WO2023108727A1 - 显示面板 - Google Patents

显示面板 Download PDF

Info

Publication number
WO2023108727A1
WO2023108727A1 PCT/CN2021/140157 CN2021140157W WO2023108727A1 WO 2023108727 A1 WO2023108727 A1 WO 2023108727A1 CN 2021140157 W CN2021140157 W CN 2021140157W WO 2023108727 A1 WO2023108727 A1 WO 2023108727A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display panel
prism
emitting substrate
prisms
Prior art date
Application number
PCT/CN2021/140157
Other languages
English (en)
French (fr)
Inventor
殷志远
史婷
吴倩
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to JP2021576742A priority Critical patent/JP2024503942A/ja
Priority to US17/624,007 priority patent/US20230200120A1/en
Publication of WO2023108727A1 publication Critical patent/WO2023108727A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the invention relates to the field of display technology, in particular to a display panel with a smooth viewing brightness variation curve under different viewing angles.
  • OLED display panels have advantages such as wide viewing angle and wide color gamut, and are concerned and developed by major display device manufacturers as mainstream display panels. In order to further enhance the color point luminous efficiency of the OLED display panel, the OLED device structure and manufacturing process in the OLED display panel are improved.
  • the OLED devices are mainly divided into vapor deposition OLED devices and printed OLED devices, both of which have different technical advantages.
  • the exciton recombination formed by electrons and holes in the light-emitting layer The location cannot fully match the design requirements. Therefore, when the recombination position of the exciton is shifted relative to the predetermined position, the maximum brightness of the exciton emission will not be observed at a viewing angle of 0 degree (the observer directly looks at the OLED display panel), but may be observed at the side Viewing angle (observer side view OLED display panel) observed.
  • FIG. 1 is a luminance-viewing angle relationship diagram of an OLED display panel in the prior art.
  • the brightness of the OLED display panel in the prior art should have a maximum value at a viewing angle of 0 degrees, that is, the brightness value of the viewing angle of 0 degrees is 100%, and the brightness will gradually decrease as the viewing angle is tilted.
  • the brightness observation results at different viewing angles show that, in fact, the brightness observed at a viewing angle of plus or minus 30 degrees of the OLED display panel in the prior art is greater than that observed at a viewing angle of 0 degree.
  • the present invention provides a display panel with smooth viewing luminance variation curves under different viewing angles, which can improve the organic light-emitting diodes (organic light-emitting diodes) in the prior art.
  • light-emitting diode (OLED) display panel due to the problem caused by the uncertainty of the recombination position of the excitons in the light-emitting layer of the OLED device, thereby optimizing the viewing experience of the user.
  • the display panel of the present invention includes a light-emitting substrate and an optical layer.
  • the light-emitting substrate includes a light-emitting surface.
  • the optical layer is disposed on the light-emitting surface of the light-emitting substrate, and includes a prism to refract the light emitted by the light-emitting substrate.
  • the prism of the optical layer includes a bottom surface, a top surface, and a plurality of side surfaces connecting the bottom surface and the top surface.
  • the bottom surface and the top surface are parallel to the light emitting substrate.
  • the bottom surface is close to the light emitting substrate.
  • the top surface is away from the light-emitting substrate.
  • the area of the top surface is smaller than the area of the bottom surface.
  • the bottom surface of the prism is rectangular.
  • the two sides of a set of opposite sides connecting the bottom surface and the top surface are symmetrical to each other.
  • each of said sides of said prism comprises a flat surface.
  • each side of the prism further includes a plurality of sub-planes.
  • the normal directions of two adjacent sub-planes are different.
  • the distance between the bottom surface and the top surface of the prism is in a range of 5-50 microns.
  • the distance between the bottom surface and the top surface of the prism is 20 microns.
  • the width of the bottom surface of the prism is in a range of 5-50 microns.
  • the width of the bottom surface of the prism is 15 microns.
  • the angle between the average normal direction of each side surface of the prism and the normal direction of the bottom surface is within a range of 50-85 degrees.
  • the optical layer includes a plurality of prisms, and the plurality of prisms are arranged at intervals along the first direction on the light-emitting surface of the light-emitting substrate.
  • the distance between two adjacent prisms is in the range of 5-50 microns.
  • the distance between two adjacent prisms is 10 microns.
  • the optical layer includes a plurality of prisms, and the plurality of prisms are arranged in an array along a first direction and a second direction on the light-emitting surface of the light-emitting substrate, and the second direction and the The first directions are perpendicular to each other.
  • the distance between two adjacent prisms is in the range of 5-50 microns.
  • the distance between two adjacent prisms is 10 microns.
  • the material of the prism includes resin.
  • the prisms are formed by imprinting or photolithography.
  • the display panel further includes an encapsulation cover plate, and the encapsulation cover plate is disposed on the optical layer.
  • the display panel further includes an encapsulation cover plate, and the encapsulation cover plate is disposed between the light-emitting substrate and the optical layer.
  • the present invention provides the display panel with smooth viewing luminance variation curves under different viewing angles.
  • the optical layer in the display panel is disposed on the light-emitting surface of the light-emitting substrate, and the prism of the optical layer has the plurality of inclined sides capable of refracting the light emitted by the light-emitting substrate. Said light.
  • each side of the prism may include a plane or a plurality of sub-planes with different angles, so that the brightness-viewing angle curve of the display panel of the present invention can be optimized, thereby eliminating the existing The problem of brightness fluctuations described in the technique.
  • the optical layer further includes a plurality of prisms arranged at intervals along the first direction on the light-emitting surface of the light-emitting substrate or are arranged in an array along the vertical first direction and the second direction. Thanks to the technical effect and manufacturing flexibility of the optical layer, the optical layer designed through the optical simulation experiment can be adapted to any kind of display panel and optimize the user viewing experience.
  • Fig. 1 is the prior art organic light-emitting transistor (organic light-emitting diode, OLED) display panel brightness-angle relationship diagram;
  • FIG. 2 is a schematic diagram of a stacked structure of a display panel of the present invention.
  • FIG. 3 is a schematic diagram of a three-dimensional structure of a prism in the optical layer of the present invention.
  • FIG. 4 is a schematic diagram of the three-dimensional structure of another prism in the optical layer of the present invention.
  • FIG. 5 is a schematic diagram of the three-dimensional structure of another prism in the optical layer of the present invention.
  • Figure 6 is a side view of the prism in Figure 4.
  • Fig. 7 is a schematic diagram of the optical principle of the prism in Fig. 4;
  • FIG. 8 is a graph showing the relationship between brightness and viewing angle of the display panel of the present invention.
  • FIG. 9 is a schematic diagram of the arrangement of a plurality of the prisms in the optical layer of the present invention.
  • Fig. 10 is another schematic diagram of arrangement of multiple prisms in the optical layer of the present invention.
  • FIG. 11 is a schematic diagram of another stacked structure of the display panel of the present invention.
  • FIG. 12 is a schematic diagram of another stacked structure of the display panel of the present invention.
  • FIG. 2 is a schematic diagram of a laminated structure of the display panel of the present invention.
