WO2023106397A1 - 作業車両 - Google Patents

作業車両 Download PDF

Info

Publication number
WO2023106397A1
WO2023106397A1 PCT/JP2022/045449 JP2022045449W WO2023106397A1 WO 2023106397 A1 WO2023106397 A1 WO 2023106397A1 JP 2022045449 W JP2022045449 W JP 2022045449W WO 2023106397 A1 WO2023106397 A1 WO 2023106397A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic oil
electric motor
flow path
hydraulic
driven
Prior art date
Application number
PCT/JP2022/045449
Other languages
English (en)
French (fr)
Inventor
佑太 星野
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to AU2022405931A priority Critical patent/AU2022405931A1/en
Priority to CA3233895A priority patent/CA3233895A1/en
Publication of WO2023106397A1 publication Critical patent/WO2023106397A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/22Dynamic electric resistor braking, combined with dynamic electric regenerative braking
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00

Definitions

  • Patent Literature 1 discloses an electrically driven dump truck that converts regenerative electric power generated by braking into thermal energy using a resistor (retarder grid).
  • a retarder grid mounted on a large dump truck is installed on the platform.
  • the platform is a flat plate portion of the vehicle body provided above the front wheels.
  • it is preferable to reduce the size of the retarder grid For example, in order to install a hydrogen tank on the platform of a vehicle powered by a fuel cell, it would be desirable to reduce the percentage of the platform occupied by the retarder grid. In order to reduce the size of the retarder grid, it is necessary to reduce the power consumed by the retarder grid.
  • An object of the present disclosure is to provide a working vehicle that can consume regenerative power.
  • a work vehicle includes an electric motor, a traveling body driven by the electric motor, a hydraulic oil tank that stores hydraulic oil, and regeneration of the electric motor caused by braking of the traveling body.
  • a hydraulic pump that is driven by electric power and pressure-feeds the hydraulic oil in the hydraulic oil tank, and an accumulator that accumulates the pressure of the hydraulic oil pressure-fed from the hydraulic pump.
  • the work vehicle can consume regenerative power.
  • FIG. 1 is a perspective view schematically showing a transport vehicle according to a first embodiment
  • FIG. 1 is a schematic block diagram showing the configuration of a hydraulic system provided in a transport vehicle according to a first embodiment
  • FIG. 1 is a schematic block diagram showing the configuration of an electric system provided in a transportation vehicle according to a first embodiment
  • FIG. 1 is a schematic block diagram showing the configuration of a control device according to a first embodiment
  • FIG. 4 is a flowchart showing retarder control by the control device according to the first embodiment
  • a transport vehicle 10 according to the first embodiment is a rigid-frame dump truck that transports crushed stones or the like excavated in a mine or the like.
  • the transportation vehicle 10 is driven by a fuel cell 41 that uses hydrogen gas as fuel.
  • the transport vehicle 10 is an example of a working vehicle.
  • FIG. 1 is a perspective view schematically showing a transport vehicle 10 according to the first embodiment.
  • the transport vehicle 10 includes a dump body 11 , a vehicle body 12 and a travel device 13 .
  • the dump body 11 is a member on which cargo is loaded. At least part of the dump body 11 is arranged above the vehicle body 12 .
  • the dump body 11 performs a dump operation and a lowering operation. The dumping operation and the lowering operation adjust the dumping body 11 to the dumping attitude and the loading attitude.
  • the dump posture refers to a posture in which the dump body 11 is raised.
  • the loading posture refers to a posture in which the dump body 11 is lowered.
  • the dumping operation refers to the operation of separating the dumping body 11 from the vehicle body 12 and tilting it in the dumping direction.
  • the dumping direction is the rear of the vehicle body 12 .
  • the dumping operation includes raising the front end of the dump body 11 to tilt the dump body 11 rearward. Due to the dumping operation, the loading surface of the dump body 11 is inclined downward toward the rear.
  • a lowering operation refers to an operation to bring the dump body 11 closer to the vehicle body 12 .
  • the lowering motion includes lowering the front end of the dump body 11 .
  • the dump body 11 When carrying out earth-removing work, the dump body 11 performs a dumping operation so as to change from the loading attitude to the dumping attitude.
  • the dump body 11 When the dump body 11 is loaded with cargo, the cargo is discharged rearward from the rear end portion of the dump body 11 by the dump operation.
  • the dump body 11 When the loading operation is carried out, the dump body 11 is adjusted to the loading posture.
  • the vehicle body 12 includes a vehicle body frame (not shown).
  • the vehicle body 12 rotatably supports the dump body 11 via hinge pins provided on the vehicle body frame.
  • the vehicle body 12 is supported by the travel device 13 .
  • a platform 121 is provided above the front wheels of the travel device 13 in the body frame.
  • the platform 121 is a flat plate forming the upper surface of the vehicle body frame.
  • Above the platform 121 are a cab 122 , a control cabinet 123 and a retarder grid 46 .
  • a fuel cell 41 is also provided on the vehicle body frame.
  • An opening is provided in the front portion of the front surface of the vehicle body 12 in front of the fuel cell 41, and a grill 124 is provided in the opening.
  • a fan 125 for cooling the fuel cell 41 is provided between the grill 124 and the fuel cell 41 . The fan 125 cools the fuel cell 41 by drawing outside air into the body frame through the grill 124 .
  • control cabinet 123 performs power conversion. Specifically, control cabinet 123 provides power control between fuel cell 41 and various motors and retarder grid 46 .
  • the retarder grid 46 is a resistor for absorbing regenerative electric power generated by braking of the travel device 13 .
  • the retarder grid 46 converts the regenerated power into thermal energy.
  • the traveling device 13 supports the vehicle body 12.
  • the traveling device 13 causes the transportation vehicle 10 to travel.
  • the travel device 13 moves the transport vehicle 10 forward or backward. At least part of the travel device 13 is arranged below the vehicle body 12 .
  • the travel device 13 includes a pair of front wheels and a pair of rear wheels.
  • the front wheels are steering wheels and the rear wheels are driving wheels.
  • FIG. 2 is a schematic block diagram showing the configuration of the hydraulic system 20 provided in the transport vehicle 10 according to the first embodiment.
  • the hydraulic system 20 of the transport vehicle 10 includes a hydraulic oil tank 21, a hydraulic pump 22, an accumulator 23, a control valve 25, a steering cylinder 26, and a working machine cylinder 27, as shown in FIG.
  • a discharge port of the hydraulic pump 22 is connected to the accumulator 23 via the first flow path P1.
  • a first check valve 28 is provided in the first flow path P1. The first check valve 28 allows hydraulic fluid to flow from the hydraulic pump 22 to the accumulator 23 and blocks hydraulic fluid to flow from the accumulator 23 to the hydraulic pump 22 . As a result, the pressure of hydraulic fluid output by the hydraulic pump 22 is accumulated in the accumulator 23 .
  • the hydraulic system 20 includes a second flow path P2 that connects an intermediate portion between the accumulator 23 and the first check valve 28 in the first flow path P1 and the hydraulic fluid tank 21 .
  • a two-port solenoid valve 29, a throttle 30, a second check valve 31, and an oil cooler 32 are provided in the second flow path P2 in this order from the first flow path P1 side.
  • the 2-port solenoid valve 29 is configured to switch between conducting and blocking the first flow path P1. Note that the 2-port solenoid valve 29 conducts the first flow path P1 when regenerative electric power is generated and the hydraulic pump 22 is in operation.
  • the throttle 30 restricts the flow rate of the hydraulic oil flowing through the first flow path P1 and causes pressure loss. Hydraulic oil passing through the throttle 30 rises in temperature due to pressure loss.
  • the second check valve 31 allows hydraulic fluid to flow from the first flow path P1 to the hydraulic fluid tank 21 and blocks hydraulic fluid to flow from the hydraulic fluid tank 21 to the first flow path P1.
  • the oil cooler 32 cools the working oil flowing through the second flow path P2 by heat exchange with the refrigerant.
  • the coolant in the oil cooler 32 is cooled by the radiator 35 .
  • Radiator 35 is provided between grill 124 and fan 125 shown in FIG. That is, the fan 125 according to the first embodiment is a cooling device that cools the fuel cell 41 and also a cooling device that cools the hydraulic oil.
  • the hydraulic system 20 includes an intermediate portion between the hydraulic pump 22 and the first check valve 28 in the first flow path P1 and an intermediate portion between the oil cooler 32 and the second check valve 31 in the second flow path P2.
  • a connecting third flow path P3 is provided.
  • a relief valve 33 and a flow meter 34 are provided in the third flow path P3.
  • the relief valve 33 opens when the pressure in the first flow path P1 exceeds a predetermined relief pressure. Thereby, the pressure of the accumulator 23 is kept below the relief pressure. Also, the relief valve 33 closes when the pressure in the first flow path P1 falls below a predetermined pressure. As a result, the pressure of the accumulator 23 is maintained at a predetermined pressure or higher.
  • the flow meter 34 measures the flow rate of hydraulic oil flowing through the third flow path P3.
  • the control valve 25 is connected to an intermediate portion between the accumulator 23 and the first check valve 28 in the first flow path P1.
  • the control valve 25 adjusts the flow rate of the hydraulic oil supplied to the steering cylinder 26 and the working machine cylinder 27 according to the operator's operation of an operation device (not shown).
  • the steering cylinder 26 controls the traveling direction of the traveling device 13 by changing the angle of the front wheels of the traveling device 13 .
  • a first port of the control valve 25 is connected to an intermediate portion between the accumulator 23 and the first check valve 28 in the first flow path P1. Hydraulic oil is supplied to the first port from whichever of the hydraulic pump 22 and the accumulator 23 has the higher pressure.
  • a second port of the control valve 25 is connected to the hydraulic fluid tank 21 . Hydraulic oil returned from a steering cylinder 26 and a working machine cylinder 27 is supplied to the hydraulic oil tank 21 through a second port.
  • a third port and a fourth port of the control valve 25 are connected to the steering cylinder 26 .
  • a fifth port and a sixth port of the control valve 25 are connected to the work machine cylinder 27 .
  • the work machine cylinder 27 has a head attached to the dump body 11 and a rod attached to the vehicle body 12 .
  • the posture of the dump body 11 with respect to the vehicle body 12 changes as the work machine cylinder 27 expands and contracts. That is, by driving the working machine cylinder 27, the dumping operation and the lowering operation of the dumping body 11 can be realized.
  • FIG. 3 is a schematic block diagram showing the configuration of the electric system 40 included in the transport vehicle 10 according to the first embodiment.
  • the electric system 40 includes a fuel cell 41, a battery 42, a pump motor 43, a fan motor 44, a traveling motor 45, a retarder grid 46, a first DCDC converter 47, a second DCDC converter 48, a third DCDC converter 49, and a fourth DCDC converter. 50 , an inverter 51 and a control device 60 .
  • the first DCDC converter 47 , the second DCDC converter 48 , the third DCDC converter 49 , the fourth DCDC converter 50 , the inverter 51 and the controller 60 are provided within the control cabinet 123 .
  • the fuel cell 41 reacts hydrogen gas supplied from a hydrogen tank (not shown) with oxygen contained in the outside air to generate electric power.
  • the first DCDC converter 47 supplies the DC power generated by the fuel cell 41 to the bus B.
  • the second DCDC converter 48 supplies the electric power charged in the battery 42 to the bus B.
  • the second DCDC converter 48 adjusts the voltage of the DC power flowing through the bus B and supplies it to the battery 42 to charge the battery 42 . That is, the second DCDC converter 48 is an example of a charging device.
  • the battery 42 includes a BMU (Battery Management Unit) (not shown) that monitors the state of the battery 42 .
  • the BMU measures the charging rate of the battery 42 and outputs measurement data to the control device 60 .
  • the pump motor 43 drives the hydraulic pump 22 shown in FIG.
  • the third DCDC converter 49 adjusts the voltage of the DC power flowing through the bus B and supplies it to the pump motor 43 .
  • Fan motor 44 drives fan 125 shown in FIG.
  • the fourth DCDC converter 50 adjusts the voltage of the DC power flowing through the bus B and supplies it to the fan motor 44 .
  • the travel motor 45 is a three-phase AC electric motor that drives the travel device 13 .
  • Inverter 51 converts the DC power flowing through bus B into three-phase AC power and supplies it to traveling motor 45 . Further, the inverter 51 converts regenerative electric power generated in the traveling motor 45 by braking of the traveling device 13 into DC electric power, and supplies the DC electric power to the bus B.
  • a voltmeter 52 is provided on the traveling motor 45 .
  • a voltmeter 52 measures the voltage associated with the travel motor 45 .
  • the voltmeter 52 transmits measurement data to the control device 60 .
  • Control device 60 controls first DCDC converter 47, second DCDC converter 48, third DCDC converter 49, fourth DCDC converter 50 and It controls the inverter 51 and the two-port solenoid valve 29 shown in FIG.
  • FIG. 4 is a schematic block diagram showing the configuration of the control device 60 according to the first embodiment.
  • the control device 60 is a computer including a processor 61 , main memory 62 , storage 63 and interface 64 .
  • the processor 61 reads a program from the storage 63, develops it in the main memory 62, and executes processing according to the program. Examples of the processor 61 include a CPU (Central Processing Unit), a GPU (Graphic Processing Unit), a microprocessor, and the like.
  • the program may be for realizing a part of the functions to be exhibited by the control device 60.
  • the program may function in combination with another program already stored in the storage or in combination with another program installed in another device.
  • the control device 60 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration.
  • PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • part or all of the functions implemented by processor 61 may be implemented by the integrated circuit.
  • Such an integrated circuit is also included as an example of a processor.
  • Examples of the storage 63 include magnetic disks, magneto-optical disks, optical disks, and semiconductor memories.
