WO2023104778A1 - Verfahren zur herstellung einer porösen schicht oder eines porösen körpers - Google Patents

Verfahren zur herstellung einer porösen schicht oder eines porösen körpers Download PDF

Info

Publication number
WO2023104778A1
WO2023104778A1 PCT/EP2022/084558 EP2022084558W WO2023104778A1 WO 2023104778 A1 WO2023104778 A1 WO 2023104778A1 EP 2022084558 W EP2022084558 W EP 2022084558W WO 2023104778 A1 WO2023104778 A1 WO 2023104778A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
layer
carrier substrate
jet
porous
Prior art date
Application number
PCT/EP2022/084558
Other languages
English (en)
French (fr)
Inventor
Matthias BRUCKI
Thomas Schopphoven
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V.
Publication of WO2023104778A1 publication Critical patent/WO2023104778A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/1476Features inside the nozzle for feeding the fluid stream through the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • C23C24/085Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/087Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a method for producing a porous layer or a porous body on a carrier substrate, in which a material for the porous layer or the porous body is provided as a powder and applied to the carrier substrate by means of a powder gas jet by the powder gas jet together with an energetic beam, in particular a laser beam, is guided once or several times over a region of the carrier substrate that is to be provided with the porous layer or the porous body.
  • Porous layers and porous bodies are used in many technical areas. For example, porous layers are often required for electrodes or capacitors, in fuel cells, electrolyzers or in the medical field in order to provide a large surface area. Correspondingly porous bodies, for example made of a metal foam, are also used in some applications. As in the present patent application, a layer or a body with a porosity, ie the quotient of the cavity volume and the total volume of the porous material, between 10 and 90 vol. -% understood . State of the art
  • Porous bodies or layers can be made by sintering.
  • a metal powder for example made of titanium
  • sintering temperature a greatly increased temperature
  • metal powders react with the process atmosphere.
  • Titanium powders in particular are chemically very active at elevated temperatures, as a result of which a titanium oxide or titanium carbide layer is formed on the surface of the powder particles.
  • sintering is impeded because the powder particles' ability to adhere is reduced.
  • US Pat. No. 4,206,516 A describes a method for producing a porous surface layer on a solid titanium substrate.
  • pure titanium hydride is slurried onto the substrate by spraying. Due to thermal decomposition, the titanium hydride particles are transformed into titanium metal around. The shrinkage associated with sintering leads to the desired pores in the structure.
  • US Pat. No. 3,855,638 A deals with a medical implant in which a porous coating adheres to a solid metallic substrate.
  • the coating is produced using an aqueous slurry, which is dried and sintered in a hydrogen atmosphere.
  • Metal foams are often produced using a metal powder and a metal hydride powder, e.g. B. the titanium dihydride. Both powders are mixed together and then compressed into a starting material by hot pressing or extrusion. The starting material is then heated to a temperature above the melting point of the metal. The titanium dihydride releases gaseous hydrogen and foams the mixture.
  • EP 1501650 B1 describes a method for producing a porous body in which a titanium powder and a titanium hydride powder are sponged together and sintered at a temperature of at least 1000° C. under vacuum. The proportion of titanium hydride in the spongy mixture is 0.01-0.1% by weight.
  • the object of the present invention is to specify a method for the more productive production of a porous layer or a porous body, with which a layer or a body with improved mechanical properties and better connection to the carrier substrate can be produced.
  • the material for the porous layer or the porous body is provided as a powder and applied to the carrier substrate by means of a powder gas jet.
  • the powder gas jet together with an energetic jet is guided one or more times, preferably in adjacent paths, over a region of the carrier substrate which has the porous layer or the porous body is to be provided.
  • An energetic jet is understood to be a jet with which the powder of the powder gas jet can be melted or melted.
  • This can be a beam of electromagnetic radiation, in particular laser radiation, or, for example, be an electron or ion beam.
  • the method is explained below using a laser beam as the energetic beam. However, the laser beam can also be replaced by another energetic beam at any time.
  • the method is characterized by the fact that the jet guidance of the powder gas jet, the beam guidance of the laser beam and the power of the laser beam are selected in such a way that the powder in the powder gas jet melts or melts before it hits the carrier substrate or a part of the layer that has already formed on it zen and either no melt pool forms on the carrier substrate or the layer portion already formed on it as a result of the action of the laser beam, or only one or more relatively small melt pools, the lateral extent of which is smaller in each case than the laser spot of the laser beam on the carrier substrate or that already thereon applied layer portion is.
  • melt-metallurgical bonding of the individual particles in the proposed method also achieves higher electrical conductivity than when produced using a sintering method.
  • a further advantage of the proposed method is that porous layers can be applied directly to temperature-sensitive components which, for example, cannot be processed using a sintering process.
  • individual layer layers with selectively adapted properties can be produced through an adapted process control, for example with different materials or components.
  • Materials and Structure Sizes .
  • materials or Materials are processed that are unsuitable for sintering due to their strong tendency to form oxides. This is made possible by the fact that compared to time-consuming In sintering processes with long temperature holding times, the powder particles in the proposed method are only heated for an order of magnitude shorter time and then quickly cooled down again by thermal conduction to the underlying carrier substrate.
  • the proposed method enables the production of only a thin porous layer in that the region of the carrier substrate to be provided with the porous layer is scanned or scanned only once with the powder jet and the laser beam. is run over ( one way crossing ) .
  • the layer thickness can be correspondingly increased by multiple passes in succession.
  • a body of almost any shape can also be built on the carrier substrate. Both the layer and the body can then also be separated from the carrier substrate if required.
  • the surface of the carrier substrate should preferably be designed in such a way or the materials of the porous layer or the porous body and the carrier substrate should be selected in such a way that no melt-metallurgical connection to the carrier substrate is produced.
  • a self-supporting layer e.g. B. in the form of a foil or a thin sheet.
  • porous layers or porous bodies are preferably produced from a metallic material, for example a pure metal or a metallic alloy, on a metallic carrier substrate.
  • a metallic material for example a pure metal or a metallic alloy
  • the procedure is also suitable for many other material combinations, for example for producing a porous plastic layer on a carrier substrate made of any material.
  • the size of the powder particles can be, for example, between 5 ⁇ m and 150 ⁇ m in diameter.
  • the layer thicknesses of the applied layer can be, for example, in the range between 10 ⁇ m and several centimeters.
  • Porous bodies can also be produced on the carrier substrate with heights in the several-digit centimeter range.
  • the porosity of the porous layer to be produced or of the porous body to be produced can be influenced via different parameters.
  • a higher porosity is achieved with a higher feed rate of the powder gas jet over the carrier substrate than with a lower feed rate with otherwise the same parameters, in particular the same powder density in the powder gas jet and the same laser power.
  • the porosity can also be influenced via the powder density in the powder gas jet, with a lower porosity being produced at a higher powder density.
