WO2023106740A1 - 집속 초음파 장치 및 영상 트랜스듀서 보호 방법 - Google Patents

집속 초음파 장치 및 영상 트랜스듀서 보호 방법 Download PDF

Info

Publication number
WO2023106740A1
WO2023106740A1 PCT/KR2022/019445 KR2022019445W WO2023106740A1 WO 2023106740 A1 WO2023106740 A1 WO 2023106740A1 KR 2022019445 W KR2022019445 W KR 2022019445W WO 2023106740 A1 WO2023106740 A1 WO 2023106740A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
signal
transducer
focused ultrasound
elements
Prior art date
Application number
PCT/KR2022/019445
Other languages
English (en)
French (fr)
Inventor
손건호
김대승
구자운
Original Assignee
(주)아이엠지티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)아이엠지티 filed Critical (주)아이엠지티
Priority to US18/262,632 priority Critical patent/US20240075322A1/en
Priority to CN202280013953.4A priority patent/CN116829230A/zh
Priority to EP22904570.3A priority patent/EP4282471A1/en
Publication of WO2023106740A1 publication Critical patent/WO2023106740A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • A61N7/022Localised ultrasound hyperthermia intracavitary
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0052Ultrasound therapy using the same transducer for therapy and imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0056Beam shaping elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0082Scanning transducers

Definitions

  • the present invention relates to diagnosis and treatment technology using ultrasound, and more particularly, to image scanning and treatment technology using Focused Ultrasound (FUS) for Image Guided Therapy.
  • FUS Focused Ultrasound
  • the present invention was derived from a study conducted as part of the Ministry of Science and ICT, Ministry of Trade, Industry and Energy, Ministry of Health and Welfare, and Ministry of Food and Drug Safety's pan-departmental life cycle medical device research and development project [Task identification number: 9991006682, KMDF_PR_20200901_0009, research task Name: Commercialization and development of market-leading pancreatic cancer convergence therapy ultrasound image-guided high-intensity focused ultrasound treatment device, research management specialized institution: Pan-governmental lifecycle medical device research and development project group, contribution rate: 100%, host research institution: I.M. GT, study period: 2022.3.1 ⁇ 2022.12.31].
  • Ultrasound signals can be used to treat biological tissues such as cancer, tumors, and lesions.
  • Treatment using ultrasound is a method of treating lesions by irradiating ultrasonic signals to lesions in the human body. Compared to a general surgical operation or chemotherapy method, ultrasound treatment may cause less damage to a patient's trauma and realize a non-invasive treatment. Examples of its application include liver cancer, bone sarcoma, breast cancer, pancreas cancer, kidney cancer, soft tissue tumor, and pelvic tumor ) and so on.
  • a focused ultrasound device capable of protecting an image transducer from a focused ultrasound (FUS) signal for treatment and removing image noise and a method for protecting the image transducer are proposed.
  • FUS focused ultrasound
  • a focused ultrasound apparatus includes an ultrasound probe structure including a treatment transducer for transmitting a focused ultrasound signal and an imaging transducer for transmitting and receiving an imaging ultrasound signal, and a plurality of first elements of the imaging transducer.
  • An image of a reception switch that selects an element as a protection area and inactivates it, and selects a plurality of second elements as a reception area and activates them, and forms a reception beam signal by focusing ultrasonic echo signals received from the plurality of second elements. It includes a beamformer, an image generation unit that generates an image of a target area inside the object based on a reception beam signal, and a control unit that controls selection of a protection area and a reception area through a reception switch.
  • the plurality of first elements may be a central area of the imaging transducer where the focused ultrasound signal reflected from the interface of the ultrasound probe structure to the imaging transducer is concentrated, and the plurality of second elements may be a peripheral area of the imaging transducer. there is.
  • the protection area may include N elements located at the center of the entire scan line, and the reception area may include (the number of all channels - N)/2 elements on the left and right based on the center position of the entire scan line. there is.
  • the focused ultrasound apparatus may further include a controller that selects a reception area through a reception switch based on an image generated by the image generator.
  • the control unit is a first method of activating (the number of total channels-N)/2 elements on the left and right based on the center position of the entire scan line, and the left and right (number of total channels-N) based on the center position of the entire scan line N)/2 elements are activated and the focal angle of the reception beam signal is controlled; the number of left and right channels based on the center position of the entire scan line/2 elements are activated; and the entire scan
  • At least one of the fourth method of activating the total number of left and right channels/two elements based on the center position of the line and controlling the focal angle may be selected in combination.
  • the image transducer includes a protective film protecting a protective region of the image transducer.
  • the protective film may be any one of a diffuse reflection material, a reflective material, and an attenuation material, and the diffuse reflection material or the reflective material is copper foil.
  • It may be any one of an aluminum foil and a reflector made of plastic material, and the damping material may be any one of natural rubber, latex, and silicone rubber.
  • the ultrasound probe structure may further include a columnar case and a membrane filled with an ultrasound transmission medium along the shape of the case.
  • the ultrasound probe structure may further include a height adjuster for adjusting a case height of the ultrasound probe structure.
  • the ultrasound probe structure may further include a plurality of contact sensors that sense contact of the ultrasound probe structure with the target object.
  • the focused ultrasound device includes a noise filter for filtering noise from signals generated from each contact sensor, a contact switch for selecting a predetermined contact signal from among a plurality of contact signals from which the noise has been filtered, and a signal processing unit for signal processing the selected contact signal. And, it may further include a control unit for determining the contact state of each position from the contact signal received from the signal processing unit and controlling the treatment transducer to transmit the FUS signal based on the contact state.
  • the focused ultrasound device may further include an output unit that outputs a connection state and contact indication message to the outside.
  • damage to the image transducer may be minimized and image noise may be removed by protecting the image transducer from a focused ultrasound (FUS) signal for treatment.
  • FUS focused ultrasound
  • FIG. 1 is a diagram for explaining a principle in which an image transducer is damaged by a FUS signal in a focused ultrasound (FUS) device according to an embodiment of the present invention
  • FIG. 2 is a diagram showing the configuration of a focused ultrasound device according to an embodiment of the present invention.
  • FIG. 3 is a view showing a protection area located in the center of an imaging transducer according to an embodiment of the present invention
  • FIG. 4 is a diagram illustrating an example of channel activation for protecting a protection region on an entire scan line of an image transducer according to an embodiment of the present invention
  • FIG. 5 is a diagram illustrating a focused ultrasound device for protecting a protection region of an image transducer using a protective film according to an embodiment of the present invention
  • FIG. 6 is a diagram showing an ultrasonic probe structure for protecting an image transducer according to an embodiment of the present invention
  • FIG. 7 is a top view of an ultrasound probe structure including a case and a membrane according to an embodiment of the present invention.
  • FIG. 8 is a view of an ultrasonic probe structure including a plurality of contact sensors according to an embodiment of the present invention viewed from the bottom;
  • FIG. 9 is a diagram showing the configuration of a focused ultrasound device including a plurality of contact sensors according to an embodiment of the present invention.
  • FIG. 10 is a diagram showing an example of adjusting the height of a case of an ultrasonic probe structure according to an embodiment of the present invention.
  • FIG. 1 is a diagram for explaining a principle in which an image transducer is damaged by a FUS signal in a focused ultrasound (FUS, hereinafter referred to as 'FUS') device according to an embodiment of the present invention.
  • FUS focused ultrasound
  • a focused ultrasound device 1 includes an image transducer 11 and a treatment transducer 12 .
  • the structures of the imaging transducer 11 and the treatment transducer 12 may vary.
  • the treatment transducer 12 is formed around the imaging transducer 11 and ,
  • the image transducer 11 is formed in the center of the treatment transducer 12.
  • the structures of the imaging transducer 11 and the treatment transducer 12 are not limited thereto and may be variously modified.
  • the image transducer 11 transmits the image ultrasound signal and receives the image ultrasound echo signal reflected from the target area of the object.
  • the focused ultrasound apparatus 1 generates an image of a target area using the received image ultrasound echo signal, and uses the image to monitor a state of an object.
  • the treatment transducer 12 generates a thermal lesion by focusing the FUS signal for treatment on a target region of the object and performs focused ultrasound treatment.
  • the location of the target region can be known through monitoring of the image transducer 11 .
  • the imaging transducer 11 When the FUS signal transmitted through the treatment transducer 12 is reflected at the interface of the ultrasound transmission medium (eg, water), when the reflected FUS signal 100 is directed to the imaging transducer 11, the imaging transducer The deducer 11 may be thermally/mechanically damaged. As a result, noise (artifact) is generated in the image obtained through the image transducer 11, and the quality is deteriorated, and a problem may occur in diagnosis.
  • the present invention proposes a technique for minimizing and protecting the imaging transducer 11 from thermal/mechanical damage from the FUS signal 100 reflected to the imaging transducer 11 among the FUS signals of the treatment transducer 12.
  • FIG. 2 is a diagram showing the configuration of a focused ultrasound device according to an embodiment of the present invention.
  • the focused ultrasound device 1 includes an ultrasound probe structure 10, an image transceiver 20, a treatment transmitter 30, a controller 40, an image generator 50, and a storage unit 60. , and includes an input unit 70 and an output unit 80.
  • the ultrasound probe structure 10 includes an ultrasound probe that transmits an ultrasound signal to an object, receives an ultrasound echo signal from the object, and converts the ultrasound echo signal into an electrical signal.
  • the ultrasound probe is a combination of an image transducer 11 and a treatment transducer 12 .
  • a transducer array is provided at the end of the ultrasound probe.
  • a transducer array means arranging a plurality of elements in an array.
  • the transducer array generates ultrasonic signals while vibrating by an applied pulse signal or alternating current.
  • the generated ultrasound signal is transmitted to a target area inside the object.
  • Ultrasound signals generated from the transducer array are reflected from a target area inside the object and returned to the transducer array.
  • the transducer array receives an ultrasonic echo signal reflected from a target area and returns, and converts the received ultrasonic echo signal into a predetermined electrical signal.
  • Each element of the transducer array may transmit or receive an ultrasonic signal through each channel.
  • the number of channels may be the same as the number of elements constituting the transducer array.
  • Each element may include a piezoelectric vibrator or a thin film.
  • the ultrasound probe structure 10 may include a columnar case and a membrane filled with an ultrasound transmission medium along the shape of the case so that the FUS signal is not reflected to the image transducer 11 . An embodiment for this will be described later with reference to FIG. 6 .
  • the image transceiver 20 includes a reception switch 21 and an image beamformer 22 .
  • the receiving switch 21 selects a plurality of first elements from among the elements constituting the image transducer 11 as a protection area and inactivates them, and selects a plurality of second elements as a receiving area and activates them.
  • the protection region is a region in which thermal/mechanical damage is expected by the FUS signal in the image transducer 11 .
  • the plurality of first elements may be a central region of the image transducer 11 and the plurality of second elements may be a peripheral region of the image transducer 11 .
  • the protection area includes N elements located at the center of the entire scan line, and the receiving area is left and right based on the center position of the entire scan line.
  • the protection area of the image transducer 11 corresponds to the central portion, and is an area in which the FUS signal reflected from the image transducer 11 at the interface of the ultrasonic transmission medium of the ultrasonic probe structure 10 is concentrated.
  • the control unit 40 intentionally inactivates the second element of the protection area selected through the reception switch 21 to block reception of the FUS signal reflected by the image transducer 11, thereby protecting the second element from the FUS signal and increase the resolution of ultrasound images.
  • the image beamformer 22 generates a transmit beam signal according to the control signal of the control unit 40 and transmits the transmitted beam signal to the image transducer 11, and upon receiving the ultrasonic echo signal from the image transducer 11, the receive beam signal is generated. After generating, it is transmitted to the control unit 40.
  • the image beamformer 22 may focus the ultrasonic echo signals received from the plurality of second elements of the image transducer 11 to form a reception beam signal.
  • the treatment transmitter 30 includes a treatment beamformer 32 .
  • the treatment beamformer 32 generates a focused ultrasound signal toward a target region of an object according to a control signal of the controller 40 and transmits the focused ultrasound signal to the treatment transducer 12 .
  • the controller 40 controls overall operations of the focused ultrasound device 1 .
  • the controller 40 calculates a delay profile for a plurality of elements constituting the image transducer 11, and calculates a delay profile of the plurality of elements and the focal point of the object based on the calculated delay profile. Calculate the time delay value according to the distance difference.
  • the control unit 40 controls the imaging beamformer 22 to generate a transmit/receive beam signal, and controls the treatment beamformer 32 to generate a focused ultrasound signal.
  • the control unit 40 may control the focused ultrasound apparatus 1 by generating control commands for each component of the focused diagnosis apparatus 1 according to a user's instruction or command input through the input unit 70 .
