WO2023109271A1 - 一种充电系统、充电站、供电方法及计算机可读存储介质 - Google Patents

一种充电系统、充电站、供电方法及计算机可读存储介质 Download PDF

Info

Publication number
WO2023109271A1
WO2023109271A1 PCT/CN2022/124395 CN2022124395W WO2023109271A1 WO 2023109271 A1 WO2023109271 A1 WO 2023109271A1 CN 2022124395 W CN2022124395 W CN 2022124395W WO 2023109271 A1 WO2023109271 A1 WO 2023109271A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
output
charging
module
supply unit
Prior art date
Application number
PCT/CN2022/124395
Other languages
English (en)
French (fr)
Inventor
唐霖
林全喜
叶万祥
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2023109271A1 publication Critical patent/WO2023109271A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present application relates to the technical field of charging, and in particular to a charging system, a charging station, a power supply method and a computer-readable storage medium.
  • new energy vehicles or new energy charging vehicles
  • the charging demand for new energy vehicles is increasing.
  • the new energy vehicle is connected to the charging pile for charging. After some time, the power battery is fully charged, and the charging pile stops supplying power to the new energy vehicle. If the power battery of the new energy vehicle continues to be connected to the charging pile after it is fully charged, it will occupy the charging pile and cause a waste of charging pile resources.
  • more charging piles need to be added to the charging station, which will result in higher operating costs of the charging station.
  • the charging pile is still occupied after the vehicle’s power battery is fully charged, and it cannot charge other new energy vehicles with charging needs, resulting in a low utilization rate of the charging pile, wasting the charging resources of the charging pile, reducing the charging efficiency of the charging pile, and reducing the cost of the charging station. Charging efficiency.
  • the present application provides a charging system, a charging station, a power supply method, and a computer-readable storage medium, so as to improve charging efficiency and avoid waste of resources.
  • an embodiment of the present application provides a charging system, including one or more DC-to-DC modules, a first power sharing bus, a second power sharing bus, at least one first output terminal, and at least one second output terminal;
  • the DC-to-DC module includes: at least one first power supply unit and at least one second power supply unit; the first power supply unit is coupled to the first power sharing bus for supplying power to the second A power sharing bus outputting DC electric energy; the second power supply unit is coupled to the first power sharing bus and coupled to the second power sharing bus for supplying the first power sharing bus or the second power sharing bus
  • the power sharing bus outputs DC power;
  • the first output terminal is coupled to the first power sharing bus, and is used to transmit the DC power on the first power sharing bus to a coupled charging device;
  • the second output terminal Coupled with the second power sharing bus used to transmit the DC power on the second power sharing bus to the coupled charging device; wherein, the maximum output power of the first output terminal is the same as the maximum output power of the second output terminal The output power is different
  • the first power supply unit of each DC-to-DC module can output electric energy to the first power sharing bus
  • the second power supply unit can flexibly supply power to the first power sharing bus or the second power
  • the shared bus outputs electric energy, so that the DC-to-DC module can flexibly provide electric energy to the first power shared bus or the second power shared bus.
  • Any one of the first output terminals of the charging system can obtain electric energy from the first power sharing bus, and any one of the second output terminals can obtain electric energy from the second power sharing bus.
  • the electric energy on the first power sharing bus can come from any DC-DC module, and the electric energy on the second power sharing bus can also come from any DC-DC module.
  • the busbar or the second power sharing busbar can be flexibly obtained by other output terminals, which can improve charging efficiency, make full use of the ability of each DC-to-DC module to output electric energy, and avoid waste of resources.
  • the maximum output power of the first output terminal is smaller than the maximum output power of the second output terminal.
  • the first output terminal and the second output terminal can respectively charge objects to be charged with different charging power levels. Objects to be charged that are convenient for low-power charging requirements can be charged through the first output terminal. Objects to be charged that require high power charging can be charged through the second output terminal.
  • the maximum output power of the second power supply unit is the same as the maximum output power of the DC-to-DC module.
  • the output power range of the second power supply unit in the DC-to-DC module is the same as the output power range of the corresponding DC-to-DC module, and the second power supply unit can flexibly output the remaining power of the DC-to-DC module to the first A power sharing busbar or a second power sharing busbar facilitates the first output terminal or the second output terminal to obtain electric energy to charge the object to be charged. It can be seen that such a design can make full use of the output power capability of each DC-to-DC module.
  • the maximum output power of the first energy supply unit is smaller than the maximum output power of the associated DC-to-DC module.
  • Such a design can make the DC-to-DC module compatible with energy supply units with low output power.
  • the maximum output power of the second energy supply unit is greater than the maximum output power of the first energy supply unit. It can be seen that in the charging system provided by the embodiment of the present application, the first power supply unit and the second power supply unit included in the DC-to-DC module may be power supply units with different output power capabilities, so as to improve the compatibility of the charging system.
  • the number of the at least one first output end is the same as the number of all the first energy supply units in the one or more DC-to-DC modules; the number of the at least one second output end is, The number is the same as that of all the second power supply units in the one or more DC-to-DC modules.
  • the addition of the first energy supply unit and the first output terminal, the second energy supply unit and the second output terminal in the charging system can facilitate the service of more objects to be charged. Compared with the existing charging pile In other words, adding the first power supply unit and the first output terminal, the second power supply unit and the second output terminal has a lower cost.
  • the maximum output power of each of the first output terminals is the same; and/or, the maximum output power of each of the second output terminals is the same.
  • Such a design is convenient for assigning an output terminal for charging to an object to be charged.
  • the DC-to-DC module further includes at least one first switch unit, wherein the at least one first switch unit is the same as at least one second power supply unit included in the DC-to-DC module.
  • the second energy supply unit is coupled to the corresponding first switch unit
  • the first switch unit is respectively coupled to the first power sharing bus and to the second power sharing bus
  • the first A switch unit is used to transmit the DC power output by the second energy supply unit corresponding to the first switch unit to the first power sharing bus or the second power sharing bus.
  • the electric energy output by the second energy supply unit is transmitted to the first power sharing bus or the second power sharing bus.
  • the charging system may also include an AC-to-DC module; the AC-to-DC module is used to provide DC power to the DC-to-DC module after converting the AC power provided by the AC power supply into DC power.
  • the charging system may receive AC power, such as a power grid.
  • the voltage output by the AC-to-DC module to the DC-to-DC module is less than or equal to 1000 volts.
  • the output voltage of the AC-to-DC module can be less than or equal to 1000 volts, so that the charging system can be applied to low-power charging scenarios.
  • the maximum output voltage of the first energy supply unit is less than or equal to 1000 volts; and/or, the maximum output voltage of the second energy supply unit is less than or equal to 1000 volts.
  • the minimum output voltage of the first energy supply unit is greater than or equal to 150 volts; and/or, the minimum output voltage of the second energy supply unit is greater than or equal to 150 volts.
  • the maximum power of the DC power that the first output end can provide to the coupled charging device is 20 kilowatts.
  • the charging system further includes a control module; the DC-to-DC module further includes a control unit; the control unit in the DC-to-DC module is coupled to the first energy supply unit, and is coupled to the second power supply unit. Two energy supply units are coupled; the control module is connected in communication with the control unit, and is used to control the control unit to adjust the DC power output by the DC-to-DC module to the first power sharing bus, and/or adjust DC power output to the second power sharing bus.
  • an embodiment of the present application provides a charging station, which may include the charging system described in any one of the first aspect and its designs, and a plurality of charging devices.
  • any charging device is coupled to a first output terminal or a second output terminal of the charging system; any charging device is coupled to an object to be charged, and is used to charge any charging device The DC power provided by the charging system coupled to the device is transmitted to the object to be charged.
  • the embodiment of the present application provides a power supply method, which can be applied to the charging system described in any one of the first aspect and its design.
  • the power supply method may be executed or implemented by a control module of the charging system.
  • the control module can obtain a first power parameter, the first power parameter is the expected input power when charging the object to be charged; in at least one first output terminal and at least one second output terminal of the charging system, for all
  • the object to be charged is assigned a target output terminal, wherein the maximum output power of the target output terminal is greater than or equal to the first power parameter.
  • the maximum output power of the first output end of the charging system is different from the maximum output power of the second output end.
  • the control module can assign matching output terminals to the object to be charged according to the expected input power of the object to be charged.
  • the control module if the first power parameter is less than or equal to the set power parameter threshold, and there is an idle first output terminal in the at least one first output terminal, the control module will The object allocates an idle first output terminal; wherein, the power parameter threshold represents the maximum output power of the first energy supply unit of any DC-to-DC module in the charging system; or if the first power parameter is greater than the power parameter threshold, and there is an idle second output end in the at least one second output end, the control module allocates an idle second output end for the object to be charged; or, if the first power parameter is less than or equal to the power parameter threshold, there is no idle first output end in the at least one first output end, and there is an idle second output end in the at least one second output end, then the control module is the The object to be charged is assigned a free second output terminal.
  • control module after the control module assigns a target output terminal to the object to be charged, it can obtain the second power parameter of the object to be charged, and the second power parameter is related to the actual charging of the object to be charged.
  • the power is the same; and the DC-to-DC module in the charging system is controlled according to the second power parameter.
  • the target output terminal assigned by the control module to the object to be charged is an idle first output terminal; according to the second power parameter described by the control module, the DC-to-DC conversion in the charging system
  • the module can control the first DC-to-DC module in the charging system to output the first DC power to the first power sharing bus, and the power of the first DC power is the same as the second power parameter, wherein, The remaining power of the first DC-to-DC module is greater than or equal to the second power parameter; or, controlling multiple second DC-to-DC modules in the charging system to output DC power to the first power sharing bus respectively , and the total power of the plurality of second DC-to-DC modules outputting DC electric energy is the same as the second power parameter, wherein the plurality of second DC-to-DC modules include residual power less than the second power parameter The target second DC-to-DC module.
  • the control module when the control module controls the first DC-to-DC module in the charging system to output the first DC electric energy to the first power sharing bus, it may control the idle first power supply in the first DC-to-DC module.
  • An energy unit that outputs the first DC power to the first power sharing bus; when the control module controls multiple second DC-to-DC modules in the charging system to respectively output DC power to the first power sharing bus,
  • An idle first energy supply unit or an idle second energy supply unit in the target second DC-to-DC module may be controlled to output a second DC power to the first power sharing bus, and the power of the second DC power is the same as
  • the remaining power of the target DC-to-DC modules is the same; and controlling other second DC-to-DC modules in the plurality of second DC-to-DC modules except the target second DC-to-DC module to output third DC power , wherein the sum of the power of the third direct current electric energy and the second direct current electric energy is the same as the second power parameter.
  • the target output terminal assigned to the object to be charged is an idle second output terminal; the control module performs the DC-to-DC module in the charging system according to the second power parameter During control, the third DC-to-DC module may be controlled to output fourth DC electric energy to the second power sharing bus of the charging system, wherein the power of the fourth DC electric energy is the same as the second power parameter, and the first The remaining power of the three DC-to-DC modules is greater than or equal to the second power parameter, and the third DC-to-DC module includes an idle second energy supply unit; or, the control module can control multiple fourth DC-to-DC modules Outputting DC power to the second power sharing bus, wherein the total power of the multiple fourth DC-to-DC modules outputting DC power is the same as the second power parameter, and the multiple fourth DC-to-DC modules There is a target fourth DC-to-DC module whose remaining power is less than the second power parameter, and each fourth DC-to-DC module includes an idle second power supply unit.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium stores computer instructions, and when the computer instructions in the computer-readable storage medium are executed, any one of the third aspects The method described is designed to be carried out.
  • the present application provides a computer program product, the computer program product includes computer instructions, and when the computer instructions are executed, the method described in any design of the third aspect is executed.
  • Figure 1 is a schematic diagram of a charging pile charging a vehicle
  • Fig. 2 is a schematic structural diagram of a charging system provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of another charging system provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of the connection relationship between the control module of the charging system, the DC-to-DC module and the charging device provided by the embodiment of the present application;
  • FIG. 5 is a schematic structural diagram of an AC-to-DC module in a charging system provided by an embodiment of the present application
  • Fig. 6 is a schematic diagram of the interaction between the control module of the charging system and the object to be charged or the electronic device provided by the embodiment of the present application;
  • Fig. 7 is a schematic diagram of a scene where the charging system according to the embodiment of the present application charges the object to be charged;
  • Fig. 8 is a schematic diagram of a scene where the charging system according to the embodiment of the present application charges the object to be charged;
  • FIG. 9 is a schematic diagram of a scene where the charging system according to the embodiment of the present application charges the object to be charged;
  • Fig. 10 is a schematic structural diagram of a charging station provided in an embodiment of the present application.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • the "one-to-one correspondence" between the first object and the second object described in this specification, or the “one-to-one correspondence" between the first object and the second object means that one first object corresponds to only one second object, and one first object corresponds to only one second object. The second object corresponds to only one first object.
  • new energy charging vehicles can be charged through charging piles provided by charging stations.
  • multiple charging piles are installed in the charging station, which is convenient for simultaneously accommodating multiple new energy charging vehicles for charging.
  • the charging pile is integrated with a power module and equipped with a charging gun.
  • the power module converts AC power into DC power and outputs it through the charging gun.
  • the new energy charging vehicle can be connected to a charging gun and obtain electric energy through the charging gun. After the charging pile charges the new energy charging vehicle for a period of time, the charging can be completed.
  • the new energy charging vehicle it is necessary for the new energy charging vehicle to stay at the charging pile for a period of time, that is, occupy the charging pile for a period of time.
  • the length of time that the vehicle occupies the charging station can be set by the user of the vehicle. The user expects to park the vehicle in the parking space corresponding to the charging pile for charging according to the user's own needs.
  • the embodiment of the present application records this duration as the expected charging duration of the vehicle. During the charging process of the vehicle, the user does not have to wait in the vehicle.
  • the expected charging time of vehicle A is 2 hours. After vehicle A occupies the charging pile for 2 hours, the user will drive vehicle A away from the charging pile and release the charging pile.
  • the output power of the charging pile can enable vehicle A to complete charging within 1 hour, while vehicle A occupies the charging pile for 2 hours, resulting in the charging pile being unable to charge other vehicles for 1 hour after the completion of charging vehicle A, resulting in charging resources. waste.
  • the expected charging time requirement of vehicle B is 4 hours.
  • the charging time requirement of vehicle B is 4 hours. After vehicle B occupies the charging pile for 4 hours, the user will drive vehicle B away from the charging pile and release the charging pile.
  • the output power of the charging pile can enable vehicle B to complete charging within 2 hours, while vehicle B occupies the charging pile for 4 hours, resulting in the charging pile being unable to charge other vehicles for 2 hours after the charging of vehicle B is completed. waste.
  • Each charging pile in the existing charging station has the same output power capability. Assume that there are charging piles with different output power capabilities in the charging station.
  • the charging piles with low power output capabilities charge vehicles with a longer expected charging time, and the charging piles with high power output capabilities charge vehicles with a shorter expected charging time. to charge.
  • Such a design may reduce the waste of charging pile resources, but in actual application scenarios, charging stations need to add charging piles of different power levels, and the deployment is relatively high near the city.
  • there is a one-to-one correspondence between the charging piles and the vehicles in the charging station and the flexibility of mobilizing charging resources is poor.
  • the present application provides a charging system that can be applied to charging stations. Referring to FIG. 2 , the charging system provided by the present application may include: one or more DC-to-DC modules, a first power sharing bus, a second power sharing bus, at least one first output terminal and at least one second output terminal.
  • the charging system may include n DC-to-DC modules, and n may be a positive integer.
  • the n DC-to-DC modules in the charging system can be denoted as DC-to-DC module M1 to DC-to-DC module Mn respectively.
  • n can be equal to 4
  • the charging system can include four DC-to-DC modules, which can be recorded as DC-to-DC module M1, DC-to-DC module M2, DC-to-DC module M3, and DC-to-DC module M4.
  • FIG. 2 or FIG. 3 shows that the charging system includes multiple DC-to-DC modules, but it does not mean that the charging system must include multiple DC-to-DC modules. In some examples, the charging system may only include one DC-to-DC module.
  • the number of DC-to-DC modules shown in the drawings provided in the embodiments of the present application is only used to illustrate the working process of the charging system, and is not intended as a specific limitation on the number of DC-to-DC modules in the charging system.
  • Any two DC-to-DC modules in the charging system may have the same or similar structure, be coupled to the first power sharing bus in the same or similar manner, and be coupled to the second power sharing bus in the same or similar manner.
  • the structure or function of the DC-to-DC module is introduced below.
  • Any one of the DC-to-DC modules may be coupled to the first power sharing bus and the second power sharing bus respectively.
  • Any DC-to-DC module may include at least one first power supply unit and at least one second power supply unit. Each first energy supply unit may be respectively coupled to the first power sharing bus. Each second power supply unit may be respectively coupled to the first power sharing bus and the second power sharing bus.
  • the DC-to-DC module M1 may include two first energy supply units, respectively denoted as the first energy supply unit A1 and the first energy supply unit A2 .
  • the DC-to-DC module M1 also includes a second energy supply unit, denoted as a second energy supply unit B1. Wherein the first energy supply unit A1 and the first energy supply unit A2 are both coupled to the first power sharing bus.
  • the second energy supply unit B1 is respectively coupled to the first power sharing bus and the second power sharing bus.
  • each DC-to-DC module may further include a power processing unit.
  • the power processing unit may include an inductor-inductor-capacitor (LLC) circuit.
  • LLC inductor-inductor-capacitor
  • the power processing unit has the ability to control the switching frequency, or has the ability to adjust the soft switching.
  • the power processing unit can process the voltage and frequency of the direct current provided by the preceding module, or process the harmonics to improve the power quality, and then provide the processed power to each of the first power supply unit and the second power supply unit.
  • the embodiment of the present application does not place too many limitations on the capability or function of the power processing unit.
  • each DC-to-DC module may further include at least one first switch unit.
  • the number of the first switching units may be the same as the number of the second power supply units included in the DC-to-DC module, and there is a one-to-one correspondence. That is, one second power supply unit corresponds to the first switch unit, and one first switch unit corresponds to one second power supply unit.
  • the second energy supply unit may be respectively coupled to the first power sharing bus and the second power sharing bus through the corresponding first switching unit.
  • the first switch unit can have a gating capability, and can connect the output terminal of the corresponding second power supply unit with the first power sharing bus, so that the electric energy output by the corresponding second power supply unit can be transmitted to the first power supply unit. power sharing bus.
  • the first switch unit may connect the output terminal of the corresponding second energy supply unit to the first power sharing bus, so that the electric energy output by the corresponding second energy supply unit is transmitted to the second power sharing bus.
  • the first switch unit may include one or more switches, such as a relay switch (referred to as a relay switch for short).
  • the first switch unit may include a plurality of relay switches, such as a relay switch k1 and a relay switch k2.
  • the relay switch k1 is coupled between the second power supply unit and the first power sharing bus, and the relay switch k1 is activated or turned on to transmit the electric energy output by the second power supply unit to the first power sharing bus.
  • the relay switch k2 is coupled between the second power supply unit and the second power sharing bus, and the relay switch k2 and start or turn on can transmit the electric energy output by the second power supply unit to the second power sharing bus.
  • at most one relay switch is activated or turned on at the same time.
  • Each first output in the charging system is coupled to the first power sharing bus and to a charging device.
  • Each first output can be used to take power from the first power sharing bus and provide it to a coupled charging device.
  • the first output end may be coupled to the charging device through a contactor (or switch). When the contactor is in a conducting state, the first output terminal is connected to the charging device, and when the contactor is in a disconnecting state, the first output terminal is disconnected from the charging device.
  • Each second output in the charging system is coupled to the second power sharing bus and to a charging device.
  • Each second output can be used to take power from the second power sharing bus and provide it to a coupled charging device.
  • the second output end may be coupled to the charging device through a contactor (or switch). When the contactor is in a conducting state, the second output terminal is connected to the charging device, and when the contactor is in a disconnecting state, the second output terminal is disconnected from the charging device.
  • a contactor or switch
  • the first energy supply unit of the DC-to-DC module is only coupled to the first power sharing bus, and the first energy supply unit can only be coupled to the first power sharing bus.
  • the second energy supply unit is not only coupled to the first power sharing bus, but also can be coupled to the second power sharing bus, and the second energy supply unit can provide electric energy to the first power sharing bus or provide electric energy to the second power sharing bus.
  • the first power sharing bus can obtain the electric energy provided by the first power supply unit in the plurality of DC-to-DC modules, and can also obtain the electric energy provided by the second power supply unit.
  • the first output end of the charging system can obtain electric energy from the first power sharing bus and provide it to a coupled charging device (such as a charging terminal or a charging gun).
  • the first energy supply unit A1 in the DC-to-DC module M1 outputs electric energy to the first power sharing bus, and the first output terminals such as the first output terminal 1 and the first output terminal 2 can respectively receive power from the first power sharing bus. Get power from the bus.
  • the first power supply unit A1 in the DC-to-DC module M1 and the second power supply unit B1 in the DC-to-DC module M2 respectively output electric energy to the first power sharing bus, and the first output terminal 1 can receive power from the first power Get power on the shared bus.