  • the beam guidance of the powder gas jet and the laser beam can be done in different ways in the proposed method to zen or the melting.
  • the powder gas jet in a known manner as a cone-shaped coaxial jet, ie by means of a coaxial nozzle, onto the surface of the carrier substrate.
  • the laser beam runs on the central axis of the coaxial beam.
  • the focus position of the powder gas jet is at a distance above the current surface, i.e. the surface of the carrier substrate when the first layer is applied or the surface of a portion of the layer that has already been applied or of already applied layer layers when applying a further layer layer.
  • the laser beam crosses the powder gas jet above the current surface and melts the powder particles therein.
  • the up or Some of the melted powder particles then hit the current surface outside of the laser spot that the laser beam forms on the current surface.
  • the laser beam is weakened as it passes through the powder gas jet before it hits the current surface, so that with a suitable setting of the laser power and, if necessary, Although the laser beam focuses the powder particles in the focus of the powder gas jet, the powder particles can still melt or begin to melt, but can no longer create a melt pool on the current surface.
  • the powder gas jet is directed onto the substrate not as a coaxial jet but as a simple jet, hereinafter also referred to as a single jet.
  • the beam is guided in such a way that the powder gas jet crosses the laser beam before striking the current surface, so that the laser beam penetrates the particles contained in the powder gas jet before striking the current surface can melt.
  • the central axis of the powder gas jet strikes the instantaneous surface at a distance from the central axis of the laser beam, so that a portion of the powder gas particles outside of the laser spot also reaches the instantaneous surface.
  • the laser power of the laser beam and possibly.
  • the laser beam becomes focus or are again set in such a way that the laser beam melts or melts the powder particles in the area where the central axes of the powder gas jet and the laser beam cross, but can no longer produce a melt pool on the current surface.
  • several powder gas jets can also be generated and directed onto the carrier substrate, which intersect the laser beam from different directions.
  • the laser beam is focused in such a way that the laser focus lies above the current surface and within the powder gas jet.
  • the focussing takes place in such a way that the surface power of the laser beam in the laser spot on the current surface is too low to generate a melt pool there, while there is sufficient power in the focus to melt the powder particles.
  • a processing head is preferably used for the processing, which is guided over the carrier substrate during layer production and via which the powder gas jet and the laser beam are directed onto the carrier substrate.
  • this processing head can also be a nozzle or a Nozzle assembly can be integrated via which the current deposition area of the powder is additionally subjected to an inert gas, for example argon.
  • an inert gas for example argon
  • an inert gas, in particular argon can also be used as a conveying gas for the powder gas jet as an alternative or in addition.
  • the proposed method can be used to produce both porous layers on carrier substrates, self-supporting layers such as foils or plates, or also porous bodies made of a wide variety of materials, preferably metals or metal alloys.
  • Such porous layers or bodies can, for example. as electrodes, as capacitors, in fuel cells or electrolysers, as structural parts, especially for lightweight construction, in heat exchangers or as components for convective heat transfer, as filters, as pneumatic silencers, as supports for a photocatalyst or in the medical field come .
  • this is not an exhaustive list.
  • Fig. 1 shows a first example of beam guidance of the laser beam and the powder gas jet in the proposed method in a schematic representation
  • Fig. 2 shows a second example of beam guidance of the laser beam and the powder gas jet in the proposed method in a schematic representation
  • FIG. 3 Photographs of a layer deposited with and without the use of the proposed method.
  • a porous body or a porous layer is produced by means of laser radiation by melting a powdered additional material in a powder gas jet directed onto a surface of a carrier substrate.
  • the jet guidance of the powder gas jet as well as the beam guidance of the laser beam and also the laser power are selected in such a way that the powder particles in the powder gas jet are melted or partially melted by the laser beam before they hit the substrate surface and no melt pool is formed on the substrate surface or only one or more smaller melting baths whose dimensions (area) are each smaller than the dimensions (area) of the laser spot on the substrate surface.
  • Fig. 1 shows an example of a suitable beam guide for the proposed method.
  • a coaxial nozzle 1 can be seen, via which a cone-shaped powder gas jet 2 is generated and directed onto the surface of the substrate 4 .
  • the laser beam is on the central axis of this hollow beam 3 out and also aimed at the substrate 4 .
  • Both beams are guided over the substrate 4 along suitable paths, in the present example on a path from right to left.
  • the distance between the powder focus position of the powder gas jet 2 is above the surface of the substrate or the deposition position of the powder on the substrate 4 is selected, so that the additional material impinges on the substrate surface partly outside of the laser spot of the laser beam 3 on the substrate surface, as indicated schematically in the figure.
  • the laser power of the laser beam 3 is selected so that the powder of the powder gas jet 2 is melted in the powder focus by the laser beam 3, but the laser power on the surface of the substrate is no longer sufficient to melt the material there and form a melt bath to create .
  • the molten particles therefore combine with the substrate and with each other when they hit the substrate 4 and thus form a porous layer 5 which is indicated in the figure.
  • the laser beam 3 is additionally weakened, so that when the laser power is set appropriately, it is no longer sufficient when it hits the substrate 4 to produce a molten bath there.
  • the jet guidance can also be selected in a different way, in particular if no coaxial nozzle but only a simple nozzle is used for generating the powder gas jet.
  • FIG. 1 the laser beam is again directed perpendicularly onto the surface of the substrate 4 and only a single nozzle 6 used to generate a powder gas jet 2 .
  • the powder gas jet 2 is guided in such a way that it crosses the laser beam 3 before it strikes the substrate 4 and strikes the substrate 4 with its beam axis at a distance from the beam axis of the laser beam 3 .
  • at least a portion of the powder is thus applied to the substrate 4 outside of the laser spot.
  • the powder gas particles are turned on or off by the laser beam 3 as they pass through it.
  • the power of the laser beam is in turn selected so that the powder particles are still melted within the powder gas jet 2, but the laser power is no longer sufficient to melt the applied powder or powder. the applied layer has to be melted.
  • FIG. 3 shows photographic representations of two applied layers.
  • the powder gas jet generated with a coaxial nozzle and the laser beam were guided in such a way that the laser beam melted the applied powder on the substrate surface, forming a molten bath.
  • a sufficiently porous layer is not obtained.
  • the formation of a porous layer means that larger melting baths must be avoided. This is achieved through the appropriate choice of beam guidance and the power of the laser beam.
  • the distance between the powder focus and the surface of the substrate was increased so that the laser beam could no longer produce a melt pool on the substrate surface.
  • the deposited layer 8 (powder adhesion PAB) is therefore sufficiently porous.
  • a snapshot of the powder gas jet is shown from the side, in which the (small) distance of the powder focus to the substrate surface for the example of the left part of figure (1.) and the (larger) distance of the powder focus to the substrate surface for the Example of the right part of the figure (2.) is located.
  • a porous layer of a metallic material (here nickel) can be produced on a metallic substrate (here titanium) with the following parameters, for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

