WO2023105125A1 - Surveillance de la recharge en courant continu d'une batterie de véhicule pour la détection d'une ouverture de circuit - Google Patents

Surveillance de la recharge en courant continu d'une batterie de véhicule pour la détection d'une ouverture de circuit Download PDF

Info

Publication number
WO2023105125A1
WO2023105125A1 PCT/FR2022/051995 FR2022051995W WO2023105125A1 WO 2023105125 A1 WO2023105125 A1 WO 2023105125A1 FR 2022051995 W FR2022051995 W FR 2022051995W WO 2023105125 A1 WO2023105125 A1 WO 2023105125A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
battery
power source
charging
vehicle
Prior art date
Application number
PCT/FR2022/051995
Other languages
English (en)
Inventor
Olivier BALENGHIEN
Arnaud De Croutte
Original Assignee
Psa Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Psa Automobiles Sa filed Critical Psa Automobiles Sa
Priority to CN202280081366.9A priority Critical patent/CN118355579A/zh
Priority to EP22813650.3A priority patent/EP4445470A1/fr
Publication of WO2023105125A1 publication Critical patent/WO2023105125A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]

Definitions

  • TITLE MONITORING OF THE DIRECT CURRENT CHARGING OF A VEHICLE BATTERY FOR THE DETECTION OF AN OPEN CIRCUIT
  • the invention relates to vehicles comprising a direct current rechargeable battery, and more specifically the monitoring of the charging of this battery during a direct current charging phase.
  • Certain vehicles possibly of the automobile type, comprise a so-called “main” (or traction) battery responsible for supplying electrically, via an isolation device, at least one electric motor machine of their powertrain (or GMP) as well as optionally a converter in particular responsible for electrically supplying an on-board network.
  • the vehicle also generally comprises a service battery responsible for supplying electrical energy to the on-board network, in addition to that supplied by the converter, and sometimes instead of the latter, and which can be recharged by the converter powered by main battery.
  • on-board network means an electrical power supply network to which electrical (or electronic) equipment (or components) consuming electrical energy are coupled.
  • Certain main batteries can be recharged according to at least one direct current charging mode, for example a so-called mode 4 mode, once the charging connector of their vehicle has been connected to a direct current (or DC (“Direct Current”)).
  • mode 4 charging the main battery (to be recharged) is supplied with high direct current (typically 40 A or 125 A or 250 A) under a relatively low input voltage (typically 450 V) by the power source (via the charging connector), without current rectification by the vehicle converter but via the battery box isolation device associated with the main battery.
  • This isolation device is arranged in such a way as to electrically isolate, if necessary, the main battery from the converter and/or from the charging connector and/or from the electric drive machine. It generally includes electrical circuits and/or electrical wires interconnecting fuses and switches (or contactors), possibly based on MOSFET(s) and each of which can assume an open (or off) state and a closed (or on) state. ).
  • the isolation device is part of what is usually called the "high voltage" circuit of the vehicle, which also comprises, at least, a part extending between the charging connector and the battery box, associated with the main battery, and a part extending between the isolation device and the converter.
  • the aim of the invention is therefore in particular to monitor the charging phases in mode 4 in order to detect an opening of the high voltage circuit.
  • This monitoring method is characterized in that it comprises a step in which information which is representative of a difference between a first measured voltage, representative of a recharge voltage supplied by the source, is compared with a first chosen threshold. power supply, and a second voltage measured at the terminals of the battery, and, when this information is greater than the first threshold for a chosen duration, at least one new current setpoint, lower than a setpoint, is transmitted to the power source previous current, so that it provides at least a new recharge current lower than a previous recharge current.
  • the invention it is now possible to reduce, and possibly eliminate, the risk caused by the opening of the high voltage circuit of a vehicle during a direct current charging phase, which makes it possible to significantly improve the safety of users. of the vehicle and its integrity.
  • the monitoring method according to the invention may comprise other characteristics which may be taken separately or in combination, and in particular:
  • the information can be determined by taking the absolute value of the difference between the first and second voltages measured;
  • At least one new current setpoint can be transmitted to the power source when, in addition, the second voltage is greater than a second chosen threshold
  • the chosen duration can be between 300 ms and 2 s;
  • the first time interval can be between 20 ms and 500 ms, to arrive at zero current;
  • the battery in its stage, can be electrically isolated from the electrical equipment;
  • the invention also proposes a computer program product comprising a set of instructions which, when it is executed by processing means, is capable of implementing a monitoring method of the type presented above for monitoring direct current recharging of a battery of a vehicle capable of supplying electrical equipment and temporarily coupled to a power source delivering a direct current of recharging and defined by a current setpoint.
  • the invention also proposes a monitoring device intended to equip a vehicle comprising a battery capable of supplying electrical equipment and of being temporarily coupled during a direct current recharge to a power source delivering a continuous recharge current and defined by a current setpoint.
  • This monitoring device is characterized in that it comprises at least one processor and at least one memory arranged to perform the operations consisting in comparing to a first chosen threshold information which is representative of a difference between a first measured voltage, representative of a recharge voltage supplied by the power source, and a second voltage measured at the terminals of the battery, and, when this information is greater than the first threshold for a chosen duration, in triggering a transmission to the source of supplying at least one new current setpoint, lower than a previous current setpoint, so that it supplies at least one new recharge current lower than a previous recharge current.
  • a first chosen threshold information which is representative of a difference between a first measured voltage, representative of a recharge voltage supplied by the power source, and a second voltage measured at the terminals of the battery
  • the invention also proposes a vehicle, optionally of the automobile type, and comprising a battery, capable of powering electrical equipment and of being temporarily coupled during direct current charging to a power source delivering a direct current of charging and defined by a current setpoint, and a monitoring device of the type presented above.
  • FIG. 1 schematically and functionally illustrates an exemplary embodiment of a vehicle comprising a GMP, with an electric drive machine powered by a rechargeable main battery (in particular according to mode 4), and a monitoring device according to the invention
  • FIG. 2 schematically and functionally illustrates an exemplary embodiment of a battery box, coupled to a main battery and comprising an exemplary embodiment of a battery computer comprising a monitoring device according to the invention
  • FIG. 3 schematically illustrates an example of an algorithm implementing a monitoring method according to the invention.
  • the object of the invention is in particular to propose a monitoring method, and an associated monitoring device DS, intended to allow the monitoring of the direct current charging of a main battery BP of a vehicle V temporarily coupled to a source of direct current supply SA, in order to detect an opening of the high voltage circuit.
  • the vehicle V is of the automobile type. This is for example a car, as shown in Figure 1. But the invention is not limited to this type of vehicle. It relates in fact to any type of vehicle comprising a main (or traction) battery rechargeable at least with direct current. Thus, it concerns, for example, land vehicles (utility vehicles, motorhomes, minibuses, coaches, trucks, motorcycles, road construction machinery, construction machinery, agricultural machinery, leisure machinery (snowmobile, kart), and caterpillar(s), for example), boats and aircraft.
  • land vehicles utility vehicles, motorhomes, minibuses, coaches, trucks, motorcycles, road construction machinery, construction machinery, agricultural machinery, leisure machinery (snowmobile, kart), and caterpillar(s), for example
  • the vehicle V comprises a powertrain (or GMP) of the all-electric type (and therefore whose traction is ensured exclusively by at least one electric motor machine MRS).
  • GMP could be of the hybrid type (thermal and electric), provided that the main battery (or traction) is rechargeable at least in direct current.
  • a vehicle V comprising in particular an electric GMP transmission chain, an on-board network RB, a service battery BS, a main (or traction) battery BP associated with a battery computer CB, a CV converter, and a monitoring device DS according to the invention.
  • the on-board network RB is an electrical power supply network to which electrical (or electronic) equipment (or components) which consume electrical energy are coupled.
  • the service battery BS is responsible for supplying electrical energy to the on-board network RB, in addition to that supplied by the converter CV powered by the main battery BP, and sometimes instead of this converter CV.
  • this service battery BS can be arranged in the form of a very low voltage type battery (typically 12 V, 24 V or 48 V). It is rechargeable at least by the current converter CV. It is considered in what follows, by way of non-limiting example, that the service battery BS is of the 12 V Lithium-ion type.
  • the transmission chain has a GMP which is, here, purely electrical, and therefore which comprises, in particular, an electric driving machine MME, a motor shaft AM, and a transmission shaft AT.
  • the term “electric drive machine” means an electric machine arranged so as to supply or recover torque to move the vehicle V.
  • the operation of the GMP is supervised by a supervision computer CS.
  • the electric driving machine MME (here an electric motor) is coupled to the main battery BP, in order to be supplied with electrical energy, as well as possibly to supply this main battery BP with electrical energy during a regenerative braking phase. It is coupled to the motor shaft AM, to provide it with torque by rotational drive.
  • This motor shaft AM is here coupled to a reducer RD which is also coupled to the transmission shaft AT, itself coupled to a first train T1 (here of wheels), preferably via a differential D1.
  • This first train T1 is here located in the front part PW of the vehicle V. But in a variant this first train T 1 could be the one which is here referenced T2 and which is located in the rear part PRV of the vehicle V.
  • the motive machine MME notably comprises two terminals (positive and negative) placed respectively at potentials U3 and U01.
  • the converter CV is responsible during the driving phases of the vehicle V to convert part of the electric current from the main battery BP to supply converted electric current, on the one hand, to the on-board network RB, and, on the other hand , the service battery BS (when it needs to be recharged). As illustrated in FIG. 2, this converter CV notably comprises two terminals (positive and negative) placed respectively at potentials U4 and U01.
  • the main battery BP is suitable not only for recharging in mode 4, but also for recharging in mode 2 or 3, under the control of a computer CC associated with the converter CV.
  • the main battery BP is rechargeable with high direct current (typically 125 A or 250 A) which comes from an external (direct current) power source SA, temporarily connected via a charging cable CR to the charging connector CN of the vehicle V, without current rectification by the converter CV of the vehicle but via an isolation device DI, described later and forming part of a battery box BB associated with the battery main BP.
  • high direct current typically 125 A or 250 A
  • SA direct current
  • the main battery BP is rechargeable with direct current by the converter CV, after an AC/DC conversion (for example from 220 V AC (alternating current) to 450 V DC ( direct current)), when this CV converter has been temporarily coupled to an external power source, via a CR charging cable previously connected to the CN charging connector of the vehicle V.
  • an AC/DC conversion for example from 220 V AC (alternating current) to 450 V DC ( direct current)
  • the charging connector CN notably comprises two terminals (positive and negative) which respectively define first and second input terminals of the vehicle V intended to be temporarily coupled to the power source SA and placed respectively at potentials U6 and U02. The difference between these potentials U6 and U02 defines a first voltage v1.
  • the main battery BP can comprise electrochemical cells for storing electrical energy, possibly of the lithium-ion (or Li-ion) or Ni-Mh or Ni-Cd type.
  • the main battery BP can be of the low voltage type (typically 450 V by way of illustration). But it could be medium voltage or high voltage.
  • the main battery BP notably comprises two terminals (positive and negative) placed respectively at potentials U1 and U00. The difference between these potentials U1 and U00 defines a second voltage v2. Furthermore, the main battery BP is associated with the battery box BB which comprises, here, at least the isolation device DI, voltage/current measuring means (not shown), and the battery computer CB.
  • the isolation device DI is arranged in such a way as to isolate the main battery BP from the converter CV and/or from the charging connector CN and/or from the electric drive machine MME, when the battery computer CB so requests.
  • this isolation device DI can comprise protection fuses F2 and F3 and contactors (or switches) Kj based on MOSFET(s) each able to assume an open state ( or not passing) and a closed (or passing) state.
  • the first contactor (or switch) K1 is here connected to the positive terminal (U1) of the main battery BP and connected in series with a precharging resistor R which is connected more or less directly to the positive terminals of the charging connector CN (U6 ), CV converter (U4) and MME prime mover (U3).
  • This first contactor (or switch) K1 is always placed in its open state during a charging phase.
  • the second contactor (or switch) K2 is here mounted in parallel with the first contactor (or switch) K1 and the precharging resistor R (between U1 and U3). It ensures the coupling/decoupling of the main BP battery (U1) to the CN charging connector (U6), CV converter (U4) and MME driving machine (U3).
  • the third contactor (or switch) K3 is here connected to the negative terminal (U00) of the main battery BP and to the negative terminal (U01) of the prime mover MME. It ensures the coupling/decoupling of the main battery BP (U00) to/from the driving machine MME (U01).
  • the fourth contactor (or switch) K4 is here connected to the second contactor (or switch) K2 (via a fuse F3 (U3-U5)) and to the positive terminal (U6) of the CN charging connector. It ensures the coupling/decoupling of the main battery BP to/from the charging connector CN.
  • the fifth contactor (or switch) K5 is here connected, on the one hand, to the third contactor (or switch) K3 (U01) and to the negative terminal of the converter CV, and, on the other hand, to the negative terminal (U02 ) of the CN charging connector. It ensures the coupling/decoupling of the main battery BP to/from the charging connector CN.
  • the voltage/current measuring means can, for example and without limitation, determine the first voltage v1 (difference between the potentials U6 and U02) and the second voltage v2 (difference between the potentials U1 and U00) , as well as possibly a voltage U30 (difference between potentials U3 and U00), a voltage U31 (difference between potentials U3 and U01), a voltage U40 (difference between potentials U4 and U00), a voltage U60 (difference between the potentials U6 and U00), and a voltage U61 (difference between the potentials U6 and U1).
  • the battery computer CB centralizes the voltage and current measurements and determines the current parameters of the main battery BP as a function of these measurements, and in particular its internal resistance, its minimum voltage and its state of charge (or SOC (“State Of Charge”)). Furthermore, the battery computer CB exchanges information with the supervision computer CS of the GMP and with the computer CC associated with the converter CV (in particular for recharging in mode 4).
  • the converter CV can be part of a charger CH electrically connected to the charging connector CN and comprising the computer CC responsible within its vehicle V for controlling the charging of the battery main BP, whatever the mode.
  • the vehicle V also comprises a distribution box BD to which the service battery BS, the converter CV and the on-board network RB are coupled.
  • This distribution box BD is responsible for distributing in the on-board network RB the electrical energy produced by the converter CV or stored in the service battery BS, for supplying the electrical components (or equipment) coupled to the on-board network RB , as a function of power supply requests received (notably from the GMP CS supervision computer).
  • the invention proposes in particular a monitoring method intended to allow monitoring of the charging in mode 4 of the main battery BP. This (monitoring) method can be implemented at least partially by the monitoring device DS (illustrated in FIGS.
  • the monitoring device DS can therefore be produced in the form of a combination of electrical or electronic circuits or components (or “hardware”) and software modules (or “software”).
  • the memory MD is active in order to store instructions for the implementation by the processor PR1 of at least part of the monitoring method.
  • the processor PR1 can comprise integrated (or printed) circuits, or else several integrated (or printed) circuits connected by wired or wireless connections. By integrated (or printed) circuit is meant any type of device capable of performing at least one electrical or electronic operation.
  • the monitoring device DS forms part of the battery computer CB (and therefore of the battery box BB). But this is not mandatory. Indeed, the monitoring device DS could comprise its own dedicated computer, which is then coupled to the battery computer CB.
  • the (monitoring) method comprises a step 10-50 which is implemented in the vehicle V during each phase of recharging in mode 4 of the main battery BP , and therefore when the contactors (or switches) K2 to K5 are placed in their closed (on) state.
  • the battery computer CB sends to the power source SA (via the connector CN and the charging cable CR) an initial current set point cci so that it supplies the vehicle V (to which it is temporarily coupled) with an initial charging current cri under a nominal voltage (for example 450 V).
  • the first voltage v1 is periodically measured (which is representative of the recharge voltage supplied by the power source SA), and the second voltage v2 (at the terminals of the BP battery).
  • one determines information it which is representative of the difference between the first v1 and second v2 measured voltages, then compares this information he determined.
  • step 30 of step 10-50 when the information il is greater than the first threshold s1 for a chosen duration d1, at least one new current setpoint ccn is transmitted to the power source SA , lower than the current setpoint previous cci, so that it provides at least one new recharge current crn lower than the previous (and therefore initial) recharge current cri. It will be understood that it is the monitoring device DS which triggers the transmission of each new current setpoint intended for the power source SA.
  • the determination of the superiority (or inferiority) of the information il with respect to the first threshold s1 can be done in a second sub-step 20 by comparing the information il with the first threshold s1.
  • the monitoring device DS authorizes the continuation of the recharge in mode 4 with the previous current setpoint (and therefore initial) bcc, then return to perform sub-step 10.
  • the information il is greater than the threshold s1 (il > s1 ) for the duration d1 chosen, it is considered that there is an open circuit in the isolation device DI or another part of the vehicle's high voltage circuit V, which is potentially dangerous. Consequently, in sub-step 30, it is decided to transmit to the power source SA at least one new current setpoint ccn, lower than the previous current setpoint ccn.
  • the battery computer CB which is responsible for transmitting each new current setpoint ccn to the power source SA, at the request of the monitoring device DS.
  • the value of the first threshold s1 can be chosen during the development phase of the vehicle V. This value depends mainly on the electrical architecture of the vehicle V, and in particular on the number of electrical wires of the high voltage circuit, on the length of the electric wires of the high voltage circuit, of the section of the electric wires of the high voltage circuit, and of the characteristics of the contactors (or switches) K2 to K5.
  • the value of the first threshold s1 can be between 10 V and 50 V.
  • the value of the first threshold s1 can be equal to 20 V. But other values of first threshold s1 can be used.
  • At least one new current setpoint ccn can be transmitted to the power source SA when, in addition, the second voltage v2 is greater than a second chosen threshold s2 .
  • This second threshold s2 corresponds to the minimum acceptable voltage at the terminals of the main battery BP below which one must not drop under normal operating conditions, whatever the internal temperature of the main battery BP. It will be understood that when the second voltage v2 is lower than the second threshold s2 the battery computer CB must prohibit recharging in mode 4 because the main battery BP is the subject of a malfunction and therefore must not be recharged.
  • the value of the second threshold s2 can be chosen during the development phase of the vehicle V. This value depends mainly on the electrical architecture of the vehicle V, and in particular on the number of electrochemical cells of the main battery BP, on the capacity storage of each electrochemical cell of the main battery BP, and the internal operating temperature of the main battery BP.
  • the value of the second threshold s2 can be between 200 V and 230 V.
  • the value of the second threshold s2 can be equal to 216 V. But other values of second threshold s2 can be used.
  • the duration d1 can be between 300 ms and 2 s.
  • the duration d1 can be equal to 1 s. But other values of duration d1 can be used.
  • step 30 of step 10-50 it is possible to transmit to the power source SA, in a first time interval it1, new successive ccn current setpoints, increasingly small, down to a zero current setpoint.
  • This option is intended to force the power source SA to successively supply new recharge currents crn which decrease progressively from the initial recharge current cri to a zero recharge current. This makes it possible to avoid having to subject certain electrical components (or equipment) of the vehicle V to excessive voltage gradients and current gradients which could damage them.
  • the first time interval it1 can be between 20 ms and 500 ms, to arrive at zero current.
  • the first time interval it1 can be equal to 50 ms. But other values of first time interval it1 can be used.
  • step 10-50 can comprise a sub-step 40 in which one electrically isolates (the monitoring device DS triggers the electrical isolation of the) main battery BP from the electrical equipment (and in particular from at least the electric driving machine MME). It will be understood that this puts an end to the recharging of the main battery BP, but not to the supply by the power source SA of new recharging current crn when the latter is gradually reduced. It will also be understood that the electrical isolation is ensured by the isolation device DI, for example by placing (here) the contactors (or switches) K2 and K3 in their open state. This option can possibly take place in two phases.
  • the monitoring device DS can trigger the transmission to the GMP monitoring computer CS of a request for authorization to open the contactors (or switches) K2 and K3. This transmission is ensured here by the battery computer CB. Then, if after a second time interval IT2 the monitoring device DS has not received a response to its authorization request, it can trigger in a second phase, on its own initiative, the opening of the contactors (or switches) K2 and K3 for electrically isolating the main battery BP from the electrical equipment (and in particular from at least the electric drive machine MME).
  • the second time interval it2 can be between 500 ms and 3 s.
  • the second time interval it2 can be equal to 2 s. But other values of second time interval it2 can be used.
  • step 10-50 may comprise a sub-step 50 in which recording (the monitoring device DS triggers the recording) is recorded in at least one memory of the vehicle V at (of at least) one fault code which is representative of an open problem in the high voltage circuit detected during charging in mode 4.
  • recording the monitoring device DS triggers the recording
  • the recording of each fault code makes it possible in an after-sales service to determine the origin of each open in the high voltage circuit, and possibly to inform the user of the vehicle V of the stopping of the charging in mode 4 due to the detection of an open problem in the high voltage circuit.
  • a first fault code can be stored in a memory (possibly dead) of the battery computer CB, and the supervision computer CS observing the storage of this first fault code can possibly in turn store a second fault code in a memory (possibly ROM) that it understands.
  • the user can either disconnect the CR charging cable from the CN connector, then accept the situation and start a new driving phase with his vehicle V (if the circuit opening has only occurred in part of the high-voltage circuit involved in recharging in mode 4), or restarting a new recharging phase in mode 4, for example after switching the ignition back on then closing the contact again (and provided that the opening of the high-voltage circuit is no longer detected by the monitoring device DS), or else start a new charging phase in mode 2 or 3 and thus attempt to complete it, for example after switching the ignition on again then closing the ignition again.
  • the fault code stored in the memory of the battery computer CB can, for example, be associated with a fleeting state if the detection of the opening of the high circuit voltage does not reoccur, and to a permanent state if this detection reoccurs.
  • the battery computer CB (or the dedicated computer of the monitoring device DS) can also comprise a mass memory MM1, in particular for the temporary storage of the values of the first v1 and second v2 voltages and any intermediate data involved in all its calculations and processing.
  • this battery calculator CB (or the dedicated calculator of the monitoring device DS) can also comprise an input interface IE for receiving at least the values of the first v1 and second v2 voltages in order to use them in calculations or treatments, possibly after the have been shaped and/or demodulated and/or amplified, in a manner known per se, by means of a digital signal processor PR2.
  • this battery computer CB (or the dedicated computer of the monitoring device DS) can also comprise an output interface IS, in particular for delivering electrical isolation commands or messages containing new cnc current setpoints or messages containing fault codes or even messages indicating that charging has been interrupted for safety reasons.
  • the invention also proposes a computer program product (or computer program) comprising a set of instructions which, when it is executed by processing means of the electronic circuit (or hardware) type, such as for example the processor PR1 is capable of implementing the monitoring method described above to monitor the charging in mode 4 of the main battery BP of the vehicle V.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Un procédé surveille la recharge en courant continu d'une batterie d'un véhicule alimentant des équipements électriques et couplée temporairement à une source d'alimentation délivrant un courant de recharge continu et défini par une consigne de courant. Ce procédé comprend une étape (10-50) dans laquelle on compare à un premier seuil choisi une information représentative d'une différence entre une première tension mesurée, représentative d'une tension de recharge fournie par la source d'alimentation, et une seconde tension mesurée aux bornes de la batterie, et, lorsque cette information est supérieure au premier seuil pendant une durée choisie, on transmet à la source d'alimentation au moins une nouvelle consigne de courant, inférieure à une consigne de courant précédente, afin qu'elle fournisse au moins un nouveau courant de recharge inférieur à un courant de recharge précédent.

Description

DESCRIPTION
TITRE : SURVEILLANCE DE LA RECHARGE EN COURANT CONTINU D’UNE BATTERIE DE VÉHICULE POUR LA DÉTECTION D’UNE OUVERTURE DE CIRCUIT
La présente invention revendique la priorité de la demande française N°2113070 déposée le 07.12.2021 dont le contenu (texte, dessins et revendications) est ici incorporé par référence.
Domaine technique de l’invention
L’invention concerne les véhicules comprenant une batterie rechargeable en courant continu, et plus précisément la surveillance de la recharge de cette batterie pendant une phase de recharge en courant continu.
Etat de la technique
Certains véhicules, éventuellement de type automobile, comprennent une batterie dite « principale » (ou de traction) chargée d’alimenter électriquement, via un dispositif d’isolement, au moins une machine motrice électrique de leur groupe motopropulseur (ou GMP) ainsi qu’éventuellement un convertisseur notamment chargé d’alimenter électriquement un réseau de bord. On notera que le véhicule comprend aussi généralement une batterie de servitude chargée de fournir de l’énergie électrique au réseau de bord, en complément de celle fournie par le convertisseur, et parfois à la place de ce dernier, et pouvant être rechargée par le convertisseur alimenté par la batterie principale.
Dans ce qui suit et ce qui précède, on entend par « réseau de bord » un réseau d’alimentation électrique auquel sont couplés des équipements (ou organes) électriques (ou électroniques) consommant de l’énergie électrique.
Certaines batteries principales peuvent être rechargées selon au moins un mode de recharge en courant continu, par exemple un mode dit mode 4, une fois que le connecteur de recharge de leur véhicule a été connecté à une source d’alimentation en courant continu (ou DC (« Direct Current »)). Il est rappelé que dans une recharge en mode 4, la batterie principale (à recharger) est alimentée en courant continu élevé (typiquement 40 A ou 125 A ou 250 A) sous une tension d’entrée relativement basse (typiquement 450 V) par la source d’alimentation (via le connecteur de recharge), sans redressement du courant par le convertisseur du véhicule mais via le dispositif d’isolement du boîtier de batterie associé à la batterie principale.
Ce dispositif d’isolement est agencé de manière à isoler électriquement, en cas de besoin, la batterie principale du convertisseur et/ou du connecteur de recharge et/ou de la machine motrice électrique. Il comprend généralement des circuits électriques et/ou des fils électriques interconnectant des fusibles et des interrupteurs (ou contacteurs), éventuellement à base de MOSFET(s) et pouvant prendre chacun un état ouvert (ou non passant) et un état fermé (ou passant).
On notera que le dispositif d’isolement fait partie de ce que l’on appelle habituellement le circuit « haute tension » du véhicule, lequel comprend également, au moins, une partie s’étendant entre le connecteur de recharge et le boîtier de batterie, associé à la batterie principale, et une partie s’étendant entre le dispositif d’isolement et le convertisseur.
Comme le sait l’homme de l’art, il peut arriver qu’au sein du circuit haute tension survienne une ouverture de circuit, par exemple du fait de la section ou du dessoudage d’un fil électrique. Une telle ouverture de circuit peut s’avérer potentiellement dangereuse car elle peut entraîner un court-circuit susceptible d’engendrer une électrocution d’un usager du véhicule (ou d’une personne touchant le véhicule), en raison des valeurs des tension et courant de recharge, ou un arc électrique pouvant être à l’origine d’un incendie dans le véhicule.
Certes, il existe des dispositifs permettant de détecter un dysfonctionnement d’un interrupteur (ou contacteur) d’un dispositif d’isolement, comme cela est notamment décrit dans le document brevet US-B2 10,913,408. Mais ce type de dispositif ne permet pas de détecter une ouverture du circuit haute tension.
L’invention a donc notamment pour but de surveiller les phases de recharge en mode 4 afin de détecter une ouverture du circuit haute tension.
Présentation de l’invention
Elle propose notamment à cet effet un procédé destiné à surveiller la recharge en courant continu d’une batterie d’un véhicule propre à alimenter des équipements électriques et couplée temporairement à une source d’alimentation délivrant un courant de recharge continu et défini par une consigne de courant.
Ce procédé de surveillance se caractérise par le fait qu’il comprend une étape dans laquelle on compare à un premier seuil choisi une information qui est représentative d’une différence entre une première tension mesurée, représentative d’une tension de recharge fournie par la source d’alimentation, et une seconde tension mesurée aux bornes de la batterie, et, lorsque cette information est supérieure au premier seuil pendant une durée choisie, on transmet à la source d’alimentation au moins une nouvelle consigne de courant, inférieure à une consigne de courant précédente, afin qu’elle fournisse au moins un nouveau courant de recharge inférieur à un courant de recharge précédent.
Grâce à l’invention, on peut désormais réduire, et possiblement supprimer, le risque occasionné par l’ouverture du circuit haute tension d’un véhicule pendant une phase de recharge en courant continu, ce qui permet d’améliorer notablement la sécurité des usagers du véhicule et l’intégrité de ce dernier.
Le procédé de surveillance selon l’invention peut comporter d’autres caractéristiques qui peuvent être prises séparément ou en combinaison, et notamment :
- dans son étape on peut déterminer l’information en prenant la valeur absolue de la différence entre les première et seconde tensions mesurées ;
- dans son étape on peut transmettre à la source d’alimentation au moins une nouvelle consigne de courant lorsqu’on outre la seconde tension est supérieure à un second seuil choisi ;
- dans son étape la durée choisie peut être comprise entre 300 ms et 2 s ;
- dans son étape on peut transmettre à la source d’alimentation, dans un premier intervalle de temps, des nouvelles consignes de courant successives, de plus en plus petites, jusqu’à une consigne de courant nulle, afin qu’elle fournisse successivement des nouveaux courants de recharge décroissant progressivement depuis un courant de recharge initial jusqu’à un courant de recharge nul. Par exemple, le premier intervalle de temps peut être compris entre 20 ms et 500 ms, pour arriver à un courant nul ;
- dans son étape on peut isoler électriquement la batterie des équipements électriques ;
- dans son étape on peut enregistrer dans au moins une mémoire du véhicule au moins un code défaut qui est représentatif d’un problème d’ouverture de circuit détecté pendant la recharge en courant continu. L’invention propose également un produit programme d’ordinateur comprenant un jeu d’instructions qui, lorsqu’il est exécuté par des moyens de traitement, est propre à mettre en œuvre un procédé de surveillance du type de celui présenté ci-avant pour surveiller la recharge en courant continu d’une batterie d’un véhicule propre à alimenter des équipements électriques et couplée temporairement à une source d’alimentation délivrant un courant de recharge continu et défini par une consigne de courant.
L’invention propose également un dispositif de surveillance destiné à équiper un véhicule comprenant une batterie propre à alimenter des équipements électriques et à être couplée temporairement pendant une recharge en courant continu à une source d’alimentation délivrant un courant de recharge continu et défini par une consigne de courant.
Ce dispositif de surveillance se caractérise par le fait qu’il comprend au moins un processeur et au moins une mémoire agencés pour effectuer les opérations consistant à comparer à un premier seuil choisi une information qui est représentative d’une différence entre une première tension mesurée, représentative d’une tension de recharge fournie par la source d’alimentation, et une seconde tension mesurée aux bornes de la batterie, et, lorsque cette information est supérieure au premier seuil pendant une durée choisie, à déclencher une transmission à la source d’alimentation d’au moins une nouvelle consigne de courant, inférieure à une consigne de courant précédente, afin qu’elle fournisse au moins un nouveau courant de recharge inférieur à un courant de recharge précédent.
L’invention propose également un véhicule, éventuellement de type automobile, et comprenant une batterie, propre à alimenter des équipements électriques et à être couplée temporairement pendant une recharge en courant continu à une source d’alimentation délivrant un courant de recharge continu et défini par une consigne de courant, et un dispositif de surveillance du type de celui présenté ci-avant.
Brève description des figures
D’autres caractéristiques et avantages de l’invention apparaîtront à l’examen de la description détaillée ci-après, et des dessins annexés, sur lesquels :
