WO2023108380A1 - 用于雷达的通道相位检测及校准方法、装置及存储介质 - Google Patents

用于雷达的通道相位检测及校准方法、装置及存储介质 Download PDF

Info

Publication number
WO2023108380A1
WO2023108380A1 PCT/CN2021/137661 CN2021137661W WO2023108380A1 WO 2023108380 A1 WO2023108380 A1 WO 2023108380A1 CN 2021137661 W CN2021137661 W CN 2021137661W WO 2023108380 A1 WO2023108380 A1 WO 2023108380A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
radar
phase difference
phase
azimuth
Prior art date
Application number
PCT/CN2021/137661
Other languages
English (en)
French (fr)
Inventor
陈垦
Original Assignee
陈垦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈垦 filed Critical 陈垦
Priority to PCT/CN2021/137661 priority Critical patent/WO2023108380A1/zh
Priority to KR1020237002581A priority patent/KR20230092867A/ko
Publication of WO2023108380A1 publication Critical patent/WO2023108380A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna

Definitions

  • the invention relates to the technical field of radar, in particular to a radar channel phase detection and calibration method, device and storage medium.
  • MIMO radar can use a smaller-scale antenna array to realize a larger-caliber virtual antenna array, thereby improving the angular resolution of the radar.
  • Frequency modulation continuous wave radar has the characteristics of low cost, simple structure and small size. At the same time, it can accurately measure the distance and speed of the target. Combined with the application of antenna array, it can realize the angle measurement of the target.
  • the frequency-modulated continuous wave MIMO radar combines the advantages of the above two radars, and uses a simpler structure antenna array to achieve higher radar angular resolution.
  • High-resolution automotive imaging radars usually use multiple-input multiple-output (MIMO) technology to obtain multi-channel transmission and processing gains. Due to differences in technology and materials, there is often an error between the phase difference between the channels of the designed MIMO array and the designed theoretical value. Therefore It is necessary to perform channel phase detection and compensation on the final MIMO array, so as to obtain more accurate angle estimation results.
  • MIMO multiple-input multiple-output
  • Embodiments of the present invention provide a channel phase detection and calibration method, device, and storage medium for radar, aiming to effectively solve the problem of errors between the phase differences between channels of the MIMO array in the prior art and the designed theoretical values.
  • the present invention provides a channel phase detection and calibration method for radar, the method comprising: driving the transmitting antenna of the radar to transmit multi-channel radar signals to the target in a time-division manner, wherein, The target changes its position and attitude in a preset manner from the predetermined initial position; the echo signal corresponding to each channel reflected by the target is obtained from the receiving antenna of the radar, and the target is calculated based on the echo signal.
  • the phase difference between each channel of the radar; according to the phase difference, a phase calibration operation and a phase consistency detection operation based on the phase relationship between multiplexed array element channels are implemented.
  • phase consistency detection operation includes:
  • changing the position and attitude of the target in a preset manner from the predetermined initial position includes: keeping the pitch angle of the target unchanged and adjusting the azimuth angle relative to the radar at preset time intervals; and the The target maintains a constant azimuth and adjusts its elevation relative to the radar at preset intervals.
  • the calculating the phase difference between each channel of the radar based on the echo signal includes: extracting from the echo signal the reflection of the target relative to the radar at different preset azimuth angles echo signals, and calculate the measured azimuth phase difference between each channel of the radar based on the echo signals corresponding to different azimuth angles; and extract the target relative to the radar from the echo signals at a preset
  • the echo signals reflected at different elevation angles, and the measured elevation phase difference between each channel of the radar are calculated based on the echo signals corresponding to different elevation angles.
  • the phase calibration operation includes: calculating the theoretical phase difference between the channels of the target at the preset different azimuth angles; Comparing the theoretical phase difference to obtain the compensation coefficients of each azimuth angle corresponding to the channel; for each channel, the fitting operation is performed on the compensation coefficients of each azimuth angle corresponding to the channel to obtain the comprehensive compensation of the azimuth angle corresponding to the channel coefficient, and perform azimuth calibration on each channel of the radar based on the azimuth comprehensive compensation coefficient.
  • the phase calibration operation also includes: calculating the theoretical phase difference between the channels of the target at the preset different pitch angles; The theoretical phase difference is compared to obtain the compensation coefficient of each pitch angle corresponding to the channel; for each channel, the compensation coefficient of each pitch angle corresponding to the channel is fitted to obtain the comprehensive pitch angle corresponding to the channel compensation coefficient, and perform pitch angle calibration on each channel of the radar based on the pitch angle comprehensive compensation coefficient.
  • the method further includes: setting the targets at different distances from the radar, and calculating the comprehensive compensation coefficients of the direction angle and the comprehensive compensation coefficients of the pitch angle for different distances, and calculating the distance of each direction angle
  • the mean value of the comprehensive compensation coefficient and the mean value of the comprehensive compensation coefficients of each pitch angle, and the mean value of the comprehensive compensation coefficient of the azimuth angle is used as the comprehensive compensation coefficient of the azimuth angle and the mean value of the comprehensive compensation coefficient of the pitch angle is used as the comprehensive compensation of the pitch angle actually used coefficient.
  • the present invention provides a channel phase detection and calibration device for radar, including: a control unit for driving the transmitting antenna of the radar to transmit multi-channel radar signals to the target in a time-division manner , wherein, the target changes its position and attitude in a preset manner from the predetermined initial position; the phase difference calculation unit obtains the echo signal corresponding to each channel reflected by the target from the receiving antenna of the radar, and based on The echo signal calculates the phase difference between each channel of the radar; the detection and calibration unit implements a phase calibration operation and a phase consistency detection operation based on the phase relationship between multiplexed array element channels according to the phase difference.
  • the phase difference calculation unit includes: a static position echo acquisition module, which is used to extract the echo signal reflected by the target at the same static position from the echo signal; a multiplexing array element phase difference calculation module, It is used to calculate the phase difference between the channels corresponding to the multiplexed array element based on the echo signal corresponding to the static position and for each multiplexed array element based on the echo signal; the detection and analysis module is used to calculate based on the echo signal The phase difference detects and analyzes the phase consistency between the channels of the radar.
  • control unit includes: an azimuth adjustment module, configured to drive the target to maintain a constant elevation angle and adjust the azimuth relative to the radar at preset time intervals; and an elevation adjustment module, configured to The target is driven to keep the azimuth angle constant and the elevation angle relative to the radar is adjusted at preset time intervals.
  • the phase difference calculation unit further includes: an azimuth phase difference calculation module, configured to extract echo signals reflected by the target relative to the radar at different preset azimuth angles from the echo signals , and calculate the measured azimuth phase difference between each channel of the radar based on the echo signals corresponding to different azimuth angles; and the elevation phase difference calculation module is used to extract the target relative to the The echo signals reflected by the radar at different preset elevation angles, and the measured elevation phase difference between the various channels of the radar are calculated based on the echo signals corresponding to the different elevation angles.
  • an azimuth phase difference calculation module configured to extract echo signals reflected by the target relative to the radar at different preset azimuth angles from the echo signals , and calculate the measured azimuth phase difference between each channel of the radar based on the echo signals corresponding to different azimuth angles
  • the elevation phase difference calculation module is used to extract the target relative to the The echo signals reflected by the radar at different preset elevation angles, and the measured elevation phase difference between the various channels of the radar are calculated based on the echo
  • the detection and calibration unit also includes: a theoretical azimuth phase difference calculation module, used to calculate the theoretical phase difference between the channels of the target at the preset different azimuth angles; an azimuth compensation module, used for For each channel, each measured azimuth phase difference corresponding to the channel is compared with the corresponding theoretical phase difference to obtain the compensation coefficient of each azimuth angle corresponding to the channel; the azimuth calibration module is used for each channel, A fitting operation is performed on the compensation coefficients of each azimuth angle corresponding to the channel to obtain a comprehensive azimuth compensation coefficient corresponding to the channel, and an azimuth calibration is performed on each channel of the radar based on the comprehensive azimuth compensation coefficient.
