WO2023104191A1 - 流路切换阀及空调系统 - Google Patents

流路切换阀及空调系统 Download PDF

Info

Publication number
WO2023104191A1
WO2023104191A1 PCT/CN2022/137978 CN2022137978W WO2023104191A1 WO 2023104191 A1 WO2023104191 A1 WO 2023104191A1 CN 2022137978 W CN2022137978 W CN 2022137978W WO 2023104191 A1 WO2023104191 A1 WO 2023104191A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
flow path
valve
valve body
interface
Prior art date
Application number
PCT/CN2022/137978
Other languages
English (en)
French (fr)
Inventor
宣永斌
金华海
张炼
寿周阳
屠列锋
Original Assignee
浙江盾安人工环境股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202123126059.XU external-priority patent/CN217381733U/zh
Priority claimed from CN202123123646.3U external-priority patent/CN216742981U/zh
Priority claimed from CN202123134684.9U external-priority patent/CN216742970U/zh
Priority claimed from CN202111510648.XA external-priority patent/CN116255478A/zh
Priority claimed from CN202123115214.8U external-priority patent/CN216742980U/zh
Application filed by 浙江盾安人工环境股份有限公司 filed Critical 浙江盾安人工环境股份有限公司
Priority to EP22903608.2A priority Critical patent/EP4446629A1/en
Publication of WO2023104191A1 publication Critical patent/WO2023104191A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/074Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/53Mechanical actuating means with toothed gearing