[Fig. 1] illustre schématiquement et fonctionnellement un exemple de réalisation d’un véhicule comprenant un GMP, à machine motrice électrique alimentée par une batterie principale rechargeable (notamment selon le mode 4), et un dispositif de surveillance selon l’invention,
[Fig. 2] illustre schématiquement et fonctionnellement un exemple de réalisation d’un boîtier de batterie, couplé à une batterie principale et comprenant un exemple de réalisation d’un calculateur de batterie comportant un dispositif de surveillance selon l’invention, et
[Fig. 3] illustre schématiquement un exemple d’algorithme mettant en œuvre un procédé de surveillance selon l’invention.
Description détaillée de l’invention
L’invention a notamment pour but de proposer un procédé de surveillance, et un dispositif de surveillance DS associé, destinés à permettre la surveillance de la recharge en courant continu d’une batterie principale BP d’un véhicule V temporairement couplée à une source d’alimentation en courant continu SA, afin de détecter une ouverture du circuit haute tension.
Dans ce qui suit, on considère, à titre d’exemple non limitatif, que le véhicule V est de type automobile. Il s’agit par exemple d’une voiture, comme illustré sur la figure 1 . Mais l’invention n’est pas limitée à ce type de véhicule. Elle concerne en effet tout type de véhicule comprenant une batterie principale (ou de traction) rechargeable au moins en courant continu. Ainsi, elle concerne, par exemple, les véhicules terrestres (véhicules utilitaires, camping-cars, minibus, cars, camions, motocyclettes, engins de voirie, engins de chantier, engins agricoles, engins de loisir (motoneige, kart), et engins à chenille(s), par exemple), les bateaux et les aéronefs.
Par ailleurs, on considère dans ce qui suit, à titre d’exemple non limitatif, que le véhicule V comprend un groupe motopropulseur (ou GMP) de type tout électrique (et donc dont la motricité est assurée exclusivement par au moins une machine motrice électrique MME). Mais le GMP pourrait être de type hybride (thermique et électrique), sous réserve que la batterie principale (ou de traction) soit rechargeable au moins en courant continu.
On a schématiquement représenté sur la figure 1 un véhicule V comprenant notamment une chaîne de transmission à GMP électrique, un réseau de bord RB, une batterie de servitude BS, une batterie principale (ou de traction) BP associée à un calculateur de batterie CB, un convertisseur CV, et un dispositif de surveillance DS selon l’invention. Le réseau de bord RB est un réseau d’alimentation électrique auquel sont couplés des équipements (ou organes) électriques (ou électroniques) qui consomment de l’énergie électrique.
La batterie de servitude BS est chargée de fournir de l’énergie électrique au réseau de bord RB, en complément de celle fournie par le convertisseur CV alimenté par la batterie principale BP, et parfois à la place de ce convertisseur CV. Par exemple, cette batterie de servitude BS peut être agencée sous la forme d’une batterie de type très basse tension (typiquement 12 V, 24 V ou 48 V). Elle est rechargeable au moins par le convertisseur de courant CV. On considère dans ce qui suit, à titre d’exemple non limitatif, que la batterie de servitude BS est de type Lithium-ion 12 V.
La chaîne de transmission a un GMP qui est, ici, purement électrique, et donc qui comprend, notamment, une machine motrice MME électrique, un arbre moteur AM, et un arbre de transmission AT. On entend ici par « machine motrice électrique » une machine électrique agencée de manière à fournir ou récupérer du couple pour déplacer le véhicule V.
Le fonctionnement du GMP est supervisé par un calculateur de supervision CS.
La machine motrice électrique MME (ici un moteur électrique) est couplée à la batterie principale BP, afin d’être alimentée en énergie électrique, ainsi qu’éventuellement d’alimenter cette batterie principale BP en énergie électrique pendant une phase de freinage récupératif. Elle est couplée à l’arbre moteur AM, pour lui fournir du couple par entraînement en rotation. Cet arbre moteur AM est ici couplé à un réducteur RD qui est aussi couplé à l’arbre de transmission AT, lui-même couplé à un premier train T1 (ici de roues), de préférence via un différentiel D1 .
Ce premier train T1 est ici situé dans la partie avant PW du véhicule V. Mais dans une variante ce premier train T 1 pourrait être celui qui est ici référencé T2 et qui est situé dans la partie arrière PRV du véhicule V.
Comme illustré sur la figure 2, la machine motrice MME comprend notamment deux bornes (positive et négative) placées respectivement à des potentiels U3 et U01 .
Le convertisseur CV est chargé pendant les phases de roulage du véhicule V de convertir une partie du courant électrique issu de la batterie principale BP pour alimenter en courant électrique converti, d’une part, le réseau de bord RB, et, d’autre part, la batterie de servitude BS (lorsqu’il faut la recharger). Comme illustré sur la figure 2, ce convertisseur CV comprend notamment deux bornes (positive et négative) placées respectivement à des potentiels U4 et U01 .
Dans l’exemple illustré non limitativement sur la figure 1 la batterie principale BP est adaptée non seulement aux recharges en mode 4, mais aussi aux recharges en mode 2 ou 3, sous le contrôle d’un calculateur CC associé au convertisseur CV.
Il est rappelé que dans une recharge en mode 4, la batterie principale BP est rechargeable en courant continu élevé (typiquement 125 A ou 250 A) qui est issu d’une source d’alimentation (en courant continu) SA externe, temporairement connectée via un câble de recharge CR au connecteur de recharge CN du véhicule V, sans redressement du courant par le convertisseur CV du véhicule mais via un dispositif d’isolement DI, décrit plus loin et faisant partie d’un boîtier de batterie BB associé à la batterie principale BP.
Il est également rappelé que dans une recharge en mode 2 ou 3, la batterie principale BP est rechargeable en courant continu par le convertisseur CV, après une conversion AC/DC (par exemple de 220 V AC (courant alternatif) vers 450 V DC (courant continu)), lorsque ce convertisseur CV a été temporairement couplé à une source d’alimentation externe, via un câble de recharge CR préalablement connecté au connecteur de recharge CN du véhicule V.
Le connecteur de recharge CN comprend notamment deux bornes (positive et négative) qui définissent respectivement des première et seconde bornes d’entrée du véhicule V destinées à être couplées temporairement à la source d’alimentation SA et placées respectivement à des potentiels U6 et U02. La différence entre ces potentiels U6 et U02 définit une première tension v1 .
Par exemple, la batterie principale BP peut comprendre des cellules électrochimiques de stockage d’énergie électrique, éventuellement de type lithium-ion (ou Li-ion) ou Ni- Mh ou Ni-Cd.
Egalement par exemple, la batterie principale BP peut être de type basse tension (typiquement 450 V à titre illustratif). Mais elle pourrait être de type moyenne tension ou haute tension.
Comme illustré sur la figure 2, la batterie principale BP comprend notamment deux bornes (positive et négative) placées respectivement à des potentiels U1 et U00. La différence entre ces potentiels U1 et U00 définit une seconde tension v2. Par ailleurs, la batterie principale BP est associée au boîtier de batterie BB qui comprend, ici, au moins le dispositif d’isolement DI, des moyens de mesure de tension/courant (non illustrés), et le calculateur de batterie CB.
Le dispositif d’isolement DI est agencé de manière à isoler la batterie principale BP du convertisseur CV et/ou du connecteur de recharge CN et/ou de la machine motrice électrique MME, lorsque le calculateur de batterie CB le demande. Par exemple, et comme illustré non limitativement sur la figure 2, ce dispositif d’isolement DI peut comprendre des fusibles de protection F2 et F3 et des contacteurs (ou interrupteurs) Kj à base de MOSFET(s) pouvant prendre chacun un état ouvert (ou non passant) et un état fermé (ou passant). Dans l’exemple illustré non limitativement sur la figure 2 le dispositif d’isolement DI comprend cinq contacteurs (ou interrupteurs) K1 à K5 (j = 1 à 5). Le premier contacteur (ou interrupteur) K1 est ici connecté à la borne positive (U1 ) de la batterie principale BP et monté en série avec une résistance de précharge R qui est connectée plus ou moins directement aux bornes positives des connecteur de recharge CN (U6), convertisseur CV (U4) et machine motrice MME (U3). Ce premier contacteur (ou interrupteur) K1 est toujours placé dans son état ouvert pendant une phase de recharge.
Le deuxième contacteur (ou interrupteur) K2 est ici monté en parallèle du premier contacteur (ou interrupteur) K1 et de la résistance de précharge R (entre U1 et U3). Il assure le couplage/découplage de la batterie principale BP (U1 ) aux/des connecteur de recharge CN (U6), convertisseur CV (U4) et machine motrice MME (U3).
Le troisième contacteur (ou interrupteur) K3 est ici connecté à la borne négative (U00) de la batterie principale BP et à la borne négative (U01 ) de la machine motrice MME. Il assure le couplage/découplage de la batterie principale BP (U00) à/de la machine motrice MME (U01 ).
Le quatrième contacteur (ou interrupteur) K4 est ici connecté au deuxième contacteur (ou interrupteur) K2 (via un fusible F3 (U3-U5)) et à la borne positive (U6) du connecteur de recharge CN. Il assure le couplage/découplage de la batterie principale BP au/du connecteur de recharge CN.
Le cinquième contacteur (ou interrupteur) K5 est ici connecté, d’une part, au troisième contacteur (ou interrupteur) K3 (U01 ) et à la borne négative du convertisseur CV, et, d’autre part, à la borne négative (U02) du connecteur de recharge CN. Il assure le couplage/découplage de la batterie principale BP au/du connecteur de recharge CN. Dans l’agencement illustré, les moyens de mesure de tension/courant peuvent, par exemple et non limitativement, déterminer la première tension v1 (différence entre les potentiels U6 et U02) et la seconde tension v2 (différence entre les potentiels U1 et U00), ainsi qu’éventuellement une tension U30 (différence entre les potentiels U3 et U00), une tension U31 (différence entre les potentiels U3 et U01 ), une tension U40 (différence entre les potentiels U4 et U00), une tension U60 (différence entre les potentiels U6 et U00), et une tension U61 (différence entre les potentiels U6 et U1 ).
Le calculateur de batterie CB centralise les mesures de tension et de courant et détermine des paramètres en cours de la batterie principale BP en fonction de ces mesures, et notamment sa résistance interne, sa tension minimale et son état de charge (ou SOC (« State Of Charge »)). Par ailleurs, le calculateur de batterie CB échange des informations avec le calculateur de supervision CS du GMP et avec le calculateur CC associé au convertisseur CV (notamment pour les recharges en mode 4).
On notera, comme illustré non limitativement sur la figure 1 , que le convertisseur CV peut faire partie d’un chargeur CH connecté électriquement au connecteur de recharge CN et comprenant le calculateur CC chargé au sein de son véhicule V de contrôler la recharge de la batterie principale BP, quel qu’en soit le mode.
On notera également que dans l’exemple illustré non limitativement sur la figure 1 le véhicule V comprend aussi un boîtier de distribution BD auquel sont couplés la batterie de servitude BS, le convertisseur CV et le réseau de bord RB. Ce boîtier de distribution BD est chargé de distribuer dans le réseau de bord RB l’énergie électrique produite par le convertisseur CV ou stockée dans la batterie de servitude BS, pour l’alimentation des organes (ou équipements) électriques couplés au réseau de bord RB, en fonction de demandes d’alimentation reçues (notamment du calculateur de supervision CS du GMP). Comme évoqué plus haut, l’invention propose notamment un procédé de surveillance destiné à permettre la surveillance de la recharge en mode 4 de la batterie principale BP. Ce procédé (de surveillance) peut être mis en œuvre au moins partiellement par le dispositif de surveillance DS (illustré sur les figures 1 et 2) qui comprend à cet effet au moins un processeur PR1 , par exemple de signal numérique (ou DSP (« Digital Signal Processor »)), et au moins une mémoire MD. Ce dispositif de surveillance DS peut donc être réalisé sous la forme d’une combinaison de circuits ou composants électriques ou électroniques (ou « hardware ») et de modules logiciels (ou « software »). La mémoire MD est vive afin de stocker des instructions pour la mise en œuvre par le processeur PR1 d’une partie au moins du procédé de surveillance. Le processeur PR1 peut comprendre des circuits intégrés (ou imprimés), ou bien plusieurs circuits intégrés (ou imprimés) reliés par des connections filaires ou non filaires. On entend par circuit intégré (ou imprimé) tout type de dispositif apte à effectuer au moins une opération électrique ou électronique.
Dans l’exemple illustré non limitativement sur les figures 1 et 2, le dispositif de surveillance DS fait partie du calculateur de batterie CB (et donc du boîtier de batterie BB). Mais cela n’est pas obligatoire. En effet, le dispositif de surveillance DS pourrait comprendre son propre calculateur dédié, lequel est alors couplé au calculateur de batterie CB.
Comme illustré non limitativement sur la figure 3, le procédé (de surveillance), selon l’invention, comprend une étape 10-50 qui est mise en œuvre dans le véhicule V lors de chaque phase de recharge en mode 4 de la batterie principale BP, et donc lorsque les contacteurs (ou interrupteurs) K2 à K5 sont placés dans leur état fermé (passant). On notera qu’au début d’une phase de recharge en mode 4 le calculateur de batterie CB adresse à la source d’alimentation SA (via le connecteur CN et le câble de recharge CR) une consigne de courant initiale cci afin qu’elle fournisse au véhicule V (auquel elle est temporairement couplée) un courant de recharge initial cri sous une tension nominale (par exemple 450 V).
Dans des sous-étapes 10 successives de l’étape 10-50 on mesure périodiquement la première tension v1 (qui est représentative de la tension de recharge fournie par la source d’alimentation SA), et la seconde tension v2 (aux bornes de la batterie BP).
Dans une sous-étape 20 de l’étape 10-50 on (le dispositif de surveillance DS) détermine une information il qui est représentative de la différence entre les première v1 et seconde v2 tensions mesurées, puis compare à un premier seuil s1 choisi cette information il déterminée.
Par exemple, on (le dispositif de surveillance DS) peut déterminer l’information il en prenant la valeur absolue de la différence entre les première v1 et seconde v2 tensions mesurées (soit il = |v1 - v2|).
Puis, dans une sous-étape 30 de l’étape 10-50, lorsque l’information il est supérieure au premier seuil s1 pendant une durée d1 choisie, on transmet à la source d’alimentation SA au moins une nouvelle consigne de courant ccn, inférieure à la consigne de courant précédente cci, afin qu’elle fournisse au moins un nouveau courant de recharge crn inférieur au courant de recharge précédent (et donc initial) cri. On comprendra que c’est le dispositif de surveillance DS qui déclenche la transmission de chaque nouvelle consigne de courant à destination de la source d’alimentation SA.
Par exemple, la détermination de la supériorité (ou infériorité) de l’information il par rapport au premier seuil s1 peut se faire dans une seconde sous-étape 20 par comparaison de l’information il au premier seuil s1.
Si l’information il est inférieure ou égale au premier seuil s1 (il < s1 ) pendant la durée d1 choisie, on (le dispositif de surveillance DS) autorise la poursuite de la recharge en mode 4 avec la consigne de courant précédente (et donc initiale) cci, puis retourne effectuer la sous-étape 10.
En revanche, si l’information il est supérieure au seuil s1 (il > s1 ) pendant la durée d1 choisie, on considère que l’on est en présence d’une ouverture de circuit dans le dispositif d’isolement DI ou une autre partie du circuit haute tension du véhicule V, potentiellement dangereuse. Par conséquent, dans la sous-étape 30 on décide de transmettre à la source d’alimentation SA au moins une nouvelle consigne de courant ccn, inférieure à la consigne de courant précédente cci.
On notera que la nouvelle consigne de courant ccn peut être éventuellement nulle (ccn = 0), ce qui met immédiatement fin à la recharge en cours. Mais cela n’est pas obligatoire, comme on le verra plus loin.
On notera également que c’est de préférence le calculateur de batterie CB qui se charge de transmettre chaque nouvelle consigne de courant ccn à la source d’alimentation SA, à la demande du dispositif de surveillance DS.
Grâce à la fourniture d’au moins un nouveau courant de recharge crn inférieur au courant de recharge précédent cri, on peut désormais réduire, et possiblement supprimer, le risque occasionné par une ouverture du circuit haute tension pendant une phase de recharge en mode 4. Ainsi, on diminue (voire rend quasi nulle) la probabilité de survenue d’un incident (incendie ou électrocution) pendant une phase de recharge en mode 4, ce qui permet d’améliorer notablement la sécurité des usagers du véhicule V et l’intégrité de ce dernier (V).
La valeur du premier seuil s1 peut être choisie pendant la phase de mise au point du véhicule V. Cette valeur dépend principalement de l’architecture électrique du véhicule V, et en particulier du nombre de fils électriques du circuit haute tension, de la longueur des fils électriques du circuit haute tension, de la section des fils électriques du circuit haute tension, et des caractéristiques des contacteurs (ou interrupteurs) K2 à K5. Par exemple, la valeur du premier seuil s1 peut être comprise entre 10 V et 50 V. A titre d’exemple illustratif, la valeur du premier seuil s1 peut être égale à 20 V. Mais d’autres valeurs de premier seuil s1 peuvent être utilisées.
On notera que dans la sous-étape 30 de l’étape 10-50 on peut transmettre à la source d’alimentation SA au moins une nouvelle consigne de courant ccn lorsqu’on outre la seconde tension v2 est supérieure à un second seuil s2 choisi. Ce second seuil s2 correspond à la tension minimale acceptable aux bornes de la batterie principale BP sous laquelle on ne doit pas descendre dans des conditions normales de fonctionnement, quelle que soit la température interne de la batterie principale BP. On comprendra que lorsque la seconde tension v2 est inférieure au second seuil s2 le calculateur de batterie CB doit interdire la recharge en mode 4 car la batterie principale BP fait l’objet d’un dysfonctionnement et donc ne doit pas être rechargée.
La valeur du second seuil s2 peut être choisie pendant la phase de mise au point du véhicule V. Cette valeur dépend principalement de l’architecture électrique du véhicule V, et en particulier du nombre de cellules électrochimiques de la batterie principale BP, de la capacité de stockage de chaque cellule électrochimique de la batterie principale BP, et de la température interne de fonctionnement de la batterie principale BP. Par exemple, la valeur du second seuil s2 peut être comprise entre 200 V et 230 V. A titre d’exemple illustratif, la valeur du second seuil s2 peut être égale à 216 V. Mais d’autres valeurs de second seuil s2 peuvent être utilisées.
On notera également que dans la sous-étape 20 de l’étape 10-50 la durée d1 peut être comprise entre 300 ms et 2 s. A titre d’exemple illustratif la durée d1 peut être égale à 1 s. Mais d’autres valeurs de durée d1 peuvent être utilisées.
On notera également que dans la sous-étape 30 de l’étape 10-50 on peut transmettre à la source d’alimentation SA, dans un premier intervalle de temps it1 , des nouvelles consignes de courant ccn successives, de plus en plus petites, jusqu’à une consigne de courant nulle. Cette option est destinée à contraindre la source d’alimentation SA à fournir successivement des nouveaux courants de recharge crn qui décroissent progressivement depuis le courant de recharge initial cri jusqu’à un courant de recharge nul. Cela permet d’éviter d’avoir à faire subir à certains composants (ou équipements) électriques du véhicule V des gradients de tension et gradients de courant trop forts qui pourraient les endommager.
Par exemple, dans l’étape 10-50 le premier intervalle de temps it1 peut être compris entre 20 ms et 500 ms, pour arriver à un courant nul. A titre d’exemple illustratif le premier intervalle de temps it1 peut être égal à 50 ms. Mais d’autres valeurs de premier intervalle de temps it1 peuvent être utilisées.
On notera également que l’étape 10-50 peut comprendre une sous-étape 40 dans laquelle on isole électriquement (le dispositif de surveillance DS déclenche l’isolement électrique de la) batterie principale BP des équipements électriques (et notamment d’au moins la machine motrice électrique MME). On comprendra que cela met fin à la recharge de la batterie principale BP, mais pas à la fourniture par la source d’alimentation SA de nouveau courant de recharge crn lorsque ce dernier est réduit progressivement. On comprendra également que l’isolement électrique est assuré par le dispositif d’isolement DI, par exemple en plaçant (ici) les contacteurs (ou interrupteurs) K2 et K3 dans leur état ouvert. Cette option peut éventuellement se dérouler en deux phases. Dans une première phase, le dispositif de surveillance DS peut déclencher la transmission au calculateur de supervision CS du GMP d’une demande d’autorisation d’ouverture des contacteurs (ou interrupteurs) K2 et K3. Cette transmission est ici assurée par le calculateur de batterie CB. Puis, si au bout d’un second intervalle de temps IT2 le dispositif de surveillance DS n’a pas reçu de réponse à sa demande d’autorisation, il peut déclencher dans une seconde phase, de sa propre initiative, l’ouverture des contacteurs (ou interrupteurs) K2 et K3 pour isoler électriquement la batterie principale BP des équipements électriques (et notamment d’au moins la machine motrice électrique MME).
Par exemple, le second intervalle de temps it2 peut être compris entre 500 ms et 3 s. A titre d’exemple illustratif le second intervalle de temps it2 peut être égal à 2 s. Mais d’autres valeurs de second intervalle de temps it2 peuvent être utilisées.
On notera également que l’étape 10-50 peut comprendre une sous-étape 50 dans laquelle on enregistre (le dispositif de surveillance DS déclenche l’enregistrement) dans au moins une mémoire du véhicule V au (d’au) moins un code défaut qui est représentatif d’un problème d’ouverture du circuit haute tension détecté pendant la recharge en mode 4. L’enregistrement de chaque code défaut permet dans un service après-vente de déterminer l’origine de chaque ouverture du circuit haute tension, et éventuellement d’informer l’usager du véhicule V de l’arrêt de la recharge en mode 4 du fait de la détection d’un problème d’ouverture du circuit haute tension.
Par exemple, après chaque détection d’ouverture du circuit haute tension on peut stocker un premier code défaut dans une mémoire (éventuellement morte) du calculateur de batterie CB, et le calculateur de supervision CS observant le stockage de ce premier code défaut peut éventuellement à son tour stocker un second code défaut dans une mémoire (éventuellement morte) qu’il comprend.
On notera également que lorsque l’usager du véhicule V revient dans ce dernier (V), il peut soit être informé par un message dédié affiché et/ou diffusé de l’interruption de la recharge pour une raison de sécurité (éventuellement en signalant la détection d’un problème d’ouverture du circuit haute tension), à l’initiative du dispositif de surveillance DS ou du calculateur de batterie CB, soit constater que l’état de charge de la batterie principale BP ne correspond pas à ce qu’il avait programmé (ou choisi) alors que la phase de recharge est apparemment terminée. Dans ce cas, l’usager peut soit débrancher le câble de recharge CR du connecteur CN, puis accepter la situation et commencer une nouvelle phase de roulage avec son véhicule V (si l’ouverture de circuit n’est survenue que dans une partie du circuit haute tension qui intervient dans la recharge en mode 4), soit relancer une nouvelle phase de recharge en mode 4, par exemple après avoir remis le contact puis refermé le contact (et sous réserve que l’ouverture du circuit haute tension ne soit plus détectée par le dispositif de surveillance DS), soit encore lancer une nouvelle phase de recharge en mode 2 ou 3 et ainsi tenter de la compléter, par exemple après avoir remis le contact puis refermé le contact. On notera que dans la deuxième alternative (relance de la phase de recharge en mode 4) le code défaut stocké dans la mémoire du calculateur de batterie CB peut, par exemple, être associé à un état fugitif si la détection d’ouverture du circuit haute tension ne se reproduit pas, et à un état permanent si cette détection se reproduit.
On notera également, comme illustré non limitativement sur la figure 3, que le calculateur de batterie CB (ou le calculateur dédié du dispositif de surveillance DS) peut aussi comprendre une mémoire de masse MM1 , notamment pour le stockage temporaire des valeurs des première v1 et seconde v2 tensions et d’éventuelles données intermédiaires intervenant dans tous ses calculs et traitements. Par ailleurs, ce calculateur de batterie CB (ou le calculateur dédié du dispositif de surveillance DS) peut aussi comprendre une interface d’entrée IE pour la réception d’au moins les valeurs des première v1 et seconde v2 tensions pour les utiliser dans des calculs ou traitements, éventuellement après les avoir mises en forme et/ou démodulées et/ou amplifiées, de façon connue en soi, au moyen d’un processeur de signal numérique PR2. De plus, ce calculateur de batterie CB (ou le calculateur dédié du dispositif de surveillance DS) peut aussi comprendre une interface de sortie IS, notamment pour délivrer des ordres d’isolement électrique ou des messages contenant des nouvelles consignes de courant ccn ou des messages contenant des codes défaut ou encore des messages signalant une interruption de la recharge pour une raison de sécurité.
On notera également que l’invention propose aussi un produit programme d’ordinateur (ou programme informatique) comprenant un jeu d’instructions qui, lorsqu’il est exécuté par des moyens de traitement de type circuits électroniques (ou hardware), comme par exemple le processeur PR1 , est propre à mettre en œuvre le procédé de surveillance décrit ci-avant pour surveiller la recharge en mode 4 de la batterie principale BP du véhicule V.

Claims

REVENDICATIONS
1. Procédé de surveillance de la recharge en courant continu d’une batterie (BP) d’un véhicule (V) propre à alimenter des équipements électriques (MME) et couplée temporairement à une source d’alimentation (SA) délivrant un courant de recharge continu et défini par une consigne de courant, caractérisé en ce qu’il comprend une étape (10-50) dans laquelle on compare à un premier seuil choisi une information représentative d’une différence entre une première tension mesurée, représentative d’une tension de recharge fournie par ladite source d’alimentation (SA), et une seconde tension mesurée aux bornes de ladite batterie (BP), et, lorsque ladite information est supérieure audit premier seuil pendant une durée choisie, on transmet à ladite source d’alimentation (SA) au moins une nouvelle consigne de courant, inférieure à une consigne de courant précédente, afin qu’elle fournisse au moins un nouveau courant de recharge inférieur à un courant de recharge précédent.
2. Procédé selon la revendication 1 , caractérisé en ce que dans ladite étape (10-50) on détermine ladite information en prenant la valeur absolue de la différence entre lesdites première et seconde tensions mesurées.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que dans ladite étape (10-50) on transmet à ladite source d’alimentation (SA) au moins une nouvelle consigne de courant lorsqu’on outre ladite seconde tension est supérieure à un second seuil choisi.
4. Procédé selon l’une des revendications 1 à 3, caractérisé en ce que dans ladite étape (10-50) ladite durée choisie est comprise entre 300 ms et 2 s.
5. Procédé selon l’une des revendications 1 à 4, caractérisé en ce que dans ladite étape (10-50) on transmet à ladite source d’alimentation (SA), dans un premier intervalle de temps, des nouvelles consignes de courant successives, de plus en plus petites, jusqu’à une consigne de courant nulle, afin qu’elle fournisse successivement des nouveaux courants de recharge décroissant progressivement depuis un courant de recharge initial jusqu’à un courant de recharge nul.
6. Procédé selon l’une des revendications 1 à 5, caractérisé en ce que dans ladite étape (10-50) on isole électriquement ladite batterie (BP) desdits équipements électriques (MME).
7. Procédé selon l’une des revendications 1 à 6, caractérisé en ce que dans ladite étape (10-50) on enregistre dans au moins une mémoire dudit véhicule (V) au moins un code défaut représentatif d’un problème d’ouverture de circuit détecté pendant ladite recharge en courant continu.
8. Produit programme d’ordinateur comprenant un jeu d’instructions qui, lorsqu’il est exécuté par des moyens de traitement, est propre à mettre en œuvre le procédé de surveillance selon l’une des revendications 1 à 7 pour surveiller une recharge en courant continu d’une batterie (BP) d’un véhicule (V) propre à alimenter des équipements électriques (MME) et couplée temporairement à une source d’alimentation (SA) délivrant un courant de recharge continu et défini par une consigne de courant.
9. Dispositif de surveillance (DS) pour un véhicule (V) comprenant une batterie (BP) propre à alimenter des équipements électriques (MME) et à être couplée temporairement pendant une recharge en courant continu à une source d’alimentation (SA) délivrant un courant de recharge continu et défini par une consigne de courant, caractérisé en ce qu’il comprend au moins un processeur (PR1 ) et au moins une mémoire (MD) agencés pour effectuer les opérations consistant à comparer à un premier seuil choisi une information représentative d’une différence entre une première tension mesurée, représentative d’une tension de recharge fournie par ladite source d’alimentation (SA), et une seconde tension mesurée aux bornes de ladite batterie (BP), et, lorsque ladite information est supérieure audit premier seuil pendant une durée choisie, à déclencher une transmission à ladite source d’alimentation (SA) d’au moins une nouvelle consigne de courant, inférieure à une consigne de courant précédente, afin qu’elle fournisse au moins un nouveau courant de recharge inférieur à un courant de recharge précédent.
10. Véhicule (V) comprenant une batterie (BP) propre à alimenter des équipements électriques (MME) et à être couplée temporairement pendant une recharge en courant continu à une source d’alimentation (SA) délivrant un courant de recharge continu et défini par une consigne de courant, caractérisé en ce qu’il comprend en outre un dispositif de surveillance (DS) selon la revendication 9.
PCT/FR2022/051995 2021-12-07 2022-10-21 Surveillance de la recharge en courant continu d'une batterie de véhicule pour la détection d'une ouverture de circuit WO2023105125A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280081366.9A CN118355579A (zh) 2021-12-07 2022-10-21 监视运输工具的电池的以直流再充电以检测电路断开
EP22813650.3A EP4445470A1 (fr) 2021-12-07 2022-10-21 Surveillance de la recharge en courant continu d'une batterie de véhicule pour la détection d'une ouverture de circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2113070A FR3130037A1 (fr) 2021-12-07 2021-12-07 Surveillance de la recharge en mode 4 d’une batterie de véhicule pour la détection d’une ouverture de circuit
FRFR2113070 2021-12-07

Publications (1)

Publication Number Publication Date
WO2023105125A1 true WO2023105125A1 (fr) 2023-06-15

Family

ID=81327083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/051995 WO2023105125A1 (fr) 2021-12-07 2022-10-21 Surveillance de la recharge en courant continu d'une batterie de véhicule pour la détection d'une ouverture de circuit

Country Status (4)

Country Link
EP (1) EP4445470A1 (fr)
CN (1) CN118355579A (fr)
FR (1) FR3130037A1 (fr)
WO (1) WO2023105125A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2113070A5 (fr) 1970-10-24 1972-06-23 Licentia Gmbh
US20130127415A1 (en) * 2011-11-18 2013-05-23 Fuji Jukogyo Kabushiki Kaisha Electric charging system and electric charger
US20180050604A1 (en) * 2016-08-17 2018-02-22 GM Global Technology Operations LLC Dynamic power limit adjustment in a battery charging process
US20180294660A1 (en) * 2017-04-06 2018-10-11 Hyundai Motor Company Apparatus and method for controlling rapid charging of a vehicle
FR3068789A1 (fr) * 2017-07-07 2019-01-11 Psa Automobiles Sa Dispositif de protection contre un court-circuit dans un reseau electrique d’un systeme pendant une recharge rapide d’une batterie
US10913408B2 (en) 2018-10-23 2021-02-09 Hyundai Motor Company System for determining state of power relay assembly
US20210336472A1 (en) * 2020-04-28 2021-10-28 Hyundai Motor Company Charging system and method using motor driving system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2113070A5 (fr) 1970-10-24 1972-06-23 Licentia Gmbh
US20130127415A1 (en) * 2011-11-18 2013-05-23 Fuji Jukogyo Kabushiki Kaisha Electric charging system and electric charger
US20180050604A1 (en) * 2016-08-17 2018-02-22 GM Global Technology Operations LLC Dynamic power limit adjustment in a battery charging process
US20180294660A1 (en) * 2017-04-06 2018-10-11 Hyundai Motor Company Apparatus and method for controlling rapid charging of a vehicle
FR3068789A1 (fr) * 2017-07-07 2019-01-11 Psa Automobiles Sa Dispositif de protection contre un court-circuit dans un reseau electrique d’un systeme pendant une recharge rapide d’une batterie
US10913408B2 (en) 2018-10-23 2021-02-09 Hyundai Motor Company System for determining state of power relay assembly
US20210336472A1 (en) * 2020-04-28 2021-10-28 Hyundai Motor Company Charging system and method using motor driving system

Also Published As

Publication number Publication date
FR3130037A1 (fr) 2023-06-09
EP4445470A1 (fr) 2024-10-16
CN118355579A (zh) 2024-07-16

Similar Documents

Publication Publication Date Title
EP4387861A1 (fr) Contrôle de l&#39;utilisation de commutateurs de couplage d&#39;une source d&#39;énergie électrique d&#39;un véhicule à un réseau d&#39;alimentation électrique
EP4445470A1 (fr) Surveillance de la recharge en courant continu d&#39;une batterie de véhicule pour la détection d&#39;une ouverture de circuit
WO2023031529A1 (fr) Contrôle de la recharge en mode 4 d&#39;une batterie de véhicule
WO2023135371A1 (fr) Surveillance de l&#39;isolement électrique d&#39;une ligne de recharge d&#39;une batterie principale d&#39;un véhicule
FR3131639A1 (fr) Surveillance des sous-tensions d’une batterie principale d’un système
FR3131638A1 (fr) Surveillance d’une batterie principale d’un système pour la détection d’un dysfonctionnement
FR3132599A1 (fr) Surveillance d’un circuit de précharge d’un circuit d’interface d’un système
FR3136202A1 (fr) Surveillance de surtensions aux bornes d’une machine motrice électrique d’un véhicule
WO2023247843A1 (fr) Surveillance d&#39;un calculateur associé à une machine motrice électrique d&#39;un véhicule
EP4427061A1 (fr) Surveillance des tensions des cellules d&#39;une batterie cellulaire d&#39;un véhicule
WO2024056951A1 (fr) Surveillance de pics de courant de décharge d&#39;une batterie rechargeable d&#39;un véhicule
WO2024023407A1 (fr) Surveillance d&#39;un détecteur de courant circulant dans une batterie principale d&#39;un véhicule
WO2023152428A1 (fr) Surveillance de courant de fuite lors d&#39;une recharge en mode 4 d&#39;une batterie d&#39;un véhicule
FR3141109A1 (fr) Surveillance d’états de contacteurs d’un dispositif d’interface entre un connecteur de recharge et une batterie rechargeable en courant continu d’un véhicule
FR3132149A1 (fr) Surveillance de la tension de recharge en mode 2 ou 3 aux bornes d’un convertisseur alimentant une batterie d’un véhicule
FR3134048A1 (fr) Surveillance de la tension en sortie d’un convertisseur d’un véhicule
FR3138949A1 (fr) Surveillance de surtensions de cellules d’une batterie cellulaire d’un système pendant une recharge
FR3134631A1 (fr) Surveillance de la tension mesurée d’une batterie principale d’un véhicule pendant une recharge en mode 2 ou 3
WO2024089322A1 (fr) Surveillance du courant de recharge fourni par une source d&#39;alimentation externe pour recharger en courant continu une batterie d&#39;un véhicule
FR3139914A1 (fr) Surveillance de surtensions aux bornes d’un compresseur de climatisation d’une installation de chauffage/climatisation d’un système
WO2023144461A1 (fr) Surveillance de surtensions de cellules d&#39;une batterie cellulaire d&#39;un système
FR3135578A1 (fr) Surveillance de la température interne mesurée dans une machine motrice électrique d’un véhicule
FR3145809A1 (fr) Diagnostic d’un problème d’alimentation électrique d’une/par une batterie d’un véhicule
FR3142008A1 (fr) Surveillance du fonctionnement d’un dispositif de commutation associé à une batterie rechargeable et dédiée d’un véhicule
FR3135425A1 (fr) Surveillance du fonctionnement d’une machine motrice électrique d’un véhicule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22813650

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280081366.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022813650

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022813650

Country of ref document: EP

Effective date: 20240708