  • the display panel of the present invention includes a light emitting substrate 100 and an optical layer 200 .
  • the light-emitting substrate 100 includes a light-emitting surface 110 .
  • the optical layer 200 is disposed on the light-emitting surface 110 of the light-emitting substrate 100 and includes a prism 210 for refracting light emitted by the light-emitting substrate.
  • the light-emitting substrate 100 is an organic light-emitting diode (organic light-emitting diode, OLED) display substrate.
  • OLED organic light-emitting diode
  • the light-emitting substrate 100 of the display panel of the present invention is not limited thereto, and may also include liquid crystal (liquid crystal) display substrate, quantum dot (quantum dot) display substrate, mini-LED (mini-LED) substrate, or micro-LED (micro-LED) substrate, etc.
  • FIG. 3 is a schematic diagram of a three-dimensional structure of a prism 210 in the optical layer 200 of the present invention.
  • the prism in the optical layer 200 includes a bottom surface 211 , a top surface 212 , and a plurality of side surfaces 213 connecting the bottom surface 211 and the top surface 212 .
  • the bottom surface 211 and the top surface 212 are parallel to the light emitting substrate 100 shown in FIG. 2 .
  • the bottom surface 211 is close to the light emitting substrate 100 .
  • the top surface 212 is away from the light emitting substrate 100 .
  • the present invention is based on the prior art organic light-emitting transistor (organic Light-emitting diode (OLED) display panel brightness-viewing angle relationship diagram, the optical simulation test of the prism 210 of the optical layer 200 is carried out, so as to design a device that can eliminate the brightness fluctuation (bright wave) phenomenon observed in Figure 1 prism structure.
  • organic Light-emitting transistor organic Light-emitting diode (OLED) display panel brightness-viewing angle relationship diagram
  • the present invention configures the area of the top surface 212 of the prism 210 to be smaller than the area of the bottom surface 211, so any side 213 of the prism 210 will face the
  • the inside of the prism 210 is inclined to form a prism structure with a wide bottom and a narrow top.
  • the bottom surface 211 of the prism 210 is configured as a rectangle
  • the top surface 212 of the prism 210 may also be configured as a rectangle correspondingly.
  • the bottom surface 211 of the rectangle includes four sides A, B, C, D, and two sides are opposite to each other.
  • two side faces 213 of a set of opposite sides A/C or another set of opposite sides B/D connecting the bottom face 211 and the top face 212 are mutually symmetry.
  • the shape of the side 213 on side A is symmetrical to the shape of the side 213 on side C
  • the shape of the side 213 on side B is the same as the shape of the side 213 on side D symmetry.
  • the shape of the prism 210 may be the prism 210 in the shape of a trapezoidal column as shown in FIG. 3 .
  • Each side 213 of the prism 210 includes a plane, but not limited thereto.
  • the present invention exemplarily provides the prism 210 including each of the side faces 213 in other shapes, please refer to FIG. 4 and FIG. 5 , which are the three-dimensional structures of the other two prisms 210 in the optical layer 200 of the present invention schematic diagram.
  • Each of the side surfaces 213 of the prism 210 further includes a plurality of sub-planes 213', that is, each of the side surfaces 213 is a composite surface with multiple planes.
  • each side 213 of the prism 210 further includes two sub-planes 213', that is, each side 213 is bent once to form the sub-planes 213' with two inclination angles.
  • each of the side surfaces 213 of the prism 210 also includes five sub-planes 213 ′, that is, each of the side surfaces 213 is bent four times to form the sub-planes 213 ′ of five kinds of inclination angles. .
  • the present invention can obtain a prism structure capable of eliminating the brightness fluctuation observed in FIG. 1 .
  • the following uses the structure of the prism 210 shown in FIG. 4 as an example for illustration. Please refer to FIG. 6 , which is a side view of the prism 210 in FIG. 4 .
  • the distance D1 between the bottom surface 211 and the top surface 212 of the prism 210 ranges from 5 to 50 micrometers (micrometer, ⁇ m), and is preferably 20 microns.
  • the optimized width W of the bottom surface 211 of the prism 210 is in the range of 5-50 microns, preferably 15 microns. Under such a configuration, the prism 210 can effectively perform work according to the design of the optical simulation experiment in a limited space without excessively increasing the thickness or weight of the display panel.
  • the optical simulation test is also optimized for the shape of each side 213 of the prism 210 of the present invention.
  • the normal directions of two adjacent sub-planes 213' are different.
  • the angle ⁇ between the average normal direction of each of the side surfaces 213 of the prism 213 and the normal direction N1 of the bottom surface 211 ranges from 50 to 85 degrees.
  • two adjacent sub-planes 213' are configured with two normal directions N2 and N3 with different angles. Since the normal direction N2 is different from the normal direction N3, each of the side surfaces 213 has two sub-planes 213' with different inclination angles. At the same time, the angle ⁇ between the normal direction N2 or the normal direction N3 of any one of the sub-planes 213' and the normal direction N1 of the bottom surface 211 is in the range of 50-85 degrees; or The angle ⁇ between the average normal direction of the normal direction N2 and the normal direction N3 of the sub-plane 213 ′ and the normal direction N1 of the bottom surface 211 is in a range of 50-85 degrees.
  • FIG. 7 is a schematic diagram of the optical principle of the prism 210 in FIG. 4 .
  • the prism 210 of the present invention passing the optical simulation test can improve the emission direction of the light 120 emitted from the light-emitting surface 110 of the light-emitting substrate 100 as shown in FIG. 2 according to optimization data.
  • FIG. 7 shows the situation when the light 120 enters the bottom surface 211 of the prism 210 in the optical layer 200 . Since the bottom surface 211 and the top surface 212 of the prism 210 are parallel to the light-emitting substrate 100 , part of the light 120 emitted from the top surface 212 will maintain the original incident direction.
  • the inclination angles of the plurality of sides 213 have been optimized for the brightness-viewing angle relationship diagram of the OLED display panel in the prior art, part of the light emitted from the plurality of sides 213 120 will be refracted to the specific angle designed by the optical simulation experiment. Therefore, in FIG. 1, the light ray 120 at the side viewing angle with the brightness fluctuation will be partially dispersed to other side viewing angles by the prism 210, thereby eliminating the brightness-viewing angle of the OLED display panel in the prior art. Luminance fluctuations that appear in the graph.
  • FIG. 8 is a luminance-viewing angle relationship diagram of the display panel of the present invention.
  • the brightness of the light-emitting substrate 100 is set to have the maximum value observed at a viewing angle of 0 degrees, that is, the brightness value of the viewing angle of 0 degrees is 100%. It can be known from the curve in the figure that the brightness of the display panel of the present invention increases with the observed The viewing angle is inclined and gradually decreases, that is, viewing the brightness change curve is smooth under different viewing angles.
  • the optical layer 200 of the present invention refracts the light 120 of the light-emitting substrate 100 at a viewing angle of about plus or minus 30 degrees, and refracts the light 120 to a larger viewing angle. Therefore, compared with FIG. 1 , the luminance-viewing angle curve in FIG. 8 shows that the display panel has a maximum observed luminance at a viewing angle of 0 degrees, and the observed luminance of the display panel gradually decreases as the viewing angle increases. Therefore, under the action of the prism 210 of the optical layer 200 in the display panel of the present invention, the observed brightness of the display panel decreases smoothly as the viewing angle increases.
  • the display panel with a smooth viewing luminance variation curve under different viewing angles is obtained, which can improve the prior art OLED display panel because the exciton recombination position in the light-emitting layer of the OLED device is not Identify the resulting issues to optimize the viewing experience for the user.
  • the optical layer 200 may further include a plurality of prisms 210 arranged on the light emitting surface 110 of the light emitting substrate 100 as shown in FIGS. 3 to 5 .
  • each side 213 of each prism 210 includes two sub-planes 213' as an example.
  • FIG. 9 is a schematic diagram of the arrangement of the plurality of prisms 210 in the optical layer 200 of the present invention.
  • each of the prisms 210 of the optical layer 200 is strip-shaped, and the plurality of prisms 210 are spaced along the first direction 131 on the light-emitting surface 110 of the light-emitting substrate 100 arrangement.
  • the first direction 131 may be a coordinate axis of the Cartesian coordinate system of the light-emitting surface 110 , but not limited thereto, and may be any direction.
  • each of the prisms 210 can transmit the light 120 emitted by the light-emitting substrate 100
  • the positive and negative parts of the first direction 131 are refracted.
  • the present invention configures the distance between two adjacent prisms 210 to be within a range of 5-50 microns, preferably 10 microns.
  • the distance between two adjacent prisms 210 By properly adjusting the distance between two adjacent prisms 210, the light 120 emitted from one side 213 of one prism 210 can be prevented from entering another prism 210, resulting in The light 120 is refracted multiple times, or interferes with the light 120 emitted from other directions and other undesirable problems. At the same time, properly adjusting the distance between two adjacent prisms 210 can make the optical layer 200 improve the viewing brightness variation curve of the display panel at different viewing angles to the greatest extent.
  • the observed brightness of the display panel can decrease smoothly as the viewing angle increases.
  • the display panel with a smooth brightness change curve is obtained under different viewing angles of the positive direction and the negative direction of the first direction 131 , thereby optimizing the viewing experience of the user.
  • the elongated prism 210 in this embodiment can be set corresponding to one column of pixel points of the light-emitting substrate 100 or can be set corresponding to multiple columns of pixel points, so as to control the light rays 120 of multiple pixel points individual optimization.
  • the arrangement of the plurality of prisms 210 is designed through the optical simulation experiment to achieve the above-mentioned technical effect, so the arrangement of the plurality of prisms 210 may not need to correspond to the light emission Multiple pixel points of the substrate 100 .
  • the optical layer 200 of the present invention can be applied on any kind of light-emitting substrate, and has a considerable degree of manufacturing flexibility.
  • FIG. 10 is a schematic diagram of another arrangement of the plurality of prisms 210 in the optical layer 200 of the present invention.
  • each of the prisms 210 of the optical layer 200 is tower-shaped, and the plurality of prisms 210 are along the first direction 131 on the light-emitting surface 110 of the light-emitting substrate 100
  • the second direction 132 is arranged in an array.
  • the second direction 132 and the first direction 131 are perpendicular to each other, and the first direction 131 and the second direction 132 may be two coordinates of the Cartesian coordinate system of the light-emitting surface 110 . coordinate axes perpendicular to each other, but not limited thereto, it can be any two directions perpendicular to each other.
  • each of the prisms 210 can transmit the light emitted by the light-emitting substrate 100
  • the light 120 is partially refracted towards the positive and negative directions of the first direction 131 and the positive and negative directions of the second direction 132 .
  • the present invention configures the distance between two adjacent prisms 210 to be within a range of 5-50 microns, preferably 10 microns.
  • the distance between two adjacent prisms 210 By properly adjusting the distance between two adjacent prisms 210, the light 120 emitted from one side 213 of one prism 210 can be prevented from entering another prism 210, resulting in The light 120 is refracted multiple times, or interferes with the light 120 emitted from other directions and other undesirable problems.
  • properly adjusting the distance between two adjacent prisms 210 can make the optical layer 200 improve the viewing brightness variation curve of the display panel at different viewing angles to the greatest extent.
  • the observed brightness of the display panel can vary with The angle of view increases and decreases smoothly.
  • the viewing brightness change curve is smooth under different viewing angles in the positive direction and the negative direction of the first direction 131 and the positive direction and the negative direction of the second direction 132 The display panel, thereby optimizing the viewing experience of the user.
  • the tower-shaped prisms 210 in this embodiment can be arranged one-to-one or one-to-many corresponding to the pixel points of the light-emitting substrate 100, so as to control the light rays of multiple pixel points 120 individual optimizations.
  • the arrangement of the plurality of prisms 210 is designed through the optical simulation experiment to achieve the above-mentioned technical effect, so the arrangement of the plurality of prisms 210 may not need to correspond to the light emission Multiple pixel points of the substrate 100 .
  • the optical layer 200 of the present invention can be applied on any kind of light-emitting substrate, and has a considerable degree of manufacturing flexibility.
  • the material of the prism 210 includes resin, and the prism 210 is formed by an embossing process or a photolithography process.
  • the characteristics of the material of the prism 210 will be taken into consideration at the same time, such as the refractive index or light transmittance of the material for the light emitted by the light-emitting substrate 100. The influence of the deflection angle of the light ray 120 and the like.
  • FIGS. 11 and 12 are schematic diagrams of another two stacked structures of the display panel of the present invention.
  • the optical layer 200 of the present invention can also cooperate with the manufacture of the display panel.
  • the prism 210 of the optical layer 200 can be directly prepared on it, and the prism can be filled with the encapsulant.
  • the manufacturing process of the display panel can be continued, for example, disposing the package cover 300 on the optical layer 200 .
  • the packaging cover 300 has been provided on the light-emitting substrate 100, the additionally prepared The optical layer 200 is on the packaging cover 300 to achieve flexible manufacturing of the display panel.
  • the present invention provides the display panel with smooth viewing luminance variation curves under different viewing angles.
  • the optical layer 200 in the display panel is disposed on the light-emitting surface 110 of the light-emitting substrate 100, and the prism 210 of the optical layer 200 has the plurality of inclined sides 213, which can refract the The light 120 emitted by the light-emitting substrate 100 .
  • each side 213 of the prism 210 may include a plane or a plurality of sub-planes 213' with different angles, so that the brightness-viewing angle curve of the display panel of the present invention can be optimized, Therefore, the problem of brightness fluctuation described in the prior art is eliminated.
  • the optical layer 200 further includes a plurality of the prisms 210 along the first light emitting surface 110 of the light-emitting substrate 100
  • a direction 131 is arranged at intervals or arranged in an array along the first direction 131 and the second direction 132 perpendicular to each other. Thanks to the technical effect and manufacturing flexibility of the optical layer 200 , the optical layer 200 designed through the optical simulation experiment can adapt to any kind of display panel and optimize the viewing experience of users.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板,包括发光基板(100)以及光学层(200)。发光基板(100)包括出光面(110)。光学层(200)设置于发光基板(100)的出光面(110)上,并且包括棱镜(210)以折射发光基板(100)发出的光线。光学层(200)的棱镜(210)包括底面(211)、顶面(212)、以及连接底面(211)与顶面(212)的多个侧面(213)。底面(211)以及顶面(212)平行于发光基板(100)。底面(211)靠近发光基板(100)。顶面(212)远离发光基板(100)。顶面(212)的面积小于底面(211)的面积。

Description

显示面板 技术领域
本发明涉及显示技术领域,尤其涉及一种具有在不同视角下观赏亮度变化曲线平滑的显示面板。
背景技术
有机发光二极管(organic light-emitting diode,OLED)显示面板具有广视角、广色域等优点,作为主流显示面板被各大显示装置厂商关注与开发。为了更进一步地强化所述OLED显示面板的色点发光效率,而对所述OLED显示面板中的OLED器件结构以及制程进行改良。
基于制造方法的不同,所述OLED器件主要区分有蒸镀式OLED器件以及印刷式OLED器件,其皆有不同的技术优势。然而,受制于制造时的尺寸公差或是生产良率,不论是在所述蒸镀式OLED器件或是所述印刷式OLED器件中,其发光层中的电子以及空穴所形成的激子复合位置无法完全与设计需求吻合。因此,当所述激子复合位置相对预定位置有所偏移时,所述激子发光的最大亮度则不会在0度视角(观测者直视OLED显示面板)观测到,而可能是在侧视角(观测者侧视OLED显示面板)观测到。
技术问题
请参照图1,其为现有技术的OLED显示面板的亮度-视角关系图。依据理论,假定现有技术的所述OLED显示面板的亮度应当在0度视角观测到最大值,即0度视角的亮度值为100%,并且所述亮度会随著视角倾斜而逐渐递减。由图1可以见得,不同视角的亮度观测结果显示,事实上,现有技术的所述OLED显示面板在正负30度左右视角观测到的亮度大于在0度视角观测到的亮度。
由于现有技术的所述OLED器件的所述发光层中的所述激子复合位置不确定,因此造成前述在所述亮度-视角关系图中所观察到亮度起伏(bright wave)的现象,使得所述OLED显示面板在不同视角下观赏亮度变化曲线不平滑。并且,不论是在水平视角或是垂直视角,都会观测到所述亮度起伏问题,这便会影响使用者的观赏体验。
在现有技术中,为了解决所述OLED器件的所述发光层中的所述激子复合位置不确定的问题,一般是通过更换所述发光层的组成材料、或是加入新的传输层来进一步限制所述激子的复合位置。然而,现有技术在改善所述激子复合位置的准确性的同时,增加了所述OLED显示器件的制造工序,并会降低所述OLED器件的发光效率。
技术解决方案
本发明提供一种具有在不同视角下观赏亮度变化曲线平滑的显示面板,能够改善现有技术的有机发光二极管(organic light-emitting diode,OLED)显示面板因其OLED器件的所述发光层中的所述激子复合位置不确定所造成的问题,进而优化使用者观赏体验。
本发明的所述显示面板包括发光基板以及光学层。所述发光基板包括出光面。所述光学层设置于所述发光基板的所述出光面上,并且包括棱镜以折射所述发光基板发出的光线。所述光学层的所述棱镜包括底面、顶面、以及连接所述底面与顶面的多个侧面。所述底面以及所述顶面平行于所述发光基板。所述底面靠近所述发光基板。所述顶面远离所述发光基板。所述顶面的面积小于所述底面的面积。
在一实施例中,所述棱镜的所述底面为矩形。连接所述底面与所述顶面的一组对边的两个所述侧面彼此对称。
在一实施例中,所述棱镜的每一所述侧面包括平面。
在本实施例中,所述棱镜的每一所述侧面还包括多个子平面。
在本实施例中,相邻的两个所述子平面的法线方向不同。
在一实施例中,所述棱镜的所述底面与所述顶面的距离范围在5~50微米之间。
在本实施例中,所述棱镜的所述底面与所述顶面的所述距离为20微米。
在一实施例中,所述棱镜的所述底面的宽度范围在5~50微米之间。
在本实施例中,所述棱镜的所述底面的所述宽度为15微米。
在一实施例中,所述棱镜的每一所述侧面的平均法线方向与所述底面的法线方向夹角范围在50~85度之间。
在一实施例中,所述光学层包括多个棱镜,所述多个棱镜沿所述发光基板的所述出光面上的第一方向间隔排列。
在本实施例中,相邻的两个所述棱镜之间的距离范围在5~50微米之间。
在本实施例中,相邻的两个所述棱镜之间的所述距离为10微米。
在一实施例中,所述光学层包括多个棱镜,所述多个棱镜沿所述发光基板的所述出光面上的第一方向以及第二方向阵列排布,所述第二方向与所述第一方向互相垂直。
在本实施例中,相邻的两个所述棱镜之间的距离范围在5~50微米之间。
在本实施例中,相邻的两个所述棱镜之间的所述距离为10微米。
在一实施例中,所述棱镜的材料包括树脂。
在一实施例中,所述棱镜通过压印工艺或是光刻工艺形成。
在一实施例中,所述显示面板还包括封装盖板,所述封装盖板设置于所述光学层上。
在一实施例中,所述显示面板还包括封装盖板,所述封装盖板设置于所述发光基板以及所述光学层之间。
有益效果
本发明提供一种具有在不同视角下观赏亮度变化曲线平滑的所述显示面板。所述显示面板中的所述光学层设置在所述发光基板的所述出光面上,并且所述光学层的所述棱镜具有倾斜的所述多个侧面,能够折射所述发光基板发出的所述光线。进一步地,所述棱镜的每一所述侧面可以包括一个平面或是多个不同角度的所述子平面,因此能够优化本发明的所述显示面板的所述亮度-视角曲线,从而消除现有技术中所述亮度起伏的问题。另外,为了增强所述光学层在水平视角或是垂直视角的技术效果,所述光学层还包括多个所述棱镜沿所述发光基板的所述出光面上的所述第一方向间隔排列或是沿垂直的所述第一方向以及所述第二方向阵列排布。得益于所述光学层的技术效果以及制造灵活度,通过所述光学仿真试验设计的所述光学层能适配任何种类的显示面板,并且优化使用者观赏体验。
附图说明
图1为现有技术的有机发光晶体管(organic light-emitting diode,OLED)显示面板的亮度-视角关系图;
图2为本发明的显示面板的一种叠层结构示意图;
图3为本发明的光学层中的一种棱镜的立体结构示意图;
图4为本发明的所述光学层中的另一种棱镜的立体结构示意图;
图5为本发明的所述光学层中的另一种棱镜的立体结构示意图;
图6为图4中的所述棱镜的侧视图;
图7为图4中的所述棱镜的光学原理示意图;
图8为本发明的所述显示面板的亮度-视角关系图;
图9为本发明的所述光学层中的多个所述棱镜的一种排布示意图;
图10为本发明的所述光学层中的多个所述棱镜的另一种排布示意图;
图11为本发明的所述显示面板的另一种叠层结构示意图;
图12为本发明的所述显示面板的另一种叠层结构示意图。
本发明的实施方式
为了让本发明之上述及其他目的、特征、优点能更明显易懂,下文将特举本发明优选实施例,并配合附图,作详细说明如下。
请参照图2,其为本发明的显示面板的一种叠层结构示意图。本发明的所述显示面板包括发光基板100以及光学层200。所述发光基板100包括出光面110。所述光学层200设置于所述发光基板100的所述出光面110上,并且包括棱镜210以折射所述发光基板发出的光线。
在本实施例中,所述发光基板100为有机发光二极管(organic light-emitting diode,OLED)显示基板。然而,本发明的所述显示面板的所述发光基板100并不以此为限,还可以包括液晶(liquid crystal)显示基板、量子点(quantum dot)显示基板、迷你发光二极管(mini-LED)基板、或是微发光二极管(micro-LED)基板等。
请参照图3,其为本发明的所述光学层200中的一种棱镜210的立体结构示意图。在所述光学层200中的所述棱镜包括底面211、顶面212、以及连接所述底面211与所述顶面212的多个侧面213。所述底面211以及所述顶面212平行于图2示出的所述发光基板100。所述底面211靠近所述发光基板100。所述顶面212远离所述发光基板100。
本发明根据图1所示的现有技术的有机发光晶体管(organic light-emitting diode,OLED)显示面板的亮度-视角关系图,进行所述光学层200的所述棱镜210的光学仿真试验,借以设计出能够消除如图1观察到的亮度起伏(bright wave)现象的棱镜结构。
通过所述光学仿真试验,本发明将所述棱镜210的所述顶面212的面积配置为小于所述底面211的面积,因此,所述棱镜210的任一所述侧面213将会向所述棱镜210的内侧倾斜,而形成下宽上窄的棱镜结构。
如图3所示,在一实施例中,所述棱镜210的所述底面211配置为矩形,并且所述棱镜210的所述顶面212也可以对应地配置为矩形。矩形的所述底面211包括四条边A、B、C、D,并且两两相对。在所述棱镜210的所述多个侧面213中,连接所述底面211与所述顶面212的一组对边A/C或另一组对边B/D的两个所述侧面213彼此对称。换句话说,位于边A的所述侧面213的造型与位于边C的所述侧面213的造型对称,或是位于边B的所述侧面213的造型与位于边D的所述侧面213的造型对称。
在本实施例中,所述棱镜210的造型可以为图3示出的一种梯形柱造型的所述棱镜210。所述棱镜210的每一所述侧面213包括平面,但并不以此为限。本发明示例性地提供包括其他造型的每一所述侧面213的所述棱镜210,请参照图4以及图5,其为本发明的所述光学层200中的另外两种棱镜210的立体结构示意图。所述棱镜210的每一所述侧面213还包括多个子平面213’,即每一所述侧面213为具有多平面的复合面。
如图4所示,所述棱镜210的每一所述侧面213还包括两个子平面213’,即每一所述侧面213经过一道弯折而形成两种倾斜角度的所述子平面213’。如图5所示,所述棱镜210的每一所述侧面213还包括五个子平面213’,即每一所述侧面213经过四道弯折而形成五种倾斜角度的所述子平面213’。
通过所述光学仿真试验,本发明可以获得能够消除如图1观察到的亮度起伏现象的棱镜结构。以下以图4所示的所述棱镜210的结构举例说明。请参照图6,其为图4中的所述棱镜210的侧视图。在所述光学仿真试验所得出的优化数值中,所述棱镜210的所述底面211与所述顶面212的距离D1范围在5~50微米(micro meter,μm)之间,并且优选地为20微米。同时,优化的所述棱镜210的所述底面211的宽度W范围在5~50微米之间,优选地为15微米。在此种配置下,所述棱镜210能够以有限的空间,有效地根据所述光学仿真试验的设计执行工作,而不至于过度增加所述显示面板的厚度或重量。
进一步地,所述光学仿真试验还针对本发明的所述棱镜210的每一所述侧面213的造型进行优化。在所述棱镜210的每一所述侧面213的多个子平面213’中,相邻的两个所述子平面213’的法线方向不同。并且,所述棱镜213的每一所述侧面213的平均法线方向与所述底面211的法线方向N1夹角θ范围在50~85度之间。
如图6所示,在一实施例中,相邻的两个所述子平面213’配置有两个不同角度的法线方向N2以及法线方向N3。由于所述法线方向N2与所述法线方向N3的方向不同,使得每一所述侧面213具有两个不同倾斜角度的所述子平面213’。同时,任一个所述子平面213’的所述法线方向N2或所述法线方向N3与所述底面211的所述法线方向N1夹角θ范围在50~85度之间;或是,所述子平面213’的所述法线方向N2以及所述法线方向N3的平均法线方向与所述底面211的法线方向N1夹角θ范围在50~85度之间。
请参照图7,其为图4中的所述棱镜210的光学原理示意图。通过所述光学仿真试验的本发明的所述棱镜210,将能够根据优化数据改善如图2所示的所述发光基板100的所述出光面110发出的光线120的射出方向。图7示出了所述光线120射入所述光学层200内的所述棱镜210的所述底面211时的状况。由于所述棱镜210的所述底面211以及所述顶面212平行于所述发光基板100,因此自所述顶面212射出的部分所述光线120将维持原始的入射方向。进一步地,由于所述多个侧面213的倾斜角度已针对现有技术的所述OLED显示面板的所述亮度-视角关系图进行优化设计,因此自所述多个侧面213射出的部分所述光线120将被折射到所述光学仿真试验所设计的特定角度。因此,图1中具有所述亮度起伏的侧视角度的所述光线120将被所述棱镜210部分分散至其他侧视角度,从而消除现有技术的所述OLED显示面板的所述亮度-视角关系图中出现的亮度起伏现象。
请参照图8,其为本发明的所述显示面板的亮度-视角关系图。通过本发明的所述光学层200的所述棱镜210对所述发光基板100发出的所述光线120进行优化,本发明的所述显示面板可以获得如图8所示的亮度-视角关系图。设定所述发光基板100的亮度在0度视角观测到最大值,即0度视角的亮度值为100%,由图中的曲线可以得知,本发明的所述显示面板的亮度随著观测视角倾斜而逐渐递减,即在不同视角下观赏亮度变化曲线平滑。
本发明的所述光学层200折射了所述发光基板100在正负30度左右视角的所述光线120,并且将所述光线120折射到更大的视角上。因此,相较于图1,图8的亮度-视角曲线呈现所述显示面板在0度视角具有最大的观测亮度,随著视角的加大,所述显示面板的观测亮度逐渐减小。因此,本发明的所述显示面板在所示光学层200的所述棱镜210的作用下,使得所述显示面板的所述观测亮度随着所述视角的增大而平滑递减。如此一来,获得了具有在不同视角下观赏亮度变化曲线平滑的所述显示面板,其能够改善现有技术的OLED显示面板因其OLED器件的所述发光层中的所述激子复合位置不确定所造成的问题,进而优化使用者观赏体验。
在本发明中,所述光学层200还可以包括多个如图3~图5所示的所述棱镜210排布在所述发光基板100的所述出光面110上。以下以每一所述棱镜210的每一所述侧面213包括两个所述子平面213’作为范例说明。
请参照图9,其为本发明的所述光学层200中的多个所述棱镜210的一种排布示意图。在一实施例中,所述光学层200的每一所述棱镜210为长条形,并且所述多个棱镜210沿著所述发光基板100的所述出光面110上的第一方向131间隔排列。需要说明的是,所述第一方向131可以为所述出光面110的直角坐标系的一个座标轴,但不以此为限,其可以为任意方向。
在本实施例中,当长条形的多个所述棱镜210沿著一维的所述第一方向131排列时,每一所述棱镜210能够将所述发光基板100发出的所述光线120朝向所述第一方向131的正向以及负向部分折射。进一步地,通过所述光学仿真试验的优化,本发明配置相邻的两个所述棱镜210之间的距离范围在5~50微米之间,优选地为10微米。通过将相邻的两个所述棱镜210之间的距离适当地调整,能避免自一个所述棱镜210的一个所述侧面213射出的所述光线120射向另一个所述棱镜210中,导致所述光线120被折射多次、或是与其他方向射出的所述光线120彼此干涉等不良的问题。同时,适当地调整相邻的两个所述棱镜210之间的距离,能使得所述光学层200最大化地改善所述显示面板在不同视角下观赏亮度变化曲线。
因此,在所述第一方向131的所述正向以及所述负向上,所述显示面板的所述观测亮度能够随着所述视角的增大而平滑递减。如此一来,获得了在所述第一方向131的所述正向以及所述负向上的不同视角下观赏亮度变化曲线平滑的所述显示面板,进而优化使用者观赏体验。
另外,本实施例的一个长条形的所述棱镜210可以对应所述发光基板100的一列像素点设置也可以对应多列像素点设置,以此对多个所述像素点的所述光线120个别优化。需要说明的是,多个所述棱镜210的排布方式皆是通过所述光学仿真试验设计以达成上述技术效果,因此多个所述棱镜210的所述排布方式可以不需要对应所述发光基板100的多个所述像素点。换句话说,本发明的所述光学层200的可以应用在任何种类的发光基板上,具有相当大程度的制造灵活度。
请参照图10,其为本发明的所述光学层200中的多个所述棱镜210的另一种排布示意图。在一实施例中,所述光学层200的每一所述棱镜210为塔形,并且所述多个棱镜210沿著所述发光基板100的所述出光面110上的所述第一方向131以及第二方向132阵列排布。需要说明的是,所述第二方向132与所述第一方向131互相垂直,并且所述第一方向131以及所述第二方向132可以为所述出光面110的所述直角坐标系的两个互相垂直的座标轴,但不以此为限,其可以为任意两个互相垂直的方向。
在本实施例中,塔形的每一所述棱镜210的所述底面211以及所述顶面212为正方形,并且塔形的每一所述棱镜210的四个所述侧面213的造型皆相同且两两互相对称。当塔形的多个所述棱镜210沿著二维的所述第一方向131以及所述第二方向132阵列排布时,每一所述棱镜210能够将所述发光基板100发出的所述光线120朝向所述第一方向131的正向以及负向、以及所述第二方向132的正向以及负向部分折射。进一步地,通过所述光学仿真试验的优化,本发明配置相邻的两个所述棱镜210之间的距离范围在5~50微米之间,优选地为10微米。通过将相邻的两个所述棱镜210之间的距离适当地调整,能避免自一个所述棱镜210的一个所述侧面213射出的所述光线120射向另一个所述棱镜210中,导致所述光线120被折射多次、或是与其他方向射出的所述光线120彼此干涉等不良的问题。同时,适当地调整相邻的两个所述棱镜210之间的距离,能使得所述光学层200最大化地改善所述显示面板在不同视角下观赏亮度变化曲线。
因此,在所述第一方向131的所述正向以及所述负向、以及所述第二方向132的所述正向以及所述负向上,所述显示面板的所述观测亮度能够随着所述视角的增大而平滑递减。如此一来,获得了在所述第一方向131的所述正向以及所述负向、以及所述第二方向132的所述正向以及所述负向上的不同视角下观赏亮度变化曲线平滑的所述显示面板,进而优化使用者观赏体验。
另外,本实施例的一个塔形的所述棱镜210可以一对一或是一对多地对应所述发光基板100的所述像素点设置,以此对多个所述像素点的所述光线120个别优化。需要说明的是,多个所述棱镜210的排布方式皆是通过所述光学仿真试验设计以达成上述技术效果,因此多个所述棱镜210的所述排布方式可以不需要对应所述发光基板100的多个所述像素点。换句话说,本发明的所述光学层200的可以应用在任何种类的发光基板上,具有相当大程度的制造灵活度。
在本发明中,在制备所述光学层200的所述棱镜210时,所述棱镜210的材料包括树脂,并且所述棱镜210是通过压印工艺或是光刻工艺所形成的。本发明通过所述光学仿真试验设计所述棱镜结构时,同时会考虑所述棱镜210的所述材料的特性,例如所述材料的折射率或是透光率对于所述发光基板100发出的所述光线120的偏折角度的影响等。
在所述光学层200的多个所述棱镜210制备完成后,会在多个所述棱镜210之间填入封装胶,并且构成平整的所述光学层200。请参照图11以及12,其为本发明的所述显示面板的另二种叠层结构示意图。本发明的所述光学层200还可以配合所述显示面板的制造。在一实施例中,如图11所示,在所述发光基板100制备完成后,可以直接在其上制备所述光学层200的所述棱镜210,并且通过所述封装胶填平所述棱镜210后,便可以接续所述显示面板的制程,例如在所述光学层200上设置封装盖板300。在另一实施例中,如图12所示,在现有技术的所述显示面板制造完成后,即所述发光基板100上已设置有封装盖板300,则可以贴附另外制备好的所述光学层200在所述封装盖板300上,以达成所述显示面板的灵活制造。
本发明提供一种具有在不同视角下观赏亮度变化曲线平滑的所述显示面板。所述显示面板中的所述光学层200设置在所述发光基板100的所述出光面110上,并且所述光学层200的所述棱镜210具有倾斜的所述多个侧面213,能够折射所述发光基板100发出的所述光线120。进一步地,所述棱镜210的每一所述侧面213可以包括一个平面或是多个不同角度的所述子平面213’,因此能够优化本发明的所述显示面板的所述亮度-视角曲线,从而消除现有技术中所述亮度起伏的问题。另外,为了增强所述光学层200在水平视角或是垂直视角的技术效果,所述光学层200还包括多个所述棱镜210沿所述发光基板100的所述出光面110上的所述第一方向131间隔排列或是沿垂直的所述第一方向131以及所述第二方向132阵列排布。得益于所述光学层200的技术效果以及制造灵活度,通过所述光学仿真试验设计的所述光学层200能适配任何种类的显示面板,并且优化使用者观赏体验。
以上仅是本发明的优选实施方式,应当指出,对于所属领域技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (20)

  1. 一种显示面板,包括:
    发光基板,包括出光面;以及
    光学层,设置于所述发光基板的所述出光面上,并且包括棱镜以折射所述发光基板发出的光线;
    其中,所述光学层的所述棱镜包括底面、顶面、以及连接所述底面与顶面的多个侧面,所述底面以及所述顶面平行于所述发光基板,所述底面靠近所述发光基板,所述顶面远离所述发光基板,以及所述顶面的面积小于所述底面的面积。
  2. 如权利要求1所述的显示面板,其中,所述棱镜的所述底面为矩形,以及连接所述底面与所述顶面的一组对边的两个所述侧面彼此对称。
  3. 如权利要求1所述的显示面板,其中,所述棱镜的每一所述侧面包括平面。
  4. 如权利要求3所述的显示面板,其中,所述棱镜的每一所述侧面还包括多个子平面。
  5. 如权利要求4所述的显示面板,其中,所述棱镜的每一所述侧面的相邻的两个所述子平面的法线方向不同。
  6. 如权利要求1所述的显示面板,其中,所述棱镜的所述底面与所述顶面的距离范围在5~50微米之间。
  7. 如权利要求6所述的显示面板,其中,所述棱镜的所述底面与所述顶面的所述距离为20微米。
  8. 如权利要求1所述的显示面板,其中,所述棱镜的所述底面的宽度范围在5~50微米之间。
  9. 如权利要求8所述的显示面板,其中,所述棱镜的所述底面的所述宽度为15微米。
  10. 如权利要求1所述的显示面板,其中,所述棱镜的每一所述侧面的平均法线方向与所述底面的法线方向夹角范围在50~85度之间。
  11. 如权利要求1所述的显示面板,其中,所述光学层包括多个棱镜,以及所述多个棱镜沿所述发光基板的所述出光面上的第一方向间隔排列。
  12. 如权利要求11所述的显示面板,其中,相邻的两个所述棱镜之间的距离范围在5~50微米之间。
  13. 如权利要求12所述的显示面板,其中,相邻的两个所述棱镜之间的所述距离为10微米。
  14. 如权利要求1所述的显示面板,其中,所述光学层包括多个棱镜,所述多个棱镜沿所述发光基板的所述出光面上的第一方向以及第二方向阵列排布,以及所述第二方向与所述第一方向互相垂直。
  15. 如权利要求14所述的显示面板,其中,相邻的两个所述棱镜之间的距离范围在5~50微米之间。
  16. 如权利要求15所述的显示面板,其中,相邻的两个所述棱镜之间的所述距离为10微米。
  17. 如权利要求1所述的显示面板,其中,所述棱镜的材料包括树脂。
  18. 如权利要求1所述的显示面板,其中,所述棱镜通过压印工艺或是光刻工艺形成。
  19. 如权利要求1所述的显示面板,其中,所述显示面板还包括封装盖板,所述封装盖板设置于所述光学层上。
  20. 如权利要求1所述的显示面板,其中,所述显示面板还包括封装盖板,所述封装盖板设置于所述发光基板以及所述光学层之间。
PCT/CN2021/140157 2021-12-17 2021-12-21 显示面板 WO2023108727A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021576742A JP2024503942A (ja) 2021-12-17 2021-12-21 ディスプレイパネル
US17/624,007 US20230200120A1 (en) 2021-12-17 2021-12-21 Display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111552715.4A CN114300633B (zh) 2021-12-17 2021-12-17 显示面板
CN202111552715.4 2021-12-17

Publications (1)

Publication Number Publication Date
WO2023108727A1 true WO2023108727A1 (zh) 2023-06-22

Family

ID=80967185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140157 WO2023108727A1 (zh) 2021-12-17 2021-12-21 显示面板

Country Status (2)

Country Link
CN (1) CN114300633B (zh)
WO (1) WO2023108727A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070297194A1 (en) * 2006-06-23 2007-12-27 Benq Corporation Backlight module
CN106842682A (zh) * 2017-03-03 2017-06-13 京东方科技集团股份有限公司 光学膜材及其制备方法、显示基板、显示装置
CN109524568A (zh) * 2018-12-10 2019-03-26 京东方科技集团股份有限公司 有机发光二极管面板及其制备方法、显示装置
CN109581799A (zh) * 2019-01-15 2019-04-05 广东省半导体产业技术研究院 光源设备及电子设备
CN110928021A (zh) * 2019-11-05 2020-03-27 深圳市华星光电半导体显示技术有限公司 量子点显示面板增亮膜及透镜阵列
CN113687532A (zh) * 2021-08-19 2021-11-23 深圳市华星光电半导体显示技术有限公司 光学膜片和显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005055481A (ja) * 2003-06-09 2005-03-03 Toyota Industries Corp 光学素子、面状照明装置及び表示装置
JP2007155968A (ja) * 2005-12-02 2007-06-21 Sharp Corp 液晶表示装置
CN101025452A (zh) * 2006-02-17 2007-08-29 鸿富锦精密工业(深圳)有限公司 光学片及采用该光学片的背光模组
JP2008003245A (ja) * 2006-06-21 2008-01-10 Sharp Corp 液晶表示装置
JP5493923B2 (ja) * 2010-01-29 2014-05-14 凸版印刷株式会社 エレクトロルミネッセンス素子、有機elディスプレイ、液晶表示装置、照明装置
DE102012204062A1 (de) * 2012-03-15 2013-09-19 Ledon Oled Lighting Gmbh & Co. Kg Lichtabgabeanordnung mit einer OLED oder QLED mit verbesserter Lichtausbeute
US9121999B2 (en) * 2013-07-30 2015-09-01 Au Optronics Corporation Optical film and display device having the same
KR102632623B1 (ko) * 2018-12-20 2024-01-31 엘지디스플레이 주식회사 광 경로 제어 부재 및 이를 포함하는 전자 기기
CN212675319U (zh) * 2020-08-07 2021-03-09 中强光电股份有限公司 光源模块及双屏幕显示装置
CN113328054B (zh) * 2021-05-31 2022-08-09 武汉天马微电子有限公司 一种显示面板和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070297194A1 (en) * 2006-06-23 2007-12-27 Benq Corporation Backlight module
CN106842682A (zh) * 2017-03-03 2017-06-13 京东方科技集团股份有限公司 光学膜材及其制备方法、显示基板、显示装置
CN109524568A (zh) * 2018-12-10 2019-03-26 京东方科技集团股份有限公司 有机发光二极管面板及其制备方法、显示装置
CN109581799A (zh) * 2019-01-15 2019-04-05 广东省半导体产业技术研究院 光源设备及电子设备
CN110928021A (zh) * 2019-11-05 2020-03-27 深圳市华星光电半导体显示技术有限公司 量子点显示面板增亮膜及透镜阵列
CN113687532A (zh) * 2021-08-19 2021-11-23 深圳市华星光电半导体显示技术有限公司 光学膜片和显示装置

Also Published As

Publication number Publication date
CN114300633A (zh) 2022-04-08
CN114300633B (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
US11221512B2 (en) Displays with direct-lit backlight units and color conversion layers
US11994766B2 (en) Backlight module, method of manufacturing the same, display device
US10209430B2 (en) LED light source, backlight module and liquid crystal display device
JP5297991B2 (ja) 有機発光ダイオード及びこれを用いた光源装置
US11600803B2 (en) Organic light-emitting display panel comprising concave structure and convex microlens
JP2005063926A (ja) 発光デバイス
US20190221780A1 (en) Light extraction apparatus and methods for oled displays and oled displays using same
TWI711864B (zh) 光源模塊及顯示裝置
TWI817571B (zh) 背光模組及顯示裝置
US11513388B2 (en) Optical assembly and display device
TW202020491A (zh) 背光模組
WO2021077592A1 (zh) Oled 显示器件及显示装置
CN106287407B (zh) 改变光线指向的膜及背光模组
WO2023108727A1 (zh) 显示面板
CN209981261U (zh) 一种可调整发光角度的图型衬底、芯片
CN111863859A (zh) 显示面板及其制作方法、显示装置
US20230200120A1 (en) Display panel
US20130026911A1 (en) Light emitting diode device
CN214540314U (zh) 一种复合增亮膜及应用其的Mini LED背光模组
KR102603190B1 (ko) 발광장치
JP2012142233A (ja) El素子及びこれを備えた照明装置、ディスプレイ装置、液晶ディスプレイ装置
JP2013152811A (ja) 照明装置、表示装置、及びテレビ受信装置
US11280473B2 (en) Optical lens, light-emitting device and backlight module
US20240292718A1 (en) Display panel and display device including the same
TWM635159U (zh) 光源模組及顯示裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2021576742

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE