WO2023108817A1 - 一种螺旋桨、动力组件和飞行器 - Google Patents

一种螺旋桨、动力组件和飞行器 Download PDF

Info

Publication number
WO2023108817A1
WO2023108817A1 PCT/CN2021/141952 CN2021141952W WO2023108817A1 WO 2023108817 A1 WO2023108817 A1 WO 2023108817A1 CN 2021141952 W CN2021141952 W CN 2021141952W WO 2023108817 A1 WO2023108817 A1 WO 2023108817A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
propeller
edge
leading edge
airfoil
Prior art date
Application number
PCT/CN2021/141952
Other languages
English (en)
French (fr)
Inventor
胡华智
姜国军
Original Assignee
亿航智能设备(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亿航智能设备(广州)有限公司 filed Critical 亿航智能设备(广州)有限公司
Publication of WO2023108817A1 publication Critical patent/WO2023108817A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/20Constructional features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/18Aerodynamic features

Definitions

  • the present disclosure relates to the field of flight, and in particular to a propeller, a power assembly and an aircraft.
  • the object of the present invention is to provide a propeller, which is used to reduce the vortex and cavitation at the tip of the propeller, and reduce noise and resistance.
  • the aircraft using the propeller can reduce the noise of the aircraft and reduce the impact on the surrounding people when flying in densely populated areas.
  • the present invention provides the following technical solutions:
  • An embodiment of the present invention provides a propeller, including a central column and at least two blades, the blade root of each blade is arranged on the central column, each of the blades has two blade segments and blades a tip transition section, the root of each of the blade sections is connected to the central column, each of the blade sections has a first leading edge facing the wind, and a first trailing edge opposite to the first leading edge ;
  • the wingtip transition section is a curved transition section, the wingtip transition section has a second leading edge, and a second trailing edge opposite to the second leading edge, and the two blade sections have The first leading edge is transitionally connected through the second leading edge, the first trailing edges of the two blade segments are transitionally connected through the second trailing edge, and the second leading edge and the The second trailing edges are arc-shaped edges;
  • the traces of the first leading edges of the two blade segments are catenary lines.
  • the edge line of the arc-shaped edge is a catenary line.
  • the distance between the edge lines of the second leading edge and the second trailing edge is at least 18 mm.
  • the maximum distance between the edge line of the second front edge and the center column is the first distance
  • the maximum distance between the edge line of the second rear edge and the center column is the first distance.
  • Two distances the first distance is greater than the second distance
  • the difference between the first distance and the second distance is 5mm ⁇ 2mm.
  • each of the blade segments is a curved blade segment
  • the edge line of the first front edge is continuous in curvature with the edge line of the second front edge; and/or, the edge line of the first trailing edge is continuous in curvature with the edge line of the second trailing edge.
  • the shaft of the central column is a circular shaft;
  • the trace of the first leading edge is tangent to the surface of the circular cylinder;
  • the trace of the second leading edge is tangent to the surface of the circular cylinder.
  • the included angle between the tangent line formed by the traces of the first leading edges of the two blade segments and the surface of the circular cylinder is 45° ⁇ 5°.
  • each of the blade segments has a plurality of airfoil sections distributed along the spanwise direction of the blade segment; wherein,
  • chord length and/or angle of attack of each airfoil section along the deployment direction of the blade segment first increases and then decreases from the wing root.
  • the chord length of the airfoil section is 16% ⁇ 1% of the radius of the propeller, and the an angle of 19.7° ⁇ 0.1°, said first target spanwise position being 20% ⁇ 1% of said propeller radius from the central axis of said central column; and/or,
  • the chord length of the airfoil section is 18% ⁇ 1% of the radius of the propeller, and the angle of attack is 22.2° ⁇ 0.1°, the The distance between the second target spanwise position and the central axis of the central column is 27% ⁇ 1% of the radius of the propeller;
  • the chord length of the airfoil section is 11% ⁇ 1% of the radius of the propeller, and the angle of attack is 9.7° ⁇ 0.1°, the first The distance between the three target span positions and the central axis of the central column is 80% ⁇ 1% of the radius of the propeller.
  • the airfoil of at least one blade segment is one of a concave-convex airfoil, a flat-convex airfoil, a symmetrical airfoil, a double-convex airfoil, and an S-airfoil.
  • the thickness of the blade segment first increases and then decreases
  • the maximum thickness of the blade segment is 7.28% ⁇ 0.5% of the chord length of the corresponding chord line, and the maximum thickness of the blade segment is at the same position as the chord Corresponding to a first chord position of the thread, said first chord position being 24.7% ⁇ 0.5% of the chord length of said chord.
  • the blade segment along the chord length direction of the blade segment, the blade segment has a curved portion, and the maximum curvature of the curved portion is 5.49% ⁇ 0.5 of the chord length of the corresponding chord line %, the maximum camber of the curved portion corresponds to the second chord line position of the chord line at the position of the blade segment, and the second chord line position is 43.6% ⁇ 0.5% of the chord length of the chord line %.
  • the root positions of the two blade segments are the same as the position of the root of the rear blade, or, along the In the height direction of the central column, the position of the wing root of the front blade is different from the position of the wing root of the rear blade.
  • the paddle is integrally formed with the central column or is detachably connected.
  • the propeller of the present invention has the following advantages:
  • the propeller provided by the present invention is provided with a center column and at least two blades, the root of each blade is connected to the center column, and the rotation of the blade is driven by driving the rotation of the center column to generate lift.
  • each blade has two blade sections and a wingtip transition section, and the two blade sections are connected through the wingtip transition section. Since the wingtip transition section is smoothly connected with the two blade sections respectively, it makes the There is less noise and less drag than adding a wingtip or adding a wingtip to the wingtip. At the same time, there are no thinner and sharper wingtips, so it is not easy to cause serious injury to personnel.
  • the blade is taken as a whole, and the two blade roots of the blade are connected to the central column, and the two blade sections have a first leading edge facing the wind and a first trailing edge opposite to the first leading edge, so that the blade can obtain In addition to better lifting force, it is also beneficial to the manufacturing process of the blade. Since the wingtip transition section is a curved transition section, there is a natural transition between the two blades. Specifically, the wingtip transition section has a second leading edge and a second trailing edge opposite to the second leading edge.
  • the two blades The first leading edge of the segment is connected through the transition of the second leading edge, the first trailing edge of the two blade segments is connected through the transition of the second trailing edge, and the second leading edge and the second trailing edge are arc-shaped edge, and between the first leading edges of the two blade segments, the traces of the first leading edges of the two blade segments are catenary, so that the first leading edge traces are smooth from the beginning to the end Transition, and the surface of the blade is a smooth transition, so the entire blade has less stress, high strength, and is not easy to break, so the reliability of the entire propeller is high.
  • Another object of the present invention is to provide a power assembly, including a driving member and the above-mentioned propeller, where the propeller is in transmission connection with the driving member.
  • Another object of the present invention is to provide an aircraft, which includes a fuselage and at least one of the above-mentioned power components, and the power component is arranged on the fuselage.
  • the number of the power components is multiple; wherein,
  • the propellers included in at least two power assemblies are coaxially installed, and when the aircraft is in flight, the propellers included in at least two power assemblies rotate in the same direction.
  • FIG. 1 is a schematic diagram of an airfoil cross-sectional structure according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of a blade leading edge trajectory according to an embodiment of the disclosure.
  • Fig. 3a is a schematic perspective view of a propeller structure according to an embodiment of the present disclosure.
  • Fig. 3b is a schematic side view of a propeller structure according to an embodiment of the present disclosure.
  • Fig. 3c is a schematic top view of a propeller structure according to an embodiment of the present disclosure.
  • Fig. 4a is a schematic perspective view of a two-propeller structure according to an embodiment of the present disclosure.
  • Fig. 4b is a schematic side view of a two-propeller structure according to an embodiment of the present disclosure.