  • the controller 40 may select a receiving area through the receiving switch 21 based on the image generated by the image generating unit 50 . An embodiment for this will be described later with reference to FIG. 4 .
  • the control unit 40 determines the contact state of the ultrasonic probe structure 10 with the target object from the contact signals detected by the plurality of contact sensors, and controls the treatment transducer 12 to transmit the FUS signal based on the contact state.
  • the control unit 40 determines the contact state of the ultrasonic probe structure 10 with the target object from the contact signals detected by the plurality of contact sensors, and controls the treatment transducer 12 to transmit the FUS signal based on the contact state. can An embodiment for this will be described later with reference to FIGS. 6 and 9 .
  • the image generator 50 generates an ultrasound image of a target region inside the object based on the received beam signal focused through the image transceiver 20 .
  • the storage unit 60 temporarily or non-temporarily stores the ultrasound image generated by the image generator 50 .
  • the input unit 70 is provided so that the user can input commands related to the operation of the focused ultrasound apparatus 1 .
  • the user receives an ultrasound diagnosis start command, A-mode (Amplitude mode), B-mode (Brightness mode), color mode (Color mode), D-mode (Doppler mode), and M-mode (Motion mode) through the input unit 70.
  • A-mode Amplitude mode
  • B-mode Brightness mode
  • color mode Color mode
  • D-mode Doppler mode
  • M-mode Motion mode
  • a diagnostic mode selection command region of interest (ROI) setting information including the size and location of the region of interest (ROI), etc.
  • ROI region of interest
  • ROI region of interest
  • the output unit 80 displays menus or information required for ultrasound diagnosis and ultrasound images obtained in the process of ultrasound diagnosis.
  • the output unit 550 displays the ultrasound image of the target region inside the object generated by the image generator 50 .
  • the ultrasound image displayed on the output unit 80 may be an A-mode ultrasound image, a B-mode ultrasound image, or a 3D stereoscopic ultrasound image.
  • the output unit 80 may output a connection state of the ultrasound probe structure 10 and a contact instruction message to the outside.
  • FIG. 3 is a diagram illustrating a protection area located in the center of an image transducer according to an embodiment of the present invention.
  • Reference numeral 300 denotes an image range of the image transducer 11 .
  • FIG. 4 is a diagram illustrating an example of activating a channel for protecting a protection region on an entire scan line of an image transducer according to an embodiment of the present invention.
  • the transducer array is composed of a plurality of elements.
  • a plurality of scan lines are required to obtain an ultrasound image, and the focused ultrasound apparatus 1 may perform beamforming on focal points from the first scan line to the last scan line.
  • the focused ultrasound apparatus 1 transmits an ultrasound signal for each scan line, receives an ultrasound echo signal reflected from a target area of an object, and generates an ultrasound image therefrom.
  • the focused ultrasound apparatus 1 may intentionally inactivate a predetermined scan line and activate only a predetermined scan line, instead of receiving ultrasound echo signals for all scan lines.
  • control unit 40 may select a receiving area through the receiving switch 21 based on the image generated by the image generating unit 50 and control the focal angle of the receiving beam signal.
  • the control unit 40 may combine and select at least one of four types.
  • the four methods are the first method of activating (Ch#-N)/2 elements on the left and right based on the center position of the entire scan line, and (Ch#-N) on the left and right based on the center position of the entire scan line.
  • Ch# on the left and right based on the center position of all scan lines / 3rd method of activating 2 elements and left and right based on the center position of all scan lines This is a fourth method of activating Ch#/2 elements of and controlling the focusing angle.
  • Ch# is the total number of channels.
  • the controller 40 may determine whether the image transducer 11 is damaged by checking the resolution of the ultrasound image generated by the image generator 50 . At this time, if it is determined that the image transducer 11 is damaged due to a drop in resolution, the controller 40 uses the first method of activating (Ch#-N)/2 elements on the left and right based on the center position of the entire scan line.
  • the receiving switch 21 can be controlled to select.
  • the resolution of the ultrasound image may be increased by additionally combining the second method of controlling the focal angle of the reception beam signal.
  • the control unit 40 may perform spatial compound to focus the reception beams at different angles instead of focusing the reception beams in a linear direction. In this case, it is possible to obtain good contrast and resolution by reducing image noise.
  • FIG. 5 is a diagram illustrating a focused ultrasound device for protecting a protection area of an image transducer using a protection film according to an embodiment of the present invention.
  • the ultrasonic probe structure 10 mounts a protective film 500 on the protective region of the imaging transducer 11, so that the FUS signal is directed away from the protective region of the imaging transducer 11. to lose
  • the passivation layer 500 may be any one of a diffuse reflection material, a reflective material, and an attenuation material.
  • the diffuse reflection material/reflective material examples include a copper foil made of metal, an aluminum foil, and a reflector such as an acrylic plate made of plastic.
  • the thickness and material of the diffuse reflection material/reflective material may be selected to reduce the magnitude of the FUS signal incident to the image transducer to a predetermined value (eg, -10 dB).
  • a predetermined value e.g, -10 dB.
  • the thickness of the diffuse reflection material/reflective material is too thick, it affects the ultrasound signal of the adjacent image channel and the FUS signal of the treatment transducer, so the thickness is limited within the allowable range.
  • a material having an impedance difference greater than a predetermined value may be used as the ultrasonic transmission medium (eg, water).
  • the attenuating material has a small difference in acoustic impedance from the ultrasonic transmission medium (eg, water), but may be, for example, natural rubber, latex, or silicone rubber to attenuate ultrasonic energy.
  • the thickness and material of the attenuating material may be selected in the same way as for the reflective material.
  • FIG. 6 is a diagram illustrating an ultrasonic probe structure for protecting an image transducer according to an embodiment of the present invention.
  • the ultrasound probe structure 10 may include a columnar case 62 and a membrane 13 filled with an ultrasound transmission medium along the shape of the case 14 .
  • the case 62 is formed in a vertical direction with respect to the skin surface 63 of the object so that the FUS signal is not reflected.
  • the case 62 may be in the form of a sound absorbing plate.
  • the membrane 13 is mounted inside the case 62 and has a structure to block the ultrasonic radiation surface.
  • the membrane 13 forms an accommodation space 62 for accommodating an ultrasound transmission medium between the focused ultrasound radiation surface and has an elastic material.
  • the membrane 13 forms a hemispherical shape convex downward by an elastic force.
  • the FUS signal does not reach the target area 64 of the object, but is reflected in the air layer 61 between the membrane 13 and the skin surface 63 of the object along the hemispherical shape of the membrane 13, towards the intermediate element of the imaging transducer 11 . In this case, degradation of the image transducer 11 may occur.
  • the case 14 of the ultrasound probe structure 10 is placed around the object so that the membrane 13 does not form a hemispherical shape when the ultrasound transmission medium is filled in the accommodation space 62. It is provided in the form of a vertical column with respect to the skin surface 63.
  • the membrane 13 is filled up along the vertical shape of the case 62 . Accordingly, the membrane 13 is formed in a columnar shape rather than a hemispherical shape through the columnar case 14, so that the direction of the FUS signal is not formed in the air layer 61 outside the case 14 and the target object To be formed in the target area 64 of.
  • the case 14 is height adjustable. An embodiment for this will be described later with reference to FIG. 10 .
  • the ultrasonic probe structure 10 includes a plurality of contact sensors 70 .
  • the plurality of contact sensors 70 detect whether or not the ultrasonic probe structure 10 is in contact with the target object.
  • a plurality of contact sensors 70 may be formed along the periphery of the lower surface of the ultrasound probe structure 10 in contact with the target object.
  • the focused ultrasound device 1 uses a plurality of contact sensors 70 to detect contact with the object. detect The focused ultrasound device 1 determines the contact state of each location from the contact signals sensed through the plurality of contact sensors 70 and controls the treatment transducer to transmit the FUS signal based on the contact state. At this time, the focused ultrasound device 1 blocks transmission of the FUS signal from the treatment transducer in case of incomplete contact, and transmits the FUS signal through the treatment transducer only in case of complete contact.
  • a contact signal is detected from a predetermined number or more of the plurality of contact sensors 70, it is determined that the ultrasound probe structure 10 is in contact with the skin surface of the object, and at this time, the FUS signal is transmitted through the treatment transducer. send A device configuration for this will be described later with reference to FIG. 9 .
  • FIG. 7 is a top view of an ultrasound probe structure including a case and a membrane according to an embodiment of the present invention.
  • the ultrasonic probe structure 10 includes a columnar case 14 and a membrane 13 filled with an ultrasound transmission medium along the shape of the case 14, and has a columnar shape.
  • a problem in which the FUS signal is reflected to the image transducer 11 by the case 14 can be solved.
  • FIG. 8 is a view of an ultrasonic probe structure including a plurality of contact sensors according to an embodiment of the present invention viewed from a lower surface.
  • the ultrasonic probe structure 10 includes a plurality of contact sensors 70 .
  • the focused ultrasound device 1 uses a plurality of contact sensors 70 to detect contact between the ultrasound probe structure 10 and the target object, and uses the treatment transducer 12 to transmit FUS signals only when the ultrasonic probe structure 10 is in contact with the target object. Control.
  • FIG. 9 is a diagram illustrating the configuration of a focused ultrasound device including a plurality of contact sensors according to an embodiment of the present invention.
  • the focused ultrasound apparatus 1 includes a plurality of contact sensors 70a, 70b, 70c, and 70d, a plurality of noise filters 23, a contact switch 24, a signal processor, and a control unit 40. ) and an output unit 80.
  • the signal processing unit may include an A/D converter 25 and an amplification unit 26 .
  • the plurality of noise filters 23, the contact switch 24, and the signal processing unit may be located in the image transmission/reception unit 20 of FIG. 2 .
  • the plurality of noise filters 23 filter noise by distinguishing a contact signal from a noise signal from signals generated from each of the contact sensors 70a, 70b, 70c, and 70d.
  • the contact switch 24 selects a predetermined contact signal from among a plurality of contact signals whose noise is filtered through a plurality of noise filters 23 and transmits the selected contact signal to the A/D converter 25 .
  • the signal processing unit signal-processes the contact signal.
  • the A/D converter 25 converts an analog signal into a digital signal
  • the amplifier 26 amplifies the digital signal.
  • the controller 40 determines the contact state of each position from the contact signal received from the signal processor and controls the treatment transducer 12 to transmit the FUS signal based on the contact state. For example, as shown in FIG. 9 , when the controller 40 detects touch signals from three or more of the four touch sensors 70a, 70b, 70c, and 70d (contact ratio 75%), the ultrasonic probe It is determined that the structure 10 is in contact with the skin surface of the object, and at this time, the FUS signal is transmitted through the treatment transducer 12 . Furthermore, the control unit 40 determines the complete contact (contact rate 100%) when all four contact sensors 70a, 70b, 70c, and 70d detect contact, and FUS through the treatment transducer 12 only when the contact is complete. It can be controlled to transmit a signal.
  • the control unit 40 outputs the contact state to the outside through the output unit 80 when the contact state satisfies a predetermined condition.
  • a contact instruction message may be output through the output unit 80 together.
  • a contact instruction message may be output through an LED, voice, or screen.
  • FIG. 10 is a diagram showing an example of adjusting the height of a case of an ultrasonic probe structure according to an embodiment of the present invention.
  • the height adjusting unit of the focused ultrasound device 1 adjusts the height H' of the case 14 of the ultrasound probe structure 10 to be Lcos ⁇ -D.
  • L is the FUS signal length of the outermost channel of the treatment transducer 12 to the target region 64 of the object
  • H is the vertical distance from the treatment transducer 12 to the target region 64 of the object
  • is the angle between L and H
  • D is the vertical distance from the target area 64 of the object to the skin surface 63 of the object
  • H' is the height of the case 14 of the ultrasound probe structure 10.
  • the ultrasonic transmission medium slightly overflows to the top of the membrane 13, so the focused ultrasound device 1 transmits ultrasonic waves.
  • the supply amount of the medium can be adjusted.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Surgical Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Gynecology & Obstetrics (AREA)
  • Vascular Medicine (AREA)