  • a theoretical azimuth phase difference calculation module used to calculate the theoretical phase difference between the channels of the target at the preset different azimuth angles
  • an azimuth compensation module used for For each channel, each measured azimuth phase difference corresponding to the channel is compared with the corresponding theoretical phase difference to obtain the compensation coefficient of each azimuth angle corresponding to the channel
  • the detection and calibration unit also includes: a theoretical pitch angle phase difference calculation module, used to calculate the theoretical phase difference between the channels of the target at the preset different pitch angles; a pitch angle compensation module, used to For each channel, each measured pitch phase difference corresponding to the channel is compared with the corresponding theoretical phase difference to obtain the compensation coefficient of each pitch angle corresponding to the channel; the pitch angle calibration module is used for each channel, The fitting operation is performed on the compensation coefficients of each pitch angle corresponding to the channel to obtain the comprehensive pitch angle compensation coefficient corresponding to the channel, and the pitch angle calibration is performed on each channel of the radar based on the comprehensive pitch angle compensation coefficient.
  • a theoretical pitch angle phase difference calculation module used to calculate the theoretical phase difference between the channels of the target at the preset different pitch angles
  • a pitch angle compensation module used to For each channel, each measured pitch phase difference corresponding to the channel is compared with the corresponding theoretical phase difference to obtain the compensation coefficient of each pitch angle corresponding to the channel
  • the pitch angle calibration module is used for each channel, The fitting operation is performed on the compensation
  • the present invention provides a storage medium on which a computer program is stored, wherein when the computer program is executed by a processor, any channel phase detection and calibration method for radar is implemented.
  • the advantage of the present invention is that the present invention drives the transmitting antenna of the radar to transmit multi-channel radar signals to the target in a time-division manner, and obtains the echo signals corresponding to each channel reflected by the target from the receiving antenna of the radar , and calculate the phase difference between each channel of the radar based on the echo signal, and implement a phase calibration operation and a phase consistency detection operation based on the phase relationship between multiplexed array element channels according to the phase difference.
  • FIG. 1 is a flow chart of the steps of a radar channel phase detection and calibration method provided by Embodiment 1 of the present invention.
  • FIG. 2 is a virtual array without multiplexed array elements provided by an embodiment of the present invention.
  • FIG. 3 is a virtual array with multiplexed array elements provided by an embodiment of the present invention.
  • FIG. 4 is a flow chart of the steps of a radar channel phase detection and calibration method provided by Embodiment 2 of the present invention.
  • FIG. 5 is a block diagram of a channel phase detection and calibration device for radar provided by Embodiment 3 of the present invention.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected, or electrically connected, or can communicate with each other; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction of two components relation.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected, or electrically connected, or can communicate with each other; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction of two components relation.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected, or electrically connected, or can communicate with each other; it can be directly connected, or indirectly connected through an intermediary, and
  • FIG. 1 it is a flow chart of the steps of the radar channel phase detection and calibration method provided by Embodiment 1 of the present invention.
  • Step S110 Driving the transmitting antenna of the radar to transmit multi-channel radar signals to the target in a time-division manner.
  • the radar has three transmitting antennas.
  • each transmitting antenna transmits radar signals independently, and the intervals between the transmitting antennas for transmitting radar signals may be periodic.
  • Step S120 Obtain echo signals corresponding to each channel reflected by the target from the receiving antenna of the radar, and calculate a phase difference between each channel of the radar based on the echo signals.
  • the radar has six receiving antennas. Whenever a transmitting antenna transmits a radar signal, the receiving antenna can receive six echo signals, correspondingly forming six channel data. It can be seen from this that in a radar with three transmissions and six receptions, after the transmitting antenna transmits radar signals in a time-division manner, a total of 18 channels of data can be received.
  • Step S130 Implement a phase calibration operation and a phase consistency detection operation based on the phase relationship between multiplexed array element channels according to the phase difference.
  • multiplex array elements are described in detail with reference to FIG. 2 and FIG. 3 .
  • the virtual array is just a uniform array with an array aperture of 12L 1.
  • the virtual array elements corresponding to the transmitting antenna 2 and the receiving antenna 4 and the virtual array elements corresponding to the transmitting antenna 3 and the receiving antenna 1 have the same position in the array (overlapping together).
  • the virtual array element corresponding to the transmitting antenna 2 and the receiving antenna 4 and the virtual array element corresponding to the transmitting antenna 3 and the receiving antenna 1 are called a pair of multiplexing array elements.
  • multiplexed element channels may be used to calculate the phase difference first, and when the phase difference is not less than a preset value, channel phase calibration is performed.
  • the method provided by Embodiment 1 of the present invention includes the following steps: driving the transmitting antenna of the radar to transmit multi-channel radar signals to the target in a time-division manner; echo signals, and calculate the phase difference between the channels of the radar based on the echo signals; perform a phase calibration operation and a phase consistency detection operation based on the phase relationship between multiplexed array element channels according to the phase difference.
  • FIG. 4 it is a flow chart of the steps of the radar channel phase detection and calibration method provided by Embodiment 2 of the present invention.
  • the methods include:
  • Step S210 Driving the transmitting antenna of the radar to transmit multi-channel radar signals to the target in a time-division manner.
  • the radar has three transmitting antennas.
  • each transmitting antenna transmits radar signals independently, and the intervals between the transmitting antennas for transmitting radar signals may be periodic.
  • the target changes its position and posture in a preset manner from a predetermined initial position. For example, in the first adjustment mode, the target maintains a constant pitch angle and adjusts its azimuth relative to the radar at preset time intervals. In the second adjustment mode, the target keeps the azimuth angle unchanged and adjusts the elevation angle relative to the radar at preset time intervals.
  • Step S220 Obtain echo signals corresponding to each channel reflected by the target from the receiving antenna of the radar, and calculate a phase difference between each channel of the radar based on the echo signals.
  • the radar has six receiving antennas. Whenever a transmitting antenna transmits a radar signal, the receiving antenna can receive six echo signals, correspondingly forming six channel data. It can be seen from this that in a radar with three transmissions and six receptions, after the transmitting antenna transmits radar signals in a time-division manner, a total of 18 channels of data can be received.
  • the echo signals reflected by the target at different preset azimuths relative to the radar are extracted from the echo signals, and based on the different azimuths Calculate the measured azimuth phase difference between each channel of the radar from the echo signal corresponding to the angle. Extract the echo signals reflected by the target relative to the radar at different preset elevation angles from the echo signals, and calculate the distance between each channel of the radar based on the echo signals corresponding to the different elevation angles Measured pitch phase difference.
  • Step S230 Implementing a phase calibration operation and a phase consistency detection operation based on the phase relationship between multiplexed array element channels according to the phase difference.
  • multiplex array elements are described in detail with reference to FIG. 2 and FIG. 3 .
  • the virtual array is just a uniform array with an array aperture of 12L 1.
  • the virtual array elements corresponding to the transmitting antenna 2 and the receiving antenna 4 and the virtual array elements corresponding to the transmitting antenna 3 and the receiving antenna 1 have the same position in the array (overlapping together).
  • the virtual array element corresponding to the transmitting antenna 2 and the receiving antenna 4 and the virtual array element corresponding to the transmitting antenna 3 and the receiving antenna 1 are called a pair of multiplexing array elements.