Bei einem Verfahren zur Herstellung einer porösen Schicht oder eines porösen Körpers auf einem Trägersubstrat wird das Material für die poröse Schicht (5) als Pulver bereitgestellt und mittels eines Pulvergasstrahls (2) auf das Trägersubstrat (4) aufgebracht. Der Pulvergasstrahl (2) wird dabei zusammen mit einem energetischen Strahl (3), insbesondere einem Laserstrahl, ein- oder mehrmals über einen Bereich des Trägersubstrates (4) geführt, der mit der porösen Schicht (5) oder dem porösen Körper versehen werden soll. Bei dem Verfahren werden die Strahlführung des Pulvergasstrahls (2) und des energetischen Strahls (3) sowie die Leistung des energetischen Strahls (3) so gewählt, dass das Pulver im Pulvergasstrahl (2) vor dem Auftreffen auf das Trägersubstrat (4) auf- oder angeschmolzen wird, und sich auf dem Trägersubstrat (4) kein Schmelzbad ausbildet oder lediglich ein oder mehrere kleinere Schmelzbäder, deren laterale Ausdehnungen jeweils kleiner als der Spot des energetischen Strahls (3) auf dem Trägersubstrat (4) sind. Mit dem vorgeschlagenen Verfahren lässt sich eine beispielsweise metallische poröse Schicht mit hoher mechanischer Festigkeit und starker Anbindung an das Trägersubstrat kostengünstig erzeugen.

Description

Verfahren zur Herstellung einer porösen Schicht oder eines porösen Körpers
Technisches Anwendungsgebiet
Die vorliegende Erfindung betri f ft ein Verfahren zur Herstellung einer porösen Schicht oder eines porösen Körpers auf einem Trägersubstrat , bei dem ein Material für die poröse Schicht oder den porösen Körper als Pulver bereitgestellt und mittels eines Pulvergasstrahls auf das Trägersubstrat aufgebracht wird, indem der Pulvergasstrahl zusammen mit einem energetischen Strahl , insbesondere einem Laserstrahl , ein- oder mehrmals über einen Bereich des Trägersubstrates geführt wird, der mit der porösen Schicht oder dem porösen Körper versehen werden soll .
Poröse Schichten und poröse Körper kommen in vielen technischen Bereichen zum Einsatz . So sind beispielsweise für Elektroden oder Kondensatoren, in Brennstof f zellen, Elektrolyseuren oder auch im medi zinischen Bereich häufig poröse Schichten erforderlich, um eine große Oberfläche bereitzustellen . In einigen Anwendungen kommen auch entsprechend poröse Körper, beispielsweise aus einem Metallschaum, zum Einsatz . Unter einer porösen Schicht oder einem porösen Körper wird dabei wie auch in der vorliegenden Patentanmeldung eine Schicht oder ein Körper mit einer Porosität , also dem Quotienten aus Hohlraumvolumen und Gesamtvolumen des porösen Materials , zwischen 10 und 90 Vol . -% verstanden . Stand der Technik
Poröse Körper oder Schichten können durch Sintern hergestellt werden . Dabei wird ein Metallpulver, beispielsweise aus Titan, auf ein Trägersubstrat aufgebracht und dann auf dem Trägersubstrat über längere Zeit einer stark erhöhten Temperatur ( Sintertemperatur ) ausgesetzt . Bei der Sintertemperatur reagieren Metallpulver allerdings mit der Prozessatmosphäre . Insbesondere Titanpulver sind bei erhöhter Temperatur chemisch sehr aktiv, wodurch eine Titanoxid- oder eine Titankarbidschicht an der Oberfläche der Pulverpartikel ausgebildet wird . Sobald eine solche Oxid- oder Karbid-Schicht entstanden ist , wird das Sintern behindert , da sich die Adhäsions fähigkeit der Pulverteilchen verringert . Zur Vermeidung dieser Schichtbildung wird vorgeschlagen, während des Sinterns Wasserstof f zuzugeben . Auf diese Weise kann eine reduzierende Atmosphäre eingestellt werden . Wasserstof f hat als Prozessgas zwar einen positiven Einfluss , bei bisher eingesetzten Sintertechniken ist j edoch trotz Wasserstof f zugabe das Ansintern der Pulverteilchen nicht optimal , so dass im Ergebnis die mechanischen Eigenschaften der hergestellten porösen Schicht oder des hergestellten porösen Körpers für einige Anwendungen nicht zufriedenstellend sind .
So beschreibt beispielsweise die US 4206516 A ein Verfahren für die Herstellung einer porösen Oberflächenschicht auf einem massiven Titansubstrat . Hierzu wird reines Titanhydrid mittels Aufsprühen auf dem Substrat auf geschlämmt . Durch thermische Zersetzung wandeln sich die Titanhydrid-Partikel beim Sintern in Titanmetall um. Die mit dem Sintern einhergehende Schrumpfung führt zu den gewünschten Poren im Gefüge.
Die US 3855638 A befasst sich mit einem medizinischen Implantat, bei dem auf einem festen metallischen Substrat eine poröse Beschichtung haftet. Die Herstellung der Beschichtung erfolgt mittels wässriger Aufschlämmung, welche in einer Wasserstoff atmosphäre getrocknet und gesintert wird.
Die Herstellung von Metallschäumen erfolgt häufig unter Einsatz eines Metall- und eines Metallhydridpulvers, z. B. dem Titandihydrid. Beide Pulver werden miteinander vermischt und dann durch Heißpressen oder Strangpressen zu einem Vormaterial verdichtet. Das Vormaterial wird dann auf eine Temperatur oberhalb des Schmelzpunktes des Metalls erhitzt. Dabei setzt das Titandihydrid gasförmigen Wasserstoff frei und schäumt das Gemenge auf. In der EP 1501650 Bl ist bspw. ein Verfahren zur Herstellung eines porösen Körpers beschrieben, bei dem eine Titanpulver und ein Titanhydridpulver miteinander auf geschwämmt und bei einer Temperatur von wenigstens 1000°C unter Vakuum gesintert werden. Der Anteil an Titanhydrid in der aufge- schwämmten Mischung beträgt dabei 0,01 - 0,1 Gew-.-%. Hierbei wird ausgenutzt, dass sich Titanhydrid bei relativ niedriger Temperatur von ungefähr 288°C bereits zersetzt und vorhandene Verunreinigungen wie Sauerstoff oder Kohlenstoff von den resultierenden freien Hydriden (Wasserstoff ionen) aufgefangen werden. Das Sinterverfahren dauert zwischen einer und 1000 Minuten, insbesondere zwischen 0,5 und einer Stunde. Die Herstellung von porösen Schichten oder porösen Körpern mit den bisher eingesetzten Techniken, insbesondere Sinterverfahren, sind j edoch sehr energie- , zeit- und kostenintensiv . Die damit hergestellten Schichten oder Körper weisen teilweise eine unzureichende mechanische Festigkeit und eine unzureichende Anbindung an das Trägersubstrat auf , auf dem sie erzeugt werden .
Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren zur produktiveren Herstellung einer porösen Schicht oder eines porösen Körpers anzugeben, mit dem eine Schicht oder ein Körper mit verbesserten mechanischen Eigenschaften und besserer Anbindung zum Trägersubstrat erzeugt werden kann .
Darstellung der Erfindung
Die Aufgabe wird mit dem Verfahren gemäß Patentanspruch 1 gelöst . Vorteilhafte Ausgestaltungen des Verfahrens sind Gegenstand der abhängigen Patentansprüche oder lassen sich der nachfolgenden Beschreibung sowie den Aus führungsbeispielen entnehmen .
Bei dem vorgeschlagenen Verfahren zur Herstellung einer porösen Schicht oder eines porösen Körpers auf einem Trägersubstrat wird das Material für die poröse Schicht oder den porösen Körper als Pulver bereitgestellt und mittels eines Pulvergasstrahls auf das Trägersubstrat aufgebracht . Hierzu wird der Pulvergasstrahl zusammen mit einem energetischen Strahl ein- oder mehrmals , vorzugsweise in aneinandergrenzenden Bahnen, über einen Bereich des Trägersubstrates geführt , der mit der porösen Schicht oder dem porösen Körper versehen werden soll . Unter einem energetischen Strahl wird dabei ein Strahl verstanden, mit dem das Pulver des Pulvergasstrahls auf- oder angeschmol zen werden kann . Hierbei kann es sich um einen Strahl elektromagnetischer Strahlung, insbesondere Laserstrahlung, oder auch bspw . um einen Elektronenoder lonenstrahl handeln . Im Folgenden wird das Verfahren anhand der Verwendung eines Laserstrahls als energetischem Strahl erläutert . Der Laserstrahl kann j edoch j ederzeit auch durch einen anderen energetischen Strahl ersetzt werden .
Das Verfahren zeichnet sich dadurch aus , dass die Strahl führung des Pulvergasstrahls , die Strahl führung des Laserstrahls sowie die Leistung des Laserstrahls so gewählt werden, dass das Pulver im Pulvergasstrahl vor dem Auftref fen auf das Trägersubstrat oder einem darauf bereits gebildeten Schichtanteil auf- oder angeschmol zen wird und sich auf dem Trägersubstrat oder dem darauf bereits gebildeten Schichtanteil durch Einwirkung des Laserstrahls entweder kein Schmel zbad ausbildet oder lediglich ein oder mehrere relativ kleine Schmel zbäder, deren laterale Ausdehnung j eweils kleiner als der Laserspot des Laserstrahls auf dem Trägersubstrat oder dem darauf bereits aufgebrachten Schichtanteil ist . Durch das An- bzw . Auf schmel zen der Pulverteilchen noch im Flug verbinden sich diese auf- oder angeschmol zenen Pulverteilchen bei Auftref fen auf die Oberfläche des Trägersubstrates - oder einen bereits darauf aufgebrachten Schichtanteil - mit dem Trägersubstrat bzw . dem bereits aufgebrachten Schichtanteil . Bei Einsatz eines metallischen Pulvers und eines metallischen Trägersubstrates führt dies zu einer schmel zmetallurgischen Verbindung . Damit wird eine hohe mechanische Festigkeit der auf diese Weise aufgebrachten porösen Schicht und eine starke Anbindung zum Trägersubstrat erreicht . Pulverpartikel , die während des Flugs nicht auf- oder angeschmol zen werden, bleiben nicht haften und tragen damit nicht zur Schichtbildung bei . Im Gegensatz dazu kommt es bei den bisher üblichen Sinterverfahren vor, dass einzelne Pulverpartikel der aufgebrachten Schicht beim Sintern nicht ausreichend auf schmel zen, aber dennoch in der Schicht verbleiben und damit die Schicht oder den Körper verunreinigen oder mechanisch schwächen .
Bei Erzeugung einer porösen Schicht oder eines porösen Körpers aus einem metallischen Material wird durch die schmel zmetallurgische Anbindung der einzelnen Partikel bei dem vorgeschlagenen Verfahren auch eine höhere elektrische Leitfähigkeit als bei der Herstellung mit einem Sinterverfahren erreicht .
Ein weiterer Vorteil des vorgeschlagenen Verfahrens besteht darin, dass poröse Schichten direkt auf temperaturempfindliche Bauteile aufgetragen werden können, welche beispielsweise mit einem Sinterprozess nicht bearbeitbar wären . Zudem können durch eine angepasste Prozess führung einzelne Schichtlagen mit selektiv angepassten Eigenschaften erzeugt werden, beispielsweise mit unterschiedlichen Werkstof fen bzw . Materialien und Strukturgrößen . Dabei können besonders auch Materialien bzw . Werkstof fe verarbeitet werden, die aufgrund ihrer starken Neigung zur Oxidbildung für das Sintern ungeeignet sind . Das wird dadurch ermöglicht , dass im Vergleich zu zeitintensiven Sinterprozessen mit langen Temperatur-Haltezeiten die Pulverpartikel im vorgeschlagenen Verfahren nur für eine um Größenordnungen kürzere Zeit erhitzt und anschließend rasch durch die Wärmeleitung zum darunterliegenden Trägersubstrat wieder abgekühlt werden .
Das vorgeschlagene Verfahren ermöglicht die Erzeugung lediglich einer dünnen porösen Schicht , indem der mit der porösen Schicht zu versehende Bereich des Trägersubstrates nur einmalig mit dem Pulverstrahl und dem Laserstrahl abgescannt bzw . überfahren wird ( einfache Überfahrt ) . Durch mehrfache aufeinander folgende Überfahrten kann die Schichtdicke entsprechend erhöht werden . Auf diese Weise kann auch ein nahezu beliebig geformter Körper auf dem Trägersubstrat auf gebaut werden . Sowohl die Schicht als auch der Körper können anschließend bei Bedarf auch vom Trägersubstrat abgetrennt werden . Hierzu sollte vorzugsweise die Oberfläche des Trägersubstrates so ausgebildet oder die Materialien der porösen Schicht oder des porösen Körpers und des Trägersubstrates so gewählt sein, dass keine schmel zmetallurgische Verbindung zum Trägersubstrat hergestellt wird . Auf diese Weise kann beispielsweise eine selbstragende Schicht , z . B . in Form einer Folie oder einer dünnen Platte , erzeugt werden .
Bevorzugt werden mit dem vorgeschlagenen Verfahren poröse Schichten oder poröse Körper aus einem metallischen Material , beispielsweise einem Reinmetall oder auch einer metallischen Legierung, auf einem metallischen Trägersubstrat hergestellt . Das Verfahren eignet sich j edoch auch für viele andere Materialkombinationen, beispielsweise zur Herstellung einer porösen Kunststof f schicht auf einem Trägersubstrat aus einem beliebigen Material . Die Größe der Pulverpartikel kann beispielsweise zwischen 5 pm und 150 pm im Durchmesser betragen . Die Schichtdicken der aufgebrachten Schicht können beispielsweise im Bereich zwischen 10 pm und mehreren Zentimetern liegen . Poröse Körper können auch mit Höhen im mehrstelligen Zentimeterbereich auf dem Trägersubstrat hergestellt werden .
Die Porosität der zu erzeugenden porösen Schicht oder des zu erzeugenden porösen Körpers kann über unterschiedliche Parameter beeinflusst werden . So wird bei einer höheren Vorschubgeschwindigkeit des Pulvergasstrahls über das Trägersubstrat eine höhere Porosität erreicht als bei einer geringeren Vorschubgeschwindigkeit bei ansonsten gleichen Parametern, insbesondere gleicher Pulverdichte im Pulvergasstrahl und gleicher Laserleistung . Bei gleicher Vorschubgeschwindigkeit kann die Porosität auch über die Pulverdichte im Pulvergasstrahl beeinflusst werden, wobei bei höherer Pulverdichte eine geringere Porosität erzeugt wird .
Die Strahl führung des Pulvergasstrahls und des Laserstrahls kann bei dem vorgeschlagenen Verfahren in unterschiedlicher Weise erfolgen, um das Aufschmel zen bzw . Anschmel zen der Pulverpartikel vor dem Auftref fen und die weitgehende Vermeidung größerer Schmel zbäder zu erreichen . So kann der Pulvergasstrahl in bekannter Weise als kegelmantel förmiger Koaxialstrahl , also mittels einer Koaxialdüse , auf die Oberfläche des Trägersubstrates gerichtet werden . Der Laserstrahl verläuft in diesem Falle auf der zentralen Achse des Koaxialstrahls . Die Fokuslage des Pulvergasstrahls wird dabei in einem Abstand oberhalb der momentanen Oberfläche , also der Oberfläche des Trägersubstrates bei Aufbringen der ersten Schichtlage oder der Oberfläche eines bereits aufgebrachten Schichtanteils bzw . von bereits aufgebrachten Schichtlagen bei Aufbringen einer weiteren Schichtlage , eingestellt . Dadurch wird erreicht , dass der Laserstrahl den Pulvergasstrahl oberhalb der momentanen Oberfläche kreuzt und die Pulverpartikel darin auf schmil zt . Die auf- bzw . angeschmol zenen Pulverpartikel tref fen dann teilweise auch außerhalb des Laserspots auf die momentane Oberfläche auf , den der Laserstrahl auf der momentanen Oberfläche bildet . Der Laserstrahl wird beim Durchgang durch den Pulvergasstrahl vor dem Auftref fen auf die momentane Oberfläche geschwächt , so dass er bei geeigneter Einstellung der Laserleistung und ggf . des Laserstrahl fokus zwar die Pulverpartikel im Fokus des Pulvergasstrahls noch auf- oder anschmel zen, aber auf der momentanen Oberfläche kein Schmel zbad mehr erzeugen kann .
In einer weiteren Ausgestaltung wird der Pulvergasstrahl nicht als Koaxialstrahl sondern als einfacher Strahl , im Folgenden auch als Einzelstrahl bezeichnet , auf das Substrat gerichtet . Die Strahl führung erfolgt dabei derart , dass der Pulvergasstrahl vor dem Auftref fen auf die momentane Oberfläche den Laserstrahl kreuzt , so dass der Laserstrahl die im Pulvergasstrahl enthaltenen Partikel vor dem Auftref fen auf die momentane Oberfläche aufschmel zen kann . Die zentrale Achse des Pulvergasstrahls tri f ft dabei in einem Abstand zur zentralen Achse des Laserstrahls auf die momentane Oberfläche auf , so dass auch hier ein Anteil der Pulvergaspartikel außerhalb des Laserspots auf die momentane Oberfläche gelangt . Die Laserleistung des Laserstrahls und ggf . der Laserstrahl fokus wird bzw . werden wieder so eingestellt , dass der Laserstrahl die Pulverpartikel im Kreuzungsbereich der zentralen Achsen des Pulvergasstrahls und des Laserstrahls zwar an- oder auf schmel zen, auf der momentanen Oberfläche aber kein Schmel zbad mehr erzeugen kann . Anstelle eines einzigen können auch mehrere Pulvergasstrahlen (Einzelstrahlen) erzeugt und auf das Trägersubstrat gerichtet werden, die den Laserstrahl aus unterschiedlichen Richtungen kreuzen .
In einer weiteren Ausgestaltung wird der Laserstrahl so fokussiert , dass der Laserfokus oberhalb der momentanen Oberfläche und innerhalb des Pulvergasstrahls liegt . Die Fokussierung erfolgt dabei derart , dass im Laserspot auf der momentanen Oberfläche die Flächenleistung des Laserstrahls zu gering ist , um dort noch ein Schmel zbad zu erzeugen, während im Fokus ausreichend Leistung vorhanden ist , um die Pulverpartikel auf zuschmel zen .
Vorzugsweise wird für die Bearbeitung ein Bearbeitungskopf eingesetzt , der während der Schichterzeugung über das Trägersubstrat geführt und über den der Pulvergasstrahl und der Laserstrahl auf das Trägersubstrat gerichtet wird . In diesen Bearbeitungskopf kann zusätzlich eine Düse oder eine Düsenanordnung integriert sein, über die der momentane Depositionsbereich des Pulvers zusätzlich mit einem Schutzgas , beispielsweise Argon, beaufschlagt wird . In einer weiteren vorteilhaften Ausgestaltung kann alternativ oder zusätzlich auch als Fördergas für den Pulvergasstrahl ein Inertgas , insbesondere Argon, eingesetzt werden .
Mit dem vorgeschlagenen Verfahren lassen sich sowohl poröse Schichten auf Trägersubstraten, selbsttragende Schichten wie beispielsweise Folien oder Platten oder auch poröse Körper aus den unterschiedlichsten Materialien, vorzugsweise aus Metallen oder Metalllegierungen, herstellen . Derartige poröse Schichten oder Körper können bspw . als Elektroden, als Kondensatoren, in Brennstof f zellen oder Elektrolyseuren, als Strukturteile , insbesondere für den Leichtbau, in Wärmetauschern oder als Bauteile für konvektive Wärmeübertragung, als Filter, als pneumatische Schalldämpfer, als Träger für einen Fotokatalysator oder auch im medi zinischen Bereich zum Einsatz kommen . Dies ist selbstverständlich keine abschließende Auf zählung .
Kurze Beschreibung der Zeichnungen
Das vorgeschlagene Verfahren wird nachfolgend anhand von Aus führungsbeispielen in Verbindung mit den Zeichnungen nochmals kurz erläutert . Hierbei zeigen :
Fig . 1 ein erstes Beispiel für eine Strahl führung des Laserstrahls und des Pulvergasstrahls beim vorgeschlagenen Verfahren in schematischer Darstellung; Fig . 2 ein zweites Beispiel für eine Strahl führung des Laserstrahls und des Pulvergasstrahls beim vorgeschlagenen Verfahren in schematischer Darstellung; und
Fig . 3 fotografische Aufnahmen einer mit und ohne Einsatz des vorgeschlagenen Verfahrens deponierten Schicht .
Wege zur Ausführung der Erfindung
Bei dem vorgeschlagenen Verfahren wird ein poröser Körper oder eine poröse Schicht durch Schmel zen eines pulverförmigen Zusatzwerkstof fs eines auf eine Oberfläche eines Trägersubstrates gerichteten Pulvergasstrahls mittels Laserstrahlung erzeugt . Die Strahlführung des Pulvergasstrahls sowie die Strahl führung des Laserstrahls und auch die Laserleistung werden derart gewählt , dass die Pulverpartikel im Pulvergasstrahl bereits vor Auftref fen auf die Substratoberfläche durch den Laserstrahl an- oder aufgeschmol zen werden und sich auf der Substratoberfläche kein Schmel zbad ausbildet oder lediglich ein oder mehrere kleinere Schmel zbäder, deren Abmessungen ( Fläche ) j eweils geringer als die Abmessungen ( Fläche ) des Laserspots auf der Substratoberfläche sind .
Fig . 1 zeigt ein Bespiel einer geeigneten Strahl führung für das vorgeschlagene Verfahren . In der Figur ist eine Koaxialdüse 1 zu erkennen, über die ein kegelmantel förmiger Pulvergasstrahl 2 erzeugt und auf die Oberfläche des Substrats 4 gerichtet wird . Auf der zentralen Achse dieses Hohlstrahls wird der Laserstrahl 3 geführt und ebenfalls auf das Substrat 4 gerichtet . Beide Strahlen werden entlang geeigneter Bahnen über das Substrat 4 geführt , im vorliegenden Beispiel auf einer Bahn von rechts nach links . Der Abstand der Pulverfokuslage des Pulvergasstrahls 2 wird bei diesem Beispiel oberhalb der Oberfläche des Substrats bzw . der Depositionslage des Pulvers auf dem Substrat 4 gewählt , so dass der Zusatzwerkstof f zum Teil außerhalb des Laserspots des Laserstrahls 3 auf der Substratoberfläche auf die Substratoberfläche auftri f ft , wie dies schematisch in der Figur angedeutet ist . Die Laserleistung des Laserstrahls 3 wird so gewählt , dass das Pulver des Pulvergasstrahls 2 im Pulverfokus durch den Laserstrahl 3 auf geschmol zen wird, die Laserleistung auf der Oberfläche des Substrates j edoch nicht mehr ausreicht , um dort das Material auf zuschmel zen und ein Schmel zbad zu erzeugen . Die auf geschmol zenen Partikel verbinden sich daher beim Auftref fen auf das Substrat 4 mit dem Substrat und untereinander und bilden damit eine poröse Schicht 5 , die in der Figur angedeutet ist . Beim Durchtritt durch den Pulverfokus wird der Laserstrahl 3 zusätzlich geschwächt , so dass bei geeigneter Einstellung der Laserleistung diese bei Auftref fen auf das Substrat 4 nicht mehr ausreicht , um dort ein Schmel zbad zu erzeugen .
Die Strahl führung kann auch in anderer Weise gewählt werden, insbesondere wenn keine Koaxialdüse sondern nur eine einfache Düsen für die Erzeugung des Pulvergasstrahls eingesetzt wird . Dies ist in Figur 2 schematisch angedeutet . In diesem Beispiel wird der Laserstrahl wieder senkrecht auf die Oberfläche des Substrats 4 gerichtet und lediglich eine einzelne Düse 6 zur Erzeugung eines Pulvergasstrahls 2 eingesetzt . Die Strahl führung des Pulvergasstrahls 2 erfolgt derart , dass dieser den Laserstrahl 3 vor dem Auftref fen auf das Substrat 4 kreuzt und mit seiner Strahlachse beabstandet von der Strahlachse des Laserstrahls 3 auf das Substrat 4 auftri f ft . Auch in diesem Beispiel wird somit wenigstens ein Anteil des Pulvers außerhalb des Laserspots auf das Substrat 4 aufgebracht . Die Pulvergaspartikel werden beim Durchtritt durch den Laserstrahl 3 durch diesen an- bzw . auf geschmol zen, bevor sie auf das Substrat 4 oder auch eine darauf bereits befindliche Schichtlage auftref fen . Die Leistung des Laserstrahls wird wiederum so gewählt , dass die Pulverpartikel noch innerhalb des Pulvergasstrahls 2 auf geschmol zen werden, die Laserleistung aber nicht mehr ausreicht , um das aufgebrachte Pulver bzw . die aufgebrachte Schicht noch auf zuschmel zen .
Figur 3 zeigt fotografische Darstellungen von zwei aufgebrachten Schichten . Bei der deponierten Schicht 7 , die im linken Teil der Figur dargestellt ist , erfolgte die Strahl führung des mit einer Koaxialdüse erzeugten Pulvergasstrahls und des Laserstrahls so , dass der Laserstrahl das aufgebrachte Pulver auf der Substratoberfläche unter Bildung eines Schmel zbades auf geschmol zen hat . Dadurch wird keine ausreichend poröse Schicht erhalten . Die Ausbildung einer porösen Schicht erfordert beim vorgeschlagenen Verfahren eine Vermeidung größerer Schmel zbäder . Dies wird durch die entsprechende Wahl der Strahl führungen und der Leistung des Laserstrahls erreicht . Im rechten Teil der Figur wurde der Abstand des Pulverfokus zur Oberfläche des Substrates vergrößert, so dass durch den Laserstrahl kein Schmelzbad auf der Substratoberfläche mehr erzeugt werden konnte. In diesem Beispiel ist die deponierte Schicht 8 (Pulveranhaftung PAB) daher ausreichend porös. Im mittleren Teil der Figur ist eine Momentaufnahme des Pulvergasstrahls von der Seite gezeigt, in die der (geringe) Abstand des Pulverfokus zur Substratoberfläche für das Beispiel des linken Teils der Figur (1.) und der (größere) Abstand des Pulverfokus zur Substratoberfläche für das Beispiel des rechten Teils der Figur (2.) eingezeichnet ist.
Eine poröse Schicht aus einem metallischen Material (hier Nickel) kann beispielsweise mit folgenden Parametern auf einem metallischen Substrat (hier Titan) erzeugt werden.
Oberflächengeschwindigkeit: 50 m/min Laserleistung: 600 Watt Pulvermassenstrom: 20 g/min
Bezugs zeichenliste
1 Koaxialdüse
2 Pulvergasstrahl
3 energetischer bzw . Laserstrahl 4 Substrat
5 poröse Schicht
6 Düse
7 deponierte Schicht
8 deponierte Schicht

Claims

Patentansprüche Verfahren zur Herstellung einer porösen Schicht oder eines porösen Körpers auf einem Trägersubstrat, bei dem ein Material für die poröse Schicht (5) oder den porösen Körper als Pulver bereitgestellt und mittels eines Pulvergasstrahls (2) auf das Trägersubstrat (4) aufgebracht wird, indem der Pulvergasstrahl (2) zusammen mit einem energetischen Strahl (3) , insbesondere einem Laserstrahl, ein- oder mehrmals über einen Bereich des Trägersubstrates (4) geführt wird, der mit der porösen Schicht (5) oder dem porösen Körper versehen werden soll, dadurch gekennzeichnet, dass eine Strahlführung des Pulvergasstrahls (2) und des energetischen Strahls (3) sowie eine Leistung des energetischen Strahls (3) so gewählt werden, dass das Pulver im Pulvergasstrahl (2) vor dem Auftreffen auf das Trägersubstrat (4) oder einen darauf bereits gebildeten Schichtanteil auf- oder angeschmolzen wird und sich auf dem Trägersubstrat (4) oder dem darauf bereits gebildeten Schichtanteil kein Schmelzbad ausbildet oder lediglich ein oder mehrere Schmelzbäder, deren laterale Ausdehnung jeweils kleiner als ein Spot des energetischen Strahls (3) auf dem Trägersubstrat (4) oder dem darauf bereits gebildeten Schichtanteil ist. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Strahlführung des Pulvergasstrahls (2) und die Strahlführung des energetischen Strahls (3) so gewählt und während der Herstellung der porösen Schicht oder des porösen Körpers bei Bedarf angepasst werden, dass das Pulver im Pulvergasstrahl (2) den energetischen Strahl vor dem Auftreffen auf das Trägersubstrat (4) oder den darauf bereits gebildeten Schichtanteil kreuzt. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Pulvergasstrahl (2) mit einer Koaxialdüse
(1) erzeugt wird, die den energetischen Strahl (3) umschließt und den Pulvergasstrahl (2) fokussiert, wobei eine Fokusposition des Pulvergasstrahls (2) so eingestellt und während der Herstellung der porösen Schicht oder des porösen Körpers bei Bedarf angepasst wird, dass sie einen Abstand zum Trägersubstrat (4) oder dem darauf bereits gebildeten Schichtanteil aufweist. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Pulvergasstrahl (2) als einfacher Strahl erzeugt und die Strahlführung des Pulvergasstrahls
(2) und die Strahlführung des energetischen Strahls (3) so gewählt und während der Herstellung der porösen Schicht oder des porösen Körpers bei Bedarf angepasst werden, dass der Pulvergasstrahl (2) den energetischen Strahl (3) vor dem
Auftreffen auf das Trägersubstrat (4) oder den - 19 - darauf bereits gebildeten Schichtanteil kreuzt. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der energetische Strahl (3) fokussiert wird, wobei eine Fokusposition des energetischen Strahls (3) so eingestellt und während der Herstellung der porösen Schicht oder des porösen Körpers bei Bedarf angepasst wird, dass sie einen Abstand zum Trägersubstrat (4) oder dem darauf bereits gebildeten Schichtanteil aufweist. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Fokusposition des energetischen Strahls (3) so eingestellt und während der Herstellung der porösen Schicht oder des porösen Körpers bei Bedarf angepasst wird, dass sie in einem Kreuzungsbereich des Pulvers oder Pulvergasstrahls (2) mit dem energetischen Strahl (3) liegt. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als Material für die poröse Schicht (5) oder den porösen Körper ein metallisches Material eingesetzt wird. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Pulvergasstrahl (2) mit einem Schutzgas als Fördergas erzeugt wird. - 20 - Verfahren nach einem der Ansprüche 1 bis 8 , dadurch gekennzeichnet , dass die poröse Schicht oder der poröse Körper aus mehreren Schichtlagen aufgebaut wird, von denen zwei oder mehrere aus unterschiedlichen
Materialien gebildet werden .
PCT/EP2022/084558 2021-12-07 2022-12-06 Verfahren zur herstellung einer porösen schicht oder eines porösen körpers WO2023104778A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021132139.5 2021-12-07
DE102021132139.5A DE102021132139A1 (de) 2021-12-07 2021-12-07 Verfahren zur Herstellung einer porösen Schicht oder eines porösen Körpers

Publications (1)

Publication Number Publication Date
WO2023104778A1 true WO2023104778A1 (de) 2023-06-15

Family

ID=84689287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/084558 WO2023104778A1 (de) 2021-12-07 2022-12-06 Verfahren zur herstellung einer porösen schicht oder eines porösen körpers

Country Status (2)

Country Link
DE (1) DE102021132139A1 (de)
WO (1) WO2023104778A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855638A (en) 1970-06-04 1974-12-24 Ontario Research Foundation Surgical prosthetic device with porous metal coating
US4206516A (en) 1976-12-15 1980-06-10 Ontario Research Foundation Surgical prosthetic device or implant having pure metal porous coating
EP1501650B1 (de) 2002-05-03 2005-12-28 Stichting Energieonderzoek Centrum Nederland Verfahren zur herstellung eines formkörpers aus porösem titanmaterial
CN101590571B (zh) * 2009-05-22 2011-11-16 西安交通大学 基于自愈合机制的激光金属直接成形实验方法
DE102011100456A1 (de) * 2011-05-04 2012-11-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Extremes Hochgeschwindigkeitslaserauftragsschweißverfahren
KR20180117235A (ko) * 2017-04-18 2018-10-29 한국기계연구원 3차원 형상 제조를 위한 분말공급장치
CN113059188A (zh) * 2021-06-03 2021-07-02 中国航发上海商用航空发动机制造有限责任公司 利用激光熔化成形装置加工零件的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090047439A1 (en) 2007-08-16 2009-02-19 Withers James C Method and apparatus for manufacturing porous articles
EP3376412A1 (de) 2017-03-15 2018-09-19 Siemens Aktiengesellschaft Verfahren zum erstellen eines geometriedatensatzes bzw. eines ablaufplans für die additive herstellung eines werkstücks und computerprogrammprodukt sowie datennetzwerk zur durchführung dieses verfahrens
DE102019124518A1 (de) 2019-09-12 2021-03-18 Trumpf Laser- Und Systemtechnik Gmbh Materialabscheidungseinheit mit mehrfacher Materialfokuszone sowie Verfahren zum Auftragschweißen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855638A (en) 1970-06-04 1974-12-24 Ontario Research Foundation Surgical prosthetic device with porous metal coating
US4206516A (en) 1976-12-15 1980-06-10 Ontario Research Foundation Surgical prosthetic device or implant having pure metal porous coating
EP1501650B1 (de) 2002-05-03 2005-12-28 Stichting Energieonderzoek Centrum Nederland Verfahren zur herstellung eines formkörpers aus porösem titanmaterial
CN101590571B (zh) * 2009-05-22 2011-11-16 西安交通大学 基于自愈合机制的激光金属直接成形实验方法
DE102011100456A1 (de) * 2011-05-04 2012-11-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Extremes Hochgeschwindigkeitslaserauftragsschweißverfahren
KR20180117235A (ko) * 2017-04-18 2018-10-29 한국기계연구원 3차원 형상 제조를 위한 분말공급장치
CN113059188A (zh) * 2021-06-03 2021-07-02 中国航发上海商用航空发动机制造有限责任公司 利用激光熔化成形装置加工零件的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SCHAIBLE JONATHAN ET AL: "Development of a high-speed laser material deposition process for additive manufacturing", JOURNAL OF LASER APPLICATIONS, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 33, no. 1, 23 December 2020 (2020-12-23), XP012252488, ISSN: 1042-346X, [retrieved on 20201223], DOI: 10.2351/7.0000320 *
XU X ET AL: "Microstructural features and corrosion behavior of Fe-based coatings prepared by an integrated process of extreme high-speed laser additive manufacturing", SURFACE AND COATINGS TECHNOLOGY, ELSEVIER, NL, vol. 422, 10 July 2021 (2021-07-10), XP086731011, ISSN: 0257-8972, [retrieved on 20210710], DOI: 10.1016/J.SURFCOAT.2021.127500 *
ZHAO TONG ET AL: "Some factors affecting porosity in directed energy deposition of AlMgScZr-alloys", OPTICS AND LASER TECHNOLOGY, ELSEVIER SCIENCE PUBLISHERS BV., AMSTERDAM, NL, vol. 143, 21 June 2021 (2021-06-21), XP086722912, ISSN: 0030-3992, [retrieved on 20210621], DOI: 10.1016/J.OPTLASTEC.2021.107337 *

Also Published As

Publication number Publication date
DE102021132139A1 (de) 2023-06-07

Similar Documents

Publication Publication Date Title
DE102016208196B4 (de) Verfahren zur generativen Herstellung von dreidimensionalen Verbundbauteilen
WO2013029589A1 (de) Oberflächenpassivierung von aluminiumhaltigem pulver
EP2030669B1 (de) Verfahren zum Herstellen einer wasserstoffpermeablen Membran sowie wasserstoffpermeable Membran
EP2644738B1 (de) Plasmaspritzverfahren zum Herstellen einer ionenleitenden Membran und ionenleitende Membran
EP2503018B1 (de) Plasmaspritzverfahren zum Herstellen einer ionenleitenden Membran
WO2017178194A1 (de) VORPRODUKT FÜR DIE HERSTELLUNG DREIDIMENSIONALER WERKSTÜCKE, DIE MITTELS HEIßISOSTATISCHEM PRESSEN HERSTELLBAR SIND, UND EIN HERSTELLUNGSVERFAHREN
DE102016223987A1 (de) Verfahren zur Herstellung eines Bauteils mit Kavitäten und/oder Hinterschneidungen
EP0850899A1 (de) Verfahren zum Beschichten von Kohlenstoffsubstraten oder nichtmetallischen, kohlenstoffhaltigen Substraten sowie Substrat beschichtet nach dem Verfahren
EP2009132A1 (de) Verfahren zur Herstellung einer funktionalen Schicht, Beschichtungsmaterial, Verfahren zu seiner Herstellung sowie funktionale Schicht
WO2012022297A2 (de) Verfahren zum verbinden einer turbinenschaufel mit einer turbinenscheibe oder einem turbinenring
EP1920905A1 (de) Verfahren zum läserschweissen von flächigen Materialien
EP3883708A1 (de) Additiv gefertigtes refraktärmetallbauteil, additives fertigungsverfahren und pulver
WO2009030194A1 (de) Verfahren zum herstellen eines formkörpers mit schaumartiger struktur
WO2023104778A1 (de) Verfahren zur herstellung einer porösen schicht oder eines porösen körpers
EP1172453A2 (de) Verfahren zur Herstellung eines endkonturnahen Formgebungswerkzeuges und danach hergestelltes Formgebungswerkzeug
DE3714416A1 (de) Verfahren zum herstellen von plasmaspritzueberzuegen
EP2343143A2 (de) Verfahren zur Fertigung von Bauteilen aus Refraktärmetallen
EP1888806A1 (de) Verfahren zur herstellung gasdichter schichten und schichtsysteme mittels thermischen spritzens
AT16307U2 (de) Additiv gefertigtes Refraktärmetallbauteil, additives Fertigungsverfahren und Pulver
EP0794265A2 (de) Verfahren zur Herstellung von Formteilen
WO2020016301A1 (de) Verwendung von pulvern hochreflektiver metalle für die additive fertigung
DE10022161C1 (de) Verfahren zum Bilden einer Oberflächenschicht und deren Verwendung
DE19943409A1 (de) Verbund aus einer Kompositmembran
DE10258934B4 (de) Verfahren zur Herstellung eines Formkörpers und Verwendung eines Ultrakurzpulslasers zur Herstellung eines Formkörpers
DE69608126T2 (de) Verfahren zur herstellung von elektroden durch zerstäuben von metallschmelzen mit glas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22834501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE