4132 may be disposed on the lens anti-shake carrier 410 .
  • the lens anti-shake carrier 410 has a carrier top surface 4101, a carrier bottom surface 4102 opposite to the carrier top surface 4101, and a carrier channel 4103 extending from the carrier top surface 4101 to the carrier bottom surface 4102 , wherein the lens anti-shake carrier 410 surrounds the optical lens 21 to allow the optical lens 21 to be disposed in the carrier channel 4103 of the lens anti-shake carrier 410 .
  • the outer wall of the optical lens 21 and the inner wall of the lens anti-shake carrier 410 for forming the carrier channel 4103 are attached to fix the optical lens 21 on the lens anti-shake carrier 410 .
  • the lens focusing inner frame 420 includes a lens focusing inner frame top 4201, wherein the lens focusing inner frame top 4201 has an inner frame top surface 42011, an inner frame bottom surface 42012 relative to the inner frame top surface 42011 and a self- The top surface 42011 of the inner frame extends to an inner frame channel 42013 on the bottom surface 42012 of the inner frame.
  • the lens anti-shake carrier 410 is suspended on the lens focus in such a way that the inner frame bottom surface 42012 of the lens focus inner frame top 4201 corresponds to the carrier top surface 4101 of the lens anti-shake carrier 410
  • the bottom of the inner frame 420, and the lens anti-shake carrier 410 is driven to move relative to the top 4201 of the lens focusing inner frame.
  • the optical lens 21 is movably held on the inner frame channel 42013 of the lens focusing inner frame top 4201 so that the lens focusing inner frame top 4201 surrounds the optical lens 21 around.
  • the lens anti-shake magnet 4131 of the lens anti-shake drive unit 413 is arranged on the carrier top surface 4101 of the lens anti-shake carrier 410, and the lens anti-shake coil 4132 is arranged on the lens focusing inner frame
  • the bottom surface 42012 of the inner frame of the top 4201 is like this: on the one hand, the lens anti-shake magnet 4131 is adjacent to the lens anti-shake coil 4132 to ensure that the magnetic field generated by the lens anti-shake coil 4132 when energized and The magnetic fields of the lens anti-shake magnet 4131 can interact with each other, thereby increasing enough driving force to drive the lens anti-shake carrier 410 to drive the optical lens 21 to translate in a direction perpendicular to the optical axis of the camera module, so as to realize Anti-shake of the camera module; on the other hand, the lens anti-shake magnet 4131 and the lens anti-shake coil 4132 can be held between the lens anti-shake carrier 410 and the lens focusing inner frame top 4201 to keep the lens anti-shake magnet 4131 and the lens anti-
  • the lens anti-shake carrier 410 further has at least one anti-shake magnet groove 4104, and the anti-shake magnet groove 4104 extends from the carrier top surface 4101 to the carrier bottom surface 4102, wherein the lens anti-shake The anti-shake magnet 4131 is embedded in the anti-shake magnet groove 4104 of the lens anti-shake carrier 410 , so that the lens anti-shake magnet 4131 is set on the lens anti-shake carrier 410 . Moreover, by embedding the lens anti-shake magnet 4131 into the anti-shake magnet groove 4104 of the lens anti-shake carrier 410, the height position of the lens anti-shake magnet 4131 can be lowered, thereby helping to reduce the The height dimension of the lens driving assembly 40 .
  • the top surface of the lens anti-shake magnet 4131 can be lower than the The carrier top surface 4101 of the lens anti-shake carrier 410 , or the top surface of the lens anti-shake magnet 4131 may be flush with the carrier top surface 4101 of the lens anti-shake carrier 410 . It can be understood that, by embedding the lens anti-shake magnet 4131 into the anti-shake magnet groove 4104 of the lens anti-shake carrier 410, the top surface of the lens anti-shake magnet 4131 can be higher than the lens The carrier top surface 4101 of the anti-shake carrier 410 .
  • the lens anti-shake magnets 4131 may be directly attached to the carrier top surface 4101 of the lens anti-shake carrier 410 .
  • the lens anti-shake drive unit 413 includes four lens anti-shake magnets 4131 and four lens anti-shake coils 4132, each of the lens anti-shake magnets 4131 is respectively arranged on the lens anti-shake carrier 410
  • the top surface of the carrier 4101, each of the lens anti-shake coils 4132 is respectively arranged on the inner frame bottom surface 42012 of the lens focusing inner frame top 4201 of the lens focusing inner frame 420, and each of the lens
  • the position of the anti-shake magnet 4131 is opposite to the position of each lens anti-shake coil 4132 respectively.
  • the four lens anti-shake magnets 4131 defined in the lens anti-shake drive unit 413 are respectively a first anti-shake magnet 4131a, a second anti-shake magnet 4131b, and a third anti-shake magnet 4131c and a fourth anti-shake magnet 4131d, wherein the first anti-shake magnet 4131a, the second anti-shake magnet 4131b, the third anti-shake magnet 4131c and the fourth anti-shake magnet 4131d are respectively fixed on the The lens anti-shake carrier 410 mentioned above.
  • the four lens anti-shake coils 4132 defining the lens anti-shake drive unit 413 are respectively a first anti-shake coil 4132a, a second anti-shake coil 4132b, a third anti-shake coil 4132c and a first anti-shake coil 4132c.
  • Four anti-shake coils 4132d, wherein the first anti-shake coil 4132a, the second anti-shake coil 4132b, the third anti-shake coil 4132c and the fourth anti-shake coil 4132d are respectively fixed on the lens to focus Inner frame 420 .
  • the position of the first anti-shake magnet 4131a corresponds to the position of the first anti-shake coil 4132a
  • the position of the second anti-shake magnet 4131b corresponds to the position of the second anti-shake coil 4132b
  • the The position of the third anti-shake magnet 4131c corresponds to the position of the third anti-shake coil 4132c
  • the position of the fourth anti-shake magnet 4131d corresponds to the position of the fourth anti-shake coil 4132d, so when the When the first anti-shake coil 4132a, the second anti-shake coil 4132b, the third anti-shake coil 4132c and the fourth anti-shake coil 4132d are respectively energized to generate a magnetic field, the first anti-shake coil 4132a, The magnetic field of the second anti-shake coil 4132b, the third anti-shake coil 4132c and the fourth anti-shake coil 4132d and the first anti-shake magnet 4131a, the second anti-shake magnet 4131b, the first anti-shake magnet
  • the carrier top surface 4101 of the lens anti-shake carrier 410 is provided with four anti-shake magnet grooves 4104, which are respectively used to accommodate the first anti-shake magnet 4131a, the second anti-shake magnet The shaking magnet 4131b, the third anti-shaking magnet 4131c and the fourth anti-shaking magnet 4131d.
  • the four anti-shake magnet grooves 4104 are sequentially It is defined as a first magnet groove 4104a, a second magnet groove 4104b, a third magnet groove 4104c and a fourth magnet groove 4104d, wherein the first anti-shake magnet 4131a is housed in the The first magnet groove 4104a of the lens anti-shake carrier 410, the second anti-shake magnet 4131b is accommodated in the second magnet groove 4104b of the lens anti-shake carrier 410, the third anti-shake The magnet 4131c is accommodated in the third magnet groove 4104c of the lens anti-shake carrier 410, and the fourth anti-shake magnet 4131d is accommodated in the fourth magnet groove of the lens anti-shake carrier 410 4104d.
  • the lens anti-shake carrier 410 has a near side 41001, a far side 41002 and two sides 41003, the near side 41001 corresponds to the far side 41002, the two sides 41003 correspond, and the two sides The opposite ends of the side 41003 are respectively extended to be connected to the ends of the proximal side 41001 and the distal side 41002 .
  • the side of the lens anti-shake carrier 410 close to the lens focusing outer frame 430 is defined as the near side 41001, and correspondingly, the side of the lens anti-shake carrier 410 away from the lens focusing outer frame 430 is defined as the far side 41002 , and the other two sides of the lens anti-shake carrier 410 are defined as the sides 41003 .
  • the second magnet groove 4104b and the third magnet groove 4104c are arranged side by side on the far side 41002 of the lens anti-shake carrier 410, and the first magnet groove 4104a is arranged on the lens One side 41003 of the anti-shake carrier 410, the fourth magnet groove 4104d is arranged on the other side 41003 of the lens anti-shake carrier 410, and the first magnet groove 4104a and the The second magnet grooves 4104b are parallel to each other, so that the second anti-shake magnet 4131b and the third anti-shake magnet 4131c are arranged side by side on the far side 41002 of the lens anti-shake carrier 410, and the first An anti-shake magnet 4131a is arranged on one side 41003 of the lens anti-shake carrier 410, and the fourth anti-shake magnet 4131d is arranged on the other side 41003 of the lens anti-shake carrier 410, And the first anti-shake magnet 4131a and the fourth anti-shake magnet 4131d are parallel to each other. It can be understood that the first
  • the extension direction of the first anti-shake magnet 4131a and the extension direction of the second anti-shake magnet 4131b are perpendicular to each other, the extension direction of the third anti-shake magnet 4131c and the extension direction of the fourth anti-shake magnet 4131d
  • the extending directions are perpendicular to each other, and the first anti-shake magnet 4131a and the fourth anti-shake magnet 4131d are arranged axisymmetrically, and the second anti-shake magnet 4131b and the third anti-shake magnet 4131c are arranged axisymmetrically.
  • the size of the second anti-shake magnet 4131b and the third anti-shake magnet 4131c is smaller than the size of the first anti-shake magnet 4131a and the fourth anti-shake magnet 4131d, which is beneficial to reduce the The lateral dimension of the lens anti-shake carrier 410 is reduced, thereby reducing the lateral dimension of the lens driving assembly 420 .
  • the far side 41002 of the lens anti-shake carrier 410 may be provided with one of the anti-shake magnet grooves 4104 and one of the anti-shake magnets.
  • the lens anti-shake magnet 4131 at this time, the size of the lens anti-shake magnet 4131 arranged on the far side 41002 of the lens anti-shake carrier 410 and the size of the lens anti-shake carrier 410 arranged on the The lens anti-shake magnet 4131 on the side 41003 has the same size.
  • the lens anti-shake driving unit 413 includes three lens anti-shake magnets 4131 and three lens anti-shake coils 4132 .
  • the two sides 41003 of the lens anti-shake carrier 410 are respectively provided with a lens anti-shake magnet 4131, or the lens
  • the two sides 41003 of the anti-shake carrier 410 are provided with two lens anti-shake magnets 4131 respectively, while the far side 41002 of the lens anti-shake carrier 410 is not provided with the lens anti-shake magnets 4131.
  • the lens anti-shake part 41 further includes at least one lens anti-shake magnetic conduction unit 419, wherein the lens anti-shake magnetic conduction unit 419 is formed on the lens anti-shake by insert injection molding.
  • the position of the lens anti-shake magnetic unit 419 corresponds to the position of the lens anti-shake magnet 4131, so: on the one hand, the lens anti-shake magnet 4131 and the lens anti-shake magnetic unit 419 can be magnetically attracted to each other to increase the stability of the combination relationship between the lens anti-shake magnet 4131 and the lens anti-shake carrier 410.
  • the lens anti-shake magnetic conduction unit 419 can constrain the lens anti-shake The magnetic field of the magnet 4131.
  • the surface of the lens anti-shake magnetic conduction unit 419 may be exposed to the anti-shake magnet groove 4104 of the lens anti-shake carrier 410, so that the lens anti-shake magnet 4131 and the lens anti-shake guide The magnetic unit 419 may be in direct contact.
  • the lens anti-shake part 41 further includes a lens anti-shake circuit board 414, the lens anti-shake coil 4132 is fixed and electrically connected to the lens anti-shake circuit board 414, and the lens anti-shake circuit board 414 is fixed on The inner frame bottom surface 42012 of the lens focusing inner frame top 4201 , so the lens anti-shake coil 4132 is arranged on the lens focusing inner frame 420 through the lens anti-shake circuit board 414 .
  • the camera module supplies power to the lens anti-shake coil 4132 through the lens anti-shake circuit board 414 to generate a magnetic field, so that the magnetic field of the lens anti-shake coil 4132 and the magnetic field of the lens anti-shake magnet 4131 interact with each other. function to drive the lens anti-shake carrier 410 to translate, so as to realize the anti-shake of the camera module.
  • the lens anti-shake circuit board 414 is in the shape of a " ⁇ ", which is fixed on the inner frame bottom surface 42012 of the lens focusing inner frame top 4201 , and surround the inner frame channel 42013 on the top 4201 of the lens focusing inner frame, wherein the first anti-shake coil 4132a, the second anti-shake coil 4132b, the third anti-shake coil 4132c and the The fourth anti-shake coils 4132d are all fixed to the inner frame bottom surface 42012 of the lens focusing inner frame top 4201 of the lens focusing inner frame 420 through the lens anti-shaking circuit board 414 .
  • the first anti-shake coil 4132a, the second anti-shake coil 4132b, the third anti-shake coil 4132c and the fourth anti-shake coil 4132d are mounted on the lens anti-shake circuit board 414 respectively.
  • the lens anti-shake circuit board 414 is fixed on the inner frame bottom 42012 of the lens focusing inner frame top 4201 of the lens focusing inner frame 420, so that the first anti-shake coil 4132a, the second The anti-shake coil 4132b, the third anti-shake coil 4132c and the fourth anti-shake coil 4132d are fixed on the top of the lens focusing inner frame 420 through the lens anti-shaking circuit board 414
  • the lens anti-shake circuit board 414 is a flexible circuit board (FPC), so the lens anti-shake circuit board 414 has a thinner thickness, which is beneficial to reduce the overall height of the lens driving assembly 40 .
  • FPC flexible circuit board
  • the lens anti-shake part 41 further includes at least one lens anti-shake position sensing element 415, the lens anti-shake position sensing element 415 is mounted on the lens anti-shake circuit board 414, and the lens anti-shake position
  • the position of the sensing element 415 corresponds to the position of the lens anti-shake magnet 4131, so that the lens anti-shake position sensing element 415 senses the lens anti-shake position by sensing the position of the lens anti-shake magnet 4131.
  • the shaking body 410 drives the translation direction and distance of the optical lens 21 .
  • the type of the lens anti-shake position sensing element 415 is not limited in the camera module of the present invention.
  • the lens anti-shake position sensing element 415 may be, but not limited to, a Hall element.
  • the lens anti-shake position sensing element 415 and the lens anti-shake coil 4132 are respectively located on opposite sides of the lens anti-shake circuit board 414, wherein the top 4201 of the lens focusing inner frame further has at least one sensor
  • the sensing element receiving cavity 42014 is used for accommodating the lens anti-shake position sensing element 415. More preferably, the sensing element accommodating cavity 42014 of the top 4201 of the lens focusing inner frame is a perforation.
  • the camera module makes the The lens anti-shake coil 4132 does not need to consider how to arrange the lens anti-shake position sensing element 415 during design, so that the setting of the lens anti-shake position sensing element 415 does not need to occupy the size of the length and width direction, so as to facilitate The length and width dimensions of the camera module are reduced.
  • the top 4201 of the lens focusing inner frame is provided with the sensing element accommodating cavity 42014 for accommodating the lens anti-shake position sensing element 415, so that the setting of the lens anti-shake position sensing element 415 does not need Occupies the dimension in the height direction.
  • the lens focusing inner frame top 4201 has two sensing element accommodation cavities 42014, one of the sensing element accommodation cavities 42014 corresponds to The far side 41002 of the lens anti-shake carrier 410, so that the lens anti-shake position sensing element 415 held in the sensing element receiving cavity 42014 corresponds to the second anti-shake coil 4132b or The third anti-shake coil 4132c' is used to sense the position change of the second anti-shake magnet 4131b or the third anti-shake magnet 4131c, and correspondingly, the other sensing element accommodation cavity 42014 corresponds to on one side 41003 of the lens anti-shake carrier 410, so that the lens anti-shake position sensing element 415 held in the sensing element accommodating cavity 42014 corresponds to the first anti-shake coil 4132a or the fourth anti-shake coil 4132d, for sensing the position change of the first anti-shake magnet 4131a or the fourth anti-shake magnet 4131d, so as to obtain the position of the lens anti
  • the lens anti-shake part 41 further includes at least one lens anti-shake magnetic attraction unit 416 and a lens anti-shake support unit 417 .
  • the lens anti-shake magnetic attraction unit 416 is arranged on the top 4201 of the lens focus inner frame 420, and the lens anti-shake magnet 4131 of the lens anti-shake drive unit 413 corresponds to the The lens anti-shake magnetic attraction unit 416, so that the lens anti-shake magnetic attraction unit 416 and the lens anti-shake magnet 4131 attract each other due to magnetic force, so that the lens anti-shake carrier 410 and the lens focus on the inner frame 420
  • the lens focus inner frame top 4201 has a tendency to be close to each other.
  • the lens anti-shake support unit 417 is arranged between the carrier top surface 4101 of the lens anti-shake carrier 410 and the inner frame bottom surface 42012 of the lens focusing inner frame top 4201 to prevent the lens anti-shake
  • the shaking body 410 and the top 4201 of the lens focusing inner frame of the lens focusing inner frame 420 are attached to each other.
  • the lens anti-shake carrier 410 is suspended in the accommodation cavity 4203 of the lens focusing inner frame 420 .
  • the lens anti-shake magnetic unit 416 surrounds the inner frame channel 42013 on the top 4201 of the lens focusing inner frame, and the first anti-shake magnet 4131a , the second anti-shake magnet 4131b, the third anti-shake magnet 4131c and the fourth anti-shake magnet 4131d respectively correspond to different positions of the lens anti-shake magnetic attraction unit 416, so that in the lens anti-shake When the carrier 410 is driven to translate relative to the lens focusing inner frame 420 , the lens anti-shake carrier 410 can be prevented from being deflected.
  • the lens anti-shake magnetic unit 416 is wrapped inside the top 4201 of the lens focusing inner frame 420 of the lens focusing inner frame.
  • the lens focusing inner frame top 4201 of the lens focusing inner frame 420 may be allowed to wrap the lens anti-shake magnetic attraction unit 416 through injection molding.
  • the lens anti-shake supporting unit 417 includes at least three lens anti-shake rails 4171 and at least three lens anti-shake movable components 4173 .
  • Each of the lens anti-shake tracks 4171 includes a lower groove track 41711 and an upper groove track 41712, wherein the lower groove track 41711 is formed on the carrier top surface 4101 of the lens anti-shake carrier 410, so
  • the upper groove track 41712 is formed on the inner frame bottom surface 42012 of the lens focusing inner frame top 4201 of the lens focusing inner frame 420, the position of the lower groove track 41711 and the position of the upper groove track 41712
  • the positions are corresponding, and the extension direction of the lower groove track 41711 and the extension direction of the upper groove track 41712 are perpendicular to each other, forming a "cross" shape.
  • the bottom and the top of the lens anti-shake movable element 4173 are respectively accommodated in the lower groove track 41711 and the upper groove track 41712 of the lens anti-shake track 4171, and are allowed to move along the concave groove respectively.
  • the groove track 41711 and the upper groove track 41712 are movable, so that the lens anti-shake movable element 4173 is movably held between the lens anti-shake carrier 410 and the lens focusing inner frame top 4201 to prevent all
  • the lens anti-shake carrier 410 and the top 4201 of the lens focusing inner frame 420 are attached to each other, so that the lens anti-shake carrier 410 is suspended on the bottom of the lens focusing inner frame 420 .
  • the lens anti-shake movable element 4173 may be a ball, so that the lens anti-shake movable element 4173 is allowed to move along the lower groove track 41711 and The upper groove track 41712 rolls, so that the lens anti-shake movable element 4173 is rotatably held between the lens anti-shake carrier 410 and the lens focusing inner frame top 4201 to prevent the lens anti-shake
  • the carrier 410 and the top 4201 of the lens focusing inner frame 420 are attached to each other, so as to suspend the lens anti-shake carrier 410 in the accommodation cavity 4203 of the lens focusing inner frame 420 .
  • the lens anti-shake movable element 4173 may be a slider, so that the lens anti-shake movable element 4173 is allowed to track along the lower groove 41711 and the upper groove track 41712 slide, so that the lens anti-shake movable element 4173 is slidably held between the lens anti-shake carrier 410 and the lens focusing inner frame top 4201 to stop the lens
  • the anti-shake carrier 410 and the top 4201 of the lens focusing inner frame 420 are attached to each other, so that the lens anti-shake carrier 410 is suspended on the bottom of the lens focusing inner frame 420 .
  • the diameters of the lens anti-shake movable elements 4173 of the lens anti-shake support unit 417 are the same, so that the lens anti-shake can be ensured Shake the flatness of the carrier top surface 4101 of the carrier 410 and the inner frame bottom surface 42012 of the lens focusing inner frame top 4201 .
  • the lens anti-shake support unit 417 includes four lens anti-shake rails 4171 and four lens anti-shake movable elements 4173, four of which are
  • the lower groove tracks 41711 of the lens anti-shake track 4171 are respectively formed at the four corners of the lens anti-shake carrier 410, and the upper groove tracks 41712 of the four lens anti-shake tracks 4171 are respectively formed on the four corners of the lens anti-shake carrier 410.
  • the lens focuses on the four corners of the inner frame top 4201, so the four lens anti-shake movable elements 4173 are respectively held on the lens anti-shake carrier 410 and the four corners of the lens anti-shake carrier 410 The lens is focused between the top 4201 of the inner frame.
  • these lens anti-shake movable elements 4173 can surround the periphery of the optical lens 21 at intervals, so that: on the one hand, the lens anti-shake drive unit 413 can smoothly drive the lens anti-shake carrier 410 to drive the The optical lens 21 performs a translational movement relative to the lens focusing inner frame 420. On the other hand, during the movement of the optical lens 21 driven by the lens anti-shake carrier 410, the lens anti-shake carrier 410 can be prevented from And the optical lens 21 is tilted.
  • the lens focusing inner frame 420 includes a lens focusing inner frame peripheral portion 4202, and the lens focusing inner frame peripheral portion 4202 further includes a lens focusing inner frame side portion 42023, and the lens focusing inner frame peripheral portion 4202.
  • the inner frame side part 42023 integrally extends downwards from the lens focusing inner frame top 4201
  • the lens focusing outer frame 430 is disposed adjacent to the lens focusing inner frame side part 42023 of the lens focusing inner frame 420 .
  • the lens focus part 42 further includes a lens focus drive unit 423, the lens focus drive unit 423 includes at least one lens focus magnet 4231 and at least one lens focus coil 4232, and each of the lens focus magnets 4231 is respectively arranged on the The lens focusing outer frame 430, each of the lens focusing coils 4232 is respectively arranged on the side part 42023 of the lens focusing inner frame 420 of the lens focusing inner frame 420, and the position of the lens focusing magnet 4231 and the lens
  • the positions of the focusing coils 4232 are corresponding, so that when each of the lens focusing coils 4232 is fed with a current to make each of the lens focusing coils 4232 generate a magnetic field, the magnetic field of each of the lens focusing coils 4232 and each of the lens focusing coils 4232
  • the magnetic field of the lens focus magnet 4231 interacts to drive the lens focus inner frame 420 to drive the lens anti-shake carrier 410 and the optical lens 21 to move along the optical axis of the camera module, thereby realizing
  • each of the lens focus magnets 4231 of the lens focus drive unit 423 may be set on the lens focus of the lens focus inner frame 420 The side part of the inner frame 42023 , and each of the lens focusing coils 4232 can be arranged on the lens focusing outer frame 430 .
  • the number of the lens focus magnet 4231 and the lens focus coil 4232 of the lens focus drive unit 423 are both two, of which two The lens focus magnets 4231 are respectively fixedly arranged on the two ends of the lens focus outer frame 430, and correspondingly, the two lens focus coils 4232 are respectively fixed on the same side part 42023 of the lens focus inner frame. The two ends on the side, so that the two lens focusing coils 4232 correspond to the two lens focusing magnets 4231 respectively.
  • the lens focusing outer frame 430 has an outer frame 4301, an outer frame inner 4302 relative to the outer frame 4301, and two focusing magnet grooves 4305, and the two focusing magnet grooves 4305 are in the shape of Axisymmetric, and the two focusing magnet grooves 4305 extend from the inner side of the outer frame 4302 to the outer side 4301 of the outer frame at opposite ends of the lens focusing outer frame 430, wherein each of the lens focusing The magnets 4231 are respectively embedded in the focusing magnet grooves 4305 of the lens focusing outer frame 430 , so that each of the lens focusing magnets 4231 is respectively and fixedly arranged on the lens focusing outer frame 430 . Moreover, by embedding each of the lens focus magnets 4231 into the focus magnet grooves 4305 of the lens focus outer frame 430 , the length and width of the lens driving assembly 40 can be reduced.
  • the lens focus magnets 4231 can protrude from the lens focus
  • the outer frame inner side 4302 of the outer frame 430, or the lens focus magnet 4231 can be flush with the outer frame inner side 4302 of the lens focus outer frame 430, or the lens focus magnet 4231 can be recessed in the outer frame.
  • the lens focuses on the inner side 4302 of the outer frame 430.
  • each of the lens focusing magnets 4231 may be directly attached to the surface of the outer frame inner side 4302 of the lens focusing outer frame 430 .
  • the lens focusing part 42 includes a lens focusing circuit board 424, and the lens focusing circuit board 424 further includes a mounting part 4241 and a connecting part 4242 integrally extending from the mounting part 4241, and the mounting part 4241 is mounted on the outer frame 4301 of the lens focusing outer frame 430, the connecting part 4242 is electrically connected to the lens anti-shake magnetic unit 416, each of the lens focusing coils 4232 is electrically connected to the lens anti-shake magnetic attraction unit 416, so that the current can be provided to the Each of the lens focus coils 4232 .
  • the two lens focusing coils 4232 are connected in series so as to be electrically connected to the lens focusing circuit board 424 through the lens anti-shake magnetic unit 416 . More preferably, the two lens focusing coils 4232 can be formed by winding one conductive wire, so that the two lens focusing coils 4232 are connected in series.
  • the lens focus part 42 further includes at least one lens focus magnetic attraction unit 426, the lens focus magnetic attraction unit 426 is arranged on the lens focus inner frame side part 42023 of the lens focus inner frame 420, and the lens
  • Each of the lens focus magnets 4231 of the focus drive unit 423 corresponds to the lens focus magnetic attraction unit 426 respectively, so that the lens focus magnetic attraction unit 426 and the lens focus magnet 4231 attract each other due to magnetic attraction, so that all The lens focusing inner frame side part 42023 of the lens focusing inner frame 420 and the lens focusing outer frame 430 tend to be close to each other.
  • the lens focus magnetic attraction unit 426 is partly or completely wrapped inside the lens focus inner frame side part 42023 of the lens focus inner frame 420, wherein the lens focus coil 4232 is located on the lens focus magnet 4231 and the lens focusing magnet unit 426.
  • the side part 42023 of the lens focusing inner frame 420 of the lens focusing inner frame 420 may be allowed to wrap part or all of the lens focusing magnetic attraction unit 426 by means of insert injection molding.
  • the lens focus magnetic attraction unit 426 is completely wrapped in the lens focus of the lens focus inner frame 420 of the lens focus inner frame 420 Inside the frame side part 4203 , at this time, the lens focusing coil 4232 is mounted on the surface of the lens focusing inner frame side part 4203 .
  • the lens focusing magnetic attraction unit 426 is partly wrapped in the lens focusing inner frame of the lens focusing inner frame 420
  • the inside of the side part 4203, so that the surface of the lens focus magnetic attraction unit 426 is exposed, and the lens focus coil 4232 is attached to the surface of the lens focus inner frame side part 4203 and is connected with the lens focus magnetic attraction unit 426 is electrically connected, for example, the end of the lens focusing coil 4232 is electrically connected to the surface of the lens focusing magnetic attraction unit 426 by welding.
  • the lens focusing circuit board 424 is a flexible circuit board (FPC), which is beneficial to reduce the length and width of the lens driving assembly 40 .
  • FPC flexible circuit board
  • connection part 4242 of the lens focus circuit board 424 is bent and extended, and the lens focus circuit board 424 is a flexible circuit board (FPC), and the connection part 4242 of the lens focus circuit board 424 and the lens
  • the anti-shake magnetic unit 416 is electrically connected to the side of the lens focusing inner frame 420 away from the lens focusing outer frame 430, so that the length of the connecting portion 4242 can be increased, and correspondingly, the connecting portion 4242
  • the deformation range can be increased, so that the lens focus drive unit 423 can smoothly drive the lens focus inner frame 420 to drive the lens anti-shake carrier 410 and the optical lens 21 along the optical axis of the camera module direction to move.
  • the lens focus inner frame 420 can Drive the connecting part 4242 of the lens focusing circuit board 424 to deform, by allowing the connecting part 4242 to bend and extend, and allowing the connecting part 4242 and the lens anti-shake magnetic suction unit 416 to be in the inner frame of the lens focusing 420 is electrically connected to the side of the lens focusing outer frame 430, on the one hand, can reduce the impact of the lens focusing circuit board 424 on the movement range of the lens focusing inner frame 420, on the other hand, can Reduce the impact on the circuit design and reliability of the lens focusing circuit board 424 .
  • the connecting portion 4242 of the lens focusing circuit board 424 is distributed along the four sides of the inner frame top surface 42011 of the lens focusing inner frame 420 , and surrounds the lens focusing inner frame 420 in a circular manner. Inner frame channel 42013 distribution.
  • the connecting part 4242 of the lens focusing circuit board 424 includes a movable electrical connecting part 42421 and four deformable electrical connecting parts 42422, and the movable electrical connecting part 42421 is fixed on the lens focusing inner frame 420 and are electrically connected to the lens anti-shake magnetic attraction unit 416, and the four deformed electrical connection parts 42422 are electrically connected to the mounting part 4241 and the movable electrical connection part 42421.
  • the four deformed electrical connection parts 42422 can reduce the size of the lens
  • the focusing circuit board 424 hinders the movement of the lens focusing inner frame 420 , so that the lens focusing inner frame 420 can be driven smoothly.
  • the four deformed electrical connection parts 42422 are sequentially defined as a first connection part 42422a, a second connection part 42422b, a third connection part 42422c and a fourth connection part 42422d, wherein the first connection part 42422a and the third connecting part 42422c are arranged axisymmetrically, and the second connecting part 42422b and the fourth connecting part 42422d are arranged axisymmetrically, wherein the first connecting part 42422a and the second The connecting part 42422b is connected and used to conduct the mounting part 4241 and the movable electrical connecting part 42421.
  • the third connecting part 42422c is connected to the fourth connecting part 42422d and used for conducting through the mounting part 4241 and the movable electrical connection part 42421.
  • the quantity of described lens focusing magnetic suction unit 426 is two, and wherein one described lens focusing coil 4232 is electrically connected to one described lens focusing magnetic suction unit 426, and the other described lens focusing coil 4232 is connected It is electrically connected to another lens focus magnetic attraction unit 426 .
  • the lens anti-shake magnetic attraction unit 416 includes a first conductive magnetic attraction element 4162 and a second conductive magnetic attraction element 4163, wherein the first conductive magnetic attraction element 4162 is integrally formed from one lens focus magnetic attraction unit 426
  • the movable electrical connection part 42421 extending to the connection part 4242 of the lens focusing circuit board 424 allows one of the lens focusing coils 4232 to pass through the lens focusing magnetic attraction unit 426, the first guide
  • the electromagnetic attraction element 4162 is electrically connected to the lens focusing circuit board 424, and the different positions of the first conductive magnetic attraction element 4162 correspond to the first anti-shake magnet 4131a and the second anti-shake magnet 4131b respectively,