  • the first power sharing bus can obtain electric energy provided by one or more DC-to-DC modules.
  • the second power sharing bus can obtain electric energy provided by the second power supply unit in the plurality of DC-to-DC modules. Any one of the DC-to-DC modules in the charging system can output electric energy to the first power sharing bus, and any one of the first output terminals coupled to the first power sharing bus can obtain electric energy from the first power sharing bus. It can be seen that in the charging system provided by the embodiment of the present application, there may not be a one-to-one correspondence between the first output terminal and the DC-to-DC module, which can make the power distribution in the charging system more flexible.
  • the first power sharing bus and the second power sharing bus may be used to provide different power levels respectively.
  • the first output end coupled to the first power sharing bus can provide low-power electric energy, so that the charging device coupled to the first output end can provide low-power electric energy to the object to be charged.
  • the second output end coupled to the second power sharing bus can provide high-power electric energy, so that the charging device coupled to the second output end can provide high-power electric energy to the object to be charged.
  • the specification, structure, system, or maximum output power of the first energy supply unit in each DC-to-DC module in the charging system may be the same. In some scenarios, in the charging system, the specification, structure, system, or maximum output power of the first energy supply unit in different DC-to-DC modules may be different. Or the specification, structure, system, or maximum output power of the first energy supply unit in the same DC-to-DC module may be different. This application does not make too many limitations on this.
  • the specification, structure, system, or maximum output power of the second power supply unit in each DC-to-DC module in the charging system may be the same.
  • the specification, structure, system, or maximum output power of the second power supply units in different DC-to-DC modules may be different.
  • the specification, structure, standard, or maximum output power of the second power supply unit in the same DC-to-DC module may be different. This application does not make too many limitations on this.
  • the specification, structure, system, or maximum output power of each first output terminal in the charging system may be the same.
  • different first output terminals may have different specifications, structures, formats, or maximum output powers.
  • the specification, structure, system, or maximum output power of each second output terminal in the charging system may be the same. In some scenarios, in the charging system, different second output terminals may have different specifications, structures, formats, or maximum output powers.
  • the first DC-to-DC module may include a first power supply unit and a second power supply unit.
  • the second DC-to-DC module may include two first power supply units and one second power supply unit.
  • the number of first power supply units and the number of second power supply units in each DC-to-DC module can be set according to actual application scenarios. The embodiment of the present application does not make too many limitations on this.
  • each DC-to-DC module may be a DC-to-DC module with the same specification (regulation or structure).
  • the number of first power supply units in each DC-to-DC module may be the same, and the maximum power that each first power supply unit can output electric energy is the same.
  • the number of second power supply units in each DC-to-DC module can be the same, and the maximum power that each second power supply unit can output electric energy is the same.
  • the rated power of each DC-to-DC module is the same.
  • the rated power of the DC-to-DC module can be understood as the maximum power that the DC-to-DC module can output.
  • the maximum power that the first power supply unit in any DC-to-DC module can output electric energy may be less than the rated power of the DC-to-DC module to which the first power supply unit belongs. As shown in FIG. 3 , the maximum power that the first energy supply unit A1 in the DC-to-DC module M1 can output electric energy is less than the rated power of the DC-to-DC module M1 . For another example, the maximum power of the first energy supply unit A1 in the DC-to-DC module M2 that can output electric energy may be less than the rated power of the DC-to-DC module M2.
  • the maximum power that the second power supply unit in any DC-to-DC module can output electric energy may be the rated power of the DC-to-DC module to which the second power supply unit belongs. As shown in FIG. 3 , the maximum power that the second energy supply unit B1 in the DC-to-DC module M1 can output electric energy may be the rated power of the DC-to-DC module M1. For another example, the maximum power that the second energy supply unit B1 in the DC-to-DC module M2 can output electric energy may be the rated power of the DC-to-DC module M2.
  • the maximum power that the second power supply unit in any DC-to-DC module can output electric energy may be the rated power of the DC-to-DC module to which the second power supply unit belongs.
  • the maximum power of the first energy supply unit in any DC conversion module that can output electric energy is less than the rated power of the DC-to-DC module to which the first energy supply unit belongs. Therefore, in any DC-to-DC module, the maximum power that the second power supply unit can output electric energy is greater than the maximum power that the first power supply unit can output electric energy.
  • the power supply unit can support the output of electric energy within a certain power range.
  • the first power supply unit can support the output of electric energy in the range of 0 to P1, and the maximum power in this power range is P1, which is also the maximum power that the first power supply unit can output electric energy.
  • the second power supply unit can support the output of electric energy within the range of 0 to P2, the maximum power within this power range is P2, which is also the maximum power that the second power supply unit can output electric energy, and P2 is greater than P1.
  • the maximum power that the second power supply unit can output electric energy may be the rated power of the DC-to-DC module to which the second power supply unit belongs.
  • the second power supply unit can provide a larger power range, or the second power supply unit can support different output power levels.
  • the second energy supply unit can output relatively large power to the second power sharing bus, so that the second output terminal coupled with the second power sharing bus can provide relatively large charging power to the object to be charged, which can realize the first charging power in the charging system.
  • the first power sharing bus and the second power sharing bus respectively provide different levels of power.
  • the output power of any DC-to-DC module can be flexibly allocated to the first power sharing bus and/or the second power sharing bus, which can improve the utilization rate of the DC-to-DC module and improve the charging efficiency of the charging system.
  • the maximum power that the second power supply unit can output electric energy is equal to the rated power of the DC-to-DC module to which the second power supply unit belongs.
  • the power may be output to the first power sharing bus or to the second power sharing bus.
  • the second power supply unit can be configured to output the remaining power (power to be output or power not to be output) of the DC-to-DC module to which the second power supply unit belongs to the first power sharing bus or the second power sharing bus.
  • the rated power of the DC-to-DC module M1 is 60kw
  • the maximum output power of each first power supply unit is 20kw
  • the maximum output power of each second power supply unit is 60kw.
  • the current output power of the DC-to-DC module M1 is 40kw
  • the output power of the first energy supply unit A1 of the DC-to-DC module M1 is 20kw
  • the output power of the first energy supply unit A2 is 20kw.
  • the remaining power of the DC-to-DC module M1 is equal to the difference between the rated power (60kw) and the output power (20kw+20kw), that is, 20kw.
  • the second energy supply unit B1 of the DC-to-DC module M1 can output 20kw to the first power sharing bus or the second power sharing bus, so that the remaining power of the DC-to-DC module M1 can be utilized, so that the utilization rate of the DC-to-DC module M1 Great improvement.
  • the rated power of the DC-to-DC module M2 is 60kw
  • the maximum output power of each first power supply unit is 20kw
  • the maximum output power of each second power supply unit is 60kw.
  • the output power of the DC-to-DC module M2 is 30kw, wherein the output power of the first energy supply unit A1 of the DC-to-DC module M2 is 10kw, and the output power of the first energy supply unit A2 is 20kw.
  • the remaining power of the DC-to-DC module M2 is the difference between the rated power (60kw) and the output power (20kw+10kw), that is, 30kw.
  • the second energy supply unit B1 of the DC-to-DC module M2 can output 30kw to the first power sharing bus or the second power sharing bus, which shows that the utilization rate of the DC-to-DC module M2 is greatly improved.
  • the second energy supply unit of each DC-to-DC module in the charging system can output the remaining power of the DC-to-DC module to the first power-sharing bus or the second power-sharing bus, so that each DC-to-DC module The remaining power is fully utilized, improving the utilization rate of the DC-to-DC module in the charging system.
  • the DC-to-DC module has multiple outputs, which can respectively output power to the first power sharing bus or the second power sharing bus.
  • the first power sharing bus can be coupled to multiple first output terminals
  • the second power sharing bus can be coupled to multiple second output terminals
  • both the first power sharing bus and the second power sharing bus can support power sharing.
  • Each DC-to-DC module may include at least one first power supply unit and at least one second power supply unit, the output power range of the first power supply unit is different from the output power range of the second power supply unit, and the DC-to-DC module can be realized Power can be allocated in stages to support the charging of objects to be charged with different power requirements.
  • the charging system has high compatibility, and new DC-to-DC modules can be connected to the first power sharing bus and the second power sharing bus.
  • the charging system can be applied to a low-power charging scenario, and the maximum output voltage of the first energy supply unit in each DC-to-DC module of the charging system can be less than or equal to 1000 volts, and/or Or, the minimum value of the output voltage of the first energy supply unit is greater than or equal to 150 volts.
  • the maximum value of the output voltage of the second power supply unit may be less than or equal to 1000 volts, and/or the minimum value of the output voltage of the second power supply unit is greater than or equal to 150 volts.
  • each first output end of the charging system can provide a maximum power of 20 kilowatts of DC power to the coupled charging device.
  • the charging system may further include a control module, and the control module may be communicatively connected with each DC-to-DC module.
  • the control module can control each DC-to-DC module.
  • the control module can send messages, data, instructions, etc. to each DC-to-DC module, so that the DC-to-DC module can adjust the output power according to the received messages, data, or instructions.
  • the communication connection may include but not limited to the following communication methods, communication methods based on bus technology, communication methods based on mobile communication technology, communication methods based on wireless local area network technology or communication methods based on Bluetooth technology.
  • the control module and each DC-to-DC module can be in the same local area network.
  • Each DC-to-DC module in the charging system may also include a control unit. As shown in Fig. 4, the control unit may be communicatively connected with the control module in the charging system. The control unit can receive messages, data, instructions, etc. sent by the charging system control module, and the control unit can also send messages, data, instructions, etc. to the control module.
  • control unit is coupled with each first energy supply unit and each second energy supply unit, which can be used to control the first energy supply unit to output electric energy, and can also control the first energy supply unit to adjust output power.
  • the control unit can also be used to control the second energy supply unit to output electric energy, and can also control the second energy supply unit to adjust the power of the output electric energy, and can also control the first switch unit in the DC-to-DC module.
  • the first switch unit will correspond to The electric energy output by the second energy supply unit is transmitted to the first power sharing bus or the second power sharing bus.
  • control unit of any DC-to-DC module can include multiple controllers, as shown in Figure 4, the multiple controllers are respectively connected to all the first power supply unit and the second power supply unit in the DC-to-DC module Units correspond one to one. That is, one controller can only correspond to one first energy supply unit, or one controller can only correspond to one second energy supply unit. One first energy supply unit can only correspond to one controller, and one second energy supply unit can only correspond to one controller.
  • the controller corresponding to the first energy supply unit can be used to collect the power supply parameters of the first energy supply unit, such as the current and/or voltage of the output electric energy of the first energy supply unit, and the power supply parameters collected by the controller can be used to It is used to determine the output power of the first energy supply unit.
  • the controller corresponding to the first energy supply unit may also be used to control the first energy supply unit, such as controlling the output power of the first energy supply unit.
  • the controller corresponding to the second power supply unit can be used to collect the power supply parameters of the second power supply unit, such as the current and/or voltage of the second power supply unit output electric energy, and the power supply parameters collected by the controller can be used to determine The output power of the second power supply unit.
  • the controller corresponding to the second energy supply unit may also be used to control the second energy supply unit, such as controlling the output power of the second energy supply unit.
  • the controller corresponding to the second energy supply unit may also control the first switch unit corresponding to the second energy supply unit, for example, control the relay switch in the first switch unit.
  • the control module can establish a communication connection with a controller in the control unit, which is denoted as the target controller.
  • a controller corresponding to a second energy supply unit is a target controller, and is connected to the control module in communication.
  • the target controller in the control unit can receive the power supply parameters provided by other controllers and forward them to the control module, assisting other controllers to report the power supply parameters to the control module.
  • the target controller may serve as the master controller in the control unit to report the power supply parameters of each first energy supply unit and the power supply parameters of each second energy supply unit to the control module.
  • the control units in each DC-to-DC module can report the collected power supply parameters to the control module, so that the control module can determine the output power of each first energy supply unit and the output power of each second energy supply unit according to the power supply parameters, Therefore, the control module can determine (know or calculate) the power information of each DC-to-DC module, for example, the output power and the remaining power (power to be output).
  • the control module can obtain the rated power of each DC-to-DC module in advance, and combine the power supply parameters reported by each control unit to determine the remaining power of each DC-to-DC module.
  • the power supply parameters reported by each control unit may include the identification of each first energy supply unit and the power supply parameters of the first energy supply unit, and the identification of each second energy supply unit and the power supply parameters of the second energy supply unit .
  • the power supply parameters reported by each control unit may include the identification of the first power supply unit that has output power and the power supply parameters of the first power supply unit, as well as the identification of the second power supply unit that has output power and the second power supply unit.
  • the power supply parameters of the energy unit may include the identification of each first energy supply unit and the power supply parameters of the first energy supply unit, and the identification of each second energy supply unit and the power supply unit.
  • the control module can determine whether each first power supply unit in each DC-to-DC module outputs power and the power output by the first power supply unit that has output power according to the power supply parameters reported by each control unit. The control module can also determine whether each second power supply unit outputs power and the power output by the second power supply unit that has output power according to the power supply parameters reported by each control unit.
  • the charging system may further include an AC to DC module.
  • the control module can communicate with the AC-to-DC module, so that the AC-to-DC module can adjust the output power according to the received message, data or instructions.
  • the input side of the AC-to-DC module can be coupled with an AC power source, for example, an AC power grid.
  • the output side of the AC-to-DC module can be coupled with each DC-to-DC module.
  • the AC-to-DC module can convert the AC power output by the AC power supply into DC power and provide it to each DC-to-DC module.
  • the charging system can also include a DC bus, the output side of the AC-to-DC module is coupled to the DC bus, and the AC-to-DC module can output DC to the DC bus.
  • the input side of each DC-to-DC module is coupled to the DC bus, and each DC-to-DC module can obtain DC power from the DC bus.
  • the AC-to-DC module may include a first AC-to-DC circuit, and the maximum power of the first AC-to-DC circuit that can output DC power to the DC bus may be equal to or less than The sum of the rated power of all DC-to-DC modules in the charging system.
  • the AC-to-DC module may include multiple second AC-to-DC circuits, which may be respectively recorded as the second AC-to-DC circuit 1, the second AC-to-DC circuit 1, and the second AC-to-DC circuit. The circuit 2, the second AC-to-DC circuit 3, etc.
  • the maximum power of the DC power that each second AC-to-DC circuit can output to the DC bus is smaller than the maximum power that the first AC-to-DC circuit can output to the DC bus.
  • the total power of the maximum power of the DC electric energy output by all the second AC-to-DC circuits to the DC bus may be equal to or less than the sum of the rated powers of all the DC-to-DC modules in the charging system.
  • the output voltage of the AC-to-DC module may be less than or equal to 1000 volts.
  • the output voltage of the AC to DC module may be less than or equal to 850 volts.
  • the output voltage of the AC to DC module can be less than or equal to 820 volts.
  • the output voltage range of the AC to DC module can be configured according to requirements, which is not limited too much in the embodiment of the present application.
  • the charging system may further include a charging device coupled to the first output terminal, and a charging device coupled to the second output terminal.
  • the control module may be in communication connection with each charging device.
  • the dotted line shown in FIG. 4 represents the communication connection relationship.
  • the charging device can be a charging terminal or a charging gun. Both the charging terminal and the charging gun can cooperate with the charging port of the vehicle to be charged.
  • the charging terminal may include a control unit, a power distribution communication unit, a metering unit, and the like.
  • the control unit can control the power distribution unit and the metering unit.
  • the power distribution communication unit can exchange charging parameters with the vehicle to be charged, and determine the charging power suitable for the vehicle to be charged, and transmit it to the control module of the charging system, or in other words, match the actual power required by the vehicle to be charged.
  • the metering unit can determine the situation of providing electric energy to the object to be charged via the charging terminal, so as to facilitate the statistics of charging charges of the object to be charged.
  • the control module of the charging system can obtain the expected input power of the object to be charged (denoted as the first power parameter), and then assign the first output terminal to the object to be charged, so that the object to be charged can be connected with the assigned first Output coupled charging device connection.
  • the expected input power of the object to be charged may represent the expected input power when the object to be charged is charged.
  • the charging device can report the actual required power of the object to be charged (recorded as the second power parameter) to the control module.
  • the control module can control the first energy supply unit and/or the second energy supply unit of the DC-to-DC module in the charging system to output electric energy to the first power sharing bus according to the second power parameter of the object to be charged.
  • the first output end assigned to the charging object obtains the second power parameter of the object to be charged from the first power sharing bus, and charges the object to be charged.
  • control module of the charging system can obtain the expected input power of the object to be charged, and then assign the second output terminal to the object to be charged, so that the object to be charged can be connected to the charging device coupled with the assigned second output end. .
  • the charging device can report the second power parameter of the object to be charged to the control module.
  • the control module can control the second energy supply unit of the DC-to-DC module in the charging system to output electric energy to the second power sharing bus according to the actual demand power of the object to be charged, and the second output end assigned to the object to be charged is from The second power sharing bus acquires the actual required power of the object to be charged, and charges the object to be charged.
  • the object to be charged may be an electric vehicle, and the driving system of the electric vehicle may use a DC power supply to supply power so as to generate traction for propulsion of the vehicle.
  • Electric vehicles may include, but are not limited to, pure electric vehicles, plug-in hybrid electric vehicles, and extended-range electric vehicles. These vehicles may include passenger cars, crossover vehicles, utility vehicles, recreational vehicles, trucks, buses, commercial vehicles, and the like. Vehicles to be charged may also include, but are not limited to, mobile platforms in the form of industrial vehicles, agricultural vehicles, airplanes, ships, trains, personal mobile devices, robots, and the like, in order to achieve the purpose of the embodiments of the present application.
  • control module obtains the expected input power of the object to be charged may include but not limited to the following methods:
  • the control module can communicate with the object to be charged, and the object to be charged can send a charging request carrying the first charging parameter to the control module.
  • the first charging parameter may represent the expected charging time of the object to be charged.
  • the control module can determine the expected input power corresponding to the first charging parameter according to the preset corresponding relationship between the expected charging duration and the expected input power, that is, determine the first power parameter, so that the control module can obtain the first power parameter, which is convenient for the control module
  • the first output terminal or the second output terminal is assigned to an object to be charged.
  • the control module can communicate with the electronic device, and the electronic device can send a charging request carrying the first charging parameter to the control module.
  • the control module can determine the expected input power corresponding to the first charging parameter according to the preset corresponding relationship between the expected charging duration and the expected input power, that is, determine the first power parameter, so that the control module can obtain the first power parameter, which is convenient for the control module
  • the first output terminal or the second output terminal is assigned to an object to be charged.
  • the electronic device in the above method 2 may be a mobile terminal, a personal terminal, a smart phone, a tablet computer, and the like.
  • the electronic device may display a target interface for selecting a desired charging duration, so that the user can select the desired charging duration in the target interface.
  • the target interface may include, but is not limited to, an application program interface or an applet interface.
  • the electronic device may be triggered to send the first charging parameter to the control module, and the first charging parameter may represent the desired charging duration selected by the user.
  • the electronic device may send a charging request carrying the object to be charged identification and the first charging parameter to the control module, so that the control module may assign the first output terminal or the second output to the object to be charged corresponding to the object to be charged identification end.
  • the control module may compare the first power parameter with a set power parameter threshold.
  • the power parameter threshold may represent the maximum power that the first power supply unit of any DC-to-DC module in the charging system can output DC power (that is, the maximum output power of the first power supply unit).
  • the maximum power that the first energy supply unit can output DC electric energy is recorded as the maximum output power of the first energy supply unit.
  • the maximum power that the second power supply unit can output DC electric energy is recorded as the maximum output power of the second power supply unit.
  • the maximum power that the DC-to-DC module can output DC power is recorded as the maximum output power of the DC-to-DC module.
  • the charging system can provide different levels of charging power. For example, the charging power that can be provided by the first output terminal is smaller than the charging power that can be provided by the second output terminal. If the first power parameter of the object to be charged is greater than the preset power parameter threshold, it may reflect that the expected input power of the object to be charged is a high-level charging power. If the first power parameter of the object to be charged is less than or equal to the preset power parameter threshold, it may reflect that the expected input power of the object to be charged is a low-level charging power.
  • the control module may allocate an idle first output terminal from all the first output terminals of the charging system to the object to be charged.
  • the unallocated first output terminals are recorded as idle first output terminals.
  • unassigned second outputs are denoted as free second outputs.
  • the first energy supply unit that does not output DC power in the DC-to-DC module that is, the first energy supply unit that is not working, is recorded as an idle first energy supply unit.
  • the second power supply unit that does not output DC power that is, the second power supply unit that is not working, is recorded as an idle second power supply unit.
  • the first power parameter is less than or equal to the power parameter threshold, and there is no idle first output terminal in the at least one first output terminal, that is, all the first output terminals in the charging system There is no idle first output end among the output ends, and the control module can allocate an idle second output end to the object to be charged from all the second output ends in the charging system.
  • the first power parameter is greater than a preset power parameter
  • the control module may allocate an idle second output terminal from all the second output terminals of the charging system to the object to be charged.
  • the control module may record the first output terminal (or the second output terminal) as the allocated first output terminal terminal (or the second output terminal).