Definitions

  • the present application relates to the technical field of valves, in particular to a flow path switching valve and an air conditioning system.
  • a flow switching valve and an air conditioning system are provided.
  • the present application provides a flow switching valve, which includes: a valve body and a switching tube.
  • a valve cavity is opened inside the valve body, and communication ports communicating with the valve cavity are opened on the valve body, and the communication ports include a first interface and at least one switching flow path;
  • the switching tube has a first end and a second end , the first end is rotatably connected to the valve body and connected to the first interface, the second end is located in the valve cavity; the switching tube can be rotated so that the second end is connected to the Any of the switching flow paths is connected.
  • the present application also provides an air conditioning system, including the above-mentioned flow switching valve.
  • FIG. 1 is a schematic diagram of a flow switching valve according to one or more embodiments.
  • Fig. 2 is a cross-sectional view of the flow switching valve in Fig. 1 .
  • Fig. 3 is a schematic structural diagram of a flow switching valve according to one or more embodiments.
  • Fig. 4 is a cross-sectional view of A-A in Fig. 3 .
  • FIG. 5 is a structural schematic diagram of another viewing angle of the flow path switching valve in FIG. 3 .
  • Fig. 6 is a B-B sectional view in Fig. 5 .
  • Figure 7 is a schematic diagram of a drive mechanism according to one or more embodiments.
  • Fig. 12 is a schematic structural diagram of a second state of a flow switching valve according to one or more embodiments.
  • FIG. 13 is a cross-sectional view of a flow path switching valve according to one or more embodiments.
  • 15 is a front view of a flow switching valve according to one or more embodiments.
  • Fig. 16 is a cross-sectional view along line B-B in Fig. 15 .
  • Figure 17 is a perspective view of a flow switching valve according to one or more embodiments.
  • Fig. 18 is a schematic structural diagram of a flow switching valve according to one or more embodiments.
  • Fig. 19 is an exploded view of part of the structure in Fig. 18 .
  • FIG. 20 is a top view of FIG. 18 .
  • Fig. 21 is a schematic cross-sectional view at A-A in Fig. 20 .
  • Figure 22 is a schematic cross-sectional view of a nipple assembly according to one or more embodiments.
  • Figure 23 is a schematic cross-sectional view of a nipple assembly according to one or more embodiments.
  • Fig. 24 is a schematic structural diagram of an air conditioning system according to one or more embodiments.
  • An embodiment of the present application provides a channel switching valve 100, the channel switching valve 100 is used to switch the flow relationship between multiple channels, referring to Figures 1-9, the channel switching valve 100 includes a valve body 10 , switching tube 20. Wherein, a valve cavity 14 is opened inside the valve body 10, and a communication port 140 communicating with the valve cavity 14 is respectively opened on the valve body 10, and the communication port 140 includes a first interface 11 and at least one switching flow path 13; the switching tube 20 It has a first end 21 and a second end 22 , the first end 21 is rotatably connected with the valve body 10 , and is connected and communicated with the first interface 11 , and the second end 22 is located in the valve cavity 14 .
  • the communication port 140 further includes: the second interface 12
  • the flow path switching valve 100 further includes: a power amplification mechanism 30 and a driving mechanism 40 .
  • the power amplifying mechanism 30 is connected to the first end 21 of the switching tube 20, and the driving mechanism 40 cooperates with the power amplifying mechanism 30 for transmission.
  • the driving mechanism 40 drives the switching tube 20 to rotate through the power amplifying mechanism 30. When the switching tube 20 rotates, the second end 22 It is connected with any one of the switching flow paths 13, so as to achieve the purpose of switching flow paths.
  • the power amplifying mechanism 30 and the driving mechanism 40 are used for transmission, so that the driving mechanism 40 transmits the driving force to the power amplifying mechanism 30, and the power amplifying mechanism 30 then drives the switching tube 20 connected to it to rotate to change the switching flow path 13 and the second
  • the communication relationship between the first interface 11 and the second interface 12 is set in this way, only a small force is needed to drive the driving mechanism 40 to move, and the switching tube 20 can be driven to rotate.
  • the structure is simple, the driving method is simple, and there is no need to establish a pressure difference environment. Therefore, the requirements on the application environment and application conditions of the flow path switching valve 100 are eliminated, and the application conditions and scope of application of the product are expanded.
  • the flow switching valve 100 is applied in the heat exchange system of the air conditioner.
  • the heat exchange system usually includes a compressor 201, an oil separator (not shown in the figure), a first heat exchanger 202 and a second heat exchanger 203.
  • the second heat exchanger 203 is an outdoor heat exchanger; the oil separator can separate the oil droplets and gaseous refrigerant entering it.
  • the refrigerant separated by the oil separator can flow to the first heat exchanger 202 or the second heat exchanger 203 through the flow switching valve 100, and the oil droplets collected by the oil separator return to the compressor 201 for oil liquid separation. supply.
  • the oil separator communicates with the exhaust port of the compressor 201 , and separates the oil droplets discharged from the compressor 201 from the gaseous refrigerant, and the separated refrigerant flows to corresponding heat exchangers through a plurality of switching channels 13 .
  • the switch channels 13 which are the first switch channel 13 a and the second switch channel 13 b .
  • the first interface 11 is used to communicate with the suction port of the compressor 201
  • the second interface 12 is used to communicate with the exhaust port of the compressor 201
  • the oil separator is arranged in the passage between the second interface 12 and the exhaust port
  • the first switching flow path 13a communicates with the first heat exchanger 202
  • the second switching flow path 13b communicates with the second heat exchanger 203.
  • the flow path switching valve 100 can be used not only in the heat exchange system of the air conditioner, but also in application scenarios where the flow path relationship needs to be changed.
  • the first port 11 may be used to communicate with the discharge port of the compressor 201
  • the corresponding second port 12 may be used to communicate with the suction port of the compressor 201 .
  • the first interface 11 is arranged at one end of the valve body 10 , and the first switching flow path 13 a and the second switching flow path 13 b are arranged at the other end of the valve body 10 At one end, the second interface 12 is opened on the peripheral side of the valve body 10 .
  • the first interface 11 is respectively arranged opposite to the first switching flow path 13a and the second switching flow path 13b.
  • the location of the first switching flow path 13a and the second switching flow path 13b is not limited to the above, for example, the first switching flow path 13a and the second switching flow path 13b can also be set on the valve body 10 side of the perimeter.
  • the flow switching valve 100 provided by the present application is installed in a refrigeration system and used to realize switching of pipelines.
  • the valve body is provided with a piston structure, and the valve body is provided with a first interface, a first switching flow path, a second switching flow path and The second interface, the first interface communicates with the outlet of the compressor, and the second interface communicates with the inlet of the compressor.
  • the second switching flow path communicates with the second interface
  • the first channel is formed between the first interface and the first switching flow path
  • the connection between the second switching flow path and the second interface
  • the valve cavity is formed between the piston structure, and the first channel is isolated from the valve cavity by the piston structure; when the direction needs to be changed, because the first channel is high pressure, the valve cavity is low pressure, the piston structure needs to overcome the pressure difference during the change direction, and the piston structure needs to be enlarged. Movement resistance, resulting in reversing failure or stuck piston structure.
  • a four-way reversing valve of another structure in the related art for example, a household four-way valve
  • the first port is opened on one side of the valve body
  • the first switching flow path, the second switching flow path, and the second port are opened on one side of the valve body.
  • the piston structure slides along the valve seat.
  • the flow switching valve 100 of this embodiment is a four-way reversing valve
  • the first port 11 is connected to the outlet or inlet of the compressor 201
  • the second port 12 is connected to the inlet or outlet of the compressor 201
  • the second port 12 is connected to the inlet or outlet of the compressor 201.
  • a switching flow path 13a is connected to the first heat exchanger 202
  • the second switching flow path 13b is connected to the second heat exchanger 203; when the first port 11 is connected to the outlet of the compressor 201, the second port 12 is connected to the compressor 201 inlet, when the first port 11 is connected to the compressor 201 inlet, the second port 12 is connected to the compressor 201 outlet.
  • the flow switching valve 100 may also be a three-way valve, a five-way valve, and the like.
  • first passage 24 in the switching tube 20 there is a first passage 24 in the switching tube 20, one end of the first passage 24 communicates with the first interface 11, and the other end communicates with the first switching flow path 13a or the second switching flow path 13b;
  • the valve chamber 14 includes a second passage 142,
  • the second channel 142 communicates with the second interface 12 and the first switching channel 13a or the second switching channel 13b respectively, and the second channel 142 is arranged around the first channel 24, that is, the first channel 24 is arranged in the second channel 142 , during the rotation of the switching tube 20 , the end surface of the second end of the switching tube 20 is always attached to the inner wall of the valve body 10 .
  • the second channel 142 surrounds the first channel 24, and the circumferential pressure of the switching tube 20 is consistent, and the pressure will not produce a force that hinders the rotation and reversing of the switching tube 20, so that During the rotation process, the switching tube 20 can rotate and change direction only by overcoming the friction between the two ends of the switching tube 20 and the inner wall of the valve body 10, which greatly reduces the movement resistance and makes the switching more smooth.
  • the bottom wall inside the valve body 10 is a plane 18, the first switching channel 13a and the second switching channel 13b are opened on the plane 18, and the switching tube 20 can move along the plane 18 during the rotation process. , so as to ensure that the first channel 24 is kept isolated from the second channel 142 as much as possible.
  • the valve body 10 is made of aluminum alloy, which is light in weight, good in sealing performance, and high in strength.
  • the first connecting pipe 121, the second connecting pipe 131, the third connecting pipe 141 and the fourth connecting pipe 151 are all copper pipes, which is convenient to connect with Pipeline welding of refrigeration system.
  • the switching tube 20 when the heat exchange system is in the cooling state, the switching tube 20 is rotated so that the switching tube 20 communicates with the first switching flow path 13a, so that the first interface 11 and the The first switching flow path 13a communicates, and the second interface 12 communicates with the second switching flow path 13b through the valve cavity 14, so that the refrigerant flows from the first heat exchanger 202 through the first switching flow path 13a, the inside of the switching tube 20,
  • the heat exchanger 203 at this time, the first heat exchanger 202 functions as a condenser, and the second heat exchanger 203 functions as an evaporator.
  • a switching flow path 13a communicates through the valve cavity 14, so that the refrigerant flows from the second heat exchanger 203 through the second switching flow path 13b, the switching pipe 20, the first interface 11, the suction port of the compressor 201, and the compressor 201, the exhaust port of the compressor 201, the oil separator, the second port 12, the valve cavity 14, the first switching flow path 13a, and the first heat exchanger 202.
  • the first heat exchanger 202 plays the role of evaporation
  • the second heat exchanger 203 acts as a condenser.
  • first switching flow path 13 a and the second switching flow path 13 b can be interchanged. That is to say, the first switching flow path 13a can be used as the second switching flow path 13b, and the second switching flow path 13b can be used as the first switching flow path 13a.
  • the flow path switching valve 100 mainly switches between the first switching flow path 13a and the second switching flow path 13b through the rotation of the internal switching tube 20 to achieve the purpose of switching the cooling/heating state.
  • the rotation of the switching tube 20 needs to be driven by a driving force, and the driving mechanism 40 can be a driving motor.
  • the driving mechanism 40 can also use other driving devices, which is not limited here.
  • a transmission force to the matching part 31 to cooperate with the transmission, so that the switching tube 20 rotates; wherein, the transmission force is composed of circumferential force and/or radial force, so that the switching tube 20 is not subjected to axial force, so that in the transmission process
  • the middle switching tube 20 cannot be displaced along the axial direction of the valve body 10 , ensuring that the second end 22 of the switching tube 20 is in close contact with the first switching flow path 13 a or the second switching flow path 13 b to prevent refrigerant leakage and blow-by.
  • the matching part 31 is a first gear 312
  • the transmission part 41 is a second gear 411
  • the first gear 312 is engaged with the second gear 411 for transmission.
  • the first gear 312 is sleeved on the first end of the switch tube 20 . In this way, by changing the transmission ratio between the first gear and the second gear, using a small driving force to drive the first gear to rotate, the second gear can be driven to rotate and the switching tube 20 to rotate.
  • the matching part 31 and the transmission part 41 can also be a worm gear drive, wherein the matching part 31 is a worm gear, or the matching part 31 and the transmission part 41 are a belt drive or a chain drive.
  • the flow path switching valve 100 can be applied to occasions that do not need to be driven by pressure difference, thereby expanding the application range.
  • both the first gear 312 and the second gear 411 are gears, and the transmission is realized through gear meshing, which can reduce the overall volume of the flow path switching valve 100.
  • the first gear 312 and the second gear 411 also can be pulley, realizes transmission by belt between the two.
  • the first gear may be a sector gear.
  • a sector gear with a suitable central angle is selected correspondingly.
  • the maximum angular stroke required for the switching tube 20 to rotate is 60°, so that the central angle of the corresponding sector gear is 60°, that is, the maximum angular travel of the sector gear rotation is 60°, so that there is no need to set a complete gear plate, which reduces the weight of the flow path switching valve 100 and is conducive to saving cost and reduce processing workload.
  • first gear 312 is fixedly connected to the switching tube 20, that is, the first gear 312 and the switching tube 20 can be fixedly connected by welding, or the first gear 312 and the switching tube 20 can be integrated , as long as the rotation of the first gear 312 can also drive the rotation of the switching tube 20 , it is not limited here.
  • the valve body 10 is provided with an accommodating groove 19, the first gear 312 is arranged in the accommodating groove 19, and the groove wall of the accommodating groove 19 plays a supporting role for the first gear 312, thereby supporting the switching pipe 20;
  • the first rotating member 50 abuts against the first gear 312 , and the first gear 312 supports the first rotating member 50 .
  • a first mounting hole 311 is opened on the fitting part 31
  • a mounting part 23 is provided on the first end 21 of the switching tube 20
  • a second mounting hole is correspondingly opened on the mounting part 23 (not shown in the figure)
  • the fitting 31 and the switching tube 20 are connected through the fastener passing through the first installation hole 311 and the second installation hole, so that the removal and replacement of the fitting 31 is facilitated.
  • the connection method between the fitting part 31 and the switching tube 20 is not limited to the above description or shown in the figure, for example, welding may also be used.
  • the drive mechanism 40 also includes a transmission shaft 42 and a power member 43, one end of the transmission shaft 42 is connected to the transmission member 41, and the other end is connected to the power member 43, and the power member 43 is used for Drive the transmission shaft 42 to rotate, and the transmission shaft 42 drives the transmission member 41 to rotate.
  • the power part 43 is a driving motor, and of course the power part 43 can also be other driving mechanisms.
  • the power part 43 can be a power part such as a rotary cylinder capable of driving the second gear 411 to rotate.
  • the power member 43 is arranged outside the valve body 10; the valve body 10 is provided with a connection through hole 15, which corresponds to the transmission shaft 42, so that one end of the transmission shaft 42 extends out of the connection through hole 15 And be connected with power member 43.
  • the power part 43 can be arranged outside the flow path switching valve 100, that is, the transmission shaft 42 can be externally connected to the power part 43, so that the power part 43 of different power can be replaced according to different application scenarios during application, so that the power of the power part 43 It adapts to the working conditions of the application and improves the work efficiency; and the power part 43 is damaged, dismounting and replacing the power part 43 is simple and convenient, reducing the difficulty of maintenance.
  • the drive shaft 42 is rotatably connected to the valve body 1, and may be rotatably connected to the valve body through a bearing or a bushing, so as to facilitate the rotation of the drive shaft 42 and reduce friction between the drive shaft 42 and the valve body.
  • the power member 43 can also be fixedly installed on the outside of the valve body 1 to drive the transmission shaft 42 to rotate.
  • the location of the power member 43 is not limited to the above.
  • the power part 43 is arranged in the accommodating cavity 16, and the accommodating cavity 16 is isolated from the valve cavity 14.
  • the power part 43 is prevented from being corroded or damaged, and the service life of the power part 43 is improved.
  • the power member 43 can also be arranged outside the valve body 1 for easy maintenance.
  • a support platform 17 is provided on the side wall of the valve body 10, and the support platform 17 is located at one end of the valve body 10 close to the first interface 11, and the power amplification mechanism 30 is located on the support platform 17, so as to Make the support platform 17 support the power amplification mechanism 30 and the switching tube 20, ensure that the power amplification mechanism 30 and the switching tube 20 are installed firmly, improve the installation stability of the two, and ensure that the power amplification mechanism 30 and the switching tube are stable even in vibration conditions. 20 is installed firmly, thereby improving the airtightness of the connection between the switching tube 20 and the switching flow path 13 .
  • the flow switching valve 100 is a directional control valve with more than two flow forms and more than two ports, and it is used to realize the circulation, cut-off and reversing of refrigerant, as well as pressure unloading and sequential action control.
  • the valve is controlled by the direction of the relative movement of the spool and the valve body 10.
  • the piston structure used in the flow switching valve in the related art moves inside the barrel to realize the reversing function, and the high-pressure and low-pressure side internal leakage control is realized through the high-precision clearance fit between the piston structure and the valve body. Therefore, the product processing difficulty of this structure is bigger.
  • the fit gap between the piston structure and the valve body is very small, and the connection between the flow channel switching valve product and the equipment is mostly arc welding, there is a large stress generated during the assembly process, which may easily cause deformation of the valve body, lock the piston, and cause the piston to fail. Smooth movement for direction changes.
  • the present application provides a flow path switching valve 100, which includes a valve body 10, the valve body 10 has a valve cavity 14 inside, and valve body 10 is provided with The valve cavity 14 is connected to the first interface 11, the first switching flow path 13a and the second switching flow path 13b.
  • the valve cavity 14 is provided with a switching tube 20, one end of the switching tube 20 is connected to the first interface 11, and the other end can be Selectively communicate with the first switching flow path 13a or the second switching flow path 13b, and the switching tube 20 maintains continuous contact with the inner wall of the valve body 10 during the rotation; the first end of the switching tube 20 and the inner wall of the valve body 10 There is a first seal 70 between them, and the first seal 70 abuts against the inner wall of the valve body 10 and the switch tube 20, and/or, a second seal is provided between the second end of the switch tube 20 and the inner wall of the valve body 10.
  • the second sealing member 80 abuts against the inner wall of the valve body 10 and the switch tube 20 .
  • the flow switching valve 100 further includes a first rotating member 50 sleeved on the first end 21 and located between the switching tube 20 and the valve cavity 14 between the walls of the cavity, so that the switching tube 20 is rotationally connected with the valve body 10 through the first rotating member 50, thereby reducing the friction between the cavity wall and the switching tube 20, so that the driving mechanism 40 can drive the switching tube more accurately 20.
  • the inner ring of the first rotating member 50 is connected to the outer wall of the switch tube 20
  • the outer ring of the first rotating member 50 is connected to the inner wall of the valve body 10 .
  • the first rotating member 50 is selected from a shaft sleeve or a rolling bearing, which can not only enhance the connection strength between the rotating pipe and the inner wall of the valve body 10 but also reduce the friction force during the rotation of the switching pipe 20 .
  • the second end 22 of the switching tube 20 is rotatably connected to the valve body 10, so that both ends of the switching tube 20 are rotatably connected to the valve body 10, so as to ensure that the two ends of the switching tube 20 are rotatably connected during the rotation process. Stable rotation prevents the second end 22 of the switching tube 20 from skewing, which affects the rotation accuracy.
  • the flow switching valve 100 further includes a second rotating member 60 through which the second end 22 of the switching tube 20 is rotationally connected to the valve body 10 , and the second The first rotating member 50 and the second rotating member 60 are arranged coaxially, so that the two ends of the switching tube 20 will not twist each other during the rotating process.
  • the second rotating member 60 By setting the second rotating member 60, the friction force between the chamber wall and the switching tube 20 is reduced, and the rotation accuracy of the switching tube 20 is ensured, so that the driving mechanism 40 can drive the switching tube 20 to rotate more accurately and connect with the switching flow path 13. position, the docking is more precise and prevents docking misalignment.
  • the end of the switching tube 20 away from the first interface 11 is provided with an extension shaft 25 , and the end of the extension shaft 25 close to the first interface 11 is fixedly connected to the switching tube 20 , and the second rotating member 60 is connected to the switching tube 20 respectively.
  • the end of the extension shaft 25 away from the first interface 11 is connected to the inner wall of the valve body 10 , the extension shaft 25 is rotatably connected to the inner wall of the valve body 10 through the second rotating member 60 , and the extension shaft 25 can rotate around the second rotating member 60 .
  • the switching tube 20 does not move at the connection with the extension shaft 25, and the other side rotates around the extension shaft 25 and moves to another interface, so that the switching tube 20 can be accurately positioned to the corresponding interface.
  • both the second rotating member 60 and the first rotating member 50 are rolling bearings, and a first installation groove 181 is opened on the plane 18, and the first installation groove 181 is located between the first switching flow path 13a and the second switching flow path 13b, the end of the extension shaft 25 away from the first interface 11 is connected to the inner side of one of the rolling bearings, and the outer wall of the rolling bearing is connected to the groove wall of the first installation groove 181; the end of the switching tube 20 close to the first interface 11 is passed through It is inside another rolling bearing and is connected with the inner wall of the rolling bearing.
  • the outer wall of the rolling bearing is connected with the inner wall of the valve body 10. The friction force when the switching tube 20 rotates can be reduced by the second rotating member 60 and the first rotating member 50.
  • the second rotating member 60 and the first rotating member 50 can also be bushings, or the second rotating member 60 is a rolling bearing, the first rotating member 50 is a bushing, or the second rotating member 60 is The shaft sleeve, the first rotating member 50 is a rolling bearing.
  • the driving mechanism 40 may also be arranged at one end of the valve body 10 provided with the first installation groove 181 .
  • the power part 43 is fixedly installed on the valve body 10 , the output shaft of the power part 43 is directly fixedly connected with the extension shaft 25 , and the power part 43 can drive the extension shaft 25 to rotate so that the switching tube 20 rotates the flow path switching valve 100 to change direction.
  • the driving mechanism 40 also drives the extension shaft 25 to rotate through the motor and the gear, which is not limited here.
  • the first rotating member 50 and the second rotating member 60 are bearings or bushings, and of course they can also be other parts for supporting the mechanical rotating body.
  • the second end of the switching tube 20 is provided with a rotating part 220 .
  • the rotating part 220 can be welded on the switching tube 20 , or can be integrated with the switching tube 20 .
  • the end of the rotating part 220 away from the switching tube 20 is connected to the inner wall of the valve body 10, and the switching tube 20 can rotate around the rotating part 220 to switch and connect the first switching channel 13a and the second switching channel 13b.
  • the rotating part 220 rotates around its own axis, and the switching tube 20 rotates around the rotating part 220 . It can be understood that, by setting the rotating part 220 at the second end of the switching tube, the switching tube 20 can be rotated around the rotating part 220 to switch and communicate with the first switching flow path 13a and the Describe the second switching channel 13b.
  • the second rotating part 60 is provided on the rotating part 220 .
  • the inner ring of the second rotating member 60 is sleeved on the outer wall of the rotating portion 220 , and the outer ring of the second rotating member 60 is connected to the inner wall of the valve body 10 .
  • the second rotating member 60 is selected from a shaft sleeve or a rolling bearing, which can increase the connection strength between the rotating part 220 and the inner wall of the valve body 10 and reduce the friction force during the rotating process of the rotating part 220 .
  • the switching tube 20 Since one end of the switching tube 20 is installed at the first interface 11, and the other end can be selectively connected to the first switching flow path 13a or the second switching flow path 13b, the refrigerant circulates through the switching tube 20, so it is necessary to ensure that the switching tube 20
  • the tightness of the end connection prevents the refrigerant from leaking from the butt joints at the two ends of the switching tube 20 or the refrigerant in the valve cavity 14 flows into the switching tube 20, that is, to avoid internal leakage.
  • the first end of the switching tube 20 is provided with a first sealing member 70
  • the second end of the switching tube 20 is provided with a second sealing member 80
  • the outer wall of the first end of the switching tube 20 is provided with The first sealing groove 71, the second sealing groove 81 is opened on the pipe end wall of the second end of the switching tube 20, and the first sealing member 70 and the second sealing member 80 are respectively installed in the first sealing groove 71 and the second sealing groove 81 In this way, the failure of the first sealing member 70 and the second sealing member 80 falling off from the switching tube 20 is avoided.
  • the second sealing member 80 can also be sheathed on the outer wall of the second end pipe of the switching pipe 20, or a second sealing groove 81 can be opened, and the second sealing member 80 can be installed in the second sealing groove 81, but the second sealing member 80 must be ensured.
  • the second seal 80 always abuts against the inner wall of the valve body 10 .
  • the second sealing member 80 abuts against the plane 18 , and the second sealing member 80 can strengthen the sealing between the first channel 24 and the second channel 142 .
  • the second sealing member 80 can seal the first channel 24 and the second channel 142 to prevent internal leakage.
  • the first end of the switch tube 20 is provided with a first seal 70, and the second end of the switch tube 20 is provided with a second seal 80;
  • the first sealing groove, the first sealing member 70 is installed in the first sealing groove 71 , thus preventing the first sealing member 70 from falling off from the inner wall of the valve body 10 and failing.
  • second sealing grooves 81 can also be provided on the inner walls of the outer valve body 10 of the first switching flow path 13a and the second switching flow path 13b respectively, so that the switching tube 20 can be connected with the first switching flow path 13a or the first switching flow path 13a or When the second switching channel 13b is in communication, the second sealing member 80 is always in contact with the end of the switching tube 20 away from the first interface 11 and the inner wall of the valve body 10 to prevent internal leakage.
  • first sealing groove 71 and the second sealing groove 81 can be set on the inner wall of the valve body 10, or on the switch tube 20, but they need to be set at the joints between the two ends of the switch tube 20 and the flow port. As long as it can prevent the refrigerant from leaking from the joints at both ends of the switch tube 20 , the specific opening positions of the first sealing groove 71 and the second sealing groove 81 are not limited here.
  • the flow path switching valve 100 maintains continuous contact between the switching tube 20 and the inner wall of the valve body 10 during the rotation process, thereby preventing high and low pressure blow-by gas from being generated in the valve chamber 14 during the rotation process of the switching tube 20;
  • a first sealing member 70 is provided between the switching tube 20 close to the first interface 11, and a second sealing member 80 is provided at the end of the switching tube 20 away from the first interface 11, thereby preventing the switching tube 20 from contacting the first interface 11 and the first switching flow path.
  • 13a and the second switching channel 13b leak occurs at the connection position, reducing the leak rate.
  • the flow switching valve 100 further includes a plurality of connection assemblies 90 .
  • One ends of the plurality of connection assemblies 90 are respectively detachably connected to the corresponding first interface 11 , the first switching flow path 13 a and the second switching flow path 13 b.
  • the connecting pipe assembly 90 is provided and detachably connected to each communication hole.
  • the connecting pipe assembly 90 can be set to a material that is convenient for connecting with the air-conditioning pipeline.
  • the connecting pipe assembly 90 can be set to be made of steel or copper, which is convenient for the valve body 10 Assemble with the air conditioning pipeline.
  • connecting pipe assembly 90 it is convenient to install, disassemble and replace the connecting pipe assembly 90.
  • the connecting pipe assembly 90 can be disassembled from the valve body 10 to repair or replace the connecting pipe assembly 90. , there is no need to replace the entire valve body 10, thereby greatly reducing costs, and saving time and effort.
  • the flow switching valve 100 further includes a fastener 94 .
  • the connection assembly 90 includes a connection 91 and an adapter 92 .
  • the connection pipe 91 communicates with the communication port 140 .
  • the adapter piece 92 is located outside the connecting pipe 91 and connected with the connecting pipe 91 .
  • the fastening piece 94 passes through the adapter piece 92 and connects the adapter piece 92 with the valve body 10 so as to install the connecting pipe 91 on the valve body 10 .
  • the adapter 92 By setting the adapter 92, and the adapter 92 is located outside the adapter 91 and connected to the adapter 91, and then the adapter 92 is installed on the valve body 10 through the fastener 94, and then the adapter 91 is installed on the valve body 10 superior.
  • the structure is simple, which makes the installation and disassembly of the connecting pipe 91 very convenient, and facilitates the maintenance and replacement of the connecting pipe 91.
  • a second installation groove 93 is defined at one end of the connecting pipe assembly 90 close to the valve body 10 .
  • the flow switching valve 100 further includes a third sealing member 95 installed in the second installation groove 93 .
  • the third sealing member 95 can be squeezed and pressed against the communication port 140 . In this way, the sealing performance of the overall structure can be enhanced, and the third sealing member 95 can seal each communication hole to prevent leakage.
  • the connecting pipe 91 and the adapter 92 are integrated; thus, it is easy to process and easy to install. Installing the adapter piece 92 on the valve body 10 through the fastener 94 can realize the installation of the connecting pipe 91 and the valve body 10 .
  • the second installation slot 93 is opened on a side of the adapter piece 92 close to the valve body 10 .
  • the third sealing member 95 can be squeezed and pressed against the communication port 140 . In this way, the sealing performance can be enhanced to prevent leakage problems.
  • the connecting pipe 91 and the adapter 92 are of split structure.
  • the second installation groove 93 is opened on the side of the connecting pipe 91 close to the valve body 10, wherein, with the fastener 94 locking the adapter 92 on the valve body 10, the third sealing member 95 can be squeezed and compressed. Close to the communication port 140. In this way, the sealing performance can be enhanced to prevent leakage problems.
  • the adapter piece 92 is provided with a groove 921 .
  • the connecting pipe 91 includes a step 911 located at an end of the connecting pipe 91 close to the valve body 10 , and the second mounting groove 93 is opened on a side of the step 911 close to the valve body 10 .
  • the groove 921 can abut against the step 911 as the adapter piece 92 is sleeved on the outside of the connecting pipe 91 .
  • the connecting pipe 91 is provided with a step 911
  • the adapter piece 92 is provided with a groove 921 , which facilitates the installation between the connecting pipe 91 and the adapter piece 92 .
  • the step 911 can limit the position where the adapter 92 is installed on the connecting pipe 91 , and can quickly install the adapter 92 and the connecting pipe 91 , which saves time and facilitates installation.
  • the combination of the connecting piece 91 and the adapter 92 can be selected adaptively, increasing the diversity of the connecting piece 90 .
  • the connecting pipe 91 and the adapter 92 are welded; the end surface of the connecting pipe 91 close to the valve body 10 can be welded with the end surface of the adapter 92 away from the valve body 10, or the outer surface of the connecting pipe 91 near the end of the valve body 10 and the The inner side of the adapter piece 92 is welded.
  • the second installation slot 93 is opened on a side of the adapter piece 92 close to the valve body 10 .
  • the third sealing member 95 can be squeezed and pressed against the communication port 140 . In this way, the sealing performance can be enhanced to prevent leakage problems.
  • the connecting pipe 91 is made of copper or steel.
  • the valve body 10 is generally made of aluminum alloy material with low density and good strength, but the air-conditioning pipeline generally adopts copper pipe or steel pipe structure, and the valve body 10 made of aluminum alloy and copper There are difficulties in direct welding of pipes or steel pipes, the melting point of aluminum alloy material is quite different from that of copper material and steel material, and aluminum alloy is easy to oxidize, so the process is difficult. Therefore, it is difficult to connect the valve body 10 made of aluminum alloy to the air-conditioning pipe.
  • the connecting pipe 91 may be formed by processing copper, brass or steel. According to the material of the air-conditioning pipeline, an appropriate material can be selected to connect the pipe 91 .
  • the connecting pipe 91 can be formed by processing copper or brass, so as to facilitate the connection between the valve body 10 and the air-conditioning pipeline.
  • the connecting pipe 91 can be processed and formed by steel, so as to facilitate the connection between the valve body 10 and the air-conditioning pipeline. Therefore, the process difficulty is greatly reduced, and connection and assembly are facilitated.
  • the connecting pipe assembly 90 is detachably connected to the valve body 10 , it is also convenient to replace, maintain and disassemble the connecting pipe 91 .
  • connecting pipe 91 can also be made of other materials, as long as it is convenient to connect with the air-conditioning pipeline.
  • the material of the adapter 92 and the fastener 94 is aluminum alloy.
  • the use of aluminum alloy material can reduce cost and weight, and improve the portability of the overall structure.
  • the fastening member 94 may be a bolt or a screw, but it is not limited to the above-mentioned parts, and other parts can be used as long as they can achieve the same or similar effects.
  • the adapter piece 92 may be a flange, of course, in other embodiments, the adapter piece 92 may also be other components that have the same or similar functions as the flange.
  • a detachably connected connecting pipe assembly 90 is provided, and the connecting pipe 91 is made of copper or steel. It can be conveniently connected with the air-conditioning pipeline, and the connecting pipe 91 of a suitable material can be selected according to the material of the air-conditioning pipeline, thereby reducing the difficulty of the process; moreover, it is easy to install and disassemble, and is convenient for maintenance and replacement.
  • the present application also provides an air conditioning system 200, including a compressor 201, a first heat exchanger 202, a second heat exchanger 203, a flow switching valve 100, a first interface 11 and a second interface 12 communicates with the suction port or exhaust port of the compressor 201 respectively, and the first switching flow path 13a and the second switching flow path 13b communicate with the first heat exchanger 202 or the second heat exchanger 203 respectively.
  • This air conditioning system 200 also has the same advantages as those of the above-mentioned flow path switching valve 100 .
  • the first connecting pipe 121 of the flow switching valve 100 is connected to the outlet of the compressor 201 or the inlet of the compressor 201, the second connecting pipe 131 is connected to the first heat exchanger 202, the third connecting pipe 141 is connected to the second heat exchanger 203, and the fourth connecting pipe 141 is connected to the second heat exchanger 203.
  • the connecting pipe 151 is connected to the inlet of the compressor 201 or the outlet of the compressor 201 .
  • the switching pipe 20 When the air conditioning system 200 is in cooling mode or defrosting mode, the switching pipe 20 is rotated to the first switching flow path 13a, the first channel 24 is connected to the first interface 11 and the first heat exchanger 202, and the second channel 142 is connected to the second interface. 12 and the second switching channel 13b.
  • the fourth connecting pipe 151 When the first connecting pipe 121 is connected to the inlet of the compressor 201, the fourth connecting pipe 151 is connected to the outlet of the compressor 201, the first heat exchanger 202 is an evaporator, the second heat exchanger 203 is a condenser, and one medium is switched from the first flow path 13a enters the first passage 24, flows into the inlet of the compressor 201 from the first interface 11, another medium enters the second passage 142 from the second interface 12, and enters the second heat exchanger 203 from the second switching flow path 13b; when the first When the connecting pipe 121 is connected to the outlet of the compressor 201, the fourth connecting pipe 151 is connected to the inlet of the compressor 201, the first heat exchanger 202 is a condenser, the second heat exchanger 203 is an evaporator, and one channel of medium enters the first channel from the first interface 11 24. The medium flows out from the first switching flow path 13a to the first heat exchanger 202, and the other medium enters the second channel 142 from
  • the switching tube 20 When the air conditioning system 200 is in the heating mode, the switching tube 20 is rotated to the second switching channel 13b, the first channel 24 is connected to the first interface 11 and the second heat exchanger 203, and the second channel 142 is connected to the second interface 12 and the second - The flow path 13a is switched.
  • the fourth connecting pipe 151 When the first connecting pipe 121 is connected to the inlet of the compressor 201, the fourth connecting pipe 151 is connected to the outlet of the compressor 201, the first heat exchanger 202 is a condenser, the second heat exchanger 203 is an evaporator, and one medium is switched from the second flow path 13b enters the first passage 24, enters the compressor 201 from the first interface 11, another medium enters the first passage 24 from the second interface 12, and flows out from the first switching flow passage 13a to the first heat exchanger 202; when the first When the connecting pipe 121 is connected to the outlet of the compressor 201, the fourth connecting pipe 151 is connected to the inlet of the compressor 201, the first heat exchanger 202 is an evaporator, the second heat exchanger 203 is a condenser, and one channel of medium enters the first channel from the first interface 11 24 , enter the second heat exchanger 203 from the second switching flow path 13 b , another medium enters the first channel 24 from the first switching flow path 13 a
  • the air conditioning system 200 when the air conditioning system 200 is in the cooling mode, one channel of medium enters the second channel 142, and one channel of medium enters the first channel 24; when it needs to switch to the heating mode, the power part 43 drives the first gear 312 to rotate, driving The switching tube 20 rotates, and the switching tube 20 rotates against the inner wall of the valve body 10 to the second switching channel 13b, so that the first channel 24 communicates with the second switching channel 13b, and the second channel 142 communicates with the first switching channel 13a. , to achieve commutation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multiple-Way Valves (AREA)

Abstract

一种流路切换阀(100)及空调系统(200)。流路切换阀(100)包括:阀体(10),其内部开设有阀腔(14),阀体(10)上分别开设有与阀腔(14)连通的连通口(140),连通口(140)包括第一接口(11)和至少一条切换流路(13);切换管(20),具有第一端(21)和第二端(22),第一端(21)与阀体(10)转动连接,且与第一接口(11)连接,第二端(22)位于阀腔(14)内;切换管(20)能够转动,以使得第二端(22)与任一切换流路(13)连通。

Description

流路切换阀及空调系统
相关申请
本申请要求2021年12月10日申请的,申请号为202123126059.X,发明名称为“流路切换阀”,2021年12月10日申请的,申请号为202123115214.8,发明名称为“换向阀及具有其的空调系统”,2021年12月10日申请的,申请号为202111510648.X,发明名称为“切换阀及其制冷系统”,2021年12月10日申请的,申请号为202123123646.3,发明名称为“切换阀及其制冷系统”以及2021年12月10日申请的,申请号为202123134684.9,发明名称为“流路切换装置及空调系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及阀技术领域,特别是涉及一种流路切换阀及空调系统。
背景技术
目前大部分切换阀采用压差驱动,使用时需要先在阀体高低压两侧建立压差,再启动切换阀进行流路切换,导致该种切换阀对应用环境和应用场景存在要求,限制了产品的应用工况,适用范围小。
发明内容
根据本申请的各种实施例,提供一种流路切换阀及空调系统。
本申请提供的一种流路切换阀,所述流路切换阀包括:阀体和切换管。体内部开设有阀腔,所述阀体上分别开设有与所述阀腔连通的连通口,所述连通口包括第一接口和至少一条切换流路;切换管具有第一端和第二端,所述第一端与所述阀体转动连接,且与所述第一接口连接,所述第二端位于所述阀腔内;所述切换管能够转动,以使得所述第二端与任一所述切换流路连通。
本申请还提供一种空调系统,包括如上所述的流路切换阀。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为根据一个或多个实施例的流路切换阀的示意图。
图2为图1中流路切换阀的剖视图。
图3为根据一个或多个实施例的流路切换阀的结构示意图。
图4为图3中的A-A剖视图。
图5为图3中流路切换阀的另一视角的结构示意图。
图6为图5中的B-B剖视图。
图7为根据一个或多个实施例的驱动机构的示意图。
图8为根据一个或多个实施例的驱动机构的示意图。
图9为根据一个或多个实施例的驱动机构的示意图。
图10为根据一个或多个实施例的流路切换阀的结构示意图。
图11为根据一个或多个实施例的流路切换阀第一状态的结构示意图。
图12为根据一个或多个实施例的流路切换阀第二状态的结构示意图。
图13为根据一个或多个实施例的流路切换阀的剖视图。
图14为图13中A处的局部放大图。
图15为根据一个或多个实施例的流路切换阀的正视图。
图16为图15中的B-B处剖视图。
图17为根据一个或多个实施例的流路切换阀的立体图。
图18为根据一个或多个实施例的流路切换阀的结构示意图。
图19为图18中部分结构的爆炸图。
图20为图18的俯视图。
图21为图20中A-A处的截面示意图。
图22为根据一个或多个实施例的接管组件的截面示意图。
图23为根据一个或多个实施例的接管组件的截面示意图。
图24为根据一个或多个实施例的空调系统的结构示意图。
图中,100、流路切换阀;10、阀体;11、第一接口;12、第二接口;13、切换流路;13a、第一切换流路;13b、第二切换流路;14、阀腔;140、连通口;142、第二通道;15、连接通孔;16、容置腔;17、支撑台;18、平面;181、第一安装槽;19、容置槽;121、第一接管;131、第二接管;141、第三接管;151、第四接管;20、切换管;21、第一端;22、第二端;220、转动部;23、安装件;24、第一通道;25、延伸轴;30、动力放大机构;31、配合件;311、第一安装孔;312、第一齿轮;40、驱动机构;41、传动件;411、第二齿轮;42、传动轴;43、动力件;50、第一转动件;60、第二转动件;70、第一密封件;71、第一密封槽;80、第二密封件;81、第二密封槽;90、接管组件;91、接管;911、台阶;92、转接件;921、凹槽;93、第二安装槽;94、紧固件;95、第三密封件;200、空调系统;201、压缩机;202、第一换热器;203、第二换热器。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
需要说明的是,当组件被称为“装设于”另一个组件,它可以直接装设在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。当一个组件被认为是“固定于”另一个组件,它可以是直接固定在另一个组件上或者可能同时存在居中组件。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本申请所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请一实施例提供的一种流路切换阀100,该流路切换阀100用于切换多个流路之间的流通关系,参阅图1-图9,流路切换阀100包括阀体10、切换管20。其中,阀体10内部开设有阀腔14,阀体10上分别开设有与阀腔14连通的连通口140,所述连通口140包括第一接口11和至少一条切换流路13;切换管20具有第一端21和第二端22,其第一端21与阀体10转动连接,且与第一接口11连接并连通,第二端22位于阀腔14内。
在一些实施例中,连通口140还包括:第二接口12,流路切换阀100还包括:动力放大机构30和驱动机构40。动力放大机构30与切换管20的第一端21连接,驱动机构40与动力放大机构30配合传动,驱动机构40通过动力放大机构30带动切换管20转动,切换管20转动时使得第二端22与其中任意一条切换流路13连接,从而达到切换流路的目的。
本申请通过动力放大机构30与驱动机构40配合传动,以使得驱动机构40将驱动力传递至动力放大机构30,动力放大机构30进而带动与之连接的切换管20转动改变切换流路13与第一接口11和第二接口12之间的连通关系,如此设置,仅需较小的力驱动驱动机构40运动,便能够带动切换管20转动,结构简单,驱动方式简单,无需建立压差环境,从而消除对流路切换阀100应用环境和应用工况的要求,扩大了产品的应用工况和适用范围。
通常流路切换阀100应用于空调的换热系统中,换热系统通常包括压缩机201、油分离器(图中未示出)、第一换热器202以及第二换热器203,第二换热器203为室外换热器;其中油分离器可对进入 其中的油滴和气态制冷剂进行分离。通过油分离器分离得到的制冷剂可通过流路切换阀100流向第一换热器202或者第二换热器203,通过油分离器汇集得到的油滴重新回到压缩机201进行油液的补给。油分离器与压缩机201的排气口连通,对压缩机201排出的油滴和气态制冷剂进行分离,分离得到的制冷剂通过多个切换流路13分别流向对应的换热器。
对应的,在其中一个实施例中,参阅图2或图6,切换流路13设置的数量为两条,分别为第一切换流路13a和第二切换流路13b。其中第一接口11用于与压缩机201的吸气口连通,第二接口12用于与压缩机201的排气口连通,油分离器设置在第二接口12和排气口的通路中;第一切换流路13a与第一换热器202连通,第二切换流路13b与第二换热器203连通,通过转动切换管20,能够调整压缩机201与第一换热器202和第二换热器203之间的连通关系。当然在其他实施例中,流路切换阀100不仅可以用于空调的换热系统中,还可以应用于需要改变流道关系的应用场景中。并且,在其他实施例中,第一接口11可以用于与压缩机201的排气口连通,对应的第二接口12可以用于与压缩机201的吸气口连通。
具体的,参阅图1和图2,沿阀体10的轴向,第一接口11设置在阀体10的一端,第一切换流路13a和第二切换流路13b设置在阀体10的另一端,第二接口12开设在阀体10的周侧。第一接口11分别与第一切换流路13a和第二切换流路13b相对设置。在其他实施例中,第一切换流路13a和第二切换流路13b设置的位置不局限于以上所述,例如第一切换流路13a和第二切换流路13b也可以设置在阀体10的周侧。
请参见图13、图15及图17,本申请提供的流路切换阀100,安装于制冷系统中,用于实现管路的切换。
在相关技术的流路切换阀中,以大容量四通换向阀为例,阀体内设有活塞结构,阀体周向开设有第一接口、第一切换流路、第二切换流路及第二接口,第一接口连通于压缩机出口,第二接口连通于压缩机进口。当第一接口与第一切换流路连通时,第二切换流路与第二接口连通,第一接口与第一切换流路之间形成第一通道,第二切换流路与第二接口之间形成阀腔,活塞结构将第一通道与阀腔隔绝;而当需要换向时,由于第一通道为高压,阀腔为低压,活塞结构在换向时需要克服压差,加大活塞结构的运动阻力,导致换向失败或活塞结构卡死。
而相关技术中的另一种结构的四通换向阀,例如,家用四通阀,第一接口开设于阀体一侧,第一切换流路、第二切换流路及第二接口开设于阀体另一侧,活塞结构沿着阀座滑动,活塞结构内具有腔体,腔体与压缩机进口连通,第一接口连通压缩机出口,活塞结构上端受到较大压力,在换向时会因压差而紧紧贴合阀座滑动,导致换向困难甚至在换向时会发出噪音。
请参见图13,本实施例的流路切换阀100为四通换向阀,第一接口11连通于压缩机201的出口或进口,第二接口12连通于压缩机201的进口或出口,第一切换流路13a连通于第一换热器202,第二切换流路13b连通于第二换热器203;当第一接口11连通于压缩机201出口时,第二接口12连通于压缩机201进口,当第一接口11连通于压缩机201进口时,第二接口12连通于压缩机201出口。在其他实施例中,流路切换阀100还可为三通阀、五通阀等。
切换管20内具有第一通道24,第一通道24的一端与第一接口11连通,另一端与第一切换流路13a或第二切换流路13b连通;阀腔14包括第二通道142,第二通道142分别与第二接口12及第一切换流路13a或第二切换流路13b连通,第二通道142环绕第一通道24设置,即,第一通道24设于第二通道142内,在切换管20转动的过程中,切换管20第二端的端面始终贴合于阀体10的内壁。需要说明的是,当切换管20与第一切换流路13a连通时,第二通道142与第二切换流路13b连通,当切换管20与第二切换流路13b连通时,第二通道142与第一切换流路13a连通。
可以理解,本申请的流路切换阀100,其第二通道142环绕第一通道24,切换管20的周向压力一致,不会因为压力对切换管20产生阻碍其转动换向的力,使得切换管20在转动的过程中只需要克服切换管20两端与阀体10内壁的摩擦力就可以转动换向,大大减少了运动阻力,从而使得换向更加顺利。而切换管20在转动的过程中,其远离第一接口11的端面始终贴合于阀体10内壁,从而缓解第一通道24与第二通道142之间的介质相互窜气的问题,减小窜气量,增加空调系统200能效和压缩机201工作的稳定性。
在切换管20转动的过程中,其转动路径较短,实现换向的快速性,并且,在转动的过程中,不需要转过多的角度,从而保证在转动的过程中,切换管20始终能够与阀体10内壁贴合。并且,由于第一通道24的内壁的周向受到的压力一致,第一通道24与第二通道142之间的压差不会对切换管20的两端形成压力,即,不会向下挤压切换管20,使得切换管20的第二端不会翘起,加强第一通道24与第二通道142之间的密封性,同时,减少切换管20的第二端的端面转动时的摩擦力。
在一些实施例中,阀体10内部的底壁为平面18,第一切换流路13a与第二切换流路13b开设于平面18,切换管20在转动的过程中,能够沿着平面18挪移,从而保证第一通道24与第二通道142尽可能地保持隔绝。
具体地,第一接口11、第一切换流路13a、第二切换流路13b和第二接口12处分别安装有第一接管121、第二接管131、第三接管141和第四接管151。第一接管121、第二接管131、第三接管141和第四接管151分别通过第一接口11、第一切换流路13a、第二切换流路13b和第二接口12与阀腔14连通。第一接管121、第二接管131、第三接管141及第四接管151用于与制冷系统的管路连接。
在本实施例中,阀体10采用铝合金制作,重量轻,密封性好,强度高,第一接管121、第二接管131、第三接管141及第四接管151均为铜管,方便与制冷系统的管路焊接。
如图1、图2、图11和图12所示,当换热系统处于制冷状态时,转动切换管20,以使得切换管20与第一切换流路13a连通,从而使得第一接口11与第一切换流路13a连通,第二接口12与第二切换流路13b通过阀腔14连通,如此制冷剂依次从第一换热器202流经第一切换流路13a、切换管20内、第一接口11、压缩机201的吸气口、压缩机201内、压缩机201的排气口、油分离器、第二接口12、阀腔14内、第二切换流路13b、第二换热器203,此时第一换热器202起到冷凝器的作用,第二换热器203起到蒸发器的作用。
当换热系统处于制热状态时,转动切换管20,以使得切换管20与第二切换流路13b连通,从而使得第一接口11与第二切换流路13b连通,第二接口12与第一切换流路13a通过阀腔14连通,如此制冷剂依次从第二换热器203流经第二切换流路13b、切换管20、第一接口11、压缩机201的吸气口、压缩机201内、压缩机201的排气口、油分离器、第二接口12、阀腔14内、第一切换流路13a、第一换热器202,此时第一换热器202起到蒸发器的作用,第二换热器203起到冷凝器的作用。
需要说明的是,在其他实施例中,第一切换流路13a和第二切换流路13b可互换。也就是说,第一切换流路13a可以作为第二切换流路13b,第二切换流路13b可以作为第一切换流路13a。
流路切换阀100主要是通过内部的切换管20转动在第一切换流路13a和第二切换流路13b之间切换以达到换向并切换制冷/制热状态的目的。切换管20的转动需要有驱动力的驱动,驱动机构40可以选用驱动电机,当然,在其他实施例中,驱动机构40还可以选用其他驱动装置,在此不作限定。
在其中一个实施例中,参阅图1和图2,或者参阅图3-图6,动力放大机构30包括配合件31,配合件31与第一端21连接,驱动机构40包括传动件41,传动件41向配合件31施加传动力以配合传动,以使切换管20转动;其中,传动力由圆周力和/或径向力组成,如此,切换管20未受到轴向力,从而在传动过程中切换管20无法产生沿阀体10轴向的位移,确保切换管20的第二端22与第一切换流路13a或第二切换流路13b连接紧密接触,防止制冷剂泄漏窜气。
在其中一个实施例中,参阅图1-图8,配合件31为第一齿轮312,传动件41为第二齿轮411,第一齿轮312与第二齿轮411啮合传动。第一齿轮312套设于切换管20的第一端。如此设置,通过改变第一齿轮与第二齿轮的传动比,使用较小的驱动力驱动第一齿轮转动,即可带动第二齿轮转动并带动切换管20转动,如此,仅需很小的驱动力即可实现切换管20的转动,驱动方式简单,并且对应用环境无要求,无需关注应用环境压差,明显增强流路切换阀100的适用性和节能性能。当然,在其他实施例中,配合件31和传动件41也可以为涡轮蜗杆传动,其中配合件31为涡轮,或者配合件31和传动件41为带传动或链传动。通过第一齿轮312驱动,能够将流路切换阀100应用至不需要靠压差实现驱动的场合,扩大应用范围。
在一实施例中,第一齿轮312及第二齿轮411均为齿轮,通过齿轮啮合实现传动,能够减少流路切换阀100整体的体积,在其他实施例中,第一齿轮312和第二齿轮411还可为带轮,两者之间通过皮带实现传动。
可选地,在另一个实施例中,参阅图9,第一齿轮可以为扇形齿轮。如此,根据所需转动的最大角度,对应的选用圆心角适宜的扇形齿轮。例如,当第一切换流路13a和第二切换流路13b的中心分别与切换管20的旋转轴的连线之间的夹角为60°,则切换管20所需转动的最大角行程为60°,从而对应设置的扇形齿轮的圆心角为60°,即扇形齿轮转动的最大角行程为60°,如此,无需设置完整的齿轮盘,减轻流路切换阀100的重量,并且有利于节约成本,减少加工工作量。
值得注意的是,第一齿轮312与切换管20之间固定连接,即,第一齿轮312和切换管20可以采用焊接的方式固定连接,也可以第一齿轮312和切换管20设置为一体式,只要能够实现第一齿轮312的转动也能带动切换管20转动即可,在此不作限定。
阀体10内开设有容置槽19,第一齿轮312设于容置槽19内,容置槽19的槽壁对于第一齿轮312起到支撑作用,从而对于切换管20起到支撑作用;第一转动件50抵接于第一齿轮312,第一齿轮312对于第一转动件50起到支撑作用。
第一齿轮312和切换管20可为一体式设置,也可为分体设置,并通过焊接固定连接。
参阅图2以及图8和图9,配合件31上开设有第一安装孔311,切换管20的第一端21上设置有安装件23,且安装件23上对应开设有第二安装孔(图中未示出),通过紧固件穿设第一安装孔311和第二安装孔将配合件31和切换管20进行连接,如此,便于配合件31的拆卸更换,当然,在其他实施例中,配合件31和切换管20的连接方式不局限于以上所述或图中所示,例如也可以是焊接。
参阅图1-图7,在其中一个实施例中,驱动机构40还包括传动轴42和动力件43,传动轴42一端与传动件41连接,另一端与动力件43连接,动力件43用于驱动传动轴42转动,传动轴42带动传动件41转动。具体的,动力件43为驱动电机,当然动力件43也可以是其他驱动机构。动力件43可为旋转气缸等能够带动第二齿轮411旋转的动力件。
参阅图1和图2,动力件43设置于阀体10外;阀体10上开设有连接通孔15,连接通孔15与传动轴42对应,以使传动轴42一端伸出连接通孔15并与动力件43连接。如此设置,动力件43可以设置在流路切换阀100外,即传动轴42能够外接动力件43,从而在应用时可根据应用场景不同更换不同功率的动力件43,以使得动力件43的功率适配应用工况,提高工作效率;并且动力件43损坏拆卸更换动力件43简单便捷,降低维修难度。传动轴42和阀体1转动连接,可以通过轴承或轴套和阀体转动连接,以利于传动轴42的转动,减少和阀体之间的摩擦力。动力件43也可以固定安装在阀体1的外部,以驱动传动轴42转动。
当然,在其他实施例中,动力件43设置的位置也不局限于以上所述,例如在另一个实施例中,参阅图3-图5,阀体10内开设有容置腔16,动力件43设置在容置腔16内,容置腔16与阀腔14隔断。通过将动力件43设置在容置腔16内,防止动力件43遭受侵蚀或者破坏,提高动力件43的使用寿命,同时动力件43设置在容置腔16内,则动力件43不受外界应用环境的侵蚀,从而降低对应用场景和应用工况的要求,扩大流路切换阀100的适用性。保证流路切换阀100的整体性,避免零部件凌乱。当然,在其他实施例中动力件43也可以设置与阀体1的外部,方便检修。
进一步的,参阅图4和图6,阀体10的侧壁上设置有支撑台17,且支撑台17位于阀体10靠近第一接口11的一端,动力放大机构30位于支撑台17上,以使支撑台17支撑动力放大机构30和切换管20,确保动力放大机构30和切换管20安装稳固,提高两者安装稳定性,即使是在振动工况中也能够确保动力放大机构30和切换管20安装稳固,从而提高切换管20与切换流路13连接的密闭性。
请参考图10至图12,流路切换阀100是具有两种以上流动形式和两个以上接口的方向控制阀,是实现制冷剂的流通、切断和换向,以及压力卸载和顺序动作控制的阀门,靠阀芯与阀体10的相对运动的方向控制阀。
相关技术中的流路切换阀采用的活塞结构在筒体内部运动以实现换向功能,通过活塞结构和阀体之间高精度的间隙配合来实现高低压侧的内泄漏控制。因此,此结构的产品加工难度较大。另外,由于活塞结构和阀体之间配合间隙极小,且流路切换阀产品与设备连接多为电弧焊接,装配过程有较大应力产生,易造成阀体变形,抱死活塞,导致活塞无法顺畅运动实现换向。
为解决相关技术中的流路切换阀中所存在的问题,本申请提供了一种流路切换阀100,包括阀体10,阀体10内部具有阀腔14,阀体10上开设有均与阀腔14相连通的第一接口11、第一切换流路13a和第 二切换流路13b,阀腔14中设置有切换管20,切换管20的一端连通于第一接口11,另一端可选择性地连通第一切换流路13a或第二切换流路13b,且切换管20在转动过程中与阀体10内壁之间保持持续抵接;切换管20的第一端和阀体10内壁之间设有第一密封件70,第一密封件70与阀体10内壁和切换管20相抵接,及/或,切换管20的第二端和阀体10内壁之间设有第二密封件80,第二密封件80与阀体10内壁和切换管20相抵接。
需要说明的是,本申请通过切换管20在转动过程中与阀体10内壁之间保持持续抵接,也就是说当切换管20从第一切换流路13a或者第二切换流路13b处脱离转至另一流通口的过程中,切换管20远离第一接口11的一端与阀体10内壁抵接,当切换管20完全脱离其中一个流通口时,切换管20远离第一接口11的一端能够被阀体10内壁完全封堵,从而防止切换管20在转动过程中阀腔14中产生高低压窜气;通过使得切换管20靠近第一接口11之间设置第一密封件70,切换管20远离第一接口11一端设置第二密封件80,从而避免切换管20与第一接口11、第一切换流路13a和第二切换流路13b之间的连接位置发生泄漏,降低了泄漏率,防止在完成切换之后介质从切换管20漏出至阀腔14或从阀腔14进入切换管20,进一步缓解高低压窜气问题;而且,通过设置第一密封件70和第二密封件80实现密封,能够减少切换管20与阀体10内壁的间隙配合的精度要求,减少加工难度。
参阅图4和图6,在其中一个实施例中,流路切换阀100还包括第一转动件50,第一转动件50套设在第一端21,且位于切换管20和阀腔14的腔壁之间,以使切换管20通过第一转动件50与阀体10转动连接,进而减小腔壁和切换管20之间的摩擦力,以使得驱动机构40能够更加精确的驱动切换管20转动与切换流路13对接的位置处,对接更加精准,防止对接错位。第一转动件50的内圈与切换管20的外侧壁连接,第一转动件50的外圈与所述阀体10的内壁相连。在本实施例中,第一转动件50选用轴套或者滚动轴承,能够在增强转动管与阀体10内壁之间的连接强度的同时还能降低切换管20转动过程中的摩擦力。
请继续参阅图4和图6,切换管20的第二端22与阀体10转动连接,以使得切换管20两端均与阀体10转动连接,以确保在转动过程中切换管20两端稳定转动,防止切换管20的第二端22出现歪斜的情况,影响转动精度。
可选地,参阅图4、图6和图12,流路切换阀100还包括第二转动件60,切换管20的第二端22通过第二转动件60与阀体10转动连接,且第一转动件50和第二转动件60同轴设置,使得切换管20在转动的过程中其两端不会相互扭转。通过设置第二转动件60,减小腔壁和切换管20之间的摩擦力,保证切换管20回转精度,以使得驱动机构40能够更加精确的驱动切换管20转动与切换流路13对接的位置处,对接更加精准,防止对接错位。
参见图14,在一些实施例中,切换管20远离第一接口11的一端设置有延伸轴25,延伸轴25靠近第一接口11的一端和切换管20固定连接,第二转动件60分别与延伸轴25远离第一接口11的一端及阀体10内壁连接,延伸轴25通过第二转动件60与阀体10内壁转动连接,且延伸轴25能够环绕第二转动件60转动。使得切换管20在转动的过程中,和延伸轴25连接处不发生位移,另一侧环绕延伸轴25转动并挪移至另一个接口,方便切换管20准确地定位至相应的接口。
在一实施例中,第二转动件60及第一转动件50均为滚动轴承,平面18上开设有第一安装槽181,第一安装槽181位于第一切换流路13a和第二切换流路13b之间,延伸轴25远离第一接口11的一端连接于其中一个滚动轴承的内侧,该滚动轴承的外侧壁连接于第一安装槽181的槽壁;切换管20靠近第一接口11的一端穿设于另外一个滚动轴承的内,并与该滚动轴承的内壁连接,该滚动轴承的外壁与阀体10内壁连接,通过第二转动件60和第一转动件50能够减少切换管20转动时的摩擦力。在其他实施例中,第二转动件60及第一转动件50还可为轴套,或者,第二转动件60为滚动轴承,第一转动件50为轴套,或者,第二转动件60为轴套,第一转动件50为滚动轴承。
在另一实施例中,驱动机构40也可以设置在阀体10设置有第一安装槽181的一端。动力件43固定安装在阀体10上,动力件43的输出轴直接与延伸轴25固定连接,动力件43可以驱动延伸轴25转动从而使得切换管20转动流路切换阀100换向。当然,驱动机构40还也通过电机配合齿轮驱动延伸轴25转动,此处不做限制。
请继续参阅图4和图6,在其中一个实施例中,第一转动件50和第二转动件60为轴承或轴套,当然也可以是其他用于支撑机械旋转体的零件。
进一步地,切换管20的第二端设有转动部220。转动部220可以焊接于切换管20上,也可以与切换管20设置为一体式。转动部220远离切换管20的一端连接于阀体10内壁,切换管20能够绕转动部220转动以切换连通第一切换流路13a和第二切换流路13b。需要说明的是,转动部220绕自身轴线转动,切换管20以转动部220为中心转动。可以理解的是,通过在所述切换管的第二端设置所述转动部220,从而使得所述切换管20能够绕所述转动部220转动以切换连通所述第一切换流路13a和所述第二切换流路13b。
具体地,为了便于转动部220转动,并降低转动部220在转动过程中的摩擦力,在转动部220上设置第二转动件60。第二转动件60的内圈套接于转动部220的外壁上,第二转动件60的外圈与阀体10内壁连接。在本实施例中,第二转动件60选用轴套或者滚动轴承,能够在增强转动部220与阀体10内壁之间的连接强度的同时还能降低转动部220转动过程中的摩擦力。
由于切换管20的一端安装在第一接口11处,另一端可选择的与第一切换流路13a或第二切换流路13b对接,制冷剂通过切换管20流通,因此需要保证切换管20两端连接处的密封性,避免制冷剂从切换管20两端的对接处泄漏或者阀腔14的制冷剂流入切换管20中,即要避免内漏。
在其中一实施例中,切换管20的第一端设有第一密封件70,切换管20的第二端设有第二密封件80;切换管20的第一端的管外壁上开设有第一密封槽71,切换管20的第二端的管端壁上开设第二密封槽81,第一密封件70和第二密封件80分别安装于第一密封槽71和第二密封槽81中,如此避免了第一密封件70和第二密封件80从切换管20上脱落失效。当然,在切换管20的第二端管外壁上也可以套设第二密封件80,或者开设第二密封槽81,将第二密封件80安装在第二密封槽81中,但是要保证第二密封件80始终抵接阀体10的内壁。
参见图14,第二密封件80抵接于平面18,第二密封件80能够加强第一通道24和第二通道142之间的密封性。在切换管20不转动时,第二密封件80能够密封第一通道24和第二通道142,防止内漏。
在其中一实施例中,切换管20的第一端设有第一密封件70,切换管20的第二端设有第二密封件80;设置第一接口11的阀体10内壁上开设有第一密封槽,第一密封件70安装于第一密封槽71,如此避免了第一密封件70从阀体10内壁上脱落失效。当然,也可以在第一切换流路13a和第二切换流路13b的外侧阀体10的内壁上分别设置第二密封槽81,使得切换管20在切换完成后和第一切换流路13a或第二切换流路13b连通时,第二密封件80始终和切换管20远离第一接口11的一端以及阀体10内壁抵接,防止内漏。
需要说明的是,第一密封槽71和第二密封槽81可以开设于阀体10内壁上,也可以开设于切换管20上,但需要设置于切换管20两端与流通口的对接处,只要能够起到防止制冷剂从切换管20两端的对接处泄漏即可,这里对第一密封槽71和第二密封槽81的具体开设位置不作限定。
本申请提供的流路切换阀100,通过切换管20在转动过程中与阀体10内壁之间保持持续抵接,从而防止切换管20在转动过程中阀腔14中产生高低压窜气;通过使得切换管20靠近第一接口11之间设置第一密封件70,切换管20远离第一接口11一端设置第二密封件80,从而避免切换管20与第一接口11、第一切换流路13a和第二切换流路13b之间的连接位置发生泄漏,降低了泄漏率。
请参阅图18-图21,流路切换阀100还包括多个接管组件90。多个接管组件90的一端分别与对应地第一接口11、第一切换流路13a及第二切换流路13b之间可拆卸连接。
在本申请中,通过设置接管组件90,并与各个连通孔之间可拆卸连接。一方面,便于阀体10与空调管路通过接管组件90相连接。可以根据空调管路的材质,将接管组件90设置成便于与空调管路连接的材质,如空调管路为铜管结构或者钢管结构,接管组件90可以设置成钢材质或者铜材质,便于阀体10与空调管路进行组装。
另一方面,便于接管组件90的安装、拆卸及更换,在接管组件90长时间使用产生磨损的情况下,能够将接管组件90从阀体10上拆卸下来,以对接管组件90进行维修或者更换,无需更换整个阀体10,从而能够大大降低成本,并且,省时省力。
请参阅图19,流路切换阀100还包括紧固件94。接管组件90包括接管91及转接件92。接管91与连通口140连通。转接件92位于接管91外,并与接管91连接。其中,紧固件94贯穿转接件92,并将转接件92与阀体10连接,以将接管91安装于阀体10上。
通过设置转接件92,且转接件92位于接管91外并与接管91连接,再通过紧固件94将转接件92安装于阀体10上,进而实现将接管91安装于阀体10上。结构简单,使接管91的安装与拆卸十分便利,便于接管91的维修及更换。
请参阅图19及图22,接管组件90靠近阀体10的一端开设有第二安装槽93。流路切换阀100还包括第三密封件95,第三密封件95安装于第二安装槽93内。其中,随紧固件94将接管组件90锁紧于阀体10上,第三密封件95能够受到挤压而被压紧于连通口140处。如此,能够加强整体结构的密封性能,第三密封件95能够对各个连通孔进行密封,防止出现泄漏的问题。
实施例一
请参阅图22,在本实施例中,接管91与转接件92为一体式结构;如此,便于加工,且安装方便。将转接件92通过紧固件94安装于阀体10上,便能够实现接管91与阀体10的安装。
进一步地,第二安装槽93开设于转接件92靠近阀体10的一侧面上。其中,随紧固件94将转接件92锁紧于阀体10上,第三密封件95能够受到挤压而被压紧于连通口140处。如此,能够加强密封性能,防止出现泄漏的问题。
实施例二
请参阅图23,在本实施例中,接管91与转接件92为分体式结构。第二安装槽93开设于接管91靠近阀体10的一侧面上,其中,随紧固件94将转接件92锁紧于阀体10上,第三密封件95能够受到挤压而被压紧于连通口140处。如此,能够加强密封性能,防止出现泄漏的问题。
进一步地,转接件92设有凹槽921。接管91包括台阶911,台阶911位于接管91靠近阀体10的一端,第二安装槽93开设于台阶911靠近阀体10的一侧面上。其中,随转接件92套设于接管91外,凹槽921能够抵接于台阶911上。
如此,接管91上设置台阶911,转接件92上设有凹槽921,便于接管91与转接件92之间的安装。台阶911能够对转接件92安装于接管91上的位置进行限位,并能够使转接件92与接管91快速安装,节省时间,安装便利。且接管91和转接件92的组合可适应性选择,增加接管组件90的多样性。
实施例三
在本实施例中,接管91和转接件92焊接;接管91靠近阀体10的端面可以和转接件92远离阀体10的端面焊接,或者接管91靠近阀体10的一端的外侧面和转接件92的内侧面焊接。
进一步地,第二安装槽93开设于转接件92靠近阀体10的一侧面上。其中,随紧固件94将转接件92锁紧于阀体10上,第三密封件95能够受到挤压而被压紧于连通口140处。如此,能够加强密封性能,防止出现泄漏的问题。
在本申请中,接管91的材质为铜材质或者钢材质。
因考虑到阀体10的整体重量,阀体10一般采用密度较小且强度好的铝合金材质加工而成,但空调管路一般采用铜管或钢管结构,铝合金材质的阀体10与铜管或钢管直接焊接存在困难,铝合金材质与铜材质及钢材质的熔点相差较大,且铝合金容易氧化,工艺难度较大。故,难以将铝合金材质的阀体10与空调管件进行连接。
具体地,接管91可以采用紫铜、黄铜或者钢材加工成型。可以根据空调管路的材质,选择合适的材质接管91。如当空调管路采用铜管结构时,接管91可以用紫铜或黄铜加工成型的接管,从而便于将阀体10与空调管路之间进行连接。当空调管路采用钢管结构时,接管91可以用钢材加工成型的接管,从而便于将阀体10与空调管路之间进行连接。从而大大降低工艺难度,便于实现连接组装。同时,由于接管组件90与阀体10可拆卸连接,也便于接管91的更换、维修及拆卸。
当然,接管91也可以为其他材质,只要与空调管路方便进行连接即可。
可选地,转接件92及紧固件94的材质为铝合金。采用铝合金材质能够降低成本,减少重量,提高整体结构的轻便性。
在本申请中,紧固件94可选为螺栓、螺钉,但也不仅限于上述部件,其他部件只要能够达到相同 或者相似的效果均可。
转接件92可选为法兰,当然,在其他实施例中,转接件92也可以为其他与法兰所起作用相同或者相似的部件。
本申请通过设置可拆卸连接的接管组件90,并且,接管91材质为铜材质或者钢材质。能够便于与空调管路进行连接,可以根据空调管路的材质,选择合适的材质接管91,从而降低工艺难度;并且,安装拆卸方便,便于维修及更换。
如图24所示,本申请还提供了一种空调系统200,包括压缩机201、第一换热器202、第二换热器203以及流路切换阀100,第一接口11和第二接口12分别连通于压缩机201的吸气口或排气口,第一切换流路13a和第二切换流路13b分别连通于第一换热器202或第二换热器203。该空调系统200也具有跟上述流路切换阀100同样的优点。
流路切换阀100的第一接管121连接于压缩机201出口或压缩机201进口,第二接管131连接于第一换热器202,第三接管141连接于第二换热器203,第四接管151连接于压缩机201进口或压缩机201出口。
当空调系统200处于制冷模式或除霜模式时,切换管20转动至第一切换流路13a,第一通道24连通第一接口11及第一换热器202,第二通道142连通第二接口12及第二切换流路13b。当第一接管121连接压缩机201进口时,第四接管151连接压缩机201出口,第一换热器202为蒸发器,第二换热器203为冷凝器,一路介质从第一切换流路13a进入第一通道24,从第一接口11流入压缩机201进口,另一路介质从第二接口12进入第二通道142,从第二切换流路13b进入第二换热器203;当第一接管121连接压缩机201出口时,第四接管151连接压缩机201进口,第一换热器202为冷凝器,第二换热器203为蒸发器,一路介质从第一接口11进入第一通道24,从第一切换流路13a流出至第一换热器202,另一路介质从第二切换流路13b进入第二通道142,从第二接口12进入压缩机201。
当空调系统200处于制热模式时,切换管20转动至第二切换流路13b,第一通道24连通第一接口11及第二换热器203,第二通道142连通第二接口12及第一切换流路13a。当第一接管121连接压缩机201进口时,第四接管151连接压缩机201出口,第一换热器202为冷凝器,第二换热器203为蒸发器,一路介质从第二切换流路13b进入第一通道24,从第一接口11进入压缩机201,另一路介质从第二接口12进入第一通道24,从第一切换流路13a流出至第一换热器202;当第一接管121连接压缩机201出口时,第四接管151连接压缩机201进口,第一换热器202为蒸发器,第二换热器203为冷凝器,一路介质从第一接口11进入第一通道24,从第二切换流路13b进入第二换热器203,另一路介质从第一切换流路13a进入第一通道24,从第二接口12流出至压缩机201。
在工作过程中,当空调系统200为制冷模式时,一路介质进入第二通道142,一路介质进入第一通道24;当需要切换至制热模式时,动力件43驱动第一齿轮312旋转,带动切换管20旋转,切换管20贴着阀体10的内壁旋转至第二切换流路13b,使得第一通道24与第二切换流路13b连通,第二通道142与第一切换流路13a连通,实现换向。在换向的过程中,切换管20的一端的端面贴合于阀体10内壁,从而缓解第一通道24和第二通道142之间窜气的问题,并且,第二通道142内的介质环绕切换管20的周向,切换管20周向受力一致,能够节省切换管20转动时受到的阻力。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。
以上实施方式的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施方式中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本申请,而并非用作为对本申请的限定,只要在本申请的实质精神范围内,对以上实施方式所作的适当改变和变化都落在本申请要求保护的范围内。

Claims (27)

  1. 一种流路切换阀,其特征在于,所述流路切换阀包括:
    阀体,其内部开设有阀腔,所述阀体上分别开设有与所述阀腔连通的连通口,所述连通口包括第一接口和至少一条切换流路;
    切换管,具有第一端和第二端,所述第一端与所述阀体转动连接,且与所述第一接口连接,所述第二端位于所述阀腔内;所述切换管能够转动,以使得所述第二端与任一所述切换流路连通。
  2. 根据权利要求1所述的流路切换阀,其中,所述连通口还包括:第二接口;
    所述流路切换阀还包括:
    动力放大机构,与所述第一端连接;
    驱动机构,与所述动力放大机构配合传动,所述驱动机构通过所述动力放大机构带动所述切换管转动,以使所述第二端与其中一条所述切换流路连通。
  3. 根据权利要求2所述流路切换阀,其中,所述动力放大机构包括配合件,所述配合件与所述第一端连接,所述驱动机构包括传动件,所述传动件向所述配合件施加传动力以配合传动,以使所述切换管转动;
    其中,所述传动力由圆周力和/或径向力组成。
  4. 根据权利要求3所述流路切换阀,其中,所述配合件为第一齿轮,所述传动件为第二齿轮,所述第一齿轮与所述第二齿轮啮合传动。
  5. 根据权利要求2或4所述流路切换阀,其中,所述阀体的侧壁上设置有支撑台,且所述支撑台位于所述阀体靠近所述第一接口的一端,所述动力放大机构位于所述支撑台上,以使所述支撑台支撑所述动力放大机构和所述切换管。
  6. 根据权利要求4所述流路切换阀,其中,所述第一齿轮为扇形齿轮。
  7. 根据权利要求3所述流路切换阀,其中,所述驱动机构还包括传动轴和动力件,所述传动轴一端与所述传动件连接,另一端与所述动力件连接,所述动力件用于驱动所述传动轴转动,所述传动轴带动所述传动件转动。
  8. 根据权利要求7所述流路切换阀,其中,所述动力件设置于所述阀体外;所述阀体上开设有连接通孔,所述连接通孔与所述传动轴对应,以使所述传动轴一端伸出所述连接通孔并与所述动力件连接;
    和/或所述阀体内开设有容置腔,所述动力件设置在所述容置腔内,所述容置腔与所述阀腔隔断。
  9. 根据权利要求1所述流路切换阀,其中,所述至少一条切换流路包括第一切换流路和第二切换流路,所述切换管在转动过程中与所述阀体内壁之间保持持续抵接;
    所述切换管的第一端和所述阀体内壁之间设有第一密封件,所述第一密封件与所述阀体内壁和所述切换管相抵接,及/或,所述切换管的第二端和所述阀体内壁之间设有第二密封件,所述第二密封件与所述阀体内壁和所述切换管相抵接。
  10. 根据权利要求9所述的流路切换阀,其中,所述切换管的第一端设有第一密封件,所述切换管的第二端设有第二密封件;
    所述切换管两端的管壁上分别开设有第一密封槽和第二密封槽,所述第一密封件和所述第二密封件分别安装于所述第一密封槽和所述第二密封槽中;和/或,
    靠近所述切换管两端的所述阀体内壁上开设有第一密封槽和第二密封槽,所述第一密封件和所述第二密封件分别安装于所述第一密封槽和所述第二密封槽中。
  11. 根据权利要求1所述的流路切换阀,其中,所述至少一条切换流路包括第一切换流路和第二切换流路;
    所述切换管内具有第一通道,所述阀体内具有与所述第一切换流路或所述第二切换流路连通的第二通道,所述第二通道环绕所述第一通道设置,在所述切换管转动的过程中,所述切换管远离所述第一接口的端面贴合于所述阀体的内壁。
  12. 根据权利要求11所述的流路切换阀,其中,所述第一切换流路与所述第二切换流路位于所述阀体的同一端,且所述第一接口与所述第一切换流路及所述第二切换流路相对设置。
  13. 根据权利要求11所述的流路切换阀,其中,所述阀体内部的底壁为平面,所述第一切换流路 与所述第二切换流路开设于所述平面。
  14. 根据权利要求2所述流路切换阀,其中,所述流路切换阀还包括第一转动件,所述第一转动件套设在所述第一端,且位于所述切换管和所述阀腔的腔壁之间,以使所述切换管通过所述第一转动件与所述阀体转动连接。
  15. 根据权利要求9所述的流路切换阀,其中,所述切换管的第二端设有转动部,所述转动部连接于所述阀体内壁,所述切换管能够绕所述转动部转动以切换连通所述第一切换流路和所述第二切换流路。
  16. 根据权利要求15所述的流路切换阀,其中,所述转动部上设有第二转动件,所述第二转动件的内圈套接于所述转动部的外壁上,所述第二转动件的外圈与所述阀体内壁连接。
  17. 根据权利要求1所述的流路切换阀,其中,所述至少一条切换流路包括第一切换流路和第二切换流路,所述切换管安装于所述阀腔;
    所述流路切换阀还包括:多个接管组件,多个所述接管组件的一端分别与对应地所述第一接口、所述第一切换流路及所述第二切换流路之间可拆卸连接。
  18. 根据权利要求17所述的流路切换阀,其中,所述流路切换阀还包括紧固件,所述接管组件包括:
    接管,所述接管与所述连通口连通;
    转接件,所述转接件位于所述接管外,并与所述接管连接;
    其中,所述紧固件贯穿所述转接件,并将所述转接件与所述阀体连接,以将所述接管安装于所述阀体上。
  19. 根据权利要求18所述的流路切换阀,其中,所述接管与所述转接件为一体式结构。
  20. 根据权利要求18所述的流路切换阀,其中,所述接管组件靠近所述阀体的一端开设有第二安装槽,所述流路切换阀还包括:
    第三密封件,所述第三密封件安装于所述第二安装槽内;
    其中,随所述紧固件将所述接管组件锁紧于所述阀体上,所述第三密封件能够受到挤压而被压紧于所述连通口处。
  21. 根据权利要求20所述的流路切换阀,其中,所述第二安装槽开设于所述转接件靠近所述阀体的一侧面上;和/或,
    所述第二安装槽开设于所述接管靠近所述阀体的一侧面上。
  22. 根据权利要求20所述的流路切换阀,其中,所述转接件设有凹槽;所述接管包括:
    台阶,所述台阶位于所述接管靠近所述阀体的一端,所述第二安装槽开设于所述台阶靠近所述阀体的一侧面上;
    其中,随所述转接件套设于所述接管外,所述凹槽能够抵接于所述台阶上。
  23. 根据权利要求18所述的流路切换阀,其中,所述接管靠近所述阀体的一端与所述转接件远离所述阀体的一端焊接连接;
    或者,所述接管靠近所述阀体的一端的外侧面与所述转接件的内侧面焊接连接。
  24. 根据权利要求18所述的流路切换阀,其中,所述接管的材质为铜材质或者钢材质;和或,
    所述转接件及所述紧固件的材质为铝合金。
  25. 一种空调系统,其特征在于,包括如权利要求1-24任意一项所述的流路切换阀。
  26. 根据权利要求25所述的空调系统,其中,还包括压缩机、第一换热器和第二换热器,所述阀体上还开设有与所述阀腔相连通且开设于所述阀体的侧壁的第二接口;
    所述第一接口和所述第二接口分别连通于所述压缩机的吸气口或排气口,第一切换流路和第二切换流路分别连通于所述第一换热器或所述第二换热器。
  27. 根据权利要求25所述的空调系统,其中,当所述空调系统处于制冷模式或除霜模式时,所述切换管连通于所述第一切换流路,所述第二切换流路通过第二通道与所述第二接口连通;当所述空调系统处于制热模式时,所述切换管连通于所述第二切换流路,所述第一切换流路通过所述第二通道与所述第二接口连通。
PCT/CN2022/137978 2021-12-10 2022-12-09 流路切换阀及空调系统 WO2023104191A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22903608.2A EP4446629A1 (en) 2021-12-10 2022-12-09 Flow path switching valve and air conditioner system

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202123126059.XU CN217381733U (zh) 2021-12-10 2021-12-10 流路切换阀
CN202123115214.8 2021-12-10
CN202123123646.3U CN216742981U (zh) 2021-12-10 2021-12-10 切换阀及其制冷系统
CN202123134684.9U CN216742970U (zh) 2021-12-10 2021-12-10 流路切换装置及空调系统
CN202111510648.X 2021-12-10
CN202111510648.XA CN116255478A (zh) 2021-12-10 2021-12-10 切换阀及其制冷系统
CN202123126059.X 2021-12-10
CN202123134684.9 2021-12-10
CN202123115214.8U CN216742980U (zh) 2021-12-10 2021-12-10 换向阀及具有其的空调系统
CN202123123646.3 2021-12-10

Publications (1)

Publication Number Publication Date
WO2023104191A1 true WO2023104191A1 (zh) 2023-06-15

Family

ID=86729683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137978 WO2023104191A1 (zh) 2021-12-10 2022-12-09 流路切换阀及空调系统

Country Status (2)

Country Link
EP (1) EP4446629A1 (zh)
WO (1) WO2023104191A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2527735A1 (fr) * 1982-05-31 1983-12-02 Mkt Tehtaat Oy Moyen de distribution d'un courant
CN201162853Y (zh) * 2008-02-29 2008-12-10 邱江 管路切换阀
CN207634745U (zh) * 2017-12-11 2018-07-20 珠海格力电器股份有限公司 一种回转式四通换向阀和空调器
CN112728159A (zh) * 2021-04-06 2021-04-30 烟台佳仕阀泵有限公司 一种平面密封低流阻换向阀
CN213575714U (zh) * 2020-08-27 2021-06-29 特灵空调系统(中国)有限公司 换向阀和换热系统
CN216742980U (zh) * 2021-12-10 2022-06-14 杭州赛富特设备有限公司 换向阀及具有其的空调系统
CN216742981U (zh) * 2021-12-10 2022-06-14 杭州赛富特设备有限公司 切换阀及其制冷系统
CN216742970U (zh) * 2021-12-10 2022-06-14 杭州赛富特设备有限公司 流路切换装置及空调系统
CN217381733U (zh) * 2021-12-10 2022-09-06 杭州赛富特设备有限公司 流路切换阀

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2527735A1 (fr) * 1982-05-31 1983-12-02 Mkt Tehtaat Oy Moyen de distribution d'un courant
CN201162853Y (zh) * 2008-02-29 2008-12-10 邱江 管路切换阀
CN207634745U (zh) * 2017-12-11 2018-07-20 珠海格力电器股份有限公司 一种回转式四通换向阀和空调器
CN213575714U (zh) * 2020-08-27 2021-06-29 特灵空调系统(中国)有限公司 换向阀和换热系统
CN112728159A (zh) * 2021-04-06 2021-04-30 烟台佳仕阀泵有限公司 一种平面密封低流阻换向阀
CN216742980U (zh) * 2021-12-10 2022-06-14 杭州赛富特设备有限公司 换向阀及具有其的空调系统
CN216742981U (zh) * 2021-12-10 2022-06-14 杭州赛富特设备有限公司 切换阀及其制冷系统
CN216742970U (zh) * 2021-12-10 2022-06-14 杭州赛富特设备有限公司 流路切换装置及空调系统
CN217381733U (zh) * 2021-12-10 2022-09-06 杭州赛富特设备有限公司 流路切换阀

Also Published As

Publication number Publication date
EP4446629A1 (en) 2024-10-16

Similar Documents

Publication Publication Date Title
US10330359B2 (en) Rotary four-way reversing valve with low pressure drop and low leakage
KR101640253B1 (ko) 다방향 전환 밸브
JP5135353B2 (ja) ローターと該ローターを備えた圧縮機要素
US7806673B2 (en) Gear pump
US7670121B2 (en) Spherical fluid machines
US9234684B2 (en) Refrigerant passage change-over valve and air conditioner using the same
US20160177954A1 (en) Multi-stage centrifugal compressor and air conditioning unit
JP2012031877A (ja) 多方向切換弁
WO2023104191A1 (zh) 流路切换阀及空调系统
CN219639528U (zh) 一种换向阀防阻结构和换向阀
CN216742981U (zh) 切换阀及其制冷系统
CN217381733U (zh) 流路切换阀
CN216742980U (zh) 换向阀及具有其的空调系统
JP5404456B2 (ja) 多方切換弁
CN221121027U (zh) 阀芯、切换阀及空调系统
WO2024179251A1 (zh) 一种换向阀防阻结构和换向阀
CN216078429U (zh) 用于制冷系统的四通换向阀
CN116255478A (zh) 切换阀及其制冷系统
JP4294212B2 (ja) 高圧スクリュー圧縮装置
CN216112321U (zh) 用于制冷系统的四通换向阀
CN219549681U (zh) 一种换向阀防阻结构和换向阀
US20240288203A1 (en) Four-way reversing valve for a high capacity reversible heat pump compressor
CN218935360U (zh) 一种船舶中央冷却器进行反冲洗用的双流向换向阀装置
CN212564517U (zh) 四通阀和空调器
JP2003056474A (ja) ポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903608

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022903608

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022903608

Country of ref document: EP

Effective date: 20240710