WO2023040841A1 - 一种上行功率指示方法及装置 - Google Patents

一种上行功率指示方法及装置 Download PDF

Info

Publication number
WO2023040841A1
WO2023040841A1 PCT/CN2022/118520 CN2022118520W WO2023040841A1 WO 2023040841 A1 WO2023040841 A1 WO 2023040841A1 CN 2022118520 W CN2022118520 W CN 2022118520W WO 2023040841 A1 WO2023040841 A1 WO 2023040841A1
Authority
WO
WIPO (PCT)
Prior art keywords
bits
sequence
uplink power
reference signal
terminal device
Prior art date
Application number
PCT/CN2022/118520
Other languages
English (en)
French (fr)
Inventor
王瀚庆
王潇涵
金黄平
孙琰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023040841A1 publication Critical patent/WO2023040841A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to an uplink power indication method and device.
  • the radio access network device may carry a power control command in a transmit power control (transmit power control, TPC) field of downlink control information (downlink control information, DCI), and the power control command is used to indicate uplink power adjustment information.
  • TPC transmit power control
  • DCI downlink control information
  • the power control command includes 2 bits, and can only indicate 4 kinds of uplink power adjustment amounts, and the precision is low.
  • the present application provides an uplink power indication method and device, which are used to improve the indication accuracy of uplink power.
  • a method for indicating uplink power including the following process: a terminal device receives a reference signal.
  • the reference signal carries information of K1 bits of the first sequence, the first sequence is used to indicate the uplink power of the terminal device, the number of bits K of the first sequence is an integer greater than 2, and K1 is a positive integer less than or equal to K. That is to say, all or part of the bits of the first sequence may be indicated by the reference signal.
  • some bits of the first sequence are indicated by a reference signal, and some bits are indicated by downlink control information.
  • the number of bits in the first sequence is greater than 2, so that the terminal device can be instructed with higher-precision uplink power, thereby improving communication reliability.
  • the value of the uplink power indicated by the first sequence may be an absolute value or a relative value, and the relative value may refer to an adjustment amount of the uplink power.
  • the terminal device can determine uplink power according to the reference signal. When all the bits of the first sequence are indicated by the reference signal, the terminal device can directly determine the uplink power according to the reference signal. In this case, the method can improve the indication accuracy of the uplink power and save the overhead of downlink control information. When all the bits of the first sequence are jointly indicated by the reference signal and the downlink control information, the terminal device can determine the uplink power according to the reference signal and the downlink control information. In this case, the method can improve the indication accuracy of the uplink power, and does not Additional overhead of downlink control information is added.
  • the K2 bits of the first sequence are carried in the TPC field of the DCI.
  • each bit in the K1 bits is mapped to the downlink precoding of the reference signal on the corresponding subband, and for the bit with a value of 0 among the K1 bits, the bit with a value of 0 corresponds to With respect to the first transmission power, for the bit with a value of 1 among the K1 bits, the bit with a value of 1 corresponds to the second transmission power, and the subband is a subband used by the terminal device for uplink transmission.
  • K1 bits of information are mapped to the reference signal, so that all or part of the bits of the first sequence are indicated by the reference signal.
  • the first transmission power is used to indicate that the value of the bit is 0, and the second transmission power is used to indicate that the value of the bit is 1.
  • the terminal device when K1 is equal to K, when the terminal device determines the uplink power according to the reference signal, the terminal device can determine the equivalent channel matrix on each subband according to the reference signal; the terminal device will use the equivalent channel The modulus of the matrix is compared with the first threshold to determine the information of K1 bits carried in the reference signal; the terminal device determines the first quantization interval of the uplink power according to the K1 bits; the terminal device determines the uplink power according to the first quantization interval. In this design, all bits of the first sequence are indicated by a reference signal.
  • the terminal device when the terminal device determines the uplink power according to the reference signal and DCI, the terminal device can determine the equivalent channel matrix on each subband according to the reference signal; the terminal device compares the modulus of the equivalent channel matrix with The first threshold is compared to determine the K1 bits carried in the reference signal; the terminal device obtains the K2 bits carried in the DCI; the terminal device determines K bits based on the K1 bits and K2 bits; the terminal device determines K bits based on the K bits The second quantization interval of the uplink power; according to the second quantization interval for the terminal device.
  • some bits of the first sequence are indicated by reference signals, and some bits are indicated by DCI.
  • the first sequence can be obtained by quantizing the value of the uplink power with K bits, or the first sequence is obtained by encoding the second sequence, and the second sequence is the value of the uplink power after Q bits Obtained after bit quantization, Q is a positive integer, and Q is smaller than K.
  • the reference signal is a channel state information reference signal CSI-RS.
  • the terminal device may also allocate uplink power to each subband scheduled by the terminal device, and use corresponding uplink power to send uplink data on each subband.
  • the terminal device can send uplink data based on the uplink power on each scheduled subband to realize communication with the network device.
  • a method for indicating uplink power including the following process: the radio access network device determines a first sequence, the first sequence is used to indicate the uplink power of the terminal device, and the number of bits K of the first sequence is an integer greater than 2 ; The radio access network device sends a reference signal, where the reference signal carries information of K1 bits of the first sequence, where K1 is an integer less than or equal to K.
  • the K2 bits of the first sequence are carried in the TPC field of the DCI.
  • the first transmit power corresponding to the bits with a value of 0 may also be determined, and for The bit with a value of 1 among the K1 bits may also determine the second transmit power corresponding to the bit with a value of 1; according to the uplink precoding on each subband, the first transmit power, and the second transmit power And the downlink channel matrix, determine the downlink precoding of the reference signal on the subband corresponding to each bit in the K1 bits, the subband is the subband scheduled by the terminal device, that is, the subband used by the terminal device for uplink transmission .
  • the radio access network device may perform bit quantization on the label of the first quantization interval according to the first quantization interval for determining the uplink power of the terminal device, to obtain first sequence.
  • the radio access network device when the radio access network device performs bit quantization on the label in the first quantization interval to obtain the first sequence, it quantizes the value of the uplink power by K bits to obtain the first sequence.
  • the wireless access network device when the wireless access network device performs bit quantization on the label of the first quantization interval to obtain the first sequence, the value of the uplink power is quantized by Q bits to obtain the second sequence, where Q is positive Integer, Q is less than K; encode the second sequence to obtain the first sequence.
  • the numerical value of the uplink power is an absolute value or a relative value
  • the relative value is an adjustment amount of the uplink power
  • the reference signal is a channel state information reference signal CSI-RS.
  • the radio access network device may also superimpose reference signals of multiple terminal devices on the subbands, and the subbands are scheduled by the multiple terminal devices, that is, the subbands are used for the uplink of multiple terminal devices transmission, a plurality of end devices including end devices.
  • a communication device in a third aspect, may be the above-mentioned terminal device or radio access network device, or a chip disposed in the terminal device or the radio access network device.
  • the communication device may implement the method in the first aspect or the second aspect.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means may be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • a communication device including a transceiver unit.
  • the communication device further includes a processing unit.
  • the communication device may implement the method in the first aspect or the second aspect.
  • a communication device including a processor.
  • the processor may be used to execute the method in the first aspect or the second aspect above.
  • the device further includes a memory, the processor is coupled to the memory, and the processor can be used to execute instructions in the memory, so that the device executes the method in the first aspect or the second aspect above.
  • the device further includes an interface circuit, and the processor is coupled to the interface circuit.
  • the interface circuit may be a code/data read-write interface circuit, which is used to receive computer-executed instructions (computer-executed instructions are stored in the memory, may be read directly from the memory, or may pass through other devices) and transmit them to the processor , so that the processor executes computer-executed instructions to perform the method of any one of the above aspects.
  • the communication device may be a chip or a chip system.
  • a communication device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through the receiver and transmit signals through the transmitter, so as to execute the method in the first aspect or the second aspect above.
  • processors there are one or more processors, and one or more memories.
  • the memory can be integrated with the processor, or the memory can be set separately from the processor.
  • the memory can be a non-transitory (non-transitory) memory, such as a read-only memory (read only memory, ROM), which can be integrated with the processor on the same chip, or can be respectively arranged in different On the chip, the embodiment of the present application does not limit the type of the memory and the configuration of the memory and the processor.
  • a non-transitory memory such as a read-only memory (read only memory, ROM)
  • ROM read only memory
  • the communication device can be a chip, and the processor can be implemented by hardware or software.
  • the processor can be a logic circuit, integrated circuit, etc.; when implemented by software, the processing
  • the processor may be a general-purpose processor, and may be implemented by reading software codes stored in a memory.
  • the memory may be integrated in the processor, or it may be located outside the processor and exist independently.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is used to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in the first aspect or the second aspect above.
  • the above-mentioned processor can be a chip
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example but not limited to, the receiver
  • the output signal of the output circuit may be, for example but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • a communication device including: a logic circuit and an input-output interface, the input-output interface is used to communicate with modules other than the communication device; the logic circuit is used to run a computer program to perform any of the above-mentioned method.
  • the communication device may be the terminal device or wireless access network device in the first aspect or the second aspect above, or a device including the above terminal device or wireless access network device, or the above terminal device or wireless access network device includes devices, such as chips.
  • the input/output interface may be a code/data read/write interface circuit, and the input/output interface is used to receive a computer program (the computer program is stored in the memory, may be directly read from the memory, or may pass through other devices) and transmit it to the An input and output interface, so that the input and output interface runs a computer program to perform the method of any one of the above aspects.
  • the communication device may be a chip.
  • a computer program product includes: a computer program (also referred to as code, or an instruction), which, when the computer program is executed, causes the computer to perform the above-mentioned first or second aspect.
  • a computer-readable medium stores a computer program (also referred to as code, or instruction) when it is run on a computer, so that the computer executes the above-mentioned first aspect or the second aspect method in .
  • a chip system in an eleventh aspect, includes a processor and an interface, configured to support a communication device to implement the functions involved in the first aspect or the second aspect.
  • the chip system further includes a memory, and the memory is used to store necessary information and data of the aforementioned communication device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a functional entity is provided, and the functional entity is used to implement the methods in the first aspect to the second aspect above.
  • a communication system including the terminal device and the wireless access network device in the first aspect or the second aspect.
  • the technical effect brought about by any one of the design methods from the second aspect to the thirteenth aspect can refer to the technical effect brought about by the above-mentioned first aspect, and will not be repeated here.
  • FIG. 1 is a schematic diagram of the architecture of a communication system
  • FIG. 2 is a schematic diagram of an uplink power indication process provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a reference signal provided in an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of an uplink power indication provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the present application presents various aspects, embodiments or features in terms of a system that can include a number of devices, components, modules and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules etc. discussed in connection with the figures. In addition, combinations of these schemes can also be used.
  • the word "exemplary” is used as an example, illustration or illustration. Any embodiment or design described herein as “example” is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of the word example is intended to present concepts in a concrete manner.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • Terminal equipment which is used to realize the wireless communication function.
  • the terminal may be a user equipment (user equipment, UE), access terminal, terminal unit, terminal station, Mobile station, mobile station, remote station, remote terminal, mobile device, wireless communication device, terminal agent or terminal device, etc.
  • An access terminal may be a cellular telephone, a cordless telephone, a session initiation protocol (SIP) telephone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (virtual reality, VR) terminal devices, augmented reality (augmented reality, AR) terminal devices, industrial control (industrial Wireless terminals in control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal may be a terminal in vehicle-to-everything (V2X) (such as a vehicle-to-everything device), a terminal in device-to-device (Device to Device) communication, or a machine-to-machine (M2M) Communication terminals, etc.
  • V2X vehicle-to-everything
  • M2M machine-to-machine
  • Terminals can be mobile or fixed.
  • a network device is a device that connects a terminal device to a wireless network.
  • the network device may be a node in a radio access network, may also be called a base station, and may also be called a radio access network (radio access network, RAN) device (or node).
  • RAN radio access network
  • the network equipment may include an evolved base station (NodeB or eNB or eNodeB, evolved Node B) in a long term evolution (long term evolution, LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), such as a traditional Macro base station eNB and micro base station eNB in heterogeneous network scenarios; or it can also include the next generation node B (next generation node B, gNB) in the fifth generation (5th generation, 5G) new air interface (new radio, NR) system , or can also include transmission reception point (transmission reception point, TRP), home base station (for example, home evolved NodeB, or home Node B, HNB), base band unit (base band unit, BBU), base band pool BBU pool, or wireless Fidelity (wireless fidelity, Wi-Fi) access point (access point, AP), etc.; or it can also include the centralized unit (centralized unit, CU) in the cloud access network (cloud radio access network, CloudRAN) system
  • L1 layer 1
  • a relay may be used as a base station, or as a DU, or as an integrated access and backhaul (IAB) node, which is not limited in this embodiment of the present application.
