WO2023103829A1 - 上行功率的指示方法、装置、设备以及存储介质 - Google Patents

上行功率的指示方法、装置、设备以及存储介质 Download PDF

Info

Publication number
WO2023103829A1
WO2023103829A1 PCT/CN2022/134828 CN2022134828W WO2023103829A1 WO 2023103829 A1 WO2023103829 A1 WO 2023103829A1 CN 2022134828 W CN2022134828 W CN 2022134828W WO 2023103829 A1 WO2023103829 A1 WO 2023103829A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
reference point
power
value
uplink
Prior art date
Application number
PCT/CN2022/134828
Other languages
English (en)
French (fr)
Inventor
王瀚庆
王潇涵
金黄平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023103829A1 publication Critical patent/WO2023103829A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • H04W28/0221Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices power availability or consumption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave

Definitions

  • the present application relates to the technical field of communications, and in particular to a method, device, device and storage medium for indicating uplink power.
  • the network device can indicate the uplink transmission to the terminal device through the 2-bit field in the downlink control information (DCI)
  • DCI downlink control information
  • the power adjustment amount indicates one of ⁇ -1, 0, 1, 3 ⁇ dBm, so that the terminal device determines the power value of uplink transmission based on the power adjustment amount.
  • the network device can only indicate four power adjustment amounts based on the above indication method, so that there is a certain gap between the power adjustment amount indicated by the network device and the adjustment step corresponding to the optimal uplink transmission power, which affects the accuracy of power indication.
  • new data services such as augmented reality, real-time monitoring, and high-definition video
  • extremely high requirements are placed on the uplink transmission capabilities of mobile communication systems.
  • mobile communication systems are required The system supports more uplink transmission streams and introduces multi-station cooperation. In this case, it is inevitable to make the interference environment of uplink transmission more complicated, and high-precision uplink power control helps to suppress the near-far effect and multi-user interference. Therefore, how to indicate the uplink transmission power of the terminal equipment with high precision is an urgent problem to be solved at present.
  • the embodiments of the present application provide a method, device, device and storage medium for indicating uplink power, in order to realize accurate indication of uplink transmission power.
  • an embodiment of the present application provides a method for indicating uplink power, the method includes: a terminal device receives indication information from a first reference point of a network device, and the first reference point is used to divide M sub-frequency bands into n first sub-bands and M-n second sub-bands, M>n>0, and both M and n are integers, the indication information of the first reference point is used to indicate the value of the first reference point, the first The value of the reference point is used to indicate n; the terminal device determines the power value according to the value of the first reference point and M downlink reference signals, and the M downlink reference signals are respectively received by the terminal device on the M sub-frequency bands .
  • the network device indicates the power value of the terminal device through the indication information of the first reference point and the M downlink reference signals respectively transmitted in the M sub-bands, compared with the existing In the technology, only four discrete power adjustments can be indicated through 2 bits of the DCI. This solution realizes high-precision indication of the power value.
  • the terminal device determines the power value according to the value of the first reference point and the M downlink reference signals, including: the terminal device determines the power value according to the value of the first reference point and the M downlink reference signals Reference signal, determine the first equivalent channel power and the second equivalent channel power, the first equivalent channel power is the sum of the equivalent channel powers of the downlink reference signals carried on n first sub-frequency bands, the second equivalent channel power The effective channel power is the sum of the equivalent channel powers of the downlink reference signals carried on the M sub-frequency bands; the terminal device determines the power value according to the ratio of the first equivalent channel power to the second equivalent channel power.
  • the first equivalent channel power and the second equivalent channel power are determined according to the value of the first reference point, and then the ratio indicated by the network device can be determined according to the ratio of the two. power value.
  • the power value is a power value for uplink transmission.
  • the terminal device can determine the power value for uplink transmission based on the indication information of the first reference point of the network device and the M downlink reference signals.
  • the power value is a power adjustment amount for uplink transmission.
  • the terminal device can determine the power adjustment amount for uplink transmission based on the indication information of the first reference point of the network device and the M downlink reference signals, so that the terminal device can pass the power
  • the adjustment amount determines the power value of uplink transmission.
  • the method further includes: the terminal device receiving first indication information from the network device, where the first indication information is used to indicate that the power value is the power value of uplink transmission or the power value of uplink transmission power adjustment.
  • the method further includes: the terminal device respectively receiving M downlink reference signals from the network device on the M sub-frequency bands.
  • the terminal equipment can determine the equivalent channel power of the downlink reference signal transmitted on different sub-bands, and it is possible to determine the power value indicated by the network equipment.
  • the embodiment of the present application provides a method for indicating uplink power, the method includes: a network device determines a first reference point, and the first reference point is used to divide M sub-bands into n first sub-bands and M-n second sub-band, M>n>0, and both M and n are integers; the network device sends the indication information of the first reference point to the terminal device, and the indication information of the first reference point is used to indicate the first reference point The value of the point, the value of the first reference point is used to indicate n, and the M downlink reference signals are respectively sent by the network device on the M sub-frequency bands.
  • the network device determining the first reference point includes: the network device converting the power value into a first value y, where y is greater than 0 and less than 1; the network device according to the first value y, The first reference point is determined.
  • the method further includes: the network device determining first uplink precoding information of each sub-band in the M sub-frequency bands according to the first reference point; The downlink channel information and the first uplink precoding information of each sub-frequency band perform downlink precoding on the M downlink reference signals; the network device sends the M downlink reference signals on the M sub-frequency bands respectively.
  • the first uplink precoding information of the frequency subband is based on the equivalent channel power of the n first frequency subbands and the first Two uplink precoding information determined; when the sub-frequency band is the second sub-frequency band, the first uplink pre-coding information of the sub-frequency band is based on the equivalent channel power of the M-n second sub-frequency bands and the second sub-frequency band The uplink precoding information is determined; wherein, the second uplink precoding information is obtained based on uplink reference signal detection.
  • the downlink channel information of the sub-frequency band is a matrix composed of downlink channel information corresponding to p terminal devices respectively
  • the first uplink precoding information of the sub-frequency band is the matrix corresponding to the p terminal devices respectively.
  • a matrix composed of the first uplink precoding information, p is a positive integer.
  • the power value is a power value for uplink transmission.
  • the power value is a power adjustment amount for uplink transmission.
  • the method further includes: the network device sending first indication information to the terminal device, where the first indication information is used to indicate that the power value is a power value for uplink transmission or a power adjustment for uplink transmission quantity.
  • the embodiment of the present application provides a communication device, including: a transceiver unit, configured to receive indication information from a first reference point of a network device, and the first reference point is used to divide M sub-frequency bands into n The first sub-band and M-n second sub-bands, M>n>0, and both M and n are integers, the indication information of the first reference point is used to indicate the value of the first reference point, the first reference point The value of is used to indicate n; the processing unit is configured to determine the power value according to the value of the first reference point and M downlink reference signals, and the M downlink reference signals are respectively received by the terminal device on the M sub-frequency bands .
  • the processing unit is specifically configured to: determine the first equivalent channel power and the second equivalent channel power according to the value of the first reference point and the M downlink reference signals, and the first The equivalent channel power is the sum of the equivalent channel powers of the downlink reference signals carried on the n first sub-frequency bands, and the second equivalent channel power is the sum of the equivalent channel powers of the downlink reference signals carried on the M sub-frequency bands; The power value is determined according to the ratio of the first equivalent channel power to the second equivalent channel power.
  • the power value is a power value for uplink transmission.
  • the power value is a power adjustment amount for uplink transmission.
  • the transceiver unit is further configured to: receive first indication information from the network device, where the first indication information is used to indicate that the power value is a power value for uplink transmission or a power value for uplink transmission Adjustment amount.
  • the transceiving unit is further configured to: respectively receive M downlink reference signals from the network device on the M sub-frequency bands.
  • the embodiment of the present application provides a communication device, including: a processing unit configured to determine a first reference point, and the first reference point is used to divide M sub-bands into n first sub-bands and M-nth sub-bands Two sub-frequency bands, M>n>0, and both M and n are integers; the transceiver unit is configured to send the indication information of the first reference point to the terminal device, and the indication information of the first reference point is used to indicate the first The value of the reference point, the value of the first reference point is used to indicate n, and the M downlink reference signals are respectively sent by the network device on the M sub-frequency bands.
  • the processing unit is specifically configured to: convert the power value into a first value y, where y is greater than 0 and less than 1; and determine the first reference point according to the first value y.
  • the processing unit is further configured to: determine the first uplink precoding information of each sub-band in the M sub-bands according to the first reference point; The downlink channel information and the first uplink precoding information perform downlink precoding on the M downlink reference signals; and send the M downlink reference signals on the M sub-frequency bands respectively.
  • the first uplink precoding information of the frequency subband is based on the equivalent channel power of the n first frequency subbands and the first Two uplink precoding information determined; when the sub-frequency band is the second sub-frequency band, the first uplink pre-coding information of the sub-frequency band is based on the equivalent channel power of the M-n second sub-frequency bands and the second sub-frequency band of the sub-frequency band
  • the uplink precoding information is determined; wherein, the second uplink precoding information is obtained based on uplink reference signal detection.
  • the downlink channel information of the sub-frequency band is a matrix composed of downlink channel information corresponding to p terminal devices respectively
  • the first uplink precoding information of the sub-frequency band is the matrix corresponding to the p terminal devices respectively.
  • a matrix composed of the first uplink precoding information, p is a positive integer.
  • the power value is a power value for uplink transmission.
  • the power value is a power adjustment amount for uplink transmission.
  • the transceiver unit is further configured to: send first indication information to the terminal device, where the first indication information is used to indicate that the power value is a power value for uplink transmission or a power adjustment amount for uplink transmission .
  • the embodiment of the present application provides a communication device, including: a processor and a memory, the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, to execute the computer program as described in the first aspect, The method in the second aspect or each possible implementation manner.
  • the embodiment of the present application provides a chip, including: a processor, configured to call and execute computer instructions from the memory, so that the device installed with the chip executes the first aspect, the second aspect, or each possible implementation methods in methods.
  • the embodiments of the present application provide a computer-readable storage medium for storing computer program instructions, and the computer program causes a computer to execute the method in the first aspect, the second aspect, or each possible implementation manner.
  • an embodiment of the present application provides a computer program product, including computer program instructions, which cause a computer to execute the method in the first aspect, the second aspect, or each possible implementation manner.
  • the embodiment of the present application provides a device, including a logic circuit and an input-output interface, wherein the input-output interface is used to receive signals from other communication devices other than the device and transmit them to the logic circuit or transfer signals from The signal of the logic circuit is sent to other communication devices other than the device, and the logic circuit is used to execute code instructions to implement the method in the first aspect, the second aspect or each possible implementation manner.
  • the embodiment of the present application provides a terminal, including the apparatus in the third aspect, the fourth aspect, or each possible implementation manner.
  • FIG. 1 is a schematic structural diagram of a mobile communication system applied in an embodiment of the present application
  • FIG. 2 is an interactive schematic diagram of information transmission provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a communication method 300 provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a reference point provided by the embodiment of the present application.
  • Fig. 5a is a schematic diagram of a transformation function provided by an embodiment of the present application.
  • Fig. 5b is a schematic diagram of another transformation function provided by the embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Fig. 7 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a mobile communication system applied by an embodiment of the present application.
  • the mobile communication system includes a core network device 110 , a network device 120 and at least one terminal device (such as terminal device 130 and terminal device 140 in FIG. 1 ).
  • the terminal equipment is connected to the network equipment in a wireless manner, and the network equipment is connected to the core network equipment in a wireless or wired manner.
  • Core network equipment and network equipment can be independent and different physical equipment, or the functions of the core network equipment and the logical functions of the network equipment can be integrated on the same physical equipment, or a physical equipment can integrate part of the core network equipment. device functions and functions of some network devices.
  • Terminal equipment can be fixed or mobile.
  • FIG. 1 is only a schematic diagram.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the embodiments of the present application do not limit the number of core network devices, network devices and terminal devices included in the mobile communication system
  • the network device is the access device that the terminal device accesses the mobile communication system wirelessly, and it can be a base station NodeB, an evolved base station eNodeB, a base station in the NR mobile communication system, a base station in the future mobile communication system, or a WiFi system access nodes, etc., the embodiments of the present application do not limit the specific technology and specific equipment form adopted by the network equipment.
  • the terminal device may also be called a terminal terminal, user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT) and so on.
