WO2023108590A1 - 高频高q值的声波谐振器及其制作方法 - Google Patents

高频高q值的声波谐振器及其制作方法 Download PDF

Info

Publication number
WO2023108590A1
WO2023108590A1 PCT/CN2021/139013 CN2021139013W WO2023108590A1 WO 2023108590 A1 WO2023108590 A1 WO 2023108590A1 CN 2021139013 W CN2021139013 W CN 2021139013W WO 2023108590 A1 WO2023108590 A1 WO 2023108590A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
acoustic wave
piezoelectric layer
wave resonator
Prior art date
Application number
PCT/CN2021/139013
Other languages
English (en)
French (fr)
Inventor
左成杰
戴忠斌
刘雪彦
Original Assignee
中国科学技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学技术大学 filed Critical 中国科学技术大学
Priority to PCT/CN2021/139013 priority Critical patent/WO2023108590A1/zh
Publication of WO2023108590A1 publication Critical patent/WO2023108590A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator

Definitions

  • the invention relates to the technical field of high-frequency acoustic wave resonators, in particular to a high-frequency high-Q acoustic wave resonator and a manufacturing method thereof.
  • the RF filter's performance directly determines the ability of the signal to stand out from the noise in the communication system.
  • the number of filters in smartphones has exceeded 100, and the demand for filters in the future market will further increase.
  • Quality factor As one of the important indicators to measure the performance of filters and resonators, a high quality factor ensures good in-band insertion loss of the filter. Therefore, achieving an extremely high quality factor in the high frequency band (MHz or even GHz) is the key to achieving high-performance filtering. With the advantages of small size, high quality factor, and high frequency, acoustic wave resonators have naturally become indispensable basic components in current RF filters.
  • the materials used in acoustic resonators mainly include PZT (lead zirconate titanate piezoelectric ceramics), aluminum nitride (AlN), scandium-doped aluminum nitride (AlScN), lithium niobate (LN), lithium tantalate (LT) wait.
  • PZT lead zirconate titanate piezoelectric ceramics
  • AlN aluminum nitride
  • AlScN scandium-doped aluminum nitride
  • LiN lithium niobate
  • LT lithium tantalate
  • lithium niobate and lithium tantalate can well meet the needs of acoustic wave resonators with high quality factor and large electromechanical coupling coefficient (k 2 ) in the 5G and 6G frequency bands due to their large piezoelectric coefficient (e). , has gradually become a popular material for the preparation of acoustic wave filters.
  • Lithium niobate and lithium tantalate thin films have multiple tangential directions, and the acoustic wave modes excited by different tangential directions are also different.
  • the common tangential directions are x-cut, y-cut and z-cut.
  • the piezoelectric coefficients used by this type of film are different according to the different acoustic wave modes excited. For example, e 11 is used for S0 mode, e 13 is used for S1 mode, e 16 is used for SH0 mode, etc. , the size of the piezoelectric coefficient directly affects the performance of the resonator in this mode.
  • the present application provides a high-frequency and high-Q acoustic wave resonator and its manufacturing method.
  • the S1 vibration can be excited at a specific angle (-40 to +40 degrees) of the piezoelectric film mode to realize high-frequency high-Q acoustic wave resonators.
  • the present invention provides the following technical solutions:
  • a high-frequency high-Q acoustic wave resonator comprising:
  • a release layer disposed on one side of the substrate
  • a piezoelectric layer disposed on the release layer away from the surface of the substrate
  • the release layer is used for release between the piezoelectric layer and the substrate; when the release layer is released, an etching groove is formed between the substrate and the piezoelectric layer, In order to obtain an acoustic wave resonator with high frequency and high Q value in the S1 vibration mode of the x-cut piezoelectric film at -40 to +40 degrees.
  • the metal electrode is located on the side surface of the piezoelectric layer away from the release layer;
  • the metal electrode is located on a surface of the piezoelectric layer facing the substrate.
  • the direction of the electric field formed by the metal electrode forms an Euler angle with the +y-axis direction in the global coordinate system of the piezoelectric layer, and the value of the Euler angle is -90 ⁇ +90 degrees;
  • the metal electrodes are grown on the surface of the piezoelectric layer based on the Euler angles.
  • the material of the metal electrode is gold, aluminum, molybdenum, platinum, or an alloy composed of titanium gold, titanium aluminum, chromium gold and chromium aluminum.
  • the number of the metal electrodes is 2-400;
  • the distance between adjacent metal electrodes is 0.1-20um;
  • the thickness of the metal electrode is 5-5000nm
  • the width of the metal electrode is 0.1-20um
  • the length of the metal electrode is 1-1000um.
  • the release layer is one or more layers, and the material of each layer includes any one of silicon dioxide, silicon nitride, lithium niobate and silicon;
  • the thickness of the release layer is 0.05-50um.
  • the piezoelectric layer is a lithium niobate layer, or a lithium tantalate layer, or a lithium niobate layer, an aluminum nitride layer, a scandium-doped aluminum nitride layer, or a lithium tantalate layer Composite layer with zinc oxide layer;
  • the thickness of the piezoelectric layer is 10-5000nm.
  • acoustic wave resonator also include:
  • the temperature compensation layer is located on the surface of the piezoelectric layer away from the substrate;
  • the temperature compensation layer is located on the surface of the piezoelectric layer away from the metal electrode.
  • the present invention also provides a manufacturing method of a high-frequency and high-Q acoustic wave resonator, the manufacturing method comprising:
  • the release layer is used for release between the piezoelectric layer and the substrate; when the release layer is released, an etching groove is formed between the substrate and the piezoelectric layer, In order to obtain an acoustic wave resonator with high frequency and high Q value in the S1 vibration mode of the x-cut piezoelectric film at -40 to +40 degrees.
  • a plurality of metal electrodes are formed on the surface of the piezoelectric layer away from the release layer, including:
  • photolithography on the mask layer obtains electrode windows at multiple preset angles, and exposes part of the surface of the piezoelectric layer;
  • Fig. 1 is the sectional view of a kind of high-frequency high-Q value acoustic wave resonator provided by the embodiment of the present invention
  • Fig. 2 is the sectional view of another kind of high-frequency high-Q value acoustic wave resonator provided by the embodiment of the present invention
  • FIG. 3 is a cross-sectional view of another high-frequency and high-Q acoustic wave resonator provided by an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of another high-frequency and high-Q acoustic wave resonator provided by an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of another high-frequency and high-Q acoustic wave resonator provided by an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of another high-frequency and high-Q acoustic wave resonator provided by an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of another high-frequency and high-Q acoustic wave resonator provided by an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of another high-frequency and high-Q acoustic wave resonator provided by an embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of another high-frequency and high-Q acoustic wave resonator provided by an embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of another high-frequency and high-Q acoustic wave resonator provided by an embodiment of the present invention.
  • Fig. 11 is a cross-sectional view of another high-frequency and high-Q acoustic wave resonator provided by an embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of another high-frequency and high-Q acoustic wave resonator provided by an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a high-frequency and high-Q acoustic wave resonator implementing Euler angle rotation provided by an embodiment of the present invention
  • Fig. 14 is a top view of an acoustic wave resonator based on rotating Euler angles to achieve high frequency and high Q value provided by an embodiment of the present invention
  • Fig. 15 is a vibration mode diagram of a high-frequency and high-Q acoustic wave resonator S1 provided by an embodiment of the present invention.
  • Fig. 16 is a test performance diagram of a high-frequency and high-Q acoustic wave resonator provided in an embodiment of the present invention within the angle range of -40 to +40 degrees;
  • 17-27 are process flow charts of a manufacturing method of a high-frequency and high-Q acoustic wave resonator provided by an embodiment of the present invention.
  • the present invention provides a method based on the rotation Euler angle, at a specific angle (-40 to +40 degrees) of the piezoelectric film A high-frequency acoustic wave resonator with a quality factor exceeding 5,000 or even tens of thousands is realized by stimulating the S1 vibration mode and a manufacturing method thereof.
  • the piezoelectric coefficient, dielectric constant, elastic coefficient and other parameters of the piezoelectric material will change with the rotation of the Euler angle, which will affect the electromechanical coupling coefficient and quality factor of the acoustic wave resonator, and at a specific Euler angle and a specific wavelength
  • the metal electrode arrangement below can excite different acoustic vibration modes, and then obtain an acoustic wave resonator at a specific frequency. Therefore, rotating the Euler angles can obtain acoustic wave resonators with high frequency and high Q value in different modes.
  • Figure 1 is a cross-sectional view of a high-frequency and high-Q acoustic wave resonator provided by an embodiment of the present invention
  • Figure 2 is another high-frequency and high-Q acoustic wave provided by an embodiment of the present invention
  • the sectional view of the resonator Figure 3 is a sectional view of another high-frequency and high-Q acoustic wave resonator provided by the embodiment of the present invention
  • Figure 4 is another high-frequency and high-Q acoustic wave provided by the embodiment of the present invention Cutaway view of a resonator.
  • the acoustic wave resonator includes:
  • a substrate 11; the substrate 11 may be a silicon substrate, a sapphire substrate (Al 2 O 3 ), a gallium nitride substrate (GaN) or a silicon carbide substrate (SiC);
  • a release layer 12 disposed on one side surface of the substrate 11;
  • a piezoelectric layer 13 disposed on the surface of the release layer 12 away from the substrate 11;
  • the release layer 12 can be used for release between the piezoelectric layer 13 and the substrate 11; when the release layer 12 is released, between the substrate 11 and the piezoelectric layer 13
  • the etching groove 20 is formed to obtain an acoustic wave resonator with high frequency and high Q value in the S1 vibration mode at a specific angle (-40 to +40 degrees) of the x-cut piezoelectric film.
  • the acoustic wave resonator also includes:
  • the temperature compensation layer 21 may be located on the surface of the piezoelectric layer 13 facing away from the substrate 11;
  • the temperature compensation layer 21 may be located on the side surface of the piezoelectric layer 13 facing the substrate 11;
  • the temperature compensation layer 21 may be located on the surface of the piezoelectric layer 13 facing away from the substrate 11 and on the side of the piezoelectric layer 13 facing the substrate 11 at the same time. surface.
  • the metal electrode 16 may be located on the side surface of the piezoelectric layer 13 away from the release layer 12, as shown in FIGS. 1-4 ;
  • the metal electrode 16 may be located on the side surface of the piezoelectric layer 13 facing the substrate 11, as shown in FIGS. 5-8 ;
  • the metal electrode 16 can be located on the side surface of the piezoelectric layer 13 facing away from the release layer 12 and on the side surface of the piezoelectric layer 13 facing the substrate 11 at the same time, as shown in FIGS. 9-12 shown.
  • Fig. 5 is a sectional view of another high-frequency and high-Q acoustic wave resonator provided by an embodiment of the present invention
  • Fig. 6 is another high-frequency and high-Q acoustic resonator provided by an embodiment of the present invention
  • Fig. 7 is a sectional view of another high frequency and high Q value acoustic wave resonator provided by the embodiment of the present invention
  • Fig. 8 is another high frequency and high Q value acoustic resonator provided by the embodiment of the present invention Cutaway view of an acoustic resonator.
  • the metal electrode 16 is located on the side surface of the piezoelectric layer 13 facing the substrate 11 .
  • the acoustic wave resonator further includes: a temperature compensation layer 21;
  • the temperature compensation layer 21 may be located on the surface of the piezoelectric layer 13 facing away from the substrate 11;
  • the temperature compensation layer 21 may be located on the side surface of the piezoelectric layer 13 facing the substrate 11;
  • the temperature compensation layer 21 may be located on the surface of the piezoelectric layer 13 facing away from the substrate 11 and on the side of the piezoelectric layer 13 facing the substrate 11 at the same time. surface.
  • Figure 9 is a cross-sectional view of another high-frequency and high-Q acoustic wave resonator provided by an embodiment of the present invention
  • Figure 10 is another high-frequency and high-Q acoustic resonator provided by an embodiment of the present invention
  • the sectional view of the acoustic wave resonator, Fig. 11 is a sectional view of another high-frequency and high-Q acoustic wave resonator provided by the embodiment of the present invention
  • Fig. 12 is another high-frequency and high-Q value acoustic resonator provided by the embodiment of the present invention Cutaway view of an acoustic resonator.
  • the metal electrode 16 is located on the side surface of the piezoelectric layer 13 away from the release layer 12 and the side of the piezoelectric layer 13 facing the substrate 11 at the same time. surface.
  • the acoustic wave resonator further includes: a temperature compensation layer 21;
  • the temperature compensation layer 21 may be located on the surface of the piezoelectric layer 13 facing away from the substrate 11;
  • the temperature compensation layer 21 may be located on the side surface of the piezoelectric layer 13 facing the substrate 11;
  • the temperature compensation layer 21 may be located on the surface of the piezoelectric layer 13 facing away from the substrate 11 and on the side of the piezoelectric layer 13 facing the substrate 11 at the same time. surface.
  • the direction of the electric field formed by the metal electrode 16 (that is, the propagation direction of the sound wave +y′) and the direction of the +y axis in the global coordinate system of the piezoelectric layer 13 form an Euler angle ⁇ , and the Euler The value of the pull angle ⁇ is -90 to +90 degrees (or 0 to +90, +270 to +360 degrees. +90 to +270 degrees are symmetrical angles, which will not be repeated); the metal electrode 16 is based on the The Euler angle ⁇ grows on the surface of the piezoelectric layer 13 .
  • FIG. 13 is a schematic structural diagram of a high-frequency and high-Q acoustic wave resonator implementing Euler angle rotation provided by an embodiment of the present invention.
  • the material of the metal electrode 16 can be gold, aluminum, molybdenum, platinum, or an alloy composed of titanium gold, titanium aluminum, chromium gold and chromium aluminum;
  • the thickness of the metal electrode 16 may be 5-5000 nm, such as 50 nm or 200 nm.
  • the number of the metal electrodes 16 may be 2-400, such as 8 or 16.
  • the distance between adjacent metal electrodes 16 can be 0.1-20um, such as 2um;
  • the width of the metal electrode 16 is 0.1-20um, such as 4um or 5um;
  • the length of the metal electrode 16 is 1-1000um, such as 120um, 200um or 240um.
  • the release layer 12 can be one or more layers, and the material of each layer includes any one of silicon dioxide, silicon nitride, lithium niobate and silicon; the thickness of the release layer 12 It can be 0.05-50um, such as 10um or 25um.
  • the piezoelectric layer 13 may be a lithium niobate layer (LN), or a lithium tantalate layer (LT), or a lithium niobate layer, an aluminum nitride layer, a scandium-doped aluminum nitride layer, a tantalum A composite layer of lithium oxide layer and zinc oxide layer; the thickness of the piezoelectric layer 13 can be 10-5000nm, such as 200nm or 600nm.
  • LN lithium niobate layer
  • LT lithium tantalate layer
  • the thickness of the piezoelectric layer 13 can be 10-5000nm, such as 200nm or 600nm.
  • FIG. 14 is a top view of an acoustic wave resonator that realizes high frequency and high Q value based on rotating Euler angles provided by an embodiment of the present invention.
  • y represents the direction of propagation
  • x represents the direction of thickness
  • z represents the direction of length.
  • a high-frequency acoustic wave resonator with a quality factor exceeding 5,000 or even tens of thousands of vibrations in the S1 mode within the range of -40 to +40 degrees is obtained.
  • FIG. 15 is a vibration mode diagram of a high-frequency and high-Q acoustic wave resonator S1 provided by an embodiment of the present invention.
  • the S1 mode is a symmetrical compression body wave in the thickness direction of the piezoelectric film vibration.
  • Figure 16 is a test performance diagram of a high-frequency and high-Q acoustic wave resonator provided by an embodiment of the present invention within the angle range of -40 to +40 degrees, and the results show that the acoustic wave resonator within this angle range
  • another embodiment of the present invention also provides a method for manufacturing a high-frequency and high-Q acoustic wave resonator, which is illustrated by taking the acoustic wave resonator shown in Figures 1-4 as an example, as shown in Figure 17- Figure As shown in Fig. 27, Fig. 17-Fig. 27 is a process flow diagram of a method for manufacturing a high-frequency and high-Q acoustic wave resonator provided by an embodiment of the present invention.
  • the manufacturing method includes:
  • Step S11 as shown in FIG. 17 , providing a substrate 11;
  • the substrate 11 may be a silicon substrate, a sapphire substrate (Al 2 O 3 ), a gallium nitride substrate (GaN), or a silicon carbide substrate (SiC).
  • Step S12 As shown in FIG. 18 , forming a release layer 12 on one surface of the substrate 11;
  • the release layer 12 can be one or more layers; the material of each layer includes any one of silicon dioxide, silicon nitride, lithium niobate and silicon.
  • the thickness of the release layer 12 may be 0.05-50um, such as 10um or 30um.
  • the release layer 11 can be used for release between the piezoelectric layer 13 and the substrate 11 .
  • Step S13 As shown in FIG. 19 , forming a piezoelectric layer 13 on the surface of the release layer 12 away from the substrate 11;
  • the piezoelectric layer 13 may be a lithium niobate layer, or a lithium tantalate layer, or a composite layer of a lithium niobate layer, an aluminum nitride layer, a scandium-doped aluminum nitride layer, a lithium tantalate layer, and a zinc oxide layer.
  • the thickness of the piezoelectric layer 13 may be 10-5000 nm, such as 200 nm or 500 nm.
  • Step S14 As shown in FIGS. 20-27 , forming a plurality of metal electrodes 16 on the surface of the piezoelectric layer 13 away from the release layer 12 ;
  • the release layer 12 can be used for release between the piezoelectric layer 13 and the substrate 11; when the release layer 12 is released, between the substrate 11 and the piezoelectric layer 13
  • the etching groove 20 is formed to obtain an acoustic wave resonator with high frequency and high Q value in the S1 vibration mode at a specific angle (-40 to +40 degrees) of the x-cut piezoelectric film.
  • the method for forming a plurality of metal electrodes 16 on the surface of the piezoelectric layer 13 includes:
  • a mask layer 14 is formed on the surface of the piezoelectric layer 13 away from the release layer 12;
  • the mask layer 14 can be any of photoresist, silicon oxide, and silicon nitride. one or a combination of both;
  • the photolithography technology can be any one of ultraviolet lithography or electron beam lithography or a combination of both;
  • a metal electrode 16 is formed on the electrode window 15 by a coating technique; wherein, the coating technique can be one or a combination of electron beam evaporation or magnetron sputtering;
  • the material of the metal electrode 16 may be gold, aluminum, molybdenum, platinum, or an alloy composed of titanium gold, titanium aluminum, chromium gold and chromium aluminum.
  • the thickness of the metal electrode 16 may be 5-5000 nm, such as 50 nm or 200 nm.
  • the number of the metal electrodes 16 may be 2-400, such as 8 or 16.
  • the distance between adjacent metal electrodes 16 can be 0.1-20um, such as 2um;
  • the width of the metal electrode 16 is 0.1-20um, such as 4um or 5um.
  • the length of the metal electrode 16 is 1-1000um, such as 120um, 200um or 240um.
  • the method for forming the etching groove 20 between the substrate 11 and the piezoelectric layer 13 includes:
  • a hard mask layer 17 is formed on the entire surface of the device.
  • the piezoelectric layer 13 is etched by inductively coupled plasma etching to form a second etching window. etch the window 19, and expose the release layer 12;
  • an oxide etchant (acid or alkali) into the second etching window 19 to release the release layer 12;
  • the remaining hard mask layer 17 is removed to finally obtain a high-frequency and high-Q sound wave in the S1 vibration mode at a specific angle (-40 to +40 degrees) of the x-cut piezoelectric film resonator.
  • the acoustic wave resonator shown in FIGS. 5-8 or 9-12 may also be used as an example for illustration, which will not be repeated here.
  • the quality factor of the acoustic wave resonator can be effectively adjusted under the condition that the frequency and the electromechanical coupling coefficient (k 2 ) are basically unchanged, and finally -40 Acoustic wave resonators with high-frequency and high-Q values with Q values exceeding 5,000 or even tens of thousands in the S1 vibration mode within the range of ⁇ +40 degrees.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本申请公开了一种高频高Q值的声波谐振器及其制作方法,所述声波谐振器包括:衬底;设置于所述衬底一侧表面的释放层;设置于所述释放层背离所述衬底表面的压电层;设置于所述压电层背离所述释放层表面的多个金属电极;其中,所述释放层用于所述压电层与所述衬底之间的释放;当所述释放层释放时,在所述衬底与所述压电层之间形成刻蚀沟槽,以得到x-cut压电薄膜-40~+40度下S1振动模态的高频高Q值的声波谐振器。本方案通过旋转欧拉角,在x-cut压电薄膜上激发出S1振动模态,特定角度(-40~+40度)下实现品质因数(Q)超过5000甚至上万的高频高Q值的声波谐振器,以满足当前5G、6G频段下对滤波器高频率、高Q值的性能要求。

Description

高频高Q值的声波谐振器及其制作方法 技术领域
本发明涉及高频声波谐振器技术领域,尤其是涉及一种高频高Q值的声波谐振器及其制作方法。
背景技术
射频滤波器作为射频前端的重要模块之一,其性能的好坏直接决定了通信系统中信号在噪声中脱颖而出的能力。随着5G时代的来临,智能手机中滤波器的数量已经超过100颗,未来市场对于滤波器的需求将进一步提高。通信市场蓬勃发展的今天,6G、7G时代接踵而来,如何在未来更高频率下实现高性能滤波是市场追求的目标。
品质因数(Q),作为衡量滤波器、谐振器性能好坏的重要指标之一,高的品质因数保证了滤波器良好的带内插损。所以,在高频段(MHz甚至GHz)实现极致高品质因数是实现高性能滤波的关键。声波谐振器凭借小尺寸、高品质因数、高频率等优点,自然而然成为目前射频滤波器中不可或缺的基本组成元件。
目前,声波谐振器使用的材料主要有PZT(锆钛酸铅压电陶瓷)、氮化铝(AlN)、掺钪氮化铝(AlScN)、铌酸锂(LN)、钽酸锂(LT)等。其中,铌酸锂和钽酸锂因其较大的压电系数(e),能很好的满足5G、6G频段下对于高品质因数和较大机电耦合系数(k 2)声波谐振器的需求,逐渐成为声波滤波器制备的热门材料。铌酸锂和钽酸锂薄膜有多个切向,不同切向下激发出的声波模态也不尽相同,常见的切向有x-cut、y-cut和z-cut。该类薄膜根据激发的声波模态不同,所使用的压电系数也有所区别,比如S0模态使用的是e 11,S1模态使用的是e 13,SH0模态使用的是e 16等等,压电系数的大小直接影响了该模态下谐振器性能的好坏。当压电薄膜切向确定之后,其压电系数可以通过旋转平面内的欧拉角进行改变,最终得到最优 性能的声波谐振器。当前研究中,大多数学者都通过旋转平面内欧拉角来改变声波谐振器的机电耦合系数,但都忽略了欧拉角改变对于品质因数的影响,且工作在5G、6G频段的声波谐振器品质因数都很难突破1000,这大大影响了其组成滤波器的滤波性能。
发明内容
有鉴于此,本申请提供了一种高频高Q值的声波谐振器及其制作方法,通过旋转欧拉角,在压电薄膜特定角度(-40~+40度)下可以激发出S1振动模态,以实现高频高Q值的声波谐振器。
为了实现上述目的,本发明提供如下技术方案:
一种高频高Q值的声波谐振器,所述声波谐振器包括:
衬底;
设置于所述衬底一侧表面的释放层;
设置于所述释放层背离所述衬底表面的压电层;
设置于所述压电层表面的多个金属电极;
其中,所述释放层用于所述压电层与所述衬底之间的释放;当所述释放层释放时,在所述衬底与所述压电层之间形成刻蚀沟槽,以得到x-cut压电薄膜-40~+40度下S1振动模态的高频高Q值的声波谐振器。
优选的,在上述的声波谐振器中,所述金属电极位于所述压电层背离所述释放层的一侧表面;
和/或,所述金属电极位于所述压电层朝向所述衬底的一侧表面。
优选的,在上述的声波谐振器中,所述金属电极形成的电场方向与所述压电层全局坐标系下的+y轴方向呈欧拉角,所述欧拉角的取值为-90~+90度;
所述金属电极基于所述欧拉角生长在所述压电层表面。
优选的,在上述的声波谐振器中,所述金属电极的材料为金,铝,钼,铂,或钛金、钛铝、铬金和铬铝组成的合金。
优选的,在上述的声波谐振器中,所述金属电极的数量为2~400个;
相邻所述金属电极之间的距离为0.1-20um;
所述金属电极的厚度为5-5000nm;
所述金属电极的宽度为0.1-20um;
所述金属电极的长度为1-1000um。
优选的,在上述的声波谐振器中,所述释放层为一层或多层,每层的材料包括二氧化硅、氮化硅、铌酸锂以及硅中的任意一种;
所述释放层的厚度为0.05-50um。
优选的,在上述的声波谐振器中,所述压电层为铌酸锂层,或钽酸锂层,或铌酸锂层、氮化铝层、掺钪氮化铝层、钽酸锂层和氧化锌层的复合层;
所述压电层的厚度为10-5000nm。
优选的,在上述的声波谐振器中,还包括:
温度补偿层;
所述温度补偿层位于所述压电层背离所述衬底的一侧表面;
和/或,所述温度补偿层位于所述压电层背离所述金属电极的一侧表面。
本发明还提供了一种高频高Q值的声波谐振器的制作方法,所述制作方法包括:
提供一衬底;
在所述衬底的一侧表面形成释放层;
在所述释放层背离所述衬底表面形成压电层;
在所述压电层表面形成多个金属电极;
其中,所述释放层用于所述压电层与所述衬底之间的释放;当所述释放层释放时,在所述衬底与所述压电层之间形成刻蚀沟槽,以得到x-cut压电薄膜-40~+40度下S1振动模态的高频高Q值的声波谐振器。
优选的,在上述的制作方法中,在所述压电层背离所述释放层表面形成多个金属电极,包括:
在所述压电层背离所述释放层的一侧表面形成掩膜层;
基于旋转欧拉角,在所述掩膜层上光刻得到多个预设角度下的电极窗口,并露出部分所述压电层表面;
通过镀膜技术在所述电极窗口上形成金属电极;
去除剩余的所述掩膜层。
通过上述描述可知,本发明技术方案提供的高频高Q值的声波谐振器及其制作方法中,通过旋转欧拉角,在压电层上沉积不同角度的金属电极,释放释放层,通过周期性的电场激励激发出x-cut下压电层的S1振动模态,得到品质因数(Q)超过5000甚至上万的高频声波谐振器,可以很好的满足当前5G、6G频段下对滤波器高频率、高Q值的性能要求;并且通过旋转欧拉角,在保证频率和机电耦合系数(k 2)基本不变的情况下,可以有效的调整声波谐振器的品质因数,最终得到-40~+40度范围内S1振动模态下Q值超过5000甚至上万的高频高Q值的声波谐振器。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
本说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本申请可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本申请所能产生的功效及所能达成的目的下,均应仍落在本申请所揭示的技术内容得能涵盖的范围内。
图1为本发明实施例提供的一种高频高Q值的声波谐振器的切面图;
图2为本发明实施例提供的另一种高频高Q值的声波谐振器的切面图;
图3为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图;
图4为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图;
图5为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图;
图6为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图;
图7为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图;
图8为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图;
图9为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图;
图10为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图;
图11为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图;
图12为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图;
图13为本发明实施例提供的一种高频高Q值的声波谐振器实现欧拉角旋转的结构示意图;
图14为本发明实施例提供的一种基于旋转欧拉角实现高频高Q值的声波谐振器的俯视图;
图15为本发明实施例提供的一种高频高Q值的声波谐振器S1振动模态图;
图16为本发明实施例提供的一种高频高Q值的声波谐振器在-40~+40度角度范围内的测试性能图;
图17-图27为本发明实施例提供的一种高频高Q值的声波谐振器的制作方法工艺流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请中的实施例进行清楚、 完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。
有鉴于此,为了得到高频(>3GHz)、高品质因数(Q)的声波谐振器,本发明提供了一种基于旋转欧拉角,在压电薄膜特定角度(-40~+40度)下激发出S1振动模态,实现品质因数超过5000甚至上万的高频声波谐振器的及其制作方法。
由于压电材料的压电系数、介电常数、弹性系数等参数会随着欧拉角的转动而改变,进而影响其声波谐振器机电耦合系数和品质因数,并且在特定欧拉角、特定波长下的金属电极排列方式能激发出不同的声波振动模态,进而得到特定频率下的声波谐振器。所以,转动欧拉角能得到不同模态下高频、高Q值的声波谐振器。
参考图1-图4,图1为本发明实施例提供的一种高频高Q值的声波谐振器的切面图,图2为本发明实施例提供的另一种高频高Q值的声波谐振器的切面图,图3为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图,图4为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图。
如图1所示,所述声波谐振器包括:
衬底11;所述衬底11可以为硅衬底、蓝宝石衬底(Al 2O 3)、氮化镓衬底(GaN)或碳化硅衬底(SiC);
设置于所述衬底11一侧表面的释放层12;
设置于所述释放层12背离所述衬底11表面的压电层13;
设置于所述压电层13表面的多个(至少2个)金属电极16;
其中,所述释放层12可用于所述压电层13与所述衬底11之间的释放;当所述释放层12释放时,在所述衬底11与所述压电层13之间形成刻蚀沟槽20, 以得到x-cut压电薄膜特定角度下(-40~+40度)S1振动模态的高频高Q值的声波谐振器。
进一步的,如图2-图4所示,所述声波谐振器还包括:
温度补偿层21;
如图2所示,所述温度补偿层21可以位于所述压电层13背离所述衬底11的一侧表面;
或,如图3所示,所述温度补偿层21可以位于所述压电层13朝向所述衬底11的一侧表面;
或,如图4所示,所述温度补偿层21可以同时位于所述压电层13背离所述衬底11的一侧表面和位于所述压电层13朝向所述衬底11的一侧表面。
本发明实施例中,所述金属电极16可以位于所述压电层13背离所述释放层12的一侧表面,如图1-图4所示;
或所述金属电极16可以位于所述压电层13朝向所述衬底11的一侧表面,如图5-图8所示;
或,所述金属电极16可以同时位于所述压电层13背离所述释放层12的一侧表面和位于所述压电层13朝向所述衬底11的一侧表面,如图9-12所示。
参考图5-图8,图5为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图,图6为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图,图7为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图,图8为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图。
在图5-图8所示方式中,所述金属电极16位于所述压电层13朝向所述衬底11的一侧表面。
该方式中,所述声波谐振器还包括:温度补偿层21;
如图6所示,所述温度补偿层21可以位于所述压电层13背离所述衬底11的一侧表面;
或,如图7所示,所述温度补偿层21可以位于所述压电层13朝向所述衬底11的一侧表面;
或,如图8所示,所述温度补偿层21可以同时位于所述压电层13背离所述衬底11的一侧表面和位于所述压电层13朝向所述衬底11的一侧表面。
参考图9-图12,图9为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图,图10为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图,图11为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图,图12为本发明实施例提供的又一种高频高Q值的声波谐振器的切面图。
在图9-图12所示方式中,所述金属电极16同时位于所述压电层13背离所述释放层12的一侧表面和所述压电层13朝向所述衬底11的一侧表面。
该方式中,所述声波谐振器还包括:温度补偿层21;
如图9所示,所述温度补偿层21可以位于所述压电层13背离所述衬底11的一侧表面;
或,如图10所示,所述温度补偿层21可以位于所述压电层13朝向所述衬底11的一侧表面;
或,如图11所示,所述温度补偿层21可以同时位于所述压电层13背离所述衬底11的一侧表面和位于所述压电层13朝向所述衬底11的一侧表面。
本发明实施例中,所述金属电极16形成的电场方向(即声波的传播方向+y’)与所述压电层13全局坐标系下的+y轴方向呈欧拉角α,所述欧拉角α的取值为-90~+90度(或0~+90、+270~+360度。+90~+270度属于对称角度,不做重复说明);所述金属电极16基于所述欧拉角α生长在所述压电层13表面。如图13所示,图13为本发明实施例提供的一种高频高Q值的声波谐振器实现欧拉角旋转的结构示意图。
本发明实施例中,所述金属电极16的材料可以为金,铝,钼,铂,或钛金、钛铝、铬金和铬铝组成的合金;
所述金属电极16的厚度可以为5-5000nm,如可以为50nm或200nm。
所述金属电极16的数量可以为2~400个,如可以为8个或16个。
相邻所述金属电极16之间的距离可以为0.1-20um,如可以为2um;
所述金属电极16的宽度为0.1-20um,如可以为4um或5um;
所述金属电极16的长度为1-1000um,如可以为120um、200um或240um。
本发明实施例中,所述释放层12可以为一层或多层,每层的材料包括二氧化硅、氮化硅、铌酸锂以及硅中的任意一种;所述释放层12的厚度可以为0.05-50um,如可以为10um或25um。
本发明实施例中,所述压电层13可以为铌酸锂层(LN),或钽酸锂层(LT),或铌酸锂层、氮化铝层、掺钪氮化铝层、钽酸锂层和氧化锌层的复合层;所述压电层13的厚度可以为10-5000nm,如可以为200nm或600nm。
如图14所示,图14本发明实施例提供的一种基于旋转欧拉角实现高频高Q值的声波谐振器的俯视图。该方式中,y表示传播方向,x表示厚度方向,z表示长度方向,可以选取0度,±5度,±10度,±30度,±60度,+90度这10个角度设计声波谐振器,最终得到-40~+40度范围内振动在S1模态下品质因数超过5000甚至上万的高频声波谐振器。
如图15所示,图15为本发明实施例提供的一种高频高Q值的声波谐振器S1振动模态图。S1模态是一种压电薄膜振动在厚度方向的对称压缩体波。
如图16所示,图16为本发明实施例提供的一种高频高Q值的声波谐振器在-40~+40度角度范围内的测试性能图,结果表明该角度范围内声波谐振器在反谐振频率点f p=6.642GHz处的品质因数可以超过5000甚至上万,完全满足当前5G、6G频段下滤波器的性能要求。
通过上述描述可知,本发明技术方案提供的高频高Q值的声波谐振器中,通过旋转欧拉角,在压电层上沉积不同角度的金属电极,释放释放层,通过 周期性的电场激励激发出x-cut下压电层的S1振动模态,得到品质因数(Q)超过5000甚至上万的高频声波谐振器,可以很好的满足当前5G、6G频段下对滤波器高频率、高Q值的性能要求;并且通过旋转欧拉角,在保证频率和机电耦合系数(k 2)基本不变的情况下,可以有效的调整声波谐振器的品质因数,最终得到-40~+40度范围内S1振动模态下Q值超过5000甚至上万的高频高Q值的声波谐振器。
基于上述实施例,本发明另一实施例还提供一种高频高Q值的声波谐振器的制作方法,以图1-图4所示的声波谐振器为例进行说明,如图17-图27所示,图17-图27为本发明实施例提供的一种高频高Q值的声波谐振器的制作方法工艺流程图,所述制作方法包括:
步骤S11:如图17所示,提供一衬底11;
其中,所述衬底11可以为硅衬底、蓝宝石衬底(Al 2O 3)、氮化镓衬底(GaN)、或碳化硅衬底(SiC)。
步骤S12:如图18所示,在所述衬底11的一侧表面形成释放层12;
其中,所述释放层12可以为一层或多层;每层的材料包括二氧化硅、氮化硅、铌酸锂以及硅中的任意一种。
所述释放层12的厚度可以为0.05-50um,如可以为10um或30um。所述释放层11可用于所述压电层13与所述衬底11之间的释放。
步骤S13:如图19所示,在所述释放层12背离所述衬底11表面形成压电层13;
其中,所述压电层13可以为铌酸锂层,或钽酸锂层,或铌酸锂层、氮化铝层、掺钪氮化铝层、钽酸锂层和氧化锌层的复合层。所述压电层13的厚度可以为10-5000nm,如可以为200nm或500nm。
步骤S14:如图20-图27所示,在所述压电层13背离所述释放层12表面形成多个金属电极16;
其中,所述释放层12可用于所述压电层13与所述衬底11之间的释放; 当所述释放层12释放时,在所述衬底11与所述压电层13之间形成刻蚀沟槽20,以得到x-cut压电薄膜特定角度下(-40~+40度)S1振动模态的高频高Q值的声波谐振器。
本发明实施例中,在所述压电层13表面形成多个金属电极16的方法,包括:
首先,如图20所示,在所述压电层13背离所述释放层12的一侧表面形成掩膜层14;掩膜层14可以是光刻胶、氧化硅、氮化硅中的任意一种或者两者结合;
然后,如图21所示,基于旋转欧拉角α,在所述掩膜层14上光刻之后,采用剥离(lift-off)或者反应离子刻蚀得到多个预设角度(-90~+90度)下的电极窗口15,并露出部分所述压电层13表面;其中,光刻技术可以是紫外光刻或电子束光刻中的任意一种或者两者结合;
再然后,如图22所示,通过镀膜技术在所述电极窗口15上形成金属电极16;其中,镀膜技术可以是电子束蒸镀或磁控溅射中的一种或者两者结合;
最后,如图23所示,去除剩余的所述掩膜层14。
本发明实施例中,所述金属电极16的材料可以为金,铝,钼,铂,或钛金、钛铝、铬金和铬铝组成的合金。
所述金属电极16的厚度可以为5-5000nm,如可以为50nm或200nm。
所述金属电极16的数量可以为2~400个,如可以为8个或16个。
相邻所述金属电极16之间的距离可以为0.1-20um,如可以为2um;
所述金属电极16的宽度为0.1-20um,如可以为4um或5um。
所述金属电极16的长度为1-1000um,如可以为120um、200um或240um。
本发明实施例中,在所述衬底11与所述压电层13之间形成刻蚀沟槽20的方法,包括:
首先,如图24所示,在整个器件表面形成硬掩膜层17;
然后,如图25所示,对所述硬掩膜层17进行反应离子刻蚀,在所述金属电极16两侧形成第一刻蚀窗口18,并露出部分所述压电层13表面;
再然后,如图26所示,基于所述第一刻蚀窗口18,在硬掩膜17的保护下,采用感应耦合等离子刻蚀法对所述压电层13进行刻蚀,形成第二刻蚀窗口19,并露出释放层12;
再然后,如图27所示,向所述第二刻蚀窗口19中注入氧化物刻蚀液(酸或碱),释放释放层12;
最后,如图1所示,去除剩余的所述硬掩膜层17,最终得到x-cut压电薄膜特定角度下(-40~+40度)S1振动模态的高频高Q值的声波谐振器。
其他方式中,也可以以图5-图8或图9-图12所示声波谐振器为例进行说明,在此不再赘述。
通过上述描述可知,本发明技术方案提供的高频高Q值的声波谐振器的制作方法中,通过旋转欧拉角,在压电层上沉积不同角度的金属电极,释放释放层,通过周期性的电场激励激发出x-cut下压电层的S1振动模态,得到品质因数(Q)超过5000甚至上万的高频声波谐振器,可以很好的满足当前5G、6G频段下对滤波器高频率、高Q值的性能要求;并且通过旋转欧拉角,在保证频率和机电耦合系数(k 2)基本不变的情况下,可以有效的调整声波谐振器的品质因数,最终得到-40~+40度范围内S1振动模态下Q值超过5000甚至上万的高频高Q值的声波谐振器。
需要说明的是,本申请只是展示了-90~+90度范围下的欧拉角,剩下的角度也属于本发明保护范围内。
本说明书中各个实施例采用递进、或并列、或递进和并列结合的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的制作方法而言,由于其与实 施例公开的高频高Q值的声波谐振器相对应,所以描述的比较简单,相关之处参见声波谐振器部分说明即可。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括上述要素的物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种高频高Q值的声波谐振器,其特征在于,包括:
    衬底;
    设置于所述衬底一侧表面的释放层;
    设置于所述释放层背离所述衬底表面的压电层;
    设置于所述压电层表面的多个金属电极;
    其中,所述释放层用于所述压电层与所述衬底之间的释放;当所述释放层释放时,在所述衬底与所述压电层之间形成刻蚀沟槽,以得到x-cut压电薄膜-40~+40度下S1振动模态的高频高Q值的声波谐振器。
  2. 根据权利要求1所述的声波谐振器,其特征在于,所述金属电极位于所述压电层背离所述释放层的一侧表面;
    和/或,所述金属电极位于所述压电层朝向所述衬底的一侧表面。
  3. 根据权利要求2所述的声波谐振器,其特征在于,所述金属电极形成的电场方向与所述压电层全局坐标系下的+y轴方向呈欧拉角,所述欧拉角的取值为-90~+90度;
    所述金属电极基于所述欧拉角生长在所述压电层表面。
  4. 根据权利要求3所述的声波谐振器,其特征在于,所述金属电极的材料为金,铝,钼,铂,或钛金、钛铝、铬金和铬铝组成的合金。
  5. 根据权利要求4所述的声波谐振器,其特征在于,所述金属电极的数量为2~400个;
    相邻所述金属电极之间的距离为0.1-20um;
    所述金属电极的厚度为5-5000nm;
    所述金属电极的宽度为0.1-20um;
    所述金属电极的长度为1-1000um。
  6. 根据权利要求1所述的声波谐振器,其特征在于,所述释放层为一层或多层,每层的材料包括二氧化硅、氮化硅、铌酸锂以及硅中的任意一 种;
    所述释放层的厚度为0.05-50um。
  7. 根据权利要求1所述的声波谐振器,其特征在于,所述压电层为铌酸锂层,或钽酸锂层,或铌酸锂层、氮化铝层、掺钪氮化铝层、钽酸锂层和氧化锌层的复合层;
    所述压电层的厚度为10-5000nm。
  8. 根据权利要求1所述的声波谐振器,其特征在于,还包括:
    温度补偿层;
    所述温度补偿层位于所述压电层背离所述衬底的一侧表面;
    和/或,所述温度补偿层位于所述压电层朝向所述衬底的一侧表面。
  9. 一种高频高Q值的声波谐振器的制作方法,其特征在于,所述制作方法包括:
    提供一衬底;
    在所述衬底的一侧表面形成释放层;
    在所述释放层背离所述衬底表面形成压电层;
    在所述压电层表面形成多个金属电极;
    其中,所述释放层用于所述压电层与所述衬底之间的释放;当所述释放层释放时,在所述衬底与所述压电层之间形成刻蚀沟槽,以得到x-cut压电薄膜-40~+40度下S1振动模态的高频高Q值的声波谐振器。
  10. 根据权利要求9所述的制作方法,其特征在于,在所述压电层背离所述释放层表面形成多个金属电极,包括:
    在所述压电层背离所述释放层的一侧表面形成掩膜层;
    基于旋转欧拉角,在所述掩膜层上光刻得到多个预设角度下的电极窗口,并露出部分所述压电层表面;
    通过镀膜技术在所述电极窗口上形成金属电极;
    去除剩余的所述掩膜层。
PCT/CN2021/139013 2021-12-17 2021-12-17 高频高q值的声波谐振器及其制作方法 WO2023108590A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/139013 WO2023108590A1 (zh) 2021-12-17 2021-12-17 高频高q值的声波谐振器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/139013 WO2023108590A1 (zh) 2021-12-17 2021-12-17 高频高q值的声波谐振器及其制作方法

Publications (1)

Publication Number Publication Date
WO2023108590A1 true WO2023108590A1 (zh) 2023-06-22

Family

ID=86775301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139013 WO2023108590A1 (zh) 2021-12-17 2021-12-17 高频高q值的声波谐振器及其制作方法

Country Status (1)

Country Link
WO (1) WO2023108590A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378815A (zh) * 2012-04-25 2013-10-30 中国科学院声学研究所 声波谐振器及其制备方法
US20200028487A1 (en) * 2018-07-18 2020-01-23 Skyworks Solutions, Inc. Fbar filter with integrated cancelation circuit
US20200177162A1 (en) * 2018-06-15 2020-06-04 Resonant Inc. Transversely excited film bulk acoustic resonator using rotated y-x cut lithium niobate
CN112039460A (zh) * 2019-07-19 2020-12-04 中芯集成电路(宁波)有限公司 薄膜体声波谐振器及其制作方法
US20210234528A1 (en) * 2020-01-24 2021-07-29 Board Of Trustees Of The University Of Illinois Fifth-generation (5g)-focused piezoelectric resonators and filters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378815A (zh) * 2012-04-25 2013-10-30 中国科学院声学研究所 声波谐振器及其制备方法
US20200177162A1 (en) * 2018-06-15 2020-06-04 Resonant Inc. Transversely excited film bulk acoustic resonator using rotated y-x cut lithium niobate
US20200028487A1 (en) * 2018-07-18 2020-01-23 Skyworks Solutions, Inc. Fbar filter with integrated cancelation circuit
CN112039460A (zh) * 2019-07-19 2020-12-04 中芯集成电路(宁波)有限公司 薄膜体声波谐振器及其制作方法
US20210234528A1 (en) * 2020-01-24 2021-07-29 Board Of Trustees Of The University Of Illinois Fifth-generation (5g)-focused piezoelectric resonators and filters

Similar Documents

Publication Publication Date Title
US9197185B2 (en) Resonator device including electrodes with buried temperature compensating layers
JP3940932B2 (ja) 薄膜圧電共振器、薄膜圧電デバイスおよびその製造方法
JP3712423B2 (ja) 薄膜圧電素子
US7161448B2 (en) Acoustic resonator performance enhancements using recessed region
US7109826B2 (en) Tapered electrode in an acoustic resonator
JP3735777B2 (ja) 共振子構造およびその共振子構造を備えるフィルタ
US8631547B2 (en) Method of isolation for acoustic resonator device
JP2005236337A (ja) 薄膜音響共振器及びその製造方法
JP2007028669A (ja) 薄膜音響共振器の製造方法
US7320164B2 (en) Method of manufacturing an electronic component
JP4373936B2 (ja) 薄膜圧電共振器及びその製造方法
EP3776854A1 (en) Surface acoustic wave device on composite substrate
JP4441843B2 (ja) 薄膜音響共振器
JP2007129776A (ja) 薄膜圧電共振器、薄膜圧電デバイスおよびその製造方法
JP2001044794A (ja) 圧電共振子
US8999187B2 (en) Method for manufacturing a device on a substrate
WO2023108590A1 (zh) 高频高q值的声波谐振器及其制作方法
WO2024041114A1 (zh) 一种声表面波滤波器
JPH0211043B2 (zh)
CN116582104A (zh) 兰姆波谐振器及其制作方法
CN114221633A (zh) 高频高q值的声波谐振器及其制作方法
WO2024119507A1 (zh) 体声波谐振器及其制备方法
CN115395918B (zh) 声波谐振器及其设计方法、制造方法
CN117526897B (zh) 双模声表面波器件及其制备方法
WO2023005426A1 (zh) 具有多个底电极层的体声波谐振器、滤波器及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967724

Country of ref document: EP

Kind code of ref document: A1