  • the control module can record the first output terminal as an idle first output terminal terminal (or the second output terminal).
  • the charging device coupled to the first output terminal can communicate with the control module of the charging system, and can initiate a report to the control module for the connected charging object to charge
  • the parameter information is convenient for the control module to control the DC-to-DC module in the charging system.
  • the charging device may receive charging information of the charging object after the charging object is connected, and the charging information may include but not limited to charging voltage, charging current, battery state of charge (SOC), expected charging time, and the like.
  • the charging device can report the charging information of the charging object to the control module, so that the control module can determine the actual charging power of the charging object according to the charging information.
  • the charging device may determine the actual charging power of the charging object according to the charging information of the charging object, and report the actual charging power to the control module.
  • the first output terminal or the second output terminal assigned by the control module to the object to be charged can be recorded as the target output terminal.
  • the charging device coupled to the target output terminal can receive the charging information of the object to be charged, so as to determine the actual charging power (or actual required power) of the object to be charged, which is recorded as the second power parameter of the object to be charged in the embodiment of the present application.
  • the first power parameter of the object to be charged can be used by the control module to allocate output terminals for the object to be charged according to the first power parameter.
  • the second power parameter can be used by the control module to control the DC-to-DC module in the charging system according to the second power parameter.
  • the control module controls the DC-to-DC module in the charging system according to the second power parameter of the object to be charged
  • the first DC-to-DC module in the charging system may be controlled to output the first DC electric energy to the first power sharing bus of the charging system.
  • the power of the first direct current electric energy is the same as the second power parameter.
  • the first DC-to-DC module is a DC-to-DC converter whose residual power (the difference between the maximum output power of the first DC-to-DC module and the output power of the first DC-to-DC module) is greater than or equal to the second power parameter DC module.
  • control module may control an idle first power supply unit in the first DC-to-DC module to output the first DC power to the first power sharing bus. For example, if the remaining power of the DC-to-DC module M2 is greater than or equal to the second power parameter, the control module may control the idle first energy supply unit in the DC-to-DC module M2 to output power to the first power sharing bus to the second power parameter.
  • the DC electric energy of the power parameter so that the object to be charged obtains the electric energy of the second power parameter from the first power sharing bus through the allocated first output terminal.
  • the control module when the target output port assigned by the control module to the object to be charged is an idle first output port, the control module performs a DC-to-DC conversion module in the charging system according to the second power parameter of the object to be charged.
  • the control module can control multiple DC-to-DC modules (different from the aforementioned first DC-to-DC module, denoted as a plurality of second DC-to-DC modules) to output DC power to the first power sharing bus respectively, and all The total power of the multiple second DC-to-DC modules outputting DC power is the second power parameter, wherein the multiple second DC-to-DC modules may have a target second DC-to-DC module, and the target second The remaining power of the DC-to-DC module is less than the second power parameter.
  • the plurality of second DC-to-DC modules may include DC-to-DC modules whose residual power is less than the second power parameter.
  • the target DC-to-DC module cannot alone meet the charging requirements of the object to be charged.
  • the control module can control the target DC-to-DC module and other DC-to-DC modules to output DC power respectively, so that the target DC-to-DC module and other DC-to-DC modules output DC power
  • the total power of the energy is the same as the second power parameter. Realize calling the remaining power of the target DC-to-DC module, flexibly utilize the remaining power of the target DC-to-DC module, and avoid waste of the remaining power of the target DC-to-DC module.
  • the control module may control the idle first energy supply unit or the idle second energy supply unit in the target second DC-to-DC module to output the second DC power to the first power sharing bus, and the second DC power The power is the same as the remaining power of the target second DC-to-DC module. and controlling other second DC-to-DC modules in the plurality of second DC-to-DC modules to output third DC power, wherein the sum of the power of the third DC power and the second DC power is the second power parameter . It can be seen that the target second DC-to-DC module outputs full power under the control of the control module, that is, the total DC power output by the target second DC-to-DC module is the maximum output power of the target second DC-to-DC module.
  • the control module may control multiple second DC-to-DC modules to respectively output DC power to the first power sharing bus, and the total power of the multiple second DC-to-DC modules outputting DC power is The second power parameter.
  • each second DC-to-DC module is the aforementioned target second DC-to-DC module, that is, the remaining power of each second DC-to-DC module may be less than the second power parameter.
  • the remaining power of multiple DC-to-DC modules that cannot individually meet the charging needs of the object to be charged is called, and the total power of the respective output DC electric energy can meet the charging needs of the object to be charged, which can make the remaining power of the target DC-to-DC module The power is fully utilized to avoid waste of remaining power.
  • the remaining power of a target second DC-to-DC module is less than the second power parameter, so it cannot provide the actual charging power to the second power sharing bus to meet the actual charging power of the object to be charged.
  • the sum of the remaining power of multiple target second DC-to-DC modules may be greater than the second power parameter, and the remaining power of multiple target second DC-to-DC modules is output to the first power sharing bus to meet the exclusive actual charging power to be charged. requirements.
  • control module can control multiple target second DC-to-DC modules to output power to the first power sharing bus, and the sum of the output power is equal to the second power parameter, so that the remaining power of each target second DC-to-DC module is The objects to be charged are charged, the utilization rate of the second DC-to-DC modules of each target is improved, and the charging efficiency of the charging system is increased.
  • both the DC-to-DC module M3 and the DC-to-DC module M4 are DC-to-DC modules with residual power less than the second power parameter, and the control module can control the idle first energy supply unit (or the second power supply unit) in the DC-to-DC module M3.
  • power supply unit) to the first power sharing bus, and the power is P3 (P3 is less than or equal to the remaining power of the DC-to-DC module M3), and controls the idle first power supply unit (or the second power supply unit) in the DC-to-DC module M4
  • the energy supply unit) outputs electric energy to the first power sharing bus, and the power is P4 (P4 is less than or equal to the remaining power of the DC-to-DC module M4).
  • the sum of P3 and P4 is equal to the second power parameter, and the control module calls the remaining power in the DC-to-DC module M3 and the DC-to-DC module M4 to charge the object to be charged.
  • the control module controls the DC-to-DC module in the charging system according to the second power parameter
  • the third DC-to-DC module may be controlled to output fourth DC power to the second power sharing bus of the charging system, where the power of the fourth DC power is the same as the second power parameter.
  • the DC-to-DC module whose remaining power is greater than or equal to the second power parameter and includes the idle second power supply unit is denoted as the third DC-to-DC module.
  • the control module can control an idle second energy supply unit in a third DC-to-DC module to output the fourth DC electric energy to the second power sharing bus, that is, the output power is the electric energy of the second power parameter, so as to realize calling the third DC-to-DC
  • the remaining power in the module charges the object to be charged.
  • the control module controls the DC-to-DC module in the charging system according to the second power parameter
  • the multiple fourth DC-to-DC modules can be controlled to output DC power to the second power sharing bus respectively, wherein the total power of the multiple fourth DC-to-DC modules outputting DC power is different from the second power parameter same.
  • the DC-to-DC module including the idle second energy supply unit can be recorded as the fourth DC-to-DC module.
  • the remaining power of the target fourth DC-to-DC module is less than the second power parameter. It can be seen that the control module can control the target fourth DC-to-DC module to output DC power to the second power sharing bus, so as to call the remaining power of the target fourth DC-to-DC module. The control module can output the surplus power to the second power sharing bus from the idle second energy supply unit of each fourth DC-to-DC module.
  • the charging system can be set up in scenarios such as office areas, industrial areas, and supermarkets.
  • scenarios such as office areas, industrial areas, and supermarkets.
  • the working process of the charging system will be introduced below in combination with actual application scenarios.
  • the charging system includes multiple DC-to-DC modules.
  • the rated power of each DC-to-DC module is 30kw.
  • the AC-to-DC module in the charging system can output a maximum power of 60kw.
  • Each DC-to-DC module includes two first power supply units and one second power supply unit.
  • the output power range of each first energy supply unit is 0-20kw.
  • the output power range of each second energy supply unit is 0-60kw.
  • the first power sharing bus is coupled to 8 first output terminals, and the second power sharing bus is coupled to 4 second output terminals.
  • the first output terminal and the second output terminal of the charging system are respectively coupled to the charging terminal.
  • the first output end is coupled to the first power sharing bus, and the second output end is coupled to the second power sharing bus.
  • the first output terminal and the second output terminal are numbered together, and are respectively recorded as output terminal i (i is taken from 1 to 12).
  • the output terminals 1, 2, 4, 5, 7, 8, 10, and 11 may be respectively first output terminals, coupled to the first power sharing bus.
  • the output terminals 3 , 6 , 9 , and 12 may be respectively second output terminals coupled to the second power sharing bus.
  • the charging terminals coupled with the charging system are respectively denoted as charging terminals i (i is taken from 1 to 12).
  • the charging terminals 1, 2, 4, 5, 7, 8, 10, 11 are respectively coupled with the output terminals 1, 2, 4, 5, 7, 8, 10, 11.
  • the charging terminals 3, 6, 9, 12 are coupled with the output terminals 3, 6, 9, 12 respectively.
  • the maximum output power of output terminals 1, 2, 4, 5, 7, 8, 10, and 11 can be the same, for example, output terminals 1, 2, 4, 5, 7, 8, 10, and 11 can have The connected charging terminal is capable of providing 20kw of power. In other words, the maximum output power of output terminals 1, 2, 4, 5, 7, 8, 10, and 11 is configured to be 20kw.
  • the maximum output power of the output terminals 1, 2, 4, 5, 7, 8, 10, and 11 may be different.
  • the maximum output power of some of the output terminals 1, 2, 4, 5, 7, 8, 10, and 11 is the same, such as the first power; the maximum output power of the other part of the output terminals is the same, such as the second power, where the first power Different from the second power.
  • the maximum output power of the output terminals 3, 6, 9, and 12 may be the same, for example, the output terminals 3, 6, 9, and 12 may respectively have the capability of providing 60kw of power to the connected charging terminals. In other words, the maximum output power of the output terminals 3, 6, 9, 12 is configured to be 60kw.
  • the maximum output power of the outputs 3, 6, 9, 12 may be different. Some of the output terminals 3, 6, 9, 12 have the same maximum output power, such as the third power; the other part of the output terminals have the same maximum output power, such as the fourth power, wherein the third power is different from the fourth power.
  • the number, specifications, regulations, etc. of the first output terminals, the number, specifications, regulations, etc. of the second output terminals, the number, specifications, and regulations of the charging terminals connected to the first output terminals Regulations, etc., the number, specifications, regulations, etc. of the charging terminals connected to the second output terminal are only used to introduce the working process of the charging system, and are not intended to be specific limitations on the charging system provided by this application.
  • the maximum output power of the output terminal 6 and the output terminal 12 is configured to be 60kw, so as to meet the charging terminal for high-power charging requirements.
  • the other 10 output terminals (output terminals 1, 2, 3, 4, 5, 7, 8, 9, 10, 11) of the charging system are configured to provide 20kw to the charging terminal to meet the charging objects with low power charging requirements.
  • the second power supply unit can be used for sharing the remaining power of the DC-to-DC module.
  • the remaining power of the DC-to-DC module can be shared with the charging terminals 1 , 2 , 4 , 5 , 7 , 8 , 10 , and 11 .
  • the remaining power of the DC-to-DC module can be shared with the charging terminals 3 , 6 , 9 , and 12 through the second power sharing bus.
  • the control module of the charging system may store a corresponding relationship between expected charging duration and expected input power.
  • Expected charging time can be 0.5 hours, 2 hours, 4 hours and 8 hours.
  • the expected input power corresponding to 8 hours is 5kw.
  • the expected input power corresponding to 4 hours is 10kw.
  • the expected input power corresponding to 2 hours is 20kw.
  • the expected input power corresponding to 0.5 hours is 60kw.
  • the control module can obtain the remaining power (power to be output) of each DC-to-DC module, the output power of each first power supply unit in each DC-to-DC module, and each second energy supply
  • the output power of the unit is convenient for assigning charging terminals or output terminals to the objects to be charged.
  • control module may periodically obtain the remaining power (power to be output) of each DC-to-DC module, the output power of each first power supply unit and the output power of each second power supply unit in each DC-to-DC module, so as to provide The object to be charged is assigned a charging terminal or an output terminal.
  • the charging system can provide charging services for multiple objects to be charged
  • the multiple objects to be charged can be respectively recorded as object 1 to be charged, object 2 to be charged, object 3 to be charged, and so on.
  • the object 1 to be charged can initiate a charging request 1 to the control module of the charging system through an application program or a small program.
  • the charging request can carry the expected charging duration 1.
  • the expected charging duration 1 of the object to be charged 1 is 4 hours.
  • the control module can assign a charging terminal capable of providing 20kw power to the object to be charged according to the expected input power of 20kw corresponding to the expected charging time of the object to be charged 1 (that is, the first power parameter of the object to be charged 1).
  • the control module assigns the charging terminal 1 (or the output terminal 1 ) to the object 1 to be charged.
  • the charging system may further include a guide module, and the guide module may include a display unit or a lighting unit.
  • the display unit may display the location of the charging terminal assigned to the object to be charged, or display the location of the parking space corresponding to the charging terminal assigned to the object to be charged. For example, the display unit may display the location of the charging terminal 1 , or display the location of the parking space corresponding to the charging terminal 1 .
  • the display unit can display a map of the charging station or parking lot to which the charging system belongs and the location of the charging terminal 1 (or the location of the parking space corresponding to the charging terminal 1). Such a design facilitates guiding the object 1 to be charged to the position of the charging terminal 1 .
  • the lighting unit may include a plurality of indicator lights.
  • a plurality of indicator lights may be in one-to-one correspondence with the charging terminals, and the indicator lights corresponding to the charging terminals may be arranged near the charging terminals.
  • the control module can control the indicator light corresponding to the charging terminal 1 to be in a lighting state, so as to guide the object 1 to be charged to the position of the charging terminal 1 .
  • a plurality of indicator lights are in a lighting state, which can form a guiding path, so that the object 1 to be charged can reach the position of the charging terminal 1 along the guiding path.
  • the guiding module can also use other methods to guide the object 1 to be charged to the position of the charging terminal 1 , which is not limited too much in this embodiment of the present application.
  • the charging terminal 1 can obtain the actual charging power of the object to be charged 1 when charging (that is, the second power parameter of the object to be charged 1 ), and send the actual charging power of the object to be charged 1 to the control module. Assume that the actual charging power of the charging object 1 obtained by the charging terminal 1 is 10kw.
  • the control module can be based on the fact that the second power parameter of the object 1 to be charged is less than or equal to the preset power parameter threshold (that is, the maximum power that the first energy supply unit can output electric energy is 20kw), and the remaining power of each DC-to-DC module, as The object to be charged is assigned an output terminal (or charging terminal).
  • the remaining power of the DC-to-DC module 1 is 60kw, and the DC-to-DC module M1 includes idle first energy supply unit A1 and first energy supply unit A2.
  • the control module can control the first energy supply unit A1 in the DC-to-DC module M1 to output electric energy to the first power sharing bus, and the output electric energy is 10kw.
  • the controller can control the contactor between the charging terminal 1 and the output terminal 1 to be in a conducting state. At this time, the remaining power of the DC-to-DC module 1 is 50kw.
  • the object 2 to be charged can initiate a charging request 2 to the control module of the charging system through an application program or a small program.
  • the charging request can carry the expected charging duration 2.
  • the expected charging duration 2 of the object to be charged 2 is 2 hours.
  • the control module can assign a charging terminal capable of providing 20kw power to the object to be charged according to the expected input power of 20kw corresponding to the expected charging time of the object to be charged 2 (that is, the first power parameter of the object to be charged 2 ).
  • the control module assigns the charging terminal 2 (or the output terminal 2 ) to the object 2 to be charged.
  • the control module can control the guide module to display the location of the charging terminal 2 so that the object 2 to be charged can reach the location of the charging terminal 2 .
  • the charging terminal 2 can obtain the actual charging power of the object to be charged 2 when charging (that is, the second power parameter of the object to be charged 2 ), and send the actual charging power of the object to be charged 2 to the control module. Assume that the actual charging power of the charging object 2 obtained by the charging terminal 2 is 20kw.
  • the control module can be based on the fact that the second power parameter of the object to be charged is less than or equal to the preset power parameter threshold (that is, the maximum power that the first energy supply unit can output electric energy is 20kw), and the remaining power of each DC-to-DC module, as The object to be charged is assigned an output terminal (or charging terminal).
  • the remaining power of the DC-to-DC module 1 is 50kw, and the DC-to-DC module M1 includes an idle first energy supply unit A2.
  • the control module can control the first energy supply unit A2 in the DC-to-DC module M1 to output electric energy to the first power sharing bus, and the output electric energy power is 20kw.
  • the controller can control the contactor between the charging terminal 2 and the output terminal 2 to be in a conducting state. At this time, the remaining power of the DC-to-DC module 1 is 30kw.
  • the object 3 to be charged can initiate a charging request 3 to the control module of the charging system through an application program or a small program.
  • the charging request can carry the expected charging duration3.
  • the expected charging duration 3 of the object to be charged 3 is 0.5 hours.
  • the control module can assign a charging terminal capable of providing 60kw power to the object 3 to be charged according to the expected input power of 60kw corresponding to the expected charging time of the object to be charged 3 (that is, the first power parameter of the object to be charged 3 ).
  • the control module assigns the charging terminal 6 (or the output terminal 6 ) to the object 2 to be charged.
  • the control module can control the guide module to display the position of the charging terminal 6 , so that the object 3 to be charged can reach the position of the charging terminal 6 .
  • the charging terminal 6 can obtain the actual charging power of the object to be charged 3 when charging (that is, the second power parameter of the object to be charged 2 ), and send the actual charging power of the object to be charged 3 to the control module. Assume that the actual charging power of the object 3 to be charged obtained by the charging terminal 6 is 60kw. Since the remaining power of the DC-to-DC module 1 is 30kw, which is less than the expected input power of the object 3 to be charged, the remaining power of the DC-to-DC module 1 does not meet the charging requirements of the object 3 to be charged.
  • the control module can control the second energy supply unit B1 of the DC-to-DC module 2 to output electric energy to the second power sharing bus, and the output power is 60kw.
  • the contactor between the control output terminal 6 and the charging terminal 6 is in a conduction state.
  • the charging terminal 6 can obtain 60kw of electric energy from the second power sharing bus and provide it to the object 3 to be charged.
  • control module can control the second power supply unit B1 in the DC-to-DC module 1 to output 30kw to the second power sharing bus, and control the second power supply unit in the DC-to-DC module 2 B1 outputs 30kw to the second power sharing bus. And control the contactor between the output terminal 6 and the charging terminal 6 to be in a conduction state.
  • the charging terminal 6 can obtain 60kw of electric energy from the second power sharing bus and provide it to the object 3 to be charged.
  • the charging system may include a DC-to-DC module.
  • the rated power of the AC-to-DC module in the charging system may be 40kw or 60kw, and 60kw is used as an example in the embodiment of the present application.
  • the rated power of the DC-to-DC module can be 60kw.
  • Each of the DC-to-DC modules includes two first power supply units and one second power supply unit. In the direct current to direct current module, the output power of each first energy supply unit ranges from 0 to 20 kw. The output power range of each second energy supply unit is 0-60kw. As shown in FIG.
  • the first power sharing bus is coupled to two first output terminals, and the second power sharing bus is coupled to one second output terminal.
  • the first output terminal and the second output terminal of the charging system are respectively coupled to the charging terminal.
  • the first output end is coupled to the first power sharing bus
  • the second output end is coupled to the second power sharing bus.
  • the first output terminal and the second output terminal are numbered together, and are respectively recorded as output terminal i (i is taken from 1 to 12).
  • the output terminals 1 and 2 are the first output terminals respectively, and are coupled with the first power sharing bus.
  • the output terminal 3 is the second output terminal, which is coupled to the second power sharing bus.
  • the charging terminals coupled with the charging system are respectively denoted as charging terminals i (i is taken from 1 to 3).
  • the charging terminals 1, 2 are coupled with the output terminals 1, 2 respectively.
  • the charging terminal 3 is coupled to the output terminal 3 .
  • the second power supply unit can be used for sharing the remaining power of the DC-to-DC module.
  • the remaining power of the DC-to-DC module can be shared with the charging terminals 1 and 2 .
  • the remaining power of the DC-to-DC module can be shared with the charging terminal 3 .
  • the charging system can provide charging services for multiple objects to be charged
  • the multiple objects to be charged can be respectively recorded as object 1 to be charged, object 2 to be charged, object 3 to be charged, and so on.
  • the control module of the charging system may store a corresponding relationship between expected charging duration and expected input power.
  • Expected charging time can be 0.5 hours, 2 hours, 4 hours and 8 hours.
  • the expected input power corresponding to 8 hours is 5kw.
  • the expected input power corresponding to 4 hours is 10kw.
  • the expected input power corresponding to 2 hours is 20kw.
  • the expected input power corresponding to 0.5 hours is 60kw.
  • the object 1 to be charged can initiate a charging request 1 to the control module of the charging system through an application program or a small program.
  • the charging request can carry the expected charging duration 1.
  • the expected charging duration 1 of the object to be charged 1 is 4 hours.
  • the control module can allocate a charging terminal capable of providing 10kw power to the object to be charged according to the expected power parameter 10kw corresponding to the expected charging time of the object to be charged 1 (that is, the first power parameter of the object to be charged 1).
  • the control module assigns the charging terminal 1 (or the output terminal 1 ) to the object 1 to be charged.
  • the control module can control the guide module to display the position of the charging terminal 1 , so that the object 1 to be charged can reach the position of the charging terminal 1 .
  • the charging terminal 1 can obtain the actual charging power of the object to be charged 1 when charging (that is, the second power parameter of the object to be charged 1 ), and send the actual charging power of the object to be charged 1 to the control module. Assume that the actual charging power of the charging object 1 obtained by the charging terminal 1 is 10kw.
  • the control module can be based on the fact that the second power parameter of the object 1 to be charged is less than or equal to the preset power parameter threshold (that is, the maximum power that the first energy supply unit can output electric energy is 20kw), and the remaining power of each DC-to-DC module, as The object to be charged is assigned an output terminal (or charging terminal).
  • the remaining power of the DC-to-DC module 1 is 60kw, and the DC-to-DC module M1 includes idle first energy supply unit A1 and first energy supply unit A2.
  • the control module can control the first energy supply unit A1 in the DC-to-DC module M1 to output electric energy to the first power sharing bus, and the output electric energy is 10kw.
  • the controller can control the contactor between the charging terminal 1 and the output terminal 1 to be in a conducting state. At this time, the remaining power of the DC-to-DC module 1 is 50kw.
  • the object 2 to be charged can initiate a charging request 2 to the control module of the charging system through an application program or a small program.
  • the charging request can carry the expected charging duration 2.
  • the expected charging duration 2 of the object to be charged 2 is 2 hours.
  • the control module can assign a charging terminal capable of providing 20kw power to the object to be charged 2 according to the expected power parameter 20kw corresponding to the expected charging time of the object to be charged 2 (that is, the first power parameter of the object to be charged 2 ).
  • the control module assigns the charging terminal 2 (or the output terminal 2 ) to the object 2 to be charged.
  • the control module can control the guide module to display the location of the charging terminal 2 so that the object 2 to be charged can reach the location of the charging terminal 2 .
  • the charging terminal 2 can obtain the actual charging power of the object to be charged 2 when charging (that is, the second power parameter of the object to be charged 2 ), and send the actual charging power of the object to be charged 2 to the control module. Assume that the actual charging power of the charging object 2 obtained by the charging terminal 2 is 20kw.
  • the control module can be based on the fact that the second power parameter of the object to be charged is less than or equal to the preset power parameter threshold (that is, the maximum power that the first energy supply unit can output electric energy is 20kw), and the remaining power of each DC-to-DC module, as The object to be charged is assigned an output terminal (or charging terminal).
  • the remaining power of the DC-to-DC module 1 is 50kw, and the DC-to-DC module M1 includes an idle first energy supply unit A2.
  • the control module can control the first energy supply unit A2 in the DC-to-DC module M1 to output electric energy to the first power sharing bus, and the output electric energy power is 20kw.
  • the controller can control the contactor between the charging terminal 2 and the output terminal 2 to be in a conducting state. At this time, the remaining power of the DC-to-DC module 1 is 30kw.
  • the object 3 to be charged can initiate a charging request 3 to the control module of the charging system through an application program or a small program.
  • the charging request can carry the expected charging duration3.
  • the expected charging duration 3 of the object to be charged 3 is 0.5 hours.
  • the control module can assign a charging terminal capable of providing 60kw power to the object 3 to be charged according to the expected power parameter 60kw corresponding to the expected charging time of the object to be charged 3 (that is, the first power parameter of the object to be charged 3 ).
  • the control module assigns the charging terminal 3 (or the output terminal 3 ) to the object 2 to be charged.
  • the control module can control the guide module to display the position of the charging terminal 3, so that the object 3 to be charged can reach the position of the charging terminal 3.
  • the charging terminal 3 can obtain the actual charging power of the object to be charged 3 when charging (that is, the second power parameter of the object to be charged 2 ), and send the actual charging power of the object to be charged 3 to the control module. Assume that the charging terminal 3 acquires that the actual charging power of the object 3 to be charged is 60kw. Since the remaining power of the DC-to-DC module 1 is 30kw, the control module can control the second energy supply unit B1 of the DC-to-DC module 1 to output 30kw of electric energy to the second power sharing bus.
  • the object 3 to be charged can initiate a charging request 3 to the control module of the charging system through an application program or a small program.
  • the charging request can carry the expected charging duration3.
  • the expected charging duration 3 of the object to be charged 3 is 0.5 hours.
  • the control module can assign a charging terminal capable of providing 60kw power to the object 3 to be charged according to the expected power parameter 60kw corresponding to the expected charging time of the object to be charged 3 (that is, the first power parameter of the object to be charged 3 ).
  • the control module assigns the charging terminal 3 (or the output terminal 3 ) to the object 2 to be charged.
  • the control module can control the guide module to display the position of the charging terminal 3 so that the object 3 to be charged can reach the position of the charging terminal 3 .
  • the charging terminal 3 can obtain the actual charging power of the object to be charged 3 when charging (that is, the second power parameter of the object to be charged 2 ), and send the actual charging power of the object to be charged 3 to the control module.
  • the charging terminal 3 acquires that the actual charging power of the object 3 to be charged is 60kw. Since the remaining power of the DC-to-DC module 1 is 60kw, the control module can control the second energy supply unit B1 of the DC-to-DC module 1 to output 60kw of electric energy to the second power sharing bus.
  • the charging system may include a DC-to-DC module.
  • the current-to-DC module can be integrated with the AC-to-DC module.
  • the integrated module is marked as a power supply module, and the power supply module may include a first power supply unit A1 and a first and second power supply unit B1.
  • the rated power of the power supply module in the charging system may be 40kw or 60kw, and 40kw is used as an example in the embodiment of the present application.
  • the power module includes a first power supply unit A1, a second power supply unit B1, and a first switch unit coupled to the second power supply unit B1.
  • the output power range of the first energy supply unit is 0-20kw.
  • the output power range of the second energy supply unit is 0-40kw.
  • the first power sharing bus is coupled to one first output terminal
  • the second power sharing bus is coupled to one second output terminal.
  • the first output terminal and the second output terminal of the charging system are respectively coupled to the charging terminal.
  • the first output end is coupled to the first power sharing bus
  • the second output end is coupled to the second power sharing bus.
  • the first output terminal and the second output terminal are numbered together, and are recorded as output terminals 1 and 2 respectively.
  • the output terminal 1 is the first output terminal, which is coupled to the first power sharing bus.
  • the output terminal 2 is the second output terminal, coupled with the second power sharing bus.
  • the charging terminals coupled with the charging system are denoted as charging terminals 1 and 2 respectively.
  • the charging terminals 1 and 2 are coupled to the output terminals 1 and 2 respectively.
  • the second energy supply unit can be used for sharing the remaining power of the power supply module.
  • the remaining power of the power module can be shared with the charging terminal 1 through the first power sharing bus. Through the second power sharing bus, the remaining power of the power supply module can be shared with the charging terminal 2 .
  • the control module of the charging system may store a corresponding relationship between expected charging duration and expected input power.
  • Expected charging time can be 0.5 hours, 2 hours, 4 hours and 8 hours.
  • the expected input power corresponding to 8 hours is 5kw.
  • the expected input power corresponding to 4 hours is 10kw.
  • the expected input power corresponding to 2 hours is 20kw.
  • the expected input power corresponding to 0.5 hours is 60kw.
  • the charging system can provide charging services for multiple objects to be charged
  • the multiple objects to be charged can be respectively recorded as object 1 to be charged, object 2 to be charged, etc.
  • the object 1 to be charged can initiate a charging request 1 to the control module of the charging system through an application program or a small program.
  • the charging request can carry the expected charging duration 1.
  • the expected charging duration 1 of the object to be charged 1 is 4 hours.
  • the control module can allocate a charging terminal capable of providing 10kw power to the object to be charged according to the expected power parameter 10kw corresponding to the expected charging time of the object to be charged 1 (that is, the first power parameter of the object to be charged 1).
  • the control module assigns the charging terminal 1 (or the output terminal 1 ) to the object 1 to be charged.
  • the control module can control the guide module to display the position of the charging terminal 1 , so that the object 1 to be charged can reach the position of the charging terminal 1 .
  • the charging terminal 1 can obtain the actual charging power of the object to be charged 1 when charging (that is, the second power parameter of the object to be charged 1 ), and send the actual charging power of the object to be charged 1 to the control module. Assume that the actual charging power of the charging object 1 obtained by the charging terminal 1 is 10kw. According to the second power parameter of the object to be charged 1 is less than or equal to the preset power parameter threshold (that is, the maximum power that the first energy supply unit can output electric energy is 20kw), and the remaining power of the power supply module, the control module can charge the object to be charged. Distribution output (or charging terminal).
  • the remaining power of the DC-to-DC module 1 is 60kw, and the power module includes an idle first energy supply unit A1.
  • the control module can control the first energy supply unit A1 in the power supply module to output electric energy to the first power sharing bus, and the output electric energy is 10kw.
  • the controller can control the contactor between the charging terminal 1 and the output terminal 1 to be in a conducting state. At this point, the remaining power of the power module is 50kw.
  • the object 2 to be charged can initiate a charging request 2 to the control module of the charging system through an application program or a small program.
  • the charging request can carry the expected charging duration 2.
  • the expected charging duration 2 of the object to be charged 2 is 2 hours.
  • the control module can assign a charging terminal capable of providing 20kw power to the object to be charged 2 according to the expected power parameter 20kw corresponding to the expected charging time of the object to be charged 2 (that is, the first power parameter of the object to be charged 2 ).
  • the control module assigns the charging terminal 2 (or the output terminal 2 ) to the object 2 to be charged.
  • the control module can control the guide module to display the location of the charging terminal 2 so that the object 2 to be charged can reach the location of the charging terminal 2 .
  • the charging terminal 2 can obtain the actual charging power of the object to be charged 2 when charging (that is, the second power parameter of the object to be charged 2 ), and send the actual charging power of the object to be charged 2 to the control module.
  • the actual charging power of the charging object 2 obtained by the charging terminal 2 is 20kw.
  • the preset power parameter threshold that is, the maximum power of the first energy supply unit can output electric energy 20kw
  • the remaining power of the power module is 50kw
  • the power module includes an idle second power supply unit B1.
  • the control module can control the second energy supply unit B1 to output electric energy to the first power sharing bus, and the output electric energy power is 20kw.
  • the controller can control the contactor between the charging terminal 2 and the output terminal 2 to be in a conducting state. At this time, the remaining power of the DC-to-DC module 1 is 30kw.
  • the object 3 to be charged can initiate a charging request 3 to the control module of the charging system through an application program or a small program.
  • the charging request can carry the expected charging duration3.
  • the expected charging duration 3 of the object to be charged 3 is 0.5 hours.
  • the control module can assign a charging terminal capable of providing 40kw power to the object 3 to be charged according to the expected power parameter 40kw corresponding to the expected charging time of the object to be charged 3 (that is, the first power parameter of the object to be charged 3 ).
  • the control module assigns the charging terminal 2 (or the output terminal 2 ) to the object 3 to be charged.
  • the control module can control the guide module to display the location of the charging terminal 2 so that the object 3 to be charged can reach the location of the charging terminal 2 .
  • the charging terminal 2 can obtain the actual charging power of the object to be charged 3 when charging (that is, the second power parameter of the object to be charged 3 ), and send the actual charging power of the object to be charged 3 to the control module.
  • the actual charging power of the charging object 3 obtained by the charging terminal 2 is 40kw. Since the remaining power of the power supply module is 40kw, the control module can control the second energy supply unit B1 to output 40kw of electric energy to the second power sharing bus.
  • the present application also provides a charging station (or called a charging platform, a charging super system, etc.), which may include one or more charging systems provided by any of the above embodiments.
  • the charging station may include a charging system, and the charging system may be the charging system provided in any one of the foregoing embodiments.
  • the working process of the charging system please refer to the foregoing embodiments, and details will not be repeated here.
  • the charging station may include multiple charging systems, and the structure of each charging system may refer to the charging system provided in any one of the foregoing embodiments, which will not be repeated here.
  • the control modules of the charging systems in the charging station are connected by communication, and can exchange data, messages or instructions.
  • the charging station may include a charging system 1 , a charging system 2 , a charging system 3 , a charging system 4 , . . . , a charging system q.
  • q can be a positive integer. That is, a charging station may include one or more charging systems.
  • the control modules in each charging system can be communicatively connected through a switch.
  • the locations of the charging systems may be different, for example, the charging systems are distributed in different communities or parks.
  • the control module of one charging system among the multiple charging systems can be used as the main control module.
  • the control module 1 can communicate with control modules in other charging systems through a switch.
  • the control module 1 in the charging system 1 can determine its own remaining power information (remaining available capacity), and obtain remaining power information of other charging systems, and/or remaining power of each DC-to-DC module in each charging system.
  • the control module 1 can exchange information with other control modules.
  • the control module 1 can also obtain the remaining power of each DC-to-DC module, the output power of each first energy supply unit, and the output power of each second energy supply unit.
  • the control module 1 can instruct the control modules of other charging systems to control the DC-to-DC modules of the corresponding charging systems through the control modules of other charging systems to exchange data, messages, instructions, etc., so as to control the output power of other charging systems.
  • the control module 1 in the charging system 1 can also receive charging requests from objects to be charged, or charging requests sent by electronic devices.
  • the control module 1 can be based on the first charging parameter carried in the charging request, and the first charging parameter can represent the expected charging time of the object to be charged.
  • the control module 1 can determine the expected power parameter corresponding to the first charging parameter according to the preset corresponding relationship between the expected charging duration and the expected power parameter, that is, determine the first power parameter, so that the control module 1 can obtain the first power parameter.
  • the control module 1 can allocate output terminals for objects to be charged according to the remaining power of each charging system. For example, the control module 1 allocates the charging system whose remaining power is greater than or equal to the first power parameter to the object to be charged, for example, the remaining power of the charging system m is greater than or equal to the first power parameter, and the control module 1 allocates the charging system m to the object to be charged system.
  • the control module 1 may notify the control module m to make the control module m assign an output terminal to the object to be charged.
  • the control module m can use the charging system in the foregoing embodiments to assign some or all of the operations of the output terminal to the object to be charged, assign the output terminal to the object to be charged, and control the DC-to-DC module in the charging system m.
  • the object to be charged is charged.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • a computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, special purpose computer, a network of computers, or other programmable devices.
  • Computer instructions can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, computer instructions can be sent from a website site, computer, server or data center by wire (such as Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.
  • the embodiment of the present application also provides a readable storage medium for storing the method or algorithm provided in the foregoing embodiments.
  • a readable storage medium for storing the method or algorithm provided in the foregoing embodiments.
  • random access memory random access memory
  • flash memory read only memory
  • EPROM memory EPROM memory
  • non-volatile read-only memory Electrical Programmable ROM, EPROM
  • registers hard disk, programmable Removable disk or any other storage medium in this field.
  • the steps of the methods or algorithms described in the embodiments of this application can be directly embedded in the control module.
  • the control module may include RAM memory, flash memory, ROM memory, EPROM memory, registers, hard disk, removable disk or other storage media in any form in the art, for storing the steps of the methods or algorithms provided by the embodiments of the present application.
  • the storage medium can be connected to the control module or the processor (or controller), so that the control module or the processor (or controller) can read information from the storage medium, and can write information to the storage medium.
  • the storage medium can also be integrated into the control module, processor (or controller).

Abstract

本申请提供一种充电系统、充电站、供电方法及计算机可读存储介质,用以提升充电效率,避免资源浪费。充电系统包括一个或多个直流转直流模块,第一功率共享母线,第二功率共享母线,至少一个第一输出端以及至少一个第二输出端;其中,直流转直流模块中包括至少一个第一供能单元和至少一个第二供能单元;第一供能单元与第一功率共享母线耦合;第二供能单元与第一功率共享母线耦合以及与第二功率共享母线耦合;第一输出端与第一功率共享母线耦合;第二输出端与第二功率共享母线耦合;其中,第一输出端的最大输出功率与第二输出端的最大输出功率不同。

Description

一种充电系统、充电站、供电方法及计算机可读存储介质
相关申请的交叉引用
本申请要求在2021年12月17日提交中华人民共和国知识产权局、申请号为202111553216.7、申请名称为“一种充电系统、充电站、供电方法及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及充电技术领域,尤其涉及一种充电系统、充电站、供电方法及计算机可读存储介质。
背景技术
随着新能源车辆(或新能源充电车辆)普及,新能源车辆的充电需求日益增加。新能源车辆连接充电桩进行充电,经过一些时间后动力电池充满,充电桩停止为该新能源车辆供电。如果新能源车辆的动力电池在充满后仍继续连接充电桩,也即占用充电桩,造成充电桩资源浪费。为满足其它新能源车辆的充电需求,需要充电站中增设更多的充电桩,这将造成充电站的运营成本较高。充电桩将车辆的动力电池充满后仍被占用,无法为其它有充电需求的新能源车辆充电,导致充电桩使用率低,浪费该充电桩充电资源,降低充电桩充电效率,以及降低充电站的充电效率。
发明内容
本申请提供一种充电系统、充电站、供电方法及计算机可读存储介质,用以提升充电效率,避免资源浪费。
第一方面,本申请实施例提供一种充电系统,包括一个或多个直流转直流模块,第一功率共享母线,第二功率共享母线,至少一个第一输出端以及至少一个第二输出端;其中,所述直流转直流模块中包括:至少一个第一供能单元和至少一个第二供能单元;所述第一供能单元与所述第一功率共享母线耦合,用于向所述第一功率共享母线输出直流电能;所述第二供能单元与所述第一功率共享母线耦合以及与所述第二功率共享母线耦合,用于向所述第一功率共享母线或所述第二功率共享母线输出直流电能;所述第一输出端与所述第一功率共享母线耦合,用于将所述第一功率共享母线上的直流电能传输至耦合的充电装置;所述第二输出端与所述第二功率共享母线耦合,用于将所述第二功率共享母线上的直流电能传输至耦合的充电装置;其中,所述第一输出端的最大输出功率与所述第二输出端的最大输出功率不同。
本申请实施例提供的充电系统中,各直流转直流模块的第一供能单元可以向第一功率共享母线输出电能,第二供能单元可以向灵活地向第一功率共享母线或者第二功率共享母线输出电能,实现直流转直流模块灵活地向第一功率共享母线或者第二功率共享母线提供电能。充电系统的任一个第一输出端从第一功率共享母线获取电能,任一个第二输出端可以从第二功率共享母线获取电能。第一功率共享母线上的电能可以来自任意直流转直流模 块,第二功率共享母线上的电能也可以来自任意直流转直流模块。这样的设计中,一个第一输出端被长时间占用,不影响直流转直流模块向第一功率共享母线或者第二功率共享母线输出电能,直流转直流模块输出的电能,可以通过第一功率共享母线或者第二功率共享母线灵活地被其它输出端获取,可以提高充电效率,充分利用每个直流转直流模块输出电能的能力,避免资源浪费。
一种可能的设计中,所述第一输出端的最大输出功率小于所述第二输出端的最大输出功率。本申请实施例中,第一输出端和第二输出端可以分别对充电功率等级不同的待充电对象进行充电。便于采用低功率充电需求的待充电对象可以通过第一输出端充电。高功率充电需求的待充电对象可以通过第二输出端充电。
一种可能的设计中,所述第二供能单元的最大输出功率与所述直流转直流模块的最大输出功率相同。本申请实施例中,直流转直流模块中的第二供能单元输出功率范围与所属直流转直流模块的输出功率范围相同,第二供能单元可以灵活地将直流转直流模块剩余功率输出至第一功率共享母线或者第二功率共享母线,便于第一输出端或者第二输出端获得电能对待充电对象充电。可见这样的设计可以充分利用每个直流转直流模块输出功率的能力。
一种可能的设计中,所述第一供能单元的最大输出功率,小于所属的直流转直流模块最大输出功率。这样的设计,可以使直流转直流模块兼容低输出功率的供能单元。
一种可能的设计中,所述第二供能单元的最大输出功率大于所述第一供能单元的最大输出功率。可见本申请实施例提供的充电系统中,直流转直流模块所包括的第一供能单元和第二供能单元可以为输出功率能力不同的供能单元,提高充电系统兼容性。
一种可能的设计中,所述至少一个第一输出端的数量,与所述一个或多个直流转直流模块中全部的第一供能单元的数量相同;所述至少一个第二输出端的数量,与所述一个或多个直流转直流模块中全部的第二供能单元的数量相同。这样的设计中,充电系统中增设第一供能单元和第一输出端、第二供能单元和第二输出端,可以便于为更多的待充电对象服务,相比于现有增设充电桩来说,增设第一供能单元和第一输出端、第二供能单元和第二输出端具有更低的成本。
一种可能的设计中,每个第一输出端的最大输出功率相同;和/或,每个所述第二输出端的最大输出功率相同。这样的设计便于为待充电对象分配用于充电的输出端。
一种可能的设计中,所述直流转直流模块还包括至少一个第一开关单元,其中,所述至少一个第一开关单元与所述直流转直流模块中包括的至少一个第二供能单元一一对应;所述第二供能单元耦合至对应的第一开关单元;所述第一开关单元分别与所述第一功率共享母线以及与所述第二功率共享母线耦合;其中,所述第一开关单元用于将所述第一开关单元对应的第二供能单元输出的直流电能传输至所述第一功率共享母线或者所述第二功率共享母线。本申请实施例中,通过控制第一开关单元实现第二供能单元输出的电能,传输至第一功率共享母线或者第二功率共享母线。
一种可能的设计中,充电系统还可以包括交流转直流模块;所述交流转直流模块用于将交流电源提供的交流电能转化为直流电能后,向所述直流转直流模块提供直流电能。本申请实施例中,充电系统可以接收交流电能,例如电网等。
一种可能的设计中,所述交流转直流模块向所述直流转直流模块输出的电压小于或等于1000伏特。本申请实施例中,交流转直流模块输出电压可以小于或等于1000伏特,实 现充电系统可以应用于小功率充电场景。
一种可能的设计中,所述第一供能单元输出电压的最大值小于或等于1000伏特;和/或,所述第二供能单元输出电压的最大值小于或等于1000伏特。
一种可能的设计中,所述第一供能单元输出电压的最小值大于或等于150伏特;和/或,所述第二供能单元输出电压的最小值大于或等于150伏特。
一种可能的设计中,所述第一输出端能够向耦合的充电装置提供的直流电能的最大功率为20千瓦。
一种可能的设计中,充电系统还包括控制模块;所述直流转直流模块还包括控制单元;所述直流转直流模块中的控制单元与所述第一供能单元耦合,以及与所述第二供能单元耦合;所述控制模块与所述控制单元通信连接,用于控制所述控制单元调整所述直流转直流模块向所述第一功率共享母线输出的直流电能,和/或,调整向所述第二功率共享母线输出的直流电能。
第二方面,本申请实施例提供一种充电站,可以包括如第一方面及其设计中的任一所述的充电系统,以及多个充电装置。所述多个充电装置中,任一充电装置耦合至一个所述充电系统的第一输出端或者第二输出端;所述任一充电装置与待充电对象耦合,用于将所述任一充电装置耦合的充电系统提供的直流电能传输至所述待充电对象。
第三方面,本申请实施例提供一种供电方法,可以应用于第一方面及其设计中的任一所述的充电系统。供电方法可以由充电系统的控制模块执行或实施。控制模块可以获取第一功率参数,所述第一功率参数为待充电对象进行充电时的期望输入功率;在所述充电系统的至少一个第一输出端和至少一个第二输出端中,为所述待充电对象分配目标输出端,其中,所述目标输出端的最大输出功率大于或等于所述第一功率参数。本申请实施例中,充电系统的第一输出端的最大输出功率和第二输出端的最大输出功率不同。控制模块可以根据待充电对象的期望输入功率为待充电对象分配匹配的输出端。
一种可能的设计中,若所述第一功率参数小于或等于设定的功率参数阈值,且所述至少一个第一输出端中存在空闲的第一输出端,则控制模块为所述待充电对象分配一个空闲的第一输出端;其中,所述功率参数阈值表征所述充电系统中任一直流转直流模块的第一供能单元的最大输出功率;或者若所述第一功率参数大于所述功率参数阈值,且所述至少一个第二输出端中存在空闲的第二输出端,则控制模块为所述待充电对象分配一个空闲的第二输出端;或者,若所述第一功率参数小于或等于所述功率参数阈值,所述至少一个第一输出端中不存在空闲的第一输出端,且所述至少一个第二输出端中存在空闲的第二输出端,则控制模块为所述待充电对象分配一个空闲的第二输出端。
一种可能的设计中,控制模块在为所述待充电对象分配目标输出端之后,可以获取所述待充电对象的第二功率参数,所述第二功率参数与所述待充电对象的实际充电功率相同;以及根据所述第二功率参数,对所述充电系统中的直流转直流模块进行控制。
一种可能的设计中,控制模块为所述待充电对象分配的目标输出端为空闲的第一输出端;控制模块所述根据所述第二功率参数,对所述充电系统中的直流转直流模块进行控制时,可以控制所述充电系统中的第一直流转直流模块向第一功率共享母线输出第一直流电能,所述第一直流电能的功率与所述第二功率参数相同,其中,所述第一直流转直流模块的剩余功率大于或等于所述第二功率参数;或者,控制所述充电系统中的多个第二直流转直流模块分别向所述第一功率共享母线输出直流电能,并且所述多个第二直流转直流模块 输出直流电能的总功率与所述第二功率参数相同,其中,所述多个第二直流转直流模块包括剩余功率小于所述第二功率参数的目标第二直流转直流模块。
一种可能的设计中,控制模块控制所述充电系统中第一直流转直流模块向第一功率共享母线输出第一直流电能时,可以控制所述第一直流转直流模块中空闲的第一供能单元,向所述第一功率共享母线输出所述第一直流电能;控制模块控制所述充电系统中的多个第二直流转直流模块分别向所述第一功率共享母线输出直流电能时,可以控制所述目标第二直流转直流模块中空闲的第一供能单元或者空闲的第二供能单元向所述第一功率共享母线输出第二直流电能,所述第二直流电能的功率与所述目标直流转直流模块的剩余功率相同;以及控制所述多个第二直流转直流模块中除所述目标第二直流转直流模块之外的其它第二直流转直流模块输出第三直流电能,其中所述第三直流电能以及所述第二直流电能的功率总和与所述第二功率参数相同。
一种可能的设计中,为所述待充电对象分配的目标输出端为空闲的第二输出端;控制模块所述根据所述第二功率参数,对所述充电系统中的直流转直流模块进行控制时,可以控制第三直流转直流模块向所述充电系统的第二功率共享母线输出第四直流电能,其中,所述第四直流电能的功率与所述第二功率参数相同,所述第三直流转直流模块的剩余功率大于或等于所述第二功率参数,且所述第三直流转直流模块包括空闲的第二供能单元;或者,控制模块可以控制多个第四直流转直流模块分别向所述第二功率共享母线输出直流电能,其中,所述多个第四直流转直流模块输出直流电能的总功率与所述第二功率参数相同,所述多个第四直流转直流模块中存在剩余功率小于所述第二功率参数的目标第四直流转直流模块,且每个第四直流转直流模块包括空闲的第二供能单元。
第四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,当所述计算机可读存储介质中的计算机指令被执行时,使得第三方面中任一设计所述的方法被执行。
第五方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机指令,当所述计算机指令被执行时,使得第三方面中任一设计所述的方法被执行。
第二方面及第五方面中任一方面中的任一可能设计可以达到的技术效果,请参照上述第一方面中的任一可能设计可以达到的技术效果,这里不再重复赘述。
附图说明
图1为充电桩为车辆充电场景示意图;
图2为本申请实施例提供的一种充电系统的结构示意图;
图3为本申请实施例提供的另一种充电系统的结构示意图;
图4为本申请实施例提供的充电系统的控制模块与直流转直流模块以及充电装置的连接关系示意图;
图5为本申请实施例提供的充电系统中交流转直流模块的结构示意图;
图6为本申请实施例提供的充电系统的控制模块与待充电对象或电子设备交互示意图;
图7为本申请实施例提供的充电系统为待充电对象充电的场景示意图;
图8为本申请实施例提供的充电系统为待充电对象充电的场景示意图;
图9为本申请实施例提供的充电系统为待充电对象充电的场景示意图;
图10为本申请实施例提供的充电站的结构示意图。
具体实施方式
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其它一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其它方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其它方式另外特别强调。
在本说明书中描述的第一对象与第二对象“一一对应”,或者第一对象与第二对象“具有一一对应关系”意味着一个第一对象仅对应一个第二对象,并且一个第二对象仅对应一个第一对象。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。为了方便理解本申请实施例提供的充电系统的优点,下面首先介绍一下其应用场景。
目前,越来越多的用户使用新能源充电车辆,对于充电桩的需求逐渐增大。请参见图1,通常,新能源充电车辆可以通过充电站提供的充电桩进行充电。一般充电站中安装有多个充电桩,便于同时容纳多个新能源充电车辆充电。如图1所示,充电桩集成有电源模块,并配置有充电枪,电源模块将交流电转换为直流电后通过充电枪输出。新能源充电车辆可以连接一个充电枪,并通过充电枪获得电能。充电桩为新能源充电车辆充电一段时间后,可完成充电。因此,需要新能源充电车辆停留在充电桩一段时间,也即占用充电桩一段时间。车辆占用充电桩的时长可以由车辆的用户设置。用户根据自身需求期望将车辆停入充电桩对应的车位进行充电的时长,便于介绍,本申请实施例将该时长记为车辆的期望充电时长。在车辆充电过程中,用户可以不在车辆中进行等待。
例如,车辆A的期望充电时长为2小时。车辆A占用充电桩2小时后,用户会将车辆A驾驶离开充电桩,释放该充电桩。但充电桩输出的功率可使车辆A在1小时内完成充电,而车辆A却占用充电桩2小时,导致充电桩在对车辆A完成充电后的1个小时无法为其它车辆充电,造成充电资源浪费。
又例如,车辆B的期望充电时长需求为4小时。车辆B的充电时长需求为4小时。车辆B占用充电桩4小时后,用户会将车辆B驾驶离开充电桩,释放该充电桩。而充电桩输出的功率可使车辆B在2小时内完成充电,而车辆B却占用充电桩4小时,导致充电桩在对车辆B完成充电后的2个小时无法为其它车辆充电,造成充电资源浪费。
现有充电站中的每个充电桩输出功率能力相同。假设,充电站中设置有不同输出功率能力的充电桩,具有低功率输出能力的充电桩为期望充电时长较大的车辆进行充电,具有高功率输出能够的充电桩为期望充电时长较小的车辆进行充电。这样的设计,可能减少充电桩资源浪费的情况,但在实际应用场景中,充电站就要增设不同功率等级的充电桩,部 署城边较高。并且充电站中的充电桩与车辆之间具有一一对应的关系,充电资源调动灵活性较差。为提升充电效率以及充电资源调动灵活性,本申请提供一种充电系统,可以应用于充电站。请参见图2,本申请提供的充电系统可以包括:一个或多个直流转直流模块,第一功率共享母线,第二功率共享母线,至少一个第一输出端以及至少一个第二输出端。
例如,充电系统可以包括n个直流转直流模块,n可以为正整数。充电系统中的n个直流转直流模块可以分别记为直流转直流模块M1至直流转直流模块Mn。如图3所示,n可以等于4,也即充电系统可以包括4个直流转直流模块,可以分别记为直流转直流模块M1、直流转直流模块M2、直流转直流模块M3、直流转直流模块M4。
图2或图3中示出充电系统包括多个直流转直流模块的情形,并不意味着充电系统必须包括多个直流转直流模块。在一些示例中,充电系统可以仅包括一个直流转直流模块。本申请实施例提供的附图示出的直流转直流模块中的数量仅用于举例说明充电系统的工作过程,并不作为对充电系统中直流转直流模块数量的具体限定。
充电系统中的任意两个直流转直流模块可以具有相同或者相似的结构,与第一功率共享母线耦合的方式相同或者相似,以及与第二功率共享母线耦合的方式相同更或者相似。下面对直流转直流模块的结构或者功能进行介绍。
任意一个直流转直流模块可以分别与第一功率共享母线和第二功率共享母线耦合。任意一个直流转直流模块可以包括至少一个第一供能单元和至少一个第二供能单元。每个第一供能单元可以分别与第一功率共享母线耦合。每个第二供能单元可以分别与第一功率共享母线和第二功率共享母线耦合。
如图3所示,以直流转直流模块M1为例,直流转直流模块M1可以包括两个第一供能单元,分别记为第一供能单元A1和第一供能单元A2。直流转直流模块M1还包括第二供能单元,记为第二供能单元B1。其中第一供能单元A1和第一供能单元A2均与第一功率共享母线耦合。第二供能单元B1分别与第一功率共享母线和第二功率共享母线耦合。应理解的是,本申请实施例中各附图所示出各直流转直流模块中第一供能单元的数量,第二供能单元的数量仅用于举例介绍本申请实施例提供的直流转直流模块的结构及功能,并不作为具体数量的限定。
一种可能的实施方式中,每个直流转直流模块中还可以包括电能处理单元。电能处理单元可以包括电感电感电容(LLC)电路。电能处理单元具有可以开关频率控制处理能力,或者具有软开关调节能力。电能处理单元可以对前级模块提供的直流电的电压频率进行处理,或者对谐波进行处理,提高电能质量,然后将处理后的电能提供给各第一供能单元和第二供能单元。本申请实施例对电能处理单元的能力或者功能不作过多限定。
请再参见图2,各直流转直流模块还可以包括至少一个第一开关单元。第一开关单元的数量可以与所属直流转直流模块中包括的第二供能单元的数量相同,并具有一一对应关系。也即一个第二供能单元对应第一开关单元,并且一个第一开关单元对应一个第二供能单元。第二供能单元可以通过对应的第一开关单元分别与第一功率共享母线和第二功率共享母线耦合。
请参见图2,第一开关单元可以具有选通能力,可以将对应的第二供能单元的输出端与第一功率共享母线连通,使对应的第二供能单元输出的电能传输到第一功率共享母线上。或者,第一开关单元可以将对应的第二供能单元的输出端与第一功率共享母线连通,使对应的第二供能单元输出的电能传输到第二功率共享母线上。在一些示例中,第一开关单元 可以包括一个或多个开关,例如继电器开关(简称为继电开关)。图2示例性示出第一开关单元的结构,第一开关单元可以包括多个继电开关,如继电开关k1和继电开关k2。其中,继电开关k1耦合在第二供能单元与第一功率共享母线之间,继电开关k1启动或者开启,可以将第二供能单元输出的电能传输至第一功率共享母线上。继电开关k2耦合在第二供能单元与第二功率共享母线之间,继电开关k2和启动或者开启可以将第二供能单元输出的电能传输至第二功率共享母线上。通常,第一开关单元中的多个继电开关中同一时刻最多有一个继电开关启动或者开启。
充电系统中的每个第一输出端与第一功率共享母线耦合,以及与充电装置耦合。每个第一输出端可以用于从第一功率共享母线获取功率并提供给耦合的充电装置。一些示例中,如图2所示,第一输出端可以通过接触器(或者开关)与充电装置耦合。接触器处于导通状态时,第一输出端与充电装置之间连通,接触器处于断路状态时,第一输出端与充电装置之间断路。
充电系统中的每个第二输出端与第二功率共享母线耦合,以及与充电装置耦合。每个第二输出端可以用于从第二功率共享母线获取功率并提供给耦合的充电装置。在一些示例中,如图2所示,第二输出端可以通过接触器(或者开关)与充电装置耦合。接触器处于导通状态时,第二输出端与充电装置之间连通,接触器处于断路状态时,第二输出端与充电装置之间断路。上述各充电装置可以耦合一个待充电对象。
通过上述介绍,可见充电系统中,直流转直流模块的第一供能单元仅与第一功率共享母线耦合,第一供能单元仅可以向第一功率共享母线耦合。第二供能单元不仅与第一功率共享母线耦合,还可以与第二功率共享母线耦合,第二供能单元可以向第一功率共享母线提供电能或者向第二功率共享母线提供电能。
本申请实施例中,第一功率共享母线可以获得多个直流转直流模块中第一供能单元提供的电能,也可以获得第二供能单元提供的电能。充电系统的第一输出端可以从第一功率共享母线上获取电能,并提供给耦合的充电装置(如充电终端或者充电枪)。
相比于现有充电桩与待充电汽车一一对应的关系,本申请提供的充电系统中,直流转直流模块与待充电汽车不存在一一对应关系。请参见图3,直流转直流模块M1中的第一供能单元A1向第一功率共享母线输出电能,第一输出端1和第一输出端2等第一输出端可以分别从第一功率共享母线上获取电能。又例如,直流转直流模块M1中的第一供能单元A1和直流转直流模块M2中的第二供能单元B1分别向第一功率共享母线输出电能,第一输出端1可以从第一功率共享母线上获取电能。可见,第一功率共享母线可以获得一个或多个直流转直流模块提供的电能。类似地,第二功率共享母线可以获得多个直流转直流模块中第二供能单元提供的电能。充电系统中任意一个直流转直流模块均可以向第一功率共享母线输出电能,与第一功率共享母线耦合的任意一个第一输出端均可以从第一功率共享母线上获取电能。可见本申请实施例提供的充电系统中第一输出端与直流转直流模块之间可以不存在一一对应关系,可使充电系统中的功率分配更为灵活。
在一些场景中,第一功率共享母线和第二功率共享母线可以分别用于提供不同功率等级。例如,第一功率共享母线耦合的第一输出端可以提供小功率的电能,使第一输出端耦合的充电装置可以向待充电对象提供小功率电能。第二功率共享母线耦合的第二输出端可以提供大功率的电能,使第二输出端耦合的充电装置可以向待充电对象提供大功率电能。
在一些场景中,充电系统中的每个直流转直流模块中的第一供能单元的规格、结构、 制式、或者最大输出功率可以是相同的。在一些场景中,充电系统中,不同直流转直流模块中的第一供能单元的规格、结构、制式、或者最大输出功率可以不同。或者同一直流转直流模块中的第一供能单元的规格、结构、制式、或者最大输出功率可以不同。本申请对此不作过多限定。
类似地,在一些场景中,充电系统中的每个直流转直流模块中的第二供能单元的规格、结构、制式、或者最大输出功率可以是相同的。在一些场景中,充电系统中,不同直流转直流模块中的第二供能单元的规格、结构、制式、或者最大输出功率可以不同。或者同一直流转直流模块中的第二供能单元的规格、结构、制式、或者最大输出功率可以不同。本申请对此不作过多限定。
类似地,在一些场景中,充电系统中的每个第一输出端的规格、结构、制式、或者最大输出功率可以是相同的。在一些场景中,充电系统中,不同第一输出端的规格、结构、制式、或者最大输出功率可以不同。
在一些场景中,充电系统中的每个第二输出端的规格、结构、制式、或者最大输出功率可以是相同的。在一些场景中,充电系统中,不同第二输出端中的规格、结构、制式、或者最大输出功率可以不同。
一种可能的实施方式中,充电系统中可以存在多种直流转直流模块的规格(规制或者结构)不同的直流转直流模块。例如,第一直流转直流模块可以包括一个第一供能单元和一个第二供能单元。第二直流转直流模块可以包括两个第一供能单元和一个第二供能单元。每个直流转直流模块中第一供能单元的数量以及第二供能单元的数量可以根据实际应用场景进行设置。本申请实施例对此不作过多限定。
另一种可能的实施方式中,为便于对充电系统进行功率调度或者功率分配,每个直流转直流模块可以为相同规格(规制或者结构)的直流转直流模块。例如,每个直流转直流模块中的第一供能单元的数量可以相同,各第一供能单元能够输出电能的最大功率相同。以及每个直流转直流模块中第二供能单元的数量可以相同,各第二供能单元能够输出电能的最大功率相同。每个直流转直流模块的额定功率相同。直流转直流模块的额定功率可以理解为直流转直流模块能够输出的最大功率。
一个示例中,任一直流转直流模块中的第一供能单元能够输出电能的最大功率可以小于第一供能单元所属的直流转直流模块的额定功率。如图3所示,直流转直流模块M1中第一供能单元A1能够输出电能的最大功率小于直流转直流模块M1的额定功率。又例如,直流转直流模块M2中的第一供能单元A1能够输出电能的最大功率可以小于直流转直流模块M2的额定功率。
一种可能的设计中,任一直流转直流模块中的第二供能单元能够输出电能的最大功率可以为第二供能单元所属直流转直流模块的额定功率。如图3所示,直流转直流模块M1中第二供能单元B1能够输出电能的最大功率可以为直流转直流模块M1的额定功率。又例如,直流转直流模块M2中的第二供能单元B1能够输出电能的最大功率可以为直流转直流模块M2的额定功率。
又一种可能的设计中,任一直流转直流模块中的第二供能单元能够输出电能的最大功率可以为第二供能单元所属直流转直流模块的额定功率。并且任一直流转换模块中的第一供能单元能够输出电能的最大功率小于第一供能单元所属直流转直流模块的额定功率。因而,任一直流转直流模块中,第二供能单元能够输出电能的最大功率大于第一供能单元能 够输出电能的最大功率。
通常,供能单元可以支持输出一定功率范围内的电能。例如,第一供能单元可以支持输出0~P1范围内的电能,该功率范围内的最大功率为P1,也是第一供能单元能够输出电能的最大功率。又例如,第二供能单元可以支持输出0~P2范围内的电能,该功率范围内的最大功率为P2,也是第二供能单元能够输出电能的最大功率,并且P2大于P1。
在上述实施例中,第二供能单元能够输出电能的最大功率可以为第二供能单元所属直流转直流模块的额定功率。第二供能单元能够提供的功率范围较大,或者说第二供能单元可以支持输出不同功率等级。例如,第二供能单元可以向第二功率共享母线输出较大功率,使与第二功率共享母线耦合的第二输出端可以向待充电对象提供较大的充电功率,可实现充电系统中第一功率共享母线和第二功率共享母线分别提供不同等级的功率。并且任意一个直流转直流模块输出功率可以灵活地分配到第一功率共享母线和/或第二功率共享母线上,可以提升直流转直流模块的利用率,提升充电系统的充电效率。
此外,第二供能单元能够输出电能的最大功率等于第二供能单元所属直流转直流模块的额定功率。并且可以向第一功率共享母线或者向第二功率共享母线输出功率。可使第二供能单元向第一功率共享母线或者第二功率共享母线输出第二供能单元所属直流转直流模块的剩余功率(待输出功率或者未输出功率)。
例如,请再参见图3,假设直流转直流模块M1的额定功率为60kw,各第一供能单元的最大输出功率为20kw,各第二供能单元的最大输出功率为60kw。直流转直流模块M1当前已输出功率为40kw,其中,直流转直流模块M1的第一供能单元A1已经输出的功率为20kw,第一供能单元A2已经输出的功率为20kw。直流转直流模块M1的剩余功率等于额定功率(60kw)与已经输出功率(20kw+20kw)的差值,也即20kw。那么直流转直流模块M1的第二供能单元B1可以向第一功率共享母线或者第二功率共享母线输出20kw,实现直流转直流模块M1的剩余功率被利用,使得直流转直流模块M1的利用率极大提升。
又例如,请再参见图3,直流转直流模块M2的额定功率为60kw,各第一供能单元的最大输出功率为20kw,各第二供能单元的最大输出功率为60kw。直流转直流模块M2已经输出的功率为30kw,其中,直流转直流模块M2的第一供能单元A1已经输出的功率为10kw,第一供能单元A2已经输出的功率为20kw。直流转直流模块M2的剩余功率为额定功率(60kw)与已经输出功率(20kw+10kw)的差值,也即30kw。那么直流转直流模块M2的第二供能单元B1可以向第一功率共享母线或者第二功率共享母线输出30kw,可见直流转直流模块M2的利用率极大提升。
通过上述实施例介绍,可见充电系统中各直流转直流模块的第二供能单元可以具有向第一功率共享母线或者第二功率共享母线输出直流转直流模块的剩余功率,使得各直流转直流模块的剩余功率被充分利用,提升充电系统中直流转直流模块利用率。
本申请实施例提供的充电系统中,直流转直流模块具有多路输出,可以分别向第一功率共享母线或者第二功率共享母线输出功率。第一功率共享母线可以耦合多个第一输出端,第二功率共享母线可以耦合多个第二输出端,第一功率共享母线和第二功率共享母线均可以支持功率共享。这样的设计可降低充电系统功率损耗,并提升直流转直流模块的利用率。每个直流转直流模块可以包括至少一个第一供能单元和至少一个第二供能单元,第一供能单元输出功率范围与可以第二供能单元输出功率范围不同,可实现直流转直流模块可以分级分配功率,以便支持功率需求不同待充电对象的充电。此外充电系统具有较高的兼容性, 可以在第一功率共享母线和第二功率共享母线接入新增直流转直流模块。
一种可能的情形中,例如充电系统可以应用于小功率充电的场景中,充电系统的每个直流转直流模块中的第一供能单元输出电压的最大值可以小于或等于1000伏特,和/或,第一供能单元输出电压的最小值大于或等于150伏特。第二供能单元输出电压的最大值可以小于或等于1000伏特,和/或,第二供能单元输出电压的最小值大于或等于150伏特。在一些可能的场景中,充电系统的各第一输出端可以向耦合的充电装置提供直流电能的最大功率为20千瓦。
基于上述任意一种实施例提供的充电系统,充电系统还可以包括控制模块,控制模块可以与各直流转直流模块通信连接。控制模块可以对各直流转直流模块进行控制。如图2所示,充电系统中,控制模块可以向各直流转直流模块发送消息、数据、指令等,便于直流转直流模块按照接收的消息、数据或者指令,调整输出功率。本申请实施例中,通信连接可以包括但不限于如下通信方式,基于总线技术的通信方式、基于移动通信技术的通信方式、基于无线局域网技术的通信方式或者基于蓝牙技术的通信方式。在一些场景中,控制模块和各直流转直流模块可以在同一局域网中。
充电系统中的各直流转直流模块还可以包括控制单元。如图4所示,控制单元可以与充电系统中的控制模块通信连接。控制单元可以接收充电系统控制模块发送的消息、数据、指令等,控制单元也可以向控制模块发送消息、数据、指令等。
一种可能的实施方式中,控制单元与各第一供能单元耦合以及与各第二供能单元耦合,可以用于对控制第一供能单元输出电能,也可以控制第一供能单元调整输出电能的功率。控制单元也可以用于控制第二供能单元输出电能,也可以控制第二供能单元调整输出电能的功率,也可以控制直流转直流模块中的第一开关单元,是第一开关单元将对应的第二供能单元输出的电能传输至第一功率共享母线或者第二功率共享母线。
一种可能的设计中,任一直流转直流模块的控制单元可以包括多个控制器,如图4所示,多个控制器分别与直流转直流模块中全部第一供能单元和第二供能单元一一对应。也即,一个控制器仅可以对应一个第一供能单元,或者一个控制器仅可以对应一个第二供能单元。一个第一供能单元仅可以对应一个控制器,一个第二供能单元仅可以对应一个控制器。其中,第一供能单元对应的控制器可以用于采集该第一供能单元的供电参数,如该第一供能单元输出电能的电流和/或电压,该控制器采集的供电参数可以用于确定第一供能单元的已输出功率情况。第一供能单元对应的控制器也可以用于控制该第一供能单元,如控制该第一供能单元输出电能的功率。
第二供能单元对应的控制器可以用于采集该第二供能单元的供电参数,如该第二供能单元输出电能的电流和/或电压,该控制器采集的供电参数可以用于确定第二供能单元的已输出功率情况。第二供能单元对应的控制器也可以用于控制该第二供能单元,如控制该第二供能单元输出电能的功率。第二供能单元对应的控制器还可以对该第二供能单元对应的第一开关单元进行控制,例如控制第一开关单元中的继电开关。
控制模块可以与控制单元中的一个控制器建立通信连接,该控制器记为目标控制器。图4中示出的控制单元中,一个第二供能单元对应的控制器为目标控制器,与控制模块通信连接。控制单元中的目标控制器可以接收其它控制器提供的供电参数,并转发给控制模块,辅助其它控制器向控制模块上报供电参数。应理解的是,目标控制器可以作为控制单元中的主控制器向控制模块上报各第一供能单元的供电参数,以及各第二供能单元的供电 参数。
各直流转直流模块中的控制单元可以向控制模块上报采集的供电参数,便于控制模块根据供电参数,确定各第一供能单元输出的功率情况,以及各第二供能单元输出的功率情况,从而控制模块可以确定(获知或者计算)各直流转直流模块的功率信息,例如,已输出功率和剩余功率(待输出功率)。
控制模块可以预先获取每个直流转直流模块的额定功率,并结合每个控制单元上报的供电参数,确定各直流转直流模块的剩余功率。每个控制单元上报的供电参数可以包括每个第一供能单元的标识及该第一供能单元的供电参数,以及每个第二供能单元的标识及该第二供能单元的供电参数。或者每个控制单元上报的供电参数可以包括已输出功率的第一供能单元的标识及该第一供能单元的供电参数,以及已输出功率的第二供能单元的标识及该第二供能单元的供电参数。控制模块可以根据每个控制单元上报的供电参数,确定各直流转直流模块中各第一供能单元是否输出功率,以及已输出功率的第一供能单元输出的功率。控制模块也可以根据每个控制单元上报的供电参数,确定各第二供能单元是否输出功率的情况,以及已输出功率的第二供能单元输出的功率。
基于上述任意一种实施例提供的充电系统,请继续参见图2,充电系统还可以包括交流转直流模块。控制模块可以与交流转直流模块通信连接,使交流转直流模块按照接收的消息、数据或者指令,调整输出功率。交流转直流模块的输入侧可以与交流电源耦合,例如与交流电网耦合。交流转直流模块的输出侧可以与每个直流转直流模块耦合。交流转直流模块可以将交流电源输出的交流电转换为直流电后,提供给每个直流转直流模块。充电系统还可以包括直流母线,交流转直流模块的输出侧与直流母线耦合,交流转直流模块可以向直流母线输出直流电。每个直流转直流模块的输入侧与直流母线耦合,每个直流转直流模块可以从直流母线上获取直流电。
一种可能的设计中,请参见图5中的(a),交流转直流模块可以包括第一交流转直流电路,第一交流转直流电路可以向直流母线输出直流电能的最大功率可以等于或小于充电系统中全部直流转直流模块的额定功率的总和。另一种可能的设计中,请参见图5中的(b),交流转直流模块可以包括多个第二交流转直流电路,可以分别记为第二交流转直流电路1、第二交流转直流电路2、第二交流转直流电路3等。每个第二交流转直流电路可以向直流母线输出的直流电能的最大功率小于所述第一交流转直流电路可以向直流母线输出直流电能的最大功率。并且,全部第二交流转直流电路可以向直流母线输出的直流电能的最大功率的总功率可以等于或小于充电系统中全部直流转直流模块的额定功率的总和。在一些应用场景中,例如,小功率充电场景中,交流转直流模块输出电压可以小于或等于1000伏特。或者交流转直流模块输出电压可以小于或等于850伏特。交流转直流模块输出电压可以小于或等于820伏特。交流转直流模块输出电压范围可以根据需求进行配置,本申请实施例对此不作过多限定。
基于上述任意一种实施例提供的充电系统,充电系统还可以包括与第一输出端耦合的充电装置,以及与第二输出端耦合的充电装置。如图4所示,控制模块可以与每个充电装置通信连接。其中,图4中示出的虚线表示通信连接关系。充电装置可以为充电终端或者充电枪。充电终端和充电枪均可以与待充电车辆的充电端口配合。
通常充电终端可以包括控制单元、配电通信单元、计量单元等。控制单元可以对配电单元和计量单元进行控制。配电通信单元可以与待充电车辆交互充电参数,并确定适合待 充电车辆的充电功率,传输至充电系统的控制模块,或者说,匹配待充电车辆实际需求功率。计量单元可以确定经由该充电终端向待充电对象提供电能情况,便于统计待充电对象充电的费用。
一种可能的情形中,充电系统的控制模块可以获取待充电对象的期望输入功率(记为第一功率参数),然后为待充电对象分配第一输出端,便于待充电对象与分配的第一输出端耦合的充电装置连接。待充电对象的期望输入功率可以表征待充电对象进行充电时期望的输入功率。
充电装置可以向控制模块上报待充电对象的实际需求功率(记为第二功率参数)。控制模块可以根据待充电对象的第二功率参数,控制充电系统中的直流转直流模块的第一供能单元和/或第二供能单元进行控制,向第一功率共享母线输出电能,为待充电对象分配的第一输出端从第一功率共享母线获取待充电对象的第二功率参数,并对待充电对象进行充电。
另一种可能的情形中,充电系统的控制模块可以获取待充电对象的期望输入功率,然后为待充电对象分配第二输出端,便于待充电对象与分配的第二输出端耦合的充电装置连接。充电装置可以向控制模块上报待充电对象的第二功率参数。控制模块可以根据待充电对象的实际需求功率,控制充电系统中的直流转直流模块的第二供能单元进行控制,向第二功率共享母线输出电能,为待充电对象分配的第二输出端从第二功率共享母线获取待充电对象的实际需求功率,并对待充电对象进行充电。
本申请实施例中,待充电对象可以为电动交通工具,电动交通工具的驱动系统可以采用直流电源供应电力,以便产生用于交通工具推进的牵引力。电动交通工具可以包括但不限于纯电动的交通工具、插电式混合电动交通工具、增程式电动交通工具。这些交通工具可以包括客车、跨界交通工具、多用于交通工具、休闲交通工具、卡车、公共汽车、商用交通工具等。待充电独享还可以包括但不限于呈工业交通工具、农用交通工具、飞机、船只、火车、个人移动设备、机器人和类似地的移动平台,以实现本申请实施例的目的。
请参见图6,控制模块获取待充电对象的期望输入功率可以包括但不限于如下方式:
方式一、控制模块可以与待充电对象通信连接,待充电对象可以向控制模块发送携带第一充电参数的充电请求。第一充电参数可以表征待充电对象期望充电时长。控制模块可以根据预设的期望充电时长与期望输入功率的对应关系,确定第一充电参数对应的期望输入功率,也即确定第一功率参数,从而实现控制模块获取第一功率参数,便于控制模块为一个待充电对象分配第一输出端或者第二输出端。
方式二、控制模块可以与电子设备通信连接,电子设备可以向控制模块发送携带第一充电参数的充电请求。控制模块可以根据预设的期望充电时长与期望输入功率的对应关系,确定第一充电参数对应的期望输入功率,也即确定第一功率参数,从而实现控制模块获取第一功率参数,便于控制模块为一个待充电对象分配第一输出端或者第二输出端。
上述方式二中的电子设备可以为移动终端,个人终端,智能手机,平板电脑等。电子设备可以展示用于选择期望充电时长的目标界面,以便用户在目标界面中选择期望充电时长。目标界面可以包括但不限于应用程序界面或者小程序界面。用户在目标界面中选择期望充电时长后可以触发电子设备向控制模块发送第一充电参数,第一充电参数可以表征用户选择的期望充电时长。在一些场景中,电子设备可以向控制模块发送携带待充电对象标识以及所述第一充电参数的充电请求,便于控制模块为待充电对象标识对应的待充电对象 分配第一输出端或者第二输出端。
控制模块可以将第一功率参数与设置的功率参数阈值进行比较。所述功率参数阈值可以表征充电系统中任一直流转直流模块的第一供能单元能够输出直流电能的最大功率(即第一供能单元的最大输出功率)。便于介绍,本申请实施例中,第一供能单元能够输出直流电能的最大功率,记为第一供能单元的最大输出功率。类似地,第二供能单元能够输出直流电能的最大功率,记为第二供能单元的最大输出功率。直流转直流模块能够输出直流电能的最大功率,记为直流转直流模块的最大输出功率。
在一些场景中,充电系统可以提供不同等级的充电功率。例如,第一输出端可以提供的充电功率小于第二输出端可以提供的充电功率。若待充电对象的第一功率参数大于预设功率参数阈值,可反映待充电对象的期望输入功率为高等级充电功率。若待充电对象的第一功率参数小于或等于预设功率参数阈值,可反映待充电对象的期望输入功率为低等级充电功率。
一些可能的情形中,所述第一功率参数小于或等于所述预设的功率参数阈值,并且所述至少一个第一输出端中存在未被分配的第一输出端(即空闲的第一输出端),控制模块可以从充电系统的全部第一输出端中将一个空闲的第一输出端分配给所述待充电对象。便于介绍,本申请实施例中,未被分配的第一输出端记为空闲的第一输出端。类似地,未被分配的第二输出端记为空闲的第二输出端。直流转直流模块中未输出直流电能的第一供能单元,也即未工作的第一供能单元,记为空闲的第一供能单元。直流转直流模块中,未输出直流电能的第二供能单元,也即未工作的第二供能单元,记为空闲的第二供能单元。
另一些可能的情形中,所述第一功率参数小于或等于所述功率参数阈值,且所述至少一个第一输出端中不存在空闲的第一输出端,也即充电系统中的全部第一输出端中没有空闲的第一输出端,控制模块可以从充电系统中的全部第二输出端中,为待充电对象分配一个空闲的第二输出端。
又一些可能的情形中,所述第一功率参数大于预设的功率参数,控制模块可以从充电系统的全部第二输出端中将一个空闲的第二输出端分配给所述待充电对象。
应理解的是,控制模块将第一输出端(或者第二输出端)分配给待充电对象后,控制模块可以将该第一输出端(或者第二输出端)记为已分配的第一输出端(或者第二输出端)。与已分配的第一输出端耦合(或者第二输出端)的待充电对象完成充电后与该第一输出端断开连接后,控制模块可以将该第一输出端记为空闲的第一输出端(或者第二输出端)。
一种可能的设计中,第一输出端耦合的充电装置(或者第二输出端耦合的充电装置)可以与充电系统的控制模块通信连接,可以向控制模块发起上报用于连接的充电对象进行充电的参数信息,便于控制模块对充电系统中的直流转直流模块进行控制。
该充电装置可以在于充电对象连接后,接收充电对象的充电信息,充电信息可以包括但不限于充电电压、充电电流、电池电荷状态(state of charge,SOC)、期望充电时长等。充电装置可以向控制模块上报充电对象的充电信息,便于控制模块根据充电信息确定充电对象的实际充电功率。或者充电装置可以根据充电对象的充电信息,确定充电对象的实际充电功率,并将实际充电功率上报至控制模块。
可见,控制模块为待充电对象分配的第一输出端或者第二输出端,可记为目标输出端。该目标输出端耦合的充电装置可以接收待充电对象的充电信息,便于确定待充电对象的实际充电功率(或称实际需求功率),本申请实施例中记为待充电对象的第二功率参数。
通过上述介绍,应理解的是,待充电对象的第一功率参数可用于控制模块依据第一功率参数为待充电对象分配输出端。第二功率参数可用于控制模块依据第二功率参数对充电系统中的直流转直流模块进行控制。
一个示例中,控制模块为待充电对象分配的目标输出端为空闲的第一输出端的情形中,控制模块根据待充电对象的第二功率参数,对所述充电系统中的直流转直流模块进行控制时,可以控制充电系统中的第一直流转直流模块向所述充电系统的第一功率共享母线输出第一直流电能。所述第一直流电能的功率与所述第二功率参数相同。其中,所述第一直流转直流模块为剩余功率(第一直流转直流模块的最大输出功率与第一直流转直流模块已经输出功率的差值)大于或等于所述第二功率参数的直流转直流模块。
例如,控制模块可以控制所述第一直流转直流模块中空闲的第一供能单元,向所述第一功率共享母线输出所述第一直流电能。例如,直流转直流模块M2的剩余功率大于或等于所述第二功率参数,控制模块可以控制直流转直流模块M2中空闲的第一供能单元向第一功率共享母线输出功率为所述第二功率参数的直流电能,以便待充电对象通过分配的第一输出端从第一功率共享母线上获取所述第二功率参数的电能。
另一个示例中,控制模块为待充电对象分配的目标输出端为空闲的第一输出端的情形中,控制模块根据待充电对象的第二功率参数,对所述充电系统中的直流转直流模块进行控制时,控制模块可以控制多个直流转直流模块(区别于前述第一直流转直流模块,记为多个第二直流转直流模块)分别向所述第一功率共享母线输出直流电能,并且所述多个第二直流转直流模块输出直流电能的总功率为所述第二功率参数,其中,所述多个第二直流转直流模块可以存在目标第二直流转直流模块,所述目标第二直流转直流模块的剩余功率小于所述第二功率参数。也即,多个第二直流转直流模块可以包括剩余功率小于第二功率参数的直流转直流模块。目标直流转直流模块不能单独满足为待充电对象的充电需求,控制模块可以控制目标直流转直流模块和其它直流转直流模块分别输出直流电能,使目标直流转直流模块和其它直流转直流模块输出直流电能的总功率与所述第二功率参数相同。实现将目标直流转直流模块的剩余功率进行调用,灵活利用目标直流转直流模块的剩余功率,避免目标直流转直流模块的剩余功率浪费。
控制模块可以控制所述目标第二直流转直流模块中空闲的第一供能单元或者空闲的第二供能单元向所述第一功率共享母线输出第二直流电能,所述第二直流电能的功率与所述目标第二直流转直流模块的剩余功率相同。并控制所述多个第二直流转直流模块中其它第二直流转直流模块输出第三直流电能,其中所述第三直流电能与所述第二直流电能的功率总和为所述第二功率参数。可见目标第二直流转直流模块在控制模块的控制下输出全部功率,也即目标第二直流转直流模块输出的全部直流电能为该目标第二直流转直流模块的最大输出功率。
一种可能的设计中,控制模块可以控制多个第二直流转直流模块分别向所述第一功率共享母线输出直流电能,并且所述多个第二直流转直流模块输出直流电能的总功率为所述第二功率参数。其中,每个第二直流转直流模块为前述目标第二直流转直流模块,也即每个第二直流转直流模块的剩余功率可以小于所述第二功率参数。这样的设计中,多个无法单独满足待充电对象充电需求的直流转直流模块的剩余功率被调用,分别输出直流电能的总功率可以满足待充电对象充电需求,可使目标直流转直流模块的剩余功率充分利用,避免剩余功率浪费。
例如,一个目标第二直流转直流模块的剩余功率小于第二功率参数,因此无法单独向第二功率共享母线提供满足待充电对象实际充电功率。而多个目标第二直流转直流模块的剩余功率总和可能大于第二功率参数,将多个目标第二直流转直流的剩余功率输出到第一功率共享母线上,满足待充电独享实际充电功率的要求。因而控制模块可以控制多个目标第二直流转直流模块分别向第一功率共享母线上输出功率,且输出的功率总和等于第二功率参数,实现调用各目标第二直流转直流模块的剩余功率为待充电对象充电,提升各目标第二直流转直流模块的利用率,增大充电系统的充电效率。
例如,直流转直流模块M3和直流转直流模块M4均为剩余功率小于第二功率参数的直流转直流模块,控制模块可以控制直流转直流模块M3中空闲的第一供能单元(或者第二供能单元)向第一功率共享母线输出电能,并且功率为P3(P3小于或等于直流转直流模块M3的剩余功率),以及控制直流转直流模块M4中空闲的第一供能单元(或者第二供能单元)向第一功率共享母线输出电能,并且功率为P4(P4小于或等于直流转直流模块M4的剩余功率)。其中,P3与P4的总和等于第二功率参数,实现控制模块调用直流转直流模块M3和直流转直流模块M4中的剩余功率为待充电对象充电。
又一个示例中,控制模块为待充电对象分配的目标输出端为空闲的第二输出端的情形中,控制模块所述根据所述第二功率参数对所述充电系统中的直流转直流模块进行控制时,可以控制第三直流转直流模块向所述充电系统的第二功率共享母线输出第四直流电能,其中,所述第四直流电能的功率与所述第二功率参数相同。本申请实施例中,将剩余功率大于或等于第二功率参数,并且包括空闲的第二供能单元的直流转直流模块,记为第三直流转直流模块。
控制模块可以控制一个第三直流转直流模块中空闲的第二供能单元向第二功率共享母线输出第四直流电能,也即输出功率为第二功率参数的电能,实现调用第三直流转直流模块中剩余功率为待充电对象充电。
再一个示例中,控制模块为待充电对象分配的目标输出端为空闲的第二输出端的情形中,控制模块所述根据所述第二功率参数对所述充电系统中的直流转直流模块进行控制时,可以控制多个第四直流转直流模块分别向所述第二功率共享母线输出直流电能,其中,所述多个第四直流转直流模块输出直流电能的总功率与所述第二功率参数相同。充电系统中,包括空闲的第二供能单元的直流转直流模块可记为第四直流转直流模块。
所述多个第四直流转直流模块中可以存在一个或多个目标第四直流转直流模块。目标第四直流转直流模块的剩余功率小于第二功率参数。可见,控制模块可以控制目标第四直流转直流模块向第二功率共享母线输出直流电能,实现调用目标第四直流转直流模块的剩余功率。控制模块可以各第四直流转直流模块的空闲的第二供能单元向第二功率共享母线输出剩余功率。
一种可能的实施方式中,充电系统可以设置在办公区、工业区、商超等场景中。作为举例,下面结合实际应用场景对充电系统的工作过程进行介绍。
在一种应用场景中,请参见图7,假设充电系统包括多个直流转直流模块。各直流转直流模块的额定功率为30kw。充电系统中的交流转直流模块能够输出电能的最大功率可以为60kw。
每个直流转直流模块均包括两个第一供能单元和一个第二供能单元。每个直流转直流模块中,各第一供能单元输出功率范围为0~20kw。各第二供能单元输出功率范围为0~60kw。 如图6所示,充电系统中,第一功率共享母线耦合8个第一输出端,第二功率共享母线耦合4个第二输出端。充电系统的第一输出端和第二输出端分别耦合充电终端。本申请实施例中,第一输出端与第一功率共享母线耦合,第二输出端与第二功率共享母线耦合。便于介绍,将第一输出端与第二输出端一同编号,分别记为输出端i(i取遍1~12)。其中输出端1、2、4、5、7、8、10、11可以分别为第一输出端,与第一功率共享母线耦合。输出端3、6、9、12可以分别为第二输出端,与第二功率共享母线耦合。与充电系统耦合的充电终端分别记为充电终端i(i取遍1~12)。其中,充电终端1、2、4、5、7、8、10、11分别与输出端1、2、4、5、7、8、10、11耦合。充电终端3、6、9、12分别与输出端3、6、9、12耦合。
一些示例中,输出端1、2、4、5、7、8、10、11的最大输出功率可以相同,例如输出端1、2、4、5、7、8、10、11可以分别具有向连接的充电终端提供20kw的功率的能力。或者说,输出端1、2、4、5、7、8、10、11的最大输出功率被配置为20kw。
另一些示例中,输出端1、2、4、5、7、8、10、11的最大输出功率可以不同。输出端1、2、4、5、7、8、10、11中的一部分输出端的最大输出功率相同,例如第一功率;另一部分输出端的最大输出功率相同,如第二功率,其中第一功率与第二功率不同。
类似地,一些示例中,输出端3、6、9、12的最大输出功率可以相同,例如,输出端3、6、9、12可以分别具有向连接的充电终端提供60kw的功率的能力。或者说,输出端3、6、9、12的最大输出功率被配置为60kw。
在另一些示例中,输出端3、6、9、12的最大输出功率可以不同。输出端3、6、9、12中的一部分输出端的最大输出功率相同,例如第三功率;另一部分输出端的最大输出功率相同,例如第四功率,其中第三功率与第四功率不同。
需要说明的是,本申请实施例提供的充电系统中的第一输出端的数量、规格、规制等,第二输出端的数量、规格、规制等,第一输出端连接的充电终端的数量、规格、规制等,第二输出端连接的充电终端的数量、规格、规制等,仅用于介绍充电系统的工作过程,并不作为对本申请提供的充电系统的具体限定。
假设输出端3、6、9、12中,输出端6和输出端12的最大输出功率配置为60kw,以满足大功率充电需求的充电终端。充电系统的其它10个输出端(输出端1、2、3、4、5、7、8、9、10、11)配置为向充电终端提供20kw,以满足小功率充电需求的待充电对象。
第二供能单元可以用于直流转直流模块剩余功率的共享。通过第一功率共享母线,可以将直流转直流模块的剩余功率共享给充电终端1、2、4、5、7、8、10、11。通过第二功率共享母线,可以将直流转直流模块的剩余功率共享给充电终端3、6、9、12。
充电系统的控制模块可以存储有期望充电时长与期望输入功率的对应关系。期望充电时长可以为0.5小时、2小时、4小时以及8小时。8小时对应的期望输入功率为5kw。4小时对应的期望输入功率为10kw。2小时对应的期望输入功率为20kw。0.5小时对应的期望输入功率为60kw。
控制模块可以在接收到待充电对象发起的充电请求后,获取各直流转直流模块的剩余功率(待输出功率)以及各直流转直流模块中各第一供电单元输出功率情况和各第二供能单元输出功率情况,便于为待充电对象分配充电终端或者输出端。
或者,控制模块可以周期性地获取各直流转直流模块的剩余功率(待输出功率)以及各直流转直流模块中各第一供电单元输出功率情况和各第二供能单元输出功率情况,便于 为待充电对象分配充电终端或者输出端。
假设充电系统可以为多个待充电对象提供充电服务,多个待充电对象可以分别记为待充电对象1、待充电对象2、待充电对象3等。
待充电对象1可以通过应用程序或者小程序向充电系统的控制模块发起充电请求1。充电请求可以携带期望充电时长1。例如待充电对象1的期望充电时长1为4小时。控制模块可以根据待充电对象1的期望充电时长对应的期望输入功率20kw(也即待充电对象1的第一功率参数),为待充电对象1分配一个能够提供20kw功率的充电终端。如控制模块将充电终端1(或者输出端1)分配给待充电对象1。充电系统还可以包括引导模块,引导模块可以包括显示单元或者照明单元。
显示单元可以展示为待充电对象分配的充电终端的位置,或者展示为待充电对象分配的充电终端所对应的停车位的位置。例如,显示单元可以展示充电终端1的位置,或者展示充电终端1对应的停车位的位置。显示单元可以展示充电系统所属充电站或者停车场内的地图以及充电终端1的位置(或者充电终端1对应的停车位的位置)。这样的设计便于引导待充电对象1到达充电终端1的位置。
照明单元可以包括多个指示灯。多个指示灯可以与充电终端一一对应,充电终端对应的指示灯可以设置在充电终端附近。控制模块可以控制充电终端1对应的指示灯处于照明状态,便于引导待充电对象1到达充电终端1的位置。或者多个指示灯处于照明状态,可以形成引导路径,便于待充电对象1沿着引导路径到达充电终端1的位置。
需要说明的是,引导模块还可以采用其它方式引导待充电对象1到达充电终端1的位置,本申请实施例对此不作过多限定。
待充电对象1与充电终端1连接后。充电终端1可以获取待充电对象1进行充电时的实际充电功率(也即待充电对象1的第二功率参数),将待充电对象1的实际充电功率发送给控制模块。假设充电终端1获取到待充电对象1的实际充电功率为10kw。控制模块可以根据待充电对象1的第二功率参数小于或等于预设的功率参数阈值(也即第一供能单元能够输出电能的最大功率20kw),以及各直流转直流模块的剩余功率,为待充电对象分配输出端(或充电终端)。直流转直流模块1的剩余功率为60kw,且直流转直流模块M1中包括空闲的第一供能单元A1和第一供能单元A2。控制模块可以控制直流转直流模块M1中的第一供能单元A1向第一功率共享母线输出电能,且输出电能功率为10kw。控制器可以控制充电终端1与输出端1之间的接触器处于导通状态。此时,直流转直流模块1的剩余功率为50kw。
待充电对象2可以通过应用程序或者小程序向充电系统的控制模块发起充电请求2。充电请求可以携带期望充电时长2。例如待充电对象2的期望充电时长2为2小时。控制模块可以根据待充电对象2的期望充电时长对应的期望输入功率20kw(也即待充电对象2的第一功率参数),为待充电对象2分配一个能够提供20kw功率的充电终端。如控制模块将充电终端2(或者输出端2)分配给待充电对象2。类似地,控制模块可以控制引导模块展示充电终端2的位置,便于待充电对象2到达充电终端2的位置。
待充电对象2与充电终端2连接后。充电终端2可以获取待充电对象2进行充电时的实际充电功率(也即待充电对象2的第二功率参数),将待充电对象2的实际充电功率发送给控制模块。假设充电终端2获取到待充电对象2的实际充电功率为20kw。控制模块可以根据待充电对象2的第二功率参数小于或等于预设的功率参数阈值(也即第一供能单元 能够输出电能的最大功率20kw),以及各直流转直流模块的剩余功率,为待充电对象分配输出端(或充电终端)。直流转直流模块1的剩余功率为50kw,且直流转直流模块M1中包括空闲的第一供能单元A2。控制模块可以控制直流转直流模块M1中的第一供能单元A2向第一功率共享母线输出电能,且输出电能功率为20kw。控制器可以控制充电终端2与输出端2之间的接触器处于导通状态。此时,直流转直流模块1的剩余功率为30kw。
待充电对象3可以通过应用程序或者小程序向充电系统的控制模块发起充电请求3。充电请求可以携带期望充电时长3。例如待充电对象3的期望充电时长3为0.5小时。控制模块可以根据待充电对象3的期望充电时长对应的期望输入功率60kw(也即待充电对象3的第一功率参数),为待充电对象3分配一个能够提供60kw功率的充电终端。如控制模块将充电终端6(或者输出端6)分配给待充电对象2。类似地,控制模块可以控制引导模块展示充电终端6的位置,便于待充电对象3到达充电终端6的位置。
待充电对象3与充电终端6连接后。充电终端6可以获取待充电对象3进行充电时的实际充电功率(也即待充电对象2的第二功率参数),将待充电对象3的实际充电功率发送给控制模块。假设充电终端6获取到待充电对象3的实际充电功率为60kw。因直流转直流模块1的剩余功率为30kw,小于待充电对象3的期望输入功率,直流转直流模块1的剩余功率,不满足待充电对象3的充电需求。一种可能的供电方式中,控制模块可以控制直流转直流模块2的第二供能单元B1向第二功率共享母线输出电能,并且输出功率为60kw。以及控制输出端6与充电终端6之间的接触器处于导通状态。充电终端6可以从第二功率共享母线上获取60kw的电能提供给待充电对象3。
另一种可能的供电方式中,控制模块可以控制直流转直流模块1中的第二供能单元B1向第二功率共享母线输出30kw,以及控制直流转至直流模块2中的第二供能单元B1向第二功率共享母线输出30kw。并控制输出端6与充电终端6之间的接触器处于导通状态。充电终端6可以从第二功率共享母线上获取60kw的电能提供给待充电对象3。
在另一种应用场景中,如图8所示,充电系统可以包括一个直流转直流模块。充电系统中的交流转直流模块的额定功率可以为40kw或者60kw,本申请实施例中以60kw作为举例。该直流转直流模块的额定功率可以60kw。该直流转直流模块均包括两个第一供能单元和一个第二供能单元。该直流转直流模块中,各第一供能单元输出功率范围为0~20kw。各第二供能单元输出功率范围为0~60kw。如图8所示,充电系统中,第一功率共享母线耦合2个第一输出端,第二功率共享母线耦合1个第二输出端。充电系统的第一输出端和第二输出端分别耦合充电终端。本申请实施例中,第一输出端与第一功率共享母线耦合,第二输出端与第二功率共享母线耦合。便于介绍,将第一输出端与第二输出端一同编号,分别记为输出端i(i取遍1~12)。其中输出端1、2、分别为第一输出端,与第一功率共享母线耦合。输出端3为第二输出端,与第二功率共享母线耦合。与充电系统耦合的充电终端分别记为充电终端i(i取遍1~3)。其中,充电终端1、2、分别与输出端1、2耦合。充电终端3与输出端3耦合。
第二供能单元可以用于直流转直流模块剩余功率的共享。通过第一功率共享母线,可以将直流转直流模块的剩余功率共享给充电终端1、2。通过第二功率共享母线,可以将直流转直流模块的剩余功率共享给充电终端3。
假设充电系统可以为多个待充电对象提供充电服务,多个待充电对象可以分别记为待充电对象1、待充电对象2、待充电对象3等。
充电系统的控制模块可以存储有期望充电时长与期望输入功率的对应关系。期望充电时长可以为0.5小时、2小时、4小时以及8小时。8小时对应的期望输入功率为5kw。4小时对应的期望输入功率为10kw。2小时对应的期望输入功率为20kw。0.5小时对应的期望输入功率为60kw。
待充电对象1可以通过应用程序或者小程序向充电系统的控制模块发起充电请求1。充电请求可以携带期望充电时长1。例如待充电对象1的期望充电时长1为4小时。控制模块可以根据待充电对象1的期望充电时长对应的期望功率参数10kw(也即待充电对象1的第一功率参数),为待充电对象1分配一个能够提供10kw功率的充电终端。如控制模块将充电终端1(或者输出端1)分配给待充电对象1。控制模块可以控制引导模块展示充电终端1的位置,便于待充电对象1到达充电终端1的位置。
待充电对象1与充电终端1连接后。充电终端1可以获取待充电对象1进行充电时的实际充电功率(也即待充电对象1的第二功率参数),将待充电对象1的实际充电功率发送给控制模块。假设充电终端1获取到待充电对象1的实际充电功率为10kw。控制模块可以根据待充电对象1的第二功率参数小于或等于预设的功率参数阈值(也即第一供能单元能够输出电能的最大功率20kw),以及各直流转直流模块的剩余功率,为待充电对象分配输出端(或充电终端)。直流转直流模块1的剩余功率为60kw,且直流转直流模块M1中包括空闲的第一供能单元A1和第一供能单元A2。控制模块可以控制直流转直流模块M1中的第一供能单元A1向第一功率共享母线输出电能,且输出电能功率为10kw。控制器可以控制充电终端1与输出端1之间的接触器处于导通状态。此时,直流转直流模块1的剩余功率为50kw。
待充电对象2可以通过应用程序或者小程序向充电系统的控制模块发起充电请求2。充电请求可以携带期望充电时长2。例如待充电对象2的期望充电时长2为2小时。控制模块可以根据待充电对象2的期望充电时长对应的期望功率参数20kw(也即待充电对象2的第一功率参数),为待充电对象2分配一个能够提供20kw功率的充电终端。如控制模块将充电终端2(或者输出端2)分配给待充电对象2。类似地,控制模块可以控制引导模块展示充电终端2的位置,便于待充电对象2到达充电终端2的位置。
待充电对象2与充电终端2连接后。充电终端2可以获取待充电对象2进行充电时的实际充电功率(也即待充电对象2的第二功率参数),将待充电对象2的实际充电功率发送给控制模块。假设充电终端2获取到待充电对象2的实际充电功率为20kw。控制模块可以根据待充电对象2的第二功率参数小于或等于预设的功率参数阈值(也即第一供能单元能够输出电能的最大功率20kw),以及各直流转直流模块的剩余功率,为待充电对象分配输出端(或充电终端)。直流转直流模块1的剩余功率为50kw,且直流转直流模块M1中包括空闲的第一供能单元A2。控制模块可以控制直流转直流模块M1中的第一供能单元A2向第一功率共享母线输出电能,且输出电能功率为20kw。控制器可以控制充电终端2与输出端2之间的接触器处于导通状态。此时,直流转直流模块1的剩余功率为30kw。
待充电对象3可以通过应用程序或者小程序向充电系统的控制模块发起充电请求3。充电请求可以携带期望充电时长3。例如待充电对象3的期望充电时长3为0.5小时。控制模块可以根据待充电对象3的期望充电时长对应的期望功率参数60kw(也即待充电对象3的第一功率参数),为待充电对象3分配一个能够提供60kw功率的充电终端。如控制模块将充电终端3(或者输出端3)分配给待充电对象2。类似地,控制模块可以控制引导模 块展示充电终端3的位置,便于待充电对象3到达充电终端3的位置。
待充电对象3与充电终端3连接后。充电终端3可以获取待充电对象3进行充电时的实际充电功率(也即待充电对象2的第二功率参数),将待充电对象3的实际充电功率发送给控制模块。假设充电终端3获取到待充电对象3的实际充电功率为60kw。因直流转直流模块1的剩余功率为30kw,控制模块可以控制直流转直流模块1的第二供能单元B1向第二功率共享母线输出30kw的电能。
假设待充电对象3发起充电请求时,充电系统未对其它待充电对象进行充电。待充电对象3可以通过应用程序或者小程序向充电系统的控制模块发起充电请求3。充电请求可以携带期望充电时长3。例如待充电对象3的期望充电时长3为0.5小时。控制模块可以根据待充电对象3的期望充电时长对应的期望功率参数60kw(也即待充电对象3的第一功率参数),为待充电对象3分配一个能够提供60kw功率的充电终端。如控制模块将充电终端3(或者输出端3)分配给待充电对象2。类似地,控制模块可以控制引导模块展示充电终端3的位置,便于待充电对象3到达充电终端3的位置。待充电对象3与充电终端3连接后。充电终端3可以获取待充电对象3进行充电时的实际充电功率(也即待充电对象2的第二功率参数),将待充电对象3的实际充电功率发送给控制模块。假设充电终端3获取到待充电对象3的实际充电功率为60kw。因直流转直流模块1的剩余功率为60kw,控制模块可以控制直流转直流模块1的第二供能单元B1向第二功率共享母线输出60kw的电能。
在另一种应用场景中,如图9所示,充电系统可以包括一个直流转直流模块。之流转直流模块可以与交流转直流模块集成在一起。集成后的模块记为电源模块,电源模块可以包括一个第一供能单元A1和第一第二供能单元B1。
充电系统中的电源模块的额定功率可以为40kw或者60kw,本申请实施例中以40kw作为举例。该电源模块包括一个第一供能单元A1、一个第二供能单元B1,以及与第二供能单元B1耦合的第一开关单元。该第一供能单元输出功率范围为0~20kw。该第二供能单元输出功率范围为0~40kw。
如图9所示,充电系统中,第一功率共享母线耦合1个第一输出端,第二功率共享母线耦合1个第二输出端。充电系统的第一输出端和第二输出端分别耦合充电终端。本申请实施例中,第一输出端与第一功率共享母线耦合,第二输出端与第二功率共享母线耦合。便于介绍,将第一输出端与第二输出端一同编号,分别记为输出端1、2。其中输出端1为第一输出端,与第一功率共享母线耦合。输出端2为第二输出端,与第二功率共享母线耦合。
与充电系统耦合的充电终端分别记为充电终端1、2。其中,充电终端1、2分别与输出端1、2耦合。第二供能单元可以用于电源模块剩余功率的共享。通过第一功率共享母线,可以将电源模块的剩余功率共享给充电终端1。通过第二功率共享母线,可以将电源模块的剩余功率共享给充电终端2。
充电系统的控制模块可以存储有期望充电时长与期望输入功率的对应关系。期望充电时长可以为0.5小时、2小时、4小时以及8小时。8小时对应的期望输入功率为5kw。4小时对应的期望输入功率为10kw。2小时对应的期望输入功率为20kw。0.5小时对应的期望输入功率为60kw。
假设充电系统可以为多个待充电对象提供充电服务,多个待充电对象可以分别记为待 充电对象1、待充电对象2等。
待充电对象1可以通过应用程序或者小程序向充电系统的控制模块发起充电请求1。充电请求可以携带期望充电时长1。例如待充电对象1的期望充电时长1为4小时。控制模块可以根据待充电对象1的期望充电时长对应的期望功率参数10kw(也即待充电对象1的第一功率参数),为待充电对象1分配一个能够提供10kw功率的充电终端。如控制模块将充电终端1(或者输出端1)分配给待充电对象1。控制模块可以控制引导模块展示充电终端1的位置,便于待充电对象1到达充电终端1的位置。
待充电对象1与充电终端1连接后。充电终端1可以获取待充电对象1进行充电时的实际充电功率(也即待充电对象1的第二功率参数),将待充电对象1的实际充电功率发送给控制模块。假设充电终端1获取到待充电对象1的实际充电功率为10kw。控制模块可以根据待充电对象1的第二功率参数小于或等于预设的功率参数阈值(也即第一供能单元能够输出电能的最大功率20kw),以及电源模块的剩余功率,为待充电对象分配输出端(或充电终端)。直流转直流模块1的剩余功率为60kw,且电源模块中包括空闲的第一供能单元A1。控制模块可以控制电源模块中的第一供能单元A1向第一功率共享母线输出电能,且输出电能功率为10kw。控制器可以控制充电终端1与输出端1之间的接触器处于导通状态。此时,电源模块的剩余功率为50kw。
待充电对象2可以通过应用程序或者小程序向充电系统的控制模块发起充电请求2。充电请求可以携带期望充电时长2。例如待充电对象2的期望充电时长2为2小时。控制模块可以根据待充电对象2的期望充电时长对应的期望功率参数20kw(也即待充电对象2的第一功率参数),为待充电对象2分配一个能够提供20kw功率的充电终端。如控制模块将充电终端2(或者输出端2)分配给待充电对象2。类似地,控制模块可以控制引导模块展示充电终端2的位置,便于待充电对象2到达充电终端2的位置。
待充电对象2与充电终端2连接后。充电终端2可以获取待充电对象2进行充电时的实际充电功率(也即待充电对象2的第二功率参数),将待充电对象2的实际充电功率发送给控制模块。假设充电终端2获取到待充电对象2的实际充电功率为20kw。控制模块可以根据待充电对象2的第二功率参数小于或等于预设的功率参数阈值(也即第一供能单元能够输出电能的最大功率20kw),以及电源模块的剩余功率,为待充电对象分配输出端(或充电终端)。电源模块的剩余功率为50kw,且电源模块中包括空闲的第二供能单元B1。控制模块可以控制第二供能单元B1向第一功率共享母线输出电能,且输出电能功率为20kw。控制器可以控制充电终端2与输出端2之间的接触器处于导通状态。此时,直流转直流模块1的剩余功率为30kw。
假设待充电对象3发起充电请求时,充电系统未对其它待充电对象进行充电。待充电对象3可以通过应用程序或者小程序向充电系统的控制模块发起充电请求3。充电请求可以携带期望充电时长3。例如待充电对象3的期望充电时长3为0.5小时。控制模块可以根据待充电对象3的期望充电时长对应的期望功率参数40kw(也即待充电对象3的第一功率参数),为待充电对象3分配一个能够提供40kw功率的充电终端。如控制模块将充电终端2(或者输出端2)分配给待充电对象3。类似地,控制模块可以控制引导模块展示充电终端2的位置,便于待充电对象3到达充电终端2的位置。待充电对象3与充电终端2连接后。充电终端2可以获取待充电对象3进行充电时的实际充电功率(也即待充电对象3的第二功率参数),将待充电对象3的实际充电功率发送给控制模块。假设充电终端2获 取到待充电对象3的实际充电功率为40kw。因电源模块的剩余功率为40kw,控制模块可以控制第二供能单元B1向第二功率共享母线输出40kw的电能。
基于上述任意一个实施例提供的充电系统,本申请还提供一种充电站(或者称充电平台,充电超系统等),可以包括一个或多个前述任意实施例提供的充电系统。在一个示例中,充电站可以包括一个充电系统,该充电系统可以为前述任意一个实施例提供的充电系统,充电系统的工作过程请参见前述实施例,此处不再赘述。
另一个示例中,充电站可以包括多个充电系统,各充电系统的结构可以参见前述任意一个实施例提供的充电系统,此处不再赘述。请参见图10,充电站中的各充电系统的控制模块之间通信连接,可以交互数据、消息或者指令。在一个示例中,如图10所示,充电站可以包括充电系统1、充电系统2、充电系统3、充电系统4、…、充电系统q。其中,q可以为正整数。也即充电站可以包括一个或多个充电系统。
各充电系统中的控制模块可以通过交换机通信连接。在一些场景中,各充电系统的位置可以不同,例如充电系统分布在不同的社区或者园区内。其中,多个充电系统中的一个充电系统的控制模块可以作为主控制模块。控制模块1可以通过交换机与其它充电系统中的控制模块通信。
充电系统1中的控制模块1可以确定自身剩余功率信息(剩余可用容量),以及获取其它各充电系统的剩余功率信息,和/或各充电系统中各直流转直流模块的剩余功率。
控制模块1作为主控制模块,可以与其它控制模块交互信息。控制模块1也可以获取到各直流转直流模块的剩余功率,各第一供能单元输出功率情况,各第二供能单元输出功率情况。控制模块1可以通过其它充电系统的控制模块交互数据、消息、指令等,指示其它充电系统的控制模块对所属充电系统的直流转直流模块进行控制,从而实现控制其它充电系统输出功率。
充电系统1中的控制模块1也可以接收各待充电对象的充电请求,或者电子设备发送的充电请求。控制模块1可以根据充电请求携带的第一充电参数,第一充电参数可以表征待充电对象期望充电时长。控制模块1可以根据预设的期望充电时长与期望功率参数的对应关系,确定第一充电参数对应的期望功率参数,也即确定第一功率参数,从而实现控制模块1获取第一功率参数。
控制模块1可以根据每个充电系统的剩余功率,为待充电对象分配输出端。例如,控制模块1将剩余功率大于或等于第一功率参数的充电系统分配给待充电对象,例如充电系统m的剩余功率大于或等于第一功率参数,控制模块1将充电系统m分配给待充电系统。
控制模块1可以通知控制模块m,使控制模块m为该待充电对象分配输出端。控制模块m可以采用前述实施例中的充电系统为待充电对象分配输出端的部分或全部操作,为该待充电对象分配输出端,并对充电系统m中的直流转直流模块进行控制,实现为该待充电对象充电。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其它可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、 计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例还提供一种可读存储介质,用于存储上述实施例提供的方法或算法。例如,随机存取存储器(random access memory,RAM)、闪存、只读存储器(read only memory,ROM)、EPROM存储器、非易失性只读存储器(Electronic Programmable ROM,EPROM)、寄存器、硬盘、可移动磁盘或本领域中其它任意形式的存储媒介。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入控制模块。控制模块可以包括RAM存储器、闪存、ROM存储器、EPROM存储器、寄存器、硬盘、可移动磁盘或本领域中其它任意形式的存储媒介,用于存储本申请实施例提供的方法或算法的步骤。示例性地,存储媒介可以与控制模块或者处理器(或控制器)连接,以使得控制模块、处理器(或控制器)可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到控制模块、处理器(或控制器)中。
这些计算机程序指令也可装载到计算机或其它可编程数据处理设备上,使得在计算机或其它可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其它可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (20)

  1. 一种充电系统,其特征在于,包括:一个或多个直流转直流模块,第一功率共享母线,第二功率共享母线,至少一个第一输出端以及至少一个第二输出端;
    其中,所述直流转直流模块中包括:至少一个第一供能单元和至少一个第二供能单元;
    所述第一供能单元与所述第一功率共享母线耦合,用于向所述第一功率共享母线输出直流电能;
    所述第二供能单元与所述第一功率共享母线耦合以及与所述第二功率共享母线耦合,用于向所述第一功率共享母线或所述第二功率共享母线输出直流电能;
    所述第一输出端与所述第一功率共享母线耦合,用于将所述第一功率共享母线上的直流电能传输至耦合的充电装置;
    所述第二输出端与所述第二功率共享母线耦合,用于将所述第二功率共享母线上的直流电能传输至耦合的充电装置;
    其中,所述第一输出端的最大输出功率与所述第二输出端的最大输出功率不同。
  2. 如权利要求1所述的充电系统,其特征在于,所述第二供能单元的最大输出功率与所述直流转直流模块的最大输出功率相同。
  3. 如权利要求1或2所述的充电系统,其特征在于,所述第二供能单元的最大输出功率,大于所述第一供能单元的最大输出功率。
  4. 如权利要求1-3任一所述的充电系统,其特征在于,所述第一输出端的最大输出功率小于所述第二输出端的最大输出功率。
  5. 如权利要求1-4任一所述的充电系统,其特征在于,所述至少一个第一输出端的数量,与所述一个或多个直流转直流模块中全部的第一供能单元的数量相同;
    所述至少一个第二输出端的数量,与所述一个或多个直流转直流模块中全部的第二供能单元的数量相同。
  6. 如权利要求1-5任一所述的充电系统,其特征在于,每个所述第一输出端的最大输出功率相同;和/或,每个所述第二输出端的最大输出功率相同。
  7. 如权利要求1-6任一所述的充电系统,其特征在于,所述直流转直流模块还包括至少一个第一开关单元,其中,所述至少一个第一开关单元与所述直流转直流模块中包括的至少一个第二供能单元一一对应;所述第二供能单元耦合至对应的第一开关单元;
    所述第一开关单元分别与所述第一功率共享母线以及与所述第二功率共享母线耦合;其中,所述第一开关单元用于将所述第一开关单元对应的第二供能单元输出的直流电能传输至所述第一功率共享母线或者所述第二功率共享母线。
  8. 如权利要求1-7任一所述的充电系统,其特征在于,还包括:交流转直流模块;所述交流转直流模块用于将交流电源提供的交流电能转化为直流电能后,向所述直流转直流模块提供直流电能;
    所述交流转直流模块向所述直流转直流模块输出的电压小于或等于1000伏特。
  9. 如权利要求1-8任一所述的充电系统,其特征在于,所述第一供能单元输出电压的最大值小于或等于1000伏特;和/或,所述第二供能单元输出电压的最大值小于或等于1000伏特。
  10. 如权利要求9所述的充电系统,其特征在于,所述第一供能单元输出电压的最小值大于或等于150伏特;和/或,所述第二供能单元输出电压的最小值大于或等于150伏特。
  11. 如权利要求1-10任一所述的充电系统,其特征在于,所述第一输出端能够向耦合的充电装置提供的直流电能的最大功率为20千瓦。
  12. 如权利要求1-11任一所述的充电系统,其特征在于,还包括控制模块;所述直流转直流模块还包括控制单元;所述直流转直流模块中的控制单元与所述第一供能单元耦合,以及与所述第二供能单元耦合;
    所述控制模块与所述控制单元通信连接,用于控制所述控制单元调整所述直流转直流模块向所述第一功率共享母线输出的直流电能,和/或,调整向所述第二功率共享母线输出的直流电能。
  13. 一种充电站,其特征在于,包括至少一个如权利要求1-12任一所述的充电系统和多个充电装置;
    所述充电装置耦合至一个所述充电系统的第一输出端或者第二输出端;
    所述充电装置与待充电对象耦合,用于将所述充电装置耦合的充电系统提供的直流电能传输至所述待充电对象。
  14. 一种供电方法,其特征在于,应用于如权利要求1-12任一所述的充电系统,所述方法包括:
    获取第一功率参数,所述第一功率参数为待充电对象进行充电时的期望输入功率;
    在所述充电系统的至少一个第一输出端和至少一个第二输出端中,为所述待充电对象分配目标输出端,其中,所述目标输出端的最大输出功率大于或等于所述第一功率参数。
  15. 如权利要求14所述的方法,其特征在于,
    若所述第一功率参数小于或等于设定的功率参数阈值,且所述至少一个第一输出端中存在空闲的第一输出端,则为所述待充电对象分配一个空闲的第一输出端;其中,所述功率参数阈值表征所述充电系统中任一直流转直流模块的第一供能单元的最大输出功率;或者
    若所述第一功率参数大于所述功率参数阈值,且所述至少一个第二输出端中存在空闲的第二输出端,则为所述待充电对象分配一个空闲的第二输出端;或者,
    若所述第一功率参数小于或等于所述功率参数阈值,所述至少一个第一输出端中不存在空闲的第一输出端,且所述至少一个第二输出端中存在空闲的第二输出端,则为所述待充电对象分配一个空闲的第二输出端。
  16. 如权利要求15所述的方法,其特征在于,在为所述待充电对象分配目标输出端之后,所述方法还包括:
    获取所述待充电对象的第二功率参数,所述第二功率参数与所述待充电对象的实际充电功率相同;
    以及根据所述第二功率参数,对所述充电系统中的直流转直流模块进行控制。
  17. 如权利要求16所述的方法,其特征在于,为所述待充电对象分配的目标输出端为空闲的第一输出端;
    所述根据所述第二功率参数,对所述充电系统中的直流转直流模块进行控制,包括:
    控制所述充电系统中的第一直流转直流模块向第一功率共享母线输出第一直流电能,所述第一直流电能的功率与所述第二功率参数相同,其中,所述第一直流转直流模块的剩 余功率大于或等于所述第二功率参数;或者,
    控制所述充电系统中的多个第二直流转直流模块分别向所述第一功率共享母线输出直流电能,并且所述多个第二直流转直流模块输出直流电能的总功率与所述第二功率参数相同,其中,所述多个第二直流转直流模块包括剩余功率小于所述第二功率参数的目标第二直流转直流模块。
  18. 如权利要求17所述的方法,其特征在于,所述控制所述充电系统中第一直流转直流模块向第一功率共享母线输出第一直流电能,包括:
    控制所述第一直流转直流模块中空闲的第一供能单元,向所述第一功率共享母线输出所述第一直流电能;
    所述控制所述充电系统中的多个第二直流转直流模块分别向所述第一功率共享母线输出直流电能,包括:
    控制所述目标第二直流转直流模块中空闲的第一供能单元或者空闲的第二供能单元向所述第一功率共享母线输出第二直流电能,所述第二直流电能的功率与所述目标直流转直流模块的剩余功率相同;
    以及控制所述多个第二直流转直流模块中除所述目标第二直流转直流模块之外的其它第二直流转直流模块输出第三直流电能,其中所述第三直流电能以及所述第二直流电能的功率总和与所述第二功率参数相同。
  19. 如权利要求16所述的方法,其特征在于,为所述待充电对象分配的目标输出端为空闲的第二输出端;
    所述根据所述第二功率参数,对所述充电系统中的直流转直流模块进行控制,包括:
    控制第三直流转直流模块向所述充电系统的第二功率共享母线输出第四直流电能,其中,所述第四直流电能的功率与所述第二功率参数相同,所述第三直流转直流模块的剩余功率大于或等于所述第二功率参数,且所述第三直流转直流模块包括空闲的第二供能单元;或者,
    控制多个第四直流转直流模块分别向所述第二功率共享母线输出直流电能,其中,所述多个第四直流转直流模块输出直流电能的总功率与所述第二功率参数相同,所述多个第四直流转直流模块中存在剩余功率小于所述第二功率参数的目标第四直流转直流模块,且每个第四直流转直流模块包括空闲的第二供能单元。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,当所述计算机指令被执行时,使得如权利要求14-19任一所述方法被执行。
PCT/CN2022/124395 2021-12-17 2022-10-10 一种充电系统、充电站、供电方法及计算机可读存储介质 WO2023109271A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111553216.7 2021-12-17
CN202111553216.7A CN114228552A (zh) 2021-12-17 2021-12-17 一种充电系统、充电站、供电方法及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023109271A1 true WO2023109271A1 (zh) 2023-06-22

Family

ID=80758173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124395 WO2023109271A1 (zh) 2021-12-17 2022-10-10 一种充电系统、充电站、供电方法及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN114228552A (zh)
WO (1) WO2023109271A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114228552A (zh) * 2021-12-17 2022-03-25 华为数字能源技术有限公司 一种充电系统、充电站、供电方法及计算机可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150091486A1 (en) * 2013-10-01 2015-04-02 Rockwell Automation Technologies, Inc. Method and Apparatus for Detection of Drive Misconfiguration in a Multi-Axis Configuration
WO2018028561A1 (zh) * 2016-08-11 2018-02-15 英飞特电子(杭州)股份有限公司 一种充电系统及充电控制方法
CN109455106A (zh) * 2018-10-17 2019-03-12 国网浙江省电力有限公司杭州供电公司 一种电动汽车智能充电站
CN112787321A (zh) * 2020-12-30 2021-05-11 江苏省电力试验研究院有限公司 一种一体化直流充电站电气拓扑及其运行控制方法
CN113306438A (zh) * 2021-05-26 2021-08-27 南京能瑞电力科技有限公司 小功率直流充电系统及充电方法
CN113733956A (zh) * 2021-08-17 2021-12-03 华为数字能源技术有限公司 一种充电方法、一种充电装置、一种充电系统
CN114228552A (zh) * 2021-12-17 2022-03-25 华为数字能源技术有限公司 一种充电系统、充电站、供电方法及计算机可读存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013570B2 (en) * 2009-07-23 2011-09-06 Coulomb Technologies, Inc. Electrical circuit sharing for electric vehicle charging stations
US8952656B2 (en) * 2011-02-04 2015-02-10 Atieva, Inc. Battery charging station
CN105990883B (zh) * 2015-02-05 2018-09-25 深圳市瀚美特科技有限公司 一种多枪头大功率直流充电桩系统
CN107394839A (zh) * 2017-07-24 2017-11-24 深圳市丁旺科技有限公司 一种双枪桩间智能调度直流充电桩群及其控制方法
CN107444188A (zh) * 2017-09-21 2017-12-08 江苏智绿充电科技有限公司 一种环形功率共享智能充电机及其充电方法
CN109624776B (zh) * 2018-12-30 2020-12-01 延怀宾 一种功率共享调配充电站群
CN110682804B (zh) * 2019-11-27 2021-09-10 湖南红太阳新能源科技有限公司 一种自动功率分配的直流充电装置及控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150091486A1 (en) * 2013-10-01 2015-04-02 Rockwell Automation Technologies, Inc. Method and Apparatus for Detection of Drive Misconfiguration in a Multi-Axis Configuration
WO2018028561A1 (zh) * 2016-08-11 2018-02-15 英飞特电子(杭州)股份有限公司 一种充电系统及充电控制方法
CN109455106A (zh) * 2018-10-17 2019-03-12 国网浙江省电力有限公司杭州供电公司 一种电动汽车智能充电站
CN112787321A (zh) * 2020-12-30 2021-05-11 江苏省电力试验研究院有限公司 一种一体化直流充电站电气拓扑及其运行控制方法
CN113306438A (zh) * 2021-05-26 2021-08-27 南京能瑞电力科技有限公司 小功率直流充电系统及充电方法
CN113733956A (zh) * 2021-08-17 2021-12-03 华为数字能源技术有限公司 一种充电方法、一种充电装置、一种充电系统
CN114228552A (zh) * 2021-12-17 2022-03-25 华为数字能源技术有限公司 一种充电系统、充电站、供电方法及计算机可读存储介质

Also Published As

Publication number Publication date
CN114228552A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
US20220410734A1 (en) Dynamic allocation of power modules for charging electric vehicles
CN109572473B (zh) 一种移动充电桩控制系统及方法、移动充电桩
US10807485B2 (en) Charger for electric vehicles with distributed power converter arbitration
JP5874268B2 (ja) 充電装置及び充電方法
JP6670477B2 (ja) ダブル充電ガン充電システムのインテリジェント型エネルギー分配方法
CN104539030A (zh) 一种功率动态分配的直流快速双充系统及控制方法
CN108340805B (zh) 一种交流充电桩及其功率分配方法
CN102216863A (zh) 响应要求的电梯负荷削减
WO2023109271A1 (zh) 一种充电系统、充电站、供电方法及计算机可读存储介质
US20210402888A1 (en) Modular Charging Systems For Vehicles
US11552491B2 (en) Charging management system and method for batteries
CN205239173U (zh) 一种用于电动汽车充电的智能排队系统
US20200044467A1 (en) Apparatus for and methods of fast battery charging
JP2019161707A (ja) 充電管理装置、駐車場、及びプログラム
US20230173940A1 (en) Power control method and system for battery charging and swap station, medium, apparatus, and battery charging and swap station
CN110994755A (zh) 一种igbt式300kw充电集功率分配系统
CN209351267U (zh) 充电控制系统
US20200391608A1 (en) Systems and methods for charging management of charging devices
CN113346529A (zh) 一种交流输入和直流输入兼容的v2b应用系统及方法
JP7326491B2 (ja) 電力変換装置の給電制御方法及び電力変換装置
CN111806285B (zh) 公共快充站多枪充电桩充电功率分配方法
CN113415202B (zh) 一种电动车充电管理方法
WO2023077671A1 (zh) 功率分配装置、充电系统、充电设备、充电站和充电方法
CN117183800A (zh) 充电桩三相均衡充电功率分配方法及装置
US20220314831A1 (en) Grid system, power transferring and receiving method, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906023

Country of ref document: EP

Kind code of ref document: A1