Abstract

집속 초음파 장치 및 영상 트랜스듀서 보호 방법이 개시된다. 일 실시 예에 따른 일 실시 예에 따른 집속 초음파 장치는, 집속 초음파 신호를 송신하는 치료 트랜스듀서 및 영상 초음파 신호를 송수신하는 영상 트랜스듀서를 포함하는 초음파 프로브 구조체와, 상기 영상 트랜스듀서의 엘리먼트들을 대상으로 복수의 제1 엘리먼트를 보호 영역으로 선택하여 비활성 하고, 다른 복수의 제2 엘리먼트를 수신 영역으로 선택하여 활성 하는 수신 스위치와, 상기 복수의 제2 엘리먼트로부터 수신한 초음파 에코신호를 집속하여 수신 빔 신호를 형성하는 영상 빔포머와, 수신 빔 신호에 기초하여 대상체 내부의 목표영역에 대한 영상을 생성하는 영상 생성부와, 수신 스위치를 통한 보호 영역 및 수신 영역 선택을 제어하는 제어부를 포함한다.

Description

집속 초음파 장치 및 영상 트랜스듀서 보호 방법
본 발명은 초음파를 이용한 진단 및 치료 기술에 관한 것으로, 보다 상세하게는 영상유도하 치료(Image Guide Therapy)를 위한 집속 초음파(Focused Ultrasound: FUS)를 이용한 영상 스캐닝 및 치료 기술에 관한 것이다.
본 발명은 과학기술정보통신부, 산업통상자원부, 보건복지부, 식품의약품안전처의 범부처전주기의료기기연구개발사업의 일환으로 수행한 연구로부터 도출된 것이다[과제고유번호: 9991006682, KMDF_PR_20200901_0009, 연구과제명: 시장선도형 췌장암 융합치료 초음파 영상유도 고강도집속초음파 치료기기 상용화 개발, 연구관리전문기관: (재)범부처전주기의료기기연구개발사업단, 기여율: 100%, 주관연구기관: (주)아이엠지티, 연구기간: 2022.3.1~2022.12.31].
암, 종양, 병변 등과 같은 생체조직을 치료하는데 초음파 신호를 이용할 수 있다. 초음파를 이용한 치료는 초음파 신호를 인체의 병변에 조사하여 병변을 치료하는 방식이다. 일반적인 외과수술이나 화학적인 치료(Chemotherapy) 방식 등에 비하여, 초음파 치료는 환자의 외상을 덜 손상시키고 비침습적 치료(Non-invasive treatment)를 실현할 수 있다. 그 적용 예로는 간암(Liver cancer), 뼈 육종(Bone sarcoma), 유방암(Breast cancer), 췌장암(Pancreas cancer), 신장암(Kidney cancer), 연조직의 종양(Soft tissue tumor) 및 골반 종양(Pelvic tumor) 등 다양하다.
일 실시 예에 따라, 치료를 위한 집속 초음파(Focused Ultrasound: FUS) 신호로부터 영상 트랜스듀서를 보호하고 영상 잡음을 제거할 수 있는 집속 초음파 장치 및 영상 트랜스듀서 보호 방법을 제안한다.
일 실시 예에 따른 집속 초음파 장치는, 집속 초음파 신호를 송신하는 치료 트랜스듀서 및 영상 초음파 신호를 송수신하는 영상 트랜스듀서를 포함하는 초음파 프로브 구조체와, 상기 영상 트랜스듀서의 엘리먼트들을 대상으로 복수의 제1 엘리먼트를 보호 영역으로 선택하여 비활성 하고, 다른 복수의 제2 엘리먼트를 수신 영역으로 선택하여 활성 하는 수신 스위치와, 상기 복수의 제2 엘리먼트로부터 수신한 초음파 에코신호를 집속하여 수신 빔 신호를 형성하는 영상 빔포머와, 수신 빔 신호에 기초하여 대상체 내부의 목표영역에 대한 영상을 생성하는 영상 생성부와, 수신 스위치를 통한 보호 영역 및 수신 영역 선택을 제어하는 제어부를 포함한다.
상기 복수의 제1 엘리먼트는 초음파 프로브 구조체의 경계면에서 영상 트랜스듀서로 반사되는 집속 초음파 신호가 집중되는 영상 트랜스듀서의 중앙 영역일 수 있고, 상기 복수의 제2 엘리먼트는 영상 트랜스듀서의 주변 영역일 수 있다.
보호 영역은 전체 스캔라인의 중심에 위치하는 N 개의 엘리먼트를 포함할 수 있고, 수신 영역은 전체 스캔라인의 중심 위치를 기준으로 좌우의 (전체 채널의 개수-N)/2개의 엘리먼트를 포함할 수 있다.
집속 초음파 장치는, 영상 생성부를 통해 생성된 영상에 기초하여 수신 스위치를 통한 수신 영역을 선택하는 제어부를 더 포함할 수 있다.
제어부는, 전체 스캔라인의 중심 위치를 기준으로 좌우의 (전체 채널의 개수-N)/2개의 엘리먼트를 활성 하는 제1 방식, 전체 스캔라인의 중심 위치를 기준으로 좌우의 (전체 채널의 개수-N)/2개의 엘리먼트를 활성 하고 수신 빔 신호의 집속 각도를 제어하는 제2 방식, 전체 스캔라인의 중심 위치를 기준으로 좌우의 전체 채널의 개수/2개의 엘리먼트를 활성 하는 제3 방식 및 전체 스캔라인의 중심 위치를 기준으로 좌우의 전체 채널의 개수/2개의 엘리먼트를 활성 하고 집속 각도를 제어하는 제4 방식 중 적어도 하나를 조합하여 선택할 수 있다.
영상 트랜스듀서는, 상기 영상 트랜스듀서의 보호 영역을 보호하는 보호막을 포함하며, 상기 보호막은 난반사형 물질, 반사형 물질 및 감쇠형 물질 중 어느 하나일 수 있고, 난반사형 물질 또는 반사형 물질은 동박, 알루미늄박 및 플라스틱 소재의 반사판 중 어느 하나일 수 있고, 감쇠형 물질은 천연고무, 라텍스 및 실리콘 고무 중 어느 하나일 수 있다.
초음파 프로브 구조체는, 기둥 모양의 케이스와, 상기 케이스의 형상을 따라 초음파 전달매질이 채워지는 멤브레인을 더 포함할 수 있다.
초음파 프로브 구조체는, 초음파 프로브 구조체의 케이스 높이를 조절하는 높이 조절부를 더 포함할 수 있다. 높이 조절부는 H'=Lcosθ-D가 되도록 조절할 수 있고, L은 치료 트랜스듀서의 최외각 채널의 대상체의 목표 영역까지의 FUS 신호 길이이고, H는 치료 트랜스듀서부터 대상체의 목표영역까지의 수직 거리이고, θ는 L과 H 간 각도이고, D는 대상체의 목표영역에서 대상체의 피부 표면까지 수직 거리이며, H'은 구조체의 케이스 높이이다.
초음파 프로브 구조체는, 초음파 프로브 구조체의 대상체와의 접촉을 감지하는 복수의 접촉 센서를 더 포함할 수 있다.
집속 초음파 장치는, 각 접촉 센서로부터 생성되는 신호로부터 노이즈를 필터링 하는 노이즈 필터와, 노이즈가 필터링 된 복수의 접촉신호 중 소정의 접촉신호를 선택하는 접촉 스위치와, 선택된 접촉신호를 신호 처리하는 신호 처리부와, 신호 처리부로부터 수신된 접촉신호로부터 각 위치의 접촉상태를 판단하고 접촉상태에 기초하여 치료 트랜스듀서가 FUS 신호를 송신하도록 제어하는 제어부를 더 포함할 수 있다.
집속 초음파 장치는, 접속상태 및 접촉 지시 메시지를 외부에 출력하는 출력부를 더 포함할 수 있다.
일 실시 예에 따른 집속 초음파 장치 및 영상 트랜스듀서 보호 방법에 따르면, 치료를 위한 집속 초음파(Focused Ultrasound: FUS) 신호로부터 영상 트랜스듀서를 보호하여 손상을 최소화 하고 영상 잡음을 제거할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 집속 초음파(Focused Ultrasound: FUS) 장치에서 FUS 신호에 의해 영상 트랜스듀서가 손상되는 원리를 설명하기 위한 도면,
도 2는 본 발명의 일 실시 예에 따른 집속 초음파 장치의 구성을 도시한 도면,
도 3은 본 발명의 일 실시 예에 따른 영상 트랜스듀서의 중앙에 위치하는 보호 영역을 도시한 도면,
도 4는 본 발명의 일 실시 예에 따른 영상 트랜스듀서의 전체 스캔 라인 상에서의 보호 영역을 보호하기 위한 채널 활성화 예를 도면,
도 5는 본 발명의 일 실시 예에 따른 영상 트랜스듀서의 보호 영역을 보호막을 사용하여 보호하는 집속 초음파 장치를 도시한 도면,
도 6은 본 발명의 일 실시 예에 따른 영상 트랜스듀서 보호를 위한 초음파 프로브 구조체를 도시한 도면,
도 7은 본 발명의 일 실시 에에 따른 케이스 및 멤브레인을 포함하는 초음파 프로브 구조체를 상면에서 바라본 도면,
도 8은 본 발명의 일 실시 예에 따른 복수의 접촉 센서를 포함하는 초음파 프로브 구조체를 하면에서 바라본 도면,
도 9는 본 발명의 일 실시 예에 따른 복수의 접촉 센서를 포함하는 집속 초음파 장치의 구성을 도시한 도면,
도 10은 본 발명의 일 실시 에에 따른 초음파 프로브 구조체의 케이스 높이를 조절하는 예를 도시한 도면이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
본 발명의 실시 예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이며, 후술되는 용어들은 본 발명의 실시 예에서의 기능을 반영하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하, 첨부 도면을 참조하여 본 발명의 실시 예를 상세하게 설명한다. 그러나 다음에 예시하는 본 발명의 실시 예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시 예에 한정되는 것은 아니다. 본 발명의 실시 예는 이 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공된다.
도 1은 본 발명의 일 실시 예에 따른 집속 초음파(Focused Ultrasound: FUS, 이하 'FUS'라 칭함) 장치에서 FUS 신호에 의해 영상 트랜스듀서가 손상되는 원리를 설명하기 위한 도면이다.
도 1을 참조하면, 집속 초음파 장치(1)는 영상 트랜스듀서(Image Transducer)(11)와 치료 트랜스듀서(Treatment Transducer)(12)를 포함한다. 영상 트랜스듀서(11)와 치료 트랜스듀서(12)의 구조는 다양할 수 있는데, 예를 들어, 도 1에 도시된 바와 같이 치료 트랜스듀서(12)가 영상 트랜스듀서(11)의 주변에 형성되고, 치료 트랜스듀서(12)의 중앙에 영상 트랜스듀서(11)가 형성된다. 그러나 영상 트랜스듀서(11)와 치료 트랜스듀서(12)의 구조는 이에 한정되지 않으며, 다양하게 변형 가능하다.
영상 트랜스듀서(11)는 영상 초음파 신호를 송신하고 대상체의 목표영역(target)으로부터 반사되는 영상 초음파 에코신호로 수신한다. 집속 초음파 장치(1)는 수신된 영상 초음파 에코신호를 이용하여 목표영역의 영상을 생성하며, 이를 대상체의 상태를 모니터링하기 위해 사용한다.