  • IAB integrated access and backhaul
  • the network device may also be a node in the core network.
  • Uplink power also called transmission power or transmission power. Refers to the power used by the terminal device for uplink transmission, that is, the terminal device can send uplink data based on the uplink power.
  • At least one refers to one or more, and multiple refers to two or more.
  • the wireless communication system can be a fourth generation (4th generation, 4G) communication system (for example, a long term evolution (long term evolution, LTE) system), a fifth generation (5th generation, 5G) communication system (for example, NR system), and future mobile communication systems, etc.
  • 4G fourth generation
  • 5th generation, 5G fifth generation
  • the technical solutions of the embodiments of the present application may also be applied to a satellite communication system, where the satellite communication system may be integrated with a wireless communication system.
  • the communication system is suitable for communication between radio access network devices and terminal devices.
  • the communication system may include one or more wireless access network devices, and one or more terminal devices.
  • the communication system may include two radio access network devices (such as radio access network device 1 and radio access network device 2), and multiple terminal devices (such as UE1-UE5).
  • the radio access network device 1 can perform uplink and downlink communications with UE1-UE3, and the radio access network device 2 can perform uplink and downlink communications with UE4-UE5.
  • the dotted line in Figure 1 indicates that there may be uplink interference.
  • the uplink information sent by UE3 may be received by the wireless access network device 2, causing interference to the uplink transmission of UE4 and UE5.
  • the uplink information sent by UE4 may be received by the wireless access network device 2.
  • Network device 1 receives it, causing interference to the uplink transmission of UE1-UE4.
  • the communication system in the embodiment of this application can also be applied to the communication between wireless access network equipment and wireless access network equipment, the communication between terminal equipment and terminal equipment, and the communication of Internet of Vehicles, Internet of Things and Industrial Internet, etc. .
  • the UE uses the following formula (1) to calculate the uplink power:
  • P represents the uplink power
  • P CMAX represents the maximum transmission power of the UE itself
  • M represents the number of subbands occupied by uplink transmission
  • P 0 represents the expected receiving power level of the radio access network equipment
  • represents the path loss (hereinafter referred to as path loss).
  • loss) compensation factor PL represents the estimation of the uplink path loss
  • ⁇ TF represents the uplink power offset value of different modulation and coding scheme (MCS) formats relative to the reference MCS format
  • f(i) represents the UE from the wireless The uplink power adjustment amount indicated by the TPC received by the access network device.
  • the radio access network device carries a power control command in the TPC field of the DCI, and the power control command is used to indicate an adjustment amount of uplink power.
  • the power control command includes 2 bits, which can indicate four kinds of uplink power adjustments, namely -1 decibel relative to one milliwatt (dBm), 0dBm, 1dBm and 3dBm.
  • the UE can obtain the adjustment amount of the uplink power according to the power control command carried in the TPC field of the DCI, and then substitute the adjustment amount of the uplink power into f(i) in formula (1) to calculate the uplink power .
  • an embodiment of the present application provides a method for indicating uplink power, which can be applied to the communication system shown in FIG. 1 .
  • the radio access network device may send a first sequence of information to the terminal device, and the first sequence is used to indicate the uplink power of the terminal device, wherein the number K of bits in the first sequence is greater than 2, and all of the first sequence Bit or partial bit information can be carried in the reference signal, so that the radio access network device can indicate higher-precision uplink power to the terminal device.
  • Figure 2 is an uplink power indication process provided by the embodiment of the present application, the process includes:
  • the radio access network device determines a first sequence, the first sequence is used to indicate uplink power of the terminal device, the number of bits in the first sequence is K, and K is an integer greater than 2.
  • the radio access network device may determine the uplink power of one or more terminal devices.
  • the one or more terminal devices are located within the coverage of the wireless access network device.
  • a terminal device is mainly used as an example for description.
  • the value of the uplink power of the terminal device is an absolute value.
  • the terminal device may use the absolute value of the uplink power as the uplink power used for sending uplink data.
  • the value of the uplink power of the terminal device is a relative value
  • the relative value is an adjustment amount of the uplink power.
  • the terminal device may determine the uplink power used for sending uplink data according to the uplink power adjustment amount and the power reference value, where the power reference value may be the open-loop power control result or the absolute value of the uplink power determined last time.
  • uplink power or “value of uplink power” referred to in the embodiments of this application may refer to the absolute value of uplink power, or may refer to the adjustment amount of uplink power (that is, the relative value of uplink power) .
  • the radio access network device may determine the uplink power of the terminal device according to a sounding reference signal (sounding reference signal, SRS) sent by the terminal device.
  • SRS sounding reference signal
  • the terminal device sends SRS through N ports, and the receiving antenna of the radio access network device is M, and the radio access network device can estimate the uplink channel matrix H UL of the terminal device as an M ⁇ N matrix.
  • the radio access network device calculates uplink precoding P UL,i and uplink power ⁇ UL of the terminal device on all subbands (including one or more subbands) according to the uplink channel matrix H UL of the terminal device.
  • i represents the ith subband scheduled by the terminal device
  • ⁇ UL is the absolute value of the uplink power.
  • the uplink power ⁇ UL calculated by the terminal device may be the sum of transmission powers on all subbands, and in the subsequent communication process, the terminal device may allocate the uplink power ⁇ UL to each subband for communication.
  • the radio access network device may also reconstruct the downlink channel according to the uplink channel.
  • the wireless access network equipment reconstructs the downlink channel matrix H DL according to the uplink channel matrix H UL and the reciprocity of the uplink and downlink channels.
  • the uplink and downlink channels have reciprocity
  • the downlink channel matrix In the FDD scenario, the uplink and downlink channels have reciprocity in the angular delay domain, and the downlink channel matrix HDL needs to include the main direction of the channel. There is no restriction on the way to calculate the downlink channel in the FDD scenario.
  • the radio access network device may determine the absolute value ⁇ UL of the uplink power of the terminal device, or determine the adjustment amount ⁇ UL of the uplink power of the terminal device.
  • ⁇ UL is based on the absolute value of uplink power ⁇ UL and the power reference value OK, for example or Optional, power reference value It may be an open-loop power control result (for example, min ⁇ P CMAX , 10log(M)+P 0 + ⁇ PL+ ⁇ TF ⁇ ), or may be the absolute value of the uplink power determined last time.
  • the uplink power of the terminal device (which can be represented by the absolute value ⁇ UL or the adjustment value ⁇ UL ) can be indicated by the first sequence, which can also be understood as TPC information.
  • the first sequence is used to indicate the absolute value of the uplink power or the adjustment of the uplink power can be stipulated by the protocol, or negotiated in advance between the radio access network device and the terminal device.
  • the number of bits in the first sequence is K, where K is an integer greater than 2, and can indicate higher-precision uplink power.
  • K may also be less than or equal to the number of subbands.
  • K may also be smaller than the sum of the number of subbands and the number of bits of the TPC in the DCI.
  • the radio access network device may perform bit quantization on the value of the uplink power to obtain the first sequence.
  • the radio access network device quantizes the value of the uplink power with K bits to obtain a first sequence, and the first sequence obtained after bit quantization is a binary sequence.
  • the radio access network device quantizes the value of the uplink power by Q bits to obtain the second sequence, and further encodes the second sequence to obtain the first sequence.
  • the first sequence obtained after encoding increases the redundancy of the second sequence, which can improve the reliability of the uplink power indication.
  • the radio access network device and the terminal device may know the mapping relationship between the uplink power and the uplink power range, and different uplink power ranges correspond to different quantization intervals.
  • the uplink power of the terminal device is represented by the label of the quantization interval, or the uplink power of the terminal device is represented by the label after bit quantization, the uplink power requires fewer indication resources, and the uplink power indication resources can be saved.
  • the radio access network device determines the first quantization interval of the uplink power of the terminal device, and performs bit quantization on the label of the first quantization interval to obtain the first sequence.
  • the first quantization interval is a quantization interval corresponding to the first uplink power range where the uplink power is located.
  • the radio access network device may map the labels of the first quantization interval to the first sequence in the following manner.
  • Way 1 The radio access network device quantizes the label in the first quantization interval with K bits to obtain the first sequence.
  • the first sequence is a binary sequence of K bits, that is, the first number is K.
  • the radio access network equipment determines to perform 8-bit quantization, and divides the quantization interval into 2 8 , that is, 256, and the labels of each quantization interval are 0, 1, 2, ..., 255, assuming that the value of the uplink power is a,
  • the value of K can be stipulated by the protocol, or the wireless access network device can be adjusted semi-statically, and the wireless access network device notifies the terminal device of the value of K, and K is greater than 2.
  • the lower bound of the quantization interval c with the upper bound It can be stipulated by the protocol, or the radio access network device can be adjusted semi-statically, and the radio access network device informs the terminal device of the lower bound of the quantization interval c with the upper bound
  • Method 2 The radio access network device quantizes the label of the first quantization interval by Q bits to obtain the second sequence, and the radio access network device further encodes the second sequence to obtain the first sequence with a length of K bits.
  • the bit number K of the first sequence is greater than the bit number Q of the second sequence.
  • the radio access network device can further encode the second sequence to increase the redundancy of the second sequence to obtain the first sequence, which can improve the reliability of the uplink power indication.
  • the radio access network device may encode the sequence b using a channel coding technique to obtain the first sequence of K bits.
  • the first sequence is expressed as The embodiment of the present application does not limit the channel coding technology.
  • the channel coding technology may be a Turbo code coding technology, a low density parity check (low density parity check, LDPC) code coding technology, a Polar code coding technology, and the like.
  • Mode 1 and mode 2 are suitable for high signal to interference plus noise ratio (signal to interference plus noise ratio, SINR) and low SINR scenarios.
  • SINR signal to interference plus noise ratio
  • the reliability of the uplink power control indication in method 2 is higher than that in method 1.
  • the wireless access network device sends the reference signal, and the corresponding terminal device receives the reference signal.
  • the reference signal carries information of K1 bits of the first sequence, where K1 is a positive integer less than or equal to K.
  • the radio access network device may map the K1 bits into the reference signal, so that the reference signal carries the information of the K1 bits. Specifically, the radio access network device determines the first transmit power (such as ⁇ 0 ) corresponding to the bit with a value of 0 for the bit with a value of 0 among the K1 bits, and determines the first transmit power (such as ⁇ 0 ) corresponding to the bit with a value of 1 among the K1 bits bit, to determine the second transmit power (such as ⁇ 1 ) corresponding to the bit whose value is 1.
  • the radio access network device can use the uplink precoding on each subband, the first transmit power , the second transmit power and the downlink channel matrix, determining the downlink precoding of the reference signal on the subband corresponding to each bit in the K1 bits, where the subband is one or more subbands scheduled by the terminal device.
  • the first transmission power is used to indicate that the bit value is 0, and the second transmission power is used to indicate that the bit value is 1.
  • the optional reference signal may be a downlink reference signal such as a channel state information reference signal (channel state information-reference signal, CSI-RS) or a demodulation reference signal (demodulation reference signal, DMRS).
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • the radio access network device may map some bits of the first sequence to the reference signal in a power mapping manner, that is, K1 ⁇ K.
  • the information of part of the bits in the first sequence is carried in the reference signal, and other part of the bits are included in the DCI.
  • the radio access network device further sends DCI, where the DCI includes K2 bits of the first sequence.
  • the reference signal carries information of K1 bits of the first sequence
  • the K2 bits of the first sequence are carried in the TPC field of the DCI.
  • the radio access network device may use power mapping to map part of the bit information of the first sequence to the reference signal, and carry other part of the bits in the DCI. If the power mapping method is adopted, the DCI can directly transmit K2 bits, and the K1 bits are mapped to the downlink precoding of the CSI-RS. Among them, K2 bits and K1 bits are respectively the first few bits in the first sequence (that is, the positions of K1 bits and K2 bits in the first sequence) are not restricted, but terminal devices and wireless access network devices need to know The positions of K1 bits and K2 bits in the first sequence. Exemplarily, the radio access network device and the terminal device may negotiate in advance the positions of the K1 bits and the K2 bits in the first sequence.
  • the first sequence is [1,0,1,0,0,1,0,1], a total of 8 bits, the highest 2 bits of the first sequence are indicated by DCI, and the information of the remaining 6 bits is carried in CSI -RS.
  • Figure 3 shows 12 subbands, 4 blank boxes are the 4 subbands that are not scheduled by the terminal device, the terminal device schedules the remaining 8 subbands, the first subband and the second bit transmit bits 1 and 0 as CSI-RS
  • the reference power (not the value of the uplink power), as a reference value for the terminal device when decoding, can be used to assist the terminal device to determine the first threshold used in the first sequence judgment, and the third to eighth subbands transmit the first threshold.
  • the last 6 bits of a sequence can be used to assist the terminal device to determine the first threshold used in the first sequence judgment.
  • each bit in the first sequence and the subband There is a corresponding relationship between each bit in the first sequence and the subband.
  • the corresponding relationship between each bit in the first sequence and the subband, and the position of the subband used to transmit the reference power of the uplink power may be semi-statically indicated to the radio access network device through radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the terminal device may also be indicated to the terminal device by the radio access network device through other upper-layer signaling.
  • the first sequence may be a sequence obtained by bit quantization, or may be a sequence obtained by encoding the second sequence.
  • the radio access network device maps the first sequence.
  • the bit quantization refers to the process of quantizing the value of the uplink power into a binary sequence of several bits.
  • the reference power of the CSI-RS is transmitted through 2 subbands.
  • the terminal device determines uplink power of the terminal device according to the reference signal.
  • information of all bits in the first sequence is carried in the reference signal.