  • the phase consistency detection operation includes: extracting the echo signal reflected at the same static position of the target from the echo signal, and multiplexing each target based on the echo signal corresponding to the static position
  • the array element calculates the phase difference between the channels corresponding to the multiplexing array element based on the echo signal, and detects and analyzes the phase consistency between the channels of the radar based on the phase difference.
  • the phase difference of multiplexed array element channels should be 0 or less than a preset value.
  • multiplexed element channels may be used to calculate the phase difference first, and when the phase difference is not less than a preset value, channel phase calibration is performed. In this way, it can be quickly judged whether the channel phase needs to be calibrated.
  • the phase calibration operation includes calculating the theoretical phase difference between the channels of the target at the preset different azimuth angles, and for each channel, the corresponding theoretical phase difference of each measured azimuth direction corresponding to the channel Comparing the phase difference to obtain the compensation coefficient of each azimuth angle corresponding to the channel, and for each channel, perform a fitting operation on the compensation coefficient of each azimuth angle corresponding to the channel to obtain the comprehensive compensation coefficient of the azimuth angle corresponding to the channel , and perform azimuth calibration on each channel of the radar based on the azimuth comprehensive compensation coefficient.
  • the phase calibration operation also includes: calculating the theoretical phase difference between the channels of the target at the preset different pitch angles, and for each channel, comparing each measured pitch phase difference corresponding to the channel with the corresponding Comparing the theoretical phase difference of the channel to obtain the compensation coefficient of each pitch angle corresponding to the channel, for each channel, the compensation coefficient of each pitch angle corresponding to the channel is fitted to obtain the comprehensive pitch angle corresponding to the channel compensation coefficient, and perform pitch angle calibration on each channel of the radar based on the pitch angle comprehensive compensation coefficient.
  • Step S240 Set the targets at different distances from the radar, and calculate the comprehensive compensation coefficients of the direction angle and the comprehensive compensation coefficients of the pitch angle for different distances, and calculate the mean value of the comprehensive compensation coefficients of each direction angle and The average value of the comprehensive compensation coefficients for each pitch angle, and the average value of the comprehensive compensation coefficients for the azimuth angle as the actually used comprehensive compensation coefficient for the azimuth angle and the average value for the comprehensive compensation coefficients for the pitch angle as the actually used comprehensive compensation coefficient for the pitch angle.
  • FIG. 5 it is a schematic structural diagram of a radar channel phase detection and calibration device provided by Embodiment 3 of the present invention.
  • the channel phase detection and calibration device for radar includes: a control unit 100 , a phase difference calculation unit 200 and a detection and calibration unit 300 .
  • control unit 100 is configured to drive the transmitting antenna of the radar to transmit multi-channel radar signals to the target in a time-division manner, wherein the target changes its position and attitude in a preset manner from a predetermined initial position.
  • a radar has three transmitting antennas. When transmitting radar signals, each transmitting antenna transmits a radar signal independently, and the intervals between the transmitting antennas for transmitting radar signals can be periodic.
  • control unit 100 includes an azimuth angle adjustment module 101 and an elevation angle adjustment module 102 .
  • azimuth adjustment module 101 is used to keep the pitch angle of the target unchanged and adjust the azimuth relative to the radar at preset time intervals.
  • the pitch angle adjustment module 102 is used to keep the azimuth angle of the target unchanged and adjust the pitch angle relative to the radar at preset time intervals.
  • the phase difference calculation unit 200 is configured to acquire the echo signals corresponding to each channel reflected by the target from the receiving antenna of the radar, and calculate the phase between each channel of the radar based on the echo signals Difference.
  • the phase difference calculation unit 200 includes a static position echo acquisition module 203 , a multiplexing element phase difference calculation module 204 , a detection analysis module 205 , an azimuth phase difference calculation module 201 and an elevation phase difference calculation module 202 .
  • the azimuth phase difference calculation module 201 is used to extract the echo signals reflected by the target relative to the radar at different preset azimuth angles from the echo signals, and based on the echo signals corresponding to different azimuth angles, Calculate the measured azimuth phase difference between each channel of the radar.
  • the pitch direction phase difference calculation module 202 is used to extract from the echo signals the echo signals reflected by the target at different preset elevation angles relative to the radar, and based on the echo signals corresponding to the different elevation angles Calculate the measured pitch phase difference between the various channels of the radar.
  • the static position echo acquisition module 203 is configured to extract, from the echo signals, echo signals reflected at the same static position of the target.
  • the multiplexing array element phase difference calculation module 204 is used to calculate the phase difference between the channels corresponding to the multiplexing array element based on the echo signal corresponding to the static position and for each multiplexing array element based on the echo signal .
  • the detection and analysis module 205 is configured to detect and analyze phase consistency between channels of the radar based on the phase difference.
  • the detection and calibration unit 300 implements a phase calibration operation and a phase consistency detection operation based on the phase relationship between multiplexed array element channels according to the phase difference.
  • the detection and calibration unit 300 includes a theoretical azimuth angle phase difference calculation module 304, an azimuth angle compensation module 305, an azimuth angle calibration module 306, a theoretical elevation angle phase difference calculation module 307, an elevation angle compensation module 308 and an elevation angle calibration module 309.
  • the theoretical azimuth phase difference calculation module 304 is used to calculate the theoretical phase difference between channels of the target at different preset azimuth angles.
  • the azimuth compensation module 305 is used for comparing each measured azimuth phase difference corresponding to the channel with the corresponding theoretical phase difference for each channel, so as to obtain compensation coefficients for each azimuth angle corresponding to the channel.
  • the azimuth calibration module 306 is used to perform a fitting operation on the compensation coefficients of each azimuth angle corresponding to the channel for each channel, so as to obtain the comprehensive azimuth compensation coefficient corresponding to the channel, and based on the comprehensive compensation coefficient of the azimuth angle Perform azimuth calibration on each channel of the above radar.
  • the theoretical elevation angle phase difference calculation module 307 is used to calculate the theoretical phase difference between channels of the target at the different preset elevation angles.
  • the pitch angle compensation module 308 is configured to compare each measured pitch phase difference corresponding to the channel with a corresponding theoretical phase difference for each channel, so as to obtain compensation coefficients for each pitch angle corresponding to the channel.
  • the pitch angle calibration module 309 is used to perform a fitting operation on the compensation coefficients of the pitch angles corresponding to the channel for each channel, so as to obtain the comprehensive compensation coefficient of the pitch angle corresponding to the channel, and based on the comprehensive compensation coefficient of the pitch angle, calculate the Each channel of the above radar is calibrated for pitch angle.
  • an embodiment of the present application provides a computer-readable storage medium, which stores a plurality of computer programs that can be loaded by a processor to execute the radar channel provided by any embodiment of the present application. Steps in a phase detection and calibration method.
  • the computer program can perform the following steps:
  • phase calibration operation and the phase consistency detection operation based on the phase relationship between multiplexed array element channels are implemented according to the phase difference.
  • the storage medium may include: a read-only memory (ROM, Read Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, and the like.
  • the instructions stored in the computer-readable storage medium can execute the steps in the radar channel phase detection and calibration method provided by any embodiment of the present application, therefore, the steps provided by any embodiment of the present application can be realized.
  • the beneficial effects that can be achieved by a channel phase detection and calibration method for radar can be seen in the previous embodiments for details, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种用于雷达的通道相位检测及校准方法、装置及存储介质。其中,所述方法包括:驱使雷达的发射天线以时分的方式向目标发射多通道雷达信号;从所述雷达的接收天线获取所述目标反射的对应于各个通道的回波信号,并基于所述回波信号计算所述雷达各通道之间的相位差;根据所述相位差实施相位校准操作以及基于复用阵元通道间相位关系的相位一致性检测操作。本发明所公开的技术方案能够获得针对探测目标的更加精确的方位角及俯仰角估计结果。