치료 트랜스듀서(12)는 치료를 위한 FUS 신호를 대상체의 목표영역에 포커싱(Focusing) 하여 열적 병변을 발생하고 집속 초음파 치료를 수행한다. 목표영역 위치는 영상 트랜스듀서(11)의 모니터링을 통해 알 수 있다.
치료 트랜스듀서(12)를 통해 송신된 FUS 신호가 초음파 전달매질(예를 들어, 물)의 경계면에서 반사되는 경우, 반사된 FUS 신호(100)가 영상 트랜스듀서(11)로 향하는 경우, 영상 트랜스듀서(11)를 열적/기계적으로 손상(damage) 시킬 수 있다. 이로 인해, 영상 트랜스듀서(11)를 통해 획득된 영상에 잡음(artifact)이 발생하여 질이 저하되고 진단에 문제가 발생할 수 있다. 본 발명은 치료 트랜스듀서(12)의 FUS 신호 중 영상 트랜스듀서(11)로 반사되는 FUS 신호(100)로부터 영상 트랜스듀서(11)의 열적/기계적 손상을 최소화하여 보호하기 위한 기술을 제안한다.
도 2는 본 발명의 일 실시 예에 따른 집속 초음파 장치의 구성을 도시한 도면이다.
도 2를 참조하면, 집속 초음파 장치(1)는 초음파 프로브 구조체(10), 영상 송수신부(20), 치료 송신부(30), 제어부(40), 영상 생성부(50), 저장부(60), 입력부(70) 및 출력부(80)를 포함한다.
초음파 프로브 구조체(10)는 대상체에 초음파 신호를 송신하고 대상체로부터 초음파 에코신호를 수신하여 이를 전기적 신호로 변환하는 초음파 프로브를 포함한다. 초음파 프로브는 영상 트랜스듀서(11)와 치료 트랜스듀서(12)가 결합된 형태이다.
초음파 프로브의 단부에 트랜스듀서 어레이가 구비된다. 트랜스듀서 어레이는 복수의 엘리먼트를 배열(array) 상으로 배치한 것을 의미한다. 트랜스듀서 어레이는 인가되는 펄스 신호 또는 교류 전류에 의해 진동하면서 초음파 신호를 생성한다. 생성된 초음파 신호는 대상체 내부의 목표영역으로 송신된다. 트랜스듀서 어레이에서 발생한 초음파 신호는 대상체 내부의 목표영역에서 반사되어 다시 트랜스듀서 어레이로 돌아온다. 트랜스듀서 어레이는 목표영역에서 반사되어 돌아오는 초음파 에코신호를 수신하고, 수신한 초음파 에코신호를 소정의 전기적 신호로 변환한다. 트랜스듀서 어레이의 각 엘리먼트는 각 채널을 통해 초음파 신호를 송신하거나 수신할 수 있다. 채널의 개수는 트랜스듀서 어레이를 구성하는 엘리먼트의 개수와 동일할 수 있다. 각 엘리먼트는 압전 진동자나 박막을 포함할 수 있다.
초음파 프로브 구조체(10)는 FUS 신호가 영상 트랜스듀서(11)로 반사되지 않도록 기둥 모양의 케이스와, 케이스의 형상을 따라 초음파 전달매질이 채워지는 멤브레인을 포함할 수 있다. 이에 대한 실시 예는 도 6을 참조로 하여 후술한다.
영상 송수신부(20)는 수신 스위치(21) 및 영상 빔포머(22)를 포함한다.
수신 스위치(21)는 영상 트랜스듀서(11)를 구성하는 엘리먼트들 중에서, 복수의 제1 엘리먼트를 보호 영역으로 선택하여 비활성 하고, 복수의 제2 엘리먼트를 수신 영역으로 선택하여 활성화한다. 보호 영역은 영상 트랜스듀서(11)에 있어서 FUS 신호에 의해 열적/기계적 손상이 예상되는 영역이다. 복수의 제1 엘리먼트는 영상 트랜스듀서(11)의 중앙 영역이고, 복수의 제2 엘리먼트는 영상 트랜스듀서(11)의 주변 영역일 수 있다. 예를 들어, 영상 트랜스듀서(11)가 1D 트랜스듀서 어레이 구조인 경우, 보호 영역은 전체 스캔라인의 중심에 위치하는 N 개의 엘리먼트를 포함하고, 수신 영역은 전체 스캔라인의 중심 위치를 기준으로 좌우의 (전체 채널의 개수-N)/2개의 엘리먼트를 포함한다. 영상 트랜스듀서(11)의 보호 영역은 중앙 부분에 해당하는데, 초음파 프로브 구조체(10)의 초음파 전달매질의 경계면에서 영상 트랜스듀서(11)로 반사되는 FUS 신호가 집중되는 영역이다. 제어부(40)는 수신 스위치(21)를 통해 선택된 보호 영역의 제2 엘리먼트에 대해서 의도적으로 비활성 하여 영상 트랜스듀서(11)로 반사되는 FUS 신호의 수신을 차단함으로써, 제2 엘리먼트를 FUS 신호로부터 보호하며 초음파 영상의 해상도를 높일 수 있다.
영상 빔포머(22)는 제어부(40)의 제어신호에 따라 송신 빔 신호를 생성하여 영상 트랜스듀서(11)에 전송하고, 영상 트랜스듀서(11)로부터 초음파 에코신호를 수신하면, 수신 빔 신호를 생성한 후 이를 제어부(40)에 전송한다. 영상 빔포머(22)는 영상 트랜스듀서(11)의 복수의 제2 엘리먼트로부터 수신한 초음파 에코신호를 집속하여 수신 빔 신호를 형성할 수 있다.
치료 송신부(30)는 치료 빔포머(32)를 포함한다. 치료 빔포머(32)는 제어부(40)의 제어신호에 따라 대상체의 목표 영역을 향해 집속 초음파 신호를 생성하여 치료 트랜스듀서(12)에 전송한다.
제어부(40)는 집속 초음파 장치(1)의 전반적인 동작을 제어한다. 특히, 제어부(40)는 영상 트랜스듀서(11)를 이루는 복수의 엘리먼트에 대한 지연 프로파일(delay profile)을 산출하고, 산출된 지연 프로파일에 기초하여 복수의 엘리먼트와 대상체의 집속점(focal point)의 거리 차에 따른 시간 지연 값을 산출한다. 그리고 제어부(40)는 이에 따라 영상 빔포머(22)를 제어하여 송수신 빔 신호가 생성되도록 제어하고, 치료 빔포머(32)를 제어하여 집속 초음파 신호가 생성되도록 제어한다. 제어부(40)는 입력부(70)를 통해 입력되는 사용자의 지시 또는 명령에 따라 집속 진단장치(1)의 각 구성 요소에 대한 제어명령을 생성하여 집속 초음파 장치(1)를 제어할 수 있다.
제어부(40)는 영상 생성부(50)를 통해 생성된 영상에 기초하여 수신 스위치(21)를 통한 수신 영역을 선택할 수 있다. 이에 대한 실시 예는 도 4를 참조로 하여 후술한다.
제어부(40)는 복수의 접촉 센서로부터 감지된 접촉신호로부터 초음파 프로브 구조체(10)의 대상체와의 접촉상태를 판단하고, 접촉상태에 기초하여 치료 트랜스듀서(12)가 FUS 신호를 송신하도록 제어할 수 있다. 이에 대한 실시 예는 도 6 및 도 9를 참조로 하여 후술한다.
영상 생성부(50)는 영상 송수신부(20)를 통해 집속된 수신 빔 신호에 기초하여 대상체 내부의 목표영역에 대한 초음파 영상을 생성한다.
저장부(60)는 영상 생성부(50)를 통해 생성된 초음파 영상을 일시적 또는 비일시적으로 저장한다.
입력부(70)는 사용자가 집속 초음파 장치(1)의 동작에 관한 명령을 입력할 수 있도록 마련된다. 사용자는 입력부(70)를 통해 초음파 진단 시작 명령, A-모드(Amplitude mode), B-모드(Brightness mode), 컬러 모드 (Color mode), D-모드(Doppler mode) 및 M-모드(Motion mode) 등의 진단 모드 선택 명령, 관심영역(region of interest; ROI)의 크기 및 위치를 포함하는 관심영역(ROI) 설정 정보 등을 입력하거나 설정할 수 있다.
출력부(80)는 초음파 진단에 필요한 메뉴나 안내 사항 및 초음파 진단 과정에서 획득한 초음파 영상 등을 표시한다. 출력부(550)는 영상 생성부(50)에서 생성된 대상체 내부의 목표영역에 대한 초음파 영상을 표시한다. 출력부(80)에 표시되는 초음파 영상은 A-모드의 초음파 영상이나 B-모드의 초음파 영상일 수도 있고, 3차원 입체 초음파 영상일 수도 있다. 출력부(80)는 초음파 프로브 구조체(10)의 대상체와의 접속상태 및 접촉 지시 메시지를 외부에 출력할 수 있다.
도 3은 본 발명의 일 실시 예에 따른 영상 트랜스듀서의 중앙에 위치하는 보호 영역을 도시한 도면이다.
도 2 및 도 3을 참조하면, 치료 트랜스듀서(12)가 대상체의 목표영역(64)에 FUS 신호를 집속할 때, 초음파 프로브 구조체(10)의 경계면에서 일부의 FUS 신호(100)가 반사되어 영상 트랜스듀서(11)의 중앙으로 집중된다. 따라서, 집속 초음파 장치(1)는 영상 트랜스듀서(11)의 중앙 부분을 보호 영역(110)으로 설정한다. 참조부호 300은 영상 트랜스듀서(11)의 영상 범위이다.
도 4는 본 발명의 일 실시 예에 따른 영상 트랜스듀서의 전체 스캔 라인 상에서의 보호 영역을 보호하기 위한 채널 활성화 예를 도면이다.
도 2 및 도 4를 참조하면, 트랜스듀서 어레이는 복수의 엘리먼트로 이루어진다. 초음파 영상을 얻기 위해서는 복수의 스캔 라인(scan line)이 필요하고, 집속 초음파 장치(1)는 첫 번째 스캔 라인부터 마지막 스캔 라인까지 집속점에 대한 빔포밍을 수행할 수 있다. 집속 초음파 장치(1)는 각 스캔 라인에 대해 초음파 신호를 송신하고, 대상체의 목표영역으로부터 반사되어 돌아오는 초음파 에코신호를 수신하여 이로부터 초음파 영상을 생성한다.
일 실시 예에 따른 집속 초음파 장치(1)는 모든 스캔 라인에 대해 초음파 에코신호를 수신하는 것이 아니라, 소정의 스캔 라인을 의도적으로 비활성 하고 소정의 스캔 라인만을 활성 할 수 있다.
보다 구체적으로, 제어부(40)는 영상 생성부(50)를 통해 생성된 영상에 기초하여 수신 스위치(21)를 통한 수신 영역을 선택할 수 있고, 수신 빔 신호의 집속 각도를 제어할 수 있다. 예를 들어, 영상 트랜스듀서(11)가 1D 트랜스듀서 어레이 구조인 경우, 제어부(40)는 총 4가지 방식 중 적어도 하나를 조합하여 선택할 수 있다. 4가지 방식은, 전체 스캔라인의 중심 위치를 기준으로 좌우의 (Ch#-N)/2개의 엘리먼트를 활성 하는 제1 방식, 전체 스캔라인의 중심 위치를 기준으로 좌우의 (Ch#-N)/2개의 엘리먼트를 활성 하고 집속 각도를 제어하는 제2 방식, 전체 스캔라인의 중심 위치를 기준으로 좌우의 Ch#/2개의 엘리먼트를 활성 하는 제3 방식 및 전체 스캔라인의 중심 위치를 기준으로 좌우의 Ch#/2개의 엘리먼트를 활성 하고 집속 각도를 제어하는 제4 방식이다. 여기서, Ch#은 전체 채널의 개수이다.
FUS 신호에 의해 영상 트랜스듀서(11)가 손상된 경우, 초음파 영상은 중심 부분의 해상도가 떨어지게 된다. 제어부(40)는 영상 생성부(50)를 통해 생성된 초음파 영상의 해상도를 확인하여 영상 트랜스듀서(11)의 손상 여부를 판단할 수 있다. 이때, 해상도가 떨어져 영상 트랜스듀서(11)가 손상된 것으로 판단하면, 제어부(40)는 전체 스캔라인의 중심 위치를 기준으로 좌우의 (Ch#-N)/2개의 엘리먼트를 활성 하는 제1 방식을 선택하도록 수신 스위치(21)를 제어할 수 있다. 나아가, 수신 빔 신호의 집속 각도를 제어하는 제2 방식을 추가적으로 조합하여 초음파 영상의 해상도를 높일 수 있다. 예를 들어, 제어부(40)는 선형(Linear) 방향으로 수신 빔을 집속하는 것이 아니라, 수신 빔을 서로 다른 각도에서 집속하는 Spatial Compound를 수행할 수 있다. 이 경우, 영상의 노이즈를 줄여 좋은 대비도 및 해상도를 얻을 수 있다.
도 5는 본 발명의 일 실시 예에 따른 영상 트랜스듀서의 보호 영역을 보호막을 사용하여 보호하는 집속 초음파 장치를 도시한 도면이다.
도 2 및 도 5를 참조하면, 초음파 프로브 구조체(10)는 영상 트랜스듀서(11)의 보호 영역에 보호막(500)을 장착하여, FUS 신호의 방향을 영상 트랜스듀서(11)의 보호 영역으로부터 멀어지게 한다. 보호막(500)은 난반사형 물질, 반사형 물질 및 감쇠형 물질 중 어느 하나일 수 있다.
난반사형 물질/반사형 물질은 예를 들어, 금속으로 만들어진 동박, 알루미늄박, 플라스틱으로 만들어진 아크릴 판 등의 반사판이 있다. 난반사형 물질/반사형 물질의 두께와 재질은 영상 트랜스듀서로 입사하는 FUS 신호의 크기를 소정의 값(예를 들어, -10dB) 정도로 줄일 수 있는 것으로 선택될 수 있다. 다만, 난반사형 물질/반사형 물질의 두께가 너무 두꺼우면 인접한 영상 채널의 초음파 신호와 치료 트랜스듀서의 FUS 신호에 영향을 미치므로 두께를 허용 범위 내에서 제한한다. 이때, 난반사형 물질/반사형 물질은 초음파 전달매질(예를 들어, 물)과 임피던스 차가 소정의 값보다 큰 물질을 사용할 수 있다.
감쇠형 물질은 초음파 전달매질(예를 들어, 물)과 음향학적 임피던스 차가 적으나 초음파 에너지를 감쇠 시킬 수 있도록 천연고무, 라텍스, 실리콘 고무 등이 예가 될 수 있다. 감쇠형 물질의 두께와 재질은 반사형 물질과 동일한 방법으로 선택될 수 있다.
도 6은 본 발명의 일 실시 예에 따른 영상 트랜스듀서 보호를 위한 초음파 프로브 구조체를 도시한 도면이다.
도 2 및 도 6을 참조하면, 초음파 프로브 구조체(10)는 기둥 모양의 케이스(62) 및 케이스(14)의 형상을 따라 초음파 전달매질이 채워지는 멤브레인(13)을 포함할 수 있다. 케이스(62)는 FUS 신호가 반사되지 않도록 대상체의 피부 표면(63)을 기준으로 수직 방향으로 형성된다. 케이스(62)는 흡음판 형태일 수 있다.
멤브레인(13)은 케이스(62)의 내부에 장착되어 초음파 방사면을 막아주는 구조로 되어 있다. 멤브레인(13)은 집속 초음파 방사면과의 사이에 초음파 전달매질을 수용하기 위한 수용공간(62)을 형성하고, 탄성을 갖는 재질을 가진다. 일반적으로 수용공간(62)에 초음파 전달매질이 설정 양으로 채워지면, 멤브레인(13)은 탄성력에 의해 아래로 볼록한 반구 형상을 형성한다. 이 경우, FUS 신호가 대상체의 목표영역(64)에 도달하는 것이 아니라, 멤브레인(13)의 반구 형태를 따라 멤브레인(13)과 대상체의 피부 표면(63) 사이의 공기층(61)에서 반사되고, 영상 트랜스듀서(11)의 중간 엘리먼트를 향할 수 있다. 이 경우, 영상 트랜스듀서(11)의 열화가 발생할 수 있다.
일 실시 예에 따른 집속 초음파 장치(1)는 초음파 전달매질이 수용공간(62)에 채워질 때, 멤브레인(13)이 반구 형태가 되지 않도록, 초음파 프로브 구조체(10)의 케이스(14)를 대상체의 피부 표면(63)을 기준으로 수직 방향인 기둥 형태로 마련한다. 수용공간(62)에 초음파 전달매질이 설정 양으로 채워지면, 멤브레인(13)이 케이스(62)의 수직 형상을 따라 꽉 차게 되도록 한다. 이에 따라, 기둥 형태의 케이스(14)를 통해 멤브레인(13)이 형상이 반구 형태가 아니라 기둥 모양으로 형성되게끔 하여, FUS 신호의 방향이 케이스(14) 외부의 공기층(61)에 형성되지 않고 대상체의 목표영역(64)에 형성되도록 한다. 케이스(14)는 높이 조절이 가능하다. 이에 대한 실시 예는 도 10을 참조로 하여 후술한다.
일 실시 예에 따른 초음파 프로브 구조체(10)는 복수의 접촉 센서(70)를 포함한다. 복수의 접촉 센서(70)는 초음파 프로브 구조체(10)와 대상체와의 접촉 여부를 감지한다. 복수의 접촉 센서(70)는 대상체와 접촉하는 초음파 프로브 구조체(10)의 하부면 주변을 따라 형성될 수 있다.
초음파 프로브 구조체(10)가 대상체와 접촉 시 들뜸 현상으로 공기층(61)이 발생하는 문제를 방지하기 위해, 집속 초음파 장치(1)는 복수의 접촉센서(70)를 이용하여 대상체와의 접촉 여부를 감지한다. 집속 초음파 장치(1)는 복수의 접촉 센서(70)를 통해 감지된 접촉신호로부터 각 위치의 접촉상태를 판단하고 접촉상태에 기초하여 치료 트랜스듀서가 FUS 신호를 송신하도록 제어한다. 이때, 집속 초음파 장치(1)는 불완전 접촉 시 치료 트랜스듀서의 FUS 신호 송신을 차단하며, 완전 접촉 시에만 치료 트랜스듀서를 통해 FUS 신호를 송신한다. 예를 들어, 복수의 접촉 센서(70) 중 소정 개수 이상의 접촉 센서로부터 접촉 신호를 감지하면, 초음파 프로브 구조체(10)가 대상체의 피부 표면에 접촉한 것으로 판단하고, 이때 치료 트랜스듀서를 통해 FUS 신호를 송신한다. 이를 위한 장치 구성은 도 9를 참조로 하여 후술한다.
도 7은 본 발명의 일 실시 에에 따른 케이스 및 멤브레인을 포함하는 초음파 프로브 구조체를 상면에서 바라본 도면이다.
도 2 및 도 7을 참조하면, 초음파 프로브 구조체(10)는 기둥 모양의 케이스(14)와, 케이스(14)의 형상을 따라 초음파 전달매질이 채워지는 멤브레인(13)을 포함하며, 기둥 모양의 케이스(14)에 의해 FUS 신호가 영상 트랜스듀서(11)로 반사되는 문제를 해결할 수 있다.
도 8은 본 발명의 일 실시 예에 따른 복수의 접촉 센서를 포함하는 초음파 프로브 구조체를 하면에서 바라본 도면이다.
도 2 및 도 8을 참조하면, 초음파 프로브 구조체(10)는 복수의 접촉 센서(70)를 포함한다. 집속 초음파 장치(1)는 복수의 접촉 센서(70)를 이용하여 초음파 프로브 구조체(10)와 대상체와의 접촉 여부를 감지하고, 대상체와 접촉 시에만 FUS 신호를 송신하도록 치료 트랜스듀서(12)를 제어한다.
도 9는 본 발명의 일 실시 예에 따른 복수의 접촉 센서를 포함하는 집속 초음파 장치의 구성을 도시한 도면이다.
도 2 및 도 9를 참조하면, 집속 초음파 장치(1)는 복수의 접촉 센서(70a, 70b,70c, 70d), 복수의 노이즈 필터(23), 접촉 스위치(24), 신호 처리부, 제어부(40) 및 출력부(80)를 포함할 수 있다. 신호 처리부는 A/D 컨버터(25), 증폭부(26)를 포함할 수 있다. 복수의 노이즈 필터(23), 접촉 스위치(24), 신호 처리부는 도 2의 영상 송수신부(20)에 위치할 수 있다.
복수의 노이즈 필터(23)는 각 접촉 센서(70a, 70b,70c, 70d)로부터 생성되는 신호로부터 접촉신호와 노이즈 신호를 구분하여 노이즈를 필터링 한다.
접촉 스위치(24)는 복수의 노이즈 필터(23)를 통해 노이즈가 필터링 된 복수의 접촉신호 중 소정의 접촉신호를 선택하여 A/D 컨버터(25)로 전송한다.
신호 처리부는 접촉신호를 신호 처리한다. 예를 들어, A/D 컨버터(25)는 아날로그(Analog) 신호를 디지털(Digital) 신호로 변환하고, 증폭부(26)는 디지털 신호를 증폭한다.
제어부(40)는 신호 처리부로부터 수신된 접촉신호로부터 각 위치의 접촉상태를 판단하고 접촉상태에 기초하여 치료 트랜스듀서(12)가 FUS 신호를 송신하도록 제어한다. 예를 들어, 도 9에 도시된 바와 같이, 제어부(40)는 4개의 접촉 센서(70a, 70b,70c, 70d) 중 3개(접촉률 75%) 이상의 접촉 센서로부터 접촉 신호를 감지하면, 초음파 프로브 구조체(10)가 대상체의 피부 표면에 접촉한 것으로 판단하고, 이때 치료 트랜스듀서(12)를 통해 FUS 신호를 송신하도록 제어한다. 나아가, 제어부(40)는 4개의 접촉 센서(70a, 70b,70c, 70d) 모두 접촉을 감지한 경우 완전 접촉(접촉률 100%)으로 판단하고, 완전 접촉 시에만 치료 트랜스듀서(12)를 통해 FUS 신호를 송신하도록 제어할 수 있다.
제어부(40)는 접촉 상태가 소정의 조건을 충족한 경우, 접촉 상태를 출력부(80)를 통해 외부에 출력한다. 이때, 접촉 지시 메시지를 함께 출력부(80)를 통해 출력할 수 있다. 예를 들어, LED나 음성, 화면 등을 통해 접촉 지시 메시지를 출력할 수 있다.
도 10은 본 발명의 일 실시 에에 따른 초음파 프로브 구조체의 케이스 높이를 조절하는 예를 도시한 도면이다.
도 2 및 도 10을 참조하면, 집속 초음파 장치(1)의 높이 조절부는 초음파 프로브 구조체(10)의 케이스(14) 높이(H')가 Lcosθ-D가 되도록 조절한다. 이때, L은 치료 트랜스듀서(12)의 최외각 채널의 대상체의 목표영역(64)까지의 FUS 신호 길이이고, H는 치료 트랜스듀서(12)로부터 대상체의 목표영역(64)까지의 수직 거리이고, θ는 L과 H 간 각도이고, D는 대상체의 목표영역(64)에서 대상체의 피부 표면(63)까지 수직 거리이며, H'은 초음파 프로브 구조체(10)의 케이스(14) 높이이다.
멤브레인(13)의 하단 쪽 수용공간에 초음파 전달매질이 모두 차게 되면, 참조부호 90에 도시된 바와 같이 멤브레인(13)의 위쪽으로 초음파 전달매질이 조금 넘치게 되므로, 집속 초음파 장치(1)는 초음파 전달매질의 공급량을 조절할 수 있다.
이제까지 본 발명에 대하여 그 실시 예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (12)

  1. 집속 초음파 신호를 송신하는 치료 트랜스듀서; 및 영상 초음파 신호를 송수신하는 영상 트랜스듀서; 를 포함하는 초음파 프로브 구조체;
    상기 영상 트랜스듀서의 엘리먼트들을 대상으로 복수의 제1 엘리먼트를 보호 영역으로 선택하여 비활성 하고, 다른 복수의 제2 엘리먼트를 수신 영역으로 선택하여 활성 하는 수신 스위치;
    상기 복수의 제2 엘리먼트로부터 수신한 초음파 에코신호를 집속하여 수신 빔 신호를 형성하는 영상 빔포머;
    수신 빔 신호에 기초하여 대상체 내부의 목표영역에 대한 영상을 생성하는 영상 생성부; 및
    수신 스위치를 통한 보호 영역 및 수신 영역 선택을 제어하는 제어부;
    를 포함하는 것을 특징을 하는 집속 초음파 장치.
  2. 제 1 항에 있어서,
    상기 복수의 제1 엘리먼트는 초음파 프로브 구조체의 경계면에서 영상 트랜스듀서로 반사되는 집속 초음파 신호가 집중되는 영상 트랜스듀서의 중앙 영역이고,
    상기 복수의 제2 엘리먼트는 영상 트랜스듀서의 주변 영역인 것을 특징으로 하는 집속 초음파 장치.
  3. 제 2 항에 있어서,
    보호 영역은 전체 스캔라인의 중심에 위치하는 N 개의 엘리먼트를 포함하고,
    수신 영역은 전체 스캔라인의 중심 위치를 기준으로 좌우의 (전체 채널의 개수-N)/2개의 엘리먼트를 포함하는 것을 특징으로 하는 집속 초음파 장치.
  4. 제 1 항에 있어서, 집속 초음파 장치는
    영상 생성부를 통해 생성된 영상에 기초하여 수신 스위치를 통한 수신 영역을 선택하는 제어부;
    를 더 포함하는 것을 특징을 하는 집속 초음파 장치.
  5. 제 4 항에 있어서, 상기 제어부는
    전체 스캔라인의 중심 위치를 기준으로 좌우의 (전체 채널의 개수-N)/2개의 엘리먼트를 활성 하는 제1 방식, 전체 스캔라인의 중심 위치를 기준으로 좌우의 (전체 채널의 개수-N)/2개의 엘리먼트를 활성 하고 수신 빔 신호의 집속 각도를 제어하는 제2 방식, 전체 스캔라인의 중심 위치를 기준으로 좌우의 전체 채널의 개수/2개의 엘리먼트를 활성 하는 제3 방식 및 전체 스캔라인의 중심 위치를 기준으로 좌우의 전체 채널의 개수/2개의 엘리먼트를 활성 하고 집속 각도를 제어하는 제4 방식 중 적어도 하나를 조합하여 선택하는 것을 특징으로 하는 집속 초음파 장치.
  6. 제 1 항에 있어서, 영상 트랜스듀서는
    상기 영상 트랜스듀서의 보호 영역을 보호하는 보호막; 을 포함하며,
    상기 보호막은 난반사형 물질, 반사형 물질 및 감쇠형 물질 중 어느 하나이고,
    난반사형 물질 또는 반사형 물질은 동박, 알루미늄박 및 플라스틱 소재의 반사판 중 어느 하나이고,
    감쇠형 물질은 천연고무, 라텍스 및 실리콘 고무 중 어느 하나인 것을 특징으로 하는 집속 초음파 장치.
  7. 제 1 항에 있어서, 상기 초음파 프로브 구조체는
    기둥 모양의 케이스; 및
    상기 케이스의 형상을 따라 초음파 전달매질이 채워지는 멤브레인;
    을 더 포함하는 것을 특징으로 하는 집속 초음파 장치.
  8. 제 7 항에 있어서, 상기 초음파 프로브 구조체는
    초음파 프로브 구조체의 케이스 높이를 조절하는 높이 조절부;
    를 더 포함하는 것을 특징으로 하는 집속 초음파 장치.
  9. 제 8 항에 있어서, 높이 조절부는
    H'=Lcosθ-D가 되도록 조절하고,
    L은 치료 트랜스듀서의 최외각 채널의 대상체의 목표 영역까지의 FUS 신호 길이이고, H는 치료 트랜스듀서부터 대상체의 목표영역까지의 수직 거리이고, θ는 L과 H 간 각도이고, D는 대상체의 목표영역에서 대상체의 피부 표면까지 수직 거리이며, H'은 구조체의 케이스 높이인 것을 특징으로 하는 집속 초음파 장치.
  10. 제 1 항에 있어서, 상기 초음파 프로브 구조체는
    초음파 프로브 구조체의 대상체와의 접촉을 감지하는 복수의 접촉 센서;
    를 더 포함하는 것을 특징으로 하는 집속 초음파 장치.
  11. 제 10 항에 있어서, 상기 집속 초음파 장치는
    각 접촉 센서로부터 생성되는 신호로부터 노이즈를 필터링 하는 노이즈 필터;
    노이즈가 필터링 된 복수의 접촉신호 중 소정의 접촉신호를 선택하는 접촉 스위치;
    선택된 접촉신호를 신호 처리하는 신호 처리부; 및
    신호 처리부로부터 수신된 접촉신호로부터 각 위치의 접촉상태를 판단하고 접촉상태에 기초하여 치료 트랜스듀서가 FUS 신호를 송신하도록 제어하는 제어부;
    를 더 포함하는 것을 특징으로 하는 집속 초음파 장치.
  12. 제 10 항에 있어서, 상기 집속 초음파 장치는
    접속상태 및 접촉 지시 메시지를 외부에 출력하는 출력부;
    를 더 포함하는 것을 특징으로 하는 집속 초음파 장치.
PCT/KR2022/019445 2021-12-08 2022-12-02 집속 초음파 장치 및 영상 트랜스듀서 보호 방법 WO2023106740A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/262,632 US20240075322A1 (en) 2021-12-08 2022-12-02 Focused ultrasound device and image transducer protection method
CN202280013953.4A CN116829230A (zh) 2021-12-08 2022-12-02 聚焦超声设备及图像换能器保护方法
EP22904570.3A EP4282471A1 (en) 2021-12-08 2022-12-02 Focused ultrasound device and image transducer protection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0175227 2021-12-08
KR1020210175227A KR102486574B1 (ko) 2021-12-08 2021-12-08 집속 초음파 장치 및 영상 트랜스듀서 보호 방법

Publications (1)

Publication Number Publication Date
WO2023106740A1 true WO2023106740A1 (ko) 2023-06-15

Family

ID=84892486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019445 WO2023106740A1 (ko) 2021-12-08 2022-12-02 집속 초음파 장치 및 영상 트랜스듀서 보호 방법

Country Status (5)

Country Link
US (1) US20240075322A1 (ko)
EP (1) EP4282471A1 (ko)
KR (1) KR102486574B1 (ko)
CN (1) CN116829230A (ko)
WO (1) WO2023106740A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7503342B1 (ja) 2023-07-11 2024-06-20 ソニア・セラピューティクス株式会社 Hifu照射装置およびその状態を評価する方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070333A (ja) * 1999-09-01 2001-03-21 Toshiba Corp 超音波照射装置
KR100875208B1 (ko) * 2005-12-09 2008-12-19 주식회사 메디슨 고강도 초점 초음파 시스템
WO2014081108A1 (ko) * 2012-11-21 2014-05-30 알피니언메디칼시스템 주식회사 초음파 의료기기에 사용되는 멤브레인 가드, 가이드링, 및 그를 포함하는 트리트먼트 헤드
KR101457666B1 (ko) * 2013-05-31 2014-11-12 알피니언메디칼시스템 주식회사 냉각 기능을 가진 초음파 트랜스듀서
KR20160041516A (ko) * 2014-10-08 2016-04-18 삼성전자주식회사 빔포밍 장치 및 이를 포함하는 초음파 진단장치
KR20190043378A (ko) * 2017-10-18 2019-04-26 김동수 초음파 피부미용장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090326372A1 (en) * 2008-06-30 2009-12-31 Darlington Gregory Compound Imaging with HIFU Transducer and Use of Pseudo 3D Imaging
US9456800B2 (en) * 2009-12-18 2016-10-04 Massachusetts Institute Of Technology Ultrasound scanning system
KR101625646B1 (ko) 2015-08-13 2016-05-30 알피니언메디칼시스템 주식회사 실시간 hifu 치료 모니터링 방법 및 그 초음파 의료 장치
JP6494591B2 (ja) * 2016-12-08 2019-04-03 キヤノン株式会社 超音波プローブ及び超音波画像取得装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070333A (ja) * 1999-09-01 2001-03-21 Toshiba Corp 超音波照射装置
KR100875208B1 (ko) * 2005-12-09 2008-12-19 주식회사 메디슨 고강도 초점 초음파 시스템
WO2014081108A1 (ko) * 2012-11-21 2014-05-30 알피니언메디칼시스템 주식회사 초음파 의료기기에 사용되는 멤브레인 가드, 가이드링, 및 그를 포함하는 트리트먼트 헤드
KR101457666B1 (ko) * 2013-05-31 2014-11-12 알피니언메디칼시스템 주식회사 냉각 기능을 가진 초음파 트랜스듀서
KR20160041516A (ko) * 2014-10-08 2016-04-18 삼성전자주식회사 빔포밍 장치 및 이를 포함하는 초음파 진단장치
KR20190043378A (ko) * 2017-10-18 2019-04-26 김동수 초음파 피부미용장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7503342B1 (ja) 2023-07-11 2024-06-20 ソニア・セラピューティクス株式会社 Hifu照射装置およびその状態を評価する方法

Also Published As

Publication number Publication date
EP4282471A1 (en) 2023-11-29
KR102486574B1 (ko) 2023-01-11
CN116829230A (zh) 2023-09-29
US20240075322A1 (en) 2024-03-07

Similar Documents

Publication Publication Date Title
JP3461509B2 (ja) ソノマモグラフィーおよびよりよいx線撮影を行う装置
JP2005508667A (ja) 超音波トランスデューサ
WO2023106740A1 (ko) 집속 초음파 장치 및 영상 트랜스듀서 보호 방법
WO2014181961A1 (ko) 분리 결합형 초음파 프로브 장치
JPH08336541A (ja) 音波源を有する治療装置
WO2014073907A1 (ko) 유방암 진단용 광음향 스캐닝 장치
WO2019225840A1 (ko) 체외 충격파 치료 장치
WO2014133209A1 (ko) 캐비테이션 검출 방법과 그를 위한 초음파 의료 장치
WO2014133208A1 (ko) 초점 보상 방법과 그를 위한 초음파 의료 장치
EP2305122A1 (en) Ultrasonic diagnostic apparatus and ultrasonic diagnostic method
US20210212661A1 (en) System and method for medical ultrasound with monitoring pad
EP3037180B1 (en) Ultrasonic probe and manufacturing method thereof
WO2016006739A1 (ko) 초음파 프로브 및 초음파 영상장치
WO2012153888A1 (ko) 고강도 집속 초음파용 어플리케이터
WO2015147347A1 (ko) 초음파 장치용 멤브레인 및 그 초음파 장치
WO2014021489A1 (ko) 기울기 정보를 가지는 초음파 프로브, 그를 이용한 초음파 진단 및 치료 장치
WO2010126264A2 (ko) 횡탄성파 생성 방법, 횡탄성파를 이용한 이미지 획득 방법 및 장치
KR20170122721A (ko) 초음파 에너지 표시 장치
CN105662465A (zh) 超声探头及超声检测方法
WO2019151673A1 (ko) 초음파 프로브
JP2011200374A (ja) 光治療プローブ及び光治療装置
KR101801900B1 (ko) 차폐부를 가지는 hifu 장치와 hifu 장치의 영상 잡음 제거 및 영상용 트랜스듀서 보호방법
WO2022098128A1 (ko) 광음향 진단 장치 및 방법
WO2014208803A1 (ko) 다양한 포커싱을 통해 다중 선택 가능한 초음파 프로브 및 이를 구비한 초음파 영상 진단장치
KR102324390B1 (ko) 휴대용 하이브리드 초음파 진단장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18262632

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904570

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280013953.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022904570

Country of ref document: EP

Effective date: 20230820