  • the terminal device can determine the equivalent channel matrix on each subband (such as the downlink channel matrix estimated from the uplink channel matrix), and compare the modulus of the equivalent matrix (for example, it can be obtained by normalization) with the first threshold The comparison is performed to obtain K1 bits carried in the reference signal, and then the first quantization interval of the uplink power is determined according to the K1 bits, and the uplink power is determined according to the first quantization interval.
  • the first quantization interval is a quantization interval corresponding to the first uplink power range where the uplink power is located.
  • part of the bit information in the first sequence is carried in the reference signal, and other part of the bit information is carried in the DCI.
  • the terminal device may determine uplink power according to the reference signal and the DCI.
  • the terminal device can determine the equivalent channel matrix on each subband (such as the downlink channel matrix estimated from the uplink channel matrix), compare the modulus of the equivalent matrix with the first threshold, and obtain the channel matrix carried in the reference signal K1 bits, and obtain the K2 bits carried in the DCI, then determine K bits according to the K1 bits and K2 bits, determine the second quantization interval of the uplink power according to the K bits, and determine the uplink power according to the second quantization interval .
  • the second quantization interval is a quantization interval corresponding to the second uplink power range where the uplink power is located.
  • the first uplink power range and the second uplink power range may be the same or different, and the first quantization interval and the second quantization interval may be the same or different.
  • the terminal device can directly read the K2 bits of the first sequence (such as b 0 and b 1 ) from the DCI, and obtain the K1 bits of the first sequence (such as b 1 ) by demapping in the reference signal. 2 ,b 3 ,...,b K-1 ), the first sequence of K bits (binary representation) can be obtained.
  • the terminal device converts the first sequence in the binary representation into the quantization interval label c in the decimal representation.
  • the terminal device takes the midpoint of the quantization interval of the quantization interval label c as the adjustment amount of the uplink power, that is, (decimal representation), according to the adjustment amount of uplink power ⁇ UL and the power reference value Determine the absolute value ⁇ UL of the uplink power, such as [b 0 ,b 1 ,b 2 ,b 3 ,...,b K-1 ].
  • the terminal device first decodes the first sequence to obtain the second sequence, and then converts the second sequence to decimal to obtain the uplink power.
  • the terminal device determines the uplink power
  • the terminal device uses a subband for transmission, it uses the determined uplink power to send uplink data on the subband.
  • the terminal device can allocate the uplink power to each sub-band, for example, it can be evenly allocated to each sub-band, or it can be allocated to each sub-band by using the water filling algorithm, etc., and in each sub-band The corresponding uplink power is used to send uplink data on the subbands.
  • the radio access network device may multiplex the first sequences of multiple terminal devices to the same group of CSI-RS ports for indication, compared to using different CSI-RS ports for each terminal device Ports are used to indicate, which can further save CSI-RS resources.
  • the radio access network device may superimpose bits in the first sequence of multiple terminal devices on the subband, or may superimpose reference signals of multiple terminal devices on the subband, so as to indicate multiple terminal devices, wherein the A subband can be scheduled by multiple terminal devices, that is, the subband can be used for uplink transmission of multiple terminal devices.
  • the UE can demodulate its own uplink precoding and uplink power on the CSI-RS of the second subband.
  • the downlink channel matrices from the radio access network equipment to UE1-UE3 on the i-th subband are respectively and
  • the radio access network device wishes to indicate to UE1-UE3 that the precoding vectors of the corresponding bits in the first sequence on subband i are respectively and then there is
  • UE1 can use the CSI-RS according to Estimate its own equivalent channel matrix Therefore, the uplink power of UE1 is determined.
  • the wireless access network device may send a first sequence of information to the terminal device, the first sequence is used to indicate the uplink power of the terminal device, and the number of bits K of the first sequence is greater than 2.
  • the information of all or part of the bits of the first sequence can be carried in the reference signal, so that the radio access network device can indicate higher-precision uplink power to the terminal device.
  • the K2 bit information of the first sequence may be carried in other downlink control signaling other than DCI, and may also be carried in other fields other than TPC.
  • the embodiment of the present application also provides a communication device.
  • the communication device 500 includes a processing unit 501 and a transceiver unit 502. Methods described in the Methods Examples.
  • the apparatus 500 may be applied to a terminal device or a radio access network device, or located in a terminal device or a radio access network device.
  • the apparatus 500 is a terminal device.
  • the transceiver unit 502 is configured to receive a reference signal, the reference signal carries information of K1 bits of a first sequence, the first sequence is used to indicate the uplink power of the terminal device, the number of bits of the first sequence is K, and K is an integer greater than 2 , K1 is an integer less than or equal to K;
  • the processing unit 501 is configured to determine uplink power according to the reference signal.
  • the processing unit 501 is specifically configured to determine uplink power according to the reference signal and the DCI.
  • each bit in the K1 bits is mapped to the downlink precoding of the reference signal on the corresponding subband, and for the bit with a value of 0 in the K1 bits, the bit with a value of 0 corresponds to the first A transmit power, for a bit with a value of 1 among the K1 bits, the bit with a value of 1 corresponds to a second transmit power, and the subband is a subband used by the terminal device for uplink transmission.
  • the processing unit 501 is specifically configured to determine the equivalent channel matrix on each subband according to the reference signal; compare the modulus of the equivalent channel matrix with the first threshold, and determine the K1 channels carried in the reference signal bit information; determine the first quantization interval of the uplink power according to the K1 bits; determine the uplink power according to the first quantization interval.
  • the processing unit 501 is specifically configured to determine the equivalent channel matrix on each subband according to the reference signal; compare the modulus of the equivalent channel matrix with the first threshold, and determine the K1 channels carried in the reference signal Bits; acquire K2 bits carried in the DCI; determine K bits according to the K1 bits and K2 bits; determine the second quantization interval of the uplink power according to the K bits; determine the uplink power according to the second quantization interval.
  • the numerical value of the uplink power is an absolute value or a relative value
  • the relative value is an adjustment amount of the uplink power
  • the first sequence is obtained by quantizing the value of the uplink power with K bits; or the first sequence is obtained by encoding the second sequence, and the second sequence is obtained after the value of the uplink power is quantized by Q bits Obtained, Q is a positive integer, Q is less than K.
  • the transceiving unit 502 is further configured to allocate uplink power to each subband scheduled by the terminal device, and use corresponding uplink power to send uplink data on each subband.
  • the apparatus 500 is a radio access network device.
  • the processing unit 501 is used for a first sequence, the first sequence is used to indicate and determine the uplink power of the terminal device, and the number of bits of the first sequence is K, where K is an integer greater than 2;
  • the transceiver unit 502 is configured to send a reference signal, where the reference signal carries information of K1 bits of the first sequence, where K1 is a positive integer less than or equal to K.
  • the processing unit 501 is further configured to determine the first transmit power corresponding to the bit whose value is 0 for the bit whose value is 0 among the K1 bits, and determine the first transmit power corresponding to the bit whose value is 1 among the K1 bits bit, determine the second transmit power corresponding to the bit whose value is 1; according to the uplink precoding on each subband, the first transmit power, the second transmit power and the downlink channel matrix, determine the subband corresponding to each bit in the K1 bits
  • the downlink precoding of the reference signal on the band, and the subband is the subband used by the terminal device for uplink transmission.
  • the processing unit 501 is specifically configured to determine the first quantization interval to which the uplink power of the terminal device belongs; perform bit quantization on the label of the first quantization interval to obtain the first sequence.
  • the processing unit 501 is specifically configured to perform K-bit quantization on the label in the first quantization interval to obtain the first sequence.
  • the processing unit 501 is specifically configured to perform Q bit quantization on the label of the first quantization interval to obtain the second sequence, where Q is a positive integer and Q is less than K; and encode the second sequence to obtain the first sequence.
  • the numerical value of the uplink power is an absolute value or a relative value
  • the relative value is an adjustment amount of the uplink power
  • the transceiver unit 502 is further configured to superimpose reference signals of multiple terminal devices on a subband, where the subband is used for uplink transmission of the multiple terminal devices, and the multiple terminal devices include the terminal device.
  • each functional unit in each embodiment of the present application It can be integrated in one processing unit, or physically exist separately, or two or more units can be integrated in one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit can be stored in a computer-readable storage medium. Based on this understanding, the integrated unit can be stored in a storage medium as a computer software product, including several instructions to make a computer device (it can be a personal computer, a server, or a wireless access network device, etc.) or a processor (processor) Execute all or part of the steps of the methods in the various embodiments of the present application.
  • the embodiment of the present application also provides a schematic structural diagram of a communication device 600 .
  • the apparatus 600 may be used to implement the methods described in the foregoing method embodiments, and reference may be made to the descriptions in the foregoing method embodiments.
  • the Apparatus 600 includes one or more processors 601 .
  • the processor 601 may be a general purpose processor or a special purpose processor or the like.
  • it may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, terminals, or chips, etc.), execute software programs, and process data of software programs.
  • the communication device may include a transceiver unit for inputting (receiving) and outputting (sending) signals.
  • the transceiver unit may be a transceiver, a radio frequency chip, and the like.
  • the apparatus 600 includes one or more processors 601, and the one or more processors 601 can implement the methods in the above-mentioned embodiments.
  • processor 601 may also implement other functions in addition to implementing the methods in the above-mentioned embodiments.
  • the processor 601 may execute instructions, so that the apparatus 600 executes the methods described in the foregoing method embodiments.
  • the instructions may be stored in whole or in part in the processor, such as instruction 603, or may be stored in whole or in part in the memory 602 coupled to the processor, such as instruction 604, and the instructions 603 and 604 may jointly cause the device 600 to execute the above method. method described in the example.
  • Instructions 603 are also referred to as computer programs.
  • the communication device 600 may also include a circuit, and the circuit may implement the functions in the foregoing method embodiments.
  • the device 600 may include one or more memories 602 on which instructions 604 are stored, and the instructions may be executed on a processor, so that the device 600 executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory.
  • Instructions and/or data may also be stored in the optional processor.
  • one or more memories 602 may store the correspondence described in the foregoing embodiments, or the relevant parameters or tables involved in the foregoing embodiments, and the like. Processor and memory can be set separately or integrated together.
  • the apparatus 600 may further include a transceiver 605 and an antenna 606 .
  • the processor 601 may be referred to as a processing unit, and controls the device (terminal or base station).
  • the transceiver 605 may be called a transceiver, a transceiver circuit, or a transceiver unit, etc., and is used to realize the transceiver function of the device through the antenna 606 .
  • the processor can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, a specific application integrated circuit (application-specific integrated circuit, ASIC), one or more integrated circuits used to control the execution of the program program of this application , general-purpose processor, digital signal processor (digital signal processor, DSP), off-the-shelf programmable gate array (field programmable gate asrray, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • a software module may be stored on a storage medium located in a memory.
  • Memory can be volatile memory or nonvolatile memory, or can include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the structure shown in FIG. 7 does not constitute a specific limitation on the terminal device and the radio access network device.
  • the terminal device or radio access network device may include more or fewer components than those shown in the illustration, or combine some components, or split some components, or arrange different components .
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the embodiment of the present application further provides a computer-readable medium, on which a computer program is stored, and when the computer program is executed by a computer, the uplink power indicating method in any one of the above method embodiments is implemented.
  • An embodiment of the present application further provides a computer program product, including a computer program, and when the computer program is executed by a computer, the uplink power indication method in any one of the foregoing method embodiments is implemented.
  • the embodiment of the present application also provides a communication system, including a terminal device and a radio access network device, and the terminal device and the radio access network device can implement the uplink power indication method in any one of the above method embodiments.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • a computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer may be the communication device described above.
  • Computer instructions may be stored in, or transmitted from, one computer-readable storage medium to another computer-readable storage medium.
  • the computer-readable storage medium may be the above-mentioned storage medium or the above-mentioned memory.
  • the determination unit or processor 601 may be one or more logic circuits
  • the sending unit or the receiving unit or the transceiver 605 may be an input-output interface, or called a communication interface, or an interface circuit, or an interface, or the like.
  • the transceiver 605 may also be a sending unit and a receiving unit, the sending unit may be an output interface, and the receiving unit may be an input interface, and the sending unit and the receiving unit are integrated into one unit, such as an input and output interface.
  • the 7 includes a logic circuit 701 and an interface circuit 702 . That is, the above-mentioned determination unit or processor 601 may be realized by a logic circuit 701 , and the sending unit or receiving unit or transceiver 605 may be realized by an interface circuit 702 .
  • the logic circuit 701 may be a chip, a processing circuit, an integrated circuit or a system on chip (SoC) chip, etc.
  • the interface circuit 702 may be a communication interface, an input-output interface, or the like.
  • the logic circuit and the interface circuit may also be coupled to each other. The embodiment of the present application does not limit the specific connection manner of the logic circuit and the interface circuit.
  • the logic circuit and the interface circuit may be used to perform the functions or operations performed by the radio access network device or the terminal device, etc. above.
  • the interface circuit 702 is used for receiving a reference signal.
  • the logic circuit 701 is configured to determine uplink power according to the reference signal.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or integrated. to another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上行功率指示方法及装置,方法包括:终端设备接收参考信号,参考信号包括第一序列的K1个比特,第一序列用于指示终端设备的上行功率,第一序列的比特数大于2,K1小于或等于第一序列的比特数;终端设备根据参考信号,确定上行功率。因此无线接入网设备可以向终端设备指示更高精度的上行功率。

Description

一种上行功率指示方法及装置
相关申请的交叉引用
本申请要求在2021年09月14日提交中国专利局、申请号为202111076135.2、申请名称为“一种上行功率指示方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种上行功率指示方法及装置。
背景技术
随着通信技术的发展,新兴数据业务对上行传输速率提出了更高的要求。但是更多的上行传输数据流以及多站协作接收使得上行传输的干扰环境更加复杂,实现高精度的上行功率控制有助于改善多用户干扰,进而提升上行数据传输速率。
无线接入网设备可以在下行控制信息(downlink control information,DCI)的传输功率控制(transmit power control,TPC)字段中携带功率控制命令,功率控制命令用于指示上行功率的调整信息。功率控制命令包括2比特,仅能指示4种上行功率的调整量,精度较低。
发明内容
本申请提供一种上行功率指示方法及装置,用以提高上行功率的指示精度。
第一方面,提供一种上行功率指示方法,包括如下过程:终端设备接收参考信号。参考信号携带第一序列的K1个比特的信息,第一序列用于指示终端设备的上行功率,第一序列的比特数K为大于2的整数,K1为小于或等于K的正整数。也就是说第一序列的全部比特或部分比特可以由参考信号进行指示。
可选的,第一序列的部分比特由参考信号进行指示,并且部分比特由下行控制信息进行指示。例如终端设备可以接收下行控制信息DCI,DCI包括第一序列的K2个比特,其中K1+K2=K。
第一序列的比特数大于2,可以使得终端设备被指示更高精度的上行功率,从而可以提高通信的可靠性。
其中第一序列指示的上行功率的数值可以为绝对值或相对值,相对值可以是指上行功率的调整量。
终端设备可以根据参考信号,确定上行功率。在第一序列的全部比特由参考信号进行指示时,终端设备根据参考信号,可以直接确定上行功率,在这种情况下该方法可以提高上行功率的指示精度,还可以节省下行控制信息的开销。在第一序列的全部比特由参考信号和下行控制信息共同指示时,终端设备可以根据参考信号和下行控制信息,确定上行功率,在这种情况下该方法可以提高上行功率的指示精度,并且不额外增加下行控制信息的开销。
在一种可能的设计中,第一序列的K2个比特携带在DCI的传输功率控制TPC字段中。
在一种可能的设计中,K1个比特中的每个比特映射到对应子带上参考信号的下行预编码中,并且针对K1个比特中取值为0的比特,取值为0的比特对应于第一发送功率,针对K1个比特中取值为1的比特,取值为1的比特对应于第二发送功率,子带为终端设备用于上行传输的子带。在该设计中,K1个比特的信息映射到参考信号上,从而通过参考信号指示第一序列的全部比特或部分比特。第一发送功率用于指示比特的取值为0,第二发送功率用于指示比特的取值为1。
在一种可能的设计中,当K1等于K时,在终端设备根据参考信号,确定上行功率时,终端设备可以根据参考信号,确定每个子带上的等效信道矩阵;终端设备将等效信道矩阵的模与第一门限进行比较,确定参考信号中携带的K1个比特的信息;终端设备根据K1个比特确定上行功率的第一量化区间;终端设备根据第一量化区间,确定上行功率。在该设计中,第一序列的全部比特由参考信号指示。
在一种可能的设计中,在终端设备根据参考信号和DCI,确定上行功率时,终端设备可以根据参考信号,确定每个子带上的等效信道矩阵;终端设备将等效信道矩阵的模与第一门限进行比较,确定参考信号中携带的K1个比特;终端设备获取DCI中携带的K2个比特;终端设备根据K1个比特和K2个比特,确定K个比特;终端设备根据K个比特确定上行功率的第二量化区间;终端设备根据第二量化区间。在该设计中,第一序列的部分比特由参考信号指示,部分比特由DCI指示。
在一种可能的设计中,第一序列可以为上行功率的数值经过K个比特量化后得到,或者第一序列为对第二序列进行编码后得到,第二序列为上行功率的数值经过Q个比特量化后得到,Q为正整数,Q小于K。
在一种可能的设计中,参考信号为信道状态信息参考信号CSI-RS。
在一种可能的设计中,终端设备还可以将上行功率分配到终端设备调度的每个子带,并在每个子带上采用相应的上行功率发送上行数据。在该设计中,终端设备可以在调度的各子带上,基于上行功率,发送上行数据,实现与网络设备之间的通信。
第二方面,提供一种上行功率指示方法,包括如下过程:无线接入网设备确定第一序列,第一序列用于指示终端设备的上行功率,第一序列的比特数K为大于2的整数;无线接入网设备发送参考信号,参考信号携带第一序列的K1个比特的信息,K1为小于或等于K的整数。
在一种可能的设计中,无线接入网设备还可以发送下行控制信息DCI,DCI包括第一序列的K2个比特,其中K1+K2=K。
在一种可能的设计中,第一序列的K2个比特携带在DCI的传输功率控制TPC字段中。
在一种可能的设计中,无线接入网设备发送参考信号之前,针对所述K1个比特中取值为0的比特,还可以确定取值为0的比特对应的第一发送功率,以及针对所述K1个比特中取值为1的比特,还可以确定取值为1的比特对应的第二发送功率;根据每个子带上的上行预编码、所述第一发送功率、第二发送功率和下行信道矩阵,确定所述K1个比特中每个比特对应子带上的参考信号的下行预编码,所述子带为终端设备调度的子带,即为终端设备用于上行传输的子带。
在一种可能的设计中,无线接入网设备确定第一序列时,无线接入网设备可以根据确定终端设备的上行功率的第一量化区间;将第一量化区间的标号进行比特量化,得到第一 序列。
在一种可能的设计中,在无线接入网设备将第一量化区间的标号进行比特量化,得到第一序列时,将上行功率的数值进行K个比特量化,得到第一序列。
在一种可能的设计中,在无线接入网设备将第一量化区间的标号进行比特量化,得到第一序列时,将上行功率的数值进行Q个比特量化,得到第二序列,Q为正整数,Q小于K;对第二序列进行编码,得到第一序列。
在一种可能的设计中,上行功率的数值为绝对值或相对值,相对值为上行功率的调整量。
在一种可能的设计中,参考信号为信道状态信息参考信号CSI-RS。
在一种可能的设计中,无线接入网设备还可以在子带上叠加多个终端设备的参考信号,子带被所述多个终端设备调度,即子带用于多个终端设备的上行传输,多个终端设备包括终端设备。
第三方面,提供一种通信装置,该通信装置可以为上述终端设备或无线接入网设备,或者为设置在终端设备或无线接入网设备中的芯片。该通信装置可以实现第一方面或第二方面中的方法。
通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第四方面,提供一种通信装置,包括收发单元。可选的,该通信装置还包括处理单元。该通信装置可以实现第一方面或第二方面中的方法。
第五方面,提供一种通信装置,包括处理器。该处理器可用于执行上述第一方面或第二方面中的方法。
可选地,该装置还包括存储器,处理器与存储器耦合,处理器可用于执行存储器中的指令,以使得该装置执行上述第一方面或第二方面中的方法。
可选地,该装置还包括接口电路,处理器与接口电路耦合。
该接口电路可以为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器,以使该处理器运行计算机执行指令以执行上述任一方面的方法。
在一些可能的设计中,该通信装置可以为芯片或芯片系统。
第六方面,提供一种通信装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行上述第一方面或第二方面中的方法。
可选地,该处理器为一个或多个,该存储器为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
该通信装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集 成在处理器中,可以位于该处理器之外,独立存在。
第七方面,提供一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该处理器执行上述第一方面或第二方面中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,提供一种通信装置,包括:逻辑电路和输入输出接口,该输入输出接口用于与该通信装置之外的模块通信;该逻辑电路用于运行计算机程序以执行上述任一方面的方法。该通信装置可以为上述第一方面或第二方面中的终端设备或无线接入网设备,或者包含上述终端设备或无线接入网设备的装置,或者上述终端设备或无线接入网设备中包含的装置,比如芯片。
或者,该输入输出接口可以为代码/数据读写接口电路,该输入输出接口用于接收计算机程序(计算机程序存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该输入输出接口,以使该输入输出接口运行计算机程序以执行上述任一方面的方法。
可选的,该通信装置可以为芯片。
第九方面,提供一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面或第二方面中的方法。
第十方面,提供一种计算机可读介质,该计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第二方面中的方法。
第十一方面,提供一种芯片系统,该芯片系统包括处理器和接口,用于支持通信装置实现上述第一方面或第二方面中所涉及的功能。在一种可能的设计中,芯片系统还包括存储器,存储器,用于保存前述通信装置的必要的信息和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十二方面,提供一种功能实体,该功能实体用于实现上述第一方面至第二方面中的方法。
第十三方面,提供一种通信系统,包括上述第一方面或第二方面的终端设备和无线接入网设备。
其中,第二方面至第十三方面中任一种设计方式所带来的技术效果可参见上述第一方面所带来的技术效果,此处不再赘述。
附图说明
图1为一种通信系统的架构示意图;
图2为本申请实施例提供的一种上行功率指示的过程示意图;
图3为本申请实施例提供的一种参考信号的示意图;
图4为本申请实施例提供的一种上行功率指示的流程示意图;
图5为本申请实施例提供的一种通信装置的结构示意图;
图6为本申请实施例提供的一种通信装置的结构示意图;
图7为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,用于实现无线通信功能的设备。终端可以是第五代(5th generation,5G)网络或者未来演进的公共陆地移动网(public land mobile network,PLMN)中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。或者,终端可以是车联网(vehicle-to-everything,V2X)中的终端(例如车联网设备)、设备到设备(Device to Device)通信中的终端、或者机器到机器(machine to machine,M2M)通信中的终端等。终端可以是移动的,也可以是固定的。
2)网络设备,是一种将终端设备接入到无线网络的设备。网络设备可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)设备(或节点)。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或eNodeB,evolved Node B),如传统的宏基站eNB和异构网络场景下的微基站eNB;或者也可以包括第五代(5th generation,5G)新空口(new radio,NR)系统中的下一代节点B(next generation node B,gNB),或者还可以包括传输接收点(transmission reception point,TRP)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)、基 带池BBU pool,或无线保真(wireless fidelity,Wi-Fi)接入点(access point,AP)等;再或者还可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU);又或者可以包括非陆地网络(non-terrestrial network,NTN)中的网络设备,即可以部署于高空平台或者卫星,在NTN中,网络设备可以作为层1(L1)中继(relay),或者可以作为基站,或者可以作为DU,或者可以作为接入回传一体化(integrated access and backhaul,IAB)节点,本申请实施例并不限定。
当然,网络设备也可以为核心网中的节点。
3)上行功率,也称发送功率或传输功率。指终端设备进行上行传输时采用的功率,即终端设备可以基于上行功率,发送上行数据。
本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中所涉及的至少一个指一个或多个,多个是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例的技术方案可以应用于无线通信系统,例如:无线通信系统可以为第四代(4th generation,4G)通信系统(例如,长期演进(long term evolution,LTE)系统),第五代(5th generation,5G)通信系统(例如,NR系统),及未来的移动通信系统等。本申请实施例的技术方案也可以应用于卫星通信系统,其中,卫星通信系统可以与无线通信系统相融合。
本申请实施例提供的通信系统适用于无线接入网设备和终端设备之间的通信。通信系统中可以包括一个或多个无线接入网设备,以及一个或多个终端设备。例如图1所示,通信系统可以包括两个无线接入网设备(如无线接入网设备1和无线接入网设备2),和多个终端设备(如UE1~UE5)。无线接入网设备1可以与UE1~UE3进行上下行通信,无线接入网设备2可以与UE4~UE5进行上下行通信。图1中的虚线表示可能存在上行干扰,例如UE3发送的上行信息可能被无线接入网设备2接收到,对UE4和UE5的上行传输造成干扰,又如UE4发送的上行信息可能被无线接入网设备1接收到,对UE1~UE4的上行传输造成干扰。本申请实施例中的通信系统也可以适用于无线接入网设备和无线接入网设备之间的通信,终端设备和终端设备之间的通信,以及车联网,物联网和工业互联网等的通信。
随着通信技术的发展,新兴数据业务对上行传输速率提出了更高的要求。但是更多的上行传输数据流以及多站协作接收使得上行传输的干扰环境更加复杂,而高精度的上行功率控制有助于改善多用户干扰,提升上行数据传输速率。
第三代移动通信伙伴项目(3rd generation partnership project,3GPP)协议中规定,UE采用如下公式(1)计算上行功率:
P=min{P CMAX,10log(M)+P 0+αPL+Δ TF+f(i)}     (1)
其中,P表示上行功率,P CMAX表示UE自身的最大发射功率,M表示上行传输占用的子带数,P 0表示无线接入网设备期望的接收功率水平,α表示路径损耗(以下称为路损)补偿因子,PL表示上行路损的估值,Δ TF表示不同调制编码方式(modulation and coding  scheme,MCS)格式相对于参考MCS格式的上行功率偏置值,f(i)表示UE从无线接入网设备接收的TPC所指示的上行功率调整量。
无线接入网设备在DCI的TPC字段中携带功率控制命令,功率控制命令用于指示上行功率的调整量。功率控制命令包括2比特(bit),能够指示4种上行功率的调整量,分别为-1分贝毫瓦(decibel relative to one milliwatt,dBm)、0dBm、1dBm和3dBm。UE接收到DCI后,可以根据DCI的TPC字段中携带的功率控制命令,获取上行功率的调整量,然后将上行功率的调整量代入公式(1)中的f(i),从而计算出上行功率。
但是通过2比特只能指示4种上行功率的调整量,精度较低。
基于此,本申请实施例提供一种上行功率指示方法,可以应用于图1所示的通信系统。在该方法中,无线接入网设备可以向终端设备发送第一序列的信息,该第一序列用于指示终端设备的上行功率,其中第一序列的比特数K大于2,第一序列的全部比特或部分比特的信息可以携带在参考信号中,这样无线接入网设备可以向终端设备指示更高精度的上行功率。
图2为本申请实施例提供的一种上行功率指示过程,该过程包括:
S201:无线接入网设备确定第一序列,第一序列用于指示终端设备的上行功率,第一序列的比特数为K,K为大于2的整数。
其中无线接入网设备可以确定一个或多个终端设备的上行功率。一般的,该一个或多个终端设备位于无线接入网设备的覆盖范围内。在该实施例中主要以一个终端设备为例进行说明。
在一个实现方式中,终端设备的上行功率的数值为绝对值。终端设备可以将该上行功率的绝对值,作为发送上行数据采用的上行功率。
在另一个实现方式中,终端设备的上行功率的数值为相对值,该相对值为上行功率的调整量。终端设备可以根据该上行功率的调整量和功率基准值确定发送上行数据采用的上行功率,其中功率基准值可以为开环功率控制结果或者上一次确定的上行功率的绝对值等。
除特别说明外,本申请实施例中所涉及的“上行功率”或“上行功率的数值”可以是指上行功率的绝对值,或者可以是指上行功率的调整量(即上行功率的相对值)。
可选的,无线接入网设备可以根据终端设备发送的探测参考信号(sounding reference signal,SRS),确定终端设备的上行功率。例如终端设备通过N个端口发送SRS,无线接入网设备的接收天线为M,无线接入网设备可以估计终端设备的上行信道矩阵H UL为一个M×N矩阵。无线接入网设备根据终端设备的上行信道矩阵H UL,计算终端设备在所有子带(包括一个或多个子带)上的上行预编码P UL,i和上行功率ρ UL。其中i表示终端设备调度的第i个子带,ρ UL为上行功率的绝对值。这时终端设备计算到的上行功率ρ UL可以是在所有子带上的发送功率之和,在后续通信过程中,终端设备可以将上行功率ρ UL分配到每个子带上进行通信。
可选的,无线接入网设备还可以根据上行信道,重建下行信道。例如无线接入网设备根据上行信道矩阵H UL和上下行信道互易性,重建下行信道矩阵H DL,在TDD场景下,上下行信道具有互易性,下行信道矩阵
Figure PCTCN2022118520-appb-000001
在FDD场景下,上下行信道在角度时延域具有互易性,下行信道矩阵H DL需要包含信道的主方向,这里对FDD场景下计算下行信道的方式不做限制。
无线接入网设备可以确定终端设备的上行功率的绝对值ρ UL,或者确定终端设备的上 行功率的调整量Δρ UL。Δρ UL根据上行功率的绝对值ρ UL和功率基准值
Figure PCTCN2022118520-appb-000002
确定,例如
Figure PCTCN2022118520-appb-000003
Figure PCTCN2022118520-appb-000004
可选的,功率基准值
Figure PCTCN2022118520-appb-000005
可以为开环功率控制结果(例如为min{P CMAX,10log(M)+P 0+αPL+Δ TF}),或者可以为上一次确定的上行功率的绝对值。
其中终端设备的上行功率(可以通过绝对值ρ UL或者调整值Δρ UL表示),可以通过第一序列进行指示,第一序列也可以理解为TPC信息。第一序列用于指示的是上行功率的绝对值或者是上行功率的调整是可以由协议规定,或者是由无线接入网设备和终端设备事先协商。第一序列的比特数为K,其中K为大于2的整数,可以指示更高精度的上行功率。一种实现方式中,K还可以小于或等于子带数目。另一种实现方式中,K还可以小于子带数目与DCI中的TPC的比特数之和。
一种可能的示例中,无线接入网设备可以对上行功率的数值进行比特量化,得到第一序列。例如无线接入网设备对上行功率的数值进行K个比特量化,得到第一序列,比特量化后得到的第一序列为二进制序列。又如无线接入网设备对上行功率的数值进行Q个比特量化,得到第二序列,将第二序列进一步进行编码,得到第一序列。编码后的得到第一序列增加了第二序列的冗余度,可以提高上行功率指示的可靠性。
另一种可能的示例中,无线接入网设备和终端设备可以知道上行功率与上行功率范围之间的映射关系,不同上行功率范围对应不同量化区间。通过量化区间的标号表示终端设备的上行功率,或通过比特量化后的标号表示终端设备的上行功率,上行功率所需的指示资源更少,可以节省上行功率的指示资源。例如无线接入网设备确定终端设备的上行功率的第一量化区间,将第一量化区间的标号进行比特量化,可以得到第一序列。第一量化区间为上行功率所在的第一上行功率范围对应的量化区间。
无线接入网设备可以通过如下方式,将第一量化区间的标号映射为第一序列。
方式1:无线接入网设备将第一量化区间的标号进行K个比特量化,得到第一序列。
在该方式1中,第一序列为K个比特的二进制序列,即第一数量为K。具体而言,在量化过程中,如果进行K个比特量化,无线接入网设备可以将量化区间划分为2 K,量化区间标号c∈{0,1,…2 K-1},有量化区间c的下界
Figure PCTCN2022118520-appb-000006
与上界
Figure PCTCN2022118520-appb-000007
然后确定上行功率的数值所属的量化区间的量化区间标号,将该量化区间编号的二进制表示形式确定为第一序列,如第一序列表示为b=[b 0,b 1,…b K-1]。例如无线接入网设备确定进行8个比特量化,将量化区间划分为2 8,即256个,每个量化区间标号分别为0,1,2,…,255,假设上行功率的数值为a,无线接入网设备确定上行功率的数值a落入在量化区间标号为165的量化区间内,则无线接入网设备可以将165的二进制表示形式作为第一序列,即第一序列b=[1,0,1,0,0,1,0,1]。
其中K的取值可以由协议规定,或者无线接入网设备半静态调整,无线接入网设备向终端设备告知K的取值,K大于2。量化区间c的下界
Figure PCTCN2022118520-appb-000008
与上界
Figure PCTCN2022118520-appb-000009
可以由协议规定,或者无线接入网设备半静态调整,无线接入网设备向终端设备告知量化区间c的下界
Figure PCTCN2022118520-appb-000010
与上界
Figure PCTCN2022118520-appb-000011
方式2:无线接入网设备将第一量化区间的标号进行Q个比特量化,得到第二序列,无线接入网设备对第二序列进一步进行编码,得到K个比特长度的第一序列。其中第一序列的比特数K大于第二序列的比特数Q。
在该方式2中,第二序列为Q个比特的二进制序列,例如第二序列表示为b= [b 0,b 1,…b Q-1]。
无线接入网设备可以对第二序列进一步进行编码,增加第二序列的冗余度,得到第一序列,可以提高上行功率指示的可靠性。例如无线接入网设备可以对采用信道编码技术对序列b进行编码,得到K个比特的第一序列。例如第一序列表示为
Figure PCTCN2022118520-appb-000012
本申请实施例对信道编码技术不做限制,例如信道编码技术可以为Turbo码编码技术、低密度校验(low density parity check,LDPC)码编码技术、Polar码编码技术等。
方式1和方式2适用于高信号与干扰加扰噪声比(signal to interference plus noise ratio,SINR)和低SINR场景。在低SINR场景下,方式2的上行功控指示的可靠性高于方式1。
S202:无线接入网设备发送参考信号,对应的终端设备接收参考信号。参考信号携带第一序列的K1个比特的信息,K1为小于或等于K的正整数。
无线接入网设备可以将K1个比特的映射到参考信号中,从而实现参考信号中携带K1个比特的信息。具体而言,无线接入网设备针对K1个比特中取值为0的比特,确定取值为0的比特对应的第一发送功率(如β 0),针对K1个比特中取值为1的比特,确定取值为1的比特对应的第二发送功率(如β 1),由于上下行信道的互易性,无线接入网设备可以根据每个子带上的上行预编码、第一发送功率、第二发送功率和下行信道矩阵,确定K1个比特中每个比特对应子带上的参考信号的下行预编码,子带为所述终端设备调度的一个或多个子带。其中第一发送功率用于指示比特取值为0,第二发送功率用于指示比特取值为1。
一个示例中,第一序列中的全部比特的信息携带在参考信号中,而不携带在DCI中,即K1=K。这样可以提高上行功率的指示精度,还可以节省DCI的开销。可选的参考信号可以为信道状态信息参考信号(channel state information-reference signal,CSI-RS)或解调参考信号(demodulation reference signal,DMRS)等下行参考信号,本申请实施例以CSI-RS为例进行说明,对参考信号的类型不做限制。
在该示例中,无线接入网设备可以采用功率映射的方式,将第一序列的每个比特映射到参考信号中,例如映射到终端设备每个子带上CSI-RS的下行预编码中。若采用功率映射的方式,无线接入网设备将第一序列中的第k个比特b k映射为第i个子带上CSI-RS的下行预编码P DL,i,例如映射规则如下:针对第一序列中的第k个比特b k,若b k=0,令
Figure PCTCN2022118520-appb-000013
若b k=1,令
Figure PCTCN2022118520-appb-000014
β 0对应b k=0时CSI-RS的下行功率,β 1对应b k=1时CSI-RS的下行功率,然后无线接入网设备通过求解方程组
Figure PCTCN2022118520-appb-000015
确定CSI-RS的下行预编码。
另一个示例中,无线接入网设备可以采用功率映射的方式,将第一序列的部分比特映射到参考信号中,即K1<K。换言之,第一序列中的部分比特的信息携带在参考信号中,其他部分比特包含在DCI中。这样可以提高上行功率的指示精度,并且不额外增加DCI的开销。可选的,对应该示例,在该S202中,无线接入网设备还发送DCI,DCI包括第一序列的K2个比特。
例如参考信号携带第一序列的K1个比特的信息,DCI包括第一序列的K2个比特,并且K1+K2=K。如果DCI通过2个比特指示上行功率,则K2小于或等于2。可选的,第一序列的K2个比特携带在DCI的TPC字段中。
在该示例中,无线接入网设备可以采用功率映射的方式,将第一序列的部分比特信息映射到参考信号,其他部分比特携带在DCI中。若采用功率映射的方式,DCI可以直接传输K2个比特,K1个比特映射到CSI-RS的下行预编码。其中K2个比特和K1个比特分别为第一序列中的第几个比特(即K1个比特和K2个比特在第一序列的位置)不做限制,但是终端设备和无线接入网设备需要知道K1个比特和K2个比特在第一序列的位置。示例性地,无线接入网设备和终端设备可以事先协商K1个比特和K2个比特在第一序列的位置。
例如第一序列为[1,0,1,0,0,1,0,1],共8个比特,第一序列的最高2个比特由DCI进行指示,其余6个比特的信息携带在CSI-RS中。图3示出了12个子带,4个空白框为不被终端设备调度的4个子带,终端设备调度其余8个子带,第1个子带和第2个比特传输比特1和0作为CSI-RS的参考功率(非上行功率的数值),作为终端设备解码时的参考值,可以用于辅助终端设备确定在第一序列判决时采用的第一门限,第3个至第8个子带上传输第一序列的后6个比特。其中第一序列中各比特与子带存在对应关系。第一序列中各比特与子带的对应关系,以及用于传输上行功率的参考功率的子带位置可以由无线接入网设备通过无线资源控制(radio resource control,RRC)信令半静态指示给终端设备,还可以由无线接入网设备通过其他上层信令指示给终端设备。
其中第一序列可以为经过比特量化得到的序列,或者可以为经过对第二序列进行编码得到的序列,在该两个示例中,无线接入网设备对第一序列进行映射。其中比特量化指将上行功率的数值量化为若干个比特的二进制序列的过程。
如图3所示,CSI-RS的参考功率通过2个子带传输。用于传输CSI-RS的参考信号的子带数量越多,终端设备确定的第一门限越准确,确定的第一序列也越准确,上行功率指示的可靠性越高。
S203:终端设备根据参考信号,确定终端设备的上行功率。
在一个示例中,第一序列中的全部比特的信息携带在参考信号中。
终端设备根据参考信号,可以确定每个子带上的等效信道矩阵(如根据上行信道矩阵估计得到的下行信道矩阵),将等效矩阵的模(例如可以通过归一化得到)与第一门限进行比较,得到参考信号中携带的K1个比特,然后根据该K1个比特确定上行功率的第一量化区间,根据第一量化区间确定上行功率。其中第一量化区间为上行功率所在的第一上行功率范围对应的量化区间。
例如在解映射过程中,终端设备可以根据参考信号,估计每个子带i上的等效信道矩阵H DL,iP DL,i,然后将等效信道矩阵进行归一化得到子带i上的上行预编码。以及,终端设备可以估计出上行功率,例如终端设备将等效信道矩阵的模(用来表示K1个比特)与第一门限进行比较,判决得到第一序列b=[b 0,b 1,b 2,b 3,…b K-1](二进制表示形式),第一序列所指示的上行功率的调整量对应调整量所在的量化区间标号c(十进制表示形式),取每个量化区间的中点作为上行功率的调整量即