  • the second conductive magnetic attraction element 4163 integrally extends from the other lens focus magnetic attraction unit 426 to the movable electrical connection part 42421 of the connection part 4242 of the lens focus circuit board 424, so as to allow
  • the other lens focus coil 4232 is electrically connected to the lens focus circuit board 424 through the lens focus magnetic attraction
  • the lens anti-shake magnetic attraction unit 416 further includes a pair of first conductors 4164 and a pair of second conductors 4165, wherein opposite ends of the pair of first conductors 4164 are electrically connected respectively.
  • the movable electrical connection part 42421 connected to the connection part 4242 of the lens focusing circuit board 424 and the lens anti-shake circuit board 414, and the different positions of the pair of first conductors 4164 correspond to
  • the first anti-shake magnet 4131a and the second anti-shake magnet 4131b, the opposite ends of a pair of second conductors 4165 are respectively electrically connected to the connecting portion 4242 of the lens focusing circuit board 424
  • the movable electrical connection part 42421 and the lens anti-shake circuit board 414, and the different positions of the pair of second conductors 4165 respectively correspond to the third anti-shake magnet 4131c and the fourth anti-shake magnet 4131d, in this way, the lens anti-shake circuit board 414 and the lens focus circuit board 424 are electrically connected through the lens anti-shake magnetic attraction unit 416 .
  • the lens focus part 42 further includes a lens focus sensing unit 425, wherein the lens focus sensing unit 425 includes a lens focus sensing magnet 4251 and a lens focus position sensing element 4252, and the lens focus sensing magnet 4251 is fixed on the lens focusing inner frame side part 42023 of the lens focusing inner frame 420, and the lens focusing position sensing element 4252 is fixed and electrically connected to the mount of the lens focusing circuit board 424 part 4241, and the lens focusing position sensing element 4252 corresponds to the lens focusing sensing magnet 4251.
  • the lens focus position sensing element 4252 is adapted to acquire the position of the lens focus inner frame 420 by sensing the position change of the lens focus sensing magnet 4251 .
  • the type of the lens focusing position sensing element 4252 is not limited in the camera module of the present invention.
  • the lens focus position sensing element 4252 may be a Hall element.
  • the lens focus position sensing element 4252 may be a focus drive chip, which is adapted to control the current of the lens focus coil 4232 while acquiring the position change of the lens focus sensing magnet 4251 .
  • the lens focus sensing magnet 4251 can be arranged on the lens focus outer frame 430, and the lens focus position sensing element 4252 can be It is electrically connected to the lens focus magnetic attraction unit 426 .
  • the lens focusing inner frame peripheral part 4202 of the lens focusing inner frame 420 further has a sensing magnet groove 42025, which is formed in the middle part of the lens focusing inner frame side part 42023, and between the two Between the lens focusing coil 4232 , the lens focusing sensing magnet 4251 is embedded in the sensing magnet groove 42025 of the lens focusing inner frame 420 .
  • the lens focus outer frame 430 has a sensing element through hole 4304, which extends from the outer frame 4301 to the outer frame inner 4302 in the middle of the lens focus outer frame 430, and the lens focus position sensor
  • the element 4252 is attached to the mounting portion 4241 of the lens focusing circuit board 424, and the lens focusing position sensing element 4252 is held in the sensing element through hole 4304 of the lens focusing outer frame 430 .
  • the lens focus part 42 further includes a lens focus support unit 427, the lens focus support unit 427 is arranged on the lens focus inner frame side part 42023 of the lens focus inner frame 420 and the lens focus outer frame 430 Between, to prevent the lens focusing inner frame side part 42023 of the lens focusing inner frame 420 and the lens focusing outer frame 430 from adhering to each other.
  • the lens focusing inner frame 420 is suspended from the side of the lens focusing outer frame 430 .
  • the lens focusing support unit 427 includes at least two lens focusing rails 4271 and at least three lens focusing movable components 4273 .
  • Each of the lens focus tracks 4271 includes an inner groove track 42711 and an outer groove track 42712
  • the inner groove track 42711 is formed on the side part 42023 of the lens focus inner frame, and is located on the lens focus magnet 4231
  • the outer groove track 42712 is formed on the outer frame inner side 4302 of the lens focusing outer frame 430, and is located outside the lens focusing coil 4232
  • the inner groove track 42711 and the The outer groove tracks 42712 respectively extend along the height direction of the camera module, forming a " ⁇ " shape, that is, the inner groove tracks 42711 and the outer groove tracks 42712 extend along the Z-axis direction respectively.
  • the inside and the outside of the lens focus movable element 4273 are accommodated in the inner groove track 42711 and the outer groove track 42712 of the lens focus track 4271 respectively, so that the lens focus movable element 4273 is movably Keep between the lens focusing inner frame side 42023 and the lens focusing outer frame 430, to prevent the lens focusing inner frame side 42023 of the lens focusing inner frame 420 and the lens focusing outer frame 430 from interacting Fitting, so as to suspend the lens focusing inner frame 420 on the side of the lens focusing outer frame 430 .
  • the lens focusing inner frame 420 is allowed to extend along the camera module The height direction moves relative to the lens focusing frame 430 .
  • the lens focusing movable element 4273 is a ball, so that the lens focusing movable element 4273 is rotatably held on the side of the lens focusing inner frame 42023 and the lens focusing outer frame 430, so as to prevent the lens focusing inner frame side part 42023 of the lens focusing inner frame 420 from adhering to the lens focusing outer frame 430, thereby suspending the lens focusing
  • the inner frame 420 is on the side of the lens focusing outer frame 430 .
  • the lens focus movable element 4273 is a slider, so that the lens focus movable element 4273 is slidably held in the lens focus between the frame side 42023 and the lens focusing outer frame 430, so as to prevent the lens focusing inner frame side 42023 of the lens focusing inner frame 420 from adhering to the lens focusing outer frame 430, thereby suspending the The lens focusing inner frame 420 is on the side of the lens focusing outer frame 430 .
  • the lens focus support unit 427 includes two lens focus rails 4271 and four lens focus movable elements 4273 implemented as balls, wherein the two lens focus rails 4271 are arranged axially symmetrically, each Two of the lens focus moving elements 4273 are accommodated in each of the lens focus rails 4271, which is beneficial to ensure that the lens focus drive unit 423 smoothly drives the lens focus inner frame 420 along the camera module.
  • the height direction makes a movement relative to the lens focusing frame 430 .
  • the diameters of the lens focusing movable elements 4273 implemented as balls of the lens focusing support unit 427 are the same, so as to ensure that the lens focusing inner frame side part 42023 of the lens focusing inner frame 420 and the The flatness of the inner side 4302 of the outer frame 430 of the lens focusing outer frame 430.
  • the lens focusing track 4271 includes at least one partition 42713, and the partition 42713 is arranged in the middle of the inner groove track 42711 to separate the two lens focusing movable components 4273, thereby reducing the
  • the interference between the two lens focusing movable elements 4273 arranged on the same lens focusing track 4271 ensures the reliability and stability of the lens driving assembly 40 .
  • the partition 42713 can be arranged in the middle of the outer groove track 42712, so as to separate the two lens focusing movable components 4273.
  • the middle part of the inner groove track 42711 and the outer groove track 42712 of the lens focus track 4271 are respectively provided with one partition 42713 for separating the two lens focus activities. Element 4273.
  • the lens focusing movable element 4273 may be bonded or welded to the inner groove track 42711 of the lens focusing track 4271, or, the The lens focusing movable element 4273 can be bonded or welded to the outer groove track 42712 of the lens focusing track 4271 .
  • the size of the lens focus movable element 4273 of the lens focus support unit 427 may be smaller than or equal to the lens anti-shake support unit 417.
  • the size of the shaking movable element 4173 it can be understood that reducing the lens focusing movable element 4273 can reduce the size of the lens focusing track 4271, thereby reducing the length and width of the lens driving assembly 40 ( That is, the horizontal dimension).
  • the diameter of the lens focus movable element 4273 of the lens focus support unit 427 is 0.7mm
  • the anti-shake movable element 4173 has a diameter of 0.8mm.
  • the size of the lens focusing movable element 4273 of the lens focusing support unit 427 may be larger than the lens anti-shake moving element of the lens anti-shake supporting unit 417
  • the size of 4173 is beneficial to reduce the height dimension (that is, the longitudinal dimension) of the lens driving assembly 40 by reducing the lens anti-shake movable element 4173 .
  • the height position of the lens anti-shake movable element 4173 of the lens anti-shake support unit 417 is between the two lens focus movable elements of the lens focus support unit 427 located on the same lens focus track 4271 Between 4273, in this way, the height of the lens anti-shake carrier 410 can be lowered, which is beneficial to reduce the height of the lens driving assembly 40 .
  • the height dimension of the lens focus magnet unit 426 is greater than or equal to the height dimension of the lens focus magnet 4231, so that the camera module performs autofocus to make the lens focus on the inner frame
  • the camera module performs autofocus to make the lens focus on the inner frame
  • it avoids oblique pulling force between the lens focus magnet unit 426 and the lens focus magnet 4231 due to the small height direction of the lens focus magnet unit 426 .
  • the component of the oblique pulling force in the height direction is compatible with the lens focusing magnet.
  • the lens focus magnet unit 426 By making the height of the lens focus magnet unit 426 greater than or equal to the height of the lens focus magnet 4231, the lens focus magnet 4231 and the lens focus coil 4232 can cooperate with each other to drive smoothly
  • the lens focusing inner frame 420 moves relative to the lens focusing outer frame 430 in the height direction to realize the focusing of the camera module.
  • the lens focus magnet unit 426 always covers the lens focus magnet 4231 in the height direction, that is, the lower side of the lens focus magnet 4231 is always higher than the lens focus magnet 4231.
  • the lower side of the lens focus magnet unit 426 and the upper side of the lens focus magnet 4231 are always lower than the upper side of the lens focus magnet unit 426, so that the lens focus magnet 4231 and the lens focus magnet unit
  • the magnetic attraction force of 426 in the height direction is further reduced to reduce the impact on the movement of the lens focusing inner frame 420 in the height direction.
  • the lens focus fixing unit 422 further includes a lens driving base 440 and a lens driving housing 450, the lens driving base 440 has a base channel 441, and the lens driving housing 450 has a housing channel 451 , wherein the lens drive housing 450 is mounted on the lens drive base 440 to form an accommodating space 460 between the lens drive housing 450 and the lens drive base 440, the lens drive
  • the base channel 441 of the base 440 corresponds to the housing channel 451 of the lens driving housing 450 and communicates with the accommodating space 460 respectively.
  • the lens focusing outer frame 430 is fixed to the lens driving base 440 by bonding or integral injection molding, and is located in the accommodating space 460, wherein the carrier channel 4103 of the lens anti-shake carrier 410
  • the two openings correspond to the base channel 441 of the lens driving base 440 and the housing channel 451 of the lens driving housing 450 respectively, so that the light exit side and the light incident side of the optical lens 21
  • the sides can respectively correspond to the base channel 441 of the lens driving base 440 and the housing channel 451 of the lens driving housing 450 .
  • the lens driving base 440 is made of a magnetically permeable material, so that the lens driving base 440 can reduce the magnetic field overflowing from the lens anti-shake magnet 4131 to the direction of the photosensitive assembly 30, thereby reducing the magnetic field
  • the lens driving base 440 may be made of materials with magnetic properties such as iron and magnetically conductive stainless steel.
  • the lens driving base 440 can be a plastic part, and a magnetically conductive part is buried inside it, and the position of the magnetically conductive part corresponds to the position of the lens anti-shake magnet 4131, so as to reduce the lens anti-shake
  • the material for preparing the magnetically conductive part can be iron, magnetically conductive stainless steel materials with magnetic properties.
  • the lens focus drive unit 423 can make the lens focus magnet
  • the magnetic attraction generated between 4231 and the lens drive base 440 or the chip drive assembly 10 has little influence on the lens focusing function, and it is not necessary to set the position of the lens focus magnet 4231 higher to cause the lens to drive
  • the height of the component 40 is too high, which is beneficial to reduce the height dimension of the camera module.
  • the lens driving assembly 40 fixes the position of the lens focusing magnet 4231 and makes the position of the lens focusing coil 4232 move along the height direction with the lens focusing inner frame 420 In this way, it can reduce the influence of the magnetic attraction force generated between the lens focusing magnet 4231 and the lens driving base 440 or the chip driving assembly 10 on the movement of the lens focusing inner frame 420, thereby reducing the impact on the The influence of the focusing process of the lens driving assembly 40.
  • the lens driving housing 450 is made of non-magnetic stainless steel, so that the lens driving housing 450 has higher strength and thinner size to achieve better protection.
  • the lens drive housing 450 is made of a non-magnetic stainless steel material.
  • the lens drive housing 450 can provide metal shielding for the lens anti-shake magnet 4131 and the lens focus magnet 4231 .
  • one side of the lens driving housing 450 has a housing notch 452, and the lens focus magnetic attraction unit 426 can be accommodated in the housing notch 452 of the lens driving housing 450, so that It is beneficial to reduce the length and width dimensions (ie, lateral dimensions) of the lens driving assembly 40 .
  • the lens anti-shake part 41 further includes a plurality of lens anti-shake and anti-collision units 418, which are arranged on the outer wall of the lens anti-shake carrier 410 and the bottom surface of the carrier 4102 to cooperate with the lens driving base 440, the The lens driving housing 450 and the lens focusing inner frame 420 limit the moving range of the lens anti-shake carrier 410 and protect the lens anti-shake carrier 410 .
  • each outer wall of the lens anti-shake carrier 410 is respectively provided with two lens anti-shake and anti-collision units 418 .
  • the lens focus part 42 further includes at least one lens focus anti-collision unit 428, which is arranged on the inner frame top surface 42011 of the lens focus inner frame 420 to cooperate with the lens drive housing 450 to limit the lens
  • the moving range of the focusing inner frame 420 and the lens focusing inner frame 420 are protected.
  • the number of the lens focus anti-collision units 428 is more than two, for example, in this specific example of the camera module of the present invention, the number of the lens focus anti-collision units 428 is four, which They are respectively protrudingly provided at each corner of the inner frame top surface 42011 of the lens focusing inner frame 420 .
  • the lens focus part 42 further includes at least one lens focus yoke unit 429, and the lens focus yoke unit 429 at least blocks the side of the lens focus magnet 4231 away from the lens focus coil 4232 to reduce the lens The magnetic field leaked from the focus magnet 4231.
  • the lens focusing yoke unit 429 includes a yoke plate 4291, a yoke upper arm 4292, and a yoke lower arm 4293, and the yoke upper arm 4292 and the yoke lower arm 4293 respectively integrally extend
  • the upper and lower sides of the yoke plate 4291 form a yoke space 4294 with side openings between the yoke plate 4291, the yoke upper arm 4292 and the yoke lower arm 4293, so that
  • the lens focus yoke unit 429 is in the shape of a " ⁇ ".
  • the lens focus magnet 4231 is arranged in the yoke space 4294 of the lens focus yoke unit 429, and the side of the lens focus magnet 4231 away from the lens focus coil 4232 is attached to the yoke
  • the plate 4291, the yoke upper arm 4292 and the yoke lower arm 4293 block at least a part of the upper side and the lower side of the lens focus magnet 4231 respectively, so that the lens focus yoke unit 429 can isolate the lens focus
  • the magnetic field of the magnet 4231 thereby reducing the magnetic interference of the lens focus magnet 4231 on the circuit board, photosensitive element and other components of the photosensitive assembly 30 located below the lens drive assembly 40, and preventing the lens focus magnet 4231 from being damaged
  • the magnetic element located under the lens driving assembly 40 attracts, thereby reducing the effect of focusing the lens.
  • the yoke lower arm 4293 of the lens focus yoke unit 429 blocks at least three quarters of the underside of the lens focus magnet 4231 to enhance the magnetic field constraint on the lens focus magnet 4231 The effect is to reduce the influence of the lens focusing magnet 4231 on the lens focusing process.
  • the yoke upper arm 4292 and the yoke lower arm 4293 of the lens focus yoke unit 429 are attached to the upper side and the lower side of the lens focus magnet 4231 respectively, so as to respectively block the lens focus At least a part of the upper side and the lower side of the magnet 4231.
  • the chip driver assembly 10 includes a chip anti-shake fixing part 11 , a chip anti-shake movable part 12 and a chip anti-shake driving part 13 .
  • the chip anti-shake fixing part 11 has a housing cavity 1101 and a top opening 1102 connected to the housing cavity 1101, wherein the photosensitive element 30 is arranged on the chip anti-shake movable part 12, and the chip anti-shake
  • the movable part 12 is suspended in the housing cavity 1101 of the anti-shake fixed part 11, and the top opening 1102 of the fixed part 11 corresponds to the photosensitive element 30, wherein the
  • the chip anti-shake driving part 13 is used to drive the chip anti-shake movable part 12 to do translation and/or rotational movement relative to the chip anti-shake fixed part 11, so as to realize the translation anti-shake and/or rotation of the camera module Or rotate anti-shake.
  • the chip anti-shake fixing part 11 includes a base 111 and an upper cover 112, the top opening 1102 is formed on the upper cover 112, the base 111 and the upper cover 112 are fastened and installed, The accommodating cavity 1101 is formed between the base 111 and the upper cover 112, and the accommodating cavity 1101 thus formed between the base 111 and the upper cover 112 is communicated with the upper cover 112 The top opening 1102.
  • the chip anti-shake movable part 12 and the chip anti-shake driving part 13 are respectively accommodated in the accommodation cavity 1101 of the chip anti-shake fixed part 11, so that the chip anti-shake fixed part 11 forms the The appearance of the chip driver assembly 10, in this way, on the one hand, the chip anti-shake fixing part 11 can prevent the chip anti-shake movable part 12 and the chip anti-shake driving part 13 from being collided, so as to protect The function of the chip anti-shake movable part 12 and the chip anti-shake drive part 13, on the other hand, the base 111 and the upper cover 112 of the chip anti-shake fixed part 11 cooperate with each other to form an airtight
  • the accommodating cavity 1101 is used to prevent dust and other pollutants from entering the accommodating cavity 1101 of the chip anti-shake fixing part 11 to contaminate the photosensitive element 32 and reduce stray light.
  • the material of the base 111 and the upper cover 112 of the chip anti-shake fixing part 11 may be metal material, so as to ensure the strength of the chip driving assembly 10 .
  • the material of the base 111 and the upper cover 112 of the chip anti-shake fixing part 11 may be stainless steel and non-magnetic material.
  • the photosensitive assembly 30 includes a circuit board 31 and a photosensitive element 32 connected to the circuit board 31, wherein the circuit board 31 is arranged on the chip anti-shake movable part 12 , so as to arrange the photosensitive element 30 on the chip anti-shake movable part 12 .
  • the photosensitive component 30 further includes a series of electronic components 33 , which may be but not limited to passive components such as resistors, capacitors, processors, etc., wherein the electronic components 33 are mounted on the circuit board 31 .
  • the photosensitive component 30 may further include a filter, such as an infrared cut filter, which is kept in the photosensitive path of the photosensitive element 32 .
  • a filter such as an infrared cut filter
  • the circuit board 31 has two extension arms 311, and the two extension arms 311 are respectively connected to the base 111 and the upper cover 112 on opposite sides of the circuit board 31.
  • the position extends to the outside of the chip anti-shake fixing part 11 and further extends upwards, so that the chip anti-shake movable part 12 is driven by the chip anti-shake driving part 13 and is in the position of the chip anti-shake fixing part 11.
  • the two extension arms 311 can extend to the outside of the chip anti-shake fixing part 11 through the connection position of the base 111 and the upper cover 112 on adjacent two sides of the circuit board 31 and Extend further upwards.
  • the chip anti-shake movable part 12 includes a chip anti-shake movable carrier 121 and a set of chip anti-shake balls 122, wherein a set of chip anti-shake balls 122 is rolled It is arranged between the chip anti-shake movable carrier 121 and the upper cover 112, so that the point friction contact between the chip anti-shake movable part 12 and the chip anti-shake fixed part 11 is ensured.
  • the chip anti-shake driving part 13 smoothly drives the chip anti-shake movable part 12 to perform translational and/or rotational movements relative to the chip anti-shake fixed part 11 .
  • the chip anti-shake movable carrier 121 has a carrier front 1211 , a carrier back 1212 opposite to the carrier front 1211 , and a carrier opening 1213 extending from the carrier front 1211 to the carrier back 1212 .
  • the circuit board 31 of the photosensitive component 30 is arranged on the carrier back surface 1212 of the chip anti-shake movable carrier 121, and the photosensitive element 32 of the photosensitive component 30 and the chip anti-shake movable
  • the carrier opening 1213 of the carrier 121 is corresponding, so that the incident light is allowed to pass through the carrier opening 1213 of the chip anti-shake movable carrier 121 to reach the photosensitive element 32 .
  • the chip anti-shake driving part 13 smoothly drives the chip anti-shake movable part 12 to perform translational and/or rotational movements relative to the chip anti-shake fixed part 11 .
  • the photosensitive component 30 can be embedded in the carrier opening 1213 of the chip anti-shake movable carrier 121, so as to reduce the The height dimension of the module.
  • the chip anti-shake movable carrier 121 is disposed around the photosensitive element 30 .
  • the chip anti-shake can Between the carrier front 1211 of the movable carrier 121 and the inner wall of the upper cover 112 of the chip anti-shake fixing part 11, a group of the chip anti-shake balls 122 can be rolled, so as to suspend the chip anti-shake.
  • the movable part 12 is placed in the housing cavity 1101 of the chip anti-shake fixing part 11, so as to ensure that the chip anti-shake driving part 13 can smoothly drive the chip anti-shake movable part 12 to do relative to the chip. Translational and/or rotational movement of the anti-shake fixing part 11 .
  • the circuit board 31 of the photosensitive component 30 is mounted on the carrier front surface 1211 of the chip anti-shake movable carrier 121 .
  • the chip anti-shake can Between the carrier front 1211 of the movable carrier 121 and the inner wall of the upper cover 112 of the chip anti-shake fixing part 11, a set of chip anti-shake balls 122 can be rolled, and a set of chip anti-shake balls 122 can be rolled.
  • the shaking ball 122 ensures that there is a gap between the photosensitive component 30 and the upper cover 112, thereby suspending the chip anti-shake movable part 12 in the receiving cavity 1101 of the chip anti-shake fixed part 11 to ensure that the
  • the chip anti-shake driving part 13 can smoothly drive the chip anti-shake movable part 12 to do translational and/or rotational movements relative to the chip anti-shake fixed part 11 . It can be understood that, in these examples where the circuit board 31 of the photosensitive component 30 is attached to the carrier front surface 1211 of the chip anti-shake movable carrier 121 , the chip anti-shake movable carrier 121 The carrier opening 1213 may not be provided.
  • the chip anti-shake drive unit 13 includes a plurality of chip anti-shake magnets 131 and a plurality of chip anti-shake coils 132, and these chip anti-shake magnets 131 are respectively arranged on the chip anti-shake Shake fixing part 11, these said chip anti-shake coils 132 are arranged on said chip anti-shake movable part 12 respectively, and these said chip anti-shake magnets 131 correspond to these said chip anti-shake coils 132, wherein these The magnetic field generated after the chip anti-shake coil 132 is energized and the magnetic fields of the chip anti-shake magnets 131 can interact to drive the chip anti-shake movable part 12 to move relative to the chip anti-shake fixed part 11.
  • the chip anti-shake magnets 131 and the chip anti-shake coils 132 of the chip anti-shake driving part 13 can interact to drive the chip anti-shake movable part 12 relative to the chip anti-shake
  • the fixing part 11 produces a translational movement along the X-axis direction and/or the Y-axis direction to realize translational anti-shake of the camera module.
  • the chip anti-shake magnets 131 and the chip anti-shake coils 132 of the chip anti-shake driving part 13 can interact to drive the chip anti-shake movable part 12 relative to the chip anti-shake fixed part 11 Generate a rotational movement around the Z-axis direction to realize the rotation anti-shake of the camera module.
  • the chip anti-shake magnets 131 of the chip anti-shake driving part 13 are respectively arranged on the chip anti-shake fixing parts 11.
  • the upper cover 112 correspondingly, the chip anti-shake coils 132 of the chip anti-shake driving part 13 are respectively arranged on the chip anti-shake movable part 12, and each of the chip anti-shake magnets 131
  • the chip anti-shake magnet 131 is located above the chip anti-shake coil 132 , that is, the chip anti-shake magnet 131 and the chip anti-shake coil 132 are arranged vertically. The way it is arranged.
  • the chip drive assembly 10 includes at least one chip anti-shake magnetic permeable member 14, and the chip anti-shake magnetic permeable member 14 is covered above the chip anti-shake magnet 131, so: on the one hand, the chip The anti-shake magnetic conductive member 14 can strengthen the magnetic field strength downwards (that is, the direction where the chip anti-shake coil 132 is located), so that the chip anti-shake driving part 13 has enough driving force to drive the chip anti-shake can
  • the moving part 12 performs translational and/or rotational movement relative to the chip anti-shake fixing part 11.
  • the chip anti-shake magnetic permeable member 14 can avoid interference by magnetic flux leakage toward the lens drive assembly 40.
  • the magnetic field of the lens driving assembly 40 The magnetic field of the lens driving assembly 40 .
  • the chip anti-shake magnetic member 14 is arranged on the upper cover 112 of the chip anti-shake fixing part 11, the chip anti-shake magnet 131 is arranged on the chip anti-shake magnetic member 14, That is, the chip anti-shake magnet 131 is arranged on the upper cover 112 by being arranged on the chip anti-shake magnetic permeable member 14, so that the chip anti-shake magnetic permeable member 14 can be kept on the chip anti-shake magnetic member 14. between the shaking magnet 131 and the upper cover 112 .
  • the chip anti-shake magnetic permeable member 14 allows the magnetic field lines of the chip anti-shake magnet 131 to concentrate toward the direction of the chip anti-shake coil 132, so as to increase the magnetic field strength of the chip anti-shake driving part 13 , while reducing the intensity of the magnetic field overflowing to the lens driving assembly 40 , thereby avoiding magnetic interference to the lens driving assembly 40 .
  • the chip anti-shake magnetic permeable member 14 has a quadrilateral structure, and the area of the chip anti-shake magnetic permeable member 14 is greater than or equal to that of the chip anti-shake magnetic member 14 .
  • the area of the anti-shake magnet 131, and the chip anti-shake magnetic member 14 completely covers the chip anti-shake magnet 141131, so that the chip anti-shake magnetic member 14 can effectively prevent the magnetic force of the chip anti-shake magnet 131 from being outside vent.
  • the chip anti-shake magnetic conductive member 14 covers the surface of the chip anti-shake magnet 131 facing the lens driving assembly 40 .
  • the shape of the chip anti-shake magnetic conductive member 14 is the same as that of the chip anti-shake magnet 131, that is, the chip anti-shake magnetic conductive member 14 is a square flat plate, which is covered above the chip anti-shake magnet 131 to completely cover the upper surface of the chip anti-shake magnet 131 .
  • the shape of the chip anti-shake magnetic permeable member 14 is different from the shape of the chip anti-shake magnet 131,
  • the chip anti-shake magnetic permeable member 14 is in the shape of a "U" with an opening, which can not only cover the upper surface of the chip anti-shake magnet 131, but also wrap the opposite two sides of the chip anti-shake magnet 131.
  • At least a part of the chip anti-shake magnet 131 is concentrated toward the direction of the chip anti-shake coil 132 .
  • the corresponding relationship between the number of the chip anti-shake magnetic permeable members 14 and the number of the chip anti-shake magnets 131 is not limited in the camera module of the present invention.
  • the number of the chip anti-shake magnetic permeable members 14 is consistent with the number of the chip anti-shake magnets 131, so One of the chip anti-shake magnetic permeable members 14 can be respectively covered above each of the chip anti-shake magnets 131, so that the chip anti-shake magnetic permeable members 14 and the chip anti-shake magnets 131 can be in one-to-one correspondence .
  • the number of the chip anti-shake magnetic permeable members 14 is less than the number of the chip anti-shake magnets 131, so that one chip anti-shake
  • the magnetically conductive member 14 can be disposed above at least two chip anti-shake magnets 131 .
  • the photosensitive element 32 of the photosensitive component 30 is in the shape of a rectangle with four sides.
  • the four sides of the photosensitive element 32 are sequentially defined as a first chip side 321 , a second chip side 322 , a third chip side 323 and A fourth chip side 324, with the central point of the photosensitive element 32 as the origin, the direction parallel to the first chip side 321 and the third chip side 323 as the X-axis direction, and the direction parallel to the third chip side 323
  • the direction of the second chip side 322 and the fourth chip side 324 is the Y-axis direction
  • the direction perpendicular to the photosensitive surface of the photosensitive element 32 is the Z-axis direction to establish a coordinate system.
  • these chip anti-shake coils 132 form a first coil group 133, a second coil group 134 and a third coil group 135, wherein on the plane where the X-axis and the Y-axis are located, the first coil group 133 is arranged along the Y-axis direction, and the second coil group 134 and the third coil group 135 are respectively arranged along the X-axis direction, And the second coil group 134 and the third coil group 135 are located on opposite sides of the photosensitive element 32, so that the chip anti-shake coils 132 of the chip anti-shake driving part 13 surround the Surroundings of the photosensitive element 32 of the photosensitive component 30 .
  • the second coil set 134 and the third coil set 135 are symmetrical with respect to the Y axis. It can be understood that the second coil set 134 and the third coil set 135 are located on opposite sides of the top opening 1102 of the chip anti-shake fixing part 11 .
  • the number of the chip anti-shake coil 132 forming the first coil group 133 is at least one, the number of the chip anti-shake coil 132 forming the second coil group 134 is at least two, forming the third
  • the number of the on-chip anti-shake coils 132 in the coil assembly 135 is at least two.
  • the number of the on-chip anti-shake coils 132 is two.
  • the two chip anti-shake coils 132 forming the first coil group 133 are respectively defined as a first coil 1321 and a second coil 1322, and the first coil 1321 and the second coil 1322
  • the two anti-shake coils 132 forming the second coil group 134 are respectively defined as a third coil 1323 and a fourth coil 1324.
  • the third coil 1323 and the fourth coil 1324 are arranged opposite and parallel to the X-axis direction;
  • the two chip anti-shake coils 132 forming the third coil group 135 are respectively defined as a fifth coil 1325 and a sixth coil 1326 , the fifth coil 1325 and the sixth coil 1326 are opposite and arranged in parallel.
  • the first coil 1321 and the second coil 1322 are respectively arranged on the fourth chip side 324 and the second chip side 322 of the photosensitive element 32, and the first coil 1321 and the second coil 1322 are respectively parallel to the fourth chip side 324 and the second chip side 322 of the photosensitive element 32 .