Description

用于雷达的通道相位检测及校准方法、装置及存储介质 技术领域
本发明涉及雷达技术领域,尤其涉及一种用于雷达的通道相位检测及校准方法、装置及存储介质。
背景技术
MIMO雷达与单输入多输出雷达相比,可利用较少规模的天线阵列实现口径较大的虚拟天线阵列,从而提高雷达的角度分辨率。调频连续波雷达具有成本低、结构简单、体积小的特点,同时,能对目标的距离及速度进行精确测量,结合天线阵列的应用,可以实现对目标的角度测量。调频连续波MIMO雷达综合上述两种雷达的优点,利用结构更加简单的天线阵列实现更高的雷达角度分辨率。
高分辨汽车成像雷达通常采用多输入多输出(MIMO)技术获得多通道的发射和处理增益,因为工艺及材料的差异,往往设计的MIMO阵列各通道间相位差异与设计的理论值存在误差,因此需要对最终成型的MIMO阵列进行通道相位检测及补偿,从而获得更加精确的角度估计结果。
技术问题
本发明实施例提供一种用于雷达的通道相位检测及校准方法、装置及存储介质,旨在有效解决现有技术的MIMO阵列各通道间相位差异与设计的理论值存在误差的问题。
技术解决方案
根据本发明的一方面,本发明提供一种用于雷达的通道相位检测及校准方法,所述方法包括:驱使所述雷达的发射天线的以时分的方式向目标发射多通道雷达信号,其中,所述目标从预定初始位置开始以预设的方式变化位置及姿态;从所述雷达的接收天线获取所述目标反射的对应于各个通道的回波信号,并基于所述回波信号计算所述雷 达各通道之间的相位差;根据所述相位差实施相位校准操作以及基于复用阵元通道间相位关系的相位一致性检测操作。
进一步地,所述相位一致性检测操作包括:
从所述回波信号中提取所述目标处于同一静止位置处反射的回波信号;基于该静止位置所对应的回波信号并针对每个复用阵元,基于所述回波信号计算该复用阵元对应的通道之间的相位差;基于所述相位差检测并分析所述雷达的通道间的相位一致性。
进一步地,所述目标从预定初始位置开始以预设的方式变化位置及姿态包括:所述目标保持俯仰角不变并以预设的时间间隔调整相对于所述雷达的方位角;以及所述目标保持方位角不变并以预设的时间间隔调整相对于所述雷达的俯仰角。
进一步地,所述基于所述回波信号计算所述雷达各通道之间的相位差包括:从所述回波信号中提取所述目标相对于所述雷达在预设的不同方位角处反射的回波信号,并基于不同方位角所对应的回波信号计算所述雷达各个通道之间的实测方位向相位差;以及从所述回波信号中提取所述目标相对于所述雷达在预设的不同俯仰角处反射的回波信号,并基于不同俯仰角所对应的回波信号计算所述雷达各个通道之间的实测俯仰向相位差。
进一步地,所述相位校准操作包括:计算所述目标在所述预设的不同方位角下通道间的理论相位差;针对每个通道,将该通道对应的各个实测方位向相位差与对应的理论相位差相比较,以得到该通道对应的各个方位角的补偿系数;针对每个通道,对该通道对应的各个方位角的补偿系数进行拟合操作,以得到该通道对应的方位角综合补偿系数,并基于该方位角综合补偿系数对所述雷达的各个通道进行方位角校准。
进一步地,所述相位校准操作还包括:计算所述目标在所述预设的不同俯仰角下通道间的理论相位差;针对每个通道,将该通道对应的各个实测俯仰向相位差与对应的理论相位差相比较,以得到该通道 对应的各个俯仰角的补偿系数;针对每个通道,对该通道对应的各个俯仰角的补偿系数进行拟合操作,以得到该通道对应的俯仰角综合补偿系数,并基于该俯仰角综合补偿系数对所述雷达的各个通道进行俯仰角校准。
进一步地,所述方法还包括:将所述目标分别设置在距所述雷达不同的距离处,并分别计算针对不同距离的方向角综合补偿系数及俯仰角综合补偿系数,并求取各个方向角综合补偿系数的均值以及各个俯仰角综合补偿系数的均值,并将方向角综合补偿系数的均值作为实际使用的方向角综合补偿系数以及将俯仰角综合补偿系数的均值作为实际使用的俯仰角综合补偿系数。
根据本发明的另一方面,本发明提供一种用于雷达的通道相位检测及校准装置,包括:控制单元,用于驱使所述雷达的发射天线的以时分的方式向目标发射多通道雷达信号,其中,所述目标从预定初始位置开始以预设的方式变化位置及姿态;相位差计算单元,从所述雷达的接收天线获取所述目标反射的对应于各个通道的回波信号,并基于所述回波信号计算所述雷达各通道之间的相位差;检测及校准单元,根据所述相位差实施相位校准操作以及基于复用阵元通道间相位关系的相位一致性检测操作。
进一步地,述相位差计算单元包括:静止位置回波获取模块,用于从所述回波信号中提取所述目标处于同一静止位置处反射的回波信号;复用阵元相位差计算模块,用于基于该静止位置所对应的回波信号并针对每个复用阵元,基于所述回波信号计算该复用阵元对应的通道之间的相位差;检测分析模块,用于基于所述相位差检测并分析所述雷达的通道间的相位一致性。
进一步地,所述控制单元包括:方位角调整模块,用于驱使所述目标保持俯仰角不变并以预设的时间间隔调整相对于所述雷达的方位角;以及俯仰角调整模块,用于驱使所述目标保持方位角不变并以预设的时间间隔调整相对于所述雷达的俯仰角。
进一步地,所述相位差计算单元还包括:方位向相位差计算模块,用于从所述回波信号中提取所述目标相对于所述雷达在预设的不同方位角处反射的回波信号,并基于不同方位角所对应的回波信号计算所述雷达各个通道之间的实测方位向相位差;以及俯仰向相位差计算模块,用于从所述回波信号中提取所述目标相对于所述雷达在预设的不同俯仰角处反射的回波信号,并基于不同俯仰角所对应的回波信号计算所述雷达各个通道之间的实测俯仰向相位差。
进一步地,所述检测及校准单元还包括:理论方位角相位差计算模块,用于计算所述目标在所述预设的不同方位角下通道间的理论相位差;方位角补偿模块,用于针对每个通道,将该通道对应的各个实测方位向相位差与对应的理论相位差相比较,以得到该通道对应的各个方位角的补偿系数;方位角校准模块,用于针对每个通道,对该通道对应的各个方位角的补偿系数进行拟合操作,以得到该通道对应的方位角综合补偿系数,并基于该方位角综合补偿系数对所述雷达的各个通道进行方位角校准。
进一步地,所述检测及校准单元还包括:理论俯仰角相位差计算模块,用于计算所述目标在所述预设的不同俯仰角下通道间的理论相位差;俯仰角补偿模块,用于针对每个通道,将该通道对应的各个实测俯仰向相位差与对应的理论相位差相比较,以得到该通道对应的各个俯仰角的补偿系数;俯仰角校准模块,用于针对每个通道,对该通道对应的各个俯仰角的补偿系数进行拟合操作,以得到该通道对应的俯仰角综合补偿系数,并基于该俯仰角综合补偿系数对所述雷达的各个通道进行俯仰角校准。
根据本发明的另一方面,本发明提供一种存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现任一用于雷达的通道相位检测及校准方法。
有益效果
本发明的优点在于,本发明通驱使所述雷达的发射天线的以时分的方式向目标发射多通道雷达信号,从所述雷达的接收天线获取所述目标反射的对应于各个通道的回波信号,并基于所述回波信号计算所述雷达各通道之间的相位差,根据所述相位差实施相位校准操作以及基于复用阵元通道间相位关系的相位一致性检测操作。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
图1为本发明实施例一提供的一种用于雷达的通道相位检测及校准方法步骤流程图。
图2为本发明实施例提供的无复用阵元的虚拟阵列。
图3为本发明实施例提供的有复用阵元的虚拟阵列。
图4为本发明实施例二提供的一种用于雷达的通道相位检测及校准方法步骤流程图。
图5为本发明实施例三提供的用于雷达的通道相位检测及校准装置的构示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本 领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
如图1所示,为本发明实施例一提供的用于雷达的通道相位检测及校准方法的步骤流程图。
步骤S110:驱使雷达的发射天线的以时分的方式向目标发射多通道雷达信号。
示例性地,例如雷达具有三个发射天线,在发射雷达信号时,每个发射天线单独发射雷达信号,其发射天线之间发射雷达信号的间隔可以周期性的。
步骤S120:从所述雷达的接收天线获取所述目标反射的对应于各个通道的回波信号,并基于所述回波信号计算所述雷达各通道之间的相位差。
示例性地,例如雷达具有六个接收天线,每当一个发射天线发送雷达信号时,接收天线可以接收到六个回波信号,对应的形成六个通道数据。由此可以知,在一个三发六收的雷达中,发射天线采用时分方式发射雷达信号后,总共可以接收到十八个通道数据。
步骤S130:根据所述相位差实施相位校准操作以及基于复用阵元通道间相位关系的相位一致性检测操作。
示例性地,结合参阅图2和图3对复用阵元进行详细的说明。以3发4收均匀阵列为例,假设接收天线间距为L 1,当发射天线间距为4L 1时,虚拟阵列刚好为一阵列孔径为12L 1的均匀阵列.当图3中,发射天线2与发射天线3的间距为3L 1时,发射天线2与接收天线4对应的虚拟阵元和发射天线3与接收天线1对应的虚拟阵元在阵列中位置相同(重叠在一起)。此时发射天线2与接收天线4对应的虚拟阵元和发射天线3与接收天线1对应的虚拟阵元称为一对复用阵元。
进一步地,复用阵元通道不存在物理上的距离差异,因此复用阵元通道的相位差应该为0或者小于一个预设值,当复用阵元通道的相位差不小于所述预设值,则可以说明通道相位存在偏差,需要对通道 相位进行校准。在一些实施例中,可以先利用复用阵元通道进行相位差计算,当相位差不小于预设值时,则进行通道相位的校准。
本发明实施例一所提供的方法包括下列步骤:驱使所述雷达的发射天线的以时分的方式向目标发射多通道雷达信号;从所述雷达的接收天线获取所述目标反射的对应于各个通道的回波信号,并基于所述回波信号计算所述雷达各通道之间的相位差;根据所述相位差实施相位校准操作以及基于复用阵元通道间相位关系的相位一致性检测操作。
如图4所示,为本发明实施例二提供的用于雷达的通道相位检测及校准方法的步骤流程图。所述方法包括:
步骤S210:驱使所述雷达的发射天线的以时分的方式向目标发射多通道雷达信号。
示例性地,例如雷达具有三个发射天线,在发射雷达信号时,每个发射天线单独发射雷达信号,其发射天线之间发射雷达信号的间隔可以周期性的。
进一步地,所述目标从预定初始位置开始以预设的方式变化位置及姿态。例如第一种调整方式下所述目标保持俯仰角不变并以预设的时间间隔调整相对于所述雷达的方位角。第二种调整方式下所述目标保持方位角不变并以预设的时间间隔调整相对于所述雷达的俯仰角。
步骤S220:从所述雷达的接收天线获取所述目标反射的对应于各个通道的回波信号,并基于所述回波信号计算所述雷达各通道之间的相位差。
示例性地,例如雷达具有六个接收天线,每当一个发射天线发送雷达信号时,接收天线可以接收到六个回波信号,对应的形成六个通道数据。由此可以知,在一个三发六收的雷达中,发射天线采用时分方式发射雷达信号后,总共可以接收到十八个通道数据。
进一步地,基于步骤S210中关于所述目标两中调整方式,从所述 回波信号中提取所述目标相对于所述雷达在预设的不同方位角处反射的回波信号,并基于不同方位角所对应的回波信号计算所述雷达各个通道之间的实测方位向相位差。从所述回波信号中提取所述目标相对于所述雷达在预设的不同俯仰角处反射的回波信号,并基于不同俯仰角所对应的回波信号计算所述雷达各个通道之间的实测俯仰向相位差。
步骤S230:根据所述相位差实施相位校准操作以及基于复用阵元通道间相位关系的相位一致性检测操作。
示例性地,结合参阅图2和图3对复用阵元进行详细的说明。以3发4收均匀阵列为例,假设接收天线间距为L 1,当发射天线间距为4L 1时,虚拟阵列刚好为一阵列孔径为12L 1的均匀阵列.当图3中,发射天线2与发射天线3的间距为3L 1时,发射天线2与接收天线4对应的虚拟阵元和发射天线3与接收天线1对应的虚拟阵元在阵列中位置相同(重叠在一起)。此时发射天线2与接收天线4对应的虚拟阵元和发射天线3与接收天线1对应的虚拟阵元称为一对复用阵元。
进一步地,所述相位一致性检测操作包括:从所述回波信号中提取所述目标处于同一静止位置处反射的回波信号,基于该静止位置所对应的回波信号并针对每个复用阵元,基于所述回波信号计算该复用阵元对应的通道之间的相位差,基于所述相位差检测并分析所述雷达的通道间的相位一致性。复用阵元通道不存在物理上的距离差异,因此复用阵元通道的相位差应该为0或者小于一个预设值,当复用阵元通道的相位差不小于所述预设值,则可以说明通道相位存在偏差,需要对通道相位进行校准。在一些实施例中,可以先利用复用阵元通道进行相位差计算,当相位差不小于预设值时,则进行通道相位的校准。以此可以快速判断通道相位是否需要进行校准。
进一步地,所述相位校准操作包括计算所述目标在所述预设的不同方位角下通道间的理论相位差,针对每个通道,将该通道对应的各个实测方位向相位差与对应的理论相位差相比较,以得到该通道对 应的各个方位角的补偿系数,针对每个通道,对该通道对应的各个方位角的补偿系数进行拟合操作,以得到该通道对应的方位角综合补偿系数,并基于该方位角综合补偿系数对所述雷达的各个通道进行方位角校准。
进一步地,所述相位校准操作还包括:计算所述目标在所述预设的不同俯仰角下通道间的理论相位差,针对每个通道,将该通道对应的各个实测俯仰向相位差与对应的理论相位差相比较,以得到该通道对应的各个俯仰角的补偿系数,针对每个通道,对该通道对应的各个俯仰角的补偿系数进行拟合操作,以得到该通道对应的俯仰角综合补偿系数,并基于该俯仰角综合补偿系数对所述雷达的各个通道进行俯仰角校准。
步骤S240:将所述目标分别设置在距所述雷达不同的距离处,并分别计算针对不同距离的方向角综合补偿系数及俯仰角综合补偿系数,并求取各个方向角综合补偿系数的均值以及各个俯仰角综合补偿系数的均值,并将方向角综合补偿系数的均值作为实际使用的方向角综合补偿系数以及将俯仰角综合补偿系数的均值作为实际使用的俯仰角综合补偿系数。
如图5所示,为本发明实施例三提供的用于雷达的通道相位检测及校准装置的结构示意图。所述用于雷达的通道相位检测及校准装置包括:控制单元100、相位差计算单元200和检测及校准单元300。
示例性地,控制单元100用于驱使所述雷达的发射天线以时分的方式向目标发射多通道雷达信号,其中,所述目标从预定初始位置开始以预设的方式变化位置及姿态。例如雷达具有三个发射天线,在发射雷达信号时,每个发射天线单独发射雷达信号,其发射天线之间发射雷达信号的间隔可以周期性的。
进一步地,所述控制单元100包括方位角调整模块101和俯仰角调整模块102。示例性地,方位角调整模块101用于所述目标保持俯仰角不变并以预设的时间间隔调整相对于所述雷达的方位角。俯仰角调整 模块102用于所述目标保持方位角不变并以预设的时间间隔调整相对于所述雷达的俯仰角。
示例性地,相位差计算单元200用于从所述雷达的接收天线获取所述目标反射的对应于各个通道的回波信号,并基于所述回波信号计算所述雷达各通道之间的相位差。
进一步地,相位差计算单元200包括静止位置回波获取模块203、复用阵元相位差计算模块204、检测分析模块205、方位向相位差计算模块201和俯仰向相位差计算模块202。方位向相位差计算模块201用于从所述回波信号中提取所述目标相对于所述雷达在预设的不同方位角处反射的回波信号,并基于不同方位角所对应的回波信号计算所述雷达各个通道之间的实测方位向相位差。俯仰向相位差计算模块202用于从所述回波信号中提取所述目标相对于所述雷达在预设的不同俯仰角处反射的回波信号,并基于不同俯仰角所对应的回波信号计算所述雷达各个通道之间的实测俯仰向相位差。
进一步地,静止位置回波获取模块203用于从所述回波信号中提取所述目标处于同一静止位置处反射的回波信号。复用阵元相位差计算模块204用于基于该静止位置所对应的回波信号并针对每个复用阵元,基于所述回波信号计算该复用阵元对应的通道之间的相位差。检测分析模块205用于基于所述相位差检测并分析所述雷达的通道间的相位一致性。
示例性地,检测及校准单元300根据所述相位差实施相位校准操作以及基于复用阵元通道间相位关系的相位一致性检测操作。
所述检测及校准单元300包括理论方位角相位差计算模块304、方位角补偿模块305、方位角校准模块306、理论俯仰角相位差计算模块307、俯仰角补偿模块308和俯仰角校准模块309。
进一步地,理论方位角相位差计算模块304用于计算所述目标在所述预设的不同方位角下通道间的理论相位差。方位角补偿模块305用于针对每个通道,将该通道对应的各个实测方位向相位差与对应的 理论相位差相比较,以得到该通道对应的各个方位角的补偿系数。方位角校准模块306用于针对每个通道,对该通道对应的各个方位角的补偿系数进行拟合操作,以得到该通道对应的方位角综合补偿系数,并基于该方位角综合补偿系数对所述雷达的各个通道进行方位角校准。
进一步地,理论俯仰角相位差计算模块307用于计算所述目标在所述预设的不同俯仰角下通道间的理论相位差。俯仰角补偿模块308用于针对每个通道,将该通道对应的各个实测俯仰向相位差与对应的理论相位差相比较,以得到该通道对应的各个俯仰角的补偿系数。俯仰角校准模块309用于针对每个通道,对该通道对应的各个俯仰角的补偿系数进行拟合操作,以得到该通道对应的俯仰角综合补偿系数,并基于该俯仰角综合补偿系数对所述雷达的各个通道进行俯仰角校准。
本领域普通技术人员可以理解,上述实施例所述方法中的全部或部分步骤可以通过指令来完成,或通过指令控制相关的硬件来完成,该指令可以存储于一存储介质中,并由处理器进行加载和执行。
为此,本申请实施例提供一种计算机可读存储介质,其中存储有多条计算机程序,该计算机程序能够被处理器进行加载,以执行本申请任一实施例所提供的用于雷达的通道相位检测及校准方法中的步骤。例如,该计算机程序可以执行如下步骤:
驱使所述雷达的发射天线的以时分的方式向目标发射多通道雷达信号,其中,所述目标从预定初始位置开始以预设的方式变化位置及姿态;
从所述雷达的接收天线获取所述目标反射的对应于各个通道的回波信号,并基于所述回波信号计算所述雷达各通道之间的相位差;
根据所述相位差实施相位校准操作以及基于复用阵元通道间相位关系的相位一致性检测操作。
以上各个操作的具体实施可参见前面的实施例,在此不再赘述。 其中,该存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取记忆体(RAM,Random Access Memory)、磁盘或光盘等。
由于该计算机可读存储介质中所存储的指令,可以执行本申请任一实施例所提供的用于雷达的通道相位检测及校准方法中的步骤,因此,可以实现本申请任一实施例所提供的一种用于雷达的通道相位检测及校准方法所能实现的有益效果,详见前面的实施例,在此不再赘述。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (14)