  • the storage 63 may be an internal medium directly connected to the bus, or an external medium connected to the control device 60 via the interface 64 or communication line. Further, when this program is distributed to the control device 60 via a communication line, the control device 60 receiving the distribution may load the program into the main memory 62 and execute the above process.
  • storage 63 is a non-transitory, tangible storage medium.
  • the program may be for realizing part of the functions described above.
  • the program may be a so-called difference file (difference program) that implements the above-described functions in combination with another program already stored in the storage 63 .
  • FIG. 5 is a flowchart showing retarder control by the control device 60.
  • the control device 60 executes the retarder control shown in FIG. 5 at regular intervals.
  • the control device 60 determines whether regenerative electric power is generated in the traveling motor 45 (step S1).
  • the control device 60 determines the presence or absence of regenerative power, for example, based on the sign of the voltage value. If regenerative power is not generated (step S1: NO), the control device 60 terminates the retarder control.
  • step S1 if regenerative power is generated (step S1: YES), the control device 60 determines whether the charging rate of the battery 42 is equal to or higher than the upper limit based on the measurement data received from the BMU of the battery 42. Determine (step S2). When the charging rate of the battery 42 is less than the upper limit value (step S2: NO), the control device 60 outputs an instruction to charge the battery 42 to the second DCDC converter 48 (step S3). As a result, the control device 60 allows the battery 42 to absorb the regenerated electric power, thereby reducing the electric power consumed by the retarder grid 46 . Therefore, when the charging rate of the battery 42 is less than the upper limit value, the controller 60 terminates the retarder control.
  • step S2 if the charging rate of the battery 42 is equal to or higher than the upper limit value (step S2: YES), the control device 60 outputs an instruction to drive the pump motor 43 to the third DCDC converter 49 (step S4). This causes the pump motor 43 to drive the hydraulic pump 22 .
  • the control device 60 determines whether hydraulic oil is flowing through the third flow path P3 based on the measurement data of the flow meter 34 (step S5).
  • step S5 NO
  • hydraulic fluid pressure is accumulated in the accumulator 23 by the hydraulic pump 22 .
  • the pump/motor 43 can absorb the regenerated electric power due to the load caused by the accumulation of pressure in the accumulator 23 . Therefore, when hydraulic oil does not flow through the third flow path P3 (step S5: NO), the control device 60 ends the retarder control.
  • step S5 if hydraulic fluid is flowing through the third flow path P3 (step S5: YES), the pressure of the accumulator 23 exceeds the relief pressure of the relief valve 33, and it can be seen that no more pressure can be accumulated in the accumulator 23. .
  • the control device 60 excites the two-port solenoid valve 29 (step S6) to prevent the hydraulic fluid from flowing through the second flow path P2. let it start.
  • the control device 60 also outputs an instruction to drive the fan motor 44 to the fourth DCDC converter 50 (step S7).
  • the pump motor 43 can absorb the regenerated power due to the load generated by the throttle 30 .
  • the fan motor 44 can absorb the regenerated power.
  • the rotation of the fan 125 cools the coolant in the oil cooler 32 via the radiator 35, so that the operating oil heated by the throttle 30 can be cooled.
  • the control device 60 of the transport vehicle 10 operates the hydraulic pump 22 by regenerative electric power of the travel motor 45 generated by the braking of the travel device 13, and accumulates the pressure of hydraulic oil in the accumulator 23.
  • the transport vehicle 10 can collect regenerated electric power by accumulating pressure in the accumulator 23 by the hydraulic pump 22 .
  • the hydraulic energy accumulated in the accumulator 23 can be used to drive the steering cylinder 26 and the working machine cylinder 27 via the control valve 25 .
  • the transportation vehicle 10 includes a two-port solenoid valve 29 that is controlled to be in an open state when the traveling motor 45 outputs regenerative electric power and the hydraulic pump 22 is being driven; and a throttle 30 provided downstream of the port solenoid valve 29 .
  • the pressure loss of the hydraulic oil in the throttle 30 allows the regenerated electric power to be converted into thermal energy.
  • the transport vehicle 10 according to another embodiment may not include the second flow path P2.
  • the transport vehicle 10 according to the first embodiment also includes an oil cooler 32 that is driven by regenerative electric power of the travel motor 45 and cools hydraulic oil downstream of the throttle 30 .
  • the transport vehicle 10 can recover the regenerated electric power by driving the oil cooler 32 and further reduce the temperature of the working oil that has risen due to the pressure loss.
  • the transport vehicle 10 according to another embodiment may not include the oil cooler 32 .
  • the oil cooler 32 according to the first embodiment cools the working oil with the refrigerant cooled by the fan 125 and the radiator 35, it is not limited to this.
  • the oil cooler 32 according to another embodiment may be a refrigerator that transfers the heat of the refrigerant by compressing and expanding the refrigerant. In this case, the compressor included in the refrigerator is driven by regenerated power.
  • the transport vehicle 10 includes a second DCDC converter 48 that charges the battery 42 with regenerated power, and the control device 60 controls the hydraulic pump when the charging rate of the battery 42 becomes equal to or higher than the upper limit value. 22 is driven.
  • the transport vehicle 10 can absorb the regenerated electric power in two steps: charging the battery 42 and accumulating pressure in the accumulator 23 .
  • the fan 125 of the transportation vehicle 10 according to the first embodiment is driven by regenerative electric power of the travel motor 45 to cool the fuel cell 41 .
  • the regenerated electric power can be absorbed by the rotation of the fan 125 .
  • the control device 60 according to the first embodiment rotates the fan 125 when the charging rate of the battery 42 is equal to or higher than the upper limit value and the pressure of the accumulator 23 is equal to or higher than the relief pressure. do not have.
  • the control device 60 according to another embodiment may drive the fan motor 44 regardless of the charging rate of the battery 42 and the pressure of the accumulator 23 when the travel motor 45 generates regenerative electric power.
  • the transport vehicle 10 can reduce the regenerative electric power consumed by the retarder grid 46 .
  • the size of the retarder grid 46 can be designed based on the amount of power that can be absorbed by the battery 42 , accumulator 23 , throttle 30 , oil cooler 32 and fan 125 .
  • the retarder grid 46 can be made smaller, and installation space for other structures can be secured on the platform 121 . Examples of other structures provided on the platform 121 include hydrogen tanks filled with hydrogen gas to be supplied to the fuel cell 41 .
  • the transportation vehicle 10 according to the first embodiment can be easily manufactured by modifying the existing transportation vehicle 10. can do.
  • control device 60 may be configured by a single computer, or the configuration of the control device 60 may be divided into a plurality of computers, and the plurality of computers may cooperate with each other. may function as the control device 60.
  • working machines may be other working machines such as hydraulic excavators, wheel loaders, and motor graders.
  • the work vehicle can consume regenerative power.

Abstract

作業車両は、電気モータと、走行体と、作動油タンクと、油圧ポンプと、アキュムレータとを備える。油圧ポンプは、走行体の制動によって生じる電気モータの回生電力で駆動し、作動油タンク内の作動油を圧送する。アキュムレータは、油圧ポンプから圧送される作動油の圧力を蓄積する。

Description

作業車両
 本開示は、作業車両に関する。
 本願は、2021年12月9日に日本に出願された特願2021-200388号について優先権を主張し、その内容をここに援用する。
 露天掘りの鉱山では、運搬車両を積載状態で長時間連続降坂することがある。このような場合に、降坂速度を一定に保つために、降坂の間、ブレーキを作動させ続ける必要が生じる。特許文献1には、制動によって生じた回生電力を、抵抗器(リターダグリッド)によって熱エネルギーに変換する電気駆動式ダンプトラックが開示されている。
特開2014-054117号公報
 回生電力をリターダグリッドによって熱に変換することで制動力を発揮させるためには、降坂で生じる大きなエネルギーを消費可能な大きなリターダグリッドが必要となる。大型ダンプトラックに搭載されるリターダグリッドは、プラットフォーム上に設置される。プラットフォームは、車体のうち前輪の上方に設けられた平板部分である。しかしながら、プラットフォームに、リターダグリッド以外の構造物を設置する場合、リターダグリッドを小型化することが好ましい。例えば、燃料電池により駆動する運搬車両のプラットフォームに水素タンクを設置するためには、プラットフォームにおけるリターダグリッドが占める割合を減らすことが好ましい。リターダグリッドの小型化のためには、リターダグリッドに消費させる電力を低減する必要がある。
 本開示の目的は、回生電力を消費することができる作業車両を提供することにある。
 本開示の一態様によれば、作業車両は、電気モータと、前記電気モータによって駆動される走行体と、作動油を貯留する作動油タンクと、前記走行体の制動によって生じる前記電気モータの回生電力で駆動し、前記作動油タンク内の作動油を圧送する油圧ポンプと、前記油圧ポンプから圧送される作動油の圧力を蓄積するアキュムレータとを備える。
 上記態様によれば、作業車両は回生電力を消費することができる。
第一の実施形態に係る運搬車両を模式的に示す斜視図である。 第一の実施形態に係る運搬車両が備える油圧システムの構成を示す概略ブロック図である。 第一の実施形態に係る運搬車両が備える電動システムの構成を示す概略ブロック図である。 第一の実施形態に係る制御装置の構成を示す概略ブロック図である。 第一の実施形態に係る制御装置によるリターダ制御を示すフローチャートである。
〈第一の実施形態〉
《運搬車両10の構成》
 以下、図面を参照しながら実施形態について詳しく説明する。
 第一の実施形態に係る運搬車両10は、鉱山等で採掘した砕石物等を運搬するリジッドフレーム式のダンプトラックである。運搬車両10は、水素ガスを燃料とする燃料電池41によって駆動する。運搬車両10は、作業車両の一例である。
 図1は、第一の実施形態に係る運搬車両10を模式的に示す斜視図である。運搬車両10は、ダンプボディ11と、車体12と、走行装置13とを備える。
 ダンプボディ11は、積荷が積載される部材である。ダンプボディ11の少なくとも一部は、車体12よりも上方に配置される。ダンプボディ11は、ダンプ動作及び下げ動作する。ダンプ動作及び下げ動作により、ダンプボディ11は、ダンプ姿勢及び積載姿勢に調整される。ダンプ姿勢とは、ダンプボディ11が上昇している姿勢をいう。積載姿勢とは、ダンプボディ11が下降している姿勢をいう。
 ダンプ動作とは、ダンプボディ11を車体12から離隔させてダンプ方向に傾斜させる動作をいう。ダンプ方向は、車体12の後方である。実施形態において、ダンプ動作は、ダンプボディ11の前端部を上昇させて、ダンプボディ11を後方に傾斜させることを含む。ダンプ動作により、ダンプボディ11の積載面は、後方に向かって下方に傾斜する。
 下げ動作とは、ダンプボディ11を車体12に接近させる動作をいう。実施形態において、下げ動作は、ダンプボディ11の前端部を下降させることを含む。
 排土作業を実施する場合、ダンプボディ11は、積載姿勢からダンプ姿勢に変化するように、ダンプ動作する。ダンプボディ11に積荷が積載されている場合、積荷は、ダンプ動作により、ダンプボディ11の後端部から後方に排出される。積込作業が実施される場合、ダンプボディ11は、積載姿勢に調整される。
 車体12は、図示しない車体フレームを含む。車体12は、車体フレームに設けられたヒンジピンを介してダンプボディ11を回転可能に支持する。車体12は、走行装置13に支持される。車体フレームのうち走行装置13の前輪の上部に、プラットフォーム121が設けられる。プラットフォーム121は、車体フレームの上面を構成する平板である。プラットフォーム121の上には、運転室122、コントロールキャビネット123、およびリターダグリッド46が設けられる。また、車体フレーム上には、燃料電池41が設けられる。車体12の前面のうち、燃料電池41の前方部分には開口部が設けられており、開口部にグリル124が設けられている。グリル124と燃料電池41との間には、燃料電池41を冷却するためのファン125が設けられる。ファン125は、グリル124を介して外気を車体フレーム内部に引き込むことで、燃料電池41を冷却する。
 コントロールキャビネット123は、電力の変換を行う。具体的には、コントロールキャビネット123は、燃料電池41と各種モータとリターダグリッド46との間の電力制御を行う。
 リターダグリッド46は、走行装置13の制動によって発生する回生電力を吸収するための抵抗器である。リターダグリッド46は、回生電力を熱エネルギーに変換する。
 走行装置13は、車体12を支持する。走行装置13は、運搬車両10を走行させる。走行装置13は、運搬車両10を前進又は後進させる。走行装置13の少なくとも一部は、車体12よりも下方に配置される。走行装置13は、一対の前輪と一対の後輪とを備える。前輪は操舵輪であり、後輪は駆動輪である。
《油圧システム20の構成》
 図2は、第一の実施形態に係る運搬車両10が備える油圧システム20の構成を示す概略ブロック図である。
 運搬車両10の油圧システム20は、図2に示すように、作動油タンク21、油圧ポンプ22、アキュムレータ23、コントロールバルブ25、ステアリングシリンダ26、作業機シリンダ27を備える。
 油圧ポンプ22の吐出口は、第一流路P1を介してアキュムレータ23に接続される。第一流路P1には、第一逆止弁28が設けられる。第一逆止弁28は、油圧ポンプ22からアキュムレータ23への作動油の流れを許容し、アキュムレータ23から油圧ポンプ22へ向かう作動油の流れをせき止める。これにより、油圧ポンプ22が出力する作動油の圧力はアキュムレータ23に蓄積される。
 油圧システム20は、第一流路P1のうちアキュムレータ23と第一逆止弁28との中間部と、作動油タンク21とを接続する第二流路P2を備える。第二流路P2には、第一流路P1側から順に、2ポート電磁弁29、絞り30、第二逆止弁31、オイルクーラ32が設けられる。2ポート電磁弁29は、第一流路P1を導通および遮断を切り替え可能に構成される。なお、2ポート電磁弁29は、回生電力が発生し、かつ油圧ポンプ22が稼働しているときに、第一流路P1を導通させる。絞り30は、第一流路P1を流れる作動油の流量を制限し、圧力損失を発生させる。絞り30を通過する作動油は、圧力損失によって温度が上昇する。第二逆止弁31は、第一流路P1から作動油タンク21への作動油の流れを許容し、作動油タンク21から第一流路P1へ向かう作動油の流れをせき止める。オイルクーラ32は、冷媒との熱交換により第二流路P2を流れる作動油を冷却する。オイルクーラ32の冷媒は、ラジエータ35によって冷却される。ラジエータ35は、図1に示すグリル124とファン125の間に設けられる。つまり、第一の実施形態に係るファン125は、燃料電池41を冷却する冷却装置であり、作動油を冷却する冷却装置でもある。
 油圧システム20は、第一流路P1のうち油圧ポンプ22と第一逆止弁28との中間部と、第二流路P2のうちオイルクーラ32と第二逆止弁31との中間部とを接続する第三流路P3を備える。第三流路P3には、リリーフ弁33と流量計34とが設けられる。リリーフ弁33は、第一流路P1の圧力が所定のリリーフ圧を超えたときに開く。これにより、アキュムレータ23の圧力はリリーフ圧以下に保たれる。またリリーフ弁33は、第一流路P1の圧力が所定の圧を下回ったときに閉じる。これにより、アキュムレータ23の圧力は所定圧以上に保たれる。流量計34は、第三流路P3に流れる作動油の流量を計測する。
 コントロールバルブ25は、第一流路P1のうちアキュムレータ23と第一逆止弁28との中間部に接続される。
 コントロールバルブ25は、オペレータによる図示しない操作装置の操作に応じて、ステアリングシリンダ26および作業機シリンダ27に供給する作動油の流量を調整する。
 ステアリングシリンダ26は、走行装置13の前輪の角度を変化させることで、走行装置13の走行方向を制御する。コントロールバルブ25の第一ポートは、第一流路P1のうちアキュムレータ23と第一逆止弁28との中間部に接続される。第一ポートには、油圧ポンプ22およびアキュムレータ23のうち圧力の高い方から作動油が供給される。コントロールバルブ25の第二ポートは、作動油タンク21に接続される。作動油タンク21へは、ステアリングシリンダ26および作業機シリンダ27からの戻りの作動油が、第二ポートを介して供給される。コントロールバルブ25の第三ポートと第四ポートは、ステアリングシリンダ26に接続される。コントロールバルブ25の第五ポートと第六ポートは、作業機シリンダ27に接続される。
 作業機シリンダ27は、ヘッドがダンプボディ11に取り付けられ、ロッドが車体12に取り付けられる。作業機シリンダ27が伸縮することで、車体12に対するダンプボディ11の姿勢が変化する。つまり、作業機シリンダ27を駆動させることで、ダンプボディ11のダンプ動作および下げ動作を実現することができる。
《電動システム40の構成》
 図3は、第一の実施形態に係る運搬車両10が備える電動システム40の構成を示す概略ブロック図である。電動システム40は、燃料電池41、バッテリ42、ポンプモータ43、ファンモータ44、走行モータ45、リターダグリッド46、第一DCDCコンバータ47、第二DCDCコンバータ48、第三DCDCコンバータ49、第四DCDCコンバータ50、インバータ51、制御装置60を備える。第一DCDCコンバータ47、第二DCDCコンバータ48、第三DCDCコンバータ49、第四DCDCコンバータ50、インバータ51および制御装置60は、コントロールキャビネット123内に設けられる。
 燃料電池41は、図示しない水素タンクから供給される水素ガスと、外気に含まれる酸素とを反応させ、電力を発生させる。第一DCDCコンバータ47は、燃料電池41が生成した直流電力を母線Bに供給する。
 第二DCDCコンバータ48は、バッテリ42に充電された電力を母線Bに供給する。また第二DCDCコンバータ48は、母線Bに流れる直流電力の電圧を調整してバッテリ42に供給することで、バッテリ42を充電させる。つまり、第二DCDCコンバータ48は、充電装置の一例である。バッテリ42は、バッテリ42の状態を監視する図示しないBMU(Battery Management Unit)を備える。BMUは、バッテリ42の充電率を計測し、制御装置60に計測データを出力する。
 ポンプモータ43は、図2に示す油圧ポンプ22を駆動させる。第三DCDCコンバータ49は、母線Bに流れる直流電力の電圧を調整してポンプモータ43に供給する。
 ファンモータ44は、図1に示すファン125を駆動させる。第四DCDCコンバータ50は、母線Bに流れる直流電力の電圧を調整してファンモータ44に供給する。
 走行モータ45は、走行装置13を駆動させる三相交流電気モータである。インバータ51は、母線Bに流れる直流電力を三相交流電力に変換して走行モータ45に供給する。また、インバータ51は、走行装置13の制動によって走行モータ45に発生する回生電力を直流電力に変換して、母線Bに供給する。走行モータ45には電圧計52が設けられる。電圧計52は、走行モータ45に係る電圧を計測する。電圧計52は、計測データを制御装置60に送信する。
 制御装置60は、流量計34、バッテリ42のBMUおよび電圧計52から受信した計測データに基づいて、第一DCDCコンバータ47、第二DCDCコンバータ48、第三DCDCコンバータ49、第四DCDCコンバータ50およびインバータ51、ならびに図2に示す2ポート電磁弁29を制御する。
《制御装置60の構成》
 図4は、第一の実施形態に係る制御装置60の構成を示す概略ブロック図である。
 制御装置60は、プロセッサ61、メインメモリ62、ストレージ63、インタフェース64を備えるコンピュータである。
 プロセッサ61は、プログラムをストレージ63から読み出してメインメモリ62に展開し、当該プログラムに従って処理を実行する。プロセッサ61の例としては、CPU(Central Processing Unit)、GPU(Graphic Processing Unit)、マイクロプロセッサなどが挙げられる。
 プログラムは、制御装置60に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージに既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。なお、他の実施形態においては、制御装置60は、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサ61によって実現される機能の一部または全部が当該集積回路によって実現されてよい。このような集積回路も、プロセッサの一例に含まれる。
 ストレージ63の例としては、磁気ディスク、光磁気ディスク、光ディスク、半導体メモリ等が挙げられる。ストレージ63は、バスに直接接続された内部メディアであってもよいし、インタフェース64または通信回線を介して制御装置60に接続される外部メディアであってもよい。また、このプログラムが通信回線によって制御装置60に配信される場合、配信を受けた制御装置60が当該プログラムをメインメモリ62に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ63は、一時的でない有形の記憶媒体である。
 また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能をストレージ63に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。
《制御装置によるリターダ制御》
 図5は、制御装置60によるリターダ制御を示すフローチャートである。制御装置60は、一定周期ごとに図5に示すリターダ制御を実行する。
 まず、制御装置60は、電圧計52から受信した計測データに基づいて、走行モータ45に回生電力が発生しているか否かを判定する(ステップS1)。制御装置60は、例えば電圧値の符号により、回生電力の有無を判定する。回生電力が発生していない場合(ステップS1:NO)、制御装置60はリターダ制御を終了する。
 他方、回生電力が発生している場合(ステップS1:YES)、制御装置60は、バッテリ42のBMUから受信した計測データに基づいて、バッテリ42の充電率が上限値以上であるか否かを判定する(ステップS2)。バッテリ42の充電率が上限値未満である場合(ステップS2:NO)、制御装置60は、第二DCDCコンバータ48にバッテリ42の充電指示を出力する(ステップS3)。これにより、制御装置60は、回生電力をバッテリ42に吸収させ、リターダグリッド46で消費する電力を低減することができる。したがって、バッテリ42の充電率が上限値未満である場合、制御装置60は、リターダ制御を終了する。
 他方、バッテリ42の充電率が上限値以上である場合(ステップS2:YES)、制御装置60は、第三DCDCコンバータ49に、ポンプモータ43の駆動指示を出力する(ステップS4)。これにより、ポンプモータ43が油圧ポンプ22を駆動させる。
 次に、制御装置60は、流量計34の計測データに基づいて、第三流路P3に作動油が流れているか否かを判定する(ステップS5)。第三流路P3に作動油が流れていない場合(ステップS5:NO)、油圧ポンプ22によってアキュムレータ23に作動油の圧力が蓄積されていることが分かる。この場合、ポンプモータ43は、アキュムレータ23への蓄圧によって生じる負荷によって、回生電力を吸収することができる。したがって、第三流路P3に作動油が流れていない場合(ステップS5:NO)、制御装置60は、リターダ制御を終了する。
 他方、第三流路P3に作動油が流れている場合(ステップS5:YES)、アキュムレータ23の圧力がリリーフ弁33のリリーフ圧を超え、アキュムレータ23にこれ以上の圧力の蓄積ができないことが分かる。第三流路P3に作動油が流れている場合(ステップS5:YES)、制御装置60は、2ポート電磁弁29を励磁させ(ステップS6)、第二流路P2への作動油の流通を開始させる。また制御装置60は、第四DCDCコンバータ50に、ファンモータ44の駆動指示を出力する(ステップS7)。これにより、ポンプモータ43は、絞り30によって生じる負荷によって、回生電力を吸収することができる。また、ファンモータ44も、回生電力を吸収することができる。また、ファン125の回転によりラジエータ35を介してオイルクーラ32の冷媒が冷却されることで、絞り30によって温度が上がった作動油を冷却することができる。
《作用・効果》
 このように、第一の実施形態に係る運搬車両10の制御装置60は、走行装置13の制動によって生じる走行モータ45の回生電力によって油圧ポンプ22を稼働させ、アキュムレータ23に作動油の圧力を蓄積させる。これにより、運搬車両10は、油圧ポンプ22によるアキュムレータ23の蓄圧によって回生電力を回収することができる。アキュムレータ23に蓄積された油圧エネルギーは、コントロールバルブ25を介してステアリングシリンダ26や作業機シリンダ27の駆動に用いることができる。
 また、第一の実施形態に係る運搬車両10は、走行モータ45が回生電力を出力し、かつ油圧ポンプ22が駆動しているときに、開状態に制御される2ポート電磁弁29と、2ポート電磁弁29の下流に設けられた絞り30とを備える。これにより、アキュムレータ23への圧力の充填が終わっても、絞り30における作動油の圧力損失によって回生電力を熱エネルギーに変換することができる。また、回生電力が発生していない場合や、バッテリ42によって回生電力が回収されている場合に、2ポート電磁弁29を閉じることで、アキュムレータ23に蓄積された圧力が無用に消費されることを防ぐことができる。なお、他の実施形態に係る運搬車両10は、第二流路P2を備えないものであってもよい。
 また、第一の実施形態に係る運搬車両10は、走行モータ45の回生電力で駆動し、絞り30の下流において作動油を冷却するオイルクーラ32を備える。これにより、運搬車両10は、回生電力をオイルクーラ32の駆動によって回収し、さらに圧力損失によって上昇した作動油の温度を低下させることができる。なお、他の実施形態に係る運搬車両10は、オイルクーラ32を備えないものであってもよい。また、第一の実施形態に係るオイルクーラ32は、ファン125およびラジエータ35によって冷却された冷媒によって作動油を冷却するが、これに限られない。例えば、他の実施形態に係るオイルクーラ32は、冷媒の圧縮および膨張によって冷媒の熱を移動させる冷凍機であってもよい。この場合、冷凍機に含まれる圧縮機は回生電力によって駆動される。
 また、第一の実施形態に係る運搬車両10は、回生電力でバッテリ42を充電する第二DCDCコンバータ48を備え、制御装置60がバッテリ42の充電率が上限値以上になったときに油圧ポンプ22を駆動させる。これにより、運搬車両10は、バッテリ42の充電とアキュムレータ23の蓄圧の二段階で回生電力を吸収することができる。
 また、第一の実施形態に係る運搬車両10のファン125は、走行モータ45の回生電力で駆動し、燃料電池41を冷却する。これにより、ファン125の回転によって回生電力を吸収することができる。なお、第一の実施形態に係る制御装置60は、バッテリ42の充電率が上限値以上であり、かつアキュムレータ23の圧力がリリーフ圧以上である場合にファン125を回転させるが、これに限られない。例えば、他の実施形態に係る制御装置60は、走行モータ45が回生電力を発生させた場合に、バッテリ42の充電率およびアキュムレータ23の圧力によらず、ファンモータ44を駆動させてもよい。
 上述したように、第一の実施形態に係る運搬車両10は、リターダグリッド46に消費させる回生電力を低減することができる。運搬車両10の走行ルートが予め分かる場合、リターダグリッド46の大きさを、バッテリ42、アキュムレータ23、絞り30、オイルクーラ32およびファン125によって吸収可能な電力量に基づいて設計することができる。これにより、リターダグリッド46を小型化することができ、プラットフォーム121に他の構造物の設置スペースを確保することができる。プラットフォーム121に設ける他の構造物の例としては、燃料電池41に供給する水素ガスが充填された水素タンクなどが挙げられる。
 なお、油圧ポンプ22およびアキュムレータ23は、電動の運搬車両10に広く搭載される構成であるため、既存の運搬車両10を改造することで、容易に第一の実施形態に係る運搬車両10を製造することができる。
〈他の実施形態〉
 以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。すなわち、他の実施形態においては、上述の処理の順序が適宜変更されてもよい。また、一部の処理が並列に実行されてもよい。
 上述した実施形態に係る制御装置60は、単独のコンピュータによって構成されるものであってもよいし、制御装置60の構成を複数のコンピュータに分けて配置し、複数のコンピュータが互いに協働することで制御装置60として機能するものであってもよい。
 上述した実施形態では、作業機械の例として運搬車両10について説明したが、これに限られない。例えば、他の実施形態に係る作業機械は、油圧ショベル、ホイールローダ、モータグレーダなどの他の作業機械であってもよい。
 上記態様によれば、作業車両は回生電力を消費することができる。
 10…運搬車両 11…ダンプボディ 12…車体 121…プラットフォーム 122…運転室 123…コントロールキャビネット 124…グリル 125…ファン 13…走行装置 20…油圧システム 21…作動油タンク 22…油圧ポンプ 23…アキュムレータ 25…コントロールバルブ 26…ステアリングシリンダ 27…作業機シリンダ 28…第一逆止弁 29…2ポート電磁弁 30…絞り 31…第二逆止弁 32…オイルクーラ 33…リリーフ弁 34…流量計 35…ラジエータ 40…電動システム 41…燃料電池 42…バッテリ 43…ポンプモータ 44…ファンモータ 45…走行モータ 46…リターダグリッド 47…第一DCDCコンバータ 48…第二DCDCコンバータ 49…第三DCDCコンバータ 50…第四DCDCコンバータ 51…インバータ 52…電圧計 60…制御装置 61…プロセッサ 62…メインメモリ 63…ストレージ 64…インタフェース B…母線 P1…第一流路 P2…第二流路 P3…第三流路 

Claims (5)

  1.  電気モータと、
     前記電気モータによって駆動される走行体と、
     作動油を貯留する作動油タンクと、
     前記走行体の制動によって生じる前記電気モータの回生電力で駆動し、前記作動油タンク内の作動油を圧送する油圧ポンプと、
     前記油圧ポンプから圧送される作動油の圧力を蓄積するアキュムレータと
     を備える作業車両。
  2.  前記アキュムレータと前記油圧ポンプとを接続する第一流路と、
     前記第一流路の中間部と前記作動油タンクとを接続する第二流路と、
     前記第二流路に設けられ、前記電気モータが前記回生電力を出力し、かつ前記油圧ポンプが駆動している間、開状態に制御される電磁弁と、
     前記電磁弁の下流に設けられた絞りと、
     を備える請求項1に記載の作業車両。
  3.  前記電気モータの回生電力で駆動し、前記絞りの下流において前記作動油を冷却する冷却装置
     を備える請求項2に記載の作業車両。
  4.  バッテリと、
     前記電気モータの回生電力で前記バッテリを充電する充電装置と
     を備え、
     前記油圧ポンプは、前記バッテリの充電率が所定値以上になったときに駆動する
     請求項1から請求項3の何れか1項に記載の作業車両。
  5.  前記電気モータに電力を供給する燃料電池と、
     前記電気モータの回生電力で駆動し、前記燃料電池を冷却する冷却装置と
     を備える請求項1から請求項4の何れか1項に記載の作業車両。
PCT/JP2022/045449 2021-12-09 2022-12-09 作業車両 WO2023106397A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022405931A AU2022405931A1 (en) 2021-12-09 2022-12-09 Work vehicle
CA3233895A CA3233895A1 (en) 2021-12-09 2022-12-09 Work vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-200388 2021-12-09
JP2021200388A JP2023086018A (ja) 2021-12-09 2021-12-09 作業車両

Publications (1)

Publication Number Publication Date
WO2023106397A1 true WO2023106397A1 (ja) 2023-06-15

Family

ID=86730507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045449 WO2023106397A1 (ja) 2021-12-09 2022-12-09 作業車両

Country Status (4)

Country Link
JP (1) JP2023086018A (ja)
AU (1) AU2022405931A1 (ja)
CA (1) CA3233895A1 (ja)
WO (1) WO2023106397A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204505A (ja) * 2001-01-04 2002-07-19 Nissan Motor Co Ltd 燃料電池車両の制御装置
WO2017099063A1 (ja) * 2015-12-07 2017-06-15 住友重機械工業株式会社 作業機械
JP2020172973A (ja) * 2019-04-10 2020-10-22 株式会社豊田自動織機 制動力回生システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204505A (ja) * 2001-01-04 2002-07-19 Nissan Motor Co Ltd 燃料電池車両の制御装置
WO2017099063A1 (ja) * 2015-12-07 2017-06-15 住友重機械工業株式会社 作業機械
JP2020172973A (ja) * 2019-04-10 2020-10-22 株式会社豊田自動織機 制動力回生システム

Also Published As

Publication number Publication date
JP2023086018A (ja) 2023-06-21
CA3233895A1 (en) 2023-06-15
AU2022405931A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
US10450723B2 (en) Hybrid construction machinery
US20170067227A1 (en) Hybrid-Type Working Machine
JP6496163B2 (ja) ハイブリッド式建設機械
KR101921435B1 (ko) 하이브리드식 건설 기계
WO2019144205A1 (en) Electric vehicle power management system
US20210229583A1 (en) Electric mining dump truck
CN112758062B (zh) 车辆的组合式冷却和水制动系统及冷却车辆的推进装置和水制动车辆的一对车轮的方法
JP2008223899A (ja) Hstクーリング回路
WO2023106397A1 (ja) 作業車両
CN111406001B (zh) 用于车辆的冷却剂系统
WO2023106373A1 (ja) 作業車両
EP3984806A1 (en) Vehicle cooling device
JP2014190433A (ja) 作業機械
CN114953900A (zh) 用于电液作业车辆的预热智能
WO2023182222A1 (ja) 土工機械
JP2020069914A (ja) 車両用モータの冷却装置
WO2023085422A1 (ja) 制御システム、作業車両管理装置、制御装置、および作業車両の制御方法
WO2023095878A1 (ja) 管理装置および管理方法
WO2023145719A1 (ja) 制御システム、作業車両および作業車両の制御方法
CN110884319A (zh) 电池热管理总成和方法
CN114206671B (zh) 自调平式单轴自卸卡车
CN112867829A (zh) 液压能量处理系统、液压并联混合动力传动系和作业机
WO2023074203A1 (ja) 作業車両
JP2021016251A (ja) 車両の制御装置
JP7311453B2 (ja) 電気駆動車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904324

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU2022405931

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 3233895

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022405931

Country of ref document: AU

Date of ref document: 20221209

Kind code of ref document: A