  • the third coil 1323 and the fifth coil 1325 are respectively arranged on the first chip side 321 of the photosensitive element 32, and the third coil 1323 and the fifth coil 1325 are respectively parallel to the The first chip side 321 of the photosensitive element 32 .
  • the fourth coil 1324 and the sixth coil 1326 are respectively arranged on the third chip side 324 of the photosensitive element 32, and the fourth coil 1324 and the sixth coil 1326 are respectively parallel to the The third chip side 323 of the photosensitive element 32 .
  • the first coil 1321 and the second coil 1322 constituting the first coil group 133 are respectively arranged in The opposite sides of the photosensitive element 32 along the Y-axis direction, the third coil 1323 and the fourth coil 1324 forming the second coil group 134 and all the coils forming the third coil group 135
  • the fifth coil 1325 and the sixth coil 1326 are respectively disposed at four corners of the photosensitive element 32 along the X-axis direction.
  • the first coil 1321 is arranged adjacent to the third coil 1323 and the fourth coil 1324 respectively, and the first coil 1321 is perpendicular to the third coil 1323 and the fourth coil 1324 respectively.
  • the second coil 1322 is arranged adjacent to the fifth coil 1325 and the sixth coil 1326 respectively, and the second coil 1322 is respectively perpendicular to the fifth coil 1325 and the sixth coil 1325 Six coils 1326.
  • the distance between the second coil set 134 and the third coil set 135 and the center of the photosensitive element 32 is farther than the distance between the first coil set 133 and the center of the photosensitive element 32 , and the torque larger, so that the second coil set 134 and the third coil set 135 cooperate with each other to more easily drive the chip anti-shake movable part 12 to do a rotational movement relative to the chip anti-shake fixed part 11, so as to realize Rotate anti-shake.
  • the first coil 1321 and the second coil 1322 that make up the first coil group 133 have the same size
  • the third coil 1323 and the fourth coil that make up the second coil group 134 have the same size
  • 1324 and the fifth coil 1325 and the sixth coil 1326 that make up the third coil group 135 have the same size
  • the first coil 1321 and the second coil 1322 are larger in size than the third coil 1323, the size of the fourth coil 1324, the fifth coil 1325, and the sixth coil 1326, wherein the first coil 1321 and the second coil 1322 cooperate with each other to drive the anti-shake movable part of the chip 12 make a translational movement relative to the chip anti-shake fixing part 11 along the X-axis direction
  • the third coil 1323, the fourth coil 1324, the fifth coil 1325 and the sixth coil 1326 cooperate with each other Drive the chip anti-shake movable part 12 to make a translational movement relative to the chip anti-shake fixed part 11 along the Y-axis direction and/or drive the chip anti-shake
  • first coil 1321 and the second coil 1322 have a larger size to ensure that they have a greater thrust to drive the chip anti-shake movable part 12 to make relative movements along the X-axis direction. Translational movement of the chip anti-shake fixing part 11.
  • the first coil 1321 and the second coil 1322 forming the first coil group 133 and the second coil group 134 may be the same.
  • the geometric centers of the first coil 1321 and the second coil 1322 constituting the first coil group 133 are consistent with the center of the chip anti-shake driving part 13, that is, the first coil 1321
  • the distance between the center and the center of the photosensitive element 32 is consistent with the distance between the center of the second coil 1322 and the center of the photosensitive element 32, which can ensure that the first coil 1321 and the The resultant force generated by the second coil 1322 is still located at the center of the chip anti-shake driving part 13 to avoid unnecessary torque generated by the first coil 1321 and the second coil 1322 .
  • the center of the first coil 1321 is consistent with the center of the second coil 1322 as viewed on the plane along the optical axis side of the camera module. , so that the line between the center of the first coil 1321 and the center of the second coil 1322 passes through the center of the photosensitive element 32 and is parallel to the X-axis direction.
  • the center of the first coil 1321 and the center of the second coil 1322 have certain The eccentric direction of the center of the first coil 1321 and the center of the second coil 1322 can be the positive direction of the Y axis or the negative direction of the Y axis, wherein the center of the first coil 1321 and the center of the second coil 1322 A line connecting the centers of the second coils 1322 passes through the centers of the photosensitive elements 32 and intersects the X-axis direction.
  • the center of the first coil 1321 may deviate from the positive direction of the Y axis, and correspondingly, the center of the second coil 1322 may deviate from the Y axis negative direction, and the distance from the center of the first coil 1321 to the X-axis is the same as the distance from the center of the second coil 1322 to the X-axis, thus ensuring that the first coil 1321 and the second coil 1322 The resulting resultant force is located at the center of the chip anti-shake driving part 13 .
  • the center of the first coil 1321 may be biased toward the negative direction of the Y axis
  • the center of the second coil 1322 may be biased toward the positive direction of the Y axis
  • the center of the first coil 1321 may be biased toward the positive direction of the X axis.
  • the distance is the same as the distance from the center of the second coil 1322 to the X-axis, so as to ensure that the resultant force generated by the first coil 1321 and the second coil 1322 is located at the center of the chip anti-shake driving part 13 .
  • the on-chip anti-shake coils 132 of the on-chip anti-shake driving part 13 are all air-core planar coils, which form a coil plane 13201 and a coil space 13202 .
  • the coil plane 13201 of the first coil 1321, the coil plane 13201 of the second coil 1322, the coil plane 13201 of the third coil 1323, and the coil plane 13201 of the fourth coil 1324 are aligned, so that the chip anti-shake driving part 13 can drive the chip anti-shake
  • the movable part 12 translates in a plane XOY formed by the X axis and the Y axis.
  • the chip anti-shake movable carrier 121 has a plurality of placement positions 1210, the number of the placement positions 1210 is consistent with the number of the chip anti-shake coils 132, and each of the placement positions 1210 is used to place Each chip has an anti-shake coil 132 .
  • these placement positions 1210 form a first position group 12101, a second position group 12102 and a third position group 12103, wherein each of the first position group 12101 is formed
  • the placement positions 1210 are respectively arranged on opposite sides along the Y-axis direction, and each placement position 1210 constituting the second position group 12102 and the third position group 12103 is respectively arranged on the X-axis The four corners of the direction.
  • each placement position 1210 forming the first position group 12101 is set along the Y-axis direction
  • each placement position 1210 forming the second position group 12102 is set along the X-axis direction
  • Each of the installation positions 1210 forming the third position group 12103 is arranged along the X-axis direction
  • each of the installation positions 1210 forming the second position group 12102 is arranged oppositely along the Y-axis direction
  • Each of the installation positions 1210 constituting the third position group 12103 is arranged opposite to each other along the Y-axis direction.
  • each placement position 1210 forming the second position group 12102 is symmetrical with respect to the Y axis
  • each placement position 1210 forming the third position group 12103 is symmetrical with respect to the Y axis.
  • the shape of the installation position 1210 is the same as that of the chip anti-shake coil 132 , so as to install the chip anti-shake coil 132 on the installation position 1210 .
  • the placement position 1210 is a rectangular or approximately rectangular structure, wherein the long side of each placement position 1210 forming the first position group 12101 and the Y axis The directions are parallel, the long sides of each of the placement positions 1210 forming the second position group 12102 and the long sides of each of the placement positions 1210 of the third position group 12103 are parallel to the X-axis direction, and form The long sides of each placement location 1210 of the first location group 12101 are respectively perpendicular to the long sides of each placement location 1210 forming the second location group 12102 and the third location group 12103 .
  • the installation position 1210 may be a planar installation position, so that the chip anti-shake coil 132 can be directly disposed on the surface of the installation position 1210 .
  • the installation position 1210 may be a groove installation position, so that the chip anti-shake coil 132 can be embedded in the installation position 1210 to reduce the driving force of the chip.
  • the installation position 1210 may be a through-hole installation position, so that the chip anti-shake coil 132 can be embedded in the installation position 1210 to reduce the driving force of the chip. The height of the assembly 10.
  • these chip anti-shake magnets 131 form a first magnet group 136, a second magnet group 137 and a third magnet group 138, wherein on the plane where the X-axis and the Y-axis are located, the first magnet set 136 is arranged along the Y-axis direction, and the second magnet set 137 and the third magnet set 138 are respectively arranged along the X-axis direction, And the second magnet group 137 and the third magnet group 138 are located on the opposite sides of the photosensitive element 32, so that the chip anti-shake magnets 131 of the chip anti-shake driving part 13 surround the Surroundings of the photosensitive element 32 of the photosensitive component 30 .
  • the second magnet set 137 and the third magnet set 138 are symmetrical with respect to the Y axis.
  • the number of the chip anti-shake magnet 131 forming the first magnet group 136 is at least one
  • the number of the chip anti-shake magnet 131 forming the second magnet group 137 is at least two
  • the number of the chip anti-shake magnet 131 forming the third magnet group 137 is at least one.
  • the number of the chip anti-shake magnets 131 in the magnet set 138 is at least two.
  • all of the first magnet group 136, the second magnet group 137, and the third magnet group 138 are composed of The number of the chip anti-shake magnets 131 is two.
  • the two chip anti-shake magnets 131 that make up the first magnet group 136 are respectively defined as a first magnet 1311 and a second magnet 1312, and the first magnet 1311 and the second magnet 1312
  • the first magnet 1311 and the first coil 1321 are opposite to each other
  • the second magnet 1312 is opposite to the second coil 1322 .
  • the two chip anti-shake magnets 131 forming the second magnet group 137 are respectively defined as a third magnet 1313 and a fourth magnet 1314, and the third magnet 1313 and the fourth magnet 1314 are along the X
  • the axis directions are opposite and arranged in parallel, and the third magnet 1313 is arranged opposite to the third coil 1323 , and the fourth magnet 1314 is arranged opposite to the fourth coil 1324 .
  • the two chip anti-shake magnets 131 forming the third magnet group 138 are respectively defined as a fifth magnet 1315 and a sixth magnet 1316, and the fifth magnet 1315 and the sixth magnet 1316 are along the X
  • the axis directions are opposite and parallel, and the fifth magnet 1315 is opposite to the fifth coil 1325 , and the sixth magnet 1316 is opposite to the sixth coil 1326 .
  • the first magnet 1311 and the second magnet 1312 are disposed on the fourth chip side 324 and the second chip side 322 of the photosensitive element 32 respectively, and the first magnet 1311 and the second magnet 1312 are respectively parallel to the fourth chip side 324 and the second chip side 322 of the photosensitive element 32 .
  • the third magnet 1313 and the fifth magnet 1315 are respectively disposed on the first chip side 321 of the photosensitive element 32, and the third magnet 1313 and the fifth magnet 1315 are respectively parallel to the The first chip side 321 of the photosensitive element 32 .
  • the fourth magnet 1314 and the sixth magnet 1316 are respectively disposed on the third chip side 323 of the photosensitive element 32, and the fourth magnet 1314 and the sixth magnet 1316 are respectively parallel to the The third chip side 323 of the photosensitive element 32 .
  • the first magnet 1311 and the second magnet 1312 constituting the first magnet group 136 are respectively arranged in The opposite two sides of the photosensitive element 32 along the Y-axis direction, the third magnet 1313 and the fourth magnet 1314 that form the second magnet set 137 and all the third magnet sets 138 form The fifth magnet 1315 and the sixth magnet 1316 are respectively disposed at four corners of the photosensitive element 32 along the X-axis direction.
  • the first magnet 1311 is arranged adjacent to the third magnet 1313 and the fourth magnet 1314 respectively, and the first magnet 1311 is perpendicular to the third magnet 1313 and the fourth magnet 1314 respectively.
  • the second magnet 1312 is arranged adjacent to the fifth magnet 1315 and the sixth magnet 1316 respectively, and the second magnet 1312 is perpendicular to the fifth magnet 1315 and the sixth magnet 1315 respectively. magnet 1316.
  • first magnet 1311 and the second magnet 1312 that make up the first magnet group 136 have the same size
  • the third magnet 1313 and the fourth magnet that make up the second magnet group 137 have the same size
  • 1314 and the fifth magnet 1315 and the sixth magnet 1316 that make up the third magnet group 138 have the same size
  • the first magnet 1311 and the second magnet 1312 have larger sizes than the third magnet 1313.
  • Sizes of the fourth magnet 1314, the fifth magnet 1315, and the sixth magnet 1316, wherein the first magnet 1311 and the second magnet 1312 cooperate with each other to drive the chip anti-shake driving part 13 make a translational movement relative to the chip anti-shake fixing part 11 along the X-axis direction, the third magnet 1313, the fourth magnet 1314, the fifth magnet 1315 and the sixth magnet 1316 cooperate with each other to drive
  • the chip anti-shake driving part 13 performs a translational movement relative to the chip anti-shake fixing part 11 along the Y-axis direction or drives the chip anti-shake driving part 13 around the Z-axis direction to perform anti-shake relative to the chip Rotational movement of the fixed part 11.
  • first magnet 1311 and the second magnet 1312 have a larger size to ensure that they have a larger thrust to drive the chip anti-shake movable part 12 to make relative movements along the X-axis direction. Translational movement of the chip anti-shake fixing part 11.
  • the first magnet 1311 and the second magnet 1312 forming the first magnet group 136 and the second magnet group 137 The sizes of the third magnet 1313 and the fourth magnet 1314 and the fifth magnet 1315 and the sixth magnet 1316 constituting the third magnet group 138 may be the same.
  • the chip anti-shake magnet 131 of the chip anti-shake driving part 13 is a unipolar magnet, which has an N pole and an S pole, and the N pole and the S pole The poles are arranged along the horizontal direction and face the chip anti-shake coil 132 .
  • the chip anti-shake magnet 131 of the chip anti-shake driving part 13 is a bipolar magnet, which has two N poles and two S poles.
  • the N pole and S pole in the first group of magnetic poles are arranged in the horizontal direction, and face the chip anti-shake coil 132
  • the S pole in the second group of magnetic poles is arranged at the bottom of the N pole in the first group of magnetic poles
  • the first The N pole of the two sets of magnetic poles is arranged at the bottom of the S pole of the first set of magnetic poles, so the S pole and N pole of the second set of magnetic poles are arranged along the horizontal direction and away from the chip anti-shake coil 132 .
  • the first coil 1321 and the second coil 1322 that make up the first coil group 133 respectively correspond to the first The first magnet 1311 and the second magnet 1312 of the magnet group 136, when the first coil 1321 and the second coil 1322 are energized, the magnetic field generated by the first coil 1321 and the second coil 1321
  • the magnetic field of a magnet 1311 cooperates with the magnetic field generated by the second coil 1322 and the magnetic field of the second magnet 1312 to drive the chip anti-shake movable part 12 to translate in the X-axis direction, so as to achieve Panning anti-shake in the X-axis direction.
  • the third coil 1323 and the fourth coil 1324 forming the second coil group 134 respectively correspond to the third magnet 1313 and the fourth magnet 1314 forming the second magnet group 137, forming the The fifth coil 1325 and the sixth coil 1326 of the third coil group 135 respectively correspond to the fifth magnet 1315 and the sixth magnet 1316 constituting the third magnet group 138, so when the When the second coil group 134 and the third coil group 135 are passed the same direction and the same value of current, the second coil group 134 and the second magnet group 137 cooperate with each other and the third coil group 135 and The third magnet set 138 cooperates with each other to drive the chip anti-shake movable part 12 to translate in the Y-axis direction, so as to realize translational anti-shake along the Y-axis direction.
  • the chip anti-shake movable part 12 can be driven to rotate around the Z axis, so as to realize rotation anti-shake around the Z axis.
  • the translation stroke of the chip anti-shake driving part 13 in the X-axis and Y-axis directions is ⁇ 235 ⁇ m, and the rotation stroke around the Z-axis direction is ⁇ 1°.
  • the chip anti-shake movable part 12 further includes a chip anti-shake electric connection part 123, wherein the chip anti-shake coils 132 of the chip anti-shake drive part 13 are respectively connected
  • the chip anti-shake electrical connection portion 123 is used to supply power to the chip anti-shake coils 132 through the chip anti-shake electrical connection portion 123 .
  • the chip anti-shake electrical connection part 123 is electrically connected to the circuit board 31 of the photosensitive component 30 .
  • the chip anti-shake electrical connection part 123 is a frame structure, which forms a connection part opening 1231, wherein the chip anti-shake electrical connection part 123 is mounted on the chip anti-shake movable carrier 121.
  • the back surface 1212 of the carrier, and the connection part opening 1231 of the chip anti-shake electrical connection part 123 corresponds to and communicates with the carrier opening 1213 of the chip anti-shake movable carrier 121, wherein the photosensitive component 30
  • the circuit board 31 is fixed to the chip anti-shake electrical connection part 123, so that incident light is allowed to pass through the carrier opening 1213 of the chip anti-shake movable carrier 121 and the chip anti-shake electrical connection part 123.
  • the connection portion opening 1231 reaches the photosensitive element 32 .
  • the chip anti-shake movable part 12 may not be provided with the chip anti-shake electrical connection part 123, and at this time the chip anti-shake driving part
  • the on-chip anti-shake coils 132 of 13 are mounted on the circuit board 31 of the photosensitive component 30 respectively, so as to supply power to the on-chip anti-shake coils 132 through the circuit board 31 .
  • the circuit board 31 of the photosensitive component 30 may be directly mounted on the back surface 1212 of the chip anti-shake movable carrier 121 .
  • the chip anti-shake movable carrier 121 has a plurality of carrier notches 1214, and these carrier notches 1214 respectively extend from the carrier front 1211 to the carrier back 1212, wherein the chip The chip anti-shake coils 132 of the anti-shake driving part 13 are respectively held on the carrier gaps 1214 of the chip anti-shake movable carrier 121, so that the chip anti-shake electrical connection part 123 is attached to On the basis of the carrier back surface 1212 of the chip anti-shake movable carrier 121, the chip anti-shake coils 132 of the chip anti-shake driving part 13 can pass through the chip anti-shake movable carrier 121.
  • a plurality of carrier notches 1214 extend toward the chip anti-shake magnet 131 . That is to say, the carrier notches 1214 of the chip anti-shake movable carrier 121 can form the placement positions 1210 for respectively placing the chip anti-shake coils 132 .
  • the shape of the carrier notch 1214 of the chip anti-shake movable carrier 121 is not limited in the camera module of the present invention.
  • the chip anti-shake coils 132 of the chip anti-shake driving part 13 are mounted on the chip anti-shake electrical connection part 123 respectively, These chip anti-shake coils 132 can be respectively held on the chip anti-shake movable These said carrier notches 1214 of the carrier 121 .
  • the chip anti-shake coils 132 of the chip anti-shake driving part 13 are respectively fixed to the chip anti-shake movable carrier 121, and These chip anti-shake coils 132 can be connected to the chip anti-shake electrical connection part 123 or connected to the circuit board 31 through connecting wires. At this time, the chip anti-shake movable carrier 121 may not be provided with the carrier notch 1214 .
  • the chip driver assembly 10 further includes at least one chip anti-shake magnetic attraction member 15, wherein the chip anti-shake magnetic attraction member 15 is arranged on the chip anti-shake movable part 12, And the position of the chip anti-shake magnetic attraction member 15 corresponds to the position of the chip anti-shake magnet 131 of the chip anti-shake drive unit 13, so that the chip anti-shake magnetic attraction member 15 and the chip anti-shake
  • the magnets 131 can cooperate with each other to generate a magnetic attraction force in the Z-axis direction, so as to suspend the chip anti-shake movable part 12 in the receiving cavity 1101 of the chip anti-shake fixed part 11 .
  • the magnetic attraction force generated by the chip anti-shake magnetic attraction member 15 and the chip anti-shake magnet 131 of the chip anti-shake driving part 13 in the Z-axis direction can ensure that a group of the chip anti-shake movable parts 12
  • the chip anti-shake ball 122 is always in close contact with the upper cover 112 of the chip anti-shake fixed part 11, because the chip anti-shake movable part 12 is on the carrier front of the chip anti-shake movable carrier 121 1211 and the inner wall of the upper cover 112 is provided with a set of rolling anti-shake balls 122, therefore, there is point friction between the chip anti-shake movable part 12 and the chip anti-shake fixed part 11 Contact, in this way, the chip anti-shake driving part 13 can smoothly drive the chip anti-shake movable part 12 to do translation and/or rotational movement relative to the chip anti-shake fixed part 11, so as to realize the The anti-shake of translation and/or the anti-shake of rotation of the above-mentioned camera module.
  • the chip anti-shake movable carrier 121 has a set of holding grooves 1215 formed on the carrier front 1211 of the chip anti-shake movable carrier 121, wherein the chip anti-shake ball 122 is rolled It is held in the holding groove 1215 of the chip anti-shake movable carrier 121.
  • the chip anti-shake driving part 13 drives the chip anti-shake movable part 12 to perform anti-shake relative to the chip.
  • the chip anti-shake ball 122 can be prevented from detaching from between the chip anti-shake movable carrier 121 and the upper cover 112, thereby ensuring the reliability of the camera module. sex, stability.
  • the chip anti-shake movable carrier 121 of the chip anti-shake movable part 12 is driven by the chip anti-shake driving part 13 to perform a translational and/or rotational movement relative to the chip anti-shake fixed part 11
  • the movement track of the chip anti-shake ball 122 can be limited in the holding groove 1215 of the chip anti-shake movable carrier 121, so that the chip anti-shake ball 122 always supports the chip anti-shake can The movable carrier 121 and the upper cover 112 of the chip anti-shake fixing part 11.
  • the holding groove 1215 of the chip anti-shake movable carrier 121 and the chip anti-shake ball 122 can form a chip anti-shake supporting part 17 of the chip driver assembly 10, that is, the chip anti-shake
  • the shake support part 17 includes a set of the chip anti-shake balls 122 and a set of the holding grooves 1215, wherein a set of the holding grooves 1215 are respectively formed on the carrier front surface 122 of the chip anti-shake movable carrier 121 , a set of anti-shake balls 122 are rotatably held in the holding groove 1215 and located between the movable carrier 121 and the upper cover 112, so that the anti-shake supporting part 17 can support the chip anti-shake movable carrier 121 and the upper cover 112 .
  • the chip anti-shake ball 122 can move in the holding groove 1215 along the plane formed by the X axis and the Y axis, so as to provide a moving space for the movement of the chip anti-shake movable part 12 .
  • the chip anti-shake movable carrier 121 has at least one extension column 1216, the holding groove 1215 is formed on the extension column 1216, and the opening of the holding groove 1215 faces the opening of the chip anti-shake fixing part 11.
  • the upper cover 112 .
  • the depth of the holding groove 1215 is less than or equal to the diameter of the chip anti-shake ball 122, so that at least a part of the chip anti-shake ball 122 can protrude from the holding groove 1215, and the chip anti-shake ball 122
  • the height position is greater than the height position of the chip anti-shake coil 132, so that the chip anti-shake ball 122 can be in frictional contact with the extension column 1216 of the chip anti-shake movable carrier 121 and the upper cover 112 respectively .
  • the upper part of the chip anti-shake ball 122 faces the plane formed by the inner wall of the upper cover 112, and the lower part of the chip anti-shake ball 122 faces the holding groove 1215
  • the groove formed is like this: on the one hand, the chip anti-shake ball 122 can roll between the chip anti-shake movable carrier 121 and the upper cover 112, on the other hand, the holding groove 1215 can The chip anti-shake ball 122 is limited to prevent the chip anti-shake ball 122 from falling off, thereby ensuring the reliability of the camera module.
  • the chip anti-shake ball 122 makes a gap between the chip anti-shake magnet 131 and the chip anti-shake coil 132, so as to avoid the chip anti-shake magnet 131 and the chip anti-shake coil 132 direct contact between.
  • the range of the gap formed between the chip anti-shake magnet 131 and the chip anti-shake coil 132 is 0.05mm to 0.5mm, so as to ensure that the chip anti-shake magnet 131 and the chip anti-shake coil 132 There is good electromagnetic induction between them.
  • the chip drive assembly 10 includes at least three chip anti-shake support parts 17 to ensure the smooth translation of the chip anti-shake movable part 12 along the X-axis and Y-axis and the rotation around the Z-axis . That is to say, the chip anti-shake movable part 12 includes at least three chip anti-shake balls 122 , and the chip anti-shake movable carrier 121 has at least three holding grooves 1215 .
  • a position group 12101 is located between the second position group 12102 and between the second position group 12102 and the third position group 12103 . That is to say, the four chip anti-shake supporting parts 17 of the chip driver assembly 10 are respectively located at the four corners of the chip anti-shake movable part 12, so as to provide more stable support for the chip anti-shake movable part 12.
  • the structure of the chip drive assembly 10 is made more compact due to stable support and full utilization of the internal space of the chip drive assembly 10 .
  • the chip anti-shake supporting part 17 of the chip driver assembly 10 may be a slider, which is slidably held on the chip anti-shake between the movable carrier 121 and the upper cover 112 for stably supporting the chip anti-shake movable part 12 .
  • the chip drive assembly 10 includes four anti-shake magnetic components 15 for the chip, and each magnetic component 15 for the anti-shake is respectively arranged on the movable part of the chip anti-shake. Each corner of the part 12, so that the flatness of the chip anti-shake movable part 12 can be ensured so that the optical axis of the camera module can be perpendicular to the photosensitive surface of the photosensitive element 32 of the photosensitive component 30 .
  • the chip anti-shake magnetic attraction member 15 is arranged on the chip anti-shake electrical connection part 123, in order to optimize the The structure of the camera module.
  • the chip anti-shake magnetic attraction member 15 may be arranged on the chip anti-shake movable carrier 121, or the chip anti-shake magnetic attraction The member 15 can be arranged on the circuit board 31 of the photosensitive assembly 30, or the chip anti-shake magnetic attraction member 15 can be arranged on the chip anti-shake movable carrier 121 and the chip anti-shake electrical connection part 123 between, or the chip anti-shake magnetic member 15 may be disposed between the chip anti-shake electrical connection part 123 and the circuit board 31 .
  • the chip anti-shake magnetic member 15 and the chip anti-shake magnet 131 of the chip anti-shake driving part 13 can be completely aligned, that is, the The chip anti-shake magnetic attraction member 15 may be located directly below the chip anti-shake magnet 131 of the chip anti-shake driving part 13 .
  • the chip anti-shake magnetic attraction member 15 and the chip anti-shake magnet 131 of the chip anti-shake driving part 13 may not be completely aligned, There are some discrepancies between.
  • the chip anti-shake magnetic Attracting member 15 will synchronously produce translational and/or rotational movement relative to the chip anti-shake fixing part 11, and at this time, an Some deviations, but the plane where the chip anti-shake magnetic member 15 is and the plane where the chip anti-shake magnet 131 is always parallel, that is, the plane where the chip anti-shake magnetic member 15 is and the chip
  • the plane where the anti-shake magnet 131 is always perpendicular to the Z axis, therefore, the chip anti-shake magnetic member 15 and the chip anti-shake magnet 131 can cooperate with each other to generate magnetic attraction in the direction of the Z axis means that the chip anti-shake
  • the magnetic attraction force between the plane where the shaking magnetic attraction member 15 is located and the plane where the chip anti-shake magnet 131 is located includes, but is not limited to, a vertical magnetic attraction force and an inclined magnetic attraction force offset from the
  • the chip drive assembly 10 further includes at least three chip anti-shake position sensing elements 16, which respectively sense the first magnet group 136, the second magnet group 137 and the The above position information of the third magnet group 138 is used to sense the position information of the chip anti-shake movable part 12 when it translates in the X-axis direction, translates in the Y-axis direction, and rotates in the Z-axis direction.
  • the three chip anti-shake position sensing elements 16 are respectively defined as a first sensing element 161 , a second sensing element 162 and a third sensing element 163 .
  • the first sensing element 161 is disposed in the coil space 13202 of the first coil 1321 to correspond to the first magnet 1311, wherein the first sensing element 161 is used for sensing the X-axis direction Magnetic field changes during translation.
  • the second sensing element 162 is disposed in the coil space 13202 of the fourth coil 1324 to correspond to the fourth magnet 1314, wherein the second sensing element 162 is used for sensing the Y-axis direction Magnetic field changes during translation.
  • the third sensing element 163 is disposed in the coil space 13202 of the fifth coil 1325 to correspond to the fifth magnet 1315, wherein the second sensing element 162 and the third sensing element The element 163 is used to sense the change of the magnetic field when the Z-axis rotates.
  • the chip anti-shake position sensing element 16 is attached to the chip anti-shake electrical connection part 123 .
  • the first coil group 133, the second coil group 134, and the third coil group 135 of the chip anti-shake driving part 13 are independently controlled coil groups, Therefore, it is only necessary to set three anti-shake position sensing elements 16 of the chip, which not only reduces the number of elements of the chip drive assembly 10, but also realizes translation anti-shake and/or rotation anti-shake with a small number of interfaces. Sensing is beneficial to reduce the size of the chip driving assembly 10 , and can make full use of the internal space of the chip driving assembly 10 to make the structure of the chip driving assembly 10 compact.
  • the chip anti-shake position sensing element 16 may be a Hall element. In other embodiments of the camera module of the invention, the chip anti-shake position sensing element 16 may be a driver IC, which is suitable for controlling the position of the chip anti-shake magnet 131 while acquiring The current of the on-chip anti-shake coil 132. Specifically, when the camera module turns on the anti-shake function, the chip anti-shake position sensing element 16 can sense the current first magnet set 136, the second magnet set 137 and the third magnet set.
  • the current position of the magnet group 138 drives the chip anti-shake movable part 12 to move to the sensing position.
  • the reaction force of the circuit board 31 of the photosensitive component 30 that is, the chip anti-shake movable part 12 is translated and/or Or when the circuit board 31 is rotated, the elastic force accumulated by the circuit board 31 due to elastic deformation) makes the chip anti-shake movable part 12 return to the initial position.
  • the first coil group 133 includes four anti-shake coils 132, wherein the two anti-shake coils 132 that make up the first coil group 133 are symmetrically arranged on the photosensitive element 32 of the second chip side 322 and one end of the fourth chip side 324, and the other two anti-shake coils 132 are symmetrically arranged on the second chip side of the photosensitive element 32 322 and the other end of the fourth chip side 324 .
  • the four holding grooves 1215 of the chip anti-shake movable carrier 121 are respectively formed on the first chip side 321 , the second chip side 322 , and the third chip side of the photosensitive element 32 .

Abstract

本发明公开了一镜头驱动组件和摄像模组,其中所述镜头驱动组件包括镜头对焦外框、镜头对焦内框、镜头防抖载体、镜头对焦驱动单元以及镜头防抖驱动单元。所述镜头对焦内框被悬持于所述镜头对焦外框的侧方,所述镜头防抖载体被悬持于所述镜头防抖内框的下方,所述镜头对焦驱动单元包括镜头对焦磁石和镜头对焦线圈,所述镜头对焦磁石被设置于所述镜头对焦外框,所述镜头对焦线圈被设置于所述镜头对焦内框,所述镜头对焦磁石和所述镜头对焦线圈相对应,所述镜头防抖驱动单元包括镜头防抖磁石和镜头防抖线圈,所述镜头防抖磁石被设置于所述镜头防抖载体,所述镜头防抖线圈被设置于所述镜头防抖内框,所述镜头防抖磁石和所述镜头防抖线圈相对应。

Description

镜头驱动组件和摄像模组 技术领域
本发明涉及光学成像装置,特别涉及一镜头驱动组件和摄像模组。
背景技术
随着移动电子设备的普及,被应用于移动电子设备的用于帮助使用者获取影像的摄像模组的相关技术得到了迅猛的发展和进步。目前在市场中,消费者对于配置于移动电子设备(例如,智能手机)的摄像模组的功能要求越来越高和多样化,例如要求摄像模组防抖功能,以期获得更佳的成像效果。
在使用移动电子设备进行摄像时,由于人体在正常情况下存在的一定频率的生理震颤和由于运动产生的抖动,会导致摄像效果下降,尤其是对于普通消费者而言,其缺乏专业的训练而更容易导致抖动且抖动幅度更大。因此移动电子设备通常配有防抖马达(即驱动组件),以驱动光学镜头移动实现防抖功能。
随着摄像模组的成像质量要求越来越高,光学镜头的体积和重量越来越大,对驱动组件的驱动力要求也越来越高,防抖马达的占用体积随着镜头的增大而相应的增加。而当前移动电子设备的轻薄化的发展趋势对摄像模组的体积也有很大的限制,导致摄像模组逐渐地无法满足电子设备的配置需要。换句话说,在光学镜头向更大体积、更大重量发展的趋势下,驱动组件所能提供的驱动力却难以相应地增加。在驱动力受限的前提下,镜头越重,驱动组件能够驱动光学镜头移动的行程越短,影响防抖能力。另外,光学镜头越重,驱动组件能够驱动光学镜头移动的速度也越慢,光学镜头到达预定的补偿位置的时间也越长,这也会影响防抖效果。
发明内容
本发明的一个目的在于提供一镜头驱动组件和摄像模组,其中所述镜头驱动组件能够实现所述摄像模组的对焦和防抖。
本发明的一个目的在于提供一镜头驱动组件和摄像模组,其中所述镜头驱动组件能够驱动所述摄像模组的一光学镜头平移,所述芯片驱动组件能够驱动所述摄像模组的一感光组件平移和/或旋转,如此提高所述摄像模组的防抖效果。
本发明的一个目的在于提供一镜头驱动组件和摄像模组,其中在所述镜头驱动组件驱动所述光学镜头平移的同时,所述芯片驱动组件能够驱动所述感光组件移和/或旋转,如此能够大幅度地提高所述摄像模组的防抖效果。
本发明的一个目的在于提供一镜头驱动组件和摄像模组,其中所述镜头驱动组件和所述芯片驱动组件能够被隔磁,如此避免两者的磁干扰而保证所述摄像模组的可靠性和稳定性。
依本发明的一个方面,本发明提供一镜头驱动组件,其包括:
一镜头对焦外框;
一镜头对焦内框,其中所述镜头对焦内框被悬持于所述镜头对焦外框的侧方;
一镜头防抖载体,其中所述镜头防抖载体被悬持于所述镜头防抖内框的下方;
一镜头对焦驱动单元,其中所述镜头对焦驱动单元包括至少一镜头对焦磁石和至少一镜 头对焦线圈,每个所述镜头对焦磁石分别被设置于所述镜头对焦外框,每个所述镜头对焦线圈分别被设置于所述镜头对焦内框,并且所述镜头对焦磁石的位置和所述镜头对焦线圈的位置相对应;以及
一镜头防抖驱动单元,其中所述镜头防抖驱动单元包括至少一镜头防抖磁石和至少一镜头防抖线圈,每个所述镜头防抖磁石分别被设置于所述镜头防抖载体,每个所述镜头防抖线圈分别被设置于所述镜头防抖内框,并且所述镜头防抖磁石的位置和所述镜头防抖线圈的位置相对应。
根据本发明的一个实施例,所述镜头驱动组件进一步包括至少一镜头对焦磁吸单元和一镜头对焦支撑单元,其中所述镜头对焦磁吸单元被设置于所述镜头对焦内框,并且所述镜头对焦磁吸单元的位置和所述镜头对焦磁石的位置相对应,以使两者之间产生水平方向的磁吸力,其中所述镜头对焦支撑单元被设置于所述镜头对焦外框和所述镜头对焦内框的镜头对焦内框侧部之间,如此悬持所述镜头对焦内框于所述镜头对焦外框的侧方。
根据本发明的一个实施例,所述镜头对焦磁吸单元的高度尺寸大于或者等于所述镜头对焦磁石的高度尺寸。
根据本发明的一个实施例,在所述镜头对焦驱动单元驱动所述镜头对焦内框在高度方向做相对于所述镜头对焦外框的运动的过程中,所述镜头对焦磁吸单元在高度方向上始终覆盖所述镜头对焦磁石。
根据本发明的一个实施例,所述镜头驱动组件进一步包括至少一镜头对焦磁轭单元,其中所述镜头对焦磁轭单元至少遮挡所述镜头对焦磁石的远离所述镜头对焦线圈的侧部。
根据本发明的一个实施例,所述镜头对焦磁轭单元进一步包括一磁轭板、一磁轭上臂以及一磁轭下臂,所述磁轭上臂和所述磁轭下臂分别一体地延伸于所述磁轭板的上侧和下侧,以于所述磁轭板、所述磁轭上臂和所述磁轭下臂之间形成一磁轭空间,其中所述镜头对焦磁石被设置于所述镜头对焦磁轭单元的所述磁轭空间,并且所述镜头对焦磁轭单元的远离所述镜头对焦线圈的侧部贴合于所述磁轭板,所述磁轭上臂和所述磁轭下臂分别遮挡所述镜头对焦磁石的上侧和下侧的至少一部分。
根据本发明的一个实施例,所述镜头对焦磁轭单元的所述隔磁上壁和磁轭下臂分别贴合于所述镜头对焦磁石的上侧和下侧。
根据本发明的一个实施例,所述镜头驱动组件进一步包括至少一镜头防抖磁吸单元和一镜头防抖支撑单元,其中所述镜头防抖磁吸单元被设置于所述镜头防抖内框的一镜头防抖内框顶部,并且所述镜头防抖磁吸单元和所述镜头防抖磁石相对应,以使两者之间产生高度方向的磁吸力,其中所述镜头防抖支撑单元被设置于所述镜头防抖载体和所述镜头对焦内框的所述镜头对焦内框顶部之间,如此悬持所述镜头防抖载体于所述镜头对焦内框的下方。
根据本发明的一个实施例,所述镜头驱动组件进一步包括一镜头对焦线路板,其中所述镜头对焦线路板包括一贴装部分和一连接部分,所述贴装部分被贴装于所述镜头对焦外框,所述连接部分一体地延伸于所述贴装部分,并且所述连接部分被电连接于所述镜头防抖磁吸单元,所述镜头防抖磁吸单元被电连接于所述镜头对焦磁吸单元,所述镜头对焦线圈被电连 接于所述镜头对焦磁吸单元。
根据本发明的一个实施例,所述镜头对焦线圈的数量和所述镜头对焦磁石的数量分别是两个,两个所述镜头对焦线圈通过一根导电线绕制形成。
根据本发明的一个实施例,所述镜头驱动组件进一步包括一镜头防抖线路板,其中每个所述镜头防抖线圈分别被贴装于所述镜头防抖线路板,所述镜头防抖线路板被设置于所述镜头对焦内框顶部,并且所述镜头防抖线路板被电连接于所述镜头防抖磁吸单元。
根据本发明的一个实施例,所述镜头驱动组件进一步包括一镜头对焦感测单元,其中所述镜头对焦感测单元包括一镜头对焦感测磁石和一镜头对焦位置感测元件,所述镜头对焦感测磁石被固定于所述镜头对焦内框,所述镜头对焦位置感测元件被贴装于所述镜头对焦线路板的所述贴装部分,并且所述镜头对焦感测磁石的位置和所述镜头对焦位置感测元件的位置相对应。
根据本发明的一个实施例,所述镜头驱动组件进一步包括一镜头对焦感测单元,其中所述镜头对焦感测单元包括一镜头对焦感测磁石和一镜头对焦位置感测元件,所述镜头对焦感测磁石被固定于所述镜头对焦外框,所述镜头对焦位置感测元件被贴装于所述镜头对焦磁石单元,并且所述镜头对焦感测磁石的位置和所述镜头对焦位置感测元件的位置相对应。
根据本发明的一个实施例,所述镜头驱动组件进一步包括至少一镜头防抖位置感测元件,其中所述镜头防抖位置感测元件被贴装于所述镜头防抖线路板,并且所述镜头防抖位置感测元件和所述镜头防抖线圈分别位于所述镜头防抖线路板的相对两侧。
根据本发明的一个实施例,所述镜头对焦支撑单元包括至少两镜头对焦轨道和至少两镜头对焦活动元件,其中每个所述镜头对焦轨道分别包括一内凹槽轨道和一外凹槽轨道,所述内凹槽轨道形成于所述镜头对焦内框的所述镜头对焦内框侧部,所述外凹槽轨道形成于所述镜头对焦外框,所述内凹槽轨道和所述外凹槽轨道相对应且两者的延伸方向一致,其中所述镜头对焦活动元件的内部和外部分别被可活动地保持在所述内凹槽轨道和所述外凹槽轨道,所述镜头对焦活动元件是滚珠,从而所述镜头对焦活动元件的内部和外部分别被可滚动地保持在所述内凹槽轨道和所述外凹槽轨道。
根据本发明的一个实施例,所述镜头对焦支撑单元包括四个所述镜头对焦活动元件,每个所述镜头对焦轨道分别被设置有两个所述镜头对焦活动元件。
根据本发明的一个实施例,所述镜头防抖支撑单元包括至少三镜头防抖轨道和至少三镜头防抖活动元件,其中每个所述镜头防抖轨道分别包括一下凹槽轨道和一上凹槽轨道,所述下凹槽轨道形成于所述镜头防抖载体的载体顶面,所述上凹槽轨道形成于所述镜头对焦内框的内框底面,所述下凹槽轨道和所述上凹槽轨道相对应且两者的延伸方向相互垂直,其中所述镜头防抖滚珠的底部和顶部分别被可活动地保持在所述下凹槽轨道和所述上凹槽轨道,从而所述镜头防抖活动元件的底部和顶部分别被可滚动地保持在所述下凹槽轨道和所述上凹槽轨道。
依本发明的另一个方面,本发明进一步提供一摄像模组,其包括:
一感光组件;
一光学镜头,其中所述光学镜头被保持在所述感光组件的感光路径;以及
一镜头驱动组件,其中所述镜头驱动组件进一步包括:
一镜头对焦外框;
一镜头对焦内框,其中所述镜头对焦内框被悬持于所述镜头对焦外框的侧方;
一镜头防抖载体,其中所述镜头防抖载体被悬持于所述镜头防抖内框的下方;
一镜头对焦驱动单元,其中所述镜头对焦驱动单元包括至少一镜头对焦磁石和至少一镜头对焦线圈,每个所述镜头对焦磁石分别被设置于所述镜头对焦外框,每个所述镜头对焦线圈分别被设置于所述镜头对焦内框,并且所述镜头对焦磁石的位置和所述镜头对焦线圈的位置相对应;以及
一镜头防抖驱动单元,其中所述镜头防抖驱动单元包括至少一镜头防抖磁石和至少一镜头防抖线圈,每个所述镜头防抖磁石分别被设置于所述镜头防抖载体,每个所述镜头防抖线圈分别被设置于所述镜头防抖内框,并且所述镜头防抖磁石的位置和所述镜头防抖线圈的位置相对应,其中所述镜头防抖载体具有一载体通道,所述光学镜头被设置于所述镜头防抖载体的所述载体通道。
根据本发明的一个实施例,所述镜头驱动组件进一步包括一镜头驱动基座和一镜头驱动壳体,所述镜头驱动壳体被安装于所述镜头驱动基座,以在所述镜头驱动壳体和所述镜头驱动基座之间形成一容置空间,其中所述镜头对焦外框被设置于所述镜头驱动基座,并且所述镜头对焦外框、所述镜头对焦内框和所述镜头防抖载体均位于所述容置空间。
根据本发明的一个实施例,所述摄像模组进一步包括一芯片驱动组件,所述感光组件被可驱动地设置于所述芯片驱动组件,其中所述芯片驱动组件位于所述镜头驱动组件的下方。
根据本发明的一个实施例,所述芯片驱动组件进一步包括:
至少一芯片防抖导磁构件;
一芯片防抖固定部,其中所述芯片防抖固定部具有一收容腔和连通于所述收容腔的一顶部开口;
一芯片防抖可动部,其中所述芯片防抖可动部被悬持于所述芯片防抖固定部的所述收容腔;以及
一芯片防抖驱动部,其中所述芯片防抖驱动部包括多个相对设置的芯片防抖磁石和多个芯片防抖线圈,这些所述芯片防抖磁石分别被设置于所述芯片防抖固定部,这些所述芯片防抖线圈分别被设置于所述芯片防抖可动部,其中所述芯片防抖导磁构件被罩设于所述防抖磁石。
根据本发明的一个实施例,所述芯片防抖导磁构件被设置于所述芯片防抖固定部,所述芯片防抖磁石被设置于所述芯片防抖导磁构件,以使所述芯片防抖磁石通过所述芯片防抖导磁构件被设置于所述芯片防抖固定部。
根据本发明的一个实施例,所述芯片防抖固定部包括一基底和一上盖,所述基底和所述上盖被扣合地安装,其中所述芯片导磁构件被设置于所述上盖,所述芯片防抖磁石被设置于所述芯片防抖导磁构件。
根据本发明的一个实施例,所述镜头驱动基座被贴装于所述上盖,并且所述镜头驱动基座的至少一部分是导磁材料制作的。
附图说明
图1A是依本发明的一较佳实施例的一摄像模组的立体示意图。
图1B示出了所述摄像模组的剖视图。
图2示出了所述摄像模组的一镜头驱动组件的立体图。
图3A和图3B分别示出了所述摄像模组的所述镜头驱动组件的不同视角的分解图。
图4是图3B的局部位置放大示意图。
图5示出了所述摄像模组的所述镜头驱动组件的第一个位置的剖视图。
图6A和图6B分别是图5的不同位置的放大示意图。
图7示出了所述摄像模组的所述镜头驱动组件的第二个位置的剖视图。
图8是图7的一个位置的放大示意图。
图9示出了所述摄像模组的所述镜头驱动组件的第三个位置的剖视图。
图10是图9的一个位置的放大示意图。
图11示出了所述摄像模组的所述镜头驱动组件的第四个位置的剖视图。
图12是图11的一个位置的放大示意图。
图13示出了所述摄像模组的所述镜头驱动组件的局部结构的立体图。
图14示出了所述摄像模组的一芯片驱动组件的立体图。
图15示出了所述摄像模组的所述芯片驱动组件的分解图。
图16A和图16B分别示出了所述摄像模组的所述芯片驱动组件的不同位置的剖视图。
图17示出了所述摄像模组的所述芯片驱动组件的局部结构的立体图。
图18示出了所述摄像模组的所述芯片驱动组件的局部结构的俯视图。
图19示出了所述摄像模组的所述芯片驱动组件的一个变形示例的局部结构的俯视图。
具体实施方式
在详细说明本发明的任何实施方式之前,应理解的是,本发明在其应用中并不限于以下描述阐述或以下附图图示的部件的构造和布置细节。本发明能够具有其他实施方式并且能够以各种方式实践或进行。另外,应理解的是,这里使用的措辞和术语出于描述的目的并且不应该被认为是限制性的。本文中使用“包括”、“包括”或“具有”及其变型意在涵盖下文中陈列的条目及其等同物以及附加条目。除非另有指定或限制,否则术语“安装”、“连接”、“支撑”和“联接”及其变型被广泛地使用并且涵盖直接安装和间接的安装、连接、支撑和联接。此外,“连接”和“联接”不限于物理或机械的连接或联接。
并且,第一方面,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制;第二方面,术语“一”应理解为“至少一”或“一个 或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
依本发明的说明书附图之附图1A至图18,依本发明的一较佳实施例的一摄像模组在接下来的描述中将被揭露和被阐述,其中所述摄像模组包括一镜头组件20、一感光组件30以及一镜头驱动组件40,所述镜头组件20包括一光学镜头21,所述光学镜头21被设置于所述感光组件30的感光路径,并且所述镜头驱动组件40被设置能够驱动所述光学镜头21平移而实现所述摄像模组的防抖,和驱动所述光学镜头21沿着所述摄像模组的光轴方向运动而实现所述摄像模组的对焦。
优选地,参考附图1A、图1B和图14,所述摄像模组进一步包括一芯片驱动组件10,其中所述感光组件30被可驱动地设置于所述芯片驱动组件10,以由所述芯片驱动组件10驱动所述感光组件30运动而实现所述摄像模组的防抖。
换言之,在本发明的所述摄像模组的这个具体示例中,所述芯片驱动组件10被设置能够驱动所述感光组件30运动,如此镜头驱动组件40被设置能够驱动所述光学镜头21运动,如此大幅度地提高所述摄像模组的防抖效果。
参考附图3A和图3B,所述镜头驱动组件40包括一镜头防抖载体410、一镜头对焦内框420以及一镜头对焦外框430,其中所述光学镜头21被设置于所述镜头防抖载体410,所述镜头防抖载体410被可驱动地连接于所述镜头对焦内框420,所述镜头对焦内框420被可驱动地连接于所述镜头对焦外框430,其中所述镜头对焦外框430能够被直接或者间接地设置于所述感光组件30,以由所述镜头驱动组件40保持所述光学镜头21于所述感光组件30的感光路径,或者所述镜头对焦外框430能够被直接或者间接地设置于所述芯片驱动组件10,以由所述镜头驱动组件40保持所述光学镜头21于所述感光组件30的感光路径。
当所述镜头对焦内框420保持不动,并且所述镜头防抖载体410被驱动做相对于所述镜头对焦内框420的运动时,所述镜头防抖载体410能够带动所述光学镜头21在垂直于所述摄像模组的光轴的方向做相对于所述感光组件30的运动,以实现所述摄像模组的防抖,即,所述光学镜头21能够被平移。换言之,所述镜头防抖载体410能够形成所述镜头驱动组件40的一镜头防抖部41的可动部分,从而所述镜头防抖载体410形成所述镜头防抖部41的一镜头防抖可动单元411,相应地,所述镜头对焦内框420能够形成所述镜头驱动组件40的所述镜头防抖部41的固定部分,从而所述镜头对焦内框420形成所述镜头防抖部41的一镜头防抖固定单元412。
当所述镜头对焦外框430保持不动,并且所述镜头对焦内框420被驱动做相对于所述镜头对焦外框430的运动时,所述镜头对焦内框420通过所述镜头防抖载体410带动所述光学镜头21在所述摄像模组的光轴方向运动,以实现所述摄像模组的对焦。换言之,所述镜头对焦内框420能够形成所述镜头驱动组件40的一镜头对焦部42的可动部分,从而所述镜头对焦内框420形成所述镜头对焦部42的一镜头对焦可动单元421,相应地,所述镜头对焦外框430能够形成所述镜头对焦部42的固定部分,从而所述镜头对焦外框430形成所述镜头对焦部42的一镜头对焦固定单元422。
也就是说,所述镜头驱动组件40包括镜头防抖部41和所述镜头对焦部42。所述镜头防抖部41包括所述镜头防抖可动单元411和所述镜头防抖固定单元412,所述光学镜头21被设置于所述镜头防抖可动单元411,当所述镜头防抖可动单元411被驱动在垂直于所述摄像模组的光轴的方向做相对于所述镜头防抖固定单元412的运动,所述摄像模组实现防抖。所述镜头对焦部42包括所述镜头对焦可动单元421和所述镜头对焦固定单元422,当所述镜头对焦可动单元421被驱动在所述摄像模组的光轴的方向做相对于所述镜头对焦固定单元422的运动时,所述摄像模组实现对焦。
参考附图3A、图3B、图7至图12,所述镜头防抖可动单元411包括所述镜头防抖载体410,所述镜头防抖固定单元412包括所述镜头对焦内框420,所述镜头对焦可动单元421包括所述镜头对焦内框420,所述镜头对焦固定单元422包括所述镜头对焦外框430,即,所述镜头对焦内框420同时作为所述镜头防抖部41和所述镜头对焦部42的一部分,如此所述镜头驱动组件40具有紧凑的结构,从而有利于减小所述摄像模组的整体体积。
继续参考附图3A、图3B、图7至图12,所述镜头防抖部41进一步包括一镜头防抖驱动单元413,其中所述镜头防抖驱动单元413包括至少一镜头防抖磁石4131和至少一镜头防抖线圈4132,所述镜头防抖磁石4131被设置于所述镜头防抖载体410,所述镜头防抖线圈4132被设置于所述镜头对焦内框420,并且所述镜头防抖磁石4131的位置和所述镜头防抖线圈4132的位置相对应,如此当所述镜头防抖线圈4132被通入电流而使所述镜头防抖线圈4132产生磁场时,所述镜头防抖线圈4132的磁场和所述镜头防抖磁石4131的磁场相互作用,以驱动所述镜头防抖载体410带动所述光学镜头21沿着垂直于所述摄像模组的光轴的方向平移,从而实现所述摄像模组的防抖。
值得一提的是,对于所述镜头防抖载体410来说,无论是在所述摄像模组实现防抖的过程中,还是在所述摄像模组实现对焦的过程中,所述镜头防抖载体410均需要被改变位置;对于所述镜头对焦内框420来说,只有在所述摄像模组实现对焦的过程中,所述镜头对焦内框420才需要被改变位置,而在所述摄像模组实现防抖的过程中,所述镜头对焦内框420保持不动。基于此,本发明的所述摄像模组通过将所述镜头防抖磁石4131设置于所述镜头防抖载体410和将所述镜头防抖线圈4132设置于所述镜头对焦内框420的方式,能够简化所述摄像模组的电路设计并保证所述摄像模组在被使用过程中的可靠性。
尽管如此,在本发明的所述摄像模组的其他示例中,所述镜头防抖驱动单元413的所述镜头防抖磁石4131可以被设置于所述镜头对焦内框420,相应地,所述镜头防抖线圈4132可以被设置于所述镜头防抖载体410。
进一步地,所述镜头防抖载体410具有一载体顶面4101、相对于所述载体顶面4101的一载体底面4102以及自所述载体顶面4101延伸至所述载体底面4102的一载体通道4103,其中所述镜头防抖载体410环绕于所述光学镜头21,以允许所述光学镜头21被设置于所述镜头防抖载体410的所述载体通道4103。优选地,所述光学镜头21的外壁和所述镜头防抖载体410的用于形成所述载体通道4103的内壁被贴装,以固定所述光学镜头21于所述镜头防抖载体410。
所述镜头对焦内框420包括一镜头对焦内框顶部4201,其中所述镜头对焦内框顶部4201具有一内框顶面42011、相对于所述内框顶面42011的一内框底面42012以及自所述内框顶面42011延伸至所述内框底面42012的一内框通道42013。所述镜头防抖载体410以所述镜头对焦内框顶部4201的所述内框底面42012和所述镜头防抖载体410的所述载体顶面4101相对应的方式被悬持于所述镜头对焦内框420的底部,并且所述镜头防抖载体410被驱动能够做相对于所述镜头对焦内框顶部4201的运动。所述光学镜头21被可活动地保持在所述镜头对焦内框顶部4201的所述内框通道42013,以使所述镜头对焦内框顶部4201环绕于所述光学镜头21的四周。
可以理解的是,所述镜头对焦内框顶部4201的用于界定所述内框通道42013的内壁和所述光学镜头21的外壁之间具有间隙,以允许所述光学镜头21平移而实现所述摄像模组的防抖。
所述镜头防抖驱动单元413的所述镜头防抖磁石4131被设置于所述镜头防抖载体410的所述载体顶面4101,所述镜头防抖线圈4132被设置于所述镜头对焦内框顶部4201的所述内框底面42012,如此:一方面,所述镜头防抖磁石4131和所述镜头防抖线圈4132相邻,以确保所述镜头防抖线圈4132在被通电时产生的磁场和所述镜头防抖磁石4131的磁场能够相互作用,从而提高足够的驱动力驱动所述镜头防抖载体410带动所述光学镜头21在垂直于所述摄像模组的光轴的方向平移,以实现所述摄像模组的防抖;另一方面,所述镜头防抖磁石4131和所述镜头防抖线圈4132能够被保持在所述镜头防抖载体410和所述镜头对焦内框顶部4201之间,以使所述镜头防抖磁石4131和所述镜头防抖线圈4132远离所述感光组件30和/或所述芯片驱动组件10,从而减少所述镜头防抖磁石4131向所述感光组件30的方向外溢的磁场对所述感光组件30的线路板、感光元件以及所述芯片驱动组件10的磁干扰。
优选地,所述镜头防抖载体410进一步具有至少一防抖磁石凹槽4104,所述防抖磁石凹槽4104自所述载体顶面4101向所述载体底面4102方向延伸,其中所述镜头防抖磁石4131被嵌入所述镜头防抖载体410的所述防抖磁石凹槽4104,如此设置所述镜头防抖磁石4131于所述镜头防抖载体410。并且,通过将所述镜头防抖磁石4131嵌入所述镜头防抖载体410的所述防抖磁石凹槽4104的方式,能够降低所述镜头防抖磁石4131的高度位置,从而有利于降低所述镜头驱动组件40的高度尺寸。
值得一提的是,通过将所述镜头防抖磁石4131嵌入所述镜头防抖载体410的所述防抖磁石凹槽4104的方式,所述镜头防抖磁石4131的顶面可以低于所述镜头防抖载体410的所述载体顶面4101,或者,所述镜头防抖磁石4131的顶面可以平齐于所述镜头防抖载体410的所述载体顶面4101。可以理解的是,通过将所述镜头防抖磁石4131嵌入所述镜头防抖载体410的所述防抖磁石凹槽4104的方式,所述镜头防抖磁石4131的顶面可以高于所述镜头防抖载体410的所述载体顶面4101。
可选地,在本发明的所述摄像模组的其他示例中,所述镜头防抖磁石4131可以分别被直接贴装于所述镜头防抖载体410的所述载体顶面4101。
所述镜头防抖驱动单元413包括四个所述镜头防抖磁石4131和四个所述镜头防抖线圈4132,每个所述镜头防抖磁石4131分别被设置于所述镜头防抖载体410的所述载体顶面4101,每个所述镜头防抖线圈4132分别被设置于所述镜头对焦内框420的所述镜头对焦内框顶部4201的所述内框底面42012,并且每个所述镜头防抖磁石4131的位置和每个所述镜头防抖线圈4132的位置分别相对。
为了便于描述和理解,定义所述镜头防抖驱动单元413的四个所述镜头防抖磁石4131分别为一第一防抖磁石4131a、一第二防抖磁石4131b、一第三防抖磁石4131c和一第四防抖磁石4131d,其中所述第一防抖磁石4131a、所述第二防抖磁石4131b、所述第三防抖磁石4131c和所述第四防抖磁石4131d分别被固定于所述镜头防抖载体410。相应地,定义所述镜头防抖驱动单元413的四个所述镜头防抖线圈4132分别为一第一防抖线圈4132a、一第二防抖线圈4132b、一第三防抖线圈4132c和一第四防抖线圈4132d,其中所述第一防抖线圈4132a、所述第二防抖线圈4132b、所述第三防抖线圈4132c和所述第四防抖线圈4132d分别被固定于所述镜头对焦内框420。
所述第一防抖磁石4131a的位置和所述第一防抖线圈4132a的位置相对应,所述第二防抖磁石4131b的位置和所述第二防抖线圈4132b的位置相对应,所述第三防抖磁石4131c的位置和所述第三防抖线圈4132c的位置相对应,所述第四防抖磁石4131d的位置和所述第四防抖线圈4132d的位置相对应,如此当所述第一防抖线圈4132a、所述第二防抖线圈4132b、所述第三防抖线圈4132c和所述第四防抖线圈4132d分别被通电而产生磁场时,所述第一防抖线圈4132a、所述第二防抖线圈4132b、所述第三防抖线圈4132c和所述第四防抖线圈4132d的磁场和所述第一防抖磁石4131a、所述第二防抖磁石4131b、所述第三防抖磁石4131c和所述第四防抖磁石4131d的磁场分别相互作用,以驱动所述镜头防抖载体410带动所述光学镜头21在垂直于所述摄像模组的光轴的平面平移,以实现所述摄像模组的防抖。
优选地,所述镜头防抖载体410的所述载体顶面4101设有四个所述防抖磁石凹槽4104,其分别用于容置所述第一防抖磁石4131a、所述第二防抖磁石4131b、所述第三防抖磁石4131c和所述第四防抖磁石4131d。基于所述第一防抖磁石4131a、所述第二防抖磁石4131b、所述第三防抖磁石4131c和所述第四防抖磁石4131d的位置,四个所述防抖磁石凹槽4104依次被定义为一第一磁石凹槽4104a、一第二磁石凹槽4104b、一第三磁石凹槽4104c和一第四磁石凹槽4104d,其中所述第一防抖磁石4131a被容置于所述镜头防抖载体410的所述第一磁石凹槽4104a,所述第二防抖磁石4131b被容置于所述镜头防抖载体410的所述第二磁石凹槽4104b,所述第三防抖磁石4131c被容置于所述镜头防抖载体410的所述第三磁石凹槽4104c,所述第四防抖磁石4131d被容置于所述镜头防抖载体410的所述第四磁石凹槽4104d。
所述镜头防抖载体410具有一近侧41001、一远侧41002以及两边侧41003,所述近侧41001和所述远侧41002相对应,两个所述边侧41003相对应,并且两个所述边侧41003的相对两端分别延伸以被连接于所述近侧41001和所述远侧41002的端部。所述镜头防抖载体410的靠近所述镜头对焦外框430的侧部被定义为所述近侧41001,相应地,所述镜头防抖载体410 的远离所述镜头对焦外框430的侧部被定义为所述远侧41002,所述镜头防抖载体410的另外两个侧部被定义为所述边侧41003。
所述第二磁石凹槽4104b和所述第三磁石凹槽4104c被并排地设于所述镜头防抖载体410的所述远侧41002,所述第一磁石凹槽4104a被设于所述镜头防抖载体410的一个所述边侧41003,所述第四磁石凹槽4104d被设于所述镜头防抖载体410的另一个所述边侧41003,并且所述第一磁石凹槽4104a和所述第二磁石凹槽4104b相互平行,如此所述第二防抖磁石4131b和所述第三防抖磁石4131c被并排地设置于所述镜头防抖载体410的所述远侧41002,所述第一防抖磁石4131a被设置于所述镜头防抖载体410的一个所述边侧41003,所述第四防抖磁石4131d被设置于所述镜头防抖载体410的另一个所述边侧41003,并且所述第一防抖磁石4131a和所述第四防抖磁石4131d相互平行。可以理解的是,所述第一防抖磁石4131a和所述第二防抖磁石4131b相邻设置,所述第三防抖磁石4131c和所述第四防抖磁石4131d相邻设置。
优选地,所述第一防抖磁石4131a的延伸方向和所述第二防抖磁石4131b的延伸方向相互垂直,所述第三防抖磁石4131c的延伸方向和所述第四防抖磁石4131d的延伸方向相互垂直,并且所述第一防抖磁石4131a和所述第四防抖磁石4131d呈轴对称设置,所述第二防抖磁石4131b和所述第三防抖磁石4131c呈轴对称设置。
优选地,所述第二防抖磁石4131b和所述第三防抖磁石4131c的尺寸小于所述第一防抖磁石4131a和所述第四防抖磁石4131d的尺寸,如此有利于减小所述镜头防抖载体410的横向尺寸,从而减小所述镜头驱动组件420的横向尺寸。
可选地,在本发明的所述摄像模组的其他示例中,所述镜头防抖载体410的所述远侧41002可以被设有一个所述防抖磁石凹槽4104和被设置有一个所述镜头防抖磁石4131,此时,被设置于所述镜头防抖载体410的所述远侧41002的所述镜头防抖磁石4131的尺寸和被设置于所述镜头防抖载体410的所述边侧41003的所述镜头防抖磁石4131的尺寸一致。可以理解的是,在这个实施例中,所述镜头防抖驱动单元413包括三个所述镜头防抖磁石4131和三个所述镜头防抖线圈4132。
可选地,在本发明的所述摄像模组的其他示例中,所述镜头防抖载体410的两个所述边侧41003分别被设置有一个所述镜头防抖磁石4131,或者所述镜头防抖载体410的两个所述边侧41003分别被设置有两个所述镜头防抖磁石4131,而在所述镜头防抖载体410的所述远侧41002未被设置所述镜头防抖磁石4131。
参考附图5和图6B,所述镜头防抖部41进一步包括至少一镜头防抖导磁单元419,其中所述镜头防抖导磁单元419通过嵌件注塑的方式成型于所述镜头防抖载体410中,并且所述镜头防抖导磁单元419的位置和所述镜头防抖磁石4131的位置相对应,如此:一方面,所述镜头防抖磁石4131和所述镜头防抖导磁单元419能够相互磁吸,以增加所述镜头防抖磁石4131和所述镜头防抖载体410的结合关系的稳定性,另一方面,所述镜头防抖导磁单元419能够约束所述镜头防抖磁石4131的磁场。
可选地,所述镜头防抖导磁单元419的表面可以裸露于所述镜头防抖载体410的所述防抖磁石凹槽4104,如此所述镜头防抖磁石4131和所述镜头防抖导磁单元419可以直接接触。
所述镜头防抖部41进一步包括一镜头防抖线路板414,所述镜头防抖线圈4132被固定并电连接于所述镜头防抖线路板414,所述镜头防抖线路板414被固定于所述镜头对焦内框顶部4201的所述内框底面42012,如此所述镜头防抖线圈4132通过所述镜头防抖线路板414被设置于所述镜头对焦内框420。所述摄像模组通过所述镜头防抖线路板414向所述镜头防抖线圈4132供电而使其产生磁场,如此所述镜头防抖线圈4132的磁场和所述镜头防抖磁石4131的磁场相互作用而能够驱动所述镜头防抖载体410平移,以实现所述摄像模组的防抖。
例如,在本发明的所述摄像模组的这个具体示例中,所述镜头防抖线路板414呈“匚”字形,其被固定于所述镜头对焦内框顶部4201的所述内框底面42012,且环绕于所述镜头对焦内框顶部4201的所述内框通道42013,其中所述第一防抖线圈4132a、所述第二防抖线圈4132b、所述第三防抖线圈4132c和所述第四防抖线圈4132d均通过所述镜头防抖线路板414被固定于所述镜头对焦内框420的所述镜头对焦内框顶部4201的所述内框底面42012。例如,所述第一防抖线圈4132a、所述第二防抖线圈4132b、所述第三防抖线圈4132c和所述第四防抖线圈4132d分别被贴装于所述镜头防抖线路板414,所述镜头防抖线路板414被固定于所述镜头对焦内框420的所述镜头对焦内框顶部4201的所述内框底面42012,如此所述第一防抖线圈4132a、所述第二防抖线圈4132b、所述第三防抖线圈4132c和所述第四防抖线圈4132d均通过所述镜头防抖线路板414被固定于所述镜头对焦内框420的所述镜头对焦内框顶部4201的所述内框底面42012。
优选地,所述镜头防抖线路板414是柔性电路板(FPC),如此所述镜头防抖线路板414具有较薄的厚度尺寸,从而有利于降低所述镜头驱动组件40的整体高度尺寸。
所述镜头防抖部41进一步包括至少一镜头防抖位置感测元件415,所述镜头防抖位置感测元件415被贴装于所述镜头防抖线路板414,并且所述镜头防抖位置感测元件415的位置和所述镜头防抖磁石4131的位置相对应,如此所述镜头防抖位置感测元件415通过感测所述镜头防抖磁石4131的位置的方式感测所述镜头防抖载体410带动所述光学镜头21的平移方向和距离。
值得一提的是,所述镜头防抖位置感测元件415的类型在本发明的所述摄像模组中不受限制。例如,所述镜头防抖位置感测元件415可以是但不限于霍尔元件。
优选地,所述镜头防抖位置感测元件415和所述镜头防抖线圈4132分别位于所述镜头防抖线路板414的相对两侧,其中所述镜头对焦内框顶部4201进一步具有至少一感测元件容纳腔42014,以供容纳所述镜头防抖位置感测元件415。更优选地,所述镜头对焦内框顶部4201的所述感测元件容纳腔42014是穿孔。可以理解的是,通过将所述镜头防抖位置感测元件415和所述镜头防抖线圈4132分别设置于所述镜头防抖线路板414的相对两侧的方式,所述摄像模组使得所述镜头防抖线圈4132在设计时不需要考虑如何布置所述镜头防抖位置感测元件415,从而所述镜头防抖位置感测元件415的设置不需要占用长宽方向的尺寸,以有利于减小所述摄像模组的长宽尺寸。同时所述镜头对焦内框顶部4201设有所述感测元件容纳腔42014, 以用于容纳所述镜头防抖位置感测元件415,从而所述镜头防抖位置感测元件415的设置不需要占用高度方向的尺寸。
优选地,在本发明的所述摄像模组的这个具体示例中,所述镜头对焦内框顶部4201具有两个所述感测元件容纳腔42014,其中一个所述感测元件容纳腔42014对应于所述镜头防抖载体410的所述远侧41002,从而使得被保持在这个所述感测元件容纳腔42014的所述镜头防抖位置感测元件415对应于所述第二防抖线圈4132b或所述第三防抖线圈4132c,,以用于感测所述第二防抖磁石4131b或所述第三防抖磁石4131c的位置变化,相应地,另一个所述感测元件容纳腔42014对应于所述镜头防抖载体410的一个所述边侧41003,从而使得被保持在这个所述感测元件容纳腔42014的所述镜头防抖位置感测元件415对应于所述第一防抖线圈4132a或所述第四防抖线圈4132d,以用于感测所述第一防抖磁石4131a或所述第四防抖磁石4131d的位置变化,从而获得所述镜头防抖载体410的位置。
所述镜头防抖部41进一步包括至少一镜头防抖磁吸单元416和一镜头防抖支撑单元417。所述镜头防抖磁吸单元416被设置于所述镜头对焦内框420的所述镜头对焦内框顶部4201,并且所述镜头防抖驱动单元413的所述镜头防抖磁石4131对应于所述镜头防抖磁吸单元416,如此所述镜头防抖磁吸单元416和所述镜头防抖磁石4131因磁吸力而相互吸引,以使所述镜头防抖载体410和所述镜头对焦内框420的所述镜头对焦内框顶部4201具有相互靠近的趋势。所述镜头防抖支撑单元417被设置于所述镜头防抖载体410的所述载体顶面4101和所述镜头对焦内框顶部4201的所述内框底面42012之间,以阻止所述镜头防抖载体410和所述镜头对焦内框420的所述镜头对焦内框顶部4201相互贴合。通过上述这样的结构,所述镜头防抖载体410被悬持于所述镜头对焦内框420的所述容纳腔4203。
在本发明的所述摄像模组的这个具体示例中,所述镜头防抖磁吸单元416环绕于所述镜头对焦内框顶部4201的所述内框通道42013,所述第一防抖磁石4131a、所述第二防抖磁石4131b、所述第三防抖磁石4131c和所述第四防抖磁石4131d分别对应于所述镜头防抖磁吸单元416的不同位置,如此在所述镜头防抖载体410被驱动做相对于所述镜头对焦内框420的平移时,能够避免所述镜头防抖载体410偏斜。
优选地,所述镜头防抖磁吸单元416被包裹在所述镜头对焦内框420的所述镜头对焦内框顶部4201的内部。例如,可以通过件注塑的方式允许所述镜头对焦内框420的所述镜头对焦内框顶部4201包裹所述镜头防抖磁吸单元416。
进一步地,所述镜头防抖支撑单元417包括至少三镜头防抖轨道4171和至少三镜头防抖活动元件4173。每个所述镜头防抖轨道4171分别包括一下凹槽轨道41711和一上凹槽轨道41712,其中所述下凹槽轨道41711形成于所述镜头防抖载体410的所述载体顶面4101,所述上凹槽轨道41712形成于所述镜头对焦内框420的所述镜头对焦内框顶部4201的所述内框底面42012,所述下凹槽轨道41711的位置和所述上凹槽轨道41712的位置相对应,并且所述下凹槽轨道41711的延伸方向和所述上凹槽轨道41712的延伸方向相互垂直,而呈“十”字形。所述镜头防抖活动元件4173的底部和顶部分别被容纳于所述镜头防抖轨道4171的所述下凹槽轨道41711和所述上凹槽轨道41712,并分别被允许沿着所述下凹槽轨道41711和所述上凹 槽轨道41712活动,如此所述镜头防抖活动元件4173被可活动地保持在所述镜头防抖载体410和所述镜头对焦内框顶部4201之间,以阻止所述镜头防抖载体410和所述镜头对焦内框420的所述镜头对焦内框顶部4201相互贴合,从而悬持所述镜头防抖载体410于所述镜头对焦内框420的底部。并且,通过允许所述下凹槽轨道41711的延伸方向和所述上凹槽轨道41712的延伸方向相互垂直的方式,当所述镜头防抖载体410被所述镜头防抖驱动单元413驱动而平移时,能够避免干涉。
例如,在本发明的所述摄像模组的这个具体示例中,所述镜头防抖活动元件4173可以是滚珠,从而所述镜头防抖活动元件4173被允许沿着所述下凹槽轨道41711和所述上凹槽轨道41712滚动,如此所述镜头防抖活动元件4173被可滚动地保持在所述镜头防抖载体410和所述镜头对焦内框顶部4201之间,以阻止所述镜头防抖载体410和所述镜头对焦内框420的所述镜头对焦内框顶部4201相互贴合,从而悬持所述镜头防抖载体410于所述镜头对焦内框420的所述容纳腔4203。可选地,在本发明的所述摄像模组的其他示例中,所述镜头防抖活动元件4173可以是滑块,从而所述镜头防抖活动元件4173被允许沿着所述下凹槽轨道41711和所述上凹槽轨道41712滑动,如此所述镜头防抖活动元件4173被可滑动地保持在所述镜头防抖载体410和所述镜头对焦内框顶部4201之间,以阻止所述镜头防抖载体410和所述镜头对焦内框420的所述镜头对焦内框顶部4201相互贴合,从而悬持所述镜头防抖载体410于所述镜头对焦内框420的底部。
优选地,在所述镜头防抖活动元件4173被实施为滚珠的实施例中,所述镜头防抖支撑单元417的这些所述镜头防抖活动元件4173的直径相同,如此能够保证所述镜头防抖载体410的所述载体顶面4101和所述镜头对焦内框顶部4201的所述内框底面42012的平整度。
在本发明的所述摄像模组的这个具体示例中,所述镜头防抖支撑单元417包括四个所述镜头防抖轨道4171和四个所述镜头防抖活动元件4173,其中四个所述镜头防抖轨道4171的所述下凹槽轨道41711分别形成于所述镜头防抖载体410的四个转角处,四个所述镜头防抖轨道4171的所述上凹槽轨道41712分别形成于所述镜头对焦内框顶部4201的四个转角处,如此四个所述镜头防抖活动元件4173分别于所述镜头防抖载体410的四个转角处被保持在所述镜头防抖载体410和所述镜头对焦内框顶部4201之间。即,这些所述镜头防抖活动元件4173能够间隔地环绕于所述光学镜头21的四周,从而:一方面,所述镜头防抖驱动单元413能够顺畅地驱动所述镜头防抖载体410带动所述光学镜头21做相对于所述镜头对焦内框420的平移运动,另一方面,在所述镜头防抖载体410带动所述光学镜头21运动的过程中,能够避免所述镜头防抖载体410和所述光学镜头21倾斜。
继续参考附图3A至图6A,所述镜头对焦内框420包括一镜头对焦内框周部4202,所述镜头对焦内框周部4202进一步包括一镜头对焦内框侧部42023,所述镜头对焦内框侧部42023自所述镜头对焦内框顶部4201一体地向下延伸,所述镜头对焦外框430被邻近地设置于所述镜头对焦内框420的所述镜头对焦内框侧部42023。
所述镜头对焦部42进一步包括一镜头对焦驱动单元423,所述镜头对焦驱动单元423包括至少一镜头对焦磁石4231和至少一镜头对焦线圈4232,每个所述镜头对焦磁石4231分别 被设置于所述镜头对焦外框430,每个所述镜头对焦线圈4232分别被设置于所述镜头对焦内框420的所述镜头对焦内框侧部42023,并且所述镜头对焦磁石4231的位置和所述镜头对焦线圈4232的位置相对应,如此当每个所述镜头对焦线圈4232被通入电流而使每个所述镜头对焦线圈4232产生磁场时,每个所述镜头对焦线圈4232的磁场和每个所述镜头对焦磁石4231的磁场相互作用,以驱动所述镜头对焦内框420带动所述镜头防抖载体410和所述光学镜头21沿着所述摄像模组的光轴方向移动,从而实现所述摄像模组的对焦。
可选地,在本发明的所述摄像模组的其他示例中,所述镜头对焦驱动单元423的每个所述镜头对焦磁石4231可以被设置于所述镜头对焦内框420的所述镜头对焦内框侧部42023,每个所述镜头对焦线圈4232可以被设置于所述镜头对焦外框430。
具体地,在本发明的所述摄像模组的这个具体示例中,所述镜头对焦驱动单元423的所述镜头对焦磁石4231和所述镜头对焦线圈4232的数量均是两个,其中两个所述镜头对焦磁石4231分别被固定地设置于所述镜头对焦外框430的两个端部,相应地,两个所述镜头对焦线圈4232分别被固定于所述镜头对焦内框侧部42023的同一侧的两个端部,如此两个所述镜头对焦线圈4232和两个所述镜头对焦磁石4231分别相对应。
更具体地,所述镜头对焦外框430具有一外框外侧4301、相对于所述外框外侧4301的一外框内侧4302以及两对焦磁石凹槽4305,两个所述对焦磁石凹槽4305呈轴对称,并且两个所述对焦磁石凹槽4305分别于所述镜头对焦外框430的相对两端自所述外框内侧4302向所述外框外侧4301方向延伸,其中每个所述镜头对焦磁石4231分别嵌入所述镜头对焦外框430的所述对焦磁石凹槽4305,如此分别固定地设置每个所述镜头对焦磁石4231于所述镜头对焦外框430。并且,通过将每个所述镜头对焦磁石4231分别嵌入所述镜头对焦外框430的所述对焦磁石凹槽4305的方式,能够减小所述镜头驱动组件40的长宽尺寸。
值得一提的是,通过将每个所述镜头对焦磁石4231分别嵌入所述镜头对焦外框430的所述对焦磁石凹槽4305的方式,所述镜头对焦磁石4231可以凸出于所述镜头对焦外框430的所述外框内侧4302,或者,所述镜头对焦磁石4231可以平齐于所述镜头对焦外框430的所述外框内侧4302,或者所述镜头对焦磁石4231可以内凹于所述镜头对焦外框430的所述外框内侧4302。
可选地,在本发明的所述摄像模组的其他示例中,每个所述镜头对焦磁石4231可以分别被直接贴装于所述镜头对焦外框430的所述外框内侧4302的表面。
所述镜头对焦部42包括一镜头对焦线路板424,所述镜头对焦线路板424进一步包括一贴装部分4241和一体地延伸于所述贴装部分4241的一连接部分4242,所述贴装部分4241被贴装于所述镜头对焦外框430的所述外框外侧4301,所述连接部分4242被电连接于所述镜头防抖磁吸单元416,每个所述镜头对焦线圈4232分别被电连接于所述镜头防抖磁吸单元416,如此电流能够依次经所述镜头对焦线路板424的所述贴装部分4241和所述连接部分4242以及所述镜头防抖磁吸单元416被提供至每个所述镜头对焦线圈4232。优选地,两个所述镜头对焦线圈4232被串联,以便于通过所述镜头防抖磁吸单元416被电连接于所述镜头对焦线路 板424。更优选地,两个所述镜头对焦线圈4232可以由一根导电线绕制形成,从而使得两个所述镜头对焦线圈4232被串联。
所述镜头对焦部42进一步包括至少一镜头对焦磁吸单元426,所述镜头对焦磁吸单元426被设置于所述镜头对焦内框420的所述镜头对焦内框侧部42023,并且所述镜头对焦驱动单元423的每个所述镜头对焦磁石4231分别对应于所述镜头对焦磁吸单元426,如此所述镜头对焦磁吸单元426和所述镜头对焦磁石4231因磁吸力相互吸引,以使所述镜头对焦内框420的所述镜头对焦内框侧部42023和所述镜头对焦外框430具有相互靠近的趋势。
优选地,所述镜头对焦磁吸单元426部分或者全部被包裹在所述镜头对焦内框420的所述镜头对焦内框侧部42023的内部,其中所述镜头对焦线圈4232位于所述镜头对焦磁石4231和所述镜头对焦磁石单元426之间。例如,可以通过嵌件注塑的方式允许所述镜头对焦内框420的所述镜头对焦内框侧部42023包裹所述镜头对焦磁吸单元426的部分或者全部。
例如,在本发明的所述摄像模组的一个具体示例中,所述镜头对焦磁吸单元426全部被包裹在所述镜头对焦内框420的所述镜头对焦内框420的所述镜头对焦内框侧部4203的内部,此时,所述镜头对焦线圈4232被贴装于所述镜头对焦内框侧部4203的表面。在本发明的所述摄像模组的另一个具体示例中,所述镜头对焦磁吸单元426部分被包裹在所述镜头对焦内框420的所述镜头对焦内框420的所述镜头对焦内框侧部4203的内部,而使所述镜头对焦磁吸单元426的表面裸露,所述镜头对焦线圈4232被贴装于所述镜头对焦内框侧部4203的表面并与所述镜头对焦磁吸单元426电连接,例如通过焊接的方式将所述镜头对焦线圈4232的端部和所述镜头对焦磁吸单元426的表面电连接。
所述镜头对焦线路板424是柔性线路板(FPC),如此有利于减小所述镜头驱动组件40的长宽尺寸。
所述镜头对焦线路板424的所述连接部分4242弯曲延伸,并且所述镜头对焦线路板424是柔性线路板(FPC),并且所述镜头对焦线路板424的所述连接部分4242和所述镜头防抖磁吸单元416于所述镜头对焦内框420的远离所述镜头对焦外框430的侧部被电连接,如此所述连接部分4242的长度能够被增长,相应地,所述连接部分4242的变形幅度能够被增加,从而所述镜头对焦驱动单元423能够顺畅地驱动所述镜头对焦内框420带动所述镜头防抖载体410和所述光学镜头21沿着所述摄像模组的光轴方向移动。
换言之,在所述镜头对焦驱动单元423驱动所述镜头对焦内框420沿着所述摄像模组的光轴做相对于所述镜头对焦外框430的运动时,所述镜头对焦内框420能够带动所述镜头对焦线路板424的所述连接部分4242产生变形,通过允许所述连接部分4242弯曲延伸以及允许所述连接部分4242和所述镜头防抖磁吸单元416于所述镜头对焦内框420的远离所述镜头对焦外框430的侧部被电连接的方式,一方面,能够降低所述镜头对焦线路板424对所述镜头对焦内框420的移动幅度的影响,另一方面,能够降低所述镜头对焦线路板424的电路设计和可靠性的影响。
所述镜头对焦线路板424的所述连接部分4242沿着所述镜头对焦内框420的所述内框顶面42011的四侧分布,呈环绕地围绕于所述镜头对焦内框420的所述内框通道42013分布。
进一步地,所述镜头对焦线路板424的所述连接部分4242包括一可动电连接部42421和四个变形电连接部42422,所述可动电连接部42421被固定于所述镜头对焦内框420和被电连接于所述镜头防抖磁吸单元416,四个所述变形电连接部42422电连接所述贴装部分4241和所述可动电连接部42421。当所述镜头对焦内框420被驱动沿着所述摄像模组的光轴方向做相对于所述镜头对焦外框430的运动时,四个所述变形电连接部42422能够减小所述镜头对焦线路板424对所述镜头对焦内框420的移动阻碍,从而使得所述镜头对焦内框420能够被顺畅地驱动。
具体地,四个所述变形电连接部42422依次被定义为一第一连接部42422a、一第二连接部42422b、一第三连接部42422c和一第四连接部42422d,其中所述第一连接部42422a和所述第三连接部42422c呈轴对称地设置,所述第二连接部42422b和所述第四连接部42422d呈轴对称地设置,其中所述第一连接部42422a和所述第二连接部42422b相连接,并用于导通所述贴装部分4241和所述可动电连接部42421,相应地,所述第三连接部42422c和所述第四连接部42422d相连接,并用于导通所述贴装部分4241和所述可动电连接部42421。
参考附图13,所述镜头对焦磁吸单元426的数量是两个,其中一个所述镜头对焦线圈4232被电连接于一个所述镜头对焦磁吸单元426,另一个所述镜头对焦线圈4232被电连接于另一个所述镜头对焦磁吸单元426。所述镜头防抖磁吸单元416包括一第一导电磁吸元件4162和一第二导电磁吸元件4163,其中所述第一导电磁吸元件4162自一个所述镜头对焦磁吸单元426一体地延伸至所述镜头对焦线路板424的所述连接部分4242的所述可动电连接部42421,以允许一个所述镜头对焦线圈4232依次通过所述镜头对焦磁吸单元426、所述第一导电磁吸元件4162被电连接于所述镜头对焦线路板424,并且所述第一导电磁吸元件4162的不同位置分别对应于所述第一防抖磁石4131a和所述第二防抖磁石4131b,其中所述第二导电磁吸元件4163自另一个所述镜头对焦磁吸单元426一体地延伸至所述镜头对焦线路板424的所述连接部分4242的所述可动电连接部42421,以允许另一个所述镜头对焦线圈4232依次通过所述镜头对焦磁吸单元426、所述第二导电磁吸元件4163被电连接于所述镜头对焦线路板424,并且所述第二导电磁吸元件4163的不同位置分别对应于所述第三防抖磁石4131c和所述第四防抖磁石4131d。
继续参考附图13,所述镜头防抖磁吸单元416进一步包括一对第一导电体4164和一对第二导电体4165,其中一对所述第一导电体4164的相对两端分别被电连接于所述镜头对焦线路板424的所述连接部分4242的所述可动电连接部42421和所述镜头防抖线路板414,并且一对所述第一导电体4164的不同位置分别对应于所述第一防抖磁石4131a和所述第二防抖磁石4131b,一对所述第二导电体4165的相对两端分别被电连接于所述镜头对焦线路板424的所述连接部分4242的所述可动电连接部42421和所述镜头防抖线路板414,并且一对所述第二导电体4165的不同位置分别对应于所述第三防抖磁石4131c和所述第四防抖磁石4131d,如此所述镜头防抖线路板414和所述镜头对焦线路板424通过所述镜头防抖磁吸单元416被电连接。
所述镜头对焦部42进一步包括一镜头对焦感测单元425,其中所述镜头对焦感测单元425包括一镜头对焦感测磁石4251和一镜头对焦位置感测元件4252,所述镜头对焦感测磁石4251被固定于所述镜头对焦内框420的所述镜头对焦内框侧部42023,所述镜头对焦位置感测元件4252被固定于和电连接于所述镜头对焦线路板424的所述贴装部分4241,并且所述镜头对焦位置感测元件4252和所述镜头对焦感测磁石4251相对应。所述镜头对焦位置感测元件4252适于通过感测所述镜头对焦感测磁石4251的位置变化的方式获取所述镜头对焦内框420的位置。
值得一提的是,所述镜头对焦位置感测元件4252的类型在本发明的所述摄像模组中不受限制。例如,在一个可选示例中,所述镜头对焦位置感测元件4252可以是霍尔元件。在另一个可选示例中,所述镜头对焦位置感测元件4252可以是对焦驱动芯片,其适于在获取所述镜头对焦感测磁石4251的位置变化的同时控制所述镜头对焦线圈4232的电流。
值得一提的是,在本发明的所述摄像模组的其他示例中,所述镜头对焦感测磁石4251可以被设置于所述镜头对焦外框430,所述镜头对焦位置感测元件4252可以被电连接于所述镜头对焦磁吸单元426。
具体地,所述镜头对焦内框420的所述镜头对焦内框周部4202进一步具有一感测磁石凹槽42025,其形成于所述镜头对焦内框侧部42023的中部,且在两个所述镜头对焦线圈4232之间,所述镜头对焦感测磁石4251被嵌入所述镜头对焦内框420的所述感测磁石凹槽42025。所述镜头对焦外框430具有一感测元件通孔4304,其于所述镜头对焦外框430的中部自所述外框外侧4301延伸至所述外框内侧4302,所述镜头对焦位置感测元件4252被贴装于所述镜头对焦线路板424的所述贴装部分4241,并且所述镜头对焦位置感测元件4252被保持在所述镜头对焦外框430的所述感测元件通孔4304。
所述镜头对焦部42进一步包括一镜头对焦支撑单元427,所述镜头对焦支撑单元427被设置于所述镜头对焦内框420的所述镜头对焦内框侧部42023和所述镜头对焦外框430之间,以阻止所述镜头对焦内框420的所述镜头对焦内框侧部42023和所述镜头对焦外框430相互贴合。通过上述这样的结构,所述镜头对焦内框420被悬持于所述镜头对焦外框430的侧部。
进一步地,所述镜头对焦支撑单元427包括至少两镜头对焦轨道4271和至少三镜头对焦活动元件4273。每个所述镜头对焦轨道4271分别包括一内凹槽轨道42711和一外凹槽轨道42712,所述内凹槽轨道42711形成于所述镜头对焦内框侧部42023,且位于所述镜头对焦磁石4231的外侧,所述外凹槽轨道42712形成于所述镜头对焦外框430的所述外框内侧4302,且位于所述镜头对焦线圈4232的外侧,并且所述内凹槽轨道42711和所述外凹槽轨道42712分别沿着所述摄像模组的高度方向延伸,形成“丨”字形,即,所述内凹槽轨道42711和所述外凹槽轨道42712分别沿着Z轴方向延伸。所述镜头对焦活动元件4273的内部和外部分别被容纳于所述镜头对焦轨道4271的所述内凹槽轨道42711和所述外凹槽轨道42712,如此所述镜头对焦活动元件4273被可活动地保持在所述镜头对焦内框侧部42023和所述镜头对焦外框430之间,以阻止所述镜头对焦内框420的所述镜头对焦内框侧部42023和所述镜头对焦外框430相互贴合,从而悬持所述镜头对焦内框420于所述镜头对焦外框430的侧部。并且, 通过允许所述内凹槽轨道42711和所述外凹槽轨道42712分别沿着所述摄像模组的高度方向延伸的方式,所述镜头对焦内框420被允许沿着所述摄像模组的高度方向做相对于所述镜头对焦外框430运动。
优选地,在本发明的所述摄像模组的这个具体示例中,所述镜头对焦活动元件4273是滚珠,从而所述镜头对焦活动元件4273被可滚动地保持在所述镜头对焦内框侧部42023和所述镜头对焦外框430之间,以阻止所述镜头对焦内框420的所述镜头对焦内框侧部42023和所述镜头对焦外框430相互贴合,从而悬持所述镜头对焦内框420于所述镜头对焦外框430的侧部。
可选地,在本发明的所述摄像模组的另外一个具体示例中,所述镜头对焦活动元件4273是滑块,从而所述镜头对焦活动元件4273被可滑动地保持在所述镜头对焦内框侧部42023和所述镜头对焦外框430之间,以阻止所述镜头对焦内框420的所述镜头对焦内框侧部42023和所述镜头对焦外框430相互贴合,从而悬持所述镜头对焦内框420于所述镜头对焦外框430的侧部。
优选地,所述镜头对焦支撑单元427包括两个所述镜头对焦轨道4271和四个被实施为滚珠的所述镜头对焦活动元件4273,其中两个所述镜头对焦轨道4271呈轴对称布置,每个所述镜头对焦轨道4271中分别被容纳有两个所述镜头对焦活动元件4273,如此有利于保证所述镜头对焦驱动单元423顺畅地驱动所述镜头对焦内框420沿着所述摄像模组的高度方向做相对于所述镜头对焦外框430的运动。
优选地,所述镜头对焦支撑单元427的这些被实施为滚珠的所述镜头对焦活动元件4273的直径相同,如此能够保证所述镜头对焦内框420的所述镜头对焦内框侧部42023和所述镜头对焦外框430的所述外框内侧4302的平整度。
所述镜头对焦轨道4271包括至少一隔板42713,所述隔板42713被设置于所述内凹槽轨道42711的中部,以用于隔开两个所述镜头对焦活动元件4273,从而减小被设置于同一个所述镜头对焦轨道4271的两个所述镜头对焦活动元件4273之间的干涉,以保证所述镜头驱动组件40的可靠性和稳定性。
可选地,在本发明的所述摄像模组的其他示例中,所述隔板42713可以被设置于所述外凹槽轨道42712的中部,以用于隔开两个所述镜头对焦活动元件4273。或者,所述镜头对焦轨道4271的所述内凹槽轨道42711的中部和所述外凹槽轨道42712的中部分别设置有一个所述隔板42713,以用于隔开两个所述镜头对焦活动元件4273。
可选地,在本发明的所述摄像模组的其他示例中,所述镜头对焦活动元件4273可以被粘接或者焊接于所述镜头对焦轨道4271的所述内凹槽轨道42711,或者,所述镜头对焦活动元件4273可以被粘接或者焊接于所述镜头对焦轨道4271的所述外凹槽轨道42712。
另外,在本发明的所述摄像模组的一些示例中,所述镜头对焦支撑单元427的所述镜头对焦活动元件4273的尺寸可以小于或者等于所述镜头防抖支撑单元417的所述镜头防抖活动元件4173的尺寸,可以理解的是,减小所述镜头对焦活动元件4273的方式能够减小所述镜头对焦轨道4271的尺寸,从而可以减小所述镜头驱动组件40的长宽尺寸(即,横向尺寸)。 例如,在本发明的所述摄像模组的一个具体示例中,所述镜头对焦支撑单元427的所述镜头对焦活动元件4273的直径为0.7mm,所述镜头防抖支撑单元417的所述镜头防抖活动元件4173的直径为0.8mm。
在本发明的所述摄像模组的另外一些示例中,所述镜头对焦支撑单元427的所述镜头对焦活动元件4273的尺寸可以大于所述镜头防抖支撑单元417的所述镜头防抖活动元件4173的尺寸,通过减小所述镜头防抖活动元件4173的方式有利于降低镜头驱动组件40的高度尺寸(即,纵向尺寸)。
另外,所述镜头防抖支撑单元417的所述镜头防抖活动元件4173的高度位置介于所述镜头对焦支撑单元427的位于同一个所述镜头对焦轨道4271的两个所述镜头对焦活动元件4273之间,通过这样的方式,所述镜头防抖载体410的高度位置能够被降低,从而有利于降低所述镜头驱动组件40的高度尺寸。
参考附图5和图6A,所述镜头对焦磁吸单元426的高度尺寸大于或者等于所述镜头对焦磁石4231的高度尺寸,如此在所述摄像模组进行自动对焦而使所述镜头对焦内框420相对于所述镜头对焦外框430在高度方向移动时,避免因所述镜头对焦磁吸单元426的高度方向较小而与所述镜头对焦磁石4231之间产生斜向拉扯力。可以理解的是,一旦所述镜头对焦磁吸单元426和所述镜头对焦磁石4231之间产生斜向拉扯力,该斜向拉扯力在高度方向(光轴方向)的分量与所述镜头对焦磁石4231和所述镜头对焦线圈4232产生的驱动力会抵消而阻碍所述镜头对焦内框420在高度方向的移动。换言之,通过使所述镜头对焦磁吸单元426的高度尺寸大于或者等于所述镜头对焦磁石4231的高度尺寸的方式,所述镜头对焦磁石4231和所述镜头对焦线圈4232能够相互配合而顺畅地驱动所述镜头对焦内框420在高度方向做相对于所述镜头对焦外框430的运动,以实现所述摄像模组的对焦。
优选地,在所述摄像模组对焦的过程中,所述镜头对焦磁吸单元426在高度方向上始终覆盖所述镜头对焦磁石4231,即,所述镜头对焦磁石4231的下侧始终高于所述镜头对焦磁吸单元426的下侧和所述镜头对焦磁石4231的上侧始终低于所述镜头对焦磁吸单元426的上侧,从而所述镜头对焦磁石4231和所述镜头对焦磁吸单元426在高度方向的磁吸力进一步降低,以减少对所述镜头对焦内框420在高度方向的移动产生的影响。
所述镜头对焦固定单元422进一步包括一镜头驱动基座440和一镜头驱动壳体450,所述镜头驱动基座440具有一基座通道441,所述镜头驱动壳体450具有一壳体通道451,其中所述镜头驱动壳体450被安装于所述镜头驱动基座440,以在所述镜头驱动壳体450和所述镜头驱动基座440之间形成一容置空间460,所述镜头驱动基座440的所述基座通道441和所述镜头驱动壳体450的所述壳体通道451相对应且分别连通于所述容置空间460。所述镜头对焦外框430通过粘接或者一体注塑成型的方式被固定于所述镜头驱动基座440,且位于所述容置空间460,其中所述镜头防抖载体410的所述载体通道4103的两个开口分别对应于所述镜头驱动基座440的所述基座通道441和所述镜头驱动壳体450的所述壳体通道451,如此使得所述光学镜头21的出光侧和入光侧能够分别对应于所述镜头驱动基座440的所述基座通道441和所述镜头驱动壳体450的所述壳体通道451。
优选地,所述镜头驱动基座440由导磁材料制成,如此所述镜头驱动基座440能够减少所述镜头防抖磁石4131向所述感光组件30的方向外溢的磁场,进而减小磁场对所述感光组件30和所述芯片驱动组件10的磁干扰,例如制备所述镜头驱动基座440的材料可以是铁、导磁的不锈钢等具有导磁性质的材料。可选地,所述镜头驱动基座440可以是塑料件,其内部埋设有导磁部分,并且导磁部分的位置和所述镜头防抖磁石4131的位置相对应,以减少所述镜头防抖磁石4131向所述感光组件30的方向外溢的磁场,进而减小磁场对所述感光组件30和所述芯片驱动组件10的磁干扰,例如制备导磁部分的材料可以是铁、导磁的不锈钢等具有导磁性质的材料。并且,在本发明的所述摄像模组的这个具体示例中,所述镜头对焦驱动单元423通过设置所述镜头防抖磁石4231于所述镜头对焦外框430的方式能够使所述镜头对焦磁石4231与所述镜头驱动基座440或所述芯片驱动组件10之间产生的磁吸力对镜头对焦功能的影响较小,进而不必使所述镜头对焦磁石4231的位置设置的较高而导致镜头驱动组件40的高度过高,从而有利于降低摄像模组的高度尺寸。
具体地,所述镜头驱动组件40在对焦过程中,通过使所述镜头对焦磁石4231的位置固定和使所述镜头对焦线圈4232的位置随着所述镜头对焦内框420沿着高度方向运动的方式,能够减少产生于所述镜头对焦磁石4231与所述镜头驱动基座440或所述芯片驱动组件10之间的磁吸力对所述镜头对焦内框420的运动产生影响,从而降低对所述镜头驱动组件40的对焦过程的影响。
优选地,所述镜头驱动壳体450的材质为不导磁的不锈钢材质,从而使得所述镜头驱动壳体450具有较高的强度和较薄的尺寸而实现较好的保护作用。并且通过选用不导磁的不锈钢材质制作所述镜头驱动壳体450,一方面,所述镜头驱动壳体450和所述镜头防抖磁石4131之间不会产生相互磁性吸引,所述镜头驱动壳体450和所述镜头对焦磁石4231之间不会产生相互磁性吸引,另一方面,所述镜头驱动壳体450能够对所述镜头防抖磁石4131和所述镜头对焦磁石4231提供金属屏蔽作用。
优选地,所述镜头驱动壳体450的一侧具有一壳体缺口452,所述镜头对焦磁吸单元426可以被容置于所述镜头驱动壳体450的所述壳体缺口452,从而有利于减小所述镜头驱动组件40的长宽尺寸(即,横向尺寸)。
所述镜头防抖部41进一步包括多个镜头防抖防撞单元418,其被设置于所述镜头防抖载体410的外壁和所述载体底面4102,以配合所述镜头驱动基座440、所述镜头驱动壳体450和所述镜头对焦内框420限制所述镜头防抖载体410的移动范围和保护所述镜头防抖载体410。优选地,所述镜头防抖载体410的每个外壁分别被设有两个所述镜头防抖防撞单元418。
所述镜头对焦部42进一步包括至少一镜头对焦防撞单元428,其被设置于所述镜头对焦内框420的所述内框顶面42011,以配合所述镜头驱动壳体450限制所述镜头对焦内框420的移动范围和保护所述镜头对焦内框420。优选地,所述镜头对焦防撞单元428的数量是两个以上,例如,在本发明的所述摄像模组的这个具体示例中,所述镜头对焦防撞单元428的数量是四个,其分别被突出地设置于所述镜头对焦内框420的所述内框顶面42011的每个转角处。
所述镜头对焦部42进一步包括至少一镜头对焦磁轭单元429,所述镜头对焦磁轭单元429至少遮挡所述镜头对焦磁石4231的远离所述镜头对焦线圈4232的侧部,以减少所述镜头对焦磁石4231外泄的磁场。
具体地,所述镜头对焦磁轭单元429包括一磁轭板4291、一磁轭上臂4292以及一磁轭下臂4293,所述磁轭上臂4292和所述磁轭下臂4293分别一体地延伸于所述磁轭板4291的上侧和下侧,以于所述磁轭板4291、所述磁轭上臂4292和所述磁轭下臂4293之间形成侧部开口的一磁轭空间4294,如此使得所述镜头对焦磁轭单元429呈“匚”字形。所述镜头对焦磁石4231被设置于所述镜头对焦磁轭单元429的所述磁轭空间4294,并且所述镜头对焦磁石4231的远离所述镜头对焦线圈4232的侧部贴合于所述磁轭板4291,所述磁轭上臂4292和所述磁轭下臂4293分别遮挡所述镜头对焦磁石4231的上侧和下侧的至少一部分,如此所述镜头对焦磁轭单元429能够隔离所述镜头对焦磁石4231的磁场,从而减小所述镜头对焦磁石4231对位于所述镜头驱动组件40的下方的所述感光组件30的线路板、感光元件等元件的磁干扰,避免所述镜头对焦磁石4231被位于所述镜头驱动组件40下方的具有磁性的元件吸引,而使镜头对焦的效果降低。
优选地,所述镜头对焦磁轭单元429的所述磁轭下臂4293遮挡所述镜头对焦磁石4231的下侧的至少四分之三的面积,以增强对所述镜头对焦磁石4231的磁场约束效果,减小所述镜头对焦磁石4231对镜头对焦过程的影响。
优选地,所述镜头对焦磁轭单元429的所述磁轭上臂4292和所述磁轭下臂4293分别贴合于所述镜头对焦磁石4231的上侧和下侧,以分别遮挡所述镜头对焦磁石4231的上侧和下侧的至少一部分。
继续参考14至图18,所述芯片驱动组件10包括一芯片防抖固定部11、一芯片防抖可动部12以及一芯片防抖驱动部13。所述芯片防抖固定部11具有一收容腔1101和连通于所述收容腔1101的一顶部开口1102,其中所述感光组件30被设置于所述芯片防抖可动部12,所述芯片防抖可动部12被悬持于所述芯片防抖固定部11的所述收容腔1101,并且所述芯片防抖固定部11的所述顶部开口1102对应于所述感光组件30,其中所述芯片防抖驱动部13用于驱动所述芯片防抖可动部12做相对于所述芯片防抖固定部11的平移和/或旋转运动,以实现所述摄像模组的平移防抖和/或旋转防抖。进一步地,所述芯片防抖固定部11包括一基底111和一上盖112,所述顶部开口1102形成于所述上盖112,所述基底111和所述上盖112被扣合地安装,以在所述基底111和所述上盖112之间形成所述收容腔1101,如此形成于所述基底111和所述上盖112之间的所述收容腔1101连通形成于所述上盖112的所述顶部开口1102。
所述芯片防抖可动部12和所述芯片防抖驱动部13分别被收容于所述芯片防抖固定部11的所述收容腔1101,以由所述芯片防抖固定部11形成所述芯片驱动组件10的外观,通过这样的方式,一方面,所述芯片防抖固定部11能够防止所述芯片防抖可动部12和所述芯片防抖驱动部13被碰撞,以起到保护所述芯片防抖可动部12和所述芯片防抖驱动部13的作用,另一方面,所述芯片防抖固定部11的所述基底111和所述上盖112相互配合而形成密闭的所 述收容腔1101,以避免灰尘等污染物进入所述芯片防抖固定部11的所述收容腔1101而污染所述感光元件32和减少杂散光。
优选地,所述芯片防抖固定部11的所述基底111和所述上盖112的材料可以是金属材料,以保证所述芯片驱动组件10的强度。例如,所述芯片防抖固定部11的所述基底111和所述上盖112的材料可以是不锈钢无磁性材料。
可以理解的是,所述摄像模组在实现防抖功能时,所述芯片防抖固定部11的所述基底111和所述上盖112保持不动,以使所述芯片防抖固定部11形成定子。
继续参考附图14至图18,所述感光组件30包括一电路板31和被连接于所述电路板31的一感光元件32,其中所述电路板31被设置于所述芯片防抖可动部12,以设置所述感光组件30于所述芯片防抖可动部12。
所述感光组件30进一步包括一系列电子元器件33,其可以是但不限于电阻、电容、处理器等被动元器件,其中这些所述电子元器件33被贴装于所述电路板31。
另外,所述感光组件30还可以包括滤光片,例如红外截止滤光片,其被保持在所述感光元件32的感光路径。
参考附图14至图18,所述电路板31具有两延伸臂311,两个所述延伸臂311分别于所述电路板31的相对两侧经所述基底111和所述上盖112的连接位置延伸至所述芯片防抖固定部11的外部并进一步向上延伸,如此在所述芯片防抖可动部12被所述芯片防抖驱动部13驱动而于所述芯片防抖固定部11的所述收容腔1101做平移和/或旋转运动时,能够保证稳定并减少阻力。可选地,两个所述延伸臂311能够于所述电路板31的相邻两侧经所述基底111和所述上盖112的连接位置延伸至所述芯片防抖固定部11的外部并进一步向上延伸。
继续参考附图14至图18,所述芯片防抖可动部12包括一芯片防抖可动载体121和一组芯片防抖滚珠122,其中一组所述芯片防抖滚珠122被可滚动地设置于所述芯片防抖可动载体121和所述上盖112之间,以使所述芯片防抖可动部12和所述芯片防抖固定部11之间点摩擦接触,从而保证所述芯片防抖驱动部13顺畅地驱动所述芯片防抖可动部12做相对于所述芯片防抖固定部11的平移和/或旋转运动。
具体地,所述芯片防抖可动载体121具有一载体正面1211、相对于所述载体正面1211的一载体背面1212以及自所述载体正面1211延伸至所述载体背面1212的一载体开口1213。所述感光组件30的所述电路板31被设置于所述芯片防抖可动载体121的所述载体背面1212,并且所述感光组件30的所述感光元件32和所述芯片防抖可动载体121的所述载体开口1213相对应,如此入射光线被允许经过所述芯片防抖可动载体121的所述载体开口1213到达所述感光元件32。
所述感光组件30的所述电路板31和所述芯片防抖固定部11的所述基底111之间具有间隙,一组所述芯片防抖滚珠122被可滚动地设置于所述芯片防抖可动载体121的所述载体正面1211和所述上盖112的内壁之间,以使所述芯片防抖可动部12和所述芯片防抖固定部11之间点摩擦接触,如此所述芯片防抖驱动部13顺畅地驱动所述芯片防抖可动部12做相对于所述芯片防抖固定部11的平移和/或旋转运动。
可选地,在本发明的所述摄像模组的一些具体示例中,所述感光组件30能够被嵌入所述芯片防抖可动载体121的所述载体开口1213,以有利于降低所述摄像模组的高度尺寸。换言之,所述芯片防抖可动载体121被设置环绕于所述感光组件30的四周。此时,一方面,所述芯片防抖可动载体121的所述载体背面1212和所述芯片防抖固定部11的所述基底111之间具有间隙,另一方面,所述芯片防抖可动载体121的所述载体正面1211和所述芯片防抖固定部11的所述上盖112的内壁之间设置有可滚动的一组所述芯片防抖滚珠122,从而悬持所述芯片防抖可动部12于所述芯片防抖固定部11的所述收容腔1101,以保证所述芯片防抖驱动部13能够顺畅地驱动所述芯片防抖可动部12做相对于所述芯片防抖固定部11的平移和/或旋转运动。
可选地,在本发明的所述摄像模组的一些具体示例中,所述感光组件30的所述电路板31被贴装于所述芯片防抖可动载体121的所述载体正面1211。此时,一方面,所述芯片防抖可动载体121的所述载体背面1212和所述芯片防抖固定部11的所述基底111之间具有间隙,另一方面,所述芯片防抖可动载体121的所述载体正面1211和所述芯片防抖固定部11的所述上盖112的内壁之间设置有可滚动的一组所述芯片防抖滚珠122,并且一组所述芯片防抖滚珠122保证感光组件30和所述上盖112之间具有间隙,从而悬持所述芯片防抖可动部12于所述芯片防抖固定部11的所述收容腔1101,以保证所述芯片防抖驱动部13能够顺畅地驱动所述芯片防抖可动部12做相对于所述芯片防抖固定部11的平移和/或旋转运动。可以理解的是,在所述感光组件30的所述电路板31被贴装于所述芯片防抖可动载体121的所述载体正面1211的这些示例中,所述芯片防抖可动载体121可以不需要设置所述载体开口1213。
继续参考附图14至图18,所述芯片防抖驱动部13包括多个芯片防抖磁石131和多个芯片防抖线圈132,这些所述芯片防抖磁石131分别被设置于所述芯片防抖固定部11,这些所述芯片防抖线圈132分别被设置于所述芯片防抖可动部12,并且这些所述芯片防抖磁石131和这些所述芯片防抖线圈132相对应,其中这些所述芯片防抖线圈132通电后产生的磁场和这些所述芯片防抖磁石131的磁场能够相互作用,以驱动所述芯片防抖可动部12做相对于所述芯片防抖固定部11的平移和/或旋转运动,从而实现所述摄像模组的平移防抖和/或旋转防抖。例如,所述芯片防抖驱动部13的这些所述芯片防抖磁石131和这些所述芯片防抖线圈132能够相互作用,以驱动所述芯片防抖可动部12相对于所述芯片防抖固定部11产生沿X轴方向和/或Y轴方向的平移运动而实现所述摄像模组的平移防抖。所述芯片防抖驱动部13的这些所述芯片防抖磁石131和这些所述芯片防抖线圈132能够相互作用,以驱动所述芯片防抖可动部12相对于所述芯片防抖固定部11产生绕Z轴方向的旋转运动而实现所述摄像模组的旋转防抖。
优选地,在附图14至图18示出的所述摄像模组中,所述芯片防抖驱动部13的这些所述芯片防抖磁石131分别被设置于所述芯片防抖固定部11的所述上盖112,相应地,所述芯片防抖驱动部13的这些所述芯片防抖线圈132分别被设置于所述芯片防抖可动部12,并且每个所述芯片防抖磁石131和每个所述芯片防抖线圈132一一对应。例如,从附图14示出的方向 来看,所述芯片防抖磁石131位于所述芯片防抖线圈132的上方,即,所述芯片防抖磁石131和所述芯片防抖线圈132采用上下布置的方式。
进一步地,所述芯片驱动组件10包括至少一芯片防抖导磁构件14,所述芯片防抖导磁构件14被罩设在所述芯片防抖磁石131的上方,如此:一方面,所述芯片防抖导磁构件14能够向下(即,所述芯片防抖线圈132所在的方向)加强磁场强度,以使所述芯片防抖驱动部13具有足够的驱动力来驱动所述芯片防抖可动部12做相对于所述芯片防抖固定部11的平移和/或旋转运动,另一方面,所述芯片防抖导磁构件14能够避免朝向所述镜头驱动组件40的方向漏磁而干扰所述镜头驱动组件40的磁场。
具体地,所述芯片防抖导磁构件14被设置于所述芯片防抖固定部11的所述上盖112,所述芯片防抖磁石131被设置于所述芯片防抖导磁构件14,即,所述芯片防抖磁石131通过被设置于所述芯片防抖导磁构件14的方式被设置于所述上盖112,如此能够保持所述芯片防抖导磁构件14于所述芯片防抖磁石131和所述上盖112之间。通过这样的结构设计,所述芯片防抖导磁构件14允许所述芯片防抖磁石131的磁力线朝向所述芯片防抖线圈132的方向集中,以增加所述芯片防抖驱动部13的磁场强度,同时减少外溢到所述镜头驱动组件40的磁场强度,从而避免对所述镜头驱动组件40产生磁干扰。
更具体地,沿所述摄像模组的光轴一侧看其平面,所述芯片防抖导磁构件14呈四边形结构,所述芯片防抖导磁构件14的面积大于或等于所述芯片防抖磁石131的面积,并且所述芯片防抖导磁构件14完全覆盖所述芯片防抖磁石141131,如此所述芯片防抖导磁构件14能够有效地防止所述芯片防抖磁石131的磁力外泄。换言之,所述芯片防抖导磁构件14覆盖所述芯片防抖磁石131的朝向所述镜头驱动组件40的表面。例如,在本发明的所述摄像模组的一个具体示例中,所述芯片防抖导磁构件14的形状和所述芯片防抖磁石131的形状相同,即,所述芯片防抖导磁构件14是一个呈方形的平板,其被罩设于所述芯片防抖磁石131的上方而将所述芯片防抖磁石131的上表面完全遮盖。
优选地,在附图14至图18示出的本发明的所述摄像模组的这个具体示例中,所述芯片防抖导磁构件14的形状和所述芯片防抖磁石131的形状不同,例如,所述芯片防抖导磁构件14呈具有开口的“U”型,其不仅能够遮盖所述芯片防抖磁石131的上表面,而且能够包裹所述芯片防抖磁石131的相对两个侧面的至少一部分,以使所述芯片防抖磁石131的磁力线朝向所述芯片防抖线圈132的方向集中。
值得一提的是,所述芯片防抖导磁构件14的数量和所述芯片防抖磁石131的数量的对应关系在本发明的所述摄像模组中不受限制。例如,在附图14至图18示出的本发明的所述摄像模组的这个具体示例中,所述芯片防抖导磁构件14的数量和所述芯片防抖磁石131的数量一致,这样,在每个所述芯片防抖磁石131的上方可以分别罩设一个所述芯片防抖导磁构件14,如此所述芯片防抖导磁构件14和所述芯片防抖磁石131可以一一对应。可选地,在本发明的所述摄像模组的另一些示例中,所述芯片防抖导磁构件14的数量少于所述芯片防抖磁石131的数量,这样,一个所述芯片防抖导磁构件14能够罩设在至少两个所述芯片防抖磁石131的上方。
本领域技术人员可以理解的是,参考附图11和图12,所述感光组件30的所述感光元件32呈矩形,其具有四个侧边。为了便于描述和理解,沿着顺时针方向,所述感光元件32的四个侧边依次被定义为一第一芯片侧边321、一第二芯片侧边322、一第三芯片侧边323以及一第四芯片侧边324,以所述感光元件32的中心点为原点、以平行于所述第一芯片侧边321和所述第三芯片侧边323的方向为X轴方向、以平行于所述第二芯片侧边322和所述第四芯片侧边324的方向为Y轴方向、以垂直于所述感光元件32的感光面的方向为Z轴方向建立坐标系。
根据所述芯片防抖驱动部13的这些所述芯片防抖线圈132的设置位置,这些所述芯片防抖线圈132形成一第一线圈组133、一第二线圈组134以及一第三线圈组135,其中在X轴和Y轴所在的平面,所述第一线圈组133沿着Y轴方向设置,所述第二线圈组134和所述第三线圈组135分别沿着X轴方向设置,并且所述第二线圈组134和所述第三线圈组135位于所述感光元件32的相对两侧,如此使得所述芯片防抖驱动部13的这些所述芯片防抖线圈132环绕于所述感光组件30的所述感光元件32的四周。优选地,所述第二线圈组134和所述第三线圈组135相对于Y轴对称。可以理解的是,所述第二线圈组134和所述第三线圈组135位于所述芯片防抖固定部11的所述顶部开口1102的相对两侧。
组成所述第一线圈组133的所述芯片防抖线圈132的数量为至少一个,组成所述第二线圈组134的所述芯片防抖线圈132的数量为至少两个,组成所述第三线圈组135的所述芯片防抖线圈132的数量为至少两个。优选地,在附图14至图18示出的所述摄像模组的这个具体示例中,组成所述第一线圈组133、所述第二线圈组134和所述第三线圈组135的所述芯片防抖线圈132的数量均为两个。
具体地,组成所述第一线圈组133的两个所述芯片防抖线圈132分别被定义为一第一线圈1321和一第二线圈1322,所述第一线圈1321和所述第二线圈1322沿着Y轴方向相对且平行设置;组成所述第二线圈组134的两个所述芯片防抖线圈132分别被定义为一第三线圈1323和一第四线圈1324,所述第三线圈1323和所述第四线圈1324沿着X轴方向相对且平行设置;组成所述第三线圈组135的两个所述芯片防抖线圈132分别被定义为一第五线圈1325和一第六线圈1326,所述第五线圈1325和所述第六线圈1326相对且平行设置。
换言之,所述第一线圈1321和所述第二线圈1322分别被设置于所述感光元件32的所述第四芯片侧边324和所述第二芯片侧边322,并且所述第一线圈1321和所述第二线圈1322分别平行于所述感光元件32的所述第四芯片侧边324和所述第二芯片侧边322。所述第三线圈1323和所述第五线圈1325分别被设置于所述感光元件32的所述第一芯片侧边321,并且所述第三线圈1323和所述第五线圈1325分别平行于所述感光元件32的所述第一芯片侧边321。所述第四线圈1324和所述第六线圈1326分别被设置于所述感光元件32的所述第三芯片侧边324,并且所述第四线圈1324和所述第六线圈1326分别平行于所述感光元件32的所述第三芯片侧边323。
在附图14至图18示出的本发明的所述摄像模组的这个具体示例中,组成所述第一线圈组133的所述第一线圈1321和所述第二线圈1322分别被设置于所述感光元件32的沿Y轴方 向的相对两个侧边,组成所述第二线圈组134的所述第三线圈1323和所述第四线圈1324以及组成所述第三线圈组135的所述第五线圈1325和所述第六线圈1326分别被设置于所述感光元件32的沿X轴方向的四个角落处。例如,所述第一线圈1321分别与所述第三线圈1323、所述第四线圈1324相邻设置,并且所述第一线圈1321分别垂直于所述第三线圈1323、所述第四线圈1324,相应地,所述第二线圈1322分别与所述第五线圈1325、所述第六线圈1326相邻设置,并且所述第二线圈1322年分别垂直于所述第五线圈1325、所述第六线圈1326。换言之,所述第二线圈组134和所述第三线圈组135距离所述感光元件32的中心的距离相对于所述第一线圈组133距离所述感光元件32的中心的距离更远、力矩更大,如此所述第二线圈组134和所述第三线圈组135相互配合更容易驱动所述芯片防抖可动部12做相对于所述芯片防抖固定部11的旋转运动,以实现旋转防抖。
具体地,组成所述第一线圈组133的所述第一线圈1321和所述第二线圈1322的尺寸相同,组成所述第二线圈组134的所述第三线圈1323和所述第四线圈1324以及组成所述第三线圈组135的所述第五线圈1325和所述第六线圈1326的尺寸相同,并且所述第一线圈1321和所述第二线圈1322的尺寸大于所述第三线圈1323、所述第四线圈1324、所述第五线圈1325和所述第六线圈1326的尺寸,其中所述第一线圈1321和所述第二线圈1322相互配合驱动所述芯片防抖可动部12沿着X轴方向做相对于所述芯片防抖固定部11的平移运动,所述第三线圈1323、所述第四线圈1324、所述第五线圈1325和所述第六线圈1326相互配合驱动所述芯片防抖可动部12沿着Y轴方向做相对于所述芯片防抖固定部11的平移运动和/或驱动所述芯片防抖可动部12绕Z轴方向做相对于所述芯片防抖固定部11的旋转运动。可以理解的是,所述第一线圈1321和所述第二线圈1322具有较大的尺寸而能够保证其具有较大的推力来驱动所述芯片防抖可动部12沿着X轴方向做相对于所述芯片防抖固定部11的平移运动。
可选地,在本发明的所述摄像模组的另一些示例中,组成所述第一线圈组133的所述第一线圈1321和所述第二线圈1322、组成所述第二线圈组134的所述第三线圈1323和所述第四线圈1324以及组成所述第三线圈组135的所述第五线圈1325和所述第六线圈1326的尺寸可以相同。
优选地,组成所述第一线圈组133的所述第一线圈1321和所述第二线圈1322的几何中心和所述芯片防抖驱动部13的中心一致,即,所述第一线圈1321的中心与所述感光元件32的中心(坐标轴的原点)的距离和所述第二线圈1322的中心与所述感光元件32的中心的距离一致,这样能够保证所述第一线圈1321和所述第二线圈1322产生的合力仍然位于所述芯片防抖驱动部13的中心,以避免所述第一线圈1321和所述第二线圈1322产生不必要的扭矩。
例如,在本发明的所述摄像模组的一个具体示例中,沿所述摄像模组的光轴一侧看其平面,所述第一线圈1321的中心和所述第二线圈1322的中心一致,以使所述第一线圈1321的中心和所述第二线圈1322的中心之间的连线穿过所述感光元件32的中心,并且平行于X轴方向。
在本发明的所述摄像模组的另一个具体示例中,沿所述摄像模组的光轴一侧看其平面,所述第一线圈1321的中心和所述第二线圈1322的中心具有一定的偏心,所述第一线圈1321 的中心和所述第二线圈1322的中心的偏心方向可以是Y轴的正方向,也可以是Y轴的负方向,其中所述第一线圈1321的中心和所述第二线圈1322的中心之间的连线穿过所述感光元件32的中心,并且与X轴方向相交。也就是说,在本发明的所述摄像模组的这个实施例中,所述第一线圈1321的中心可以偏向Y轴的正方向,相应地,所述第二线圈1322的中心可以偏向Y轴的负方向,并且所述第一线圈1321的中心至X轴的距离和所述第二线圈1322的中心至X轴的距离相同,如此能够保证所述第一线圈1321和所述第二线圈1322产生的合力位于所述芯片防抖驱动部13的中心。或者,所述第一线圈1321的中心可以偏向Y轴的负方向,相应地,所述第二线圈1322的中心可以偏向Y轴的正方向,并且所述第一线圈1321的中心至X轴的距离和所述第二线圈1322的中心至X轴的距离相同,如此能够保证所述第一线圈1321和所述第二线圈1322产生的合力位于所述芯片防抖驱动部13的中心。
另外,所述芯片防抖驱动部13的这些所述芯片防抖线圈132均为空心平面线圈,其形成一个线圈平面13201和一个线圈空间13202。优选地,所述第一线圈1321的所述线圈平面13201、所述第二线圈1322的所述线圈平面13201、所述第三线圈1323的所述线圈平面13201、所述第四线圈1324的所述线圈平面13201、所述第五线圈1325的所述线圈平面13201和所述第六线圈1326的所述线圈平面13201平齐,以使得所述芯片防抖驱动部13能够驱动所述芯片防抖可动部12在X轴和Y轴形成的平面XOY内平移。
进一步地,所述芯片防抖可动载体121具有多个安置位1210,所述安置位1210的数量和所述芯片防抖线圈132的数量一致,并且每个所述安置位1210分别用于安置每个所述芯片防抖线圈132。
根据所述安置位1210的设置位置,这些所述安置位1210形成一第一位置组12101、一第二位置组12102以及一第三位置组12103,其中组成所述第一位置组12101的每个所述安置位1210分别被设置于沿Y轴方向的相对的两边处,组成所述第二位置组12102和所述第三位置组12103的每个所述安置位1210分别被设置于沿X轴方向的四个转角处。
进一步地,组成所述第一位置组12101的每个所述安置位1210沿着Y轴方向被设置,组成所述第二位置组12102的每个所述安置位1210沿着X轴方向被设置,组成所述第三位置组12103的每个所述安置位1210沿着X轴方向被设置,并且组成所述第二位置组12102的每个所述安置位1210沿着Y轴方向相对设置,组成所述第三位置组12103的每个所述安置位1210沿着Y轴方向相对设置。优选地,组成所述第二位置组12102的每个所述安置位1210相对于Y轴对称,组成所述第三位置组12103的每个所述安置位1210相对于Y轴对称。
所述安置位1210的形状和所述芯片防抖线圈132的形状相同,以便于将所述芯片防抖线圈132安装于所述安置位1210上。从所述摄像模组的光轴一侧看其平面,所述安置位1210为长方形或者近似长方形结构,其中组成所述第一位置组12101的每个所述安置位1210的长边与Y轴方向平行,组成所述第二位置组12102的每个所述安置位1210的长边和组成所述第三位置组12103的每个所述安置位1210的长边与X轴方向平行,并且组成所述第一位置组12101的每个所述安置位1210的长边分别垂直于组成所述第二位置组12102和所述第三位置组12103的每个所述安置位1210的长边。
在本发明的所述摄像模组的一些示例中,所述安置位1210可以是平面安置位,如此所述芯片防抖线圈132能够被直接地设置于所述安置位1210的表面。在本发明的所述摄像模组的另外一些示例中,所述安置位1210可以是凹槽安置位,如此所述芯片防抖线圈132能够被嵌入所述安置位1210,以降低所述芯片驱动组件10的高度。在本发明的所述摄像模组的另外一些示例中,所述安置位1210可以是通孔安置位,如此所述芯片防抖线圈132能够被嵌入所述安置位1210,以降低所述芯片驱动组件10的高度。
根据所述芯片防抖驱动部13的这些所述芯片防抖磁石131的设置位置,这些所述芯片防抖磁石131形成一第一磁石组136、一第二磁石组137以及一第三磁石组138,其中在X轴和Y轴所在的平面,所述第一磁石组136沿着Y轴方向设置,所述第二磁石组137和所述第三磁石组138分别沿着X轴方向设置,并且所述第二磁石组137和所述第三磁石组138位于所述感光元件32的相对两侧,如此使得所述芯片防抖驱动部13的这些所述芯片防抖磁石131环绕于所述感光组件30的所述感光元件32的四周。优选地,所述第二磁石组137和所述第三磁石组138相对于Y轴对称。
组成所述第一磁石组136的所述芯片防抖磁石131的数量为至少一个,组成所述第二磁石组137的所述芯片防抖磁石131的数量为至少两个,组成所述第三磁石组138的所述芯片防抖磁石131的数量为至少两个。优选地,在附图14至图18示出的所述摄像模组的这个具体示例中,组成所述第一磁石组136、所述第二磁石组137、所述第三磁石组138的所述芯片防抖磁石131的数量均为两个。
具体地,组成所述第一磁石组136的两个所述芯片防抖磁石131分别被定义为一第一磁石1311和一第二磁石1312,所述第一磁石1311和所述第二磁石1312沿着Y轴方向相对且平行地设置,并且所述第一磁石1311和所述第一线圈1321相对设置,所述第二磁石1312和所述第二线圈1322相对设置。组成所述第二磁石组137的两个所述芯片防抖磁石131分别被定义为一第三磁石1313和一第四磁石1314,所述第三磁石1313和所述第四磁石1314沿着X轴方向相对且平行设置,并且所述第三磁石1313和所述第三线圈1323相对设置,所述第四磁石1314和所述第四线圈1324相对设置。组成所述第三磁石组138的两个所述芯片防抖磁石131分别被定义为一第五磁石1315和一第六磁石1316,所述第五磁石1315和所述第六磁石1316沿着X轴方向相对且平行设置,并且所述第五磁石1315和所述第五线圈1325相对设置,所述第六磁石1316和所述第六线圈1326相对设置。
换言之,所述第一磁石1311和所述第二磁石1312分别被设置于所述感光元件32的所述第四芯片侧边324和所述第二芯片侧边322,并且所述第一磁石1311和所述第二磁石1312分别平行于所述感光元件32的所述第四芯片侧边324和所述第二芯片侧边322。所述第三磁石1313和所述第五磁石1315分别被设置于所述感光元件32的所述第一芯片侧边321,并且所述第三磁石1313和所述第五磁石1315分别平行于所述感光元件32的所述第一芯片侧边321。所述第四磁石1314和所述第六磁石1316分别被设置于所述感光元件32的所述第三芯片侧边323,并且所述第四磁石1314和所述第六磁石1316分别平行于所述感光元件32的所述第三芯片侧边323。
在附图14至图18示出的本发明的所述摄像模组的这个具体示例中,组成所述第一磁石组136的所述第一磁石1311和所述第二磁石1312分别被设置于所述感光元件32的沿Y轴方向的相对两个侧边,组成所述第二磁石组137的所述第三磁石1313和所述第四磁石1314以及组成所述第三磁石组138的所述第五磁石1315和所述第六磁石1316分别被设置于所述感光元件32的沿X轴方向的四个角落处。例如,所述第一磁石1311分别与所述第三磁石1313、所述第四磁石1314相邻设置,并且所述第一磁石1311分别垂直于所述第三磁石1313、所述第四磁石1314,相应地,所述第二磁石1312分别与所述第五磁石1315、所述第六磁石1316相邻设置,并且所述第二磁石1312分别垂直于所述第五磁石1315、所述第六磁石1316。
具体地,组成所述第一磁石组136的所述第一磁石1311和所述第二磁石1312的尺寸相同,组成所述第二磁石组137的所述第三磁石1313和所述第四磁石1314以及组成所述第三磁石组138的所述第五磁石1315和所述第六磁石1316的尺寸相同,并且所述第一磁石1311和所述第二磁石1312的尺寸大于所述第三磁石1313、所述第四磁石1314、所述第五磁石1315和所述第六磁石1316的尺寸,其中所述第一磁石1311和所述第二磁石1312相互配合驱动所述芯片防抖驱动部13沿着X轴方向做相对于所述芯片防抖固定部11的平移运动,所述第三磁石1313、所述第四磁石1314、所述第五磁石1315和所述第六磁石1316相互配合驱动所述芯片防抖驱动部13沿着Y轴方向做相对于所述芯片防抖固定部11的平移运动或者驱动所述芯片防抖驱动部13绕着Z轴方向做相对于所述芯片防抖固定部11的旋转运动。可以理解的是,所述第一磁石1311和所述第二磁石1312具有较大的尺寸而能够保证其具有较大的推力来驱动所述芯片防抖可动部12沿着X轴方向做相对于所述芯片防抖固定部11的平移运动。
可选地,在本发明的所述摄像模组的另一些示例中,组成所述第一磁石组136的所述第一磁石1311和所述第二磁石1312、组成所述第二磁石组137的所述第三磁石1313和所述第四磁石1314以及组成所述第三磁石组138的所述第五磁石1315和所述第六磁石1316的尺寸可以相同。
在本发明的所述摄像模组的一个具体示例中,所述芯片防抖驱动部13的所述芯片防抖磁石131是单极磁体,其具有一个N极和一个S极,N极和S极沿水平方向设置,并面向所述芯片防抖线圈132。可选地,在本发明的所述摄像模组的另外一些示例中,所述芯片防抖驱动部13的所述芯片防抖磁石131是双极磁体,其具有两个N极和两个S极,第一组磁极中的N极和S极沿水平方向设置,并面向所述芯片防抖线圈132,第二组磁极中的S极设置在第一组磁极中的N极的底部,第二组磁极中的N极设置在第一组磁极中的S极的底部,如此第二组磁极中的S极和N极沿水平方向设置,并远离所述芯片防抖线圈132。
需要注意的是,在本发明的所述摄像模组的这个具体示例中,组成所述第一线圈组133的所述第一线圈1321和所述第二线圈1322分别对应于组成所述第一磁石组136的所述第一磁石1311和所述第二磁石1312,如此在所述第一线圈1321和所述第二线圈1322被通电时,所述第一线圈1321产生的磁场和所述第一磁石1311的磁场相互配合以及所述第二线圈1322产生的磁场和所述第二磁石1312的磁场相互配合而能够驱动所述芯片防抖可动部12在X轴方向上平移,以实现沿X轴方向的平移防抖。组成所述第二线圈组134的所述第三线圈1323 和所述第四线圈1324分别对应于组成所述第二磁石组137的所述第三磁石1313和所述第四磁石1314,组成所述第三线圈组135的所述第五线圈1325和所述第六线圈1326分别对应于组成所述第三磁石组138的所述第五磁石1315和所述第六磁石1316,如此当所述第二线圈组134和所述第三线圈组135被通同向且数值相同的电流时,所述第二线圈组134和所述第二磁石组137相互配合和所述第三线圈组135和所述第三磁石组138相互配合而能够驱动所述芯片防抖可动部12在Y轴方向上平移,以实现沿Y轴方向的平移防抖,当所述第二线圈组134和第三线圈组135被通方向相反但数值相同的电流时,所述第二线圈组134和所述第二磁石组137相互配合和所述第三线圈组135和所述第三磁石组138相互配合而能够驱动所述芯片防抖可动部12绕Z轴旋转,以实现绕Z轴方向的旋转防抖。
优选地,所述芯片防抖驱动部13在X轴和Y轴方向的平移行程为±235μm,绕Z轴方向的旋转行程为±1°。
继续参考附图14至图18,所述芯片防抖可动部12进一步包括一芯片防抖电连接部123,其中所述芯片防抖驱动部13的这些所述芯片防抖线圈132分别被连接于所述芯片防抖电连接部123,以通过所述芯片防抖电连接部123向这些所述芯片防抖线圈132供电。优选地,所述芯片防抖电连接部123被电连接于所述感光组件30的所述电路板31。
优选地,所述芯片防抖电连接部123是框形结构,其形成一连接部开口1231,其中所述芯片防抖电连接部123被贴装于所述芯片防抖可动载体121的所述载体背面1212,并且所述芯片防抖电连接部123的所述连接部开口1231和所述芯片防抖可动载体121的所述载体开口1213相对应和连通,其中所述感光组件30的所述电路板31被固定于所述芯片防抖电连接部123,如此入射光线被允许经过所述芯片防抖可动载体121的所述载体开口1213和所述芯片防抖电连接部123的所述连接部开口1231到达所述感光元件32。
可选地,在本发明的所述摄像模组的另外一些示例中,所述芯片防抖可动部12可以没有设置所述芯片防抖电连接部123,此时所述芯片防抖驱动部13的这些所述芯片防抖线圈132分别被贴装于所述感光组件30的所述电路板31,以通过所述电路板31向这些所述芯片防抖线圈132供电。此时,所述感光组件30的所述电路板31可以被直接地贴装于所述芯片防抖可动载体121的所述载体背面1212。
继续参考附图14至图18,所述芯片防抖可动载体121具有多个载体缺口1214,这些所述载体缺口1214分别自所述载体正面1211延伸至所述载体背面1212,其中所述芯片防抖驱动部13的这些所述芯片防抖线圈132分别被保持在所述芯片防抖可动载体121的这些所述载体缺口1214,如此在所述芯片防抖电连接部123被贴装于所述芯片防抖可动载体121的所述载体背面1212的基础上,所述芯片防抖驱动部13的这些所述芯片防抖线圈132能够经所述芯片防抖可动载体121的所述多个载体缺口1214朝向所述芯片防抖磁石131的方向延伸。也就是说,所述芯片防抖可动载体121的这些所述载体缺口1214能够形成所述安置位1210,以分别用于安置所述芯片防抖线圈132。
值得一提的是,所述芯片防抖可动载体121的所述载体缺口1214的形状在本发明的所述摄像模组中不受限制。
优选地,在本发明的所述摄像模组的这个实施例中,所述芯片防抖驱动部13的这些所述芯片防抖线圈132分别被贴装于所述芯片防抖电连接部123,通过贴装所述芯片防抖电连接部123于所述芯片防抖可动载体121的所述载体背面1212的方式,能够分别保持这些所述芯片防抖线圈132于所述芯片防抖可动载体121的这些所述载体缺口1214。
可选地,在本发明的所述摄像模组的其他示例中,所述芯片防抖驱动部13的这些所述芯片防抖线圈132分别被固定于所述芯片防抖可动载体121,并且这些所述芯片防抖线圈132可以通过连接线被连接于所述芯片防抖电连接部123或被连接于所述电路板31。此时,所述芯片防抖可动载体121可以没有被设置所述载体缺口1214。
继续参考附图14至图18,所述芯片驱动组件10进一步包括至少一芯片防抖磁吸构件15,其中所述芯片防抖磁吸构件15被设置于所述芯片防抖可动部12,并且所述芯片防抖磁吸构件15的位置和所述芯片防抖驱动部13的所述芯片防抖磁石131的位置相对应,如此所述芯片防抖磁吸构件15和所述芯片防抖磁石131能够相互配合而在Z轴方向产生磁吸力,以悬持所述芯片防抖可动部12于所述芯片防抖固定部11的所述收容腔1101。
换言之,所述芯片防抖磁吸构件15和所述芯片防抖驱动部13的所述芯片防抖磁石131在Z轴方向产生的磁吸力能够保证所述芯片防抖可动部12的一组所述芯片防抖滚珠122始终贴紧所述芯片防抖固定部11的所述上盖112,由于所述芯片防抖可动部12在所述芯片防抖可动载体121的所述载体正面1211和所述上盖112的内壁之间设置有一组可滚动的所述芯片防抖滚珠122,因此,所述芯片防抖可动部12和所述芯片防抖固定部11之间是点摩擦接触,通过这样的方式,所述芯片防抖驱动部13能够顺畅地驱动所述芯片防抖可动部12做相对于所述芯片防抖固定部11的平移和/或旋转运动,以实现所述摄像模组的平移防抖和/或旋转防抖。
优选地,所述芯片防抖可动载体121具有一组保持槽1215,其形成于所述芯片防抖可动载体121的所述载体正面1211,其中所述芯片防抖滚珠122被可滚动地保持在所述芯片防抖可动载体121的所述保持槽1215,通过这样的方式,在所述芯片防抖驱动部13驱动所述芯片防抖可动部12做相对于所述芯片防抖固定部11的平移和/或旋转运动时,能够避免所述芯片防抖滚珠122自所述芯片防抖可动载体121和所述上盖112之间脱离,从而保证所述摄像模组的可靠性、稳定性。具体地,在所述芯片防抖驱动部13驱动所述芯片防抖可动部12的所述芯片防抖可动载体121做相对于所述芯片防抖固定部11的平移和/或旋转运动时,所述芯片防抖滚珠122的运动轨迹能够被限制在所述芯片防抖可动载体121的所述保持槽1215内,以使所述芯片防抖滚珠122始终支撑所述芯片防抖可动载体121和所述芯片防抖固定部11的所述上盖112。
也就是说,所述芯片防抖可动载体121的所述保持槽1215和所述芯片防抖滚珠122能够形成所述芯片驱动组件10的一芯片防抖支撑部17,即,所述芯片防抖支撑部17包括一组所述芯片防抖滚珠122和具有一组所述保持槽1215,其中一组所述保持槽1215分别形成于所述芯片防抖可动载体121的所述载体正面122,一组所述芯片防抖滚珠122分别被可滚动地保持于所述保持槽1215且位于所述芯片防抖可动载体121和所述上盖112之间,如此所述芯片防抖支撑部17能够支撑所述芯片防抖可动载体121和所述上盖112。所述芯片防抖滚珠122在 所述保持槽1215内可以沿着X轴和Y轴形成的平面移动,以为所述芯片防抖可动部12的移动提供移动空间。
进一步地,所述芯片防抖可动载体121具有至少一延伸柱1216,所述保持槽1215形成于所述延伸柱1216,并且所述保持槽1215的开口朝向所述芯片防抖固定部11的所述上盖112。所述保持槽1215的深度小于或等于所述芯片防抖滚珠122的直径,如此所述芯片防抖滚珠122的至少一部分可以凸出于所述保持槽1215,并且所述芯片防抖滚珠122的高度位置大于所述芯片防抖线圈132的高度位置,以使所述芯片防抖滚珠122能够分别与所述芯片防抖可动载体121的所述延伸柱1216和所述上盖112点摩擦接触。
可以理解的是,通过上述这样的结构设计,所述芯片防抖滚珠122的上部分面向所述上盖112的内壁形成的平面,所述芯片防抖滚珠122的下部分面向所述保持槽1215形成的凹槽,如此:一方面,所述芯片防抖滚珠122能够在所述芯片防抖可动载体121和所述上盖112之间进行滚动,另一方面,所述保持槽1215能够对所述芯片防抖滚珠122进行限位,以避免所述芯片防抖滚珠122脱落,从而保证所述摄像模组的可靠性。
可以理解的是,所述芯片防抖滚珠122使得所述芯片防抖磁石131和所述芯片防抖线圈132之间具有间隙,以避免所述芯片防抖磁石131和所述芯片防抖线圈132之间直接接触。优选地,形成于所述芯片防抖磁石131和所述芯片防抖线圈132之间的间隙的范围为0.05mm至0.5mm,以保证所述芯片防抖磁石131和所述芯片防抖线圈132之间具有良好的电磁感应。
进一步地,所述芯片驱动组件10包括至少三个所述芯片防抖支撑部17,以保证所述芯片防抖可动部12沿着X轴和Y轴形成的平滑平移和绕着Z轴旋转。也就是说,所述芯片防抖可动部12包括至少三个所述芯片防抖滚珠122,所述芯片防抖可动载体121具有至少三个所述保持槽1215。
优选地,在附图14至图18示出的所述摄像模组的这个具体示例中,所述芯片驱动组件10包括四个所述芯片防抖支撑部17,其分别被设置于所述第一位置组12101和所述第二位置组12102之间以及位于所述第二位置组12102和所述第三位置组12103之间。也就是说,所述芯片驱动组件10的四个所述芯片防抖支撑部17分别位于所述芯片防抖可动部12的四个转角处,以为所述芯片防抖可动部12提供更平稳的支撑,同时充分利用所述芯片驱动组件10的内部空间而使所述芯片驱动组件10的结构更紧凑。可选地,在本发明的所述摄像模组的另外一些示例中,所述芯片驱动组件10的所述芯片防抖支撑部17可以是滑块,其被可滑动地保持在所述芯片防抖可动载体121和所述上盖112之间,以用于平稳支撑所述芯片防抖可动部12。继续参考附图14至图18,所述芯片驱动组件10包括四个所述芯片防抖磁吸构件15,每个所述芯片防抖磁吸构件15分别被设置于所述芯片防抖可动部12的每个转角处,如此能够保证所述芯片防抖可动部12的平整度而使所述摄像模组的光轴能够垂直于所述感光组件30的所述感光元件32的感光面。
继续参考附图14至图18,在本发明的所述摄像模组的这个具体示例中,所述芯片防抖磁吸构件15被设置于所述芯片防抖电连接部123,以优化所述摄像模组的结构。可选地,在本发明的所述摄像模组的另外一些示例中,所述芯片防抖磁吸构件15可以被设置于所述芯片防 抖可动载体121,或者所述芯片防抖磁吸构件15可以被设置于所述感光组件30的所述电路板31,或者所述芯片防抖磁吸构件15被设置于所述芯片防抖可动载体121和所述芯片防抖电连接部123之间,或者所述芯片防抖磁吸构件15可以被设置于所述芯片防抖电连接部123和所述电路板31之间。
另外,在本发明的所述摄像模组的一些示例中,所述芯片防抖磁吸构件15和所述芯片防抖驱动部13的所述芯片防抖磁石131可以完全对准,即,所述芯片防抖磁吸构件15可以位于所述芯片防抖驱动部13的所述芯片防抖磁石131的正下方。在本发明的所述摄像模组的另一些示例中,所述芯片防抖磁吸构件15和所述芯片防抖驱动部13的所述芯片防抖磁石131可以没有完全对准,两者之间存在一些偏差。
可以理解的是,在所述芯片防抖驱动部13驱动所述芯片防抖可动部12做相对于所述芯片防抖固定部11的平移和/或旋转运动时,所述芯片防抖磁吸构件15会同步地产生相对于所述芯片防抖固定部11的平移和/或旋转运动,此时,所述芯片防抖磁吸构件15和所述芯片防抖磁石131之间也会产生一些偏差,但是所述芯片防抖磁吸构件15所在的平面和所述芯片防抖磁石131所在的平面始终是平行的,即,所述芯片防抖磁吸构件15所在的平面和所述芯片防抖磁石131所在的平面始终正交于Z轴,因此,所述芯片防抖磁吸构件15和所述芯片防抖磁石131能够相互配合而在Z轴方向产生磁吸力是指所述芯片防抖磁吸构件15所在的平面和所述芯片防抖磁石131所在的平面之间的磁吸力,包括但不限于竖直方向的磁吸力、偏移竖直方向的倾斜磁吸力。
继续参考附图14至图18,所述芯片驱动组件10进一步包括至少三芯片防抖位置感测元件16,其分别通过感测所述第一磁石组136、所述第二磁石组137和所述第三磁石组138的位置信息的方式感测所述芯片防抖可动部12于X轴方向平移、Y轴方向平移、Z轴方向旋转的位置信息。
优选地,三个所述芯片防抖位置感测元件16分别被定义为一第一感测元件161、一第二感测元件162以及一第三感测元件163。所述第一感测元件161被设置于所述第一线圈1321的所述线圈空间13202,以对应于所述第一磁石1311,其中所述第一感测元件161用于感测X轴方向平移时的磁场变化。所述第二感测元件162被设置于所述第四线圈1324的所述线圈空间13202,以对应于所述第四磁石1314,其中所述第二感测元件162用以感测Y轴方向平移时的磁场变化。所述第三感测元件163被设置于所述第五线圈1325的所述线圈空间13202,以对应于所述第五磁石1315,其中所述第二感测元件162和所述第三感测元件163用于感测Z轴方向旋转时的磁场变化。
优选地,所述芯片防抖位置感测元件16被贴装于所述芯片防抖电连接部123。
在本发明的所述摄像模组中,所述芯片防抖驱动部13的所述第一线圈组133、所述第二线圈组134和所述第三线圈组135是独立控制的线圈组,因此仅需设置三个所述芯片防抖位置感测元件16即可,如此不仅能够减少所述芯片驱动组件10的元件数量,利用较少的数量接口实现平移防抖和/或旋转防抖的感测而有利于减小所述芯片驱动组件10的尺寸,而且能够充分地利用所述芯片驱动组件10的内部空间而使得所述芯片驱动组件10的结构紧凑。
值得一提的是,在本发明的所述摄像模组的一些实施例中,所述芯片防抖位置感测元件16可以是霍尔元件。在发明的所述摄像模组的另一些实施例中,所述芯片防抖位置感测元件16可以是驱动I C,其适于在获取所述芯片防抖磁石131的位置变化的同时控制所述芯片防抖线圈132的电流。具体地,当所述摄像模组开启防抖功能后,所述芯片防抖位置感测元件16能够感测当前的所述第一磁石组136、所述第二磁石组137和所述第三磁石组138的当前位置,并通过控制所述第一线圈组133、所述第二线圈组134和所述第三线圈组135的电流的方式驱动所述芯片防抖可动部12移动至感测的中心位置,当所述摄像模组关闭防抖功能后,通过所述感光组件30的所述电路板31的反发力(即,所述芯片防抖可动部12在被平移和/或旋转时,所述电路板31因产生弹性形变而积蓄的弹性力)使得所述芯片防抖可动部12返回至初始位置。
附图19示出了本发明的所述摄像模组的一个变形示例,与附图1至图18示出的所述摄像模组不同的是,在附图19示出的所述摄像模组的这个变形示例中,所述第一线圈组133包括四个所述防抖线圈132,其中组成所述第一线圈组133的两个所述防抖线圈132相互对称地设置在所述感光元件32的所述第二芯片侧边322和所述第四芯片侧边324中的一端,另外两个所述防抖线圈132相互对称地设置在所述感光元件32的所述第二芯片侧边322和所述第四芯片侧边324中的另外一端。所述芯片防抖可动载体121的四个所述保持槽1215分别形成于所述感光元件32的所述第一芯片侧边321、所述第二芯片侧边322、所述第三芯片侧边323和所述第四芯片侧边324的中部,如此使得四个所述滚珠122分别于所述感光元件32的所述第一芯片侧边321、所述第二芯片侧边322、所述第三芯片侧边323和所述第四芯片侧边324的中部被可滚动地保持在所述芯片防抖可动载体121的所述载体正面1211和所述上盖112的内壁之间。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (25)

  1. 一镜头驱动组件,其特征在于,包括:
    一镜头对焦外框;
    一镜头对焦内框,其中所述镜头对焦内框被悬持于所述镜头对焦外框的侧方;
    一镜头防抖载体,其中所述镜头防抖载体被悬持于所述镜头防抖内框的下方;
    一镜头对焦驱动单元,其中所述镜头对焦驱动单元包括至少一镜头对焦磁石和至少一镜头对焦线圈,每个所述镜头对焦磁石分别被设置于所述镜头对焦外框,每个所述镜头对焦线圈分别被设置于所述镜头对焦内框,并且所述镜头对焦磁石的位置和所述镜头对焦线圈的位置相对应;以及
    一镜头防抖驱动单元,其中所述镜头防抖驱动单元包括至少一镜头防抖磁石和至少一镜头防抖线圈,每个所述镜头防抖磁石分别被设置于所述镜头防抖载体,每个所述镜头防抖线圈分别被设置于所述镜头防抖内框,并且所述镜头防抖磁石的位置和所述镜头防抖线圈的位置相对应。
  2. 根据权利要求1所述的镜头驱动组件,进一步包括至少一镜头对焦磁吸单元和一镜头对焦支撑单元,其中所述镜头对焦磁吸单元被设置于所述镜头对焦内框,并且所述镜头对焦磁吸单元的位置和所述镜头对焦磁石的位置相对应,以使两者之间产生水平方向的磁吸力,其中所述镜头对焦支撑单元被设置于所述镜头对焦外框和所述镜头对焦内框的镜头对焦内框侧部之间,如此悬持所述镜头对焦内框于所述镜头对焦外框的侧方。
  3. 根据权利要求2所述的镜头驱动组件,其中所述镜头对焦磁吸单元的高度尺寸大于或者等于所述镜头对焦磁石的高度尺寸。
  4. 根据权利要求2所述的镜头驱动组装件,其中在所述镜头对焦驱动单元驱动所述镜头对焦内框在高度方向做相对于所述镜头对焦外框的运动的过程中,所述镜头对焦磁吸单元在高度方向上始终覆盖所述镜头对焦磁石。
  5. 根据权利要求1所述的镜头驱动组件,进一步包括至少一镜头对焦磁轭单元,其中所述镜头对焦磁轭单元至少遮挡所述镜头对焦磁石的远离所述镜头对焦线圈的侧部。
  6. 根据权利要求5所述的镜头驱动组件,其中所述镜头对焦磁轭单元进一步包括一磁轭板、一磁轭上臂以及一磁轭下臂,所述磁轭上臂和所述磁轭下臂分别一体地延伸于所述磁轭板的上侧和下侧,以于所述磁轭板、所述磁轭上臂和所述磁轭下臂之间形成一磁轭空间,其中所述镜头对焦磁石被设置于所述镜头对焦磁轭单元的所述磁轭空间,并且所述镜头对焦磁轭单元的远离所述镜头对焦线圈的侧部贴合于所述磁轭板,所述磁轭上臂和所述磁轭下臂分别遮挡所述镜头对焦磁石的上侧和下侧的至少一部分。
  7. 根据权利要求6所述的镜头驱动组件,其中所述镜头对焦磁轭单元的所述隔磁上壁和磁轭下臂分别贴合于所述镜头对焦磁石的上侧和下侧。
  8. 根据权利要求1所述的镜头驱动组件,进一步包括至少一镜头防抖磁吸单元和一镜头防抖支撑单元,其中所述镜头防抖磁吸单元被设置于所述镜头防抖内框的一镜头防抖内框顶部,并且所述镜头防抖磁吸单元和所述镜头防抖磁石相对应,以使两者之间产生高度方向的磁吸力,其中所述镜头防抖支撑单元被设置于所述镜头防抖载体和所述镜头对焦内框的所述镜头对焦内框顶部之间,如此悬持所述镜头防抖载体于所述镜头对焦内框的下方。
  9. 根据权利要求2所述的镜头驱动组件,进一步包括至少一镜头防抖磁吸单元和一镜头防抖支撑单元,其中所述镜头防抖磁吸单元被设置于所述镜头对焦内框的一镜头对焦内框顶部,并且所述镜头防 抖磁吸单元和所述镜头防抖磁石相对应,以使两者之间产生高度方向的磁吸力,其中所述镜头防抖支撑单元被设置于所述镜头防抖载体和所述镜头对焦内框的所述镜头对焦内框顶部之间,如此悬持所述镜头防抖载体于所述镜头对焦内框的下方。
  10. 根据权利要求9所述的镜头驱动组件,进一步包括一镜头对焦线路板,其中所述镜头对焦线路板包括一贴装部分和一连接部分,所述贴装部分被贴装于所述镜头对焦外框,所述连接部分一体地延伸于所述贴装部分,并且所述连接部分被电连接于所述镜头防抖磁吸单元,所述镜头防抖磁吸单元被电连接于所述镜头对焦磁吸单元,所述镜头对焦线圈被电连接于所述镜头对焦磁吸单元。
  11. 根据权利要求10所述的镜头驱动组件,其中所述镜头对焦线圈的数量和所述镜头对焦磁石的数量分别是两个,两个所述镜头对焦线圈通过一根导电线绕制形成。
  12. 根据权利要求10所述的镜头驱动组件,进一步包括一镜头防抖线路板,其中每个所述镜头防抖线圈分别被贴装于所述镜头防抖线路板,所述镜头防抖线路板被设置于所述镜头对焦内框顶部,并且所述镜头防抖线路板被电连接于所述镜头防抖磁吸单元。
  13. 根据权利要求9所述的镜头驱动组件,进一步包括一镜头对焦感测单元,其中所述镜头对焦感测单元包括一镜头对焦感测磁石和一镜头对焦位置感测元件,所述镜头对焦感测磁石被固定于所述镜头对焦内框,所述镜头对焦位置感测元件被贴装于所述镜头对焦线路板的所述贴装部分,并且所述镜头对焦感测磁石的位置和所述镜头对焦位置感测元件的位置相对应。
  14. 根据权利要求9所述的镜头驱动组件,进一步包括一镜头对焦感测单元,其中所述镜头对焦感测单元包括一镜头对焦感测磁石和一镜头对焦位置感测元件,所述镜头对焦感测磁石被固定于所述镜头对焦外框,所述镜头对焦位置感测元件被贴装于所述镜头对焦内框,并且所述镜头对焦感测磁石的位置和所述镜头对焦位置感测元件的位置相对应。
  15. 根据权利要求12所述的镜头驱动组件,进一步包括至少一镜头防抖位置感测元件,其中所述镜头防抖位置感测元件被贴装于所述镜头防抖线路板,并且所述镜头防抖位置感测元件和所述镜头防抖线圈分别位于所述镜头防抖线路板的相对两侧。
  16. 根据权利要求2至4、9至15中任一所述的镜头驱动组件,其中所述镜头对焦支撑单元包括至少两镜头对焦轨道和至少两镜头对焦活动元件,其中每个所述镜头对焦轨道分别包括一内凹槽轨道和一外凹槽轨道,所述内凹槽轨道形成于所述镜头对焦内框的所述镜头对焦内框侧部,所述外凹槽轨道形成于所述镜头对焦外框,所述内凹槽轨道和所述外凹槽轨道相对应且两者的延伸方向一致,其中所述镜头对焦活动元件的内部和外部分别被可活动地保持在所述内凹槽轨道和所述外凹槽轨道,其中所述镜头对焦活动元件是滚珠,从而所述镜头对焦活动元件的内部和外部分别被可滚动地保持在所述内凹槽轨道和所述外凹槽轨道。
  17. 根据权利要求16所述的镜头驱动组件,其中所述镜头对焦支撑单元包括四个所述镜头对焦活动元件,每个所述镜头对焦轨道分别被设置有两个所述镜头对焦活动元件。
  18. 根据权利要求9至15中任一所述的镜头驱动组件,其中所述镜头防抖支撑单元包括至少三镜头防抖轨道和至少三镜头防抖活动元件,其中每个所述镜头防抖轨道分别包括一下凹槽轨道和一上凹槽轨道,所述下凹槽轨道形成于所述镜头防抖载体的载体顶面,所述上凹槽轨道形成于所述镜头对焦内框的内框底面,所述下凹槽轨道和所述上凹槽轨道相对应且两者的延伸方向相互垂直,其中所述镜头防抖滚珠的底部和顶部分别被可活动地保持在所述下凹槽轨道和所述上凹槽轨道,其中所述镜头防抖 活动元件是滚珠,从而所述镜头防抖活动元件的底部和顶部分别被可滚动地保持在所述下凹槽轨道和所述上凹槽轨道。
  19. 一摄像模组,其特征在于,包括:
    一感光组件;
    一光学镜头,其中所述光学镜头被保持在所述感光组件的感光路径;以及
    根据权利要求1至18中任一所述的镜头驱动组件,其中所述镜头防抖载体具有一载体通道,所述光学镜头被设置于所述镜头防抖载体的所述载体通道。
  20. 根据权利要求19所述的摄像模组,其中所述镜头驱动组件进一步包括一镜头驱动基座和一镜头驱动壳体,所述镜头驱动壳体被安装于所述镜头驱动基座,以在所述镜头驱动壳体和所述镜头驱动基座之间形成一容置空间,其中所述镜头对焦外框被设置于所述镜头驱动基座,并且所述镜头对焦外框、所述镜头对焦内框和所述镜头防抖载体均位于所述容置空间。
  21. 根据权利要求20所述的摄像模组,进一步包括一芯片驱动组件,所述感光组件被可驱动地设置于所述芯片驱动组件,其中所述芯片驱动组件位于所述镜头驱动组件的下方。
  22. 根据权利要求21所述的摄像模组,其中所述芯片驱动组件进一步包括:
    至少一芯片防抖导磁构件;
    一芯片防抖固定部,其中所述芯片防抖固定部具有一收容腔和连通于所述收容腔的一顶部开口;
    一芯片防抖可动部,其中所述芯片防抖可动部被悬持于所述芯片防抖固定部的所述收容腔;以及
    一芯片防抖驱动部,其中所述芯片防抖驱动部包括多个相对设置的芯片防抖磁石和多个芯片防抖线圈,这些所述芯片防抖磁石分别被设置于所述芯片防抖固定部,这些所述芯片防抖线圈分别被设置于所述芯片防抖可动部,其中所述芯片防抖导磁构件被罩设于所述防抖磁石。
  23. 根据权利要求21所述的摄像模组,其中所述芯片防抖导磁构件被设置于所述芯片防抖固定部,所述芯片防抖磁石被设置于所述芯片防抖导磁构件,以使所述芯片防抖磁石通过所述芯片防抖导磁构件被设置于所述芯片防抖固定部。
  24. 根据权利要求23所述的摄像模组,其中所述芯片防抖固定部包括一基底和一上盖,所述基底和所述上盖被扣合地安装,其中所述芯片导磁构件被设置于所述上盖,所述芯片防抖磁石被设置于所述芯片防抖导磁构件。
  25. 根据权利要求24所述的摄像模组,其中所述镜头驱动基座被贴装于所述上盖,并且所述镜头驱动基座的至少一部分是导磁材料制作的。
PCT/CN2022/137085 2021-12-13 2022-12-07 镜头驱动组件和摄像模组 WO2023109601A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111521963.2 2021-12-13
CN202111521963.2A CN116347185A (zh) 2021-12-13 2021-12-13 镜头驱动组件和摄像模组

Publications (1)

Publication Number Publication Date
WO2023109601A1 true WO2023109601A1 (zh) 2023-06-22

Family

ID=86774859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137085 WO2023109601A1 (zh) 2021-12-13 2022-12-07 镜头驱动组件和摄像模组

Country Status (2)

Country Link
CN (1) CN116347185A (zh)
WO (1) WO2023109601A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117560557B (zh) * 2024-01-11 2024-04-05 厦门市众惠微电子有限公司 一种抗磁干扰的防抖马达和摄像模组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104407487A (zh) * 2014-12-19 2015-03-11 深圳市世尊科技有限公司 一种通过纯平移运动实现光学防抖的音圈马达
CN105573014A (zh) * 2016-01-22 2016-05-11 南昌欧菲光电技术有限公司 具有对焦及防抖功能的摄像头模组
CN208079224U (zh) * 2018-03-14 2018-11-09 欧菲影像技术(广州)有限公司 无线路板对焦防抖组件
CN112415708A (zh) * 2020-12-02 2021-02-26 高瞻创新科技有限公司 一种防抖对焦马达及其应用模组
WO2021159391A1 (zh) * 2020-02-13 2021-08-19 南昌欧菲光电技术有限公司 摄像头模组、摄像装置及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104407487A (zh) * 2014-12-19 2015-03-11 深圳市世尊科技有限公司 一种通过纯平移运动实现光学防抖的音圈马达
CN105573014A (zh) * 2016-01-22 2016-05-11 南昌欧菲光电技术有限公司 具有对焦及防抖功能的摄像头模组
CN208079224U (zh) * 2018-03-14 2018-11-09 欧菲影像技术(广州)有限公司 无线路板对焦防抖组件
WO2021159391A1 (zh) * 2020-02-13 2021-08-19 南昌欧菲光电技术有限公司 摄像头模组、摄像装置及电子设备
CN112415708A (zh) * 2020-12-02 2021-02-26 高瞻创新科技有限公司 一种防抖对焦马达及其应用模组

Also Published As

Publication number Publication date
CN116347185A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
US10649314B2 (en) Optical member driving system
WO2022142681A1 (zh) 防抖结构、防抖系统及摄像装置
WO2022142684A1 (zh) 防抖结构、防抖系统及摄像装置
CN116299950A (zh) 相机装置和光学设备
WO2023109601A1 (zh) 镜头驱动组件和摄像模组
CN113206953A (zh) 相机模块和光学设备
KR20100001518A (ko) 모바일 기기용 카메라모듈
KR20170109767A (ko) 렌즈 구동 장치
WO2023274421A1 (zh) 镜头驱动组件、芯片驱动组件和摄像模组以及基于滚珠的两轴光学致动模块
WO2023274420A1 (zh) 驱动组件和摄像模组以及驱动组件的驱动方法、基于滚珠的两轴光学致动模块
CN116088125A (zh) 镜头驱动组件、芯片驱动组件和摄像模组
CN116088246A (zh) 镜头驱动组件、芯片驱动组件和摄像模组
CN116095451A (zh) 镜头驱动组件、芯片驱动组件和摄像模组
CN116095485A (zh) 镜头驱动组件、芯片驱动组件和摄像模组
CN116068717A (zh) 镜头驱动组件、芯片驱动组件和摄像模组
WO2022257715A1 (zh) 感光芯片驱动装置及摄像模组
WO2022257714A1 (zh) 透镜驱动装置及摄像模组
CN116055879A (zh) 驱动组件和摄像模组
WO2023116437A1 (zh) 芯片防抖感光组件及防抖摄像模组
US20240040254A1 (en) Camera actuator
CN116055878A (zh) 驱动组件和摄像模组
CN116055833A (zh) 驱动组件和摄像模组
US20220206364A1 (en) Lens driving apparatus, and camera module and optical device comprising same
CN116055880A (zh) 驱动组件和摄像模组
WO2023155889A1 (zh) 驱动装置及其组装方法和摄像模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906351

Country of ref document: EP

Kind code of ref document: A1