Figure PCTCN2022118520-appb-000016
(十进制表示形式),根据上行功率的调整量Δρ UL和功率基准值
Figure PCTCN2022118520-appb-000017
确定上行功率的绝对值ρ UL,如
Figure PCTCN2022118520-appb-000018
在另一个示例中,第一序列中的部分比特的信息携带在参考信号中,其他部分比特携带在DCI中。
可选的,在该S203中,终端设备可以根据参考信号和DCI,确定上行功率。
终端设备根据参考信号,可以确定每个子带上的等效信道矩阵(如根据上行信道矩阵估计得到的下行信道矩阵),将等效矩阵的模与第一门限进行比较,得到参考信号中携带的K1个比特,以及获取DCI中携带的K2个比特,然后根据K1个比特和K2个比特确定K个比特,根据该K个比特确定上行功率的第二量化区间,根据第二量化区间确定上行功率。其中第二量化区间为上行功率所在的第二上行功率范围对应的量化区间。第一上行功率范围和第二上行功率范围可以相同或不同,第一量化区间和第二量化区间可以相同或不同。
例如参见图4所示,终端设备可以直接从DCI中读取到第一序列的K2个比特(如b 0和b 1),在参考信号中解映射得到第一序列的K1个比特(如b 2,b 3,…,b K-1),可以得到K个比特的第一序列(二进制表示形式)。终端设备将二进制表示形式的第一序列转化为十进制表示形式的量化区间标号c。假设第一序列用于指示上行功率的调整量,终端设备将量化区间标号c的量化区间的中点作为上行功率的调整量即
Figure PCTCN2022118520-appb-000019
(十进制表示形式),根据上行功率的调整量Δρ UL和功率基准值
Figure PCTCN2022118520-appb-000020
确定上行功率的绝对值ρ UL,如
Figure PCTCN2022118520-appb-000021
Figure PCTCN2022118520-appb-000022
[b 0,b 1,b 2,b 3,…,b K-1]。
若无线接入网设备对第二序列进行编码得到第一序列,在该S203,终端设备先对第一序列进行解码得到第二序列,再对第二序列转化为十进制,得到上行功率。
可选的,终端设备在确定上行功率之后,如果终端设备使用一个子带传输,则在该子带上采用确定的上行功率发送上行数据。若终端设备使用多个子带传输,则终端设备可以在将上行功率分配到每个子带上,例如可以平均分配到每个子带上,或者可以采用注水算法分配到每个子带上等,并在各个子带上采用相应的上行功率发送上行数据。
当需要指示多个终端设备的上行功率时,如果每个终端设备采用不同的CSI-RS端口进行指示,会占用过多的CSI-RS资源。在本申请实施例中,无线接入网设备在S202中,可以将多个终端设备的第一序列复用同一组CSI-RS端口进行指示,相比于每个终端设备采用不同的CSI-RS端口进行指示,可以进一步节省CSI-RS资源。
无线接入网设备可以在子带上叠加多个终端设备的第一序列中的比特,或者说可以在子带上叠加多个终端设备的参考信号,实现对多个终端设备的指示,其中该子带可以被多个终端设备调度,即该子带可以用于多个终端设备的上行传输。对于UE来说,UE在第二子带的CSI-RS上可以解调出自身的上行预编码和上行功率。例如无线接入网设备到UE1~UE3在第i个子带上的下行信道矩阵分别为
Figure PCTCN2022118520-appb-000023
Figure PCTCN2022118520-appb-000024
无线接入网设备希望指示给UE1~UE3在子带i上第一序列中相应比特的预编码向量分别为
Figure PCTCN2022118520-appb-000025
Figure PCTCN2022118520-appb-000026
则有
Figure PCTCN2022118520-appb-000027
对于UE1来说,UE1在CSI-RS上可以根据
Figure PCTCN2022118520-appb-000028
估计出自身的 等效信道矩阵
Figure PCTCN2022118520-appb-000029
从而确定UE1的上行功率。
在本申请实施例提供的上行功率指示方法中,无线接入网设备可以向终端设备发送第一序列的信息,第一序列用于指示终端设备的上行功率,其中第一序列的比特数K大于2,第一序列的全部比特或部分比特的信息可以携带在参考信号中,这样无线接入网设备可以向终端设备指示更高精度的上行功率。
可以理解,本申请实施例涉及的各种信息(如CSI-RS、DCI、TPC等)仅为示例,而不构成限定。示例性地,第一序列的K2比特的信息可以携带在非DCI的其他下行控制信令中,也可以携带在非TPC的其他字段中。
基于与上述上行功率指示方法的同一技术构思,本申请实施例还提供了一种通信装置,如图5所示,通信装置500包括处理单元501和收发单元502,通信装置500可以用于实现上述方法实施例中描述的方法。装置500可以应用于终端设备或者无线接入网设备,或者位于终端设备或无线接入网设备中。
在一个可能的实施例中,装置500为终端设备。
收发单元502,用于接收参考信号,参考信号携带第一序列的K1个比特的信息,第一序列用于指示终端设备的上行功率,第一序列的比特数为K,K为大于2的整数,K1为小于或等于K的整数;
处理单元501,用于根据参考信号,确定上行功率。
在一个实现方式中,收发单元502,还用于当K1小于K时,接收下行控制信息DCI,DCI包括第一序列的K2个比特,其中K1+K2=K;
处理单元501,具体用于根据参考信号和DCI,确定上行功率。
在一个实现方式中,K1个比特中的每个比特映射到对应子带上参考信号的下行预编码中,并且针对K1个比特中取值为0的比特,取值为0的比特对应于第一发送功率,针对K1个比特中取值为1的比特,取值为1的比特对应于第二发送功率,子带为终端设备用于上行传输的子带。
在一个实现方式中,处理单元501,具体用于根据参考信号,确定每个子带上的等效信道矩阵;将等效信道矩阵的模与第一门限进行比较,确定参考信号中携带的K1个比特的信息;根据K1个比特确定上行功率的第一量化区间;根据第一量化区间,确定上行功率。
在一个实现方式中,处理单元501,具体用于根据参考信号,确定每个子带上的等效信道矩阵;将等效信道矩阵的模与第一门限进行比较,确定参考信号中携带的K1个比特;获取DCI中携带的K2个比特;根据K1个比特和K2个比特,确定K个比特;根据K个比特确定上行功率的第二量化区间;根据第二量化区间,确定上行功率。
在一个实现方式中,上行功率的数值为绝对值或相对值,相对值为上行功率的调整量。
在一个实现方式中,第一序列为上行功率的数值经过K个比特量化后得到;或者第一序列为对第二序列进行编码后得到,第二序列为上行功率的数值经过Q个比特量化后得到,Q为正整数,Q小于K。
在一个实现方式中,收发单元502,还用于将上行功率分配到终端设备调度的每个子带,并在每个子带上采用相应的上行功率发送上行数据。
在另一个可能的实施例中,装置500为无线接入网设备。
处理单元501,用于第一序列,第一序列用于指示确定终端设备的上行功率,第一序列的比特数为K,其中,K为大于2的整数;
收发单元502,用于发送参考信号,参考信号携带第一序列的K1个比特的信息,K1小于或等于K的正整数。
在一个实现方式中,收发单元502,还用于发送下行控制信息DCI,DCI包括第一序列的K2个比特,其中K1+K2=K。
在一个实现方式中,处理单元501,还用于针对K1个比特中取值为0的比特,确定取值为0的比特对应的第一发送功率,以及针对K1个比特中取值为1的比特,确定取值为1的比特对应的第二发送功率;根据每个子带上的上行预编码、第一发送功率、第二发送功率和下行信道矩阵,确定K1个比特中每个比特对应子带上的参考信号的下行预编码,子带为终端设备用于上行传输的子带。
在一个实现方式中,处理单元501,具体用于根据确定终端设备的上行功率所属的第一量化区间;将第一量化区间的标号进行比特量化,得到第一序列。
在一个实现方式中,处理单元501,具体用于将第一量化区间的标号进行K个比特量化,得到第一序列。
在一个实现方式中,处理单元501,具体用于将第一量化区间的标号进行Q个比特量化,得到第二序列,Q为正整数,Q小于K;对第二序列进行编码,得到第一序列。
在一个实现方式中,上行功率的数值为绝对值或相对值,相对值为上行功率的调整量。
在一个实现方式中,收发单元502,还用于在子带上叠加多个终端设备的参考信号,子带用于多个终端设备的上行传输,多个终端设备包括终端设备。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,该集成的单元可以作为计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者无线接入网设备等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。
如图6所示,本申请实施例还提供了一种通信装置600的结构示意图。装置600可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。
装置600包括一个或多个处理器601。处理器601可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,收发单元可以为收发器,射频芯片等。
装置600包括一个或多个处理器601,一个或多个处理器601可实现上述所示的实施例中的方法。
可选的,处理器601除了实现上述所示的实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器601可以执行指令,使得装置600执行上述方法实施例中描述的方法。指令可以全部或部分存储在处理器内,如指令603,也可以全部或部分存储在与处理器耦合的存储器602中,如指令604,也可以通过指令603和604共同使得装置600执行上述方法实施例中描述的方法。指令603也称为计算机程序。
在又一种可能的设计中,通信装置600也可以包括电路,电路可以实现前述方法实施例中的功能。
在又一种可能的设计中装置600中可以包括一个或多个存储器602,其上存有指令604,指令可在处理器上被运行,使得装置600执行上述方法实施例中描述的方法。可选的,存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,一个或多个存储器602可以存储上述实施例中所描述的对应关系,或者上述实施例中所涉及的相关的参数或表格等。处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,装置600还可以包括收发器605以及天线606。处理器601可以称为处理单元,对装置(终端或者基站)进行控制。收发器605可以称为收发机、收发电路、或者收发单元等,用于通过天线606实现装置的收发功能。
处理器可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC)、一个或多个用于控制本申请方案程序执行的集成电路、通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate asrray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以存储介质中,该存储介质位于存储器。
存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。存储器可以是独立存在,通过通信线路与处理器相连接。存储器也可以和处理器集成在一起。
可以理解的是,图7所示的结构并不构成对终端设备以及无线接入网设备的具体限定。比如,在本申请另一些实施例中,终端设备或无线接入网设备可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的上行功率指示方法。
本申请实施例还提供了一种计算机程序产品,包括计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的上行功率指示方法。
本申请实施例还提供了一种通信系统,包括终端设备和无线接入网设备,终端设备和无线接入网设备可以实现上述任一方法实施例的上行功率指示方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是上述通信装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。计算机可读存储介质可以是上述存储介质或上述存储器。
在一种可能的设计中,当上述通信装置是芯片,如无线接入网设备中的芯片时,或者,如终端设备中的芯片时,确定单元或者处理器601可以是一个或多个逻辑电路,发送单元或者接收单元或者收发器605可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。或者收发器605还可以是发送单元和接收单元,发送单元可以是输出接口,接收单元可以是输入接口,该发送单元和接收单元集成于一个单元,例如输入输出接口。如图7所示,图7所示的通信装置700包括逻辑电路701和接口电路702。即上述确定单元或者处理器601可以用逻辑电路701实现,发送单元或者接收单元或者收发器605可以用接口电路702实现。其中,该逻辑电路701可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口电路702可以为通信接口、输入输出接口等。本申请实施例中,逻辑电路和接口电路还可以相互耦合。对于逻辑电路和接口电路的具体连接方式,本申请实施例不作限定。
在本申请的一些实施例中,该逻辑电路和接口电路可用于执行上述无线接入网设备或终端设备执行的功能或操作等。
示例性地,接口电路702用于接收参考信号。
逻辑电路701用于根据参考信号,确定上行功率。
无线接入网设备或终端设备执行的功能或操作可以参照前述方法实施例,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以 结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。
总之,以上仅为本申请技术方案的实施例而已,并非用于限定本申请的保护范围。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (40)

  1. 一种上行功率指示方法,其特征在于,包括:
    终端设备接收参考信号,所述参考信号携带第一序列的K1个比特的信息,所述第一序列用于指示所述终端设备的上行功率,所述第一序列的比特数为K,其中,K为大于2的整数,K1为小于或等于K的正整数;
    所述终端设备根据所述参考信号,确定上行功率。
  2. 如权利要求1所述的方法,其特征在于,当K1小于K时,所述方法还包括:
    所述终端设备接收下行控制信息DCI,所述DCI包括所述第一序列的K2个比特,其中K1+K2=K;
    所述终端设备根据所述参考信号和所述DCI,确定所述上行功率。
  3. 如权利要求2所述的方法,其特征在于,所述第一序列的K2个比特携带在所述DCI的传输功率控制TPC字段中。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述K1个比特中的每个比特映射到对应子带上参考信号的下行预编码中,并且针对所述K1个比特中取值为0的比特,所述取值为0的比特对应于第一发送功率,针对所述K1个比特中取值为1的比特,所述取值为1的比特对应于第二发送功率,所述子带为所述终端设备用于上行传输的子带。
  5. 如权利要求1或4所述的方法,其特征在于,当K1等于K时,所述终端设备根据所述参考信号,确定上行功率,包括:
    所述终端设备根据所述参考信号,确定每个子带上的等效信道矩阵;
    所述终端设备将所述等效信道矩阵的模与第一门限进行比较,确定所述参考信号中携带的所述K1个比特的信息;
    所述终端设备根据所述K1个比特确定上行功率的第一量化区间;
    所述终端设备根据所述第一量化区间,确定所述上行功率。
  6. 如权利要求2-4任一项所述的方法,其特征在于,所述终端设备根据所述参考信号和所述DCI,确定所述上行功率,包括:
    所述终端设备根据所述参考信号,确定每个子带上的等效信道矩阵;
    所述终端设备将所述等效信道矩阵的模与第一门限进行比较,确定所述参考信号中携带的所述K1个比特;
    所述终端设备获取所述DCI中携带的所述K2个比特;
    所述终端设备根据所述K1个比特和所述K2个比特,确定所述K个比特;
    所述终端设备根据所述K个比特确定上行功率的第二量化区间;
    所述终端设备根据所述第二量化区间,确定所述上行功率。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述上行功率的数值为绝对值或相对值,所述相对值为上行功率的调整量。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述第一序列为所述上行功率的数值经过K个比特量化后得到;或者
    所述第一序列为对第二序列进行编码后得到,所述第二序列为所述上行功率的数值经过Q个比特量化后得到,所述Q为正整数,Q小于K。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述参考信号为信道状态信息参 考信号CSI-RS。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备将所述上行功率分配到所述终端设备调度的每个子带;
    所述终端设备在所述每个子带上,采用相应的上行功率发送上行数据。
  11. 一种上行功率指示方法,其特征在于,包括:
    无线接入网设备确定第一序列,所述第一序列用于指示终端设备的上行功率,所述第一序列的比特数为K,其中,K为大于2的整数;
    所述无线接入网设备发送参考信号,所述参考信号携带所述第一序列的K1个比特的信息,K1为小于或等于K的正整数。
  12. 如权利要求11所述的方法,其特征在于,当K1小于K时,所述方法还包括:
    所述无线接入网设备发送下行控制信息DCI,所述DCI包括所述第一序列的K2个比特,其中K1+K2=K。
  13. 如权利要求12所述的方法,其特征在于,所述第一序列的K2个比特携带在所述DCI的传输功率控制TPC字段中。
  14. 如权利要求11-13任一项所述的方法,其特征在于,所述无线接入网设备发送参考信号之前,还包括:
    针对所述K1个比特中取值为0的比特,所述无线接入网设备确定取值为0的比特对应的第一发送功率,以及针对所述K1个比特中取值为1的比特,所述无线接入网设备确定取值为1的比特对应的第二发送功率;
    所述无线接入网设备根据每个子带上的上行预编码、所述第一发送功率、所述第二发送功率和下行信道矩阵,确定所述K1个比特中每个比特对应子带上的参考信号的下行预编码,所述子带为所述终端设备用于上行传输的子带。
  15. 如权利要求11或14所述的方法,其特征在于,所述无线接入网设备确定第一序列包括:
    所述无线接入网设备确定所述终端设备的上行功率的第一量化区间;
    所述无线接入网设备将所述第一量化区间的标号进行比特量化,得到所述第一序列。
  16. 如权利要求15所述的方法,其特征在于,所述无线接入网设备将所述第一量化区间的标号进行比特量化,得到所述第一序列包括:
    所述无线接入网设备将所述第一量化区间的标号进行K个比特量化,得到所述第一序列。
  17. 如权利要求15所述的方法,其特征在于,所述无线接入网设备将所述第一量化区间的标号进行比特量化,得到所述第一序列包括:
    所述无线接入网设备将所述第一量化区间的标号进行Q个比特量化,得到第二序列,所述Q为正整数,Q小于K;
    所述无线接入网设备对所述第二序列进行编码,得到第一序列。
  18. 如权利要求11-17任一项所述的方法,其特征在于,所述上行功率的数值为绝对值或相对值,所述相对值为上行功率的调整量。
  19. 如权利要求11-18任一项所述的方法,其特征在于,所述参考信号为信道状态信息参考信号CSI-RS。
  20. 如权利要求11-19任一项所述的方法,其特征在于,所述方法还包括:
    所述无线接入网设备在子带上叠加多个终端设备的参考信号,所述子带用于所述多个终端设备的上行传输,所述多个终端设备包括所述终端设备。
  21. 一种通信装置,其特征在于,包括:
    收发单元,用于接收参考信号,所述参考信号携带第一序列的K1个比特的信息,所述第一序列用于指示所述通信装置的上行功率,所述第一序列的比特数为K,其中,K为大于2的整数,K1为小于或等于K的正整数;
    处理单元,用于根据所述参考信号,确定上行功率。
  22. 如权利要求21所述的装置,其特征在于,所述收发单元,还用于当K1小于K时,接收下行控制信息DCI,所述DCI包括所述第一序列的K2个比特,其中K1+K2=K;
    所述处理单元,具体用于根据所述参考信号和所述DCI,确定所述上行功率。
  23. 如权利要求22所述的装置,其特征在于,所述K1个比特中的每个比特映射到对应子带上参考信号的下行预编码中,并且针对所述K1个比特中取值为0的比特,所述取值为0的比特对应于第一发送功率,针对所述K1个比特中取值为1的比特,所述取值为1的比特对应于第二发送功率,所述子带为所述通信装置用于上行传输的子带。
  24. 如权利要求21或23所述的装置,其特征在于,所述处理单元,具体用于根据所述参考信号,确定每个子带上的等效信道矩阵;将所述等效信道矩阵的模与第一门限进行比较,确定所述参考信号中携带的所述K1个比特的信息;根据所述K1个比特确定上行功率的第一量化区间;根据所述第一量化区间,确定所述上行功率。
  25. 如权利要求22或23所述的装置,其特征在于,所述处理单元,具体用于根据所述参考信号,确定每个子带上的等效信道矩阵;将所述等效信道矩阵的模与第一门限进行比较,确定所述参考信号中携带的所述K1个比特;获取所述DCI中携带的所述K2个比特;根据所述K1个比特和所述K2个比特,确定所述K个比特;根据所述K个比特确定上行功率的第二量化区间;根据所述第二量化区间,确定所述上行功率。
  26. 如权利要求21-25任一项所述的装置,其特征在于,所述上行功率的数值为绝对值或相对值,所述相对值为上行功率的调整量。
  27. 如权利要求21-26任一项所述的装置,其特征在于,所述第一序列为所述上行功率的数值经过K个比特量化后得到,K为正整数;或者
    所述第一序列为对第二序列进行编码后得到,所述第二序列为所述上行功率的数值经过Q个比特量化后得到,所述Q为正整数,Q小于K。
  28. 如权利要求21-27任一项所述的装置,其特征在于,所述收发单元,还用于将所述上行功率分配到所述通信装置调度的每个子带,在所述每个子带上采用相应的上行功率发送上行数据。
  29. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一序列,所述第一序列用于指示终端设备的上行功率,所述第一序列的比特数为K,其中,K为大于2的整数;
    收发单元,用于发送参考信号,所述参考信号携带所述第一序列的K1个比特的信息,K1小于或等于K的正整数。
  30. 如权利要求29所述的装置,其特征在于,所述收发单元,还用于发送下行控制信息DCI,所述DCI包括所述第一序列的K2个比特,其中K1+K2=K。
  31. 如权利要求29或30所述的装置,其特征在于,所述处理单元,还用于针对所述 K1个比特中取值为0的比特,确定取值为0的比特对应的第一发送功率,以及针对所述K1个比特中取值为1的比特,确定取值为1的比特对应的第二发送功率;根据每个子带上的上行预编码、所述第一发送功率、第二发送功率和下行信道矩阵,确定所述K1个比特中每个比特对应子带上的参考信号的下行预编码,所述子带为所述终端设备用于上行传输的子带。
  32. 如权利要求29或31所述的装置,其特征在于,所述处理单元,具体用于根据确定所述终端设备的上行功率的第一量化区间;将所述第一量化区间的标号进行比特量化,得到所述第一序列。
  33. 如权利要求30或32所述的装置,其特征在于,所述处理单元,具体用于将所述第一量化区间的标号进行K个比特量化,得到所述第一序列。
  34. 如权利要求31或32所述的装置,其特征在于,所述处理单元,具体用于将所述第一量化区间的标号进行Q个比特量化,得到第二序列,所述Q为正整数,Q小于K;对所述第二序列进行编码,得到第一序列。
  35. 如权利要求29-34任一项所述的装置,其特征在于,所述上行功率的数值为绝对值或相对值,所述相对值为上行功率的调整量。
  36. 如权利要求29-35任一项所述的装置,其特征在于,所述处理单元,还用于在子带上叠加多个终端设备的参考信号,所述子带用于所述多个终端设备的上行传输,所述多个终端设备包括所述终端设备。
  37. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器与所述存储器耦合;
    存储器存储有计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1-10中任一项所述的方法,或者使得所述装置执行如权利要求11-20中任一项所述的方法。
  38. 一种通信装置,其特征在于,包括逻辑电路和接口电路;
    所述接口电路,用于与所述通信装置之外的模块通信;
    所述逻辑电路用于执行计算机程序,以使所述通信装置执行如权利要求1-10中任一项所述的方法,或者使所述通信装置执行如权利要求11-20中任一项所述的方法。
  39. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得如权利要求1-10中任一项所述的方法被执行,或者使得如权利要求11-20中任一项所述的方法被执行。
  40. 一种计算机程序产品,其特征在于,包括计算机程序,当其在计算机上运行时,使得如权利要求1-10中任一项所述的方法被执行,或者使得如权利要求11-20中任一项所述的方法被执行。
PCT/CN2022/118520 2021-09-14 2022-09-13 一种上行功率指示方法及装置 WO2023040841A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111076135.2 2021-09-14
CN202111076135.2A CN115811779A (zh) 2021-09-14 2021-09-14 一种上行功率指示方法及装置

Publications (1)

Publication Number Publication Date
WO2023040841A1 true WO2023040841A1 (zh) 2023-03-23

Family

ID=85481658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118520 WO2023040841A1 (zh) 2021-09-14 2022-09-13 一种上行功率指示方法及装置

Country Status (2)

Country Link
CN (1) CN115811779A (zh)
WO (1) WO2023040841A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2818404C1 (ru) * 2023-07-19 2024-05-03 Самсунг Электроникс Ко., Лтд. Способ частотно-селективного управления мощностью передачи, реализующее его устройство и их варианты

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050068430A (ko) * 2003-12-30 2005-07-05 엘지전자 주식회사 역방향링크 전력 제어 방법
CN102300304A (zh) * 2011-09-20 2011-12-28 电信科学技术研究院 一种上行功控的实现方法及装置
CN104039000A (zh) * 2013-03-07 2014-09-10 中兴通讯股份有限公司 一种功率调整的方法及基站
CN111836349A (zh) * 2019-04-18 2020-10-27 北京三星通信技术研究有限公司 功率控制方法和执行该方法的设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050068430A (ko) * 2003-12-30 2005-07-05 엘지전자 주식회사 역방향링크 전력 제어 방법
CN102300304A (zh) * 2011-09-20 2011-12-28 电信科学技术研究院 一种上行功控的实现方法及装置
CN104039000A (zh) * 2013-03-07 2014-09-10 中兴通讯股份有限公司 一种功率调整的方法及基站
CN111836349A (zh) * 2019-04-18 2020-10-27 北京三星通信技术研究有限公司 功率控制方法和执行该方法的设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2818404C1 (ru) * 2023-07-19 2024-05-03 Самсунг Электроникс Ко., Лтд. Способ частотно-селективного управления мощностью передачи, реализующее его устройство и их варианты

Also Published As

Publication number Publication date
CN115811779A (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
US11757510B2 (en) Electronic devices and communication methods
WO2018228535A1 (zh) 传输方法、网络设备和终端
WO2021159409A1 (zh) 一种功率控制方法及装置、终端
CN108964851B (zh) 一种发送和接收指示信息的方法、设备和系统
US20210168846A1 (en) Information transmission method and apparatus
CN108282856B (zh) 上行功率控制的方法和通信设备
US9648609B2 (en) Communication system, base station, and communication terminal
US20220046632A1 (en) Communication method in d2d system, terminal device, and network device
WO2020073257A1 (zh) 无线通信方法和终端设备
US20240098738A1 (en) Uplink transmission method, terminal device, and network device
US20230362915A1 (en) Method and device for repeatedly transmitting data channel
WO2023040841A1 (zh) 一种上行功率指示方法及装置
WO2023060449A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021088260A1 (zh) 传输反馈信息的方法、终端设备和网络设备
WO2021147214A1 (zh) 通信方法和通信装置
WO2023123409A1 (zh) 无线通信的方法、终端设备和网络设备
EP4262304A1 (en) Channel estimation method, terminal device, network device, chip and storage medium
WO2023103829A1 (zh) 上行功率的指示方法、装置、设备以及存储介质
WO2023011617A1 (zh) 一种获取信息的方法和装置
WO2022205390A1 (zh) 信息处理方法和终端设备
WO2024011579A1 (zh) 无线通信的方法、终端设备和网络设备
EP4262163A1 (en) Channel transmission method, electronic device, and storage medium
WO2024059984A1 (zh) 传输块大小的确定方法、装置、设备及存储介质
WO2022056870A1 (zh) 无线通信方法、终端设备和网络设备
EP4171149A1 (en) Data transmission method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE