WO2023109428A1 - 一种全光场成像相机及其成像方法及全光场成像装置 - Google Patents

一种全光场成像相机及其成像方法及全光场成像装置 Download PDF

Info

Publication number
WO2023109428A1
WO2023109428A1 PCT/CN2022/132841 CN2022132841W WO2023109428A1 WO 2023109428 A1 WO2023109428 A1 WO 2023109428A1 CN 2022132841 W CN2022132841 W CN 2022132841W WO 2023109428 A1 WO2023109428 A1 WO 2023109428A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
light
image plane
dimensional array
array detector
Prior art date
Application number
PCT/CN2022/132841
Other languages
English (en)
French (fr)
Inventor
王中阳
孙静
王柯威
Original Assignee
中国科学院上海高等研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海高等研究院 filed Critical 中国科学院上海高等研究院
Publication of WO2023109428A1 publication Critical patent/WO2023109428A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/957Light-field or plenoptic cameras or camera modules

Definitions

  • the present invention relates to the field of imaging, and more specifically relates to a full light field imaging camera, an imaging method thereof, and a full light field imaging device.
  • phase imaging methods have developed a lot in these years, mainly including the following categories:
  • the first type of method is Coherent Diffraction Imaging (CDI), which illuminates the sample with coherent light, diffracts the light from the sample to the far field, and forms the spatial Fourier spectrum intensity distribution of the object in the far field.
  • CDI Coherent Diffraction Imaging
  • the leaf spectrum intensity distribution is used as a constraint, and the amplitude and phase information of the object are obtained by oversampling and Fourier iterative operations to realize object imaging.
  • the second type of method is Fourier stack imaging (FPM), which illuminates the sample from different angles and collects it with a microscopic imaging system. Each angle of light corresponds to a different intensity distribution of the real image surface, and then these detected overlapping real image surface intensity distributions are used as constraints, and the amplitude and phase information are recovered through Fourier iterative operations to realize the imaging of the object.
  • FPM Fourier stack imaging
  • the third type of method is holographic imaging.
  • This technology introduces a beam of reference light and interferes the diffracted light after passing through the object with the reference light to obtain a hologram.
  • the contrast and shape (or position) information of the interference fringes are respectively It contains the information of the wavefront amplitude and phase of the object, and then the amplitude and phase information of the object can be obtained by reproducing the wavefront of the hologram, so as to realize the clear imaging of the object.
  • the first type of method has high requirements for sampling. Since only part of the information of the spatial Fourier spectrum plane is detected, it is not enough to obtain phase information. It is necessary to increase sampling to create redundant information, so as to obtain sufficient constraints. Conditions, so oversampling is required, and it is easy to cause the algorithm to not converge.
  • the second type of method also has requirements for information redundancy. Since only part of the information of the real image surface is detected, it is not enough to solve the phase information. In order to obtain sufficient constraints, each two adjacent The angle corresponds to the Fourier spatial spectrum distribution to achieve a certain degree of overlapping detection, so a large amount of information redundancy reduces the imaging time.
  • the third type of method needs to introduce an additional beam of reference light to interfere with diffracted light, which makes the optical path relatively complex and requires high stability.
  • problems such as conjugate images will occur, making the algorithm Unable to converge.
  • the purpose of the present invention is to provide a full light field imaging camera and its imaging method and full light field imaging device, so as to solve the difficulties in the existing phase imaging technology, such as high sampling rate requirements, need to overlap to obtain redundant information, and slow algorithm convergence .
  • the present invention provides a full light field imaging camera, which includes imaging components arranged in sequence along the direction of the optical path to form an image plane intensity information collection system and a first two-dimensional array detector, arranged in sequence along the direction of the optical path
  • the imaging components, the Fourier transform lens and the second two-dimensional array detector are arranged to form the space Fourier spectrum intensity information acquisition system, and the first two-dimensional array detector and the second two-dimensional array detector
  • An arithmetic processor connected by communication;
  • the imaging component is configured to receive illumination light from the object to be measured to provide imaging light of the object to be measured, and the imaging light is imaged on the detection surface of the first two-dimensional array detector to form The first image plane, the imaging light is imaged at a position of a known distance in front of the Fourier transform lens to form a second image plane, and the second two-dimensional image on the focal plane behind the Fourier transform lens
  • a spatial Fourier spectrum plane is formed on the detection plane of the array detector.
  • the number of the imaging assembly is one, and a beam splitter is provided between the imaging assembly and the Fourier transform lens, or the number of the imaging assembly is two, and the front of the two imaging assemblies is provided There is a beam splitter; and one of the first image plane and the second image plane is formed by direct imaging of the imaging light, and the other is formed by imaging the imaging light after being reflected by the beam splitter; the first two The two-dimensional array detector and the second two-dimensional array detector are two two-dimensional array detectors, or the same movable two-dimensional array detector.
  • the first two-dimensional array detector and the second two-dimensional array detector are two different two-dimensional array detectors, which respectively detect the intensity information of the first image plane and the intensity information of the spatial Fourier spectrum plane, or are The same two-dimensional array detector that can move along the optical path; in this case, the Fourier transform lens is movable, through the movement of the two-dimensional array detector and the moving in and out of the optical path of the Fourier transform lens to Switch between the surface intensity information acquisition system and the spatial Fourier spectrum intensity information acquisition system.
  • the arithmetic processor is configured to receive the image plane intensity information and the spatial Fourier spectrum intensity information, and perform the following step S1: using the image plane intensity information and the spatial Fourier spectrum intensity information as the Fourier
  • the constraint conditions of the Fourier iterative operation, the amplitude spatial distribution information and the phase spatial distribution information of the object to be measured are obtained through multiple Fourier iterative operations, and the full light field imaging is realized.
  • the method of the Fourier iterative operation includes but is not limited to Gerchberg-Saxton algorithm, Hybrid input–output algorithm, and Yang-Gu algorithm.
  • the imaging light forms an image on the focal plane in front of the Fourier transform lens.
  • the present invention provides an imaging method for a full light field imaging camera, comprising:
  • S1' providing an imaging component, so that the illumination light irradiates the object to be measured and passes through the imaging component to form the imaging light of the object to be measured, and the detection surface of the first two-dimensional array detector is placed on the first image formed by imaging the imaging light surface, the Fourier transform lens is placed at a position with a known distance from the second image plane, and the second two-dimensional array detector is placed at the focal plane behind the Fourier transform lens; through the first two-dimensional The array detector and the second two-dimensional array detector collect image plane intensity information and spatial Fourier spectrum intensity information of the object to be measured;
  • step S2' Upload the image plane intensity information and spatial Fourier spectrum intensity information of the object to be measured acquired in step S1' to the computing processor, and use the computing processor to perform the following step S1: use the image plane intensity Information and spatial Fourier spectrum intensity information is used as the constraint condition of Fourier iterative operation, and the amplitude spatial distribution information and phase spatial distribution information of the object to be measured are obtained through multiple Fourier iterative operations to realize full light field imaging.
  • the step S1' further includes: the number of the imaging assembly is one, and a beam splitter is placed between the imaging assembly and the first two-dimensional array detector, or the number of the imaging assembly is two, A beam splitter is arranged in front of the two imaging components; thus, the first image plane is formed by direct imaging of the imaging light, and the second image plane is formed by imaging the imaging light after being reflected by the beam splitter.
  • the illumination light is coherent light or partially coherent light with known coherence, and the partially coherent light satisfies the quasi-monochromatic criterion.
  • the present invention provides a plenoptic field imaging device based on a plenoptic field imaging camera, including: a laser, an object to be measured, and an imaging lens group on the same optical axis, and the plenoptic field imaging device according to the above-mentioned Imaging camera; the imaging lens group is an imaging objective lens, or an imaging objective lens and an imaging lens, and the object to be measured is located on the focal plane of the imaging lens group of the imaging lens group.
  • a full-light-field imaging device based on a full-light-field imaging camera includes the full-light-field imaging camera described above; the full-light-field imaging device is a microscope, a camera, or a telescopic and remote sensing device , and the imaging assembly of the full light field imaging camera includes an imaging lens assembly matching the microscopic objective lens, a photographic lens assembly matching the camera, or a telescopic and remote sensing imaging assembly matching the telescopic and remote sensing device .
  • the implementation method and device of the full light field imaging camera provided by the present invention use the intensity distribution of the image plane, the intensity distribution of the spatial Fourier spectrum, and the lens transformation as constraints, and obtain the amplitude and phase of the imaging object through Fourier iterative operations to realize Compared with the existing phase imaging and its devices, the full light field imaging has the following advantages:
  • phase imaging methods often require additional information as a constraint, whether it is oversampling or reference light, and use this as a constraint to solve the phase.
  • the invention simplifies the optical path design of the traditional method by using the information actually detected by the two image planes, can obtain enough information to solve the phase through the constraints of the two image planes, reduces the sampling requirement and simplifies the difficulty of the experiment.
  • the existing methods often fail to converge or converge to the optimal solution due to insufficient constraint information.
  • the information used as constraint conditions by this method is actually detected, so the information is more accurate, which can make the convergence speed of the Fourier iterative operation faster and more accurate.
  • the implementation method and device of the full light field imaging camera of the present invention have the advantages of effectively reducing the sampling requirements of the detector, simplifying the optical path, and increasing the amount of imaging information.
  • FIG. 1 is a schematic structural diagram of a full light field imaging camera according to a first embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of a full light field imaging device based on a full light field imaging camera according to a third embodiment of the present invention, the full light field imaging device is used to realize full light field imaging on ground glass.
  • FIG 3 is a schematic structural diagram of a full light field imaging device based on a full light field imaging camera according to a fourth embodiment of the present invention, and the full light field imaging device is applied in the field of microscopic imaging.
  • FIG. 1 is a schematic structural diagram of a full light field imaging camera according to an embodiment of the present invention.
  • the full light field imaging camera includes: an imaging component 1, a beam splitter 2, a first two-dimensional array detector arranged in sequence along the direction of the optical path on the first optical axis A device 3, the beam splitter 2, a Fourier transform lens 4 with a focal length f and a second two-dimensional array detector 5 arranged in sequence along the optical path on the second optical axis perpendicular to the first optical axis , and an arithmetic processor 6 communicatively connected to both the first two-dimensional array detector 3 and the second two-dimensional array detector 5 .
  • the imaging assembly 1 is located downstream of the object to be measured, and is configured to receive illumination light from the object to be measured to provide imaging light of the object to be measured, and the imaging light is imaged on the detection surface of the first two-dimensional array detector 3
  • the first image plane 7 is formed by direct imaging, so that the light intensity distribution on the detection plane of the first two-dimensional array detector 3 corresponds to the intensity distribution of the image plane, thus, the direction of the optical path is sequentially arranged in the imaging assembly 1 .
  • the first two-dimensional array detector 3 constitutes an image plane intensity information collection system, and the first two-dimensional array detector 3 collects image plane intensity information.
  • the illumination light can use coherent light illumination or partially coherent light with known coherence, and the coherence of partially coherent light satisfies the quasi-monochromatic criterion, that is, ⁇ / ⁇ >M ( ⁇ is the wavelength of partially coherent light, and ⁇ of partially coherent light wavelength error range, M is the number of pixels in one direction of the first two-dimensional array detector 3 and the second two-dimensional array detector 5).
  • the imaging light is reflected on the focal plane in front of the Fourier transform lens 4 after being reflected by the beam splitter 2 to form the second image plane 8 (that is, the second image plane 8 and the Fourier transform lens 4).
  • the distance is the focal length f) of the Fourier transform lens 4
  • the distance between the Fourier transform lens 4 and the second two-dimensional array detector 5 is the focal length f of the Fourier transform lens 4, so that the second two-dimensional array detector
  • the light intensity distribution on the detection surface of 5 corresponds to the spatial Fourier spectrum intensity information distribution.
  • the distance between the second image plane 8 and the Fourier transform lens 4 is not the focal length f of the Fourier transform lens 4 but it is known that the distance between the second image plane 8 and the Fourier transform lens 4 The distance between the situation.
  • the imaging assembly 1, the beam splitter 2, the Fourier transform lens 4 and the second two-dimensional array detector 5 arranged in sequence along the direction of the optical path constitute a spatial Fourier spectrum intensity information collection system, the first The two-dimensional array detector 5 collects spatial Fourier spectrum intensity information.
  • the first two-dimensional array detector 3 and the second two-dimensional array detector 5 have photosensitive elements, which are configured to convert the light intensity (ie, the square information of the amplitude of the light wave) on the detection surface into
  • the electrical signal, the light intensity on the detection surface is the image plane intensity information and the spatial Fourier spectrum intensity information (reflected as an image with gray values).
  • the converted electrical signal itself is dimensionless, and the unit of light intensity on the detection surface is W/cm 2 , so the unit of image plane intensity information and spatial Fourier spectrum intensity information is W/cm 2 .
  • the detected image plane intensity information is expressed as f(x 0 , y 0 ), and the spatial Fourier spectrum intensity information is expressed as F(u 0 , v 0 ), where x 0 , y 0 represent the first
  • the coordinates of the detection surface of the two-dimensional array detector 3 are the coordinates of the real image space
  • u 0 and v 0 represent the coordinates of the detection surface of the second two-dimensional array detector 5, that is, the coordinates of the space Fourier frequency domain
  • f(x 0 , y 0 ) and F(u 0 , v 0 ) are the values of the light intensity detected by the first two-dimensional array detector 3 and the second two-dimensional array detector 5 (ie, the square of the light amplitude).
  • the first two-dimensional array detector 3 and the second two-dimensional array detector 5 can adopt high sampling rate CCD, EMCCD, CMOS or sCMOS.
  • the first image plane 7 is formed by direct imaging of the imaging light
  • the second image plane 8 is formed by imaging the imaging light after being reflected by the beam splitter 2 .
  • the first two-dimensional array detector 3 and the second two-dimensional array detector 5 use two different two-dimensional array detectors to obtain image plane intensity information and spatial Fourier spectrum intensity through the two two-dimensional array detectors respectively information.
  • one of the first image plane 7 and the second image plane 8 is formed by direct imaging of the imaging light, and the other is formed by imaging the imaging light after being reflected by the beam splitter 2.
  • the first The image plane 7 and the second image plane 8 are image planes representing the same information but located at different positions.
  • the imaging light at the second image plane 8 is transformed by the Fourier transform lens 4 to form a spatial Fourier spectrum plane.
  • the first two-dimensional array detector 3 and the second two-dimensional array detector 5 can be the same two-dimensional array detector that can be moved to different optical paths, that is, the same two-dimensional array detector is moved successively As the first two-dimensional array detector 3 and the second two-dimensional array detector 5, the image plane intensity information is obtained when the same two-dimensional array detector is used as the first two-dimensional array detector 3, and as the second two-dimensional array detector 5 The intensity information of the spatial Fourier spectrum is obtained when the three-dimensional array detector is 5.
  • the beam splitter 2 can be arranged in front of the imaging component 1, that is, the number of the beam splitter 2 is one, and the number of the imaging component 1 is two, and the illumination light from the object to be measured is beam-splittered
  • the first imaging component receives one path of illumination light and provides corresponding imaging light
  • the imaging light is imaged on the detection surface of the first two-dimensional array detector to form the first image surface
  • the second imaging component receives another path of illumination light and provides corresponding imaging light.
  • the imaging light is imaged at a position of a known distance in front of the Fourier transform lens to form a second image plane, and the Fourier transform lens A spatial Fourier spectrum surface is formed on the detection surface of the second two-dimensional array detector on the focal plane behind the transformation lens.
  • the first image plane is formed by direct imaging of the imaging light
  • the second image plane is formed by imaging the imaging light after being reflected by the beam splitter
  • the first image plane and the second image plane represent the same information but located in different image planes
  • the imaging light at the second image plane is transformed by a Fourier transform lens to form a spatial Fourier spectrum plane.
  • the beam splitter 2 can be omitted, that is, the first image plane and the second image plane are formed by direct imaging of the imaging light, and are the same image plane at the same position; and the first two-dimensional array
  • the detector and the second two-dimensional array detector can be two different two-dimensional array detectors that can be moved into and out of the optical path, or the same two-dimensional array detector that can be moved along the optical path, and the beam splitter omits
  • the Fourier transform lens is movable (that is, moved in and out of the optical path), so that the moving in and out of the optical path of different two-dimensional array detectors or the forward and backward movement of the same two-dimensional array detector along the optical path and
  • the Fourier transform lens moves in and out of the optical path to switch between the image plane intensity information acquisition system and the spatial Fourier spectrum intensity information acquisition system.
  • the imaging assembly 1 includes, but is not limited to, an imaging lens assembly matched with a microscope objective outside the full light field imaging camera, a photographic lens assembly, and a telescopic and remote sensing imaging lens assembly.
  • the beam splitter 2 includes, but is not limited to, a 1:1 optical beam splitter, and other optical beam splitters with a fixed beam splitting ratio.
  • the Fourier transform lens 4 may be an achromatic composite lens within the range of the detection spectrum, or a non-chromatic concave mirror or an ellipsoidal mirror.
  • the aperture D of the Fourier transform lens 4 will not truncate the spatial spectrum contained in the image, and its focal length f meets the sampling requirements of the image plane and the spatial Fourier spectrum intensity information plane, namely
  • is the wavelength of the illumination light
  • ⁇ x 1 is the sampling pitch of the first two-dimensional array detector 3
  • ⁇ x 2 is the sampling pitch of the second two-dimensional array detector 5
  • N is the number of sampling points.
  • the computing processor 6 may be a computer or a built-in Fourier iterative processor or the like.
  • the arithmetic processor 6 is configured to receive the image plane intensity information and the spatial Fourier spectrum intensity information, and perform the following steps S1:
  • the amplitude spatial distribution information and the phase spatial distribution information of the object to be measured are obtained through multiple Fourier iterative operations to realize Full light field imaging.
  • the present invention simultaneously provides the image plane intensity information acquisition system and the optical path structure of the space Fourier spectrum intensity information acquisition system. Intensity information and spatial Fourier spectrum intensity information, and then realize the full light field camera.
  • the obtained imaging result of the full light field imaging is amplitude spatial distribution information and phase spatial distribution information of the object to be measured obtained through Fourier iterative operation.
  • the imaging result can be expressed as a wave function, or as a restored image with gray values, and the amplitude spatial distribution and phase spatial distribution are reflected in the restored image as the gray value of each pixel grid on the image.
  • the method of Fourier iterative operation may specifically include but not limited to the following Fourier iterative phase recovery algorithms: 1. Gerchberg-Saxton (GS) algorithm. 2. Hybrid input–output (HIO) algorithm. 3. Yang Gu (Y-G) algorithm.
  • GS Gerchberg-Saxton
  • HIO Hybrid input–output
  • Y-G Yang Gu
  • constraints of the Fourier iterative operation include but not limited to strength constraints, non-negative constraints, space bounded constraints and so on.
  • the step S1 specifically includes: according to the detected image plane intensity information f(x 0 , y 0 ) and the spatial Fourier spectrum intensity information F(u 0 , v 0 ), perform the following iterative operation:
  • Step S11 Initialize the current number of iterations k to 0, and randomly assign the detected image plane intensity distribution f(x 0 ,y 0 ) with an image plane phase value whose iteration number is 0 Get the complex number form of the image plane intensity distribution of the current iteration number
  • Step S12 the plural form of the image plane intensity distribution for the current iteration number Perform Fourier transform to obtain the spatial Fourier spectrum transform result of the current iteration number
  • ⁇ (k) is the spectral conversion result of the image plane phase value of current iteration number of rounds;
  • Step S13 Replace the spatial Fourier spectrum transformation result with the detected spatial Fourier spectrum intensity information F(u 0 , v 0 ) The base part of , get the complex number form of the spatial Fourier spectrum distribution of the current iteration number
  • Step S14 the complex number form of the spatial Fourier spectrum distribution of the current iteration number Do the inverse Fourier transform to get the next-order image plane intensity distribution conversion result of the current iteration number
  • Step S15 Replace the detected image plane intensity information f(x 0 ,y 0 ) with the next-order image plane intensity distribution conversion result of the current iteration number The base part of , get the complex number form of the image plane intensity distribution of the next order of the current iteration number
  • Step S16 take the next order k+1 of the current iterative round number as the new current iterative round number k, repeat the above step S12 to step S15 until the algorithm converges, at this time the image plane intensity of the next round of the current iterative round number plural form of distribution complex form of the spatial Fourier spectral distribution with the current iteration number is the complex amplitude of the final restored real image surface and the complex amplitude F(u 0 ,v 0 )e i ⁇ of the intensity information surface of the spatial Fourier spectrum.
  • Step S17 According to the complex amplitude of the real image surface obtained after the final restoration and the complex amplitude F(u 0 ,v 0 )e i ⁇ of the intensity information surface of the spatial Fourier spectrum to determine the spatial distribution information of the amplitude and the spatial distribution information of the phase of the object to be measured.
  • the present invention uses the intensity of the detected spatial Fourier spectrum plane as a constraint condition in step S13; uses the intensity of the detected real image plane as an intensity constraint condition in step S15, and uses two The intensity information of each surface is used as the intensity constraint condition to make the operation result approximate the condition of the image constraint, so that the result satisfies the intensity constraints of the real image surface and the spatial Fourier spectrum intensity information surface at the same time, thus ensuring that the lost phase information is successfully calculated.
  • step S11-step S16 provided by the present invention is based on the following working principles:
  • the two-dimensional array detector obtains the spatial Fourier spectrum intensity information on the spatial Fourier spectrum intensity information surface of the object to be measured according to the sampling theorem, and can obtain according to the sampling theorem:
  • u and v represent the coordinates of the spatial Fourier spectrum intensity information surface
  • represents the phase information of the light wave on the spatial Fourier spectrum intensity information surface
  • L x , L y represent the size of the real image surface area extending in the x and y directions
  • n and m represent the position of each pixel grid sampled
  • the sinc function is the Fourier transform of the rectangular function.
  • the two-dimensional array detector obtains the image plane intensity information of the object to be measured according to the sampling theorem, and according to the sampling theorem:
  • x and y represent the coordinates of the real image plane; Represents the phase information of the light wave on the real image surface; B x, B y represent the highest frequency of the object to be measured extending along the x, y direction; n and m represent the position of each pixel grid sampled, and the sinc function is the Fourier transform of the rectangular function.
  • the two can be combined together through the Fourier transform, and the known n intensity information is used as the known constraint conditions, and the above two equations can be solved through the above steps S11-Step S16 to obtain the complex of the real image surface amplitude and the complex amplitude F(u 0 ,v 0 )e i ⁇ of the intensity information surface of the spatial Fourier spectrum, that is, the unknown phase information ⁇ .
  • the imaging method of the full light field imaging camera implemented specifically includes:
  • Step S1' providing an imaging component 1 so that the illumination light irradiates the object to be measured and passes through the imaging component 1 to form the imaging light of the object to be measured, and the detection surface of the first two-dimensional array detector 3 is placed on the imaging light forming the first image plane 7, or place the Fourier transform lens 4 at a known distance from the second image plane 8 (for example, the Fourier transform lens 4 can be placed so that the focal plane in front of it is at the On the second image plane 8 formed by imaging light imaging, that is, the distance between the Fourier transform lens 4 and the second image plane 8 is equal to the focal length of the Fourier transform lens 4), and the second two-dimensional array detector 5 is placed on At the focal plane behind the Fourier transform lens 4; through the first two-dimensional array detector 3 and the second two-dimensional array detector 5, the image plane intensity information and the spatial Fourier spectrum intensity information of the object to be measured are collected .
  • the step S1' further includes: the number of the imaging assembly 1 is one, and a beam splitter 2 is placed between the imaging assembly 1 and the first two-dimensional array detector 3, so that the first The image plane 7 is formed by direct imaging of the imaging light, the second image plane 8 is formed by imaging the imaging light after being reflected by the beam splitter 2, the first image plane 7 and the second image plane 8 represent the same information but For the image planes located at different positions, the imaging light at the second image plane 8 is transformed by the Fourier transform lens to form a spatial Fourier spectrum plane.
  • the step S1' further includes: the number of the imaging components 1 is two, and a beam splitter 2 is arranged in front of the two imaging components 1, so that the illumination light from the object to be measured passes through
  • the first imaging component receives one path of illumination light and provides corresponding imaging light
  • the imaging light is imaged on the detection surface of the first two-dimensional array detector to form the first image plane
  • the second imaging component receives another path of illumination light and provides corresponding imaging light
  • the imaging light is imaged at a position of a known distance in front of the Fourier transform lens to form a second image plane
  • a spatial Fourier spectrum plane is formed on the detection plane of the second two-dimensional array detector on the focal plane behind the Fourier transformation lens.
  • the first image plane is formed by direct imaging of the imaging light
  • the second image plane is formed by imaging the imaging light after being reflected by the beam splitter
  • the first image plane and the second image plane represent the same information but located in different image planes
  • the imaging light at the second image plane is transformed by a Fourier transform lens to form a spatial Fourier spectrum plane.
  • the beam splitter 2 can be omitted, that is, the first image plane and the second image plane are formed by direct imaging of the imaging light, and are the same image plane at the same position; and the first two-dimensional array detects
  • the beam splitter and the second two-dimensional array detector can be two different two-dimensional array detectors that can be moved into and out of the optical path, or the same two-dimensional array detector that can move along the optical path, in the case where the beam splitter is omitted
  • the Fourier transform lens described below is movable (that is, moved in and out of the optical path), so that the moving in and out of the optical path of different two-dimensional array detectors or the forward and backward movement of the same two-dimensional array detector along the optical path and Fourier
  • the Fourier transformation lens is moved in and out of the optical path to switch between the image plane intensity information acquisition system and the spatial Fourier spectrum intensity information acquisition system.
  • Step S2' Upload the image plane intensity information and spatial Fourier spectrum intensity information of the object to be measured acquired in step S1' to the arithmetic processor 6, and use the arithmetic processor 6 to perform the following step S1: with the described Image plane intensity information and spatial Fourier spectrum intensity information are used as the constraint conditions of Fourier iterative operation, and the amplitude spatial distribution information and phase spatial distribution information of the object to be measured are obtained through multiple Fourier iterative operations to realize full light field imaging .
  • step S1 The specific content of the step S1 is as described above.
  • a full light field imaging device based on a full light field imaging camera is used to realize full light field imaging of ground glass by the full light field imaging camera.
  • the full light field imaging device includes: a laser 10, a first focusing lens 20, an object to be measured 30, a magnifying objective lens 40 and the above mentioned full light field imaging are arranged in sequence on the same optical axis
  • the camera 50, the first focusing lens 20 and the magnifying objective lens 40 form an imaging lens group, which are respectively the imaging lens and the imaging objective lens of the imaging lens group.
  • the object 30 to be measured is located on the focal plane of the magnifying objective lens 40 .
  • the laser light is emitted by the laser 10 , it is focused by the first focusing lens 20 and irradiated on the object 30 to be measured, and then enlarged by the objective lens 4 to satisfy the sampling requirements of the detector.
  • the imaging component 1 of the full light field imaging camera 50 is matched with the magnifying objective lens 40 to meet the imaging conditions of the full light field imaging camera 50, obtain the amplitude and phase information of the ground glass sample, and realize full light field imaging, thereby obtaining the ground glass surface morphology.
  • the object to be tested 30 is a transparent object, and in this embodiment, the object to be tested 30 is frosted glass.
  • the wavelength of the laser light emitted by the laser 10 is 532nm.
  • the distance between the first focusing lens 20 and the object 30 to be measured is the focal length of the focusing lens 20 , and the focal length of the first focusing lens 20 may be 50 mm.
  • the magnifying objective lens 40 is 10 ⁇ , 0.1NA.
  • the focal length of the imaging component 1 is 180 mm.
  • the focal length of the Fourier transform lens 4 in the full light field imaging camera 50 may be 100 mm.
  • all the two-dimensional array detectors in the full light field imaging camera 5 can use a 2048 ⁇ 2048 CMOS array detector, and the pixel size is 6.45 ⁇ m ⁇ 6.45 ⁇ m.
  • the pixel size can also be any value less than or equal to 13.3um, so as to satisfy the calculation formula of the sampling theorem
  • NA is the numerical aperture of the lens
  • is the light wavelength of the illumination light
  • Mag is the lens magnification
  • ⁇ x is the sampling size, which must be larger than the pixel size.
  • ⁇ x f is the size of the sampling interval, specifically the size of each pixel of the detector
  • is the wavelength of the illumination light
  • f is the focal length of the lens
  • s is the size of the image area.
  • the effect of using the magnifying objective lens 40 is that, based on the sampling theorem, the sampling frequency must be greater than twice the highest frequency in the signal, so that the digital signal after sampling can completely retain the information in the original signal. Therefore, it is necessary to amplify the ground glass to make the sampling more sufficient and to restore the phase information of the ground glass better.
  • the full light field imaging device based on the full light field imaging camera of the present invention has the advantages of not touching the sample, and the realization of the optical path is simple, etc. Advantage. And compared with the existing Fourier stack imaging technology or coherent diffraction imaging technology, there is no need to make the spatial Fourier spectrum information overlap or obtain enough information to restore the phase through oversampling, but through double-sided imaging to If enough information is obtained, redundant information can be reduced, the required data can be reduced, and the difficulty of experimental operation can be reduced.
  • a full light field imaging device based on a full light field imaging camera is applied to imaging in the field of microscopic imaging.
  • the full-light-field imaging device based on the full-light-field imaging camera includes: a laser 10 ′, a beam splitter 20 ′, an objective lens 30 ′, an object to be measured 40 ′, and The beam splitter 20' is aligned with the full light field imaging camera 50' on the other optical axis.
  • the objective lens 30' constitutes one imaging objective lens in the imaging lens group, and the imaging lens group has only one imaging lens.
  • the object to be measured 40' is located on the focal plane of the objective lens 30'.
  • the laser light is focused on the object to be measured 40' through the objective lens 30', and the scattered light generated by the sample is collected by the objective lens 30' to the above-mentioned full light field imaging camera 50' for imaging to obtain the amplitude and phase information of the sample , to realize full-light-field imaging of microscopic object samples.
  • the wavelength of the laser light emitted by the laser 10' is 532nm.
  • the objective lens 30' is 100 ⁇ , 0.8NA.
  • the focal length of the imaging component 1 is 180 mm.
  • the focal length of the Fourier transform lens 4 in the full-field imaging camera 50' may be 100mm.
  • all the two-dimensional array detectors in the full light field imaging camera 5 can use a 2048 ⁇ 2048 CMOS array detector, and the pixel size is 6.45 ⁇ m ⁇ 6.45 ⁇ m.
  • the pixel size can also be any value less than or equal to 13.3um, so as to satisfy the calculation formula of the sampling theorem
  • NA is the numerical aperture of the lens
  • is the light wavelength of the illumination light
  • Mag is the lens magnification
  • ⁇ x is the sampling size, which must be larger than the pixel size.
  • ⁇ x f is the size of the sampling interval, specifically the size of each pixel of the detector
  • is the wavelength of the illumination light
  • f is the focal length of the lens
  • S is the size of the image area.
  • the full light field imaging device based on the full light field imaging camera may be a microscope, a camera, or a telescopic and remote sensing device, which includes the above mentioned full light field imaging camera.
  • the imaging assembly of the full light field imaging camera includes an imaging lens assembly matching the microscopic objective lens, a photographing lens assembly matching the camera, or a telescopic and remote sensing imaging assembly matching the telescopic and remote sensing device.
  • the microscopic imaging realized by the full light field imaging device based on the full light field imaging camera of the present invention does not require spatial Fourier spectrum information There are overlapping parts or through oversampling to obtain enough information to restore the phase, and to obtain enough information through double-sided imaging, thereby reducing redundant information, reducing the required data, and reducing the difficulty of experimental operations.

Abstract

本发明提供一种全光场成像相机,包括依次排布以构成像面强度信息采集系统的成像组件和二维阵列探测器,依次排布以构成空间傅里叶频谱强度信息采集系统的成像组件、傅里叶变换透镜和二维阵列探测器,以及与探测器通信连接的运算处理器;成像组件接收来自待测物体的照明光并形成成像光,成像光在探测器的探测面上成像以形成第一像面,成像光在傅里叶变换透镜的前方成像以形成第二像面,并在傅里叶变换透镜的后方的焦平面上的探测器的探测面上形成空间傅里叶频谱强度信息面。本发明还提供了相应的成像方法及全光场成像装置。本发明的全光场成像相机解决了现有相位成像技术中的采样率要求高,需要重叠获取冗余信息,算法收敛慢等困难。

Description

一种全光场成像相机及其成像方法及全光场成像装置 技术领域
本发明涉及成像领域,更具体的涉及一种全光场成像相机及其成像方法及全光场成像装置。
背景技术
在成像过程中,物体的相位信息相对于物体的强度信息往往起到了更加重要的作用。但在实际成像中,成像探测器只能探测到图像的强度信息,对应的相位信息丢失,使得成像损失了图像中重要的相位信息。为了恢复图像的相位信息,相位成像方法在这些年来有了很多的发展,主要包含以下几类:
第一类方法为相干衍射成像技术(CDI),该技术通过相干光照明样品,经样品的光衍射到远场,在远场形成该物体的空间傅里叶频谱强度分布,通过采集空间傅里叶频谱强度分布作为约束,通过过采样和傅里叶迭代运算等方法得到物体的振幅与相位信息,实现物体成像。
第二类方法为傅里叶叠层成像技术(FPM),该技术通过从不同角度照射样品,由显微成像系统收集。每一个角度的光对应一个不同的实像面强度分布,再由这些探测到的重叠实像面强度分布作为约束条件,通过傅里叶迭代运算恢复得到振幅与相位信息,实现物体的成像。
第三类方法为全息成像术,该技术通过引入一束参考光,将通过物体后的衍射光与参考光进行干涉得到全息图,此时干涉条纹的衬度和形状(或位置)信息中分别包含有物的波前振幅和位相的信息,再通过对全息图的波前再现就可以得到物体的振幅与相位信息,实现物体的清晰成像。
由于相位信息在实际图像采集过程中已经丢失,因此在恢复相位过程中必须有额外信息作为约束条件,上述方法虽然都能成功求解相位,从而恢复物体的像。但是各有不同的缺点,其主要体现在以下方面:
1.第一类方法,对于采样要求高,由于只探测到空间傅里叶频谱面的部分信息,不足以求解得到相位信息,需要提高采样来创造冗余的信息量,以此来获得足够约束条件,因此需要过采样,同时容易造成算法不收敛。
2.第二类方法,同样对于信息冗余量有要求,由于只探测到实像面的部分信息,也不足以求解得到相位信息,此类方法为获得足够的约束条件,使每两个相邻角度对应傅里叶空间频谱分布实现一定程度的重叠探测,因此大量信息冗余降低了成像的时间。
3.第三类方法,需要额外引入一束参考光与衍射光干涉,使得光路相对复杂,稳定性要求高,同时在通过全息术求解相位的过程中,会产生共轭像等问题,使得算法无法收敛。
发明内容
本发明的目的是提供一种全光场成像相机及其成像方法及全光场成像装置,从而解决现有相位成像技术中的采样率要求高,需要重叠获取冗余信息,算法收敛慢等困难。
为了实现上述目的,本发明提供一种全光场成像相机,包括沿光路的走向依次排布以构成像面强度信息采集系统的成像组件和第一二维阵列探测器,沿光路的走向依次排布以构成空间傅里叶频谱强度信息采集系统的所述的成像组件、傅里叶变换透镜和第二二维阵列探测器,以及与第一二维阵列探测器和第二二维阵列探测器通信连接的运算处理器;所述成像组件设置为接收来自待测物体的照明光,以提供待测物体的成像光,所述成像光在第一二维阵列探测器的探测面上成像以形成第一像面,所述成像光在傅里叶变换透镜的前方的已知距离的位置处成像以形成第二像面,并在傅里叶变换透镜的后方的焦平面上的第二二维阵列探测器的探测面上形成空间傅里叶频谱面。
优选地,所述成像组件的数量为一个,且所述成像组件和傅里叶变换透镜之间设有分束器,或者所述成像组件的数量为两个,且两个成像组件的前方设有分束器;且第一像面和第二像面的其中一个为所述成像光直接成像形成的,另一个为成像光经所述分束器反射后成像形成的;所述第一二维阵列探测器和第二二维阵列探测器为两个二维阵列探测器,或者为同一个可移动的二维阵列探测器。
优选地,所述第一二维阵列探测器和第二二维阵列探测器为两个不同二维阵列探测器,分别探测第一像面强度信息和空间傅里叶频谱面强度信息, 或者为同一个可沿光路移动的二维阵列探测器;这种情况下所述傅里叶变换透镜为可移动的,通过二维阵列探测器的移动以及傅里叶变换透镜的移入移出光路以在像面强度信息采集系统和空间傅里叶频谱强度信息采集系统之间切换。
优选地,所述运算处理器设置为接收所述像面强度信息和空间傅里叶频谱强度信息,并执行如下步骤S1:以所述的像面强度信息和空间傅里叶频谱强度信息作为傅里叶迭代运算的约束条件,通过多次傅里叶迭代运算得到待测物体的振幅空间分布信息与相位空间分布信息,实现全光场成像,所述傅里叶迭代运算的方法包括但不限于Gerchberg-Saxton算法、Hybrid input–output算法以及杨顾算法。
所述成像光在傅里叶变换透镜的前方的焦平面上成像。
另一方面,本发明提供一种全光场成像相机的成像方法,包括:
S1’:提供成像组件,使得照明光照射待测物体后通过成像组件以形成待测物体的成像光,将第一二维阵列探测器的探测面放置于所述成像光成像形成的第一像面,将傅里叶变换透镜放置在与第二像面为已知距离的位置,并将第二二维阵列探测器放置于傅里叶变换透镜的后方的焦平面处;通过第一二维阵列探测器和第二二维阵列探测器,采集得到待测物体的像面强度信息和空间傅里叶频谱强度信息;
S2’:将步骤S1’获取的待测物体的像面强度信息和空间傅里叶频谱强度信息上传至运算处理器,并利用所述运算处理器执行如下步骤S1:以所述的像面强度信息和空间傅里叶频谱强度信息作为傅里叶迭代运算的约束条件,通过多次傅里叶迭代运算得到待测物体的振幅空间分布信息与相位空间分布信息,实现全光场成像。
优选地,所述步骤S1’还包括:所述成像组件的数量为1个,在成像组件和第一二维阵列探测器之间放置分束器,或者所述成像组件的数量为2个,在两个成像组件的前方设置分束器;由此,第一像面为所述成像光直接成像形成的,第二像面为成像光经所述分束器反射后成像形成的。
优选地,所述照明光为相干光或已知相干度的部分相干光,部分相干光满足准单色准则。
另一方面,本发明提供一种基于全光场成像相机的全光场成像装置,包括:在同一光轴上的激光器、待测物体和成像透镜组,以及根据上文所述的全光场成像相机;所述成像透镜组是1个成像物镜,或者1个成像物镜和1个成像透镜,所述待测物体位于成像透镜组的成像物镜的焦平面上。
另一方面,一种基于全光场成像相机的全光场成像装置,包括根据上文所述的全光场成像相机;所述全光场成像装置为显微镜、照相机、或望远和遥感装置,且所述全光场成像相机的成像组件包括与所述显微物镜相配的成像透镜组件、与所述照相机相配的照相透镜组件,或者与望远和遥感装置匹配的望远和遥感成像组件。
本发明提供的全光场成像相机的实现方法和装置,采用像面的强度分布与空间傅里叶频谱强度分布以及透镜变换作为约束条件,通过傅里叶迭代运算获得成像物体振幅与相位,实现全光场成像,与现有相位成像及其装置相比具有以下优点:
现有的相位成像方法往往需要额外信息作为约束条件,无论是过采样还是参考光,以此作为约束条件求解相位。本发明通过两个像面实际探测到的信息,简化了传统方法的光路设计,通过双像面的约束可以获得足够多的信息求解相位,减少采样的要求的同时简化了实验难度。
现有方法由于约束条件信息不足,常常会导致运算结果无法收敛或不能收敛到最优解。本方法用作约束条件的信息都是实际探测到,因此信息更加准确,可使傅里叶迭代运算收敛速度快,收敛更加准确。
因此,本发明全光场成像相机的实现方法和装置具有能够有效得减小探测器的采样要求、简化光路,提升成像信息量等优势。
附图说明
图1为根据本发明的第一实施例的全光场成像相机的结构示意图。
图2为根据本发明的第三实施例的基于全光场成像相机的全光场成像装置的结构示意图,所述全光场成像装置用于对毛玻璃实现全光场成像。
图3为根据本发明的第四实施例的基于全光场成像相机的全光场成像装置的结构示意图,所述全光场成像装置应用在显微成像领域。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
第一实施例全光场成像相机
如图1所示为根据本发明的一个实施例的全光场成像相机的结构示意图。
如图1所示,在本实施例中,所述全光场成像相机包括:沿光路的走向在第一光轴上依次排布的成像组件1、分束器2、第一二维阵列探测器3,沿光路的走向在垂直于第一光轴的第二光轴上依次排布的所述分束器2、焦距为f的傅里叶变换透镜4和第二二维阵列探测器5,以及与第一二维阵列探测器3和第二二维阵列探测器5均通信连接的运算处理器6。
所述成像组件1位于待测物体的下游,设置为接收来自待测物体的照明光,以提供待测物体的成像光,所述成像光在第一二维阵列探测器3的探测面上成像以直接成像形成第一像面7,使得第一二维阵列探测器3的探测面上的光强分布与像面强度分布相对应,由此,光路的走向依次排布的所述成像组件1、第一二维阵列探测器3构成了像面强度信息采集系统,第一二维阵列探测器3采集得到像面强度信息。
其中,照明光可使用相干光照明或已知相干度的部分相干光,部分相干光相干度满足准单色准则,即λ/Δλ>M(λ为部分相干光的波长,Δλ部分相干光的波长误差范围,M为第一二维阵列探测器3和第二二维阵列探测器5 在一个方向上的像素数)。
所述成像光经所述分束器2反射后在傅里叶变换透镜4的前方的焦平面上成像以成像形成第二像面8(即第二像面8与傅里叶变换透镜4的距离为傅里叶变换透镜4的焦距f),且傅里叶变换透镜4和第二二维阵列探测器5的距离为傅里叶变换透镜4的焦距f,使得第二二维阵列探测器5的探测面上的光强分布与空间傅里叶频谱强度信息分布相对应。在其他实施例中,也可能存在第二像面8与傅里叶变换透镜4之间的距离不为傅里叶变换透镜4的焦距f但已知第二像面8与傅里叶变换透镜4之间距离的情况。由此,沿光路的走向依次排布的所述成像组件1、分束器2、傅里叶变换透镜4和第二二维阵列探测器5构成了空间傅里叶频谱强度信息采集系统,第二二维阵列探测器5采集得到空间傅里叶频谱强度信息。
第一二维阵列探测器3和第二二维阵列探测器5具有感光元件,设置为通过感光元件的光电转化性质,将其探测面上的光强(即光波的振幅的平方信息)转化为电信号,所述探测面上的光强为所述的像面强度信息和空间傅里叶频谱强度信息(体现为具有灰度值的图像)。转化形成的电信号本身无量纲,探测面上的光强本身的单位是W/cm 2,因此像面强度信息和空间傅里叶频谱强度信息的单位是W/cm 2。具体来说,探测得到的像面强度信息表示为f(x 0,y 0),空间傅里叶频谱强度信息表示为F(u 0,v 0),其中,x 0,y 0表示第一二维阵列探测器3的探测面的坐标即实像空间的坐标,u 0,v 0表示第二二维阵列探测器5的探测面的坐标即空间傅里叶频域的坐标,f(x 0,y 0)和F(u 0,v 0)的函数值分别为第一二维阵列探测器3和第二二维阵列探测器5探测到的光强的大小(即光振幅的平方)。
所述的第一二维阵列探测器3和第二二维阵列探测器5可采用高采样率CCD、EMCCD、CMOS或sCMOS。
在本实施例中,第一像面7为所述成像光直接成像形成的,第二像面8为成像光经所述分束器2反射后成像形成的。第一二维阵列探测器3和第二二维阵列探测器5采用两个不同的二维阵列探测器,以通过两个二维阵列探测器分别得到像面强度信息和空间傅里叶频谱强度信息。
在其他实施例中,第一像面7和第二像面8的其中一个为所述成像光 直接成像形成的,另一个为成像光经所述分束器2反射后成像形成的,第一像面7和第二像面8为表示同样信息但位于不同位置的像面。第二像面8处的成像光经傅里叶变换透镜4变换后形成空间傅里叶频谱面。第一二维阵列探测器3和第二二维阵列探测器5可以是同一个可移动至不同光路的二维阵列探测器,即,通过同一个二维阵列探测器的位置移动来先后将其作为第一二维阵列探测器3和第二二维阵列探测器5,从而通过同一个二维阵列探测器在作为第一二维阵列探测器3时获得像面强度信息,在作为第二二维阵列探测器5时获得空间傅里叶频谱强度信息。
在另外的实施例中,分束器2可以设置在成像组件1的前方,即分束器2的数量为1个,成像组件1的数量为2个,来自待测物体的照明光经过分束器并分为两路照明光后,第一个成像组件接收其中一路照明光并提供相应的成像光,所述成像光在第一二维阵列探测器的探测面上成像以形成第一像面,第二个成像组件接收另一路照明光并提供相应的成像光,所述成像光在傅里叶变换透镜的前方的已知距离的位置处成像以形成第二像面,并在傅里叶变换透镜的后方的焦平面上的第二二维阵列探测器的探测面上形成空间傅里叶频谱面。此时同样满足:第一像面为所述成像光直接成像形成的,第二像面为成像光经所述分束器反射后成像形成的,第一像面和第二像面为表示同样信息但位于不同位置的像面,第二像面处的成像光经傅里叶变换透镜变换后形成空间傅里叶频谱面。
在另外的实施例中,分束器2可以省略,即第一像面和第二像面均为所述成像光直接成像形成的,为位于同一位置的同一像面;且第一二维阵列探测器和第二二维阵列探测器可以是两个不同的可移入和移出光路的二维阵列探测器,或者是同一个可沿光路移动的二维阵列探测器,这种分束器省略的情况下所述傅里叶变换透镜为可移动的(即可移入和移出光路的),从而通过不同的二维阵列探测器的移入移出光路或同一个二维阵列探测器沿光路的前后移动以及傅里叶变换透镜的移入移出光路以在像面强度信息采集系统和空间傅里叶频谱强度信息采集系统之间切换。
所述成像组件1,包括但不限于与全光场成像相机外部的显微物镜相配的成像透镜组件,照相透镜组件,以及望远和遥感成像透镜组件等。
所述分束器2,包括但不限于1比1的光分束器,以及其它固定分束比例的光分束器。
所述的傅里叶变换透镜4,可采用在探测光谱范围内的消色差复合透镜,亦可采用无色差的凹面镜和椭球面镜。傅里叶变换透镜4的口径D不会截断像所含空间频谱,其焦距f满足像面与空间傅里叶频谱强度信息面的采样要求,即
Figure PCTCN2022132841-appb-000001
其中λ为照明光的波长,Δx 1为第一二维阵列探测器3的采样间距,Δx 2为第二二维阵列探测器5的采样间距,N为采样点数。
所述的运算处理器6可采用计算机或者内置的傅里叶迭代处理器等。
所述运算处理器6设置为接收所述像面强度信息和空间傅里叶频谱强度信息,并执行如下步骤S1:
以所述的像面强度信息和空间傅里叶频谱强度信息作为傅里叶迭代运算的约束条件,通过多次傅里叶迭代运算得到待测物体的振幅空间分布信息与相位空间分布信息,实现全光场成像。
由此,本发明在现有的通过傅里叶迭代运算来恢复得到相位的技术的基础上,通过像面强度信息采集系统和空间傅里叶频谱强度信息采集系统的光路结构来同时提供像面强度信息和空间傅里叶频谱强度信息,进而实现全光场相机。
其中,所得到的全光场成像的成像结果是通过傅里叶迭代运算得到的待测物体的振幅空间分布信息和相位空间分布信息。该成像结果可以表示为波函数,或者表示为具有灰度值的恢复得到的图像,振幅空间分布和相位空间分布体现到恢复得到的图像上是图像上每个像素格的灰度值。
其中,傅里叶迭代运算的方法可具体包括但不限于以下几种傅里叶迭代相位恢复算法:1、Gerchberg-Saxton(GS)算法。2、Hybrid input–output(HIO)算法。3、杨顾(Y-G)算法。具体参见文献【Gerchberg R W,O.A S W.A practical algorithm for the determination of phase from image and diffraction plane pictures[J].Optik,1972,35:237-250】、【Fienup J R.Reconstruction of an object from modulus of its Fourier transform[J].Optics Letters,1978,3(1):27-29】、【杨国桢,顾本源.光学系统中振幅和相位的恢复问题[J].物理学报,1981,30(3):410-413】。
相应地,傅里叶迭代运算的约束条件的类型包括但不限于强度约束条件,非负约束条件,空间有界约束条件等等。
下面以Gerchberg-Saxton(GS)算法和强度约束条件为例,具体说明步骤S1的具体步骤。
所述步骤S1具体包括:根据探测到的像面强度信息f(x 0,y 0)和空间傅里叶频谱强度信息F(u 0,v 0),进行如下的迭代运算:
步骤S11:将当前迭代轮数k初始化为0,随机赋予探测得到的像面强度分布f(x 0,y 0)一个迭代轮数为0的像面相位值
Figure PCTCN2022132841-appb-000002
得到当前迭代轮数的像面强度分布的复数形式
Figure PCTCN2022132841-appb-000003
步骤S12:对当前迭代轮数的像面强度分布的复数形式
Figure PCTCN2022132841-appb-000004
进行傅里叶变换得到当前迭代轮数的空间傅里叶频谱转换结果
Figure PCTCN2022132841-appb-000005
其中,φ (k)为当前迭代轮数的像面相位值的频谱转换结果;
步骤S13:将探测到的空间傅里叶频谱强度信息F(u 0,v 0)替换该空间傅里叶频谱转换结果
Figure PCTCN2022132841-appb-000006
的底数部分,得到当前迭代轮数的空间傅里叶频谱分布的复数形式
Figure PCTCN2022132841-appb-000007
步骤S14:对当前迭代轮数的空间傅里叶频谱分布的复数形式
Figure PCTCN2022132841-appb-000008
做傅里叶逆变换得到当前迭代轮数的下一阶的像面强度分布转换结果
Figure PCTCN2022132841-appb-000009
步骤S15:再将探测到的像面强度信息f(x 0,y 0)替换当前迭代轮数的下一阶的像面强度分布转换结果
Figure PCTCN2022132841-appb-000010
的底数部分,得到当前迭代轮数的下一阶的像面强度分布的复数形式
Figure PCTCN2022132841-appb-000011
步骤S16:将当前迭代轮数的下一阶k+1作为新的当前迭代轮数k,重复上述步骤S12到步骤S15,直到算法收敛,此时当前迭代轮数的下一轮的像 面强度分布的复数形式
Figure PCTCN2022132841-appb-000012
与当前迭代轮数的空间傅里叶频谱分布的复数形式
Figure PCTCN2022132841-appb-000013
为最终恢复得到的实像面的复振幅
Figure PCTCN2022132841-appb-000014
与空间傅里叶频谱强度信息面的复振幅F(u 0,v 0)e
其中,如果第k轮迭代后,当前迭代轮数k及其上一阶的空间傅里叶频谱的复数形式分布满足公式:|F (k)(u 0,v 0)|=|F (k-1)(u 0,v 0)|,则认为算法收敛。
步骤S17:根据最终恢复得到的实像面的复振幅
Figure PCTCN2022132841-appb-000015
与空间傅里叶频谱强度信息面的复振幅F(u 0,v 0)e ,确定待测物体的振幅空间分布信息与相位空间分布信息。
由此,在本实施例中,本发明在步骤S13利用到探测到的空间傅里叶频谱面的强度作为约束条件;在步骤S15利用到探测到的实像面的强度作为强度约束条件,以两个面的强度信息作为强度约束条件,使运算结果像约束的条件逼近,从而使结果同时满足实像面以及空间傅里叶频谱强度信息面的强度约束,从而可以保证丢失的相位信息被成功计算。
本发明提供的上述步骤S11-步骤S16基于以下的工作原理:
在所述步骤S1中,二维阵列探测器根据采样定理得到待测物体的空间傅里叶频谱强度信息面上的空间傅里叶频谱强度信息,根据采样定理可得:
Figure PCTCN2022132841-appb-000016
Figure PCTCN2022132841-appb-000017
其中,u、v代表空间傅里叶频谱强度信息面的坐标;Φ代表空间傅里叶频谱强度信息面的光波的相位信息;L x,L y代表x,y方向延伸的实像面区域的尺寸;n、m代表采样的每一个像素格位置,sinc函数是矩形函数的傅立叶变换。
在所述步骤S2中,二维阵列探测器根据采样定理得到待测物体的像面强度信息,根据采样定理可得:
Figure PCTCN2022132841-appb-000018
Figure PCTCN2022132841-appb-000019
其中,x、y代表实像面的坐标;
Figure PCTCN2022132841-appb-000020
代表实像面光波的相位信息;B x,B y代表沿x,y方向延伸的待测物体的最高频率;n、m代表采样的每一个像素格位置,sinc函数是矩形函数的傅立叶变换。
二者通过傅里叶变换可以联立在一起,由已知的n个强度信息作为已知的约束条件,便可以通过上文的步骤S11-步骤S16求解上述两个方程,得到实像面的复振幅
Figure PCTCN2022132841-appb-000021
与空间傅里叶频谱强度信息面的复振幅F(u 0,v 0)e ,即得到未知的相位信息
Figure PCTCN2022132841-appb-000022
φ。
第二实施例全光场成像相机的成像方法
基于上文所述的全光场成像相机,所实现的全光场成像相机的成像方法,具体包括:
步骤S1’:提供成像组件1,使得照明光照射待测物体后通过成像组件1以形成待测物体的成像光,将第一二维阵列探测器3的探测面放置于所述成像光成像形成的第一像面7,或将傅里叶变换透镜4放置在与第二像面8为已知距离的位置(例如可以将傅里叶变换透镜4放置以使其前方的焦平面位于所述成像光成像形成的第二像面8上,即傅里叶变换透镜4与第二像面8的距离等于傅里叶变换透镜4的焦距),并将第二二维阵列探测器5放置于傅里叶变换透镜4的后方的焦平面处;通过第一二维阵列探测器3和第二二维阵列探测器5,采集得到待测物体的像面强度信息和空间傅里叶频谱强度信息。
在本实施例中,所述步骤S1’还包括:所述成像组件1的数量为1个,在成像组件1和第一二维阵列探测器3之间放置分束器2,以使得第一像面7为所述成像光直接成像形成的,第二像面8为成像光经所述分束器2反射后成像形成的,第一像面7和第二像面8为表示同样信息但位于不同位置的像面,第二像面8处的成像光经傅里叶变换透镜变换后形成空间傅里叶频谱面。
在其他实施例中,所述步骤S1’还包括:所述成像组件1的数量为2个,在两个成像组件1的前方设置分束器2,由此,来自待测物体的照明光经过分束器并分为两路照明光后,第一个成像组件接收其中一路照明光并提供相应的成像光,所述成像光在第一二维阵列探测器的探测面上成像以形成第一像面,第二个成像组件接收另一路照明光并提供相应的成像光,所述成像光在傅里叶变换透镜的前方的已知距离的位置处成像以形成第二像面,并在傅里 叶变换透镜的后方的焦平面上的第二二维阵列探测器的探测面上形成空间傅里叶频谱面。此时同样满足:第一像面为所述成像光直接成像形成的,第二像面为成像光经所述分束器反射后成像形成的,第一像面和第二像面为表示同样信息但位于不同位置的像面,第二像面处的成像光经傅里叶变换透镜变换后形成空间傅里叶频谱面。
在其他实施例中,分束器2可以省略,即第一像面和第二像面均为所述成像光直接成像形成的,为位于同一位置的同一像面;且第一二维阵列探测器和第二二维阵列探测器可以是两个不同的可移入和移出光路的二维阵列探测器,或者为同一个可沿光路移动的二维阵列探测器,这种分束器省略的情况下所述傅里叶变换透镜为可移动的(即可移入和移出光路的),从而通过不同的二维阵列探测器的移入移出光路或同一个二维阵列探测器沿光路的前后移动以及傅里叶变换透镜的移入移出光路以在像面强度信息采集系统和空间傅里叶频谱强度信息采集系统之间切换。
步骤S2’:将步骤S1’获取的待测物体的像面强度信息和空间傅里叶频谱强度信息上传至运算处理器6,并利用所述运算处理器6执行如下步骤S1:以所述的像面强度信息和空间傅里叶频谱强度信息作为傅里叶迭代运算的约束条件,通过多次傅里叶迭代运算得到待测物体的振幅空间分布信息与相位空间分布信息,实现全光场成像。
所述步骤S1的具体内容如上文所述。
第三实施例基于全光场成像相机的全光场成像装置
如图2所示为根据本发明的第三实施例的基于全光场成像相机的全光场成像装置,其用于实现全光场成像相机对毛玻璃的全光场成像。如图2所示所述全光场成像装置包括:在同一光轴上依次排布的激光器10、第一聚焦透镜20、待测物体30、放大物镜40和上文所述的全光场成像相机50,第一聚焦透镜20和放大物镜40组成了成像透镜组,两者分别为成像透镜组的成像透镜和成像物镜。待测物体30位于放大物镜40的焦平面上。
由此,激光由激光器10发出后,通过第一聚焦透镜20聚焦后照在待测物体30上,接着由物镜4放大,使其满足探测器采样。其中,所述全光场成像相机50的成像组件1与放大物镜40相配,以满足全光场成像相机50的 成像条件,得到毛玻璃样品的振幅与相位信息,实现全光场成像,从而得到毛玻璃的表面形态。
所述待测物体30为透光的物体,在本实施例中,所述待测物体30为毛玻璃。
在本实施例中,激光器10发射的激光的波长为532nm。
在本实施例中,第一聚焦透镜20与待测物体30的距离为聚焦透镜20的焦距,第一聚焦透镜20的焦距可为50mm。
在本实施例中,放大物镜40为10×,0.1NA。
在本实施例中,全光场成像相机50中的成像组件1为成像透镜,成像透镜的焦距满足成像透镜的焦距=放大物镜的等效焦距×放大倍数,以与放大物镜40相配。在本实施例中,成像组件1的焦距为180mm。
在本实施例中,全光场成像相机50中的傅里叶变换透镜4,其焦距可为100mm。
在本实施例中,全光场成像相机5中的二维阵列探测器均可采用的2048×2048的CMOS阵列探测器,像元尺寸为6.45μm×6.45μm。在其他实施例中像元尺寸也可以是小于等于13.3um的任意数值,以满足采样定理的计算公式
Figure PCTCN2022132841-appb-000023
其中NA为透镜数值孔径,λ为照明光的光波长,Mag为透镜放大倍数,Δx为采样尺寸,其必须大于像元尺寸。并且二维阵列探测器的采样需满足频域采样定理,即
Figure PCTCN2022132841-appb-000024
其中,Δx f为采样间距的大小,具体为探测器每一个像素格的大小,λ为照明光的波长,f为透镜焦距,s为像面区域大小尺寸。
在本实施例中,利用放大物镜40放大的作用在于,基于采样定理,采样频率必须大于信号中最高频率的2倍,采样之后的数字信号才能完整地保留了原始信号中的信息。因此需要对毛玻璃进行放大使得采样更加充分,能够更好的恢复毛玻璃的相位信息。
本发明的基于全光场成像相机的全光场成像装置相较于传统的测量毛玻璃粗糙表面的方法,如接触式探针探测,干涉法探测等方式,具有不会接触样品,光路实现简单等优势。并且相较于现有的傅里叶叠层成像技术或者相干衍射成像技术,不需要使空间傅里叶频谱信息有重叠部分或者通过过采 样来获得足够的信息恢复相位,而通过双面成像来得到足够的信息的,从而减少了冗余信息,能够减少所需要的数据,降低实验操作难度。
第四实施例基于全光场成像相机的全光场成像装置
如图3所示为根据本发明第四实施例的基于全光场成像相机的全光场成像装置,其应用在显微成像领域的成像。如图3所示,所述基于全光场成像相机的全光场成像装置包括:位于同一光轴上的激光器10’、分束器20’、物镜30’、待测物体40’,以及与所述分束器20’对齐且位于另一光轴上的全光场成像相机50’。在本实施例中,物镜30’构成了成像透镜组中的1个成像物镜,且该成像透镜组只有1个成像透镜。所述待测物体40’位于物镜30’的焦平面上。
由此,激光通过物镜30’聚焦到待测物体40’上,样品产生的散射光由物镜30’收集到上文所述的全光场成像相机50’进行成像,获得样品的振幅跟相位信息,实现显微物体样品的全光场成像。
在本实施例中,激光器10’发射的激光的波长为532nm。
在本实施例中,物镜30’为100×,0.8NA。
在本实施例中,全光场成像相机50’中的成像组件1为成像透镜,成像透镜的焦距满足成像透镜的焦距=放大物镜的等效焦距×放大倍数,以与放大物镜40相配。在本实施例中,成像组件1的焦距为180mm。
在本实施例中,全光场成像相机50’中的傅里叶变换透镜4,其焦距可为100mm。
在本实施例中,全光场成像相机5中的二维阵列探测器均可采用的2048×2048的CMOS阵列探测器,像元尺寸为6.45μm×6.45μm。在其他实施例中像元尺寸也可以是小于等于13.3um的任意数值,以满足采样定理的计算公式
Figure PCTCN2022132841-appb-000025
其中NA为透镜数值孔径,λ为照明光的光波长,Mag为透镜放大倍数,Δx为采样尺寸,其必须大于像元尺寸。并且二维阵列探测器的采样需满足频域采样定理,即
Figure PCTCN2022132841-appb-000026
其中,Δx f为采样间距的大小,具体为探测器每一个像素格的大小,λ为照明光的波长,f为透镜焦距,S为像面区域大小尺寸。
在另外的实施例中,基于全光场成像相机的全光场成像装置可以是显微镜、照相机、或望远和遥感装置,其包括上文所述的全光场成像相机。该全光场成像相机的成像组件包括与所述显微物镜相配的成像透镜组件、与 所述照相机相配的照相透镜组件,或者与望远和遥感装置匹配的望远和遥感成像组件。
通过本发明的基于全光场成像相机的全光场成像装置实现的显微成像,相较于现有的傅里叶叠层成像技术或者相干衍射成像技术,不需要使空间傅里叶频谱信息有重叠部分或者通过过采样来获得足够的信息恢复相位,而通过双面成像来得到足够的信息的,从而减少了冗余信息,能够减少所需要的数据,降低实验操作难度。
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (10)

  1. 一种全光场成像相机,其特征在于,包括沿光路的走向依次排布以构成像面强度信息采集系统的成像组件和第一二维阵列探测器,沿光路的走向依次排布以构成空间傅里叶频谱强度信息采集系统的所述的成像组件、傅里叶变换透镜和第二二维阵列探测器,以及与第一二维阵列探测器和第二二维阵列探测器通信连接的运算处理器;所述成像组件设置为接收来自待测物体的照明光,以提供待测物体的成像光,所述成像光在第一二维阵列探测器的探测面上成像以形成第一像面,所述成像光在傅里叶变换透镜的前方的已知距离的位置处成像以形成第二像面,并在傅里叶变换透镜的后方的焦平面上的第二二维阵列探测器的探测面上形成像的空间傅里叶频谱面。
  2. 根据权利要求1所述的全光场成像相机,其特征在于,所述成像组件的数量为一个,且所述成像组件和傅里叶变换透镜之间设有分束器,或者所述成像组件的数量为两个,且两个成像组件的前方设有分束器;
    且第一像面和第二像面的其中一个为所述成像光直接成像形成的,另一个为成像光经所述分束器反射后成像形成的,第一像面和第二像面为表示同样信息但位于不同位置的像面;第二像面处的成像光经傅里叶变换透镜变换后形成空间傅里叶频谱面。
  3. 根据权利要求1所述的全光场成像相机,其特征在于,所述第一二维阵列探测器和第二二维阵列探测器为两个不同二维阵列探测器,分别同时探测第一像面强度信息和空间傅里叶频谱面强度信息,或者为同一个可沿光路移动的二维阵列探测器;所述傅里叶变换透镜为可移动的,通过二维阵列探测器的移动以及傅里叶变换透镜的移入移出光路以在像面强度信息采集系统和空间傅里叶频谱强度信息采集系统之间切换。
  4. 根据权利要求1所述的全光场成像相机,其特征在于,所述运算处理器设置为接收所述像面强度信息和空间傅里叶频谱强度信息,并执行如下步骤S1:以所述的像面强度信息和空间傅里叶频谱强度信息作为傅里叶迭代运算的约束条件,通过多次傅里叶迭代运算得到待测物体的振幅空间分布信息与相位空间分布信息,实现全光场成像,所述傅里叶迭代运算的方法包括Gerchberg-Saxton算法、或Hybrid input–output算法或杨顾算法。
  5. 根据权利要求1所述的全光场成像相机,其特征在于,所述成像光在 傅里叶变换透镜的前方的焦平面上成像。
  6. 一种全光场成像相机的成像方法,其特征在于,包括:
    步骤S1’:提供成像组件,使得照明光照射待测物体后通过成像组件以形成待测物体的成像光,将第一二维阵列探测器的探测面放置于所述成像光成像形成的第一像面,将傅里叶变换透镜放置在与第二像面为已知距离的位置,并将第二二维阵列探测器放置于傅里叶变换透镜的后方的焦平面处;通过第一二维阵列探测器和第二二维阵列探测器,采集得到待测物体的像面强度信息和空间傅里叶频谱强度信息;
    步骤S2’:将步骤S1’获取的待测物体的像面强度信息和空间傅里叶频谱强度信息上传至运算处理器,并利用所述运算处理器执行如下步骤S1:以所述的像面强度信息和空间傅里叶频谱强度信息作为傅里叶迭代运算的约束条件,通过多次傅里叶迭代运算得到待测物体的振幅空间分布信息与相位空间分布信息,实现全光场成像。
  7. 根据权利要求6所述的全光场成像相机的成像方法,其特征在于,所述步骤S1’还包括:所述成像组件的数量为1个,在成像组件和第一二维阵列探测器之间放置分束器,或者所述成像组件的数量为2个,在两个成像组件的前方设置分束器;由此,第一像面为所述成像光直接成像形成的,第二像面为成像光经所述分束器反射后成像形成的。
  8. 根据权利要求6所述的全光场成像相机的成像方法,其特征在于,所述照明光为相干光或已知相干度的部分相干光,部分相干光满足准单色准则。
  9. 一种基于全光场成像相机的全光场成像装置,其特征在于,包括:在同一光轴上的激光器、待测物体和成像透镜组,以及根据权利要求1-5之一所述的全光场成像相机;所述成像透镜组是1个成像物镜或者1个成像物镜和1个成像透镜,所述待测物体位于成像透镜组的成像物镜的焦平面上。
  10. 一种基于全光场成像相机的全光场成像装置,其特征在于,包括根据权利要求1-5之一所述的全光场成像相机;
    所述全光场成像装置为显微镜、照相机、或望远和遥感装置,且所述全光场成像相机的成像组件包括与所述显微物镜相配的成像透镜组件、与所述照相机相配的照相透镜组件,或者与望远和遥感装置匹配的望远和遥感成像组件。
PCT/CN2022/132841 2021-12-16 2022-11-18 一种全光场成像相机及其成像方法及全光场成像装置 WO2023109428A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111548124.X 2021-12-16
CN202111548124.XA CN114374779B (zh) 2021-12-16 2021-12-16 一种全光场成像相机及其成像方法及全光场成像装置

Publications (1)

Publication Number Publication Date
WO2023109428A1 true WO2023109428A1 (zh) 2023-06-22

Family

ID=81139502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132841 WO2023109428A1 (zh) 2021-12-16 2022-11-18 一种全光场成像相机及其成像方法及全光场成像装置

Country Status (2)

Country Link
CN (1) CN114374779B (zh)
WO (1) WO2023109428A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374779B (zh) * 2021-12-16 2023-06-20 中国科学院上海高等研究院 一种全光场成像相机及其成像方法及全光场成像装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090290156A1 (en) * 2008-05-21 2009-11-26 The Board Of Trustee Of The University Of Illinois Spatial light interference microscopy and fourier transform light scattering for cell and tissue characterization
CN104977810A (zh) * 2014-04-09 2015-10-14 上海微电子装备有限公司 一种基于频谱处理的多通道对准系统及对准信号处理方法
CN111289479A (zh) * 2020-03-09 2020-06-16 中国科学院上海光学精密机械研究所 基于非线性热像反演的相位缺陷检测装置和方法
CN111340902A (zh) * 2019-12-11 2020-06-26 华中科技大学苏州脑空间信息研究院 光相位调制方法及任意位置和形状照射的空间光调制方法
JP2020159975A (ja) * 2019-03-27 2020-10-01 ウシオ電機株式会社 分光測定装置及び分光測定方法
CN114374779A (zh) * 2021-12-16 2022-04-19 中国科学院上海高等研究院 一种全光场成像相机及其成像方法及全光场成像装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191182A (ja) * 1998-12-28 2000-07-11 Canon Inc シ―ト搬送装置及び画像形成装置
ES2325698B1 (es) * 2006-01-20 2010-10-19 Universidad De La Laguna Camara de fase para la medida de distancias y de aberraciones de frente de onda en diversos entornos mediante slice de fourier.
DE102006041338B3 (de) * 2006-09-01 2007-11-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Plasmonenresonanzsensor
CN101021621A (zh) * 2007-02-02 2007-08-22 中国科学院上海光学精密机械研究所 强度关联衍射成像装置及其图像恢复方法
CA3190196A1 (en) * 2010-09-25 2012-03-25 Ipg Photonics Corporation Methods and systems for coherent imaging and feedback control for modification of materials
CN102759402B (zh) * 2012-07-23 2014-11-26 北京理工大学 一种旋转式傅里叶变换干涉成像光谱仪
CN103411891A (zh) * 2013-07-29 2013-11-27 南开大学 太赫兹超分辨率成像方法和系统
CN103439703B (zh) * 2013-08-16 2015-08-12 中国科学院上海光学精密机械研究所 直视合成孔径激光成像雷达反射式双面平动发射装置
CN103743484B (zh) * 2013-11-22 2016-03-09 中国科学院光电研究院 一种频谱编码成像装置
CN103776540B (zh) * 2013-12-30 2015-07-08 华中科技大学 一种多波段共光路图谱联合遥感测量系统及方法
CN103913233B (zh) * 2014-03-10 2016-08-17 中国科学院长春光学精密机械与物理研究所 时空联合调制傅里叶变换红外成像光谱仪
CN104501959B (zh) * 2014-12-30 2016-08-17 华中科技大学 一种红外图谱关联智能探测方法及装置
CN104535186B (zh) * 2014-12-30 2016-08-17 华中科技大学 一种动平台红外图谱关联探测系统及方法
CN107102526B (zh) * 2017-04-26 2019-07-05 中国工程物理研究院激光聚变研究中心 基于逐点扫描的太赫兹反射式全息成像系统及成像方法
DE102018000307B4 (de) * 2018-01-16 2019-12-24 Spectrolytic GmbH Statisches Fourier-Transformations-Spektrometer und ein Verfahren zum Betreiben des statischen Fourier-Transformations-Spektrometers
EP3627093B1 (en) * 2018-09-21 2022-11-09 Instytut Chemii Fizycznej Polskiej Akademii Nauk Apparatus for parallel fourier domain optical coherence tomography imaging and imaging method using parallel fourier domain optical coherence tomography
CN112804513B (zh) * 2021-01-05 2023-02-17 暨南大学 一种光场相机及成像方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090290156A1 (en) * 2008-05-21 2009-11-26 The Board Of Trustee Of The University Of Illinois Spatial light interference microscopy and fourier transform light scattering for cell and tissue characterization
CN104977810A (zh) * 2014-04-09 2015-10-14 上海微电子装备有限公司 一种基于频谱处理的多通道对准系统及对准信号处理方法
JP2020159975A (ja) * 2019-03-27 2020-10-01 ウシオ電機株式会社 分光測定装置及び分光測定方法
CN111340902A (zh) * 2019-12-11 2020-06-26 华中科技大学苏州脑空间信息研究院 光相位调制方法及任意位置和形状照射的空间光调制方法
CN111289479A (zh) * 2020-03-09 2020-06-16 中国科学院上海光学精密机械研究所 基于非线性热像反演的相位缺陷检测装置和方法
CN114374779A (zh) * 2021-12-16 2022-04-19 中国科学院上海高等研究院 一种全光场成像相机及其成像方法及全光场成像装置

Also Published As

Publication number Publication date
CN114374779B (zh) 2023-06-20
CN114374779A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
Zuo et al. Transport of intensity equation: a tutorial
CN107111118B (zh) 用于厚样本的epi照明傅立叶重叠关联成像
US10113961B2 (en) Apparatus and method for quantitive phase tomography through linear scanning with coherent and non-coherent detection
US8019136B2 (en) Optical sectioning microscopy
EP2206008B1 (en) Light microscope with novel digital method to achieve super-resolution
JPH10508107A (ja) 能動型照明及びデフォーカスに起因する画像中の相対的なぼけを用いる物体の3次元形状を決定する装置及び方法
TWI797377B (zh) 表面形狀量測裝置以及表面形狀量測方法
WO2024016774A1 (zh) 基于波长扫描的无透镜傅里叶叠层衍射层析显微成像方法
JPS59500488A (ja) ホログラフィによる光学的処理法とその装置
CN108614405B (zh) 一种基于环形光差频扫描实现边缘提取的全息方法
WO2023109428A1 (zh) 一种全光场成像相机及其成像方法及全光场成像装置
CN109709786A (zh) 一种超分辨率数字全息成像系统和成像方法
CN114264370A (zh) 一种压缩感知计算层析成像光谱仪系统和成像方法
JP2019078635A (ja) 測定装置、データ処理装置、データ処理方法およびプログラム
CN114324245B (zh) 基于部分相干结构光照明的定量相位显微装置和方法
JP2022524923A (ja) 散乱媒質を介したイメージングシステム及び方法
Almoro et al. Object wave reconstruction by speckle illumination and phase retrieval
CN111982014B (zh) 一种基于显微干涉的微球表面形貌大视场测量方法
KR20170079441A (ko) 진동 환경에서 큰 단차를 갖는 샘플의 높낮이 측정을 위한 디지털 홀로그램 기록재생장치 및 기록재생방법
Liu et al. Computational Optical Phase Imaging
JP2019179233A (ja) 光波計測装置及び光波計測方法
Yang et al. Phase recovery based on support constraint and random binary amplitude modulation ptychography principle
Shanmugavel High Resolution Phase Imaging using Transport of Intensity Equation
WO2017221330A1 (ja) デジタルホログラフィック撮像装置および試料ホルダ
WO2022020511A1 (en) Apparatus and method to convert a regular bright-field microscope into a ps-qpi system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906180

Country of ref document: EP

Kind code of ref document: A1