  • Terminal equipment can be mobile phone, tablet computer (Pad), computer with wireless transceiver function, virtual reality (Virtual Reality, VR) terminal equipment, augmented reality (Augmented Reality, AR) terminal equipment, industrial control (industrial control) ), wireless terminals in self driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • Network equipment and terminal equipment can be deployed on land, including indoors or outdoors, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the network device and the terminal device.
  • Communication between network devices and terminal devices and between terminal devices can be performed through licensed spectrum, or through unlicensed spectrum, or through both licensed spectrum and unlicensed spectrum communication.
  • the communication between network equipment and terminal equipment and between terminal equipment can be carried out through the frequency spectrum below 6G, the frequency spectrum above 6G can also be used for communication, and the frequency spectrum below 6G and frequency spectrum above 6G can also be used for communication at the same time.
  • the embodiments of the present application do not limit the frequency spectrum resources used between the network device and the terminal device.
  • the terminal device determines the power value P of uplink transmission based on its own maximum transmit power, nominal power of the cell, path loss, modulation and coding scheme (modulation and coding scheme, MCS) and the number of radio resources, etc., as shown in the following formula ( 1):
  • P CMAX represents the maximum transmission power of the terminal equipment
  • L represents the number of subbands occupied by uplink transmission
  • P 0 represents the expected receiving power level of the network device side
  • represents the path loss compensation factor
  • PL represents the estimation of the uplink path loss
  • ⁇ TF represents the power offset value of different MCS formats relative to the transmission power of the reference MCS format
  • f(i) represents the transmission power control (Transmit Power Control, TPC) adjustment amount of the terminal equipment, that is, the power adjustment of uplink transmission
  • TPC Transmission Power Control
  • the amount can be carried in the TPC field of the uplink scheduling grant of the DCI in the physical downlink control channel (Physical Downlink Control Channel, PDCCH).
  • the network device Based on the previously measured uplink received power, the network device instructs the adjustment step size f(i) through a power control command, so that the terminal device adjusts the transmit power based on f(i). 0-1) carried in the TPC field.
  • Each power control command contains 2 bits, corresponding to 4 different adjustment steps, such as ⁇ -1,0,1,3 ⁇ dBm.
  • the power adjustment amount f(i) indicated by the power control command sent by the network device to the terminal device is difficult to accurately indicate the uplink transmission power.
  • the uplink power indication scheme provided by this application introduces a "first reference point", and indicates continuous power values based on the value of the first reference point and M downlink reference signals, so as to achieve high precision of power values instructions.
  • predefinition can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices). Do limited.
  • Pre-configuration can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices), and can also be pre-configured through signaling, such as network devices through Signaling pre-configuration, etc., the present application does not limit the specific implementation.
  • the "protocol” involved in this embodiment of the application may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in this application.
  • the network device determines the first reference point from the preset multiple reference Selecting the first reference point among points is an expression with the same meaning.
  • the terminal device may be, for example, any terminal device in the communication system shown in FIG. 1 , such as the terminal device 130 or terminal device 140 .
  • the network device may be the network device 120 in the communication system shown in FIG. 1 .
  • the terminal equipment shown in the following embodiments can also be replaced with components in the terminal equipment, such as chips, chip systems, or other functional modules that can call programs and execute programs
  • network equipment can also be replaced with components in network equipment, such as Chip, chip system or other functional modules that can call programs and execute programs.
  • Fig. 2 is a schematic diagram of interaction of information transmission provided by the embodiment of the present application.
  • the network device 210 includes a radio resource control (radio resource control, RRC) signaling interaction module 211, a media access control (Media Access Control, MAC) signaling interaction module 212 and a physical layer (physical layer, PHY) signaling interaction module 213;
  • the terminal device 220 may include an RRC signaling interaction module 221, a MAC signaling interaction module 222, and a PHY signaling and data interaction module 223.
  • RRC radio resource control
  • MAC media access control
  • PHY physical layer
  • the RRC signaling interaction module 211 and the RRC signaling interaction module 221 transmit RRC signaling; the MAC signaling interaction module 212 and the MAC signaling interaction module 222 transmit media access control control elements (media access control control element , MAC-CE) signaling; PHY signaling and data interaction module 213 sends downlink control signaling (such as PDCCH) and/or downlink data (such as physical downlink shared channel (physical downlink shared channel) to PHY signaling and data interaction module 223 , PDSCH)), PHY signaling and data interaction module 223 sends uplink control signaling (such as physical uplink control channel (physical uplink control channel, PUCCH)) and/or uplink data (such as physical uplink control channel, PUCCH) to PHY signaling and data interaction module 213 Uplink shared channel (physical uplink shared channel, PUSCH)).
  • downlink control signaling such as PDCCH
  • downlink data such as physical downlink shared channel (physical downlink shared channel)
  • the terminal device and the network device may perform signaling and/or data transmission, specifically, at least one of the following may be included:
  • the terminal device sends an uplink reference signal (such as a sounding reference signal (SRS)) to the network device for channel measurement;
  • an uplink reference signal such as a sounding reference signal (SRS)
  • the network device sends signaling (such as DCI) to the terminal device to indicate uplink transmission;
  • signaling such as DCI
  • the network device sends a downlink reference signal (such as a channel state information reference signal (CSI-RS)) to the terminal device for uplink power control indication;
  • a downlink reference signal such as a channel state information reference signal (CSI-RS)
  • the terminal device receives the signaling (such as DCI) and the downlink reference signal (such as CSI-RS) sent by the network device, determines the uplink transmission power according to the channel measurement result and the signaling instruction, and sends uplink data.
  • the signaling such as DCI
  • the downlink reference signal such as CSI-RS
  • FIG. 3 is a schematic flowchart of a communication method 300 provided by an embodiment of the present application. As shown in FIG. 3 , the method 300 may include part or all of the processes in the following S310 and S340 . Each step in the method 300 will be described below.
  • the network device determines a first reference point, where the first reference point is used to divide M sub-frequency bands into n first sub-frequency bands and M-n second sub-frequency bands, where M>n>0, and both M and n are integers .
  • the network device sends indication information of the first reference point to the terminal device, where the indication information of the first reference point is used to indicate a value of the first reference point, and the value of the first reference point is used to indicate n.
  • the terminal device receives the indication information of the first reference point from the network device.
  • the network device sends M downlink reference signals on the M sub-frequency bands respectively.
  • the terminal device respectively receives M downlink reference signals from the network device on the M sub-frequency bands.
  • the terminal device determines a power value according to the value of the first reference point and the M downlink reference signals.
  • the M sub-frequency bands may be sub-frequency bands occupied by the network device for sending downlink reference signals (such as CSI-RS) to the terminal device.
  • downlink reference signals such as CSI-RS
  • the first frequency sub-band is one type of frequency sub-band among the M frequency sub-bands
  • the second frequency sub-band is another type of frequency sub-band among the M frequency sub-bands.
  • the first reference point divides the M sub-bands into the first n first sub-bands and the last M-n second sub-bands according to the frequency domain positions of the sub-bands, or the first reference point divides the sub-bands according to the frequency domain positions of the sub-bands
  • the M frequency subbands are divided into the first M-n second frequency subbands and the last n first frequency subbands.
  • the downlink reference signal sent by the network device to the terminal device occupies 10 sub-frequency bands. After the 10 sub-frequency bands are divided by the first reference point, the first 4 sub-frequency bands are the first sub-frequency bands, and the last 6 sub-frequency bands are the second sub-frequency bands. frequency band.
  • the value of the first reference point is related to n, for example, the value of the first reference can be the ratio of n to M, n or M-n.
  • multiple reference points are preset for the M sub-bands, and the number of first sub-bands corresponding to each reference point is different, or in other words, the first sub-band corresponding to each reference point occupies the M sub-bands
  • the scale is different, that is, the value of each reference point is different.
  • the number of the first sub-band corresponding to reference point 1 is 2, or the proportion of the first sub-band corresponding to reference point 1 in the M sub-bands is 0.2, that is, the value of reference point 1 2 or 0.2, similarly, the value of reference point 2 is 4 or 0.4, the value of reference point 3 is 6 or 0.6, and the value of reference point 4 is 8 or 0.8.
  • the network device determines the first reference point, that is, determines the number n of the first sub-frequency bands, or the proportion of the first sub-frequency band in the M sub-frequency bands (ie, the ratio of n to M).
  • the network device may determine the first reference point from multiple preset reference points.
  • the multiple reference points may be the four reference points in FIG. 4 above.
  • the network device may determine the first reference point according to the power value of the uplink transmission to be indicated or the adjustment amount of the uplink transmission power, or select the first reference point from multiple preset reference points.
  • the corresponding rule between the first reference point and n may be determined by the terminal device, or stipulated by a protocol, or semi-statically indicated in a candidate rule through RRC signaling.
  • the power value of uplink transmission may be obtained based on uplink reference signal detection.
  • the terminal device can send an uplink reference signal (such as SRS) to the network device, and the network device receives the uplink reference signal, and performs channel estimation based on the uplink reference signal to obtain the uplink channel information of the terminal device, and then according to the uplink channel information of the terminal device information to calculate the power value ⁇ UL of uplink transmission; further, the network device can use the power value ⁇ UL of uplink transmission and the power reference value Determine the adjustment amount ⁇ UL of the uplink transmission power, where the power reference value It can be the open-loop power control result or the uplink transmission power indicated last time; for example, the adjustment amount ⁇ UL of the uplink transmission power can satisfy the following formula (2):
  • the power value mentioned below may be the power value of the above-mentioned uplink transmission or the adjustment amount of the uplink transmission power.
  • the network device may convert the power value into a first value y, where y is greater than 0 and less than 1, and determine the first reference point according to the first value y.
  • the transformation function f( ⁇ ) may be preset, for example, preset in the network device, or may be preconfigured, for example, the network device semi-statically indicates to the terminal device through RRC signaling, or may be defined by a protocol.
  • the transformation function f( ⁇ ) can be specified in two forms as shown in Figure 5a or Figure 5b, wherein, in Figure 5a The transformation function linearly transforms the value on the interval [-S,S] to the interval (0,1), and its expression can be written as The transform function in Fig. 5b uniformly quantizes the values on the interval [-S, S] by several bits.
  • the network device may determine the first reference point according to the first value y, for example, the network device may select a reference point closest to the first value y from multiple preset reference points as the first reference point.
  • the values from reference point 1 to reference point 4 shown in Figure 4 are 0.2, 0.4, 0.6, 0.8, wherein the value of reference point 2 is closest to the first value y, so the network device determines that the first reference point is reference point 2 in FIG. 4 .
  • the network device may send first indication information to the terminal device, where the first indication information is used to indicate that the power value indicated by the network device is a power value for uplink transmission or a power adjustment amount for uplink transmission.
  • the indication information of the first reference point may be used to indicate the value of the first reference point.
  • the values of reference point 1 to reference point 4 in Figure 4 can be indicated by 2-bit indication information, such as the value of reference point 1 can be indicated by 00, the value of reference point 2 can be indicated by 01, and the value of reference point 3 can be indicated by 10 indicates that the value of reference point 4 can be indicated by 11. If it is determined that the first reference point is reference point 2, the indication information of the first reference point is 01.
  • the indication information of the first reference point being 2 bits is only an example, and does not constitute any limitation to the present application.
  • the indication information of the first reference point can be 1 bit, and the first reference point can be one of two preset reference points, and the indication information of the first reference point can indicate the preset One of the two preset reference points; for another example, the indication information of the first reference point may be 3 bits, and the first reference point may be one of eight preset reference points.
  • the indication information of the first reference point may be carried in the DCI.
  • the indication information of the first reference point is 2 bits
  • the value of the first reference point is indicated by 2 bits in the uplink scheduling grant TPC field in the DCI.
  • the network device determines the first reference point corresponding to a terminal device and sends the indication information of the first reference point to the terminal device as an example for illustration.
  • the network device may determine the first reference point corresponding to each terminal device among the multiple terminal devices, and send indication information of the first reference point to the multiple terminal devices respectively.
  • the network device implements the indication of the power value by combining the indication information of the first reference point and the M downlink reference signals.
  • the first reference point and the indication information of the first reference point are described above, and the M downlink reference signals are described below.
  • the network device may perform downlink precoding on the M downlink reference signals according to downlink channel information and first uplink precoding information of each sub-band in the M sub-bands.
  • the downlink precoding P DL,m of the downlink reference signal corresponding to the mth sub-band in the M sub-bands satisfies the following formula (3):
  • H DL,m is the downlink channel information corresponding to the mth sub-band, is the first uplink precoding information corresponding to the mth sub-band.
  • the first uplink precoding information of each sub-band may be determined by the network device according to the first reference point and the second uplink precoding information.
  • the first uplink precoding information of the mth subband It is determined based on the equivalent channel power ⁇ pre of the n first sub-bands and the second uplink precoding information P UL,m of the m-th sub-band, and the second uplink precoding information P UL,m is based on the uplink reference signal (eg SRS) detected.
  • the uplink reference signal eg SRS
  • the first uplink precoding information Satisfy the following formula (4):
  • the equivalent channel power ⁇ pre of the first sub-band satisfies the following formula (5):
  • Q is the sum of the powers of M downlink reference signals
  • q i is the ith reference point among the preset multiple reference points
  • round(Mq i ) is equal to n
  • the round function is used to obtain rounding The result of the operation.
  • the first uplink precoding information of the m-th sub-band It is determined based on the equivalent channel power ⁇ post of the Mn second sub-bands and the second uplink precoding information P UL,m of the m-th sub-band, and the second uplink precoding information P UL,m is based on the uplink reference signal (eg SRS) detected.
  • the uplink reference signal eg SRS
  • the first uplink precoding information Satisfy the following formula (6):
  • the downlink channel information may be obtained based on uplink reference signal (such as SRS) detection.
  • uplink reference signal such as SRS
  • the network device may send the M downlink reference signals after downlink precoding on the M sub-frequency bands respectively.
  • the network device may respectively send M downlink reference signals corresponding to each terminal device to p terminal devices, and send M downlink reference signals to p terminal devices through M sub-frequency bands, that is, for each terminal device
  • the M sub-frequency bands used to carry the downlink reference signal are the same.
  • the downlink precoding P DL,m of the downlink reference signal corresponding to the mth sub-band among the M sub-bands satisfies the following formula (8):
  • the downlink channel information of the mth sub-band is a matrix composed of downlink channel information corresponding to p terminal devices respectively
  • the first uplink precoding information of the mth sub-band is the first uplink precoding information corresponding to p terminal devices respectively composed matrix.
  • the downlink channel matrices corresponding to the p terminal devices are concatenated in the vertical direction to obtain the downlink channel information matrices of the p terminal devices
  • the first uplink channel information matrices corresponding to the p terminal devices are respectively
  • the coding information vectors are concatenated in the vertical direction to obtain uplink precoding information matrices of p terminal devices.
  • the terminal device may determine the power value based on the received information of the first reference point and the M downlink reference signals.
  • the power value may be the power value of uplink transmission or the power adjustment amount of uplink transmission.
  • the terminal device may determine the first equivalent channel power and the second equivalent channel power according to the value of the first reference point and the M downlink reference signals, the first equivalent channel power is the sum of the equivalent channel powers of the downlink reference signals carried on the n first sub-bands, the second equivalent channel power is the sum of the equivalent channel powers of the downlink reference signals carried on the M sub-bands, further, the terminal The device determines the power value according to the ratio of the first equivalent channel power to the second equivalent channel power.
  • the description of the first frequency sub-band and the second frequency sub-band has been mentioned above.
  • the terminal device obtains the value of the first reference point based on the indication information of the first reference point.
  • the value of the first reference point may be, for example, the number n of the first sub-frequency bands, or the value of the first reference point may be, for example, n and M ratio. In the following, description will be made by taking the value of the first reference point as the ratio of n to M as an example.
  • the terminal device obtains the value of the first reference point as 0.4 based on the indication information 01 of the first reference point, and the terminal device obtains the downlink references carried on the first 4 first sub-frequency bands among the 10 sub-frequency bands.
  • the sum of the equivalent channel powers of the signals is used as the first equivalent channel power
  • the sum of the equivalent channel powers of the downlink reference signals carried on the last 6 second sub-bands among the 10 sub-bands is obtained as the second equivalent channel power .
  • the terminal device performs an inverse transformation on the ratio y′ of the first equivalent channel power to the second equivalent channel power according to the transformation function to obtain a power value, that is, the power value satisfies the following formula (9):
  • is the power value ⁇ UL of the uplink transmission or the adjustment amount ⁇ UL of the uplink transmission power.
  • the terminal device may determine the power value ⁇ UL of the uplink transmission based on the above formula (2).
  • the terminal device may allocate the power value of uplink transmission to each of the M sub-frequency bands as the uplink transmission power of each sub-frequency band, for example, the terminal device may evenly allocate the power value of uplink transmission to each sub-frequency band, Alternatively, the power value of the uplink transmission is evenly distributed to each sub-band by using a water injection method.
  • the network device may send M downlink reference signals through M sub-frequency bands while sending the indication information of the first reference point to the terminal device; The reference signal, and then send the indication information of the first reference point.
  • the network device in the embodiment of the present application indicates the power value of the terminal device through the indication information of the first reference point and the M downlink reference signals respectively transmitted in the M sub-frequency bands.
  • the 2bit indicates four discrete power adjustments, and this scheme realizes high-precision indication of the power value.
  • Fig. 6 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the apparatus 500 may include: a transceiver unit 510 and a processing unit 520 .
  • the communication apparatus 500 may correspond to the terminal device in the above method embodiments, for example, may be a terminal device, or a component configured in the terminal device (such as a chip or a chip system, etc.).
  • the communication device 500 may correspond to the terminal device in the method shown in FIG. 3 according to the embodiment of the present application, and the communication device 500 may include a unit for executing the method performed by the terminal device in the method in FIG. 3 . Moreover, each unit in the communication device 500 and the above-mentioned other operations and/or functions are respectively intended to implement a corresponding flow of the method in FIG. 3 .
  • the transceiver unit 510 can be used to receive indication information from a first reference point of a network device, and the first reference point is used to divide M sub-frequency bands into n The first sub-band and M-n second sub-bands, M>n>0, and both M and n are integers, the indication information of the first reference point is used to indicate the value of the first reference point, the first reference point The value of is used to indicate n; the processing unit 520 can be used to determine the power value according to the value of the first reference point and M downlink reference signals, and the M downlink reference signals are respectively received by the terminal device on the M sub-frequency bands .
  • the processing unit 520 is specifically configured to: determine the first equivalent channel power and the second equivalent channel power according to the value of the first reference point and the M downlink reference signals, the first equivalent channel power
  • the channel power is the sum of the equivalent channel powers of the downlink reference signals carried on the n first sub-frequency bands
  • the second equivalent channel power is the sum of the equivalent channel powers of the downlink reference signals carried on the M sub-frequency bands; according to the The ratio of the first equivalent channel power to the second equivalent channel power determines the power value.
  • the power value is a power value for uplink transmission.
  • the power value is a power adjustment amount for uplink transmission.
  • the transceiver unit 510 is further configured to: receive first indication information from the network device, where the first indication information is used to indicate that the power value is a power value for uplink transmission or a power adjustment amount for uplink transmission .
  • the transceiving unit 510 is further configured to: respectively receive M downlink reference signals from the network device on the M sub-frequency bands.
  • transceiver unit 510 may be used to execute step S320 and step S330 in the method shown in FIG. 3
  • processing unit 510 may be used to execute step S340 in the method shown in FIG. 3 . It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • the communication apparatus 500 may correspond to the network device in the foregoing method embodiments, for example, may be a network device, or a component configured in the network device (eg, a chip or a chip system, etc.).
  • the communication device 500 may correspond to the network device in the method shown in FIG. 3 according to the embodiment of the present application, and the communication device 500 may include a unit for performing the method performed by the network device in the method in FIG. 3 . Moreover, each unit in the communication device 500 and the above-mentioned other operations and/or functions are respectively intended to implement a corresponding flow of the method in FIG. 3 .
  • the processing unit 520 can be used to determine the first reference point, and the first reference point is used to divide the M sub-bands into n first sub-bands and M-nth sub-bands. Two sub-frequency bands, M>n>0, and both M and n are integers; the transceiver unit 510 can be used to send the indication information of the first reference point to the terminal device, and the indication information of the first reference point is used to indicate the first The value of the reference point, the value of the first reference point is used to indicate n, and the M downlink reference signals are respectively sent by the network device on the M sub-frequency bands.
  • the processing unit 520 is specifically configured to: convert the power value into a first value y, where y is greater than 0 and less than 1; and determine the first reference point according to the first value y.
  • the processing unit 520 is further configured to: determine the first uplink precoding information of each sub-band in the M sub-bands according to the first reference point; determine the downlink channel of each sub-band in the M sub-bands information and first uplink precoding information, performing downlink precoding on the M downlink reference signals; sending the M downlink reference signals on the M sub-frequency bands respectively.
  • the first uplink precoding information of the frequency subband is based on the equivalent channel power of the n first frequency subbands and the second uplink precoding information of the frequency subband determined by the coding information; when the sub-frequency band is the second sub-frequency band, the first uplink precoding information of the sub-frequency band is based on the equivalent channel power of the M-n second sub-frequency bands and the second uplink pre-coding of the sub-frequency band The information is determined; wherein, the second uplink precoding information is obtained based on uplink reference signal detection.
  • the downlink channel information of the sub-frequency band is a matrix composed of downlink channel information corresponding to p terminal devices respectively
  • the first uplink precoding information of the sub-frequency band is the first uplink channel information corresponding to the p terminal devices respectively.
  • a matrix composed of precoding information, p is a positive integer.
  • the power value is a power value for uplink transmission.
  • the power value is a power adjustment amount for uplink transmission.
  • the transceiving unit 510 is further configured to: send first indication information to the terminal device, where the first indication information is used to indicate that the power value is a power value for uplink transmission or a power adjustment amount for uplink transmission.
  • transceiver unit 520 may be used to execute step S320 and step S330 in the method shown in FIG. 3
  • processing unit 520 may be used to execute step S310 in the method shown in FIG. 3 . It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • the transceiver unit 510 in the communication device 500 can be realized by a transceiver, for example, it can correspond to the transceiver 610 in the communication device 600 shown in FIG.
  • the processing unit 520 may be implemented by at least one processor, for example, may correspond to the processor 620 in the communication device 600 shown in FIG. 7 .
  • the transceiver unit 510 in the communication device 500 may be implemented by a transceiver, for example, it may correspond to the transceiver 610 in the communication device 600 shown in FIG.
  • the processing unit 520 may be implemented by at least one processor, for example, may correspond to the processor 620 in the communication device 600 shown in FIG. 7 .
  • the transceiver unit 510 in the communication device 500 can be realized by an input/output interface, a circuit, etc.
  • the communication device 500 The processing unit 520 in the chip may be realized by a processor, a microprocessor, or an integrated circuit integrated on the chip or the chip system.
  • Fig. 7 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 600 may include: a transceiver 610 , a processor 620 and a memory 630 .
  • the transceiver 610, the processor 620 and the memory 630 communicate with each other through an internal connection path, the memory 630 is used to store instructions, and the processor 620 is used to execute the instructions stored in the memory 630 to control the transceiver 610 to send signals and /or to receive a signal.
  • the communication apparatus 600 may correspond to the terminal device or network device in the above method embodiments, and may be used to execute various steps and/or processes performed by the terminal device or network device in the above method embodiments.
  • the memory 630 may include read-only memory and random-access memory, and provides instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 630 can be an independent device, or can be integrated in the processor 620 .
  • the processor 620 may be used to execute the instructions stored in the memory 630, and when the processor 620 executes the instructions stored in the memory, the processor 620 is used to execute each of the above-mentioned method embodiments corresponding to the terminal device or the network device. steps and/or processes.
  • the communications apparatus 600 is the terminal device in the foregoing embodiments.
  • the communications apparatus 600 is the network device in the foregoing embodiments.
  • the transceiver 610 may include a transmitter and a receiver.
  • the transceiver 610 may further include antennas, and the number of antennas may be one or more.
  • the processor 620, the memory 630 and the transceiver 610 may be devices integrated on different chips.
  • the processor 620 and the memory 630 may be integrated in a baseband chip, and the transceiver 610 may be integrated in a radio frequency chip.
  • the processor 620, the memory 630 and the transceiver 610 may also be devices integrated on the same chip. This application is not limited to this.
  • the communication apparatus 600 is a component configured in a terminal device, such as a chip, a chip system, and the like.
  • the communication apparatus 600 is a component configured in a network device, such as a chip, a chip system, and the like.
  • the transceiver 620 may also be a communication interface, such as an input/output interface, a circuit, and the like.
  • the transceiver 620 , the processor 610 and the memory 630 may be integrated into the same chip, such as a baseband chip.
  • the present application also provides a processing device, including at least one processor, and the at least one processor is used to execute the computer program stored in the memory, so that the processing device executes the method performed by the terminal device in the above method embodiment network device .
  • the embodiment of the present application also provides a processing device, including a processor and an input/output interface.
  • the input-output interface is coupled with the processor.
  • the input and output interface is used for inputting and/or outputting information.
  • the information includes at least one of instructions and data.
  • the processor is configured to execute a computer program, so that the processing device executes the method network device executed by the terminal device in the above method embodiment.
  • the embodiment of the present application also provides a processing device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the processing device executes the method network device executed by the terminal device in the above method embodiment.
  • the above processing device may be one or more chips.
  • the processing device may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system chip (system on chip, SoC). It can be a central processor unit (CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit) , MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • microcontroller micro controller unit
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product including: computer program code, when the computer program code is run on the computer, the computer is made to execute the terminal in the above method embodiment A method performed by a device or network device.
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores program codes, and when the program codes are run on a computer, the computer is made to execute the above-mentioned method embodiments A method performed by a terminal device or a network device.
  • the present application further provides a communication system, where the communication system may include the aforementioned terminal device and network device.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more packets of data (e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems). Communicate through local and/or remote processes.
  • packets of data e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the computer software product is stored in a storage medium and includes several instructions to make a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种上行功率的指示方法、装置、设备以及存储介质。该方法包括:终端设备接收来自于网络设备的第一参考点的指示信息,第一参考点用于将M个子频带划分为n个第一子频带和M-n个第二子频带,M>n>0,且M和n均为整数,该第一参考点的指示信息用于指示第一参考点的数值,该第一参考点的数值用于指示n,终端设备根据该第一参考点的数值和M个下行参考信号,确定功率值,该M个下行参考信号为该终端设备在该M个子频带上分别接收的。实现了对功率值的高精度指示。

Description

上行功率的指示方法、装置、设备以及存储介质
本申请要求于2021年12月10日提交中国专利局、申请号为202111511014.6、申请名称为“上行功率的指示方法、装置、设备以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种上行功率的指示方法、装置、设备以及存储介质。
背景技术
目前,在一些通信系统中,如第五代移动通信系统(5th generation wireless system,5G)中,网络设备可以通过下行控制信息(downlink control information,DCI)中的2bit字段向终端设备指示上行传输的功率调整量,例如指示{-1,0,1,3}dBm中的一个,使终端设备基于该功率调整量确定上行传输的功率值。
然而,网络设备基于上述指示方式仅能指示四种功率调整量,使得网络设备指示的功率调整量与最优上行发送功率对应的调整步长相比存在一定差距,影响了功率指示的准确性。而在增强现实、实时监控与高清视频等新型数据业务中,对移动通信系统的上行传输能力均提出了极高的要求,为了满足对上行传输能力的高要求,提高上行吞吐量,需要移动通信系统支持更多的上行传输流数,并引入多站协作。此种情况下,不可避免的使得上行传输的干扰环境更加复杂,而进行高精度上行功控有助于抑制远近效应和多用户干扰。因此,如何对终端设备的上行发送功率进行高精度指示是当前亟待解决的问题。
发明内容
本申请实施例提供的一种上行功率的指示方法、装置、设备以及存储介质,以期实现对上行发送功率的准确指示。
第一方面,本申请实施例提供一种上行功率的指示方法,该方法包括:终端设备接收来自于网络设备的第一参考点的指示信息,该第一参考点用于将M个子频带划分为n个第一子频带和M-n个第二子频带,M>n>0,且M和n均为整数,该第一参考点的指示信息用于指示该第一参考点的数值,该第一参考点的数值用于指示n;该终端设备根据该第一参考点的数值和M个下行参考信号,确定功率值,该M个下行参考信号为该终端设备在该M个子频带上分别接收的。
通过第一方面提供的上行功率的指示方法,网络设备通过第一参考点的指示信息和M个子频带中分别传输的M个下行参考信号,对终端设备的功率值进行指示,相比于现有技术中仅能通过DCI的2bit指示四个离散的功率调整量,本方案实现了对功率值的高精度的指示。
在一种可能的实施方式中,该终端设备根据该第一参考点的数值和该M个下行参 考信号,确定功率值,包括:该终端设备根据该第一参考点的数值和该M个下行参考信号,确定第一等效信道功率和第二等效信道功率,该第一等效信道功率为n个第一子频带上承载的下行参考信号的等效信道功率之和,该第二等效信道功率为M个子频带上承载的下行参考信号的等效信道功率之和;该终端设备根据该第一等效信道功率与该第二等效信道功率的比值,确定该功率值。
通过该实施方式提供的上行功率的指示方法,根据第一参考点的数值,确定第一等效信道功率和第二等效信道功率,进而根据二者的比值,即可确定网络设备所指示的功率值。
在一种可能的实施方式中,该功率值为上行传输的功率值。
通过该实施方式提供的上行功率的指示方法,终端设备基于网络设备的第一参考点的指示信息和M个下行参考信号,可以确定用于上行传输的功率值。
在一种可能的实施方式中,该功率值为上行传输的功率调整量。
通过该实施方式提供的上行功率的指示方法,终端设备基于网络设备的第一参考点的指示信息和M个下行参考信号,可以确定用于上行传输的功率调整量,使得终端设备可以通过该功率调整量确定上行传输的功率值。
在一种可能的实施方式中,该方法还包括:该终端设备接收来自于该网络设备的第一指示信息,该第一指示信息用于指示该功率值为上行传输的功率值或上行传输的功率调整量。
通过该实施方式提供的上行功率的指示方法,基于该第一指示信息,实现了网络设备对终端设备的灵活配置。
在一种可能的实施方式中,该方法还包括:该终端设备在该M个子频带上分别接收来自于该网络设备的M个下行参考信号。
通过该实施方式提供的上行功率的指示方法,使得终端设备可以确定不同子频带上传输的下行参考信号的等效信道功率,为确定网络设备指示的功率值提供可能。
第二方面,本申请实施例提供一种上行功率的指示方法,该方法包括:网络设备确定第一参考点,该第一参考点用于将M个子频带划分为n个第一子频带和M-n个第二子频带,M>n>0,且M和n均为整数;网络设备向终端设备发送该第一参考点的指示信息,该第一参考点的指示信息用于指示该第一参考点的数值,该第一参考点的数值用于指示n,该M个下行参考信号为该网络设备在该M个子频带上分别发送的。
在一种可能的实施方式中,该网络设备确定第一参考点,包括:该网络设备将功率值转换为第一数值y,y大于0且小于1;该网络设备根据该第一数值y,确定该第一参考点。
在一种可能的实施方式中,该方法还包括:该网络设备根据该第一参考点,确定该M个子频带中每个子频带的第一上行预编码信息;该网络设备根据该M个子频带中每个子频带的下行信道信息和第一上行预编码信息,对该M个下行参考信号进行下行预编码;该网络设备在该M个子频带上分别发送该M个下行参考信号。
在一种可能的实施方式中,该子频带为该第一子频带时,该子频带的第一上行预编码信息为基于该n个第一子频带的等效信道功率和该子频带的第二上行预编码信息确定的;该子频带为该第二子频带时,该子频带的第一上行预编码信息为基于该M-n 个第二子频带的等效信道功率和该子频带的第二上行预编码信息确定的;其中,该第二上行预编码信息为基于上行参考信号探测得到的。
在一种可能的实施方式中,该子频带的下行信道信息为p个终端设备分别对应的下行信道信息组成的矩阵,该子频带的第一上行预编码信息为该p个终端设备分别对应的第一上行预编码信息组成的矩阵,p为正整数。
在一种可能的实施方式中,该功率值为上行传输的功率值。
在一种可能的实施方式中,该功率值为上行传输的功率调整量。
在一种可能的实施方式中,该方法还包括:该网络设备向该终端设备发送第一指示信息,该第一指示信息用于指示该功率值为上行传输的功率值或上行传输的功率调整量。
上述第二方面以及上述第二方面的各可能的实施方式所提供的上行功率的指示方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第三方面,本申请实施例提供一种通信装置,包括:收发单元,用于接收来自于网络设备的第一参考点的指示信息,该第一参考点用于将M个子频带划分为n个第一子频带和M-n个第二子频带,M>n>0,且M和n均为整数,该第一参考点的指示信息用于指示该第一参考点的数值,该第一参考点的数值用于指示n;处理单元,用于根据该第一参考点的数值和M个下行参考信号,确定功率值,该M个下行参考信号为该终端设备在该M个子频带上分别接收的。
在一种可能的实施方式中,该处理单元具体用于:根据该第一参考点的数值和该M个下行参考信号,确定第一等效信道功率和第二等效信道功率,该第一等效信道功率为n个第一子频带上承载的下行参考信号的等效信道功率之和,该第二等效信道功率为M个子频带上承载的下行参考信号的等效信道功率之和;根据该第一等效信道功率与该第二等效信道功率的比值,确定该功率值。
在一种可能的实施方式中,该功率值为上行传输的功率值。
在一种可能的实施方式中,该功率值为上行传输的功率调整量。
在一种可能的实施方式中,该收发单元还用于:接收来自于该网络设备的第一指示信息,该第一指示信息用于指示该功率值为上行传输的功率值或上行传输的功率调整量。
在一种可能的实施方式中,该收发单元还用于:在该M个子频带上分别接收来自于该网络设备的M个下行参考信号。
上述第三方面以及上述第三方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第四方面,本申请实施例提供一种通信装置,包括:处理单元,用于确定第一参考点,该第一参考点用于将M个子频带划分为n个第一子频带和M-n个第二子频带,M>n>0,且M和n均为整数;收发单元,用于向终端设备发送该第一参考点的指示信息,该第一参考点的指示信息用于指示该第一参考点的数值,该第一参考点的数值用于指示n,该M个下行参考信号为该网络设备在该M个子频带上分别发送的。
在一种可能的实施方式中,该处理单元具体用于:将功率值转换为第一数值y,y大于0且小于1;根据该第一数值y,确定该第一参考点。
在一种可能的实施方式中,该处理单元还用于:根据该第一参考点,确定该M个子频带中每个子频带的第一上行预编码信息;根据该M个子频带中每个子频带的下行信道信息和第一上行预编码信息,对该M个下行参考信号进行下行预编码;在该M个子频带上分别发送该M个下行参考信号。
在一种可能的实施方式中,该子频带为该第一子频带时,该子频带的第一上行预编码信息为基于该n个第一子频带的等效信道功率和该子频带的第二上行预编码信息确定的;该子频带为该第二子频带时,该子频带的第一上行预编码信息为基于该M-n个第二子频带的等效信道功率和该子频带的第二上行预编码信息确定的;其中,该第二上行预编码信息为基于上行参考信号探测得到的。
在一种可能的实施方式中,该子频带的下行信道信息为p个终端设备分别对应的下行信道信息组成的矩阵,该子频带的第一上行预编码信息为该p个终端设备分别对应的第一上行预编码信息组成的矩阵,p为正整数。
在一种可能的实施方式中,该功率值为上行传输的功率值。
在一种可能的实施方式中,该功率值为上行传输的功率调整量。
在一种可能的实施方式中,该收发单元还用于:向该终端设备发送第一指示信息,该第一指示信息用于指示该功率值为上行传输的功率值或上行传输的功率调整量。
上述第四方面以及上述第四方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第五方面,本申请实施例提供一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行如第一方面、第二方面或各可能的实现方式中的方法。
第六方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有该芯片的设备执行如第一方面、第二方面或各可能的实现方式中的方法。
第七方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序指令,该计算机程序使得计算机执行如第一方面、第二方面或各可能的实现方式中的方法。
第八方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如第一方面、第二方面或各可能的实现方式中的方法。
第九方面,本申请实施例提供一种装置,包括逻辑电路和输入输出接口,其中,该输入输出接口用于接收来自该装置之外的其他通信装置的信号并传输至该逻辑电路或将来自该逻辑电路的信号发送给该装置之外的其他通信装置,该逻辑电路用于执行代码指令以实现如第一方面、第二方面或各可能的实现方式中的方法。
第十方面,本申请实施例提供一种终端,包括如第三方面、第四方面或各可能的实现方式中的装置。
附图说明
图1是本申请的实施例应用的移动通信系统的架构示意图;
图2为本申请实施例提供的一种信息传输的交互示意图;
图3是本申请实施例提供的通信方法300的示意性流程图;
图4是本申请实施例提供的一种参考点示意图;
图5a是本申请实施例提供的一种变换函数的示意图;
图5b是本申请实施例提供的另一种变换函数的示意图;
图6是本申请实施例提供的通信装置的示意性框图;
图7是本申请实施例提供的通信装置的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请的实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统包括核心网设备110、网络设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与网络设备相连,网络设备通过无线或有线方式与核心网设备连接。核心网设备与网络设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与网络设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的网络设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、网络设备和终端设备的数量不做限定。
网络设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站eNodeB、NR移动通信系统中的基站、未来移动通信系统中的基站或WiFi系统中的接入节点等,本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通 信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间以及终端设备和终端设备之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
应理解,本申请对于网络设备和终端设备的具体形式均不作限定。
目前,终端设备基于自身的最大发射功率、小区的标称功率、路径损耗、调制编码方案(modulation and coding scheme,MCS)和无线资源数量等信息来确定上行传输的功率值P,参见如下公式(1):
P=min{P CMAX,10log(L)+P 0+αPL+Δ TF+f(i)}         (1)
其中,P CMAX表示终端设备的最大发射功率;L表示上行传输占用的子带数;P 0表示网络设备侧所期望的接收功率水平;α表示路径损耗补偿因子;PL表示上行路损的估值;Δ TF表示不同的MCS格式相对于参考MCS格式的发送功率的功率偏置值;f(i)表示终端设备的传输功率控制(Transmit Power Control,TPC)调整量,也即上行传输的功率调整量,其可以由下行控制物理信道(Physical Downlink Control Channel,PDCCH)中DCI的上行调度授权的TPC字段中携带。
网络设备基于先前测量的上行接收功率,通过功率控制命令指示调整步长f(i),从而使终端设备基于f(i)调整发射功率,功率控制命令在上行调度授权(DCI格式0-0和0-1)的TPC字段中携带。每个功率控制命令包含2比特,对应于4种不同的调整步长,如{-1,0,1,3}dBm。
可见,上述技术方案中,网络设备向终端设备发送的功率控制命令所指示的功率调整量f(i)难以实现对上行发送功率的准确指示。
然而,在增强现实、实时监控与高清视频等新型数据业务中,对移动通信系统的上行传输能力均提出了极高的要求,为了满足对上行传输能力的高要求,提高上行吞吐量,需要移动通信系统支持更多的上行传输流数,并引入多站协作。此种情况下,不可避免的使得上行传输的干扰环境更加复杂,而进行高精度上行功控有助于抑制远近效应和多用户干扰。因此,如何对上行发送功率进行高精度指示是当前亟待解决的问题。
针对上述技术问题,本申请提供的上行功率的指示方案,引入“第一参考点”,基于第一参考点的数值和M个下行参考信号指示连续的功率值,以实现对功率值的高精度的指示。
为便于理解本申请实施例,做出如下几点说明。
第一,“预定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,也可以通过信令预配置,比如网络设备通过信令预配置等方式来实现,本申请对于其具体的实现方式不做限定。
第二,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限 定。
第三,本申请中“确定”和“选择”交替使用,其所表达的含义一致,例如网络设备从预设的多个参考点中确定第一参考点与网络设备从预设的多个参考点中选择第一参考点是相同含义的表述。
第四,在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某种客观情况下设备(如,终端设备或者网络设备)会做出相应的处理,并非是限定时间,且也不要求设备(如,终端设备或者网络设备)在实现时一定要有判断的动作,也不意味着存在其它限定。
下面将结合附图对本申请实施例提供的通信方法进行说明。
应理解,下文仅为便于理解和说明,主要以网络设备和终端设备之间的交互为例对本申请实施例所提供的方法进行说明。该终端设备例如可以是图1所示的通信系统中的终端设备任一终端设备,例如终端设备130或终端设备140,网络设备可以是图1所示的通信系统中的网络设备120。
但应理解,这不应对本申请提供的方法的执行主体构成任何限定。只要能够通过运行有本申请实施例提供的方法的代码的程序,以执行本申请实施例提供的方法,便可以作为本申请实施例提供的方法的执行主体。例如,下文实施例所示的终端设备也可以替换为终端设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块,网络设备也可以替换为网络设中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块。
图2为本申请实施例提供的一种信息传输的交互示意图。参见图2,本申请实施例中,网络设备210包括无线资源控制(radio resource control,RRC)信令交互模块211、媒体访问控制(Media Access Control,MAC)信令交互模块212和物理层(physical layer,PHY)信令交互模块213;终端设备220可以包括RRC信令交互模块221、MAC信令交互模块222和PHY信令及数据交互模块223。
其中,RRC信令交互模块211和RRC信令交互模块221之间传输RRC信令;MAC信令交互模块212和MAC信令交互模块222之间传输媒体接入控制控制元素(media access control control element,MAC-CE)信令;PHY信令及数据交互模块213向PHY信令及数据交互模块223发送下行控制信令(例如PDCCH)和/或下行数据(例如物理下行共享信道(physical downlink shared channel,PDSCH)),PHY信令及数据交互模块223向PHY信令及数据交互模块213发送上行控制信令(例如物理上行控制信道(physical uplink control channel,PUCCH))和/或上行数据(例如物理上行共享信道(physical uplink shared channel,PUSCH))。
终端设备和网络设备基于图2所示的信息传输的交互示意图,可以进行信令和/或数据的传输,具体而言,可以包括以下至少一项:
终端设备向网络设备发送上行参考信号(例如探测参考信号(sounding reference signal,SRS)),用于信道测量;
网络设备向终端设备发送信令(例如DCI),指示上行传输;
网络设备向终端设备发送下行参考信号(例如信道状态信息参考信号(channel state information reference signal,CSI-RS)),用于上行功控指示;
终端设备接收网络设备发送的信令(例如DCI)和下行参考信号(例如CSI-RS),根据信道测量结果和信令指示确定上行发送功率并发送上行数据。
图3是本申请实施例提供的通信方法300的示意性流程图。如图3所示,该方法300可以包括如下S310和S340中的部分或者全部过程。下面对方法300中的各个步骤进行说明。
S310,网络设备确定第一参考点,该第一参考点用于将M个子频带划分为n个第一子频带和M-n个第二子频带,M>n>0,且M和n均为整数。
S320,网络设备向终端设备发送该第一参考点的指示信息,该第一参考点的指示信息用于指示该第一参考点的数值,该第一参考点的数值用于指示n。
相应的,终端设备接收来自于网络设备的第一参考点的指示信息。
S330,网络设备在该M个子频带上分别发送M个下行参考信号。
相应的,终端设备在该M个子频带上分别接收来自于该网络设备的M个下行参考信号。
S340,终端设备根据该第一参考点的数值和M个下行参考信号,确定功率值。
需要说明的是,M个子频带可以是网络设备向终端设备发送下行参考信号(例如CSI-RS)占用的子频带。
第一子频带为M个子频带中的一类子频带,第二子频带为M个子频带中的另一类子频带。也可以理解为,第一参考点按照子频带的频域位置将M个子频带划分为前n个第一子频带和后M-n个第二子频带,或者第一参考点按照子频带的频域位置将M个子频带划分为前M-n个第二子频带和后n个第一子频带。
参见图4所示,网络设备向终端设备发送下行参考信号占用10个子频带,该10个子频带被第一参考点划分后,前4个子频带为第一子频带,后6个子频带为第二子频带。
第一参考点的数值与n相关,例如第一参考的数值可以是n和M的比值、n或者M-n。
可选的,针对M个子频带预设有多个参考点,每个参考点对应的第一子频带的数量不同,或者说每个参考点对应的第一子频带在M个子频带中所占的比例不同,也即每个参考点的数值均不同。结合图4所示,参考点1对应的第一子频带的数量为2,或者说参考点1对应的第一子频带在M个子频带中所占的比例为0.2,也即参考点1的数值为2或者0.2,与之类似的,参考点2的数值为4或0.4,参考点3的数值为6或0.6,参考点4的数值为8或0.8。
在上述S310中,网络设备确定第一参考点,也即确定第一子频带的数量n,或者第一子频带在M个子频带中所占的比例(即n与M的比值)。示例性的,网络设备可以从预设的多个参考点中确定第一参考点。例如,多个参考点可以为上述图4中的4个参考点。
网络设备可以根据所要指示的上行传输的功率值或者上行传输功率的调整量,确定第一参考点,或者从预设的多个参考点中选择第一参考点。
可选的,第一参考点与n的对应规则可以是终端设备确定的,或者协议规定的,或者通过RRC信令在候选的规则中半静态指示的。
其中,上行传输的功率值可以是基于上行参考信号探测得到的。例如,终端设备可以向网络设备发送上行参考信号(例如SRS),网络设备接收该上行参考信号,并基于该上行参考信号进行信道估计得到该终端设备上行信道信息,再根据该终端设备的上行信道信息计算上行传输的功率值ρ UL;进一步地,网络设备可以根据上行传输的功率值ρ UL和功率基准值
Figure PCTCN2022134828-appb-000001
确定上行传输功率的调整量Δρ UL,其中功率基准值
Figure PCTCN2022134828-appb-000002
可以为开环功控结果或上一次指示的上行传输功率;如上行传输功率的调整量Δρ UL可以满足如下公式(2):
Figure PCTCN2022134828-appb-000003
下文中提到的功率值可以是上述上行传输的功率值或者上行传输功率的调整量。
网络设备可以将功率值转换为第一数值y,y大于0且小于1,并根据该第一数值y,确定该第一参考点。
在网络设备将功率值转换为第一数值y的过程中,网络设备可以通过变换函数y=f(ρ)将功率值转换至位于区间(0,1)上的第一数值y,其中ρ为上行传输的功率值ρ UL或上行传输功率的调整量Δρ UL。变换函数f(·)可以是预设的,例如预设在网络设备中,或者可以是预配置的,例如网络设备通过RRC信令向终端设备半静态指示的,或者可以是协议定义的。
例如,若上行传输的功率调整量Δρ UL的值位于区间[-S,S]时,变换函数f(·)可指定为如图5a或图5b所示的两种形式,其中,图5a中的变换函数将区间[-S,S]上的值线性变换到区间(0,1)上,其表达式可写为
Figure PCTCN2022134828-appb-000004
图5b中的变换函数将区间[-S,S]上的值进行若干比特均匀量化。
网络设备可以根据第一数值y确定第一参考点,例如网络设备可以从预设的多个参考点中选择与第一数值y最接近的参考点作为第一参考点。
例如,结合图4所示,假设功率值经过变换函数变换至区间(0,1)上的第一数值y为0.42,在图4所示的参考点1至参考点4的数值依次为0.2、0.4、0.6、0.8,其中参考点2的数值与第一数值y最接近,因此网络设备确定第一参考点为图4中的参考点2。
在一些实施例中,网络设备可以向终端设备发送第一指示信息,该第一指示信息用于指示网络设备所指示的功率值为上行传输的功率值或上行传输的功率调整量。
针对上述S320需要说明的是,第一参考点的指示信息可以用于指示第一参考点的数值。例如图4中参考点1至参考点4的数值可以通过2bit的指示信息进行指示,如参考点1的数值可以通过00指示、参考点2的数值可以通过01指示、参考点3的数值可以通过10指示、参考点4的数值可以通过11指示。若确定第一参考点为参考点2,则第一参考点的指示信息为01。
可以理解的是,第一参考点的指示信息为2bit仅为一种示例,不对本申请构成任何限定。例如第一参考点的指示信息可以为1bit,第一参考点可以为预设的2个参考点中的一个,第一参考点的指示信息可以通过两个数值(例如0和1)分别指示预设的两个参考点中的一个;再例如第一参考点的指示信息可以为3bit,第一参考点可以为预设的8个参考点中的一个。
可选的,第一参考点的指示信息可以承载于DCI。例如,第一参考点的指示信息 为2bit时,通过DCI中上行调度授权TPC字段中的2bit指示第一参考点的数值。
此外,还应理解的是,上述内容中仅以网络设备确定一个终端设备对应的第一参考点,并将第一参考点的指示信息发送给该终端设备为例进行说明。但并不对本申请构成任何限定,网络设备可以确定多个终端设备中每个终端设备对应的第一参考点,并分别向多个终端设备发送第一参考点的指示信息。
本申请实施例中,网络设备结合第一参考点的指示信息和M个下行参考信号,实现对功率值的指示。上文中对第一参考点以及第一参考点的指示信息进行了说明,下面对M个下行参考信号进行说明。
示例性的,网络设备可以根据M个子频带中每个子频带的下行信道信息和第一上行预编码信息对M个下行参考信号进行下行预编码。例如,M个子频带中第m个子频带对应的下行参考信号的下行预编码P DL,m满足以下公式(3):
Figure PCTCN2022134828-appb-000005
其中,H DL,m为第m个子频带对应的下行信道信息,
Figure PCTCN2022134828-appb-000006
为第m个子频带对应的第一上行预编码信息。
每个子频带的第一上行预编码信息可以是网络设备根据第一参考点和第二上行预编码信息确定的。
例如,当M个子频带中的第m个子频带为第一子频带时,该第m个子频带的第一上行预编码信息
Figure PCTCN2022134828-appb-000007
为基于n个第一子频带的等效信道功率α pre和该第m个子频带的第二上行预编码信息P UL,m确定的,第二上行预编码信息P UL,m为基于上行参考信号(例如SRS)探测得到的。
可选的,第m个子频带为第一子频带时,第一上行预编码信息
Figure PCTCN2022134828-appb-000008
满足如下公式(4):
Figure PCTCN2022134828-appb-000009
其中,第一子频带的等效信道功率α pre满足如下公式(5):
Figure PCTCN2022134828-appb-000010
公式(5)中,Q为M个下行参考信号的功率之和,q i为预设的多个参考点中的第i个参考点,round(Mq i)等于n,round函数用于得到四舍五入运算的结果。
再例如,当M个子频带中的第m个子频带为第二子频带时,该第m个子频带的第一上行预编码信息
Figure PCTCN2022134828-appb-000011
为基于M-n个第二子频带的等效信道功率α post和该第m个子频带的第二上行预编码信息P UL,m确定的,第二上行预编码信息P UL,m为基于上行参考信号(例如SRS)探测得到的。
可选的,第m个子频带为第二子频带时,第一上行预编码信息
Figure PCTCN2022134828-appb-000012
满足如下公式(6):
Figure PCTCN2022134828-appb-000013
其中,第二子频带的等效信道功率α post满足如下公式(7):
Figure PCTCN2022134828-appb-000014
可选的,下行信道信息可以是基于上行参考信号(例如SRS)探测得到的。
示例性的,网络设备可以将下行预编码后的M个下行参考信号分别在M个子频带上发送。
可以理解的是,网络设备可以分别向p个终端设备发送各终端设备对应的M个下行参考信号,通过M个子频带向p个终端设备分别发送M个下行参考信号,也即针对每个终端设备用于承载下行参考信号M个子频带是相同的。此种情况下,M个子频带中第m个子频带对应的下行参考信号的下行预编码P DL,m满足以下公式(8):
Figure PCTCN2022134828-appb-000015
其中,第m个子频带的下行信道信息为p个终端设备分别对应的下行信道信息组成的矩阵,第m个子频带的第一上行预编码信息为p个终端设备分别对应的第一上行预编码信息组成的矩阵。具体而言,在第m个子频带上,p个终端设备分别对应的下行信道矩阵在竖直方向上串接得到p个终端设备的下行信道信息矩阵,p个终端设备分别对应的第一上行预编码信息向量在竖直方向上串接得到p个终端设备的上行预编码信息矩阵。
可选的,p为正整数,当p=1时,公式(8)与前述公式(3)一致。
在上述S340中,终端设备基于接收到的第一参考点的信息和M个下行参考信号可以确定功率值。如前所述,该功率值可以是上行传输的功率值或上行传输的功率调整量。
作为上述S340的一种可能的实现方式,终端设备可以根据第一参考点的数值和M个下行参考信号,确定第一等效信道功率和第二等效信道功率,该第一等效信道功率为n个第一子频带上承载的下行参考信号的等效信道功率之和,该第二等效信道功率为M个子频带上承载的下行参考信号的等效信道功率之和,进一步地,终端设备根据第一等效信道功率和第二等效信道功率的比值,确定该功率值。其中,第一子频带和第二子频带的说明前已述及。
终端设备基于第一参考点的指示信息,获取第一参考点的数值,该第一参考点的数值例如可以是第一子频带的数量n,或者第一参考点的数值例如可以是n与M的比值。下面以第一参考点的数值为n与M的比值为例进行说明。
例如,结合图4所示,终端设备基于第一参考点的指示信息01,获取第一参考点的数值为0.4,终端设备获取10个子频带中的前4个第一子频带上承载的下行参考信号的等效信道功率之和作为第一等效信道功率,并获取10个子频带中的后6个第二子频带上承载的下行参考信号的等效信道功率之和作为第二等效信道功率。进而,终端设备根据变换函数对第一等效信道功率和第二等效信道功率的比值y′,进行逆变换得到功率值,也即功率值满足如下公式(9):
ρ=f -1(y′)     (9)
其中,ρ为上行传输的功率值ρ UL或上行传输功率的调整量Δρ UL。当ρ为上行传输功率的调整量Δρ UL时,终端设备可以基于上述公式(2)确定上行传输的功率值ρ UL
可选的,终端设备可以将上行传输的功率值分配给M个子频带中的每个子频带, 作为各子频带的上行发送功率,例如终端设备可以将上行传输的功率值平均分配给各子频带,或者采用注水法将上行传输的功率值平均分配给各子频带。
本申请实施例对上述S320和S330的执行顺序不做限定。例如网络设备可以在向终端设备发送第一参考点的指示信息的同时,通过M个子频带分别发送M个下行参考信号;或者网络设备可以依次进行发送,例如先在M个子频带分别发送M个下行参考信号,再发送第一参考点的指示信息。
因此,本申请实施例网络设备通过第一参考点的指示信息和M个子频带中分别传输的M个下行参考信号,对终端设备的功率值进行指示,相比于现有技术中仅能通过DCI的2bit指示四个离散的功率调整量,本方案实现了对功率值的高精度的指示。
以上,结合图3至图5详细说明了本申请实施例提供的方法。以下,结合图6至图7详细说明本申请实施例提供的装置。
图6是本申请实施例提供的通信装置的示意性框图。如图6所示,该装置500可以包括:收发单元510和处理单元520。
可选地,该通信装置500可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置500可对应于根据本申请实施例的图3所示的方法中的终端设备,通信装置500可以包括用于执行图3中的方法中终端设备执行的方法的单元。并且,该通信装置500中的各单元和上述其他操作和/或功能分别为了实现图3中的方法的相应流程。
其中,当通信装置500用于执行图3中的方法时,收发单元510可用于接收来自于网络设备的第一参考点的指示信息,该第一参考点用于将M个子频带划分为n个第一子频带和M-n个第二子频带,M>n>0,且M和n均为整数,该第一参考点的指示信息用于指示该第一参考点的数值,该第一参考点的数值用于指示n;处理单元520可用于根据该第一参考点的数值和M个下行参考信号,确定功率值,该M个下行参考信号为该终端设备在该M个子频带上分别接收的。
在一些实施例中,该处理单元520具体用于:根据该第一参考点的数值和该M个下行参考信号,确定第一等效信道功率和第二等效信道功率,该第一等效信道功率为n个第一子频带上承载的下行参考信号的等效信道功率之和,该第二等效信道功率为M个子频带上承载的下行参考信号的等效信道功率之和;根据该第一等效信道功率与该第二等效信道功率的比值,确定该功率值。
在一些实施例中,该功率值为上行传输的功率值。
在一些实施例中,该功率值为上行传输的功率调整量。
在一些实施例中,该收发单元510还用于:接收来自于该网络设备的第一指示信息,该第一指示信息用于指示该功率值为上行传输的功率值或上行传输的功率调整量。
在一些实施例中,该收发单元510还用于:在该M个子频带上分别接收来自于该网络设备的M个下行参考信号。
应理解,收发单元510可用于执行图3所示方法中的步骤S320和步骤S330,处理单元510可用于执行图3所示方法中的步骤S340。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
可选地,该通信装置500可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置500可对应于根据本申请实施例的图3所示的方法中的网络设备,通信装置500可以包括用于执行图3中的方法中网络设备执行的方法的单元。并且,该通信装置500中的各单元和上述其他操作和/或功能分别为了实现图3中的方法的相应流程。
其中,当通信装置500用于执行图3中的方法时,处理单元520可用于确定第一参考点,该第一参考点用于将M个子频带划分为n个第一子频带和M-n个第二子频带,M>n>0,且M和n均为整数;收发单元510可用于向终端设备发送该第一参考点的指示信息,该第一参考点的指示信息用于指示该第一参考点的数值,该第一参考点的数值用于指示n,该M个下行参考信号为该网络设备在该M个子频带上分别发送的。
在一些实施例中,该处理单元520具体用于:将功率值转换为第一数值y,y大于0且小于1;根据该第一数值y,确定该第一参考点。
在一些实施例中,该处理单元520还用于:根据该第一参考点,确定该M个子频带中每个子频带的第一上行预编码信息;根据该M个子频带中每个子频带的下行信道信息和第一上行预编码信息,对该M个下行参考信号进行下行预编码;在该M个子频带上分别发送该M个下行参考信号。
在一些实施例中,该子频带为该第一子频带时,该子频带的第一上行预编码信息为基于该n个第一子频带的等效信道功率和该子频带的第二上行预编码信息确定的;该子频带为该第二子频带时,该子频带的第一上行预编码信息为基于该M-n个第二子频带的等效信道功率和该子频带的第二上行预编码信息确定的;其中,该第二上行预编码信息为基于上行参考信号探测得到的。
在一些实施例中,该子频带的下行信道信息为p个终端设备分别对应的下行信道信息组成的矩阵,该子频带的第一上行预编码信息为该p个终端设备分别对应的第一上行预编码信息组成的矩阵,p为正整数。
在一些实施例中,该功率值为上行传输的功率值。
在一些实施例中,该功率值为上行传输的功率调整量。
在一些实施例中,该收发单元510还用于:向该终端设备发送第一指示信息,该第一指示信息用于指示该功率值为上行传输的功率值或上行传输的功率调整量。
应理解,收发单元520可用于执行图3所示方法中的步骤S320和步骤S330,处理单元520可用于执行图3所示方法中的步骤S310。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置500为终端设备时,该通信装置500中的收发单元510可以通过收发器实现,例如可对应于图7中所示的通信装置600中的收发器610,该通信装置500中的处理单元520可通过至少一个处理器实现,例如可对应于图7中示出的通信装置600中的处理器620。
当该通信装置500为网络设备时,该通信装置500中的收发单元510可以通过收发器实现,例如可对应于图7中所示的通信装置600中的收发器610,该通信装置500中的处理单元520可通过至少一个处理器实现,例如可对应于图7中示出的通信装置 600中的处理器620。
当该通信装置500为配置于通信设备(如终端设备或网络设备)中的芯片或芯片系统时,该通信装置500中的收发单元510可以通过输入/输出接口、电路等实现,该通信装置500中的处理单元520可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图7是本申请实施例提供的通信装置的另一示意性框图。如图7所示,该通信装置600可以包括:收发器610、处理器620和存储器630。其中,收发器610、处理器620和存储器630通过内部连接通路互相通信,该存储器630用于存储指令,该处理器620用于执行该存储器630存储的指令,以控制该收发器610发送信号和/或接收信号。
应理解,该通信装置600可以对应于上述方法实施例中的终端设备或网络设备,并且可以用于执行上述方法实施例中终端设备或网络设备执行的各个步骤和/或流程。可选地,该存储器630可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器630可以是一个单独的器件,也可以集成在处理器620中。该处理器620可以用于执行存储器630中存储的指令,并且当该处理器620执行存储器中存储的指令时,该处理器620用于执行上述与终端设备或网络设备对应的方法实施例的各个步骤和/或流程。
可选地,该通信装置600是前文实施例中的终端设备。
可选地,该通信装置600是前文实施例中的网络设备。
其中,收发器610可以包括发射机和接收机。收发器610还可以进一步包括天线,天线的数量可以为一个或多个。该处理器620和存储器630与收发器610可以是集成在不同芯片上的器件。如,处理器620和存储器630可以集成在基带芯片中,收发器610可以集成在射频芯片中。该处理器620和存储器630与收发器610也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该通信装置600是配置在终端设备中的部件,如芯片、芯片系统等。
可选地,该通信装置600是配置在网络设备中的部件,如芯片、芯片系统等。
其中,收发器620也可以是通信接口,如输入/输出接口、电路等。该收发器620与处理器610和存储器630都可以集成在同一个芯片中,如集成在基带芯片中。
本申请还提供了一种处理装置,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述处理装置执行上述方法实施例中终端设备执行的方法网络设备。
本申请实施例还提供了一种处理装置,包括处理器和输入输出接口。所述输入输出接口与所述处理器耦合。所述输入输出接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。所述处理器用于执行计算机程序,以使得所述处理装置执行上述方法实施例中终端设备执行的方法网络设备。
本申请实施例还提供了一种处理装置,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于从所述存储器调用并运行所述计算机程序,以使得所述处理装置执行上述方法实施例中终端设备执行的方法网络设备。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可 编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述方法实施例中终端设备或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述方法实施例中终端设备或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,该通信系统可以包括前述的终端设备和网络设备。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存 储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种上行功率的指示方法,其特征在于,所述方法包括:
    终端设备接收来自于网络设备的第一参考点的指示信息,所述第一参考点用于将M个子频带划分为n个第一子频带和M-n个第二子频带,M>n>0,且M和n均为整数,所述第一参考点的指示信息用于指示所述第一参考点的数值,所述第一参考点的数值用于指示n;
    所述终端设备根据所述第一参考点的数值和M个下行参考信号,确定功率值,所述M个下行参考信号为所述终端设备在所述M个子频带上分别接收的。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述第一参考点的数值和所述M个下行参考信号,确定功率值,包括:
    所述终端设备根据所述第一参考点的数值和所述M个下行参考信号,确定第一等效信道功率和第二等效信道功率,所述第一等效信道功率为n个第一子频带上承载的下行参考信号的等效信道功率之和,所述第二等效信道功率为M个子频带上承载的下行参考信号的等效信道功率之和;
    所述终端设备根据所述第一等效信道功率与所述第二等效信道功率的比值,确定所述功率值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述功率值为上行传输的功率值或上行传输的功率调整量。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自于所述网络设备的第一指示信息,所述第一指示信息用于指示所述功率值为上行传输的功率值或上行传输的功率调整量。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述M个子频带上分别接收来自于所述网络设备的M个下行参考信号。
  6. 一种上行功率的指示方法,其特征在于,所述方法包括:
    网络设备确定第一参考点,所述第一参考点用于将M个子频带划分为n个第一子频带和M-n个第二子频带,M>n>0,且M和n均为整数;
    网络设备向终端设备发送所述第一参考点的指示信息,所述第一参考点的指示信息用于指示所述第一参考点的数值,所述第一参考点的数值用于指示n,所述M个下行参考信号为所述网络设备在所述M个子频带上分别发送的。
  7. 根据权利要求6所述的方法,其特征在于,所述网络设备确定第一参考点,包括:
    所述网络设备将功率值转换为第一数值y,y大于0且小于1;
    所述网络设备根据所述第一数值y,确定所述第一参考点。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述第一参考点,确定所述M个子频带中每个子频带的第一上行预编码信息;
    所述网络设备根据所述M个子频带中每个子频带的下行信道信息和第一上行预编 码信息,对所述M个下行参考信号进行下行预编码;
    所述网络设备在所述M个子频带上分别发送所述M个下行参考信号。
  9. 根据权利要求8所述的方法,其特征在于,所述子频带为所述第一子频带时,所述子频带的第一上行预编码信息为基于所述n个第一子频带的等效信道功率和所述子频带的第二上行预编码信息确定的;
    所述子频带为所述第二子频带时,所述子频带的第一上行预编码信息为基于所述M-n个第二子频带的等效信道功率和所述子频带的第二上行预编码信息确定的;
    其中,所述第二上行预编码信息为基于上行参考信号探测得到的。
  10. 根据权利要求8或9所述的方法,其特征在于,所述子频带的下行信道信息为p个终端设备分别对应的下行信道信息组成的矩阵,所述子频带的第一上行预编码信息为所述p个终端设备分别对应的第一上行预编码信息组成的矩阵,p为正整数。
  11. 根据权利要求7所述的方法,其特征在于,所述功率值为上行传输的功率值或上行传输的功率调整量。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述功率值为上行传输的功率值或上行传输的功率调整量。
  13. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自于网络设备的第一参考点的指示信息,所述第一参考点用于将M个子频带划分为n个第一子频带和M-n个第二子频带,M>n>0,且M和n均为整数,所述第一参考点的指示信息用于指示所述第一参考点的数值,所述第一参考点的数值用于指示n;
    处理单元,用于根据所述第一参考点的数值和M个下行参考信号,确定功率值,所述M个下行参考信号为所述收发单元在所述M个子频带上分别接收的。
  14. 根据权利要求13所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第一参考点的数值和所述M个下行参考信号,确定第一等效信道功率和第二等效信道功率,所述第一等效信道功率为n个第一子频带上承载的下行参考信号的等效信道功率之和,所述第二等效信道功率为M个子频带上承载的下行参考信号的等效信道功率之和;
    根据所述第一等效信道功率与所述第二等效信道功率的比值,确定所述功率值。
  15. 根据权利要求13或14所述的装置,其特征在于,所述功率值为上行传输的功率值或上行传输的功率调整量。
  16. 根据权利要求15所述的装置,其特征在于,所述收发单元还用于:
    接收来自于所述网络设备的第一指示信息,所述第一指示信息用于指示所述功率值为上行传输的功率值或上行传输的功率调整量。
  17. 根据权利要求13至16任一项所述的装置,其特征在于,所述收发单元还用于:
    在所述M个子频带上分别接收来自于所述网络设备的M个下行参考信号。
  18. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一参考点,所述第一参考点用于将M个子频带划分为n个第一子频带和M-n个第二子频带,M>n>0,且M和n均为整数;
    收发单元,用于向终端设备发送所述第一参考点的指示信息,所述第一参考点的指示信息用于指示所述第一参考点的数值,所述第一参考点的数值用于指示n,所述M个下行参考信号为网络设备在所述M个子频带上分别发送的。
  19. 根据权利要求18所述的装置,其特征在于,所述处理单元具体用于:
    将功率值转换为第一数值y,y大于0且小于1;
    根据所述第一数值y,确定所述第一参考点。
  20. 根据权利要求18或19所述的装置,其特征在于,
    所述处理单元还用于:根据所述第一参考点,确定所述M个子频带中每个子频带的第一上行预编码信息;根据所述M个子频带中每个子频带的下行信道信息和第一上行预编码信息,对所述M个下行参考信号进行下行预编码;
    所述收发单元还用于在所述M个子频带上分别发送所述M个下行参考信号。
  21. 根据权利要求20所述的装置,其特征在于,所述子频带为所述第一子频带时,所述子频带的第一上行预编码信息为基于所述n个第一子频带的等效信道功率和所述子频带的第二上行预编码信息确定的;
    所述子频带为所述第二子频带时,所述子频带的第一上行预编码信息为基于所述M-n个第二子频带的等效信道功率和所述子频带的第二上行预编码信息确定的;
    其中,所述第二上行预编码信息为基于上行参考信号探测得到的。
  22. 根据权利要求20或21所述的装置,其特征在于,所述子频带的下行信道信息为p个终端设备分别对应的下行信道信息组成的矩阵,所述子频带的第一上行预编码信息为所述p个终端设备分别对应的第一上行预编码信息组成的矩阵,p为正整数。
  23. 根据权利要求19所述的装置,其特征在于,所述功率值为上行传输的功率值或上行传输的功率调整量。
  24. 根据权利要求23所述的装置,其特征在于,所述收发单元还用于:
    向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述功率值为上行传输的功率值或上行传输的功率调整量。
  25. 一种通信设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至14中任一项所述的方法。
  26. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有所述芯片的设备执行如权利要求1至12中任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,用于存储计算机程序指令,所述计算机程序使得计算机执行如权利要求1至12中任一项所述的方法。
  28. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至12中任一项所述的方法。
  29. 一种装置,其特征在于,包括逻辑电路和输入输出接口,其中,所述输入输出接口用于接收来自所述装置之外的其他通信装置的信号并传输至所述逻辑电路或将来自所述逻辑电路的信号发送给所述装置之外的其他通信装置,所述逻辑电路用于执行代码指令以实现权利要求1至12中任一项所述的方法。
PCT/CN2022/134828 2021-12-10 2022-11-28 上行功率的指示方法、装置、设备以及存储介质 WO2023103829A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111511014.6 2021-12-10
CN202111511014.6A CN116261171A (zh) 2021-12-10 2021-12-10 上行功率的指示方法、装置、设备以及存储介质

Publications (1)

Publication Number Publication Date
WO2023103829A1 true WO2023103829A1 (zh) 2023-06-15

Family

ID=86685009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134828 WO2023103829A1 (zh) 2021-12-10 2022-11-28 上行功率的指示方法、装置、设备以及存储介质

Country Status (2)

Country Link
CN (1) CN116261171A (zh)
WO (1) WO2023103829A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365930A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 上行测量参考信号的功率控制方法、网络设备及终端设备
CN109275182A (zh) * 2013-06-14 2019-01-25 华为技术有限公司 一种下行功率分配参数的通知方法及装置
CN111602361A (zh) * 2018-01-04 2020-08-28 Oppo广东移动通信有限公司 功率控制的方法、终端设备和网络设备
US20210068058A1 (en) * 2018-01-16 2021-03-04 Vivo Mobile Communication Co.,Ltd. Uplink power control parameter configuration method, terminal and network device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109275182A (zh) * 2013-06-14 2019-01-25 华为技术有限公司 一种下行功率分配参数的通知方法及装置
CN108365930A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 上行测量参考信号的功率控制方法、网络设备及终端设备
CN111602361A (zh) * 2018-01-04 2020-08-28 Oppo广东移动通信有限公司 功率控制的方法、终端设备和网络设备
US20210068058A1 (en) * 2018-01-16 2021-03-04 Vivo Mobile Communication Co.,Ltd. Uplink power control parameter configuration method, terminal and network device

Also Published As

Publication number Publication date
CN116261171A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2018228535A1 (zh) 传输方法、网络设备和终端
US11089552B2 (en) Uplink power control method and communications device
US20210168846A1 (en) Information transmission method and apparatus
KR102341852B1 (ko) 데이터 전송 방법 및 단말 기기
WO2021031048A1 (zh) 一种通信方法及装置
WO2021017893A1 (zh) 波束测量方法及装置
WO2018127100A1 (zh) 上行功率控制的方法和通信设备
WO2021031972A1 (zh) 信息反馈方法和装置、信息接收方法和装置及存储介质
JP2023547806A (ja) 通信方法および装置
WO2021062836A1 (zh) 功率调整方法及装置
WO2023103829A1 (zh) 上行功率的指示方法、装置、设备以及存储介质
WO2022253150A1 (zh) 数据传输方法及装置
WO2022147735A1 (zh) 确定发送功率的方法及装置
WO2019029624A1 (zh) 通信方法和设备
CN114339875B (zh) 信息传输方法和通信装置
WO2020221261A1 (zh) 一种通信方法及装置
US20210329665A1 (en) Method and Apparatus for Adaptive Priority Control between Control Information and User Data
WO2024059984A1 (zh) 传输块大小的确定方法、装置、设备及存储介质
WO2023040841A1 (zh) 一种上行功率指示方法及装置
WO2023045723A1 (zh) 通信方法、装置、设备以及存储介质
WO2019052441A1 (zh) 一种用于生成扩展符号的方法及装置
WO2022206652A1 (zh) 信息指示的方法与装置
WO2024078074A1 (zh) 信道状态信息的发送方法、接收方法及装置、存储介质
US20220303989A1 (en) Wireless communication method and apparatus
US20220141828A1 (en) Channel quality reporting method, apparatus, and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903251

Country of ref document: EP

Kind code of ref document: A1