  1. 一种用于雷达的通道相位检测及校准方法,其特征在于,包括:
    驱使所述雷达的发射天线的以时分的方式向目标发射多通道雷达信号,其中,所述目标从预定初始位置开始以预设的方式变化位置及姿态;
    从所述雷达的接收天线获取所述目标反射的对应于各个通道的回波信号,并基于所述回波信号计算所述雷达各通道之间的相位差;
    根据所述相位差实施相位校准操作以及基于复用阵元通道间相位关系的相位一致性检测操作。
  2. 根据权利要求1所述的用于雷达的通道相位检测及校准方法,其特征在于,所述相位一致性检测操作包括:
    从所述回波信号中提取所述目标处于同一静止位置处反射的回波信号;
    基于该静止位置所对应的回波信号并针对每个复用阵元,基于所述回波信号计算该复用阵元对应的通道之间的相位差;
    基于所述相位差检测并分析所述雷达的通道间的相位一致性。
  3. 根据权利要求1所述的用于雷达的通道相位检测及校准方法,其特征在于,所述目标从预定初始位置开始以预设的方式变化位置及姿态包括:
    所述目标保持俯仰角不变并以预设的时间间隔调整相对于所述雷达的方位角;以及
    所述目标保持方位角不变并以预设的时间间隔调整相对于所述雷达的俯仰角。
  4. 根据权利要求3所述的用于雷达的通道相位检测及校准方法,其特征在于,所述基于所述回波信号计算所述雷达各通道之间的相位差包括:
    从所述回波信号中提取所述目标相对于所述雷达在预设的不同方位角处反射的回波信号,并基于不同方位角所对应的回波信号计算所述雷达各个通道之间的实测方位向相位差;以及
    从所述回波信号中提取所述目标相对于所述雷达在预设的不同俯仰角处反射的回波信号,并基于不同俯仰角所对应的回波信号计算所述雷达各个通道之间的实测俯仰向相位差。
  5. 根据权利要求4所述的用于雷达的通道相位检测及校准方法,其特征在于,所述相位校准操作包括:
    计算所述目标在所述预设的不同方位角下通道间的理论相位差;
    针对每个通道,将该通道对应的各个实测方位向相位差与对应的理论相位差相比较,以得到该通道对应的各个方位角的补偿系数;
    针对每个通道,对该通道对应的各个方位角的补偿系数进行拟合操作,以得到该通道对应的方位角综合补偿系数,并基于该方位角综合补偿系数对所述雷达的各个通道进行方位角校准。
  6. 根据权利要求5所述的用于雷达的通道相位检测及校准方法,其特征在于,所述相位校准操作还包括:
    计算所述目标在所述预设的不同俯仰角下通道间的理论相位差;
    针对每个通道,将该通道对应的各个实测俯仰向相位差与对应的理论相位差相比较,以得到该通道对应的各个俯仰角的补偿系数;
    针对每个通道,对该通道对应的各个俯仰角的补偿系数进行拟合操作,以得到该通道对应的俯仰角综合补偿系数,并基于该俯仰角综合补偿系数对所述雷达的各个通道进行俯仰角校准。
  7. 根据权利要求5-6任一所所述的用于雷达的通道相位检测及校准方法,其特征在于,还包括:
    将所述目标分别设置在距所述雷达不同的距离处,并分别计算针对不同距离的方向角综合补偿系数及俯仰角综合补偿系数,并求取各个方向角综合补偿系数的均值以及各个俯仰角综合补偿系数的均值,并将方向角综合补偿系数的均值作为实际使用的方向角综合补偿系数以及将俯仰角综合补偿系数的均值作为实际使用的俯仰角综合补偿系数。
  8. 一种用于雷达的通道相位检测及校准装置,其特征在于,包括:
    控制单元,用于驱使所述雷达的发射天线的以时分的方式向目标发射多通道雷达信号,其中,所述目标从预定初始位置开始以预设的方式变化位置及姿态;
    相位差计算单元,从所述雷达的接收天线获取所述目标反射的对应于各个通道的回波信号,并基于所述回波信号计算所述雷达各通道之间的相位差;
    检测及校准单元,根据所述相位差实施相位校准操作以及基于复 用阵元通道间相位关系的相位一致性检测操作。
  9. 根据权利要求8所述的用于雷达的通道相位检测及校准装置,其特征在于,所述相位差计算单元包括:
    静止位置回波获取模块,用于从所述回波信号中提取所述目标处于同一静止位置处反射的回波信号;
    复用阵元相位差计算模块,用于基于该静止位置所对应的回波信号并针对每个复用阵元,基于所述回波信号计算该复用阵元对应的通道之间的相位差;
    检测分析模块,用于基于所述相位差检测并分析所述雷达的通道间的相位一致性。
  10. 根据权利要求8所述的通道相位校准装置,其特征在于,所述控制单元包括:
    方位角调整模块,用于驱使所述目标保持俯仰角不变并以预设的时间间隔调整相对于所述雷达的方位角;以及
    俯仰角调整模块,用于驱使所述目标保持方位角不变并以预设的时间间隔调整相对于所述雷达的俯仰角。
  11. 根据权利要求10所述的通道相位校准装置,其特征在于,所述相位差计算单元还包括:
    方位向相位差计算模块,用于从所述回波信号中提取所述目标相对于所述雷达在预设的不同方位角处反射的回波信号,并基于不同方位角所对应的回波信号计算所述雷达各个通道之间的实测方位向相位差;以及
    俯仰向相位差计算模块,用于从所述回波信号中提取所述目标相对于所述雷达在预设的不同俯仰角处反射的回波信号,并基于不同俯仰角所对应的回波信号计算所述雷达各个通道之间的实测俯仰向相位差。
  12. 根据权利要求11所述的通道相位校准装置,其特征在于,所述检测及校准单元还包括:
    理论方位角相位差计算模块,用于计算所述目标在所述预设的不同方位角下通道间的理论相位差;
    方位角补偿模块,用于针对每个通道,将该通道对应的各个实测方位向相位差与对应的理论相位差相比较,以得到该通道对应的各个方位角的补偿系数;
    方位角校准模块,用于针对每个通道,对该通道对应的各个方位角的补偿系数进行拟合操作,以得到该通道对应的方位角综合补偿系数,并基于该方位角综合补偿系数对所述雷达的各个通道进行方位角校准。
  13. 根据权利要求12所述的通道相位校准装置,其特征在于,所述检测及校准单元还包括:
    理论俯仰角相位差计算模块,用于计算所述目标在所述预设的不同俯仰角下通道间的理论相位差;
    俯仰角补偿模块,用于针对每个通道,将该通道对应的各个实测俯仰向相位差与对应的理论相位差相比较,以得到该通道对应的各个俯仰角的补偿系数;
    俯仰角校准模块,用于针对每个通道,对该通道对应的各个俯仰角的补偿系数进行拟合操作,以得到该通道对应的俯仰角综合补偿系数,并基于该俯仰角综合补偿系数对所述雷达的各个通道进行俯仰角校准。
  14. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-7中任一项所述的用于雷达的通道相位检测及校准方法。
PCT/CN2021/137661 2021-12-14 2021-12-14 用于雷达的通道相位检测及校准方法、装置及存储介质 WO2023108380A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/137661 WO2023108380A1 (zh) 2021-12-14 2021-12-14 用于雷达的通道相位检测及校准方法、装置及存储介质
KR1020237002581A KR20230092867A (ko) 2021-12-14 2021-12-14 레이더에 사용되는 채널 위상 검출 및 교정 방법, 장치 및 저장 매체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/137661 WO2023108380A1 (zh) 2021-12-14 2021-12-14 用于雷达的通道相位检测及校准方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2023108380A1 true WO2023108380A1 (zh) 2023-06-22