  • Fig. 4c is a schematic top view of a two-propeller structure according to an embodiment of the present disclosure.
  • Fig. 5a is a schematic perspective view of a three-propeller structure according to an embodiment of the present disclosure.
  • Figure 5b is a schematic side view of a three-propeller configuration according to an embodiment of the present disclosure.
  • Fig. 5c is a schematic top view of a three-propeller structure according to an embodiment of the present disclosure.
  • a propeller including a central column and at least two blades, the root of each blade is arranged on the central column 40, and each blade has two blade segments (10, 20) and wingtip transition segments 30, the root of each blade segment is connected to the center post 40, each blade segment has a first leading edge (101, 201) facing the wind, and The first trailing edge (103, 203) relative to the first leading edge (101, 201);
  • the wing tip transition section 30 is a curved transition section, and the wing tip transition section 30 has a second leading edge 301, and is connected to the second leading edge Opposite to the second trailing edge 302, the first leading edges of the two blade segments are transitionally connected through the second leading edge 301, and the first trailing edges of the two blade segments are transitionally connected through the second trailing edge 302, Both the second leading edge 301 and the second trailing edge 302 are arc-shaped edges; between the first leading edges of the two blade segments, the traces
  • the smooth transition of the two blade sections (10, 20) through the wingtip transition section 30 prevents the wingtips of the blades from generating greater resistance and noise.
  • the wingtip transition section 30 is a curved transition section, the first leading edge of the two blade sections is connected through the second leading edge 301, and the first trailing edge of the two blade sections is connected through the second rear edge. Edge 302 transition connection. Since both the second front edge 301 and the second trailing edge 302 are arc-shaped edges, the transition is smoother.
  • the curved transition between the blade section 10 and the blade section 20 is smooth, and the wingtip transition section 30 of this torsion structure avoids large wind resistance and noise generated by sharp wingtips.
  • the part of the first leading edge trace 50 of the two blade segments between the first leading edges of the two blade segments is a catenary line, and the first leading edge 101 of the blade segment 10 and the blade segment 20
  • the trace between the first leading edges 201 of the two blade segments transitions smoothly with the edge lines of the first leading edges of the two blade segments, and this trace is a connecting line between the traces of the first leading edges of the two blade segments.
  • the edge lines of the arcuate edges are catenary lines. There are various curves for smooth transition.
  • the wingtip transition section 30 of the embodiment of the present invention adopts a catenary line, and the catenary line here is not necessarily a catenary line in the strict sense.
  • the second leading edge 301 or The second trailing edge 302 may be an approximate catenary.
  • the first leading edge or the first trailing edge between the blade segment 10 and the blade segment 20 adopts a catenary curve transition, and the entire blade is in the process of propeller rotation, for example, the first front edge of the two blade segments
  • the edge lines of the second leading edge 301 are respectively tangent to the edge lines of the second leading edge 301, so that the overall airfoil of the blade transitions smoothly, and at a certain speed, the centrifugal force generated by the entire blade and its internal tension can balance each other, thereby avoiding the blade Bending or torsion occurs to ensure the stability and reliability of the aerodynamic shape of the blade.
  • the minimum distance between the second leading edge 301 and the second trailing edge 302 of the wing tip transition section 30 of the blade is 18mm.
  • the distance between the second leading edge 301 and the second trailing edge 302 is less than 18mm, because the wingtip transition section 30 is a transitional curved surface and presents a torsion structure, existing manufacturing techniques and materials cannot or are difficult to process, or process Accuracy is difficult to ensure that the wingtip transition section 30 makes a curved transition between the blade section 10 and the blade section 20 .
  • the maximum distance between the edge line of the second front edge 301 and the center column 40 is the first distance
  • the maximum distance between the edge line of the second rear edge 302 and the center column 40 is the second distance
  • the first distance greater than the second distance is 5mm ⁇ 2mm.
  • the farthest point of the second front edge 301 from the center column 40 is relative to the farthest point of the second rear edge 302 from the center column 40, and the second front edge 301 is farther away from the center column 40.
  • This difference is, for example, 5mm, 4.5mm or 5.5mm.
  • each blade section is a curved surface blade section, wherein the first leading edge
  • the edge line of (101, 201) is continuous with the curvature of the edge line of the second leading edge 301; and/or, the curvature of the edge line of the first trailing edge (103, 203) is continuous with that of the second trailing edge 302.
  • the two ends of the second leading edge 301 are respectively connected to the leading edge trace of the blade segment 10 and the leading edge trace of the blade segment 20 through curvature, and the leading edge trace here refers to the front edge of each airfoil section.
  • the line formed by the vertices of the edge, the leading edge trace here is the edge line of the first leading edge of each blade segment, compared with the connection point where the tangent line is continuous and the curvature continuous connection point is gentler , is very important for the smooth transition of the connection, because during the high-speed rotation of the propeller, a small mutation of the blade will produce a lot of resistance and noise, so the connection point with continuous curvature can control and reduce the resistance and noise of the blade.
  • the second trailing edge 302 is also connected with the trailing edge trace of the blade segment 10 and the trailing edge trace of the blade segment 20 in a continuous curvature manner. , the transition is smoother, and the trailing edge trace here is also the first trailing edge edge line of each blade segment.
  • the shaft of the central column 40 is a circular shaft; for example, it may also be an elliptical shaft, wherein the trace of the first leading edge is consistent with the surface of the circular shaft. Tangent.
  • the first leading edge trace 50 of the blade develops outward from the central column 40 from the starting point 501 , wherein the first leading edge trace 50 is tangent to the outer circle of the central column 40 at the starting point 501 , along the first leading edge 101 of the blade segment 10, the trace between the first leading edges of the two blade segments, the first leading edge 201 of the blade segment 20 transitioning back to the end point 502 of the central column 40,
  • the first leading edge trace 50 is tangent to the outer circle of the center post 40 at the terminus 502 .
  • Both the starting point and the ending point of the first leading edge trace 50 are tangent to the outer circle of the central column 40, so that the wing root of each blade segment and the central column 40 can transition smoothly, otherwise turbulent flow will be formed at the wing root and affect the lift. .
  • This setting structure ensures smooth and reliable rotation of the blade, and makes the entry and output of the airflow at the position where the root of the blade is close to the center column 40 relatively smooth, which can improve the efficiency of the propeller at the position of the center column.
  • the included angle between the tangent line formed by the first leading edge trace 50 of the two blade segments and the surface of the circular cylinder is 45° ⁇ 5°. Since the starting point 501 of the first leading edge trace of the blade segment is tangent to the outer circle of the central column 40, the end point 502 of the leading edge trace of the blade is tangent to the outer circle of the central column 40, and the corresponding tangent The angle between them is set to 45°, so that the entire blade, including the blade section 10, the blade section 20 and the wingtip transition section 30, is streamlined as a whole, with little resistance and high efficiency, which further improves the flight of the aircraft. performance.
  • angle between the two tangents can be adjusted according to the number of blades, and is not limited to 45° ⁇ 5°, but in some embodiments, such as a structure of 4 blades, this 45° ⁇ 5° A tangent angle of 5° is more conducive to obtaining the best lift.
  • each blade segment has a plurality of airfoil sections distributed along the spanwise direction of the blade segment; wherein, the chord length and/or angle of attack of each airfoil section are along the In the direction of deployment, it increases first and then decreases from the root of the wing.
  • the airfoils of the blade segment 10 and the blade segment 20 are controlled by the airfoil section, and there is a smooth transition between each airfoil section.
  • multiple airfoils Sections are distributed along the spanwise direction of the blade segment, and the number of specific airfoil sections is selected according to actual size control in some embodiments. For example, nine airfoil sections can be used to control the blade section 10 and paddle The airfoil of the blade segment 20.
  • the chord length and angle of attack of each airfoil section first gradually increase and then gradually decrease for a smooth transition.
  • the blade section 10 and the blade section 20 are provided with three airfoil sections of the control airfoil, and when the airfoil section is located at the first target spanwise position of the blade section, the chord length of the airfoil section is equal to the radius of the propeller 16% ⁇ 1%, with an angle of attack of 19.7° ⁇ 0.1°, the distance of the first target spanwise position from the central axis of the center post is 20% ⁇ 1% of the propeller radius; and/or, when the airfoil section is located at the The second target spanwise position of the blade section, the chord length of the airfoil section is 18% ⁇ 1% of the propeller radius, the angle of attack is 22.2° ⁇ 0.1°, the distance between the second target spanwise position and the central axis of the central column is 27% ⁇ 1% of the propeller radius; when the airfoil section is located at the third target spanwise position of the blade segment, the chord length of the airfoil section is 11% ⁇ 1% of the propeller radius, and
  • the radius of the propeller refers to the farthest distance between the blade and the central axis of the central column.
  • the radius of the propeller can be 1m or 2m. In some embodiments, the radius of the propeller is not limited. .
  • the position, chord length, and angle of attack of the airfoil section can also be other suitable values, which all belong to the protection scope of the present invention.
  • the airfoils of the blade section 10 and the blade section 20 are concave-convex airfoils.
  • the concave-convex airfoil refers to the airfoil whose upper arc is convex and the lower arc is concave. Compared with other airfoils, the concave-convex airfoil has the largest lift coefficient, and the drag coefficient is also relatively low within a certain range. Therefore, the highest theoretical lift-to-drag ratio can be obtained under a reasonable design.
  • the blade using this concave-convex airfoil is the lightest, so it is also conducive to weight reduction. Exemplarily, the working speed range of the blade is 1200-1800rpm.
  • the airfoil of the blade segment can also be a flat-convex airfoil, a symmetrical airfoil, a double-convex airfoil, and an S-airfoil.
  • airfoil There are various airfoils here, as long as the airfoil that can meet the lift demand is within the protection scope of the present invention.
  • the shape of the airfoil is controlled.
  • the thickness of the blade segment first increases and then decreases.
  • the thickness of the blade segment The maximum thickness is 7.28% ⁇ 0.5% of the chord length of the corresponding chord line, the position of the maximum thickness of the blade segment corresponds to the first chord line position of the chord line, and the first chord line position is 24.7% of the chord length of the chord line ⁇ 0.5%.
  • the specific number of airfoil sections is not limited here. Since the upper and lower airfoils are in a smooth transition, the shape of the airfoil can be controlled by controlling the maximum thickness and maximum camber. Through the above design, it has The efficiency of a propeller with a pair of blades can be increased by more than 5%.
  • the blade segment has a curved portion, the maximum curvature of the curved portion is 5.49% ⁇ 0.5% of the chord length of the corresponding chord line, and the maximum curvature of the curved portion is within the length of the blade segment.
  • the position corresponds to a second string position of the string, which is 43.6% ⁇ 0.5% of the string length of the string.
  • the positions of the blade roots of the two blade segments are the same, or, along the height direction of the center column 40 , the positions of the blade roots of the two blade segments are different.
  • the position of the blade root of the above-mentioned blade segment refers to the position of the trace of the first leading edge of each blade segment on the central column.
  • the wing root of the blade section 10 (where the first leading edge trace of the blade section 10 is at the central column) is higher than the wing root of the blade section 20 (the blade The first leading edge trace of the blade segment 20 is at the position of the center column); please refer to Fig.
  • the wing root of the blade segment 10 (blade segment 10 at the position of the center column) is consistent with the height direction of the blade root of the blade segment 20 (the first leading edge track of the blade segment 20 is at the position of the center column); also optionally, 5a-5c, along the axial direction of the center column 40, according to the normal use state of the propeller, the blade root of the blade segment 10 (the first leading edge trace of the blade segment 10 is at the position of the center column) is lower than the propeller
  • the root of the blade segment 20 (where the first leading edge trace of the blade segment 20 is at the center post).
  • the paddle and the central column 40 are integrally formed or detachably connected.
  • the blade and the center column 40 are integrally formed so that the connection between the blade and the center column 40 can be smoothly transitioned using processing technology, and it is not easy to produce a sudden change in shape between the blade and the center column 40 . Destroy the configuration of the entire propeller, thereby affecting the lift coefficient.
  • the blade is connected to the central column 40 using a mortise and tenon structure. Since the blade in the embodiment of the present invention has a smooth transitional curved surface, especially the twisted structure at the transition portion of the wing tip, the manufacturing process of the blade is relatively complicated.
  • the blade and the central column 40 can be manufactured separately, and the process is relatively simpler. And through the connection method of tenon and tenon structure, the root of the blade is detachably fixed on the central column 40, and when one of the blades in the propeller is damaged, it is not necessary to replace the whole propeller, but simply replace the damaged blade Just replace it, the cost is lower, and it is easy to operate. At the same time, the root of the paddle can be connected with the central column 40 through a mortise and tenon structure, so that the paddle has a certain margin during high-speed rotation, is not easy to break, and has higher reliability.
  • the propeller includes at least two blades, and the two blades are symmetrical about the center of the central column 40 .
  • the blades generally appear in pairs.
  • the embodiment of the present invention can be two blades, and the two blades are formed by a central column 40 It is set in the form of central symmetry, in order to obtain the best lift coefficient, it can also be set as 4 blades, which are divided into two pairs, wherein the two blades in each pair of blades are in the form of symmetry with the center of the central column 40 set up.
  • the propeller is provided with 6, 8, 10 blades, etc.
  • each blade can be evenly distributed or non-uniformly distributed.
  • the angles of the blades are 45° and 135°. It can be understood that , the angle of the plurality of paddles is not limited to the above-mentioned angles, and the plurality of paddles is not limited to four paddles.
  • the embodiment of the present invention also provides a power assembly, including the propeller in the above technical solution, the propeller is in transmission connection with the driving part, and the driving part can drive the center column to rotate, and then the center column can drive the blades to rotate.
  • the driving part may be a motor, and in order to cooperate with the propeller to obtain the best lift coefficient and minimum resistance, the rotation speed of the motor is at least 1000-2000 revolutions per minute.
  • An embodiment of the present invention also provides an aircraft, including a fuselage and at least one power assembly described above, wherein the power assembly is connected to the fuselage of the aircraft.
  • the number of power components in the aircraft can be one or multiple, and the specific number is not limited in some embodiments.
  • the aircraft can include two, three, four, Five, six, eight, ten and other power components.
  • the rotation directions of the propellers contained in the multiple power components are different, and the rotation direction of each power component is adjusted according to the state of the subsequent flight of the aircraft, thereby obtaining different flight attitudes of the aircraft.
  • the propellers included in at least two power assemblies are coaxially installed, and when the aircraft is in flight, the propellers included in at least two power assemblies rotate in the same direction.
  • the aircraft is equipped with two coaxial propellers, that is, the configuration of upper and lower double propellers.
  • the twin-screw propeller of this configuration can make full use of the power of the motor, which is more conducive to prolonging the flight time of the aircraft and improving the flight experience under the same power condition.
  • embodiments of the present invention include a variety of devices having various embodiments of the propeller of the present disclosure, for example, including the following illustrative devices: aircraft, ships, fans, cooling devices, heating devices, automobile engines and air circulation device, etc.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明提供了一种螺旋桨、动力组件和飞行器,涉及飞行技术领域,以解决螺旋桨翼尖容易产生涡流和空泡从而造成噪音较大和阻力增加的技术问题。螺旋桨包括中心柱以及至少两个桨叶,每个桨叶的翼根设在中心柱上,每个桨叶具有两个桨叶段和叶尖过渡段,每个桨叶段的翼根连接于中心柱,每个桨叶段具有迎风的第一前缘,以及与第一前缘相对的第一后缘;翼尖过渡段为曲面状过渡段,翼尖过渡段具有第二前缘,以及与第二前缘相对的第二后缘,两个桨叶段所具有的第一前缘通过第二前缘过渡连接,两个桨叶段所具有的第一后缘通过第二后缘过渡连接,第二前缘和第二后缘均为弧线状边缘。本发明提供的螺旋桨用于飞行器中。

Description

一种螺旋桨、动力组件和飞行器 技术领域
本公开涉及飞行领域,尤其涉及一种螺旋桨、动力组件和飞行器。
背景技术
目前,普通飞机使用的螺旋桨,由于大多采用直桨叶,其叶尖部分未经过特殊处理,容易产生桨尖涡流和空泡,从而造成噪音较大和阻力增加,因此,直桨叶的经济性和环境友好性不佳。即使部分经过改进的螺旋桨桨尖,例如在桨尖部分增加翼梢,对改善噪音和减小阻力的效果也不理想。
发明内容
本发明的目的在于提供一种螺旋桨,用于降低螺旋桨桨尖的涡流和空泡,减小噪音和阻力。采用该螺旋桨的飞机,在人口稠密区飞行作业时,可以降低飞机噪音,减小对周边人民群众的影响。
为了实现上述目的,本发明提供如下技术方案:
本发明实施例提供一种螺旋桨,包括中心柱以及至少两个桨叶,每个所述桨叶的翼根设在所述中心柱上,每个所述桨叶具有两个桨叶段和叶尖过渡段,每个所述桨叶段的翼根连接于所述中心柱,每个所述桨叶段具有迎风的第一前缘,以及与所述第一前缘相对的第一后缘;
所述翼尖过渡段为曲面状过渡段,所述翼尖过渡段具有第二前缘,以及与所述第二前缘相对的第二后缘,两个所述桨叶段所具有的所述第一前缘通过所述第二前缘过渡连接,两个所述桨叶段所具有的所述第一后缘通过所述第二后缘过渡连接,所述第二前缘和所述第二后缘均为弧线状边缘;
在两个所述桨叶段的第一前缘之间,两个所述桨叶段所具有的所述第一前缘的迹线为悬链线。
根据本公开的至少一个实施方式,所述弧线状边缘的边缘线为悬链线。
根据本公开的至少一个实施方式,所述第二前缘与所述第二后缘的边缘线间隔至少为18mm。
根据本公开的至少一个实施方式,所述第二前缘的边缘线与所述中心柱的最大距离为第一距离,所述第二后缘的边缘线与所述中心柱的最大距离为第二距离,所述第一距离大于所述第二距离,所述第一距离与所述第二距离的差值为5mm±2mm。
根据本公开的至少一个实施方式,每个所述桨叶段为曲面状桨叶段;其中,
所述第一前缘的边缘线与所述第二前缘的边缘线曲率连续;和/或,所述第一后缘的边缘线与所述第二后缘的边缘线曲率连续。
根据本公开的至少一个实施方式,所述中心柱的柱身为圆形柱身;其中,
所述第一前缘的迹线与所述圆形柱身的表面相切;和/或,
所述第二前缘的迹线与所述圆形柱身的表面相切。
根据本公开的至少一个实施方式,两个所述桨叶段所具有的所述第一前缘的迹线与所述圆形柱身的表面形成的切线夹角为45°±5°。
根据本公开的至少一个实施方式,每个所述桨叶段具有沿着所述桨叶段的展向方向分布多个翼型截面;其中,
各个所述翼型截面的弦长和/或攻角均沿着所述桨叶段的展开方向,从所述翼根开始先增加后减小。
根据本公开的至少一个实施方式,当所述翼型截面位于所述桨叶段的第一目标展向位置,所述翼型截面的弦长为所述螺旋桨半径的16%±1%,攻角为19.7°±0.1°,所述第一目标展向位置与所述中心柱的中心轴的距离为所述螺旋桨半径的20%±1%;和/或,
当所述翼型截面位于所述桨叶段的第二目标展向位置,所述翼型截面的弦长为所述螺旋桨半径的18%±1%,攻角为22.2°±0.1°,所述第二目标展向位置与所述中心柱的中心轴的距离为所述螺旋桨半径的27%±1%;
当所述翼型截面位于所述桨叶段的第三目标展向位置,翼型截面的弦长为所述螺旋桨半径的11%±1%,攻角为9.7°±0.1°,所述第 三目标展向位置与所述中心柱的中心轴的的距离为所述螺旋桨半径的80%±1%。
根据本公开的至少一个实施方式,至少一个所述桨叶段的翼型为凹凸翼型、平凸翼型、对称翼型、双凸翼型和S翼型中的一种。
根据本公开的至少一个实施方式,沿着所述桨叶段的弦线长度方向,所述桨叶段的厚度先增加后减小,
沿着所述桨叶段的弦线长度方向,所述桨叶段的最大厚度为相应弦线的弦长的7.28%±0.5%,所述桨叶段的最大厚度所处位置与所述弦线的第一弦线位置对应,所述第一弦线位置为所述弦线的弦长的24.7%±0.5%。
根据本公开的至少一个实施方式,沿着所述桨叶段的弦线长度方向,所述桨叶段具有弯曲部,所述弯曲部的最大弯度为相应弦线的弦长的5.49%±0.5%,所述弯曲部的最大弯度在所述桨叶段的位置与所述弦线的第二弦线位置对应,所述第二弦线位置为所述弦线的弦长的43.6%±0.5%。
根据本公开的至少一个实施方式,沿着所述中心柱的轴向方向,两个所述桨叶段的翼根位置与所述后桨叶的翼根位置的相同,或,沿着所述中心柱的高度方向,所述前桨叶的翼根位置与所述后桨叶的翼根位置不同。
根据本公开的至少一个实施方式,所述桨叶与所述中心柱为一体成型或可拆卸连接。
相对于现有技术,本发明的螺旋桨具有以下优势:
本发明提供的螺旋桨中设置了中心柱和至少两个桨叶,每个桨叶的翼根连接于中心柱上,通过驱动中心柱的旋转带动桨叶的旋转产生升力。其中,每个桨叶具有两个桨叶段和翼尖过渡段,两个桨叶段通过翼尖过渡段连接,由于翼尖过渡段与两个桨叶段分别平滑连接,使得与采用直桨叶或在翼尖增加翼梢相比,噪音更小、阻力也变小。同时,没有较薄较锋利的翼尖,不容易对人员造成严重伤害,同时抗撞击性较好,异物撞击时桨尖也不易受损。桨叶作为一个整体,桨叶的两个翼根连接于中心柱上,两个桨叶段均具有迎风的第一前缘和与第 一前缘相对的第一后缘,使得桨叶在获得较佳的升力的同时,还有利于桨叶的工艺制造。由于翼尖过渡段为曲面状过渡段,两个桨叶之间自然过渡,具体地,翼尖过渡段具有第二前缘,以及与第二前缘相对的第二后缘,两个桨叶段所具有的第一前缘通过第二前缘过渡连接,两个桨叶段所具有的第一后缘通过第二后缘过渡连接,第二前缘和第二后缘均为弧线状边缘,并且在两个桨叶段的第一前缘之间,两个桨叶段所具有的第一前缘的迹线为悬链线,使得第一前缘迹线从起点到终点均平滑过渡,而且桨叶的表面为平滑过渡,因此整个桨叶具有较小的应力,强度较高,不易折断,从而整个螺旋桨的可靠性较高。
本发明的另一目的在于还提供一种动力组件,包括驱动件和上述的螺旋桨,所述螺旋桨与所述驱动件传动连接。
相对于现有技术,本发明所述的动力组件具有的优势与上述螺旋桨所具有的优势相同,在此不再赘述。
本发明的另一目的在于还提供一种飞行器,包括机身和至少一个上述的动力组件,所述动力组件设在所述机身。
根据本公开的至少一个实施方式,所述动力组件的数量为多个;其中,
当所述飞行器处在飞行状态,多个所述动力组件含有的螺旋桨的转动方向不同;或,
至少两个所述动力组件含有的螺旋桨同轴安装,当所述飞行器处在飞行状态,至少两个所述动力组件含有的螺旋桨的转动方向相同。
相对于现有技术,本发明所述的飞行器具有的优势与上述螺旋桨所具有的优势相同,在此不再赘述。
附图说明
附图示出了本公开的示例性实施方式,并与其说明一起用于解释本公开的原理,其中包括了这些附图以提供对本公开的进一步理解,并且附图包括在本说明书中并构成本说明书的一部分。
图1是根据本公开的实施方式的翼型截面结构的示意图。
图2是根据本公开的实施方式的桨叶前缘迹线示意图。
图3a是根据本公开的实施方式一螺旋桨结构的立体示意图。
图3b是根据本公开的实施方式一螺旋桨结构的侧视示意图。
图3c是根据本公开的实施方式一螺旋桨结构的俯视示意图。
图4a是根据本公开的实施方式二螺旋桨结构的立体示意图。
图4b是根据本公开的实施方式二螺旋桨结构的侧视示意图。
图4c是根据本公开的实施方式二螺旋桨结构的俯视示意图。
图5a是根据本公开的实施方式三螺旋桨结构的立体示意图。
图5b是根据本公开的实施方式三螺旋桨结构的侧视示意图。
图5c是根据本公开的实施方式三螺旋桨结构的俯视示意图。
具体实施方式
下面结合附图和实施方式对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施方式仅用于解释相关内容,而非对本公开的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本公开相关的部分。
需要说明的是,在不冲突的情况下,本公开中的实施方式及实施方式中的特征可以相互组合。下面将参考附图并结合实施方式来详细说明本公开。
现有的螺旋桨翼尖会产生较大的噪音,并且阻力升高,使得螺旋桨的工作效率较低。同时,锐利的桨尖还可能会对人员造成割伤。
请参阅图1所示,根据本公开的实施例,提供了一种螺旋桨,包括中心柱以及至少两个桨叶,每个桨叶的翼根设在中心柱40上,每个桨叶具有两个桨叶段(10、20)和翼尖过渡段30,每个桨叶段的翼根连接于中心柱40,每个桨叶段具有迎风的第一前缘(101、201),以及与第一前缘(101、201)相对的第一后缘(103、203);翼尖过渡段30为曲面状过渡段,翼尖过渡段30具有第二前缘301,以及与第二前缘相对的第二后缘302,两个桨叶段所具有的第一前缘通过第二前缘301过渡连接,两个桨叶段所具有的第一后缘通过第二后缘302过渡连接,第二前缘301和第二后缘302均为弧线状边缘;在两个桨叶段的第一前缘之间,两个桨叶段所具有的第一前缘的迹线为悬链线。
两个桨叶段(10、20)通过翼尖过渡段30的平滑过渡,使得桨叶的翼尖不会产生较大的阻力和噪声。其中,翼尖过渡段30为曲面状过 渡段,两个桨叶段所具有的第一前缘通过第二前缘301过渡连接,两个桨叶段所具有的第一后缘通过第二后缘302过渡连接。由于第二前缘301和第二后缘302均为弧线状边缘,使得过渡较为平缓。桨叶段10的上翼面与桨叶段20的下翼面曲线过渡,桨叶段10的下翼面与桨叶段20的上翼面曲线过渡,翼尖过渡段30形成扭转结构使得桨叶段10与桨叶段20之间曲线平滑过渡,这种扭转结构的翼尖过渡段30避免了锐利翼尖产生较大风阻和噪音。两个桨叶段所具有的第一前缘迹线50在两个桨叶段的第一前缘之间的部分为悬链线,桨叶段10的第一前缘101与桨叶段20的第一前缘201之间的迹线与两个桨叶段的第一前缘的边缘线平滑过渡,此迹线为两个桨叶段的第一前缘迹线之间的连接线。通过将两个桨叶段的第一前缘之间的迹线设置为悬链线,使得桨叶的翼型设计具有更高的升力。同时,桨叶表面为平滑过渡,整个桨叶具有较小的应力,整个桨叶一体成型,使得桨叶强度很高,因此制备的整个螺旋桨的工作可靠性非常高。
在某些实施方式中,弧线状边缘的边缘线为悬链线。实现平滑过渡的曲线多种多样,示例性地,本发明实施例的翼尖过渡段30采用悬链线,这里的悬链线不一定是严格意义上的悬链线,第二前缘301或第二后缘302可以为近似的悬链线。桨叶段10和桨叶段20之间的第一前缘或第一后缘采用悬链线曲线过渡,整个桨叶在螺旋桨旋转过程中,示例性地,两个桨叶段的第一前缘的边缘线分别与第二前缘301的边缘线相切,使得桨叶整体翼型平滑过渡,并且在一定的转速下,整个桨叶产生的离心力与其内部张力可以互相平衡,从而避免桨叶发生弯曲或扭转,保证桨叶气动外形的稳定可靠。
考虑到螺旋桨桨叶的加工制造工艺,桨叶的翼尖过渡段30的第二前缘301与第二后缘302之间的最小间隔为18mm。当第二前缘301与第二后缘302之间的间隔小于18mm时,由于翼尖过渡段30为过渡曲面且呈现扭转结构,现有的加工制造工艺和材料无法或难于加工出,或加工精度难以保证翼尖过渡段30使得桨叶段10和桨叶段20之间曲线过渡。
在某些实施方式中,第二前缘301的边缘线与中心柱40的最大距 离为第一距离,第二后缘302的边缘线与中心柱40的最大距离为第二距离,第一距离大于第二距离,第一距离与第二距离的差值为5mm±2mm。
第二前缘301距中心柱40的最远点相对于第二后缘302距中心柱40的最远点,第二前缘301更为远离中心柱40,这一差值,示例性地为5mm,4.5mm或5.5mm。除了保证实际生产中加工制造工艺可以制造出翼尖过渡段外,还在于可以保证桨叶段10的上翼面平滑过渡到桨叶段20的下翼面,而桨叶段10的下翼面平滑过渡到桨叶段20的上翼面。
本发明实施例的翼尖过渡段30为了使得桨叶段10平滑过渡到桨叶段20上,请参阅图1和图2,每个桨叶段为曲面状桨叶段,其中第一前缘(101、201)的边缘线与第二前缘301的边缘线曲率连续;和/或,第一后缘(103、203)的边缘线与第二后缘302的边缘线曲率连续。
第二前缘301的两端通过曲率连续分别与桨叶段10的前缘迹线和桨叶段20的前缘迹线连接,此处的前缘迹线指的是各个翼型截面的前缘的顶点所形成的线,此处的前缘迹线即为每个桨叶段的第一前缘的边缘线,相较于连接处采用切线连续,采用曲率连续的连接点处更为平缓,对于连接处的平滑过渡非常重要,由于螺旋桨高速旋转过程中,桨叶的微小突变就会产生很大的阻力和噪音,因此采用曲率连续的连接点,可以控制减少桨叶的阻力和噪音。基于同样与第二前缘301的两端采用曲率连续的方式,第二后缘302也采用曲率连续的方式分别与桨叶段10的后缘迹线和桨叶段20的后缘迹线连接,过渡更为平缓,此处的后缘迹线也即各个桨叶段的第一后缘边缘线。
在某些实施例中,所述中心柱40的柱身为圆形柱身;示例性地,也可以为椭圆形的柱身,其中,第一前缘的迹线与圆形柱身的表面相切。
请参阅图2,桨叶的第一前缘迹线50从起点501处,从中心柱40向外发展,其中,第一前缘迹线50在起点501处与中心柱40的外圆相切,沿着桨叶段10第一前缘101、两个桨叶段的第一前缘之间的迹线、桨叶段20的第一前缘201过渡回到中心柱40的终点502处,第一前缘迹线 50在终点502处与中心柱40的外圆相切。第一前缘迹线50起点和终点都与中心柱40的外圆相切,使得每个桨叶段的翼根处与中心柱40可以平滑过渡,否则会在翼根处形成湍流,影响升力。这一设置结构保证了桨叶旋转过程中平稳可靠,且使得桨叶的桨根靠近中心柱40的位置气流的进入和输出较为平滑,可以提高螺旋桨在中心柱位置的效率。
在某些实施例中,两个桨叶段所具有的第一前缘迹线50与圆形柱身的表面形成的切线夹角为45°±5°。由于,桨叶段的第一前缘迹线的起点501处与中心柱40的外圆相切,桨叶的前缘迹线的终点502处与中心柱40的外圆相切,相应地切线之间的夹角设置为45°,使得整个桨叶,包括桨叶段10、桨叶段20和翼尖过渡段30,整体呈流线型,其阻力很小且效率高,进一步提高了飞行器的飞行性能。可以理解的是,根据桨叶数量的多少可以调整这两个切线的夹角,不限于45°±5°,但在某些实施例中,例如4片桨叶的结构,这一45°±5°的切线夹角更有利于获得最佳升力。
在某些实施方式中,每个桨叶段具有沿着桨叶段的展向方向分布多个翼型截面;其中,各个翼型截面的弦长和/或攻角均沿着桨叶段的展开方向,从翼根开始先增加后减小。
为了获得最好的飞行效能,桨叶段10和桨叶段20的翼型通过翼型截面来控制,而每个翼型截面之间是平滑过渡的,本发明实施例中,多个翼型截面沿着桨叶段的展向方向分布,具体翼型截面的数量在某些实施方式中根据实际尺寸控制来选择,示例性地,可以为9个翼型截面来控制桨叶段10和桨叶段20的翼型。沿翼根向翼尖的方向,每个翼型截面的弦长和攻角均先逐渐增加后逐渐减小的趋势进行平滑过渡。
示例性地,桨叶段10和桨叶段20设置三个控制翼型的翼型截面,当翼型截面位于桨叶段的第一目标展向位置,翼型截面的弦长为螺旋桨半径的16%±1%,攻角为19.7°±0.1°,第一目标展向位置与中心柱的中心轴的距离为螺旋桨半径的20%±1%;和/或,当翼型截面位于所述桨叶段的第二目标展向位置,翼型截面的弦长为螺旋桨半径的18%±1%,攻角为22.2°±0.1°,第二目标展向位置与中心柱的中心 轴的距离为螺旋桨半径的27%±1%;当所述翼型截面位于桨叶段的第三目标展向位置,翼型截面的弦长为螺旋桨半径的11%±1%,攻角为9.7°±0.1°,第三目标展向位置与中心柱的中心轴的的距离为螺旋桨半径的80%±1%。本发明实施例中,螺旋桨的半径指的是桨叶距离中心柱的中心轴最远的距离,示例性地,螺旋桨的半径可以为1m、2m,在某些实施方式中螺旋桨的半径不做限定。当然,可以理解的是,翼型截面的位置、弦长、攻角也可以呈其他合适的数值,均属于本发明的保护范围。经过实验,通过上述设计,具有两个桨叶的螺旋桨的效率相较于普通螺旋桨效率可提高10%以上。
为了获得最佳的升力系数,桨叶段10和桨叶段20的翼型均为凹凸翼型。凹凸翼型是指上弧线凸出而下弧线凹进的翼型,凹凸翼型相较于其它翼型具有最大的升力系数,同时在一定范围内阻力系数也比较低。因此在合理的设计下可以获得最高的理论升阻比。此外,使用这种凹凸翼型的桨叶是最轻的,因此也有利于减重。示例性地,桨叶的工作转速范围为1200-1800rpm,在这一工作转速范围内,阻力系数低,具有较高的理论升阻比。可以理解的是,桨叶段的翼型也可以为平凸翼型、对称翼型、双凸翼型和S翼型,这里的翼型多种多样,只要能满足升力需求的翼型均在本发明的保护范围之内。
在某些实施例中,翼型的形状控制,沿着桨叶段的弦线长度方向,桨叶段的厚度先增加后减小,沿着桨叶段的弦线长度方向,桨叶段的最大厚度为相应弦线的弦长的7.28%±0.5%,桨叶段的最大厚度所处位置与弦线的第一弦线位置对应,第一弦线位置为弦线的弦长的24.7%±0.5%。可以理解的是,翼型截面的具体数量在此不做限制,由于上翼面和下翼面均是平滑过渡,控制最大厚度和最大弯度,即可控制翼型的形状,通过上述设计,具有一对桨叶的螺旋桨的效率可提高5%以上。
进一步地,沿着桨叶段的弦线长度方向,桨叶段具有弯曲部,弯曲部的最大弯度为相应弦线的弦长的5.49%±0.5%,弯曲部的最大弯度在桨叶段的位置与弦线的第二弦线位置对应,第二弦线位置为弦线的弦长的43.6%±0.5%。这一翼型设计可以保证螺旋桨的升力。
沿着所述中心柱40的高度方向,两个桨叶段的翼根位置相同,或,沿着中心柱40的高度方向,两个桨叶段的翼根位置不同。
需要说明的是,上述桨叶段的翼根位置指的是每个桨叶段第一前缘的迹线在中心柱的位置。请参阅图3a-3c,按照螺旋桨正常的使用状态,桨叶段10的翼根(桨叶段10的第一前缘迹线在中心柱的位置)高于桨叶段20的翼根(桨叶段20的第一前缘迹线在中心柱的位置);请参阅图4a-4c,沿中心柱40的轴线方向,按照螺旋桨正常的使用状态,桨叶段10的翼根(桨叶段10的第一前缘迹线在中心柱的位置)与桨叶段20的翼根(桨叶段20的第一前缘迹线在中心柱的位置)的高度方向一致;还可选地,请参阅图5a-5c,沿中心柱40的轴线方向,按照螺旋桨正常的使用状态,桨叶段10(桨叶段10的第一前缘迹线在中心柱的位置)的翼根低于桨叶段20的翼根(桨叶段20的第一前缘迹线在中心柱的位置)。上述三种桨叶段10的翼根与桨叶段20的翼根的在中心柱40上的设置方式均具有较高的理论升阻比,阻力系数也比较低。
在某些实施例中,桨叶与中心柱40为一体成型或可拆卸连接。将桨叶与中心柱40通过一体成型的方式,可以使得桨叶与中心柱40之间的连接处使用加工工艺进行平滑的过渡,不容易在桨叶与中心柱40之间产生形状的突变,破坏整个螺旋桨的构型,进而影响升力系数。示例性地,采用榫卯结构将桨叶与中心柱40连接,由于本发明实施例的桨叶为平滑过渡的曲面,尤其在翼尖过渡部的扭转结构,使得桨叶的制作工艺较为复杂,通过榫卯结构连接,可以将桨叶与中心柱40分开进行制作,工艺相对更为简单。而通过榫卯结构的连接方式,桨叶的桨根可拆卸地固定在中心柱40上,还可以在螺旋桨中的一个桨叶损坏时,不用更换整个螺旋桨,而只简单地将损坏的桨叶替换掉即可,成本更低,也易于操作。同时,桨叶的桨根通过榫卯结构可以与中心柱40间隙配合连接在一起,使得桨叶在高速旋转过程中,留有一定的余量,不易折断,可靠性更高。
在某些实施方式中,所述螺旋桨至少包括两个桨叶,两个桨叶关于中心柱40的中心呈中心对称。可以理解的是,桨叶的设置为了保证桨 叶在高速旋转过程的稳定性,一般成对出现,示例性地,本发明实施例可为两个桨叶,两个桨叶呈以中心柱40的中心对称的形式设置,为了获得最佳的升力系数,还可以设置为4个桨叶,分为两对,其中每对桨叶中的两个桨叶呈以中心柱40的中心对称的形式设置。还可选地,根据实际升力需要,螺旋桨设置6个、8个、10个桨叶等。多个桨叶的螺旋桨,每个桨叶可以为均匀分布,也可以为非均匀分布,以四个桨叶的螺旋桨为例,其桨叶的角度为45°和135°分布,可以理解的是,多个桨叶的角度不限于上述角度,多个桨叶也不限于四个桨叶。
本发明实施例还提供了一种动力组件,包括上述技术方案中的螺旋桨,螺旋桨与驱动件传动连接,驱动件可以带动中心柱转动,进而中心柱带动桨叶转动。其中,驱动件可以为电机,为了配合螺旋桨获得最佳的升力系数和最小的阻力,电机的每分钟的转速至少包括为1000-2000转。
本发明实施例提供的动力组件的具体功能实现和效果请参见上述螺旋桨的描述,在此不再赘述。
本发明实施例还提供了一种飞行器,包括机身和至少一个上述的动力组件,其中动力组件与飞行器的机身连接。可以理解的是,飞行器中动力组件的数量可以为一个,也可以为多个,具体数量在某些实施例中不做限定,当动力组件为多个时,飞行器可以包括二、三、四、五、六、八、十等数量的动力组件。当动力组件为多个时,当飞行器处在飞行状态,多个动力组件含有的螺旋桨的转动方向不同,根据飞行器后续飞行的状态调整每个动力组件的转动方向,从而获得飞行器不同的飞行姿态。在某些实施方式中,至少两个动力组件含有的螺旋桨同轴安装,当飞行器处在飞行状态,至少两个动力组件含有的螺旋桨的转动方向相同。飞行器设置两个同轴的螺旋桨,也即上下双桨的构型。通过这种构型的双桨螺旋桨,能够充分利用电机的功率,在同等电量条件下,更有利于延长飞行器的航行时间,提高飞行体验。
需要说明的是,本发明实施例包括具有本公开的螺旋桨的多种实施例的多种设备,例如,包括以下说明性的设备:飞机、船舶、风机、冷 却装置、加热装置、汽车发动机和空气循环装置等。
在本说明书的描述中,参考术语“一个实施例/方式”、“一些实施例/方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例/方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例/方式或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例/方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例/方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例/方式或示例以及不同实施例/方式或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
本领域的技术人员应当理解,上述实施方式仅仅是为了清楚地说明本公开,而并非是对本公开的范围进行限定。对于所属领域的技术人员而言,在上述公开的基础上还可以做出其它变化或变型,并且这些变化或变型仍处于本公开的范围内。

Claims (17)

  1. 一种螺旋桨,其特征在于,包括中心柱以及至少两个桨叶,每个所述桨叶的翼根设在所述中心柱上,每个所述桨叶具有两个桨叶段和翼尖过渡段,每个所述桨叶段的翼根连接于所述中心柱,每个所述桨叶段具有迎风的第一前缘,以及与所述第一前缘相对的第一后缘;
    所述翼尖过渡段为曲面状过渡段,所述翼尖过渡段具有第二前缘,以及与所述第二前缘相对的第二后缘,两个所述桨叶段所具有的所述第一前缘通过所述第二前缘过渡连接,两个所述桨叶段所具有的所述第一后缘通过所述第二后缘过渡连接,所述第二前缘和所述第二后缘均为弧线状边缘;
    在两个所述桨叶段的第一前缘之间,两个所述桨叶段所具有的所述第一前缘的迹线为悬链线。
  2. 如权利要求1所述的螺旋桨,其特征在于,所述弧线状边缘的边缘线为悬链线。
  3. 如权利要求1所述的螺旋桨,其特征在于,所述第二前缘与所述第二后缘的边缘线间隔至少为18mm。
  4. 如权利要求1所述的螺旋桨,其特征在于,所述第二前缘的边缘线与所述中心柱的最大距离为第一距离,所述第二后缘的边缘线与所述中心柱的最大距离为第二距离,所述第一距离大于所述第二距离,所述第一距离与所述第二距离的差值为5mm±2mm。
  5. 如权利要求1所述的螺旋桨,其特征在于,每个所述桨叶段为曲面状桨叶段;其中,
    所述第一前缘的边缘线与所述第二前缘的边缘线曲率连续;和/或,所述第一后缘的边缘线与所述第二后缘的边缘线曲率连续。
  6. 如权利要求1所述的螺旋桨,其特征在于,所述中心柱的柱身为圆形柱身;其中,
    所述第一前缘的迹线与所述圆形柱身的表面相切。
  7. 如权利要求6所述的螺旋桨,其特征在于,两个所述桨叶段所具有的所述第一前缘的迹线与所述圆形柱身的表面形成的切线夹角为45°±5°。
  8. 如权利要求1-6任一项所述的螺旋桨,其特征在于,每个所述桨叶段具有沿着所述桨叶段的展向方向分布多个翼型截面;其中,
    各个所述翼型截面的弦长和/或攻角均沿着所述桨叶段的展开方向,从所述翼根开始先增加后减小。
  9. 如权利要求8所述的螺旋桨,其特征在于,当所述翼型截面位于所述桨叶段的第一目标展向位置,所述翼型截面的弦长为所述螺旋桨的半径的16%±1%,攻角为19.7°±0.1°,所述第一目标展向位置与所述中心柱的中心轴的距离为所述螺旋桨的半径的20%±1%;和/或,
    当所述翼型截面位于所述桨叶段的第二目标展向位置,所述翼型截面的弦长为所述螺旋桨的半径的18%±1%,攻角为22.2°±0.1°,所述第二目标展向位置与所述中心柱的中心轴的距离为所述螺旋桨的半径的27%±1%;
    当所述翼型截面位于所述桨叶段的第三目标展向位置,翼型截面的弦长为所述螺旋桨的半径的11%±1%,攻角为9.7°±0.1°,所述第三目标展向位置与所述中心柱的中心轴的距离为所述螺旋桨的半径的80%±1%。
  10. 如权利要求1-6任一项所述的螺旋桨,其特征在于,至少一个所述桨叶段的翼型为凹凸翼型、平凸翼型、对称翼型、双凸翼型和S翼型中的一种。
  11. 如权利要求1-6任一项所述的螺旋桨,其特征在于,沿着所述桨叶段的弦线长度方向,所述桨叶段的厚度先增加后减小,
    沿着所述桨叶段的弦线长度方向,所述桨叶段的最大厚度为相应弦线的弦长的7.28%±0.5%,所述桨叶段的最大厚度所处位置与所述弦线的第一弦线位置对应,所述第一弦线位置为所述弦线的弦长的24.7%±0.5%。
  12. 如权利要求11所述的螺旋桨,其特征在于,沿着所述桨叶段的弦线长度方向,所述桨叶段具有弯曲部,所述弯曲部的最大弯度为相应弦线的弦长的5.49%±0.5%,所述弯曲部的最大弯度在所述桨叶段的位置与所述弦线的第二弦线位置对应,所述第二弦线位置为所述 弦线的弦长的43.6%±0.5%。
  13. 如权利要求1所述的螺旋桨,其特征在于,沿着所述中心柱的高度方向,两个所述桨叶段的翼根位置相同,或,沿着所述中心柱的高度方向,两个所述桨叶段的翼根位置不同。
  14. 如权利要求1-6任一项所述的螺旋桨,其特征在于,所述桨叶与所述中心柱为一体成型或可拆卸连接。
  15. 一种动力组件,其特征在于,包括驱动件和如权利要求1-14任一项所述的螺旋桨,所述螺旋桨与所述驱动件传动连接。
  16. 一种飞行器,其特征在于,包括机身和至少一个如权利要求15所述的动力组件,所述动力组件设在所述机身。
  17. 如权利要求16所述的飞行器,其特征在于,所述动力组件的数量为多个;其中,
    当所述飞行器处在飞行状态,多个所述动力组件含有的螺旋桨的转动方向不同;或,
    至少两个所述动力组件含有的螺旋桨同轴安装,当所述飞行器处在飞行状态,至少两个所述动力组件含有的螺旋桨的转动方向相同。
PCT/CN2021/141952 2021-12-17 2021-12-28 一种螺旋桨、动力组件和飞行器 WO2023108817A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111554900.7A CN114104266A (zh) 2021-12-17 2021-12-17 一种螺旋桨、动力组件和飞行器
CN202111554900.7 2021-12-17

Publications (1)

Publication Number Publication Date
WO2023108817A1 true WO2023108817A1 (zh) 2023-06-22

Family

ID=80365964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141952 WO2023108817A1 (zh) 2021-12-17 2021-12-28 一种螺旋桨、动力组件和飞行器

Country Status (2)

Country Link
CN (1) CN114104266A (zh)
WO (1) WO2023108817A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101772453A (zh) * 2006-03-28 2010-07-07 “航空制造集团‘俄罗斯奇’”封闭式股份公司 螺旋桨(改型)及其叶片的渐开线式结构
US20130017093A1 (en) * 2009-12-21 2013-01-17 Snecma Aircraft propeller blade
CN104139849A (zh) * 2014-08-07 2014-11-12 西北工业大学 一种具有提高高空桨效率的桨梢小翼及高空桨
CN108367801A (zh) * 2016-05-27 2018-08-03 夏洛工程有限公司 推进器
CN110667825A (zh) * 2012-12-10 2020-01-10 夏洛工程有限公司 螺旋桨
CN210235310U (zh) * 2019-06-28 2020-04-03 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352408B1 (en) * 2000-10-16 2002-03-05 Robert B. Kilian Slip inhibiting boat propeller
US9926058B2 (en) * 2012-12-10 2018-03-27 Sharrow Engineering Llc Propeller
CN207565834U (zh) * 2017-10-18 2018-07-03 亿航智能设备(广州)有限公司 螺旋桨和小型多旋翼式无人机
JP6979205B2 (ja) * 2018-02-08 2021-12-08 国立研究開発法人宇宙航空研究開発機構 プロペラ、プロペラの設計方法、プロペラ設計方法プログラム及び情報記憶媒体
CN214776549U (zh) * 2020-12-21 2021-11-19 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101772453A (zh) * 2006-03-28 2010-07-07 “航空制造集团‘俄罗斯奇’”封闭式股份公司 螺旋桨(改型)及其叶片的渐开线式结构
US20130017093A1 (en) * 2009-12-21 2013-01-17 Snecma Aircraft propeller blade
CN110667825A (zh) * 2012-12-10 2020-01-10 夏洛工程有限公司 螺旋桨
CN104139849A (zh) * 2014-08-07 2014-11-12 西北工业大学 一种具有提高高空桨效率的桨梢小翼及高空桨
CN108367801A (zh) * 2016-05-27 2018-08-03 夏洛工程有限公司 推进器
CN210235310U (zh) * 2019-06-28 2020-04-03 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器

Also Published As

Publication number Publication date
CN114104266A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
US11511851B2 (en) Wing tip with optimum loading
US5190441A (en) Noise reduction in aircraft propellers
CN207826548U (zh) 一种高效低噪旋翼
CN207565834U (zh) 螺旋桨和小型多旋翼式无人机
WO2017148133A1 (zh) 螺旋桨、动力组件及飞行器
CN206344995U (zh) 用于飞行器的涵道风扇
US11225316B2 (en) Method of improving a blade so as to increase its negative stall angle of attack
WO2011081577A1 (en) Air propeller arrangement and aircraft
CN104153950B (zh) 一种带有叶尖扰流结构的兆瓦级风力发电机叶片及其成型方法
CN109110124A (zh) 一种新型旋翼桨叶
WO2017148128A1 (zh) 螺旋桨、动力组件及飞行器
EP3453872B1 (en) Methods for mitigating noise during high wind speed conditions of wind turbines
US20140064979A1 (en) Multicant Winglets
CN211364914U (zh) 旋翼飞行器的桨叶及旋翼飞行器
CN113614385A (zh) 具有后缘襟翼的轴流式风机
CN112173075B (zh) 一种直升机低噪声旋翼桨叶气动外形
WO2023108817A1 (zh) 一种螺旋桨、动力组件和飞行器
CN106564588B (zh) 一种无人直升机桨叶及无人直升机
CN209905055U (zh) 一种旋翼桨及无人机
WO2021043330A1 (zh) 一种螺旋桨及飞行器
RU2603710C1 (ru) Лопасть винта винтокрылого летательного аппарата
CN211364941U (zh) 旋翼飞行器的桨叶及旋翼飞行器
BR112018011610B1 (pt) Pá do rotor de giroscópio
CN108820187A (zh) 螺旋桨、动力组件及飞行器
CN219635509U (zh) 一种用于无人机的螺旋桨及无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967946

Country of ref document: EP

Kind code of ref document: A1