Family

ID=86774947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137661 WO2023108380A1 (zh) 2021-12-14 2021-12-14 用于雷达的通道相位检测及校准方法、装置及存储介质

Country Status (2)

Country Link
KR (1) KR20230092867A (zh)
WO (1) WO2023108380A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107942331A (zh) * 2017-11-28 2018-04-20 西安电子科技大学 基于谱分析的多通道sar系统通道偏差估计方法
CN110082750A (zh) * 2019-03-25 2019-08-02 西安电子科技大学 一种可消除通道间相位误差的比幅测角方法
CN110865347A (zh) * 2019-11-25 2020-03-06 的卢技术有限公司 一种汽车毫米波雷达多接收通道校准方法及系统
CN112578358A (zh) * 2020-12-29 2021-03-30 深圳承泰科技有限公司 一种毫米波雷达的校准方法及装置
CN112946588A (zh) * 2019-12-11 2021-06-11 华为技术有限公司 一种测试平台以及通道误差的确定方法
US20210215795A1 (en) * 2018-05-28 2021-07-15 Deutsches Zentrum für Luft- und Raumfahrt e. V. Synthetic aperture radar method and synthetic aperture radar device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107942331A (zh) * 2017-11-28 2018-04-20 西安电子科技大学 基于谱分析的多通道sar系统通道偏差估计方法
US20210215795A1 (en) * 2018-05-28 2021-07-15 Deutsches Zentrum für Luft- und Raumfahrt e. V. Synthetic aperture radar method and synthetic aperture radar device
CN110082750A (zh) * 2019-03-25 2019-08-02 西安电子科技大学 一种可消除通道间相位误差的比幅测角方法
CN110865347A (zh) * 2019-11-25 2020-03-06 的卢技术有限公司 一种汽车毫米波雷达多接收通道校准方法及系统
CN112946588A (zh) * 2019-12-11 2021-06-11 华为技术有限公司 一种测试平台以及通道误差的确定方法
CN112578358A (zh) * 2020-12-29 2021-03-30 深圳承泰科技有限公司 一种毫米波雷达的校准方法及装置

Also Published As

Publication number Publication date
KR20230092867A (ko) 2023-06-26

Similar Documents

Publication Publication Date Title
US10389421B2 (en) Apparatus for estimating arrival-angle and apparatus for beam-forming
JP7080997B2 (ja) レーダセンサの高周波モジュールの位相を較正する方法
US10018715B2 (en) Radar sensor for motor vehicles
CN110865347A (zh) 一种汽车毫米波雷达多接收通道校准方法及系统
US20050226099A1 (en) Quantitative echo souner and method of quantitative sounding of fish
US20150035697A1 (en) Radar calibration system for vehicles
CN110082750B (zh) 一种可消除通道间相位误差的比幅测角方法
CN110361705B (zh) 一种相控阵天线近场迭代校准方法
JP6949237B2 (ja) レーダ装置およびレーダ装置の動作方法
JP7439105B2 (ja) マルチ入力‐マルチ出力レーダセンサのキャリブレーション装置および方法
CN111596145B (zh) 一种相控阵发射校准装置和方法
US7925251B2 (en) Automatic delay calibration and tracking for ultra-wideband antenna array
US11940554B2 (en) Automotive radar arrangement and method for object detection by vehicle radar
US10996315B2 (en) Radar apparatus for vehicle and method for estimating angle using same
WO2021097636A1 (zh) 标物雷达散射截面积确定方法、装置和存储介质
JP2021524030A (ja) 自動車用のmimoレーダセンサ
KR20170027375A (ko) 선형 위상 어레이 안테나의 공간 보간 방법 및 보간 장치
Li et al. Software-defined calibration for FMCW phased-array radar
CN114679227B (zh) 一种测向误差的空间频域校正方法
WO2023108380A1 (zh) 用于雷达的通道相位检测及校准方法、装置及存储介质
CN113030887B (zh) 基于毫米波雷达的安装角度下线标定方法及装置
JP2010237069A (ja) レーダ反射断面積計測装置
CN113835072B (zh) 一种毫米波雷达校准方法、装置及电子设备
CN116047435A (zh) 雷达测角的校准方法、装置、存储介质和校准设备
CN113835073A (zh) 相控阵天气雷达及其发射幅度和相位校正方法与系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967522

Country of ref document: EP

Kind code of ref document: A1