WO2022205390A1 - 信息处理方法和终端设备 - Google Patents

信息处理方法和终端设备 Download PDF

Info

Publication number
WO2022205390A1
WO2022205390A1 PCT/CN2021/085141 CN2021085141W WO2022205390A1 WO 2022205390 A1 WO2022205390 A1 WO 2022205390A1 CN 2021085141 W CN2021085141 W CN 2021085141W WO 2022205390 A1 WO2022205390 A1 WO 2022205390A1
Authority
WO
WIPO (PCT)
Prior art keywords
cmr
measurement
information
csi
rank
Prior art date
Application number
PCT/CN2021/085141
Other languages
English (en)
French (fr)
Inventor
陈文洪
田杰娇
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/085141 priority Critical patent/WO2022205390A1/zh
Priority to EP21934047.8A priority patent/EP4271026A4/en
Priority to CN202180078556.0A priority patent/CN116671154A/zh
Publication of WO2022205390A1 publication Critical patent/WO2022205390A1/zh
Priority to US18/227,878 priority patent/US20230379027A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present application relates to the field of communications, and more particularly, to an information processing method and terminal device.
  • the terminal In order for the network device to perform reasonable scheduling, the terminal needs to feed back downlink CSI (Channel State Information), so that the network device can determine the scheduling information of the terminal such as the number of transmission layers, precoding matrix, transmission beam, modulation and coding method.
  • CSI Channel State Information
  • the network device In the case of measuring the CSI of multiple TRPs (Transmission Reception Point, transmission point/transmission and reception point) that are coordinated, how the terminal feeds back the currently recommended measurement hypothesis and the corresponding rank information in the CSI is a problem that needs to be considered.
  • Embodiments of the present application provide an information processing method and a terminal device, which can feed back currently recommended measurement hypotheses in CSI.
  • the embodiment of the present application provides an information processing method, including:
  • the terminal equipment indicates the CSI measurement hypothesis through the first information in the channel state information CSI report;
  • the terminal equipment indicates the rank under the measurement assumption through the rank indication RI information in the CSI report.
  • An embodiment of the present application provides a terminal device, including: a processing unit configured to indicate a CSI measurement hypothesis through first information in channel state information CSI reporting; rank.
  • An embodiment of the present application provides a terminal device, including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so that the terminal device executes the above-mentioned information processing method.
  • An embodiment of the present application provides a chip for implementing the above-mentioned information processing method.
  • the chip includes: a processor for calling and running a computer program from the memory, so that the device on which the chip is installed executes the above-mentioned information processing method.
  • Embodiments of the present application provide a computer-readable storage medium for storing a computer program, which, when the computer program is executed by a device, causes the device to execute the above-mentioned information processing method.
  • An embodiment of the present application provides a computer program product, including computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned information processing method.
  • the embodiments of the present application provide a computer program, which, when running on a computer, causes the computer to execute the above-mentioned information processing method.
  • the terminal device may indicate the CSI measurement hypothesis based on the first information in the CSI report, and may also indicate the rank under the measurement hypothesis through the RI information under the corresponding measurement hypothesis, which is beneficial for the network side to obtain the currently recommended measurement Hypothesis and RI information to improve the throughput of downlink transmission.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • 2 and 3 are schematic diagrams of downlink non-coherent transmission based on multiple PDCCHs.
  • FIG. 4 is a schematic diagram of downlink non-coherent transmission based on a single PDCCH.
  • FIG. 5 is a schematic flowchart of an information processing method according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • Wireless Fidelity Wireless Fidelity
  • WiFi fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered unshared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, where the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (STAION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as end devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST in the WLAN
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • augmented reality (Augmented Reality, AR) terminal Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or in-vehicle equipment, wearable devices and NR networks
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • FIG. 1 exemplarily shows a communication system 100 .
  • the communication system includes one network device 110 and two terminal devices 120 .
  • the communication system 100 may include multiple network devices 110, and the coverage of each network device 110 may include other numbers of terminal devices 120, which are not limited in this embodiment of the present application.
  • the communication system 100 may further include a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF) and other network entities, to which the embodiments of the present application Not limited.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • the network equipment may further include access network equipment and core network equipment. That is, the wireless communication system further includes a plurality of core networks for communicating with the access network equipment.
  • the access network equipment may be a long-term evolution (long-term evolution, LTE) system, a next-generation (mobile communication system) (next radio, NR) system, or an authorized auxiliary access long-term evolution (authorized auxiliary access long-term evolution, LAA-
  • the evolved base station (evolutional node B, may be referred to as eNB or e-NodeB for short) in the LTE) system is a macro base station, a micro base station (also called a "small base station"), a pico base station, an access point (AP), Transmission site (transmission point, TP) or new generation base station (new generation Node B, gNodeB), etc.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device and a terminal device with a communication function, and the network device and the terminal device may be specific devices in this embodiment of the application, which will not be repeated here; It may include other devices in the communication system, for example, other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • the backhaul (backhaul network) connection between TRPs may be ideal or non-ideal. Under ideal backhaul, TRPs can exchange information quickly and dynamically. Under non-ideal backhaul, information exchange between TRPs can only be performed quasi-statically due to the large delay.
  • multiple TRPs can use different control channels to independently schedule multiple PDSCH (Physical Downlink Shared Channel) transmissions of a terminal, or use the same control channel to schedule the transmission of different TRPs.
  • PDSCH Physical Downlink Shared Channel
  • the data of different TRPs use different transport layers, and the latter can only be used for ideal backhaul.
  • the scheduled PDSCH may be transmitted in the same time slot or in different time slots.
  • the terminal needs to support simultaneous reception of PDCCH and PDSCH from different TRPs.
  • ACK/NACK acknowledgement/non-acknowledgement
  • CSI the ACK/NACK and CSI can be fed back to different TRPs that transmit the corresponding PDSCH (as shown in Figure 2), or they can be combined and fed back to one TRP (as shown in Figure 3).
  • the former can be applied to ideal backhaul and non-ideal backhaul scenarios, while the latter can only be used in ideal backhaul scenarios.
  • the DCI (Downlink control information, downlink control information) used for scheduling PDSCH transmitted by different TRPs may be carried by different CORESETs, that is, the network side configures multiple CORESETs.
  • Each TRP uses its own CORESET for scheduling, that is, different TRPs can be distinguished through CORESET.
  • the network device may configure a CORESET group index for each CORESET, and different indexes correspond to different TRPs. When the terminal feeds back the CSI, the CSI corresponding to each TRP needs to be fed back separately.
  • the CSI includes contents such as RI (Rank Indication, rank indication), PMI (Precoding Matrix Indicator, precoding matrix indication), CQI (Channel Quality Indication, channel quality indication), etc., which can be used for scheduling of downlink transmissions performed by respective TRPs.
  • RI Rank Indication, rank indication
  • PMI Precoding Matrix Indicator, precoding matrix indication
  • CQI Channel Quality Indication, channel quality indication
  • the same DCI can schedule multiple transmission layers from different TRPs.
  • the transmission layers from different TRPs use DMRS (Demodulation Reference Signal) ports in different CDM (Code Division Multiplexing, code division multiplexing) groups, and use different TCI (Transmission Configuration Indicator, transmission configuration indication) )state.
  • the network device needs to indicate DMRS ports from different CDM groups and TCI states corresponding to different CDM groups in one DCI, so as to support different DMRS ports for transmission using different beams.
  • HARQ Hybrid Automatic Repeat reQuest, Hybrid Automatic Repeat Request
  • the terminal needs to feed back RI and PMI corresponding to different TRPs in one CSI, and a joint CQI (used to determine MCS (Modulation and Coding Scheme, modulation and coding strategy)).
  • MCS Modulation and Coding Scheme, modulation and coding strategy
  • the terminal In order for network equipment to perform reasonable scheduling, the terminal needs to feed back downlink CSI, so that the base station can determine the scheduling information of the terminal, such as the number of transmission layers, precoding matrix, transmission beam, modulation and coding method. Specifically, the terminal performs CSI reporting based on the CSI reporting configuration indicated by the network device.
  • the uplink resource used by the terminal to feed back CSI and the downlink reference signal used for CSI measurement can be indicated by the CSI reporting configuration.
  • Each CSI report configuration corresponds to one CSI report, and each CSI report may include CRI (Channel State Information Reference Signal Resource Indicator, channel state information reference signal resource indication), RI, PMI, CQI and other different information.
  • CRI Channel State Information Reference Signal Resource Indicator, channel state information reference signal resource indication
  • RI Resource
  • PMI Physical Uplink Reference Signal
  • CQI CQI
  • what content/information is included in the CSI is determined by reporting quantity information (reportQuantity) in the CSI reporting configuration.
  • CRI is used to determine the CSI-RS resource currently used for channel measurement and the current interference measurement resource IMR (Interference Measurement Resource IMR) from multiple CSI-RS (Channel State Information Reference Signal) resources. Resource, interference measurement resource).
  • IMR Interference Measurement Resource IMR
  • CSI-RS Channel State Information Reference Signal
  • RI is used to feed back the recommended transport level (Rank).
  • the PMI is used to determine the recommended precoding matrix from a predefined codebook.
  • the CQI is used to feed back the current channel quality and can be determined based on the SINR (Signal to Interference plus Noise Ratio, downlink signal to interference plus noise ratio) estimated by the terminal.
  • SINR Signal to Interference plus Noise Ratio, downlink signal to interference plus noise ratio
  • the channel part in the SINR is determined based on the non-zero power CSI-RS configured by the network for channel measurement
  • the interference part is determined based on the CSI-IM (Channel State Information Interference Measurement) configured by the network for interference measurement. ) or non-zero power CSI-RS determination.
  • the CQI is calculated based on the fed back RI and PMI.
  • RSRP ReferenceSignal Receiving Power, reference signal receiving power
  • SSB Synchronization Signal and PBCH block, synchronization signal and PBCH (Physical Broadcast Channel, broadcast physical channel) block
  • RSRP ReferenceSignal Receiving Power
  • the LI (layer index, layer index) is used to indicate the index of the transmission layer associated with the PTRS (Phase Tracking Reference Signal, phase tracking reference signal).
  • one CSI may be divided into two parts (parts).
  • the information included in CSI part 1 and part 2 is shown in the table below.
  • the number of bits of CSI part 1 is fixed, and is used to carry a small amount of important information such as RI and CQI;
  • the number of bits of CSI part 2 is determined according to CSI part 1, and is used to carry more information such as PMI.
  • the terminal needs to discard some information in CSI part 2 to ensure the transmission performance of PUSCH/PUCCH, at least the code rate is within a reasonable range. Specifically, the information of CSI part 1 will not be discarded, and in CSI part 2, CSI with lower priority is discarded first according to the priority of CSI reporting.
  • the priority of the CSI report is determined according to the periodicity of the CSI, the content of the CSI report, the carrier corresponding to the CSI report, and the ID of the CSI report configuration.
  • the network device may configure two CMR (Channel Measurement Resource, channel measurement resource) groups for the terminal, each of which is used to measure the CSI of one TRP.
  • the terminal performs measurements based on the two configured CMR groups, so as to determine whether the current optimal CSI is measured based on a single TRP (that is, a single CMR group or a single CMR), or based on multiple TRPs (that is, two CMR groups or two CMRs) measured.
  • the former corresponds to the measurement hypothesis of a single TRP
  • the latter corresponds to the measurement hypothesis of NC-JT (Non-Coherent Joint Transmission, non-coherent joint transmission).
  • the terminal may feed back in the CSI which one of the currently recommended measurement hypotheses is, and the corresponding CSI under the measurement hypothesis, such as CRI, RI, PMI, CQI, etc.
  • the CSI which one of the currently recommended measurement hypotheses is, and the corresponding CSI under the measurement hypothesis, such as CRI, RI, PMI, CQI, etc.
  • FIG. 5 is a schematic flowchart of an information processing method 200 according to an embodiment of the present application.
  • the method can optionally be applied to the system shown in Figure 1, but is not limited thereto.
  • the method includes at least some of the following.
  • the terminal device indicates the CSI measurement hypothesis through the first information in the channel state information (CSI) report.
  • CSI channel state information
  • the terminal device indicates the rank under the measurement assumption through the rank indication (RI) information in the CSI report.
  • RI rank indication
  • the rank (Rank) in the CSI report may be the number of transmission layers recommended by the terminal device.
  • the terminal device indicates (also may be referred to as reporting or feedback) the measurement hypothesis of the CSI to the network device through the first information in the CSI report.
  • the terminal device indicates to the network device (also referred to as reporting or feedback) the number of transmission layers recommended by the terminal device under the measurement assumption to the network device through the RI information in the CSI report.
  • the method further includes: the terminal device performs CSI measurement according to two channel measurement resource (CMR) sets (sets) configured by the network device.
  • CMR channel measurement resource
  • the non-zero power channel state information reference signal CSI-RS resource set used for channel measurement includes the two CMR groups.
  • the terminal device may receive a set of non-zero power CSI-RS resources for channel measurement, and the set may include two CMR groups.
  • the terminal device may perform CSI measurement according to the two CMR groups configured by the network device.
  • the terminal device may feed back a CSI report (report) to the network device, and indicate the CSI measurement hypothesis through the first information in the CSI report.
  • the terminal device may further indicate the transmission layer number (Rank) recommended by the terminal device under the measurement assumption through the RI information in the CSI report.
  • the measurement is assumed to be the CMR or the number of CMRs on which the CSI measurement is based.
  • the measurement assumption is that the CSI measurement is based on a single CMR, which may also be referred to as a measurement assumption that the CSI measurement is based on a single TRP transmission.
  • the measurement assumption is that the CSI measurement is based on multiple CMRs, which may also be referred to as a measurement assumption that the CSI measurement is based on NC-JT transmission.
  • the first information is channel state information reference signal resource indication CRI information, RI information or measurement assumption information in the CSI report.
  • the terminal equipment indicates the CSI measurement hypothesis through the first information in the CSI report, including: in the case that the first information is CRI information, the CRI information indicates one of two CMR groups used for CSI measurement Or two CMRs as the measurement hypothesis for this CSI.
  • the terminal device indicates, through the CRI information in the CSI report, one or two CMRs in the two CMR groups used for CSI measurement as the measurement hypothesis of the CSI.
  • the number of bits of the CRI information is log 2 (K+N), where K is the total number of CMRs included in the two CMR groups used for CSI measurement , N is the number of CMR combinations used for NC-JT measurement in the two CMR groups used for CSI measurement.
  • K may be a positive integer greater than or equal to 2
  • N may be a positive integer greater than or equal to 1.
  • the two CMR groups may include a total of K resources (not limited to 2)
  • each CMR group may include one or more resources (not limited to 2)
  • each CMR combination includes two CMRs, that is, including A pair of CMRs from two CMR groups.
  • the terminal device indicates the CSI measurement hypothesis through the first information in the CSI report, including: in the case that the first information is RI information, the values of different ranks indicated by the RI information or the number of ranks indicated Corresponding to different measurement assumptions.
  • the case where the first information is RI information may include at least one of the following processing methods:
  • Mode 1 the RI information indicates one or two ranks
  • the CSI is based on a single CMR measurement hypothesis
  • the CSI is based on the measurement assumptions of the two CMRs.
  • the terminal device indicates, through the RI information, a single CMR used for CSI measurement as the measurement hypothesis of the CSI.
  • the terminal device indicates, through the RI information, two CMRs used for CSI measurement as the measurement hypotheses of the CSI.
  • the RI information indicates two ranks
  • the CSI is based on the measurement assumption of a single CMR.
  • the CSI is based on the measurement assumptions of the two CMRs.
  • the terminal device uses the RI information to indicate a single CMR used for CSI measurement as a measurement hypothesis for the CSI.
  • the terminal device indicates, through the RI information, two CMRs used for CSI measurement as the measurement hypotheses of the CSI.
  • the number of bits of the CRI information included in the CSI report is at least one of the following:
  • K is the total number of CMRs included in the two CMR groups used for CSI measurement
  • N is the number of CMR combinations used for NC-JT measurement in the two CMR groups used for CSI measurement.
  • the terminal equipment indicates the CSI measurement hypothesis through the first information in the CSI report, including: in the case that the first information is measurement hypothesis information, different values of the measurement hypothesis information correspond to the measurement based on a single CMR respectively.
  • the value of the measurement hypothesis information in the CSI report is 1 or 0.
  • the terminal device indicates, through the measurement hypothesis information, a single CMR used for CSI measurement as the measurement hypothesis of the CSI.
  • the terminal device indicates, through the measurement hypothesis information, two CMRs used for CSI measurement as the measurement hypotheses of the CSI.
  • the value of the measurement hypothesis information in the CSI report is 1 or 0.
  • the terminal device indicates the measurement hypothesis based on a single TRP through the measurement hypothesis information.
  • the terminal device indicates the measurement assumption based on the NC-JT through the measurement assumption information.
  • the number of bits of the CRI information included in the CSI report is log 2 (max(K, N)), where K is the number of bits used for CSI measurement.
  • K is the number of bits used for CSI measurement.
  • the total number of CMRs included in the CMR groups, N is the number of CMR combinations used for NC-JT measurement in the two CMR groups used for CSI measurement.
  • S220 may include at least one of the following manners:
  • the RI information includes two RIs, and the number of bits of the first RI in the two RIs is greater than the number of bits of the second RI.
  • the first RI is obtained based on the single CMR measurement, and the second RI does not indicate a rank value
  • the first RI and the second RI are respectively obtained based on the two CMRs.
  • the rank indicated by the first RI is not greater than the maximum rank that can be indicated by the second RI.
  • the RI information includes one RI, and the RI is used to indicate one or two ranks.
  • the RI is used to indicate a rank, and the rank is obtained based on the measurement of the single CMR, and the single CMR is reported through the CSI.
  • CRI information indication For example, the value of the Rank can be 1-8.
  • the RI is used to indicate a combination of two ranks, and the two ranks are obtained based on the two CMR measurements, respectively.
  • the two CMRs are indicated by the CRI information in the CSI report.
  • the number of bits of the CRI information in the CSI report is log 2 (max(K, N)) or log 2 (K+N), where K is two bits used for CSI measurement.
  • the total number of CMRs included in the CMR group, N is the number of CMR combinations used for NC-JT measurement in the two CMR groups used for CSI measurement.
  • the RI information includes one RI, and the RI is used to indicate a combination of the first rank and the second rank.
  • the value range of the RI includes:
  • the first rank indicated by the first value range of the RI is greater than 0, and the second rank is equal to 0;
  • the first rank indicated by the second value range of the RI is equal to 0, and the second rank is greater than 0;
  • Both the first rank and the second rank indicated by the third value range of the RI are greater than 0.
  • the CSI is obtained by measuring the first CMR, and the first CMR is the first CMR in the two CMR groups.
  • the CMR corresponding to the CRI information in the CMR group For example, when the first Rank is greater than 0 and the second Rank is equal to 0, the CSI is measured based on the first CMR, and the first CMR is the CMR corresponding to the CRI information in the first CMR group of the two CMR groups.
  • the number of bits of the CRI information is log 2 (K/2) or log 2 (max(K/2, N)), where K is two CMR groups used for CSI measurement The total number of CMRs included in , and N is the number of CMR combinations used for NC-JT measurement in the two CMR groups used for CSI measurement.
  • the RI information includes one RI, and the RI is used to indicate one or two ranks.
  • the first value range of the RI indicates one rank
  • the second value range of the RI indicates two ranks.
  • the rank is obtained by measuring a third CMR, and the third CMR is the CMR corresponding to the CRI information in the K CMRs of the two CMR groups.
  • the number of bits of the CRI information is log 2 (K), log 2 (K/2), or log 2 (max(K, N)), where K is the number of bits used for CSI measurement.
  • K is the number of bits used for CSI measurement.
  • the terminal device can feed back recommended measurement hypotheses based on multiple CMR groups, and one or two RIs under the corresponding measurement hypotheses, so that the network side can obtain the optimal transmission scheme and corresponding RIs under the current CMR configuration , to improve the throughput of downlink transmission.
  • the information processing method of the present application may be a CSI reporting method.
  • the terminal performs CSI measurement based on the two CMR groups, so as to feed back the measurement hypothesis of the CSI through the first information in the CSI report, and feed back the RI under the measurement hypothesis through the RI information in the CSI report.
  • the embodiments of the present application may provide a variety of different measurement assumptions and methods for reporting RI information.
  • the terminal may feed back recommended measurement hypotheses and one or two RIs under the corresponding measurement hypotheses based on multiple CMR groups. Therefore, the network side can obtain the optimal transmission scheme and corresponding RI under the current CMR configuration, thereby improving the throughput of downlink transmission.
  • the following are a few specific examples.
  • the terminal receives a set of non-zero-power CSI-RS resources (ie, CMRs) configured by the network device for channel measurement, where the set includes two CMR groups.
  • CMRs non-zero-power CSI-RS resources
  • the set includes K non-zero power CSI-RS resources, which can be divided into two CMR groups with a size of K/2.
  • the number of CMRs included in the two CMR groups may also be different, and the CMRs included in each group are configured by the network device to the terminal through high-layer signaling.
  • the network device may also configure N CMR combinations for NC-JT measurement through high-layer signaling, and each combination includes two CMRs from the two CMR groups respectively.
  • a CMR group includes CMR1 and CMR2, where CMR1 is from one CMR group and CMR2 is from another CMR group.
  • the terminal performs CSI measurement based on the two CMR groups.
  • the terminal may perform CSI measurement of a single TRP based on the K CMR resources included in the two CMR groups, that is, each CSI measurement is only based on a single CMR.
  • the terminal may also perform multi-TRP CSI measurement based on the N CMR combinations used for NC-JT measurement, that is, each CSI measurement is performed based on one CMR combination (two CMRs).
  • the terminal can determine the optimal CSI measurement hypothesis according to the best CSI obtained based on a single CMR measurement and the best CSI obtained based on the CMR combination (two CMRs) measurement, and compare the measurement hypothesis with the corresponding CSI. It is reported and fed back to the network device through CSI.
  • the terminal feeds back the CSI measurement hypothesis through the first information in the CSI report.
  • the measurement is assumed to be the CMR on which the CSI measurement is based, or the number of CMRs on which the CSI measurement is based.
  • the measurement assumption is that the CSI measurement is based on a single CMR, which may also be referred to as a measurement assumption that the CSI measurement is based on a single TRP transmission.
  • the measurement assumption is that the CSI measurement is based on multiple CMRs, which may also be referred to as a measurement assumption that the CSI measurement is based on NC-JT transmission.
  • the first information is CRI information in the CSI report.
  • the CRI information indicates one or both CMRs of the two CMR groups.
  • the CMR indicated by the CRI information is the measurement hypothesis of the CSI, that is, the CMR on which the CSI measurement is based.
  • the number of bits of the CRI information is log 2 (K+N), where K is the total number of CMRs included in the two CMR groups (that is, the number in the set of non-zero-power CSI-RS resources used for channel measurement) ), N is the number of CMR combinations used for NC-JT measurement in the two CMR groups, and the CMR combinations used for NC-JT measurement can be configured to the terminal by the network device through high layer signaling.
  • K is the total number of CMRs included in the two CMR groups (that is, the number in the set of non-zero-power CSI-RS resources used for channel measurement)
  • N is the number of CMR combinations used for NC-JT measurement in the two CMR groups
  • the CMR combinations used for NC-JT measurement can be configured to the terminal by the network device through high layer signaling.
  • the first information is measurement hypothesis information in the CSI report.
  • Different values of the measurement hypothesis information correspond to the measurement hypothesis based on a single CMR and the measurement hypothesis based on two CMRs, or the measurement hypothesis based on a single TRP and the measurement hypothesis based on the NC-JT.
  • the measurement hypothesis information includes 1-bit information, wherein 0 represents a single CMR-based measurement hypothesis or a single TRP-based measurement hypothesis, and 1 represents a two CMR-based measurement hypothesis or an NC-JT-based measurement hypothesis.
  • the number of bits of CRI information included in the CSI is log 2 (max(K, N)), where K is the total number of CMRs included in the two CMR groups, and N is the number of CMRs in the two CMR groups. Number of CMR combinations used for NC-JT measurements.
  • the CRI information can indicate one CMR among the K CMRs; when the measurement hypothesis information indicates a measurement hypothesis based on two CMRs, the CRI information can indicate N A CMR combination of the CMR combinations.
  • the terminal feeds back the Rank under the measurement assumption through the RI information in the CSI report.
  • the RI information includes two RIs (ie, two independent RI indication fields), and the number of bits of the first RI (indication field) in the two RIs is greater than the number of bits of the second RI (indication field).
  • the first RI is obtained based on the single CMR measurement, and the second RI does not indicate Rank.
  • the single CMR is the CMR indicated by the CRI information in the CSI report.
  • the first RI is a valid RI and can be used for downlink transmission of a single TRP; the number of bits of the second RI is not used to indicate Rank, and can be reserved or used for other purposes.
  • the first RI and the second RI are respectively obtained based on the two CMR measurements.
  • the two CMRs are one CMR combination indicated by the CRI information in the CSI report.
  • the two RIs are both valid RIs and are respectively used for downlink transmission of different TRPs.
  • the Rank indicated by the first RI is not greater than the maximum Rank that can be indicated by the second RI.
  • the first RI is 3 bits
  • the second RI is 2 bits
  • the indicated Rank value is ⁇ 1, 2, 3, 4 ⁇
  • the Rank value indicated by the first RI cannot exceed 4, but can only be 1-4
  • One of the , cannot indicate Rank 5-8.
  • the flexibility of the Rank indication can be guaranteed, and flexible combinations of various Rank values can be fed back under different measurement assumptions.
  • the terminal receives a set of non-zero-power CSI-RS resources (ie, CMRs) configured by the network device for channel measurement, where the set includes two CMR groups.
  • CMRs non-zero-power CSI-RS resources
  • the set includes K non-zero power CSI-RS resources, which can be divided into two CMR groups with a size of K/2.
  • the number of CMRs included in the two CMR groups may also be different, and the CMRs included in each group are configured by the network device to the terminal through high-layer signaling.
  • the network device may also configure N CMR combinations for NC-JT measurement through high-layer signaling, and each combination includes two CMRs from the two CMR groups respectively.
  • a CMR group includes CMR1 and CMR2, where CMR1 is from one CMR group and CMR2 is from another CMR group.
  • the terminal performs CSI measurement based on the two CMR groups.
  • the terminal feeds back the CSI measurement hypothesis through the first information in the CSI report.
  • the measurement is assumed to be the CMR on which the CSI measurement is based, or the number of CMRs on which the CSI measurement is based.
  • the first information is CRI information in the CSI report.
  • the CRI information indicates one or both CMRs of the two CMR groups.
  • the CMR indicated by the CRI information is the measurement hypothesis of the CSI, that is, the CMR on which the CSI measurement is based. For details, please refer to the description in Example 1.
  • the first information is measurement hypothesis information in the CSI report.
  • Different values of the measurement hypothesis information correspond to the measurement hypothesis based on a single CMR and the measurement hypothesis based on two CMRs, or the measurement hypothesis based on a single TRP and the measurement hypothesis based on the NC-JT. For details, please refer to the description in Example 1.
  • the terminal feeds back the Rank under the measurement assumption through the RI information in the CSI report.
  • the RI information includes one RI, and the RI is used to indicate one or two Ranks, and the number of Ranks indicated by different RI values is the same (one or two).
  • the RI is used to indicate a Rank
  • the Rank is obtained based on the single CMR measurement
  • the single CMR is reported through the CRI information in the CSI instruct.
  • the Rank indicated by the RI is one of ⁇ 1, 2, ..., 8 ⁇ .
  • the RI is used to indicate a combination of two Ranks, and the two Ranks are obtained respectively based on the two CMR measurements, and the two CMRs are obtained through the CRI information in the CSI report instruct.
  • the RI is 4 bits, and the indicated Rank value is as follows:
  • the RI is 3 bits, and the indicated Rank value is as follows:
  • RI value Rank value under the assumption of a single CMR measurement Rank value under two CMR measurement assumptions 1 1 ⁇ 1,1 ⁇ 2 2 ⁇ 1,2 ⁇ 3 3 ⁇ 2,1 ⁇ 4 4 ⁇ 2,2 ⁇ 5 5 Reserved (reserved bit) 6 6 Reserved 7 7 Reserved 8 8 Reserved
  • the number of bits of CRI information included in the CSI report is log 2 (max(K,N)).
  • the measurement hypothesis information indicates a measurement hypothesis based on a single CMR
  • one CMR among K CMRs may be indicated by the CRI information
  • N CMRs may be indicated by the CRI information
  • One of the CMR combinations in the combination is log 2 (max(K,N)).
  • the number of bits of the CRI information in the CSI report is log 2 (K+N).
  • One CMR among the K CMRs, or one CMR combination among the N CMR combinations may be indicated by the CRI information.
  • the Rank values under different measurement assumptions are indicated by the same RI information field, which can reduce the number of information bits in the CSI report, thereby improving the performance of UCI (Uplink control information, uplink control information) transmission.
  • UCI Uplink control information, uplink control information
  • the terminal receives a set of non-zero-power CSI-RS resources (ie, CMRs) configured by the network device for channel measurement, where the set includes two CMR groups.
  • CMRs non-zero-power CSI-RS resources
  • the set includes K non-zero power CSI-RS resources, which can be divided into two CMR groups with a size of K/2.
  • the number of CMRs included in the two CMR groups may also be different, and the CMRs included in each group are configured by the network device to the terminal through high-layer signaling.
  • the network device may also configure N CMR combinations for NC-JT measurement through high-layer signaling, and each combination includes two CMRs from the two CMR groups respectively.
  • a CMR group includes CMR1 and CMR2, where CMR1 is from one CMR group and CMR2 is from another CMR group.
  • the terminal performs CSI measurement based on the two CMR groups.
  • the terminal feeds back the CSI measurement hypothesis through the first information in the CSI report.
  • the measurement is assumed to be the CMR on which the CSI measurement is based, or the number of CMRs on which the CSI measurement is based.
  • the first information is RI information
  • different Ranks indicated by the RI information correspond to different measurement hypotheses.
  • the RI information indicates two Ranks, and when one of the Ranks indicated by the RI information is zero, the CSI is based on the measurement hypothesis of a single CMR; when the two Ranks indicated by the RI information are both greater than zero, the CSI Measurement assumptions based on two CMRs.
  • the number of bits of the CRI information included in the CSI report is log 2 (K/2) or log 2 (max(K/2, N)).
  • the terminal feeds back the Rank under the measurement assumption through the RI information in the CSI report.
  • the RI information includes an RI
  • the RI is used to indicate a combination of the first rank and the second rank.
  • at least one of the first rank and the second rank is not zero.
  • one Rank indicated by part of the value range of the RI is greater than 0, and the other Rank is equal to 0, corresponding to the measurement hypothesis based on a single CMR; the other part of the value range indicated by two Ranks is greater than zero, corresponding to two CMRs based on measurement assumptions.
  • the first Rank indicated by the first value range of the RI is greater than 0, and the second Rank is equal to 0, which is used to indicate the transmission of the TRP corresponding to the first CMR group;
  • the first Rank indicated by the second value range is equal to 0 , the second Rank is greater than 0, which is used to indicate the transmission of the TRP corresponding to the second CMR group;
  • the first Rank and the second Rank indicated by the third value range are both greater than 0, which is used to indicate the NC-JT transmission of the two TRPs .
  • the RI can indicate the following states:
  • the RI can indicate the following states:
  • the CSI is obtained by measuring the first CMR, and the first CMR is the CRI information in the first CMR group of the two CMR groups. the corresponding CMR.
  • the CSI is measured based on the second CMR, and the second CMR is the CMR corresponding to the CRI information in the second CMR group of the two CMR groups.
  • the effective number of bits of the CRI information is log 2 (K/2), which is used to indicate a CMR in a CMR group corresponding to a non-zero Rank.
  • the first Rank and the second Rank are measured based on the first CMR and the second CMR, respectively, and the first CMR and the second CMR are respectively is the CMR corresponding to the CRI information in the two CMR groups.
  • the effective number of bits of the CRI information is log 2 (K/2), which is used to indicate two CMRs corresponding to the CRI information in the two CMR groups respectively; or, the effective number of bits of the CRI information is log 2 (max (K/2,N)) to indicate one of N CMR combinations for NC-JT measurement.
  • the used measurement hypothesis is fed back through the Rank combination indicated by the RI, which can reduce the number of bits of CRI information in the CSI report, and at the same time does not require additional measurement hypothesis information, thereby reducing the overall CSI payload (payload) and improving the Transmission performance of UCI.
  • the terminal receives a set of non-zero-power CSI-RS resources (ie, CMRs) configured by the network device for channel measurement, where the set includes two CMR groups.
  • CMRs non-zero-power CSI-RS resources
  • the set includes K non-zero power CSI-RS resources, which can be divided into two CMR groups with a size of K/2.
  • the number of CMRs included in the two CMR groups may also be different, and the CMRs included in each group are configured by the network device to the terminal through high-layer signaling.
  • the network device can also configure N CMR combinations for NC-JT measurement through high-layer signaling, and each combination includes two CMRs from the two CMR groups respectively.
  • a CMR group includes CMR1 and CMR2, where CMR1 is from one CMR group and CMR2 is from another CMR group.
  • the terminal performs CSI measurement based on the two CMR groups.
  • the terminal feeds back the CSI measurement hypothesis through the first information in the CSI report;
  • the measurement is assumed to be the CMR on which the CSI measurement is based, or the number of CMRs on which the CSI measurement is based.
  • the first information is RI information
  • the number of Ranks indicated by the RI information corresponds to different measurement hypotheses.
  • the RI information indicates one or two Ranks, and when the RI information indicates one Rank, the CSI is based on the measurement hypothesis of a single CMR; when the RI information indicates two Ranks, the CSI is based on the measurement hypothesis of two CMRs.
  • the number of bits of the CRI information included in the CSI report is log 2 (K) or log 2 (max(K, N)).
  • the terminal feeds back the Rank under the measurement assumption through the RI information in the CSI report.
  • the RI information includes one RI, and the RI is used to indicate the values of one or two Ranks.
  • the first value range of the RI indicates one Rank
  • the second value range of the RI indicates two Ranks.
  • the RI can indicate the following states:
  • the RI can indicate the following states:
  • the RI can indicate the following states:
  • the signaling overhead of the RI indication field can be further reduced by limiting the value range of the Rank.
  • the Rank is measured and obtained based on the third CMR, and the third CMR is the CMR corresponding to the CRI information in the K CMRs of the two CMR groups (ie, the CMR resource sets).
  • the effective number of bits of the CRI information is log 2 (K), which is used to indicate one CMR among the K CMRs.
  • the Rank is obtained based on the third and fourth CMR measurements, and the third and fourth CMRs are the CRI information in the N CMR combinations used for NC-JT measurement in the two CMR groups The corresponding CMR combination.
  • the effective number of bits of the CRI information is log 2 (K) or log 2 (K/2), which is used to indicate two CMRs corresponding to the CRI information in the two CMR groups; or, the effective number of bits of the CRI information is log 2 (max(K,N)), which is used to indicate one of the N CMR combinations for NC-JT measurement.
  • the measurement hypothesis used is fed back through the Rank number indicated by the RI, which can reduce the number of bits of the CRI information in the CSI report, and at the same time does not require additional measurement hypothesis information, thereby reducing the overall payload of the CSI and improving the transmission of UCI. performance.
  • the terminal can feed back recommended measurement hypotheses and values of one or two ranks under the corresponding measurement hypotheses based on multiple CMR groups, so that the network side can obtain the optimal transmission scheme under the current CMR configuration and Corresponding RI improves the throughput of downlink transmission.
  • the embodiment of the present application considers the overhead of the information used to indicate the measurement hypothesis, RI and CRI in the CSI, and feeds back the above information through the minimum CSI overhead.
  • FIG. 6 is a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 may include:
  • the processing unit 410 is configured to indicate the CSI measurement hypothesis through the first information in the channel state information CSI report; and indicate the rank under the measurement hypothesis through the RI information in the CSI report.
  • the terminal device further includes:
  • the measurement unit 420 is configured to perform CSI measurement according to the two channel measurement resource CMR groups configured by the network device.
  • the non-zero power channel state information reference signal CSI-RS resource set used for channel measurement includes the two CMR groups.
  • the measurement is assumed to be the CMR or the number of CMRs on which the CSI measurement is based.
  • the first information is channel state information reference signal resource indication CRI information, RI information or measurement assumption information in the CSI report.
  • the processing unit is configured to indicate the CSI measurement hypothesis through the first information in the CSI report, including: in the case where the first information is CRI information, the CRI information indicates the measurement hypothesis of the two CMR groups used for CSI measurement. One or two CMRs are used as measurement hypotheses for this CSI.
  • the number of bits of the CRI information is log 2 (K+N), where K is the total number of CMRs included in the two CMR groups used for CSI measurement , N is the number of CMR combinations used for NC-JT measurement in the two CMR groups used for CSI measurement.
  • the processing unit is used for the terminal device to indicate the CSI measurement hypothesis through the first information in the CSI report, including: in the case that the first information is RI information, the values of different ranks indicated by the RI information or The number of ranks indicated corresponds to different measurement assumptions.
  • the RI information indicates one or two ranks
  • the CSI is based on a single CMR measurement hypothesis
  • the CSI is based on the measurement assumptions of the two CMRs.
  • the RI information indicates two ranks
  • the CSI is based on the measurement assumption of a single CMR.
  • the CSI is based on the measurement assumptions of the two CMRs.
  • the number of bits of the CRI information included in the CSI report is at least one of the following:
  • K is the total number of CMRs included in the two CMR groups used for CSI measurement
  • N is the number of CMR combinations used for NC-JT measurement in the two CMR groups used for CSI measurement.
  • the processing unit is configured to indicate the measurement hypothesis of the CSI through the first information in the CSI report, including: in the case that the first information is measurement hypothesis information, different values of the measurement hypothesis information are respectively based on a single The measurement hypothesis of the CMR and the measurement hypothesis based on two CMRs, or different values of the measurement hypothesis information correspond to the measurement hypothesis based on a single TRP and the measurement hypothesis based on the NC-JT, respectively.
  • the number of bits of the CRI information included in the CSI report is log 2 (max(K,N)), where K is the total number of CMRs included in the two CMR groups used for CSI measurement, and N is the number of CMRs used for CSI measurement.
  • K is the total number of CMRs included in the two CMR groups used for CSI measurement
  • N is the number of CMRs used for CSI measurement.
  • the rank under the measurement assumption is indicated by the RI information in the CSI report, which may include at least one of the following manners:
  • the RI information includes two RIs, and the number of bits of the first RI in the two RIs is greater than the number of bits of the second RI.
  • the first RI is obtained based on the single CMR measurement, and the second RI does not indicate a rank value
  • the first RI and the second RI are respectively obtained based on the two CMRs.
  • the rank indicated by the first RI is not greater than the maximum rank that can be indicated by the second RI.
  • the RI information includes one RI, and the RI is used to indicate one or two ranks.
  • the RI is used to indicate a rank, and the rank is obtained based on the measurement of the single CMR, and the single CMR is reported through the CSI.
  • CRI information indication in the case where the measurement is assumed to be based on a single CMR, the RI is used to indicate a rank, and the rank is obtained based on the measurement of the single CMR, and the single CMR is reported through the CSI.
  • the RI is used to indicate a combination of two ranks, and the two ranks are obtained based on the two CMR measurements, respectively.
  • the two CMRs are indicated by the CRI information in the CSI report.
  • the number of bits of the CRI information in the CSI report is log 2 (max(K, N)) or log 2 (K+N), where K is two bits used for CSI measurement.
  • the total number of CMRs included in the CMR group, N is the number of CMR combinations used for NC-JT measurement in the two CMR groups used for CSI measurement.
  • the RI information includes one RI, and the RI is used to indicate a combination of the first rank and the second rank.
  • the value range of the RI includes:
  • the first rank indicated by the first value range of the RI is greater than 0, and the second rank is equal to 0;
  • the first rank indicated by the second value range of the RI is equal to 0, and the second rank is greater than 0;
  • Both the first rank and the second rank indicated by the third value range of the RI are greater than 0.
  • the CSI is obtained by measuring the first CMR, and the first CMR is the first CMR in the two CMR groups.
  • the number of bits of the CRI information is log 2 (K/2) or log 2 (max(K/2, N)), where K is two CMR groups used for CSI measurement The total number of CMRs included in , and N is the number of CMR combinations used for NC-JT measurement in the two CMR groups used for CSI measurement.
  • the RI information includes one RI, and the RI is used to indicate one or two ranks.
  • the first value range of the RI indicates one rank
  • the second value range of the RI indicates two ranks.
  • the rank is obtained by measuring a third CMR, and the third CMR is the CMR corresponding to the CRI information in the K CMRs of the two CMR groups.
  • the number of bits of the CRI information is log 2 (K), log 2 (K/2), or log 2 (max(K, N)), where K is the number of bits used for CSI measurement.
  • K is the number of bits used for CSI measurement.
  • the terminal device 400 in this embodiment of the present application can implement the corresponding functions of the terminal device in the foregoing method embodiments.
  • each module (submodule, unit, or component, etc.) in the terminal device 400 reference may be made to the corresponding descriptions in the foregoing method embodiments, which are not repeated here.
  • the functions described by each module (submodule, unit, or component, etc.) in the terminal device 400 of the application embodiment may be implemented by different modules (submodule, unit, or component, etc.), or may be implemented by the same module Module (submodule, unit or component, etc.) implementation.
  • FIG. 8 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so that the communication device 600 implements the methods in the embodiments of the present application.
  • the communication device 600 may also include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620, so that the communication device 600 implements the methods in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices .
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 600 may be the network device of this embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the communication device 600 may be a terminal device in this embodiment of the present application, and the communication device 600 may implement corresponding processes implemented by the terminal device in each method in the embodiment of the present application, which is not repeated here for brevity.
  • FIG. 9 is a schematic structural diagram of a chip 700 according to an embodiment of the present application.
  • the chip 700 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiments of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 may call and run a computer program from the memory 720 to implement the method executed by the terminal device or the network device in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may further include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • Chips applied to network equipment and terminal equipment can be the same chip or different chips.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the processor mentioned above may be a general-purpose processor, a digital signal processor (DSP), a field programmable gate array (FPGA), an application specific integrated circuit (ASIC) or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the general-purpose processor mentioned above may be a microprocessor or any conventional processor or the like.
  • the memory mentioned above may be either volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • FIG. 10 is a schematic block diagram of a communication system 800 according to an embodiment of the present application.
  • the communication system 800 includes a terminal device 810 and a network device 820 .
  • the terminal device 810 is configured to indicate the CSI measurement hypothesis through the first information in the CSI report; and indicate the rank under the measurement hypothesis through the RI information in the CSI report.
  • the network device 820 is configured to configure non-zero power CSI-RS resources for channel measurement.
  • the terminal device 810 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 820 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the procedures or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer, or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a Solid State Disk (SSD)), and the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium eg, a Solid State Disk (SSD)
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请涉及一种信息处理方法和终端设备。其中,信息处理方法,包括:终端设备通过CSI上报中的第一信息指示CSI的测量假设;该终端设备通过该CSI上报中的秩指示RI信息指示该测量假设下的秩。本申请实施例,终端设备可以基于CSI上报中的第一信息指示CSI的测量假设,还可以通过相应测量假设下的RI信息指示该测量假设下的秩,有利于使得网络侧获得当前推荐的测量假设和RI信息,提高下行传输的吞吐量。

Description

信息处理方法和终端设备 技术领域
本申请涉及通信领域,更具体地,涉及一种信息处理方法和终端设备。
背景技术
为了网络设备能够进行合理的调度,终端需要反馈下行CSI(Channel State Information,信道状态信息),以使得网络设备能够确定传输层数、预编码矩阵、发送波束、调制编码方式等终端的调度信息。对于测量协作的多个TRP(Transmission Reception Point,传输点/发送接收点)的CSI的情况,终端如何在CSI中反馈当前推荐的测量假设以及相应的秩信息是需要考虑的问题。
发明内容
本申请实施例提供一种信息处理方法和终端设备,可以在CSI中反馈当前推荐的测量假设。
本申请实施例提供一种信息处理方法,包括:
终端设备通过信道状态信息CSI上报中的第一信息指示CSI的测量假设;
该终端设备通过该CSI上报中的秩指示RI信息指示该测量假设下的秩。
本申请实施例提供一种终端设备,包括:处理单元,用于通过信道状态信息CSI上报中的第一信息指示CSI的测量假设;通过该CSI上报中的秩指示RI信息指示该测量假设下的秩。
本申请实施例提供一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该终端设备执行上述的信息处理方法。
本申请实施例提供一种芯片,用于实现上述的信息处理方法。具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的信息处理方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行上述的信息处理方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的信息处理方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述的信息处理方法。
本申请实施例,终端设备可以基于CSI上报中的第一信息指示CSI的测量假设,还可以通过相应测量假设下的RI信息指示该测量假设下的秩,有利于使得网络侧获得当前推荐的测量假设和RI信息,提高下行传输的吞吐量。
附图说明
图1是根据本申请实施例的应用场景的示意图。
图2和图3为基于多PDCCH的下行非相干传输的示意图。
图4为基于单PDCCH的下行非相干传输的示意图。
图5是根据本申请一实施例的信息处理方法的示意性流程图。
图6是根据本申请一实施例的终端设备的示意性框图。
图7是根据本申请另一实施例的终端设备的示意性框图。
图8是根据本申请实施例的通信设备示意性框图。
图9是根据本申请实施例的芯片的示意性框图。
图10是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴 式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一种通信系统100。该通信系统包括一个网络设备110和两个终端设备120。可选地,该通信系统100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
其中,网络设备又可以包括接入网设备和核心网设备。即无线通信系统还包括用于与接入网设备进行通信的多个核心网。接入网设备可以是长期演进(long-term evolution,LTE)系统、下一代(移动通信系统)(next radio,NR)系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本申请实施例中的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B, 单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
一、下行非相干传输
在NR系统中引入了基于多个TRP的下行和上行的非相干传输。其中,TRP之间的backhaul(回传网络)连接可以是理想的或者非理想的。理想的backhaul下TRP之间可以快速动态的进行信息交互。非理想的backhaul下由于时延较大TRP之间只能准静态的进行信息交互。在下行非相干传输中,多个TRP可以采用不同的控制信道独立调度一个终端的多个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输,也可以采用同一个控制信道调度不同TRP的传输。其中不同TRP的数据采用不同的传输层,后者只能用于理想backhaul的情况。
对于采用多个PDCCH(Physical Downlink Control Channel,物理下行控制信道)调度的下行传输,所调度的PDSCH可以在相同的时隙或不同的时隙传输。终端需要支持同时接收来自不同TRP的PDCCH和PDSCH。终端反馈ACK/NACK(确认/非确认)和CSI时,可以将ACK/NACK和CSI各自反馈给传输相应PDSCH的不同TRP(如图2),也可以合并反馈给一个TRP(如图3)。前者可以应用于理想backhaul和非理想backhaul两种场景,后者只能用于理想backhaul的场景。其中,不同TRP传输的用于调度PDSCH的DCI(Downlink control information,下行控制信息)可以通过不同的CORESET来承载,即网络侧配置多个CORESET。每个TRP采用各自的CORESET进行调度,即可以通过CORESET来区分不同的TRP。例如,网络设备可以为每个CORESET配置一个CORESET组索引,不同的索引对应不同的TRP。终端反馈CSI时,需要分别反馈每个TRP各自对应的CSI。该CSI包括RI(Rank Indication,秩指示)、PMI(Precoding Matrix Indicator,预编码矩阵指示)、CQI(Channel Quality Indication,信道质量指示)等内容,可以用于各自TRP进行下行传输的调度。
参见图4,对于采用单个PDCCH调度的多TRP下行传输,同一个DCI可以调度来自不同TRP的多个传输层。其中,来自不同TRP的传输层采用不同CDM(Code Division Multiplexing,码分复用)组中的DMRS(Demodulation Reference Signal,解调参考信号)端口,且采用不同的TCI(Transmission Configuration Indicator,传输配置指示)状态。网络设备需要在一个DCI中指示来自不同CDM组的DMRS端口,以及不同CDM组所分别对应的TCI状态,从而支持不同的DMRS端口采用不同的波束来传输。这种情况下,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)-ACK反馈可以重用相关协议中的机制。这种方案只能用于理想backhaul的场景。而且,此时终端要在一个CSI中反馈不同TRP分别对应的RI和PMI,以及一个联合的CQI(用于确定MCS(Modulation and Coding Scheme,调制与编码策略))。
二、下行CSI上报
为了网络设备能够进行合理的调度,终端需要反馈下行CSI,以让基站确定传输层数、预编码矩阵、发送波束、调制编码方式等终端的调度信息。具体的,终端基于网络设备指示的CSI上报配置进行CSI上报。 终端反馈CSI反馈CSI所用的上行资源以及进行CSI测量所用的下行参考信号都可以通过CSI上报配置指示。每个CSI上报配置对应一个CSI上报,每个CSI上报可以包括CRI(Channel State Information Reference Signal Resource Indicator,信道状态信息参考信号资源指示)、RI、PMI、CQI等不同的信息。具体的,CSI中包括哪些内容/信息通过CSI上报配置中的上报量信息(reportQuantity)来确定。例如:上报量信息可以指示以下上报量中的一个:
Figure PCTCN2021085141-appb-000001
其中:
CRI用于从多个CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)资源中确定当前用于信道测量的CSI-RS资源,以及当前用于干扰测量的干扰测量资源IMR(Interference Measurement Resource,干扰测量资源)。
RI用于反馈推荐的传输层数(Rank)。
PMI用于从预定义的码本中确定推荐的预编码矩阵。
CQI用于反馈当前的信道质量,可以基于终端估计的SINR(Signal to Interference plus Noise Ratio,下行信号与干扰加噪声比)确定。其中,SINR中的信道部分基于网络配置的用于信道测量的非零功率CSI-RS确定,干扰部分基于网络配置的用于干扰测量的CSI-IM(Channel State Information Interference Measurement,信道状态信息干扰测量)或者非零功率CSI-RS确定。CQI基于反馈的RI和PMI计算。
RSRP(ReferenceSignal Receiving Power,参考信号接收功率)用于上报所反馈的索引对应的SSB(Synchronization Signal and PBCH block,同步信号和PBCH(Physical Broadcast Channel,广播物理信道)块)或CSI-RS的RSRP,从而用于网络侧确定下行传输所用的波束。
LI(layer index,层索引)用于指示与PTRS(Phase Tracking Reference Signal,相位跟踪参考信号)关联的传输层的索引。
当一个CSI中承载的比特数较多时,为了优先传输重要的CSI信息,可以将一个CSI分成两个部分(part)。对于不同类型的码本,CSI部分1和部分2包括的信息如下表所示。其中,CSI部分1的比特数是固定的,用来携带RI、CQI等少量重要信息;CSI部分2的比特数根据CSI部分1确定,用来携带PMI等比特数较多的信息。当携带CSI的PUSCH(物理上行共享信道)/(物理上行控制信道)PUCCH的码率超过一定值时, 终端需要丢弃一些CSI部分2中的信息来保证PUSCH/PUCCH的传输性能,至少码率在合理范围内。具体的,CSI部分1的信息不会被丢弃,CSI部分2中根据CSI上报的优先级先丢弃优先级较低的CSI。其中,CSI上报的优先级根据CSI的周期性、CSI上报的内容、CSI上报对应的载波和CSI上报配置的ID判断。
Figure PCTCN2021085141-appb-000002
在相关技术中,为了测量协作的多个TRP的CSI,网络设备可以给终端配置两个CMR(Channel Measurement Resource,信道测量资源)组,每组用于测量一个TRP的CSI。终端基于配置的两个CMR组进行测量,从而确定当前最优的CSI是基于单个TRP(即单个CMR组或者单个CMR)测量得到,还是基于多个TRP(即两个CMR组或者两个CMR)测量得到。其中,前者对应于单个TRP的测量假设,后者对应NC-JT(Non-Coherent Joint Transmission,非相干联合传输)的测量假设。终端可以在CSI中反馈当前推荐的测量假设是其中哪一个,以及该测量假设下对应的CSI,例如CRI、RI、PMI、CQI等。目前,需要考虑如何用最小的信令开销反馈推荐的测量假设,以及如何确定该测量假设下的CRI和RI信息。
图5是根据本申请一实施例的信息处理方法200的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S210、终端设备通过信道状态信息(CSI)上报中的第一信息指示CSI的测量假设。
S220、该终端设备通过该CSI上报中的秩指示(RI)信息指示该测量假设下的秩。
示例性地,CSI上报中的秩(Rank)可以是终端设备推荐的传输层数。终端设备通过CSI上报中的第一信息向网络设备指示(也可以称为上报或反馈)CSI的测量假设。终端设备通过该CSI上报中的RI信息向网络设备指示(也可以称为上报或反馈)该测量假设下的终端设备推荐的传输层数。
可选地,该方法还包括:该终端设备根据网络设备配置的两个信道测量资源(CMR)组(set)进行CSI测量。
可选地,用于信道测量的非零功率信道状态信息参考信号CSI-RS资源集合中包括该两个CMR组。
在S210之前,终端设备可以接收用于信道测量的非零功率CSI-RS资源集合,该集合中可以包括两个CMR组。终端设备可以根据网络设备配置的两个CMR组进行CSI测量。然后,在S210中,终端设备可以向网络设备反馈CSI上报(report),通过CSI上报中的第一信息指示CSI的测量假设。此外,在S220中,终端设备还可以通过该CSI上报中的RI信息指示该测量假设下的终端设备推荐的传输层数(Rank)。
可选地,该测量假设为该CSI测量所基于的CMR或者CMR的数量。
在本申请实施例中,该测量假设为该CSI测量基于单个CMR,也可以称为该CSI测量基于单TRP传输 的测量假设。该测量假设为该CSI测量基于多个CMR,也可以称为该CSI测量基于NC-JT传输的测量假设。
可选地,该第一信息为该CSI上报中的信道状态信息参考信号资源指示CRI信息、RI信息或者测量假设信息。
可选地,终端设备通过CSI上报中的第一信息指示CSI的测量假设,包括:在该第一信息为CRI信息的情况下,该CRI信息指示用于CSI测量的两个CMR组中的一个或者两个CMR作为该CSI的测量假设。例如,终端设备通过CSI上报中的CRI信息指示用于CSI测量的两个CMR组中的一个或者两个CMR作为该CSI的测量假设。
可选地,在该第一信息为CRI信息的情况下,该CRI信息的比特数为log 2(K+N),其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
在本申请实施例中,K可以为大于等于2的正整数,N可以为大于等于1的正整数。其中,两个CMR组中总共可以包括K个资源(不限于2),每个CMR组可以包含一个或多个资源(不限于2),而每个CMR组合中包含两个CMR,即包括分别来自两个CMR组的一对CMR。
可选地,终端设备通过CSI上报中的第一信息指示CSI的测量假设,包括:在该第一信息为RI信息的情况下,该RI信息指示的不同秩的取值或者指示的秩的数量对应不同的测量假设。
可选地,第一信息为RI信息的情况可以包括以下处理方式的至少之一:
方式一、该RI信息指示一个或两个秩;
在该RI信息指示一个秩的情况下,该CSI基于单个CMR的测量假设;和/或
在该RI信息指示两个秩的情况下,该CSI基于两个CMR的测量假设。
例如,在CSI上报中的RI信息指示一个秩的情况下,终端设备通过该RI信息指示用于CSI测量的单个CMR作为该CSI的测量假设。在CSI上报中的该RI信息指示两个秩的情况下,终端设备通过该RI信息指示用于CSI测量的两个CMR作为该CSI的测量假设。
方式二、该RI信息指示两个秩;
在该RI信息指示的两个秩中其中一个秩取值为零的情况下,该CSI基于单个CMR的测量假设;和/或
在该RI信息指示的两个秩均大于零的情况下,该CSI基于两个CMR的测量假设。
例如,在CSI上报中的RI信息指示的两个秩中其中一个秩取值为零的情况下,终端设备通过该RI信息指示用于CSI测量的单个CMR作为该CSI的测量假设。在CSI上报中的该RI信息指示的两个秩均大于零的情况下,终端设备通过该RI信息指示用于CSI测量的两个CMR作为该CSI的测量假设。
可选地,在第一信息为RI信息的情况下,该CSI上报中包括的CRI信息的比特数为以下至少之一:
log 2(K);
log 2(max(K,N));
log 2(K/2);
log 2(max(K/2,N));
其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
可选地,终端设备通过CSI上报中的第一信息指示CSI的测量假设,包括:在该第一信息为测量假设信息的情况下,该测量假设信息的不同取值分别对应基于单个CMR的测量假设和基于两个CMR的测量假设, 或者,该测量假设信息的不同取值分别对应基于单个TRP的测量假设和基于NC-JT的测量假设。
例如,在CSI上报中的测量假设信息的取值为1或0。其中,测量假设信息的取值为1的情况下,终端设备通过该测量假设信息指示用于CSI测量的单个CMR作为该CSI的测量假设。测量假设信息的取值为0的情况下,终端设备通过该测量假设信息指示用于CSI测量的两个CMR作为该CSI的测量假设。
再如,在CSI上报中的测量假设信息的取值为1或0。其中,测量假设信息的取值为1的情况下,终端设备通过该测量假设信息指示基于单个TRP的测量假设。测量假设信息的取值为0的情况下,终端设备通过该测量假设信息指示基于NC-JT的测量假设。
可选地,在该第一信息为测量假设信息的情况下,该CSI上报中包括的CRI信息的比特数为log 2(max(K,N)),其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
可选地,S220可以包括以下方式的至少之一:
方式一、该RI信息包括两个RI,且该两个RI中的第一RI的比特数大于第二RI的比特数。
可选地,在方式一中,在该测量假设为该CSI测量基于单个CMR的情况下,该第一RI基于该单个CMR测量得到,该第二RI不指示秩的取值;和/或
在该测量假设为该CSI测量基于两个CMR的情况下,该第一RI和第二RI分别基于该两个CMR测量得到。
可选地,在方式一中,该第一RI指示的秩不大于该第二RI能够指示的最大秩。
方式二、该RI信息包括一个RI,该RI用于指示一个或者两个秩。
可选地,在方式二中,在该测量假设为该CSI测量基于单个CMR的情况下,该RI用于指示一个秩,该秩基于该单个CMR测量得到,该单个CMR通过该CSI上报中的CRI信息指示。例如,该Rank的取值可以为1-8。
可选地,在方式二中,在该测量假设为该CSI测量基于两个CMR的情况下,该RI用于指示两个秩的组合,该两个秩分别基于该两个CMR测量得到,该两个CMR通过该CSI上报中的CRI信息指示。
可选地,在方式二中,该CSI上报中的CRI信息的比特数为log 2(max(K,N))或者log 2(K+N),其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
方式三、该RI信息包括一个RI,该RI用于指示第一秩和第二秩的组合。
可选地,在方式三中,该RI的取值范围包括:
该RI的第一取值范围指示的第一秩大于0,第二秩等于0;
该RI的第二取值范围指示的第一秩等于0,第二秩大于0;
该RI的第三取值范围指示的第一秩和第二秩都大于0。
可选地,在方式三中,在该第一秩大于0,该第二秩等于0的情况下,该CSI基于第一CMR测量得到,该第一CMR为该两个CMR组中的第一CMR组中CRI信息所对应的CMR。例如,当第一Rank大于0,第二Rank等于0时,该CSI基于第一CMR测量得到,该第一CMR为该两个CMR组中的第一CMR组中CRI信息所对应的CMR。
可选地,在方式三中,在该第一秩和该第二秩都大于0的情况下,该第一秩和该第二秩分别基于第一CMR和第二CMR测量得到,该第一CMR和第二CMR分别为该两个CMR组中CRI信息所对应的CMR。
可选地,在方式三中,该CRI信息的比特数为log 2(K/2)或者log 2(max(K/2,N)),其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
方式四、该RI信息包括一个RI,该RI用于指示一个或者两个秩。
可选地,在方式四中,该RI的第一取值范围指示一个秩,该RI的第二取值范围指示两个秩。
可选地,在方式四中,在该RI指示一个秩的情况下,该秩基于第三CMR测量得到,该第三CMR为该两个CMR组的K个CMR中CRI信息所对应的CMR。
可选地,在方式四中,在该RI指示两个秩的情况下,该两个秩分别基于第三CMR和第四CMR测量得到,该第三CMR和第四CMR为该两个CMR组中用于NC-JT测量的N个CMR组合中CRI信息所对应的一个CMR组合。
可选地,在方式四中,该CRI信息的比特数为log 2(K)、log 2(K/2)或者log 2(max(K,N)),其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
本申请实施例中,终端设备可以基于多个CMR组反馈推荐的测量假设,以及相应测量假设下的一个或者两个RI,从而网络侧可以获得当前CMR配置下最佳的传输方案以及相应的RI,提高下行传输的吞吐量。
在具体的应用示例中,本申请的信息处理方法可以为一种CSI上报方法。终端基于两个CMR组进行CSI测量,从而通过CSI上报中的第一信息反馈该CSI的测量假设,并通过该CSI上报中的RI信息反馈该测量假设下的RI。具体的,本申请实施例可以提供多种不同的测量假设和RI信息的上报方法。根据本申请实施例的方法,终端可以基于多个CMR组反馈推荐的测量假设,以及相应测量假设下的一个或者两个RI。从而网络侧可以获得当前CMR配置下最佳的传输方案以及相应的RI,提高下行传输的吞吐量。以下为几个具体的示例。
示例1:
S11.终端接收网络设备配置的用于信道测量的非零功率CSI-RS资源(即CMR)集合,该集合中包括两个CMR组。
具体的,该集合包括K个非零功率CSI-RS资源,可以分成两个大小为K/2的CMR组。另一种实施方式中,该两个CMR组包括的CMR的数量也可以不同,每个组包括的CMR由网络设备通过高层信令配置给终端。
另外,网络设备还可以通过高层信令配置N个用于NC-JT测量的CMR组合,每个组合包括分别来自该两个CMR组的两个CMR。例如,一个CMR组合包括CMR1和CMR2,其中CMR1来自于一个CMR组,CMR2来自于另一个CMR组。
S12.终端基于该两个CMR组进行CSI测量。
具体的,终端可以基于该两个CMR组包括的K个CMR资源分别进行单TRP的CSI测量,即每个CSI测量只基于单个CMR。终端还可以基于该N个用于NC-JT测量的CMR组合分别进行多TRP的CSI测量,即每个CSI测量都是基于一个CMR组合(两个CMR)进行。
终端可以根据基于单个CMR测量得到的最好的CSI,和基于CMR组合(两个CMR)测量得到的最好的CSI中,确定其中较优的CSI测量假设,并将该测量假设和相应的CSI通过CSI上报反馈给网络设备。
S13.终端通过CSI上报中的第一信息反馈CSI的测量假设。
具体的,该测量假设为该CSI测量所基于的CMR,或者为该CSI测量所基于的CMR的数量。在本申请实施例中,该测量假设为该CSI测量基于单个CMR,也可以称为该CSI测量基于单TRP传输的测量假设。该测量假设为该CSI测量基于多个CMR,也可以称为该CSI测量基于NC-JT传输的测量假设。
在一种实施方式中,该第一信息为该CSI上报中的CRI信息。该CRI信息指示该两个CMR组中的一个或者两个CMR。此时,该CRI信息指示的CMR即为该CSI的测量假设,即CSI测量所基于的CMR。
例如,该CRI信息的比特数为log 2(K+N),其中,K为该两个CMR组包括的CMR的总数(即该用于信道测量的非零功率CSI-RS资源集合中的数量),N为该两个CMR组中用于NC-JT测量的CMR组合的数量,该用于NC-JT测量的CMR组合可以通过高层信令由网络设备配置给终端。这样,通过CRI信息可以指示K个CMR中的一个CMR(对应基于单个CMR的测量假设),或者N个CMR组合中的一个CMR组合(对应基于两个CMR的测量假设)。
在另一种实施方式中,该第一信息为该CSI上报中的测量假设信息。该测量假设信息的不同取值分别对应基于单个CMR的测量假设和基于两个CMR的测量假设,或者,基于单个TRP的测量假设和基于NC-JT的测量假设。
例如,该测量假设信息包括1比特信息,其中0表示基于单个CMR的测量假设或者基于单个TRP的测量假设,1表示基于两个CMR的测量假设或者基于NC-JT的测量假设。
再如,此时该CSI中包括的CRI信息的比特数为log 2(max(K,N)),其中,K为该两个CMR组包括的CMR的总数,N为该两个CMR组中用于NC-JT测量的CMR组合的数量。这样,当该测量假设信息指示基于单个CMR的测量假设时,通过CRI信息可以指示K个CMR中的一个CMR;当该测量假设信息指示基于两个CMR的测量假设时,通过CRI信息可以指示N个CMR组合中的一个CMR组合。
S14.终端通过该CSI上报中的RI信息反馈该测量假设下的Rank。
具体的,该RI信息包括两个RI(即两个独立的RI指示域),且该两个RI中的第一RI(指示域)的比特数大于第二RI(指示域)的比特数。
在一种实施方式中,该第一RI包括3个比特,用于指示Rank={1,2,...,8}中的一个;该第二RI包括2个比特,用于指示Rank={1,2,...,4}中的一个。在另一种实施方式中,该第一RI包括2个比特,用于指示Rank={1,2,3,4}中的一个;该第二RI包括1个比特,用于指示Rank={1,2}中的一个。
在一种实施方式中,当该测量假设为该CSI测量基于单个CMR时,该第一RI基于该单个CMR测量得到,该第二RI不指示Rank。其中,该单个CMR为该CSI上报中的CRI信息所指示的CMR。此时,该第一RI是一个有效的RI,可以用于单个TRP的下行传输;该第二RI的比特数不用于指示Rank,可以预留或者用于其他用途。
在另一种实施方式中,当该测量假设为该CSI测量基于两个CMR时,该第一RI和第二RI分别基于该两个CMR测量得到。其中,该两个CMR为该CSI上报中的CRI信息所指示的一个CMR组合。此时,该两个RI均为有效的RI,分别用于不同TRP的下行传输。
在这种情况下,该第一RI指示的Rank不大于该第二RI可以指示的最大Rank。例如,第一RI为3比特,第二RI为2比特且指示的Rank值为{1,2,3,4},则第一RI指示的Rank值也不能超过4,只能为1-4中的一个,不能指示Rank=5-8。
采用该示例的方法,可以保证Rank指示的灵活性,在不同的测量假设下都可以反馈各种Rank取值的灵活组合。
示例2:
S21.终端接收网络设备配置的用于信道测量的非零功率CSI-RS资源(即CMR)集合,该集合中包括两个CMR组。
具体的,该集合包括K个非零功率CSI-RS资源,可以分成两个大小为K/2的CMR组。另一种实施方式中,该两个CMR组包括的CMR的数量也可以不同,每个组包括的CMR由网络设备通过高层信令配置给终端。
另外,网络设备还可以通过高层信令配置N个用于NC-JT测量的CMR组合,每个组合包括分别来自该两个CMR组的两个CMR。例如,一个CMR组合包括CMR1和CMR2,其中CMR1来自于一个CMR组,CMR2来自于另一个CMR组。
S22.终端基于该两个CMR组进行CSI测量。
具体可以参考示例1中的内容,这里不再赘述。
S23.终端通过CSI上报中的第一信息反馈CSI的测量假设。
具体的,该测量假设为该CSI测量所基于的CMR,或者为该CSI测量所基于的CMR的数量。
在一种实施方式中,该第一信息为该CSI上报中的CRI信息。该CRI信息指示该两个CMR组中的一个或者两个CMR。此时,该CRI信息指示的CMR即为该CSI的测量假设,即CSI测量所基于的CMR。具体可以参考示例1中的描述。
在另一种实施方式中,该第一信息为该CSI上报中的测量假设信息。该测量假设信息的不同取值分别对应基于单个CMR的测量假设和基于两个CMR的测量假设,或者,基于单个TRP的测量假设和基于NC-JT的测量假设。具体可以参考示例1中的描述。
S24.终端通过该CSI上报中的RI信息反馈该测量假设下的Rank。
具体的,该RI信息包括一个RI,该RI用于指示一个或者两个Rank,且RI的不同取值指示的Rank的数量是相同的(一个或两个)。
当该测量假设为该CSI测量基于单个CMR(即基于单个TRP的测量假设)时,该RI用于指示一个Rank,该Rank基于该单个CMR测量得到,该单个CMR通过该CSI上报中的CRI信息指示。
具体的,该RI指示的Rank为{1,2,…,8}中的一个。
当该测量假设为该CSI测量基于两个CMR时,该RI用于指示两个Rank的组合,该两个Rank分别基于该两个CMR测量得到,该两个CMR通过该CSI上报中的CRI信息指示。
在一种实施方式中,该RI为4个比特,指示的Rank值如下:
Figure PCTCN2021085141-appb-000003
Figure PCTCN2021085141-appb-000004
在另一种实施方式中,该RI为3个比特,指示的Rank值如下:
RI取值 单个CMR测量假设下的Rank值 两个CMR测量假设下的Rank值
1 1 {1,1}
2 2 {1,2}
3 3 {2,1}
4 4 {2,2}
5 5 Reserved(保留位)
6 6 Reserved
7 7 Reserved
8 8 Reserved
在一种实施方式中,当该测量假设通过单独的测量假设信息指示时,该CSI上报中包括的CRI信息的比特数为log 2(max(K,N))。当该测量假设信息指示基于单个CMR的测量假设时,通过CRI信息可以指示K个CMR中的一个CMR;当该测量假设信息指示基于两个CMR的测量假设时,通过CRI信息可以指示N个CMR组合中的一个CMR组合。
在另一种实施方式中,当该测量假设通过CRI信息指示时,该CSI上报中的CRI信息的比特数为log 2(K+N)。通过CRI信息可以指示K个CMR中的一个CMR,或者N个CMR组合中的一个CMR组合。
采用该示例的方法,不同测量假设下的Rank值重用相同的RI信息域来指示,可以减少CSI上报中的信息比特数,从而提高UCI(Uplink control information,上行控制信息)传输的性能。
示例3:
S31.终端接收网络设备配置的用于信道测量的非零功率CSI-RS资源(即CMR)集合,该集合中包括两个CMR组。
具体的,该集合包括K个非零功率CSI-RS资源,可以分成两个大小为K/2的CMR组。另一种实施方式中,该两个CMR组包括的CMR的数量也可以不同,每个组包括的CMR由网络设备通过高层信令配置给终端。
另外,网络设备还可以通过高层信令配置N个用于NC-JT测量的CMR组合,每个组合包括分别来自该两个CMR组的两个CMR。例如,一个CMR组合包括CMR1和CMR2,其中CMR1来自于一个CMR组,CMR2来自于另一个CMR组。
S32.终端基于该两个CMR组进行CSI测量。
具体参考示例1中的内容,这里不再赘述。
S33.终端通过CSI上报中的第一信息反馈CSI的测量假设。
具体的,该测量假设为该CSI测量所基于的CMR,或者为该CSI测量所基于的CMR的数量。
在一种实施方式中,该第一信息为RI信息,该RI信息指示的不同Rank对应不同的测量假设。
例如,该RI信息指示两个Rank,当该RI信息指示的其中一个Rank取值为零时,该CSI基于单个CMR的测量假设;当该RI信息指示的两个Rank均大于零时,该CSI基于两个CMR的测量假设。
例如,此时该CSI上报中包括的CRI信息的比特数为log 2(K/2)或者log 2(max(K/2,N))。
S34.终端通过该CSI上报中的RI信息反馈该测量假设下的Rank。
具体的,该RI信息包括一个RI,该RI用于指示第一Rank和第二Rank的组合。其中,第一Rank和第二Rank中至少有一个取值不为零。
具体的,该RI的部分取值范围指示的一个Rank大于0,另一个Rank等于0,对应基于单个CMR的测量假设;另一部分取值范围指示的两个Rank均大于零,对应基于两个CMR的测量假设。
例如,该RI的第一取值范围指示的第一Rank大于0,第二Rank等于0,用于指示第一个CMR组对应的TRP的传输;第二取值范围指示的第一Rank等于0,第二Rank大于0,用于指示第二个CMR组对应的TRP的传输;第三取值范围指示的第一Rank和第二Rank都大于0,用于指示两个TRP的NC-JT传输。
以该RI信息包括5个比特为例,该RI可以指示如下状态:
RI取值 指示的Rank值
1 {1,0}
2 {2,0}
3 {3,0}
4 {4,0}
5 {5,0}
6 {6,0}
7 {7,0}
8 {8,0}
9 {0,1}
10 {0,2}
11 {0,3}
12 {0,4}
13 {0,5}
14 {0,6}
15 {0,7}
16 {0,8}
17 {1,1}
18 {1,2}
19 {2,1}
20 {2,2}
21 {2,3}
22 {3,2}
23 {3,3}
24 {3,4}
25 {4,3}
26 {4,4}
27-32 Reserved
以该RI信息包括4个比特为例,该RI可以指示如下状态:
RI取值 指示的Rank值
1 {1,0}
2 {2,0}
3 {3,0}
4 {4,0}
5 {0,1}
6 {0,2}
7 {0,3}
8 {0,4}
9 {1,1}
10 {1,2}
11 {2,1}
12 {2,2}
13-16 Reserved
在一种实施方式中,当第一Rank大于0,第二Rank等于0时,该CSI基于第一CMR测量得到,该第一CMR为该两个CMR组中的第一CMR组中,CRI信息所对应的CMR。当第二Rank大于0,第一Rank等于0时,该CSI基于第二CMR测量得到,该第二CMR为该两个CMR组中的第二CMR组中,CRI信息所对应的CMR。此时,该CRI信息的有效比特数为log 2(K/2),用于指示非零Rank对应的一个CMR组中的一个CMR。
在另一种实施方式中,当第一Rank和第二Rank都大于0时,该第一Rank和第二Rank分别基于第一CMR和第二CMR测量得到,该第一CMR和第二CMR分别为该两个CMR组中,CRI信息所对应的CMR。此时,该CRI信息的有效比特数为log 2(K/2),用于指示两个CMR组中CRI信息分别对应的两个CMR;或者,该CRI信息的有效比特数为log 2(max(K/2,N)),用于指示N个用于NC-JT测量的CMR组合中的一个组合。
采用该示例的方法,通过RI指示的Rank组合来反馈所用的测量假设,可以降低CSI上报中CRI信息的比特数,同时不需要额外的测量假设信息,从而降低CSI的整体负载(payload),提高UCI的传输性能。
示例4:
S41.终端接收网络设备配置的用于信道测量的非零功率CSI-RS资源(即CMR)集合,该集合中包括两个CMR组。
具体的,该集合包括K个非零功率CSI-RS资源,可以分成两个大小为K/2的CMR组。另一种实施方式中,该两个CMR组包括的CMR的数量也可以不同,每个组包括的CMR由网络设备通过高层信令配置给终端。
另外,网络设备还可以通过高层信令配置N个用于NC-JT测量的CMR组合,每个组合包括分别来自该 两个CMR组的两个CMR。例如,一个CMR组合包括CMR1和CMR2,其中CMR1来自于一个CMR组,CMR2来自于另一个CMR组。
S42.终端基于该两个CMR组进行CSI测量。
具体可以参考示例1中的内容,这里不再赘述。
S43.终端通过CSI上报中的第一信息反馈CSI的测量假设;
具体的,该测量假设为该CSI测量所基于的CMR,或者为该CSI测量所基于的CMR的数量。
在一种实施方式中,该第一信息为RI信息,该RI信息指示的Rank数量对应不同的测量假设。
例如,该RI信息指示一个或两个Rank,当该RI信息指示一个Rank时,该CSI基于单个CMR的测量假设;当该RI信息指示两个Rank时,该CSI基于两个CMR的测量假设。
例如,此时该CSI上报中包括的CRI信息的比特数为log 2(K)或者log 2(max(K,N))。
S44.终端通过该CSI上报中的RI信息反馈该测量假设下的Rank。
具体的,该RI信息包括一个RI,该RI用于指示一个或者两个Rank的取值。
在一种实施方式中,该RI的第一取值范围指示一个Rank,该RI的第二取值范围指示两个Rank。
以该RI信息包括5个比特为例,该RI可以指示如下状态:
RI取值 指示的Rank值
1 {1}
2 {2}
3 {3}
4 {4}
5 {5}
6 {6}
7 {7}
8 {8}
9 {1,1}
10 {1,2}
11 {2,1}
12 {2,2}
13 {2,3}
14 {3,2}
15 {3,3}
16 {3,4}
17 {4,3}
18 {4,4}
19-32 Reserved
以该RI信息包括4个比特为例,该RI可以指示如下状态:
RI取值 指示的Rank值
1 {1}
2 {2}
3 {3}
4 {4}
5 {1,1}
6 {1,2}
7 {2,1}
8 {2,2}
9 {2,3}
10 {3,2}
11 {3,3}
12 {3,4}
13 {4,3}
14 {4,4}
15-16 Reserved
以该RI信息包括3个比特为例,该RI可以指示如下状态:
RI取值 指示的Rank值
1 {1}
2 {2}
3 {3}
4 {4}
5 {1,1}
6 {1,2}
7 {2,1}
8 {2,2}
在以上表格中,考虑小区边缘UE只能支持较低的Rank,因此可以通过限制Rank的取值范围,来进一步降低RI指示域的信令开销。
当该RI指示一个Rank时,该Rank基于第三CMR测量得到,该第三CMR为该两个CMR组(即该CMR资源集合)的K个CMR中CRI信息所对应的CMR。此时,该CRI信息的有效比特数为log 2(K),用于指示该K个CMR中的一个CMR。
当该RI指示两个Rank时,该Rank基于第三和第四CMR测量得到,该第三和第四CMR为该两个CMR组中用于NC-JT测量的N个CMR组合中,CRI信息所对应的CMR组合。此时,该CRI信息的有效比特数为log 2(K)或者log 2(K/2),用于指示两个CMR组中CRI信息对应的两个CMR;或者,该CRI信息的有效比特数为log 2(max(K,N)),用于指示N个用于NC-JT测量的CMR组合中的一个组合。
采用该示例的方法,通过RI指示的Rank数量来反馈所用的测量假设,可以降低CSI上报中CRI信息的比特数,同时不需要额外的测量假设信息,从而降低CSI的整体payload,提高UCI的传输性能。
根据本申请实施例的方法,终端可以基于多个CMR组反馈推荐的测量假设,以及相应测量假设下的一个或者两个秩的值,从而网络侧可以获得当前CMR配置下最佳的传输方案以及相应的RI,提高下行传输的吞吐量。同时,本申请实施例考虑了CSI中用于指示测量假设,RI和CRI的信息的开销,通过最小的CSI开销反馈上述信息。
图6是根据本申请一实施例的终端设备400的示意性框图。该终端设备400可以包括:
处理单元410,用于通过信道状态信息CSI上报中的第一信息指示CSI的测量假设;通过该CSI上报中的RI信息指示该测量假设下的秩。
可选地,如图7所示,该终端设备还包括:
测量单元420,用于根据网络设备配置的两个信道测量资源CMR组进行CSI测量。
可选地,用于信道测量的非零功率信道状态信息参考信号CSI-RS资源集合中包括该两个CMR组。
可选地,该测量假设为该CSI测量所基于的CMR或者CMR的数量。
可选地,该第一信息为该CSI上报中的信道状态信息参考信号资源指示CRI信息、RI信息或者测量假设信息。
可选地,处理单元用于通过CSI上报中的第一信息指示CSI的测量假设,包括:在第一信息为CRI信息的情况下,该CRI信息指示用于CSI测量的两个CMR组中的一个或者两个CMR作为该CSI的测量假设。
可选地,在该第一信息为CRI信息的情况下,该CRI信息的比特数为log 2(K+N),其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
可选地,该处理单元用于终端设备通过CSI上报中的第一信息指示CSI的测量假设,包括:在该第一信息为RI信息的情况下,该RI信息指示的不同秩的取值或者指示的秩的数量对应不同的测量假设。
可选地,在该第一信息为RI信息的情况下,该RI信息指示一个或两个秩;
在该RI信息指示一个秩的情况下,该CSI基于单个CMR的测量假设;和/或
在该RI信息指示两个秩的情况下,该CSI基于两个CMR的测量假设。
可选地,该RI信息指示两个秩;
在该RI信息指示的两个秩中其中一个秩取值为零的情况下,该CSI基于单个CMR的测量假设;和/或
在该RI信息指示的两个秩均大于零的情况下,该CSI基于两个CMR的测量假设。
可选地,在该第一信息为RI信息的情况下,该CSI上报中包括的CRI信息的比特数为以下至少之一:
log 2(K);
log 2(max(K,N));
log 2(K/2);
log 2(max(K/2,N));
其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
可选地,该处理单元用于通过CSI上报中的第一信息指示CSI的测量假设,包括:在该第一信息为测量假设信息的情况下,该测量假设信息的不同取值分别对应基于单个CMR的测量假设和基于两个CMR的测量假设,或者,该测量假设信息的不同取值分别对应基于单个TRP的测量假设和基于NC-JT的测量假设。
可选地,该CSI上报中包括的CRI信息的比特数为log 2(max(K,N)),其中,K为用于CSI测量的两个 CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
可选地,通过该CSI上报中的RI信息指示该测量假设下的秩,可以包括以下方式的至少之一:
方式一、该RI信息包括两个RI,且该两个RI中的第一RI的比特数大于第二RI的比特数。
可选地,在方式一中,在该测量假设为该CSI测量基于单个CMR的情况下,该第一RI基于该单个CMR测量得到,该第二RI不指示秩的取值;和/或
在该测量假设为该CSI测量基于两个CMR的情况下,该第一RI和第二RI分别基于该两个CMR测量得到。
可选地,在方式一中,该第一RI指示的秩不大于该第二RI能够指示的最大秩。
方式二、该RI信息包括一个RI,该RI用于指示一个或者两个秩。
可选地,在方式二中,在该测量假设为该CSI测量基于单个CMR的情况下,该RI用于指示一个秩,该秩基于该单个CMR测量得到,该单个CMR通过该CSI上报中的CRI信息指示。
可选地,在方式二中,在该测量假设为该CSI测量基于两个CMR的情况下,该RI用于指示两个秩的组合,该两个秩分别基于该两个CMR测量得到,该两个CMR通过该CSI上报中的CRI信息指示。
可选地,在方式二中,该CSI上报中的CRI信息的比特数为log 2(max(K,N))或者log 2(K+N),其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
方式三、该RI信息包括一个RI,该RI用于指示第一秩和第二秩的组合。
可选地,在方式三中,该RI的取值范围包括:
该RI的第一取值范围指示的第一秩大于0,第二秩等于0;
该RI的第二取值范围指示的第一秩等于0,第二秩大于0;
该RI的第三取值范围指示的第一秩和第二秩都大于0。
可选地,在方式三中,在该第一秩大于0,该第二秩等于0的情况下,该CSI基于第一CMR测量得到,该第一CMR为该两个CMR组中的第一CMR组中CRI信息所对应的CMR。
可选地,在方式三中,在该第一秩和该第二秩都大于0的情况下,该第一秩和该第二秩分别基于第一CMR和第二CMR测量得到,该第一CMR和第二CMR分别为该两个CMR组中CRI信息所对应的CMR。
可选地,在方式三中,该CRI信息的比特数为log 2(K/2)或者log 2(max(K/2,N)),其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
方式四、该RI信息包括一个RI,该RI用于指示一个或者两个秩。
可选地,在方式四中,该RI的第一取值范围指示一个秩,该RI的第二取值范围指示两个秩。
可选地,在方式四中,在该RI指示一个秩的情况下,该秩基于第三CMR测量得到,该第三CMR为该两个CMR组的K个CMR中CRI信息所对应的CMR。
可选地,在方式四中,在该RI指示两个秩的情况下,该两个秩分别基于第三CMR和第四CMR测量得到,该第三CMR和第四CMR为该两个CMR组中用于NC-JT测量的N个CMR组合中CRI信息所对应的一个CMR组合。
可选地,在方式四中,该CRI信息的比特数为log 2(K)、log 2(K/2)或者log 2(max(K,N)),其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR 组合的数量。
本申请实施例的终端设备400能够实现前述的方法实施例中的终端设备的对应功能。该终端设备400中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的终端设备400中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图8是根据本申请实施例的通信设备600示意性结构图。该通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以使通信设备600实现本申请实施例中的方法。
可选地,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以使通信设备600实现本申请实施例中的方法。其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图9是根据本申请实施例的芯片700的示意性结构图。该芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中由终端设备或者网络设备执行的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应用于网络设备和终端设备的芯片可以是相同的芯片或不同的芯片。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图10是根据本申请实施例的通信系统800的示意性框图。该通信系统800包括终端设备810和网络设备820。终端设备810,用于通过CSI上报中的第一信息指示CSI的测量假设;通过该CSI上报中的RI信息指示该测量假设下的秩。可选地,网络设备820,用于配置用于信道测量的非零功率CSI-RS资源。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (63)

  1. 一种信息处理方法,包括:
    终端设备通过信道状态信息CSI上报中的第一信息指示CSI的测量假设;
    所述终端设备通过所述CSI上报中的秩指示RI信息指示所述测量假设下的秩。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端设备根据网络设备配置的两个信道测量资源CMR组进行CSI测量。
  3. 根据权利要求2所述的方法,其中,用于信道测量的非零功率信道状态信息参考信号CSI-RS资源集合中包括所述两个CMR组。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述测量假设为所述CSI测量所基于的CMR或者CMR的数量。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述第一信息为所述CSI上报中的信道状态信息参考信号资源指示CRI信息、RI信息或者测量假设信息。
  6. 根据权利要求1至5中任一项所述的方法,其中,终端设备通过CSI上报中的第一信息指示CSI的测量假设,包括:在所述第一信息为CRI信息的情况下,所述CRI信息指示用于CSI测量的两个CMR组中的一个或者两个CMR作为所述CSI的测量假设。
  7. 根据权利要求6所述的方法,其中,所述CRI信息的比特数为log 2(K+N),其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
  8. 根据权利要求1至5中任一项所述的方法,其中,终端设备通过CSI上报中的第一信息指示CSI的测量假设,包括:在所述第一信息为RI信息的情况下,所述RI信息指示的不同秩的取值或者指示的秩的数量对应不同的测量假设。
  9. 根据权利要求8所述的方法,其中,所述RI信息指示一个或两个秩;
    在所述RI信息指示一个秩的情况下,所述CSI基于单个CMR的测量假设;和/或
    在所述RI信息指示两个秩的情况下,所述CSI基于两个CMR的测量假设。
  10. 根据权利要求8所述的方法,其中,所述RI信息指示两个秩;
    在所述RI信息指示的两个秩中其中一个秩取值为零的情况下,所述CSI基于单个CMR的测量假设;和/或
    在所述RI信息指示的两个秩均大于零的情况下,所述CSI基于两个CMR的测量假设。
  11. 根据权利要求8至10中任一项所述的方法,其中,所述CSI上报中包括的CRI信息的比特数为以下至少之一:
    log 2(K);
    log 2(max(K,N));
    log 2(K/2);
    log 2(max(K/2,N));
    其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
  12. 根据权利要求1至5中任一项所述的方法,其中,终端设备通过CSI上报中的第一信息指示CSI的测量假设,包括:在所述第一信息为测量假设信息的情况下,所述测量假设信息的不同取值分别对应基于单个CMR的测量假设和基于两个CMR的测量假设,或者,所述测量假设信息的不同取值分别对应基于单个TRP的测量假设和基于NC-JT的测量假设。
  13. 根据权利要求12所述的方法,其中,所述CSI上报中包括的CRI信息的比特数为log 2(max(K,N)),其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
  14. 根据权利要求1至13中任一项所述的方法,其中,所述RI信息包括两个RI,且所述两个RI中的第一RI的比特数大于第二RI的比特数。
  15. 根据权利要求14所述的方法,其中,
    在所述测量假设为所述CSI测量基于单个CMR的情况下,所述第一RI基于所述单个CMR测量得到,所述第二RI不指示秩的取值;和/或
    在所述测量假设为所述CSI测量基于两个CMR的情况下,所述第一RI和第二RI分别基于所述两个CMR测量得到。
  16. 根据权利要求14或15所述的方法,其中,所述第一RI指示的秩不大于所述第二RI能够指示的最大秩。
  17. 根据权利要求1至13中任一项所述的方法,其中,所述RI信息包括一个RI,所述RI用于指示一个或者两个秩。
  18. 根据权利要求17所述的方法,其中,在所述测量假设为所述CSI测量基于单个CMR的情况下,所述RI用于指示一个秩,所述秩基于所述单个CMR测量得到,所述单个CMR通过所述CSI上报中的CRI信息指示。
  19. 根据权利要求17所述的方法,其中,在所述测量假设为所述CSI测量基于两个CMR的情况下,所述RI用于指示两个秩的组合,所述两个秩分别基于所述两个CMR测量得到,所述两个CMR通过所述CSI上报中的CRI信息指示。
  20. 根据权利要求17至19中任一项所述的方法,其中,所述CSI上报中的CRI信息的比特数为log 2(max(K,N))或者log 2(K+N),其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
  21. 根据权利要求1至13中任一项所述的方法,其中,所述RI信息包括一个RI,所述RI用于指示第一秩和第二秩的组合。
  22. 根据权利要求21所述的方法,其中,所述RI的取值范围包括:
    所述RI的第一取值范围指示的第一秩大于0,第二秩等于0;
    所述RI的第二取值范围指示的第一秩等于0,第二秩大于0;
    所述RI的第三取值范围指示的第一秩和第二秩都大于0。
  23. 根据权利要求22所述的方法,其中,在所述第一秩大于0,所述第二秩等于0的情况下,所述CSI基于第一CMR测量得到,所述第一CMR为所述两个CMR组中的第一CMR组中CRI信息所对应的CMR。
  24. 根据权利要求22所述的方法,其中,在所述第一秩和所述第二秩都大于0的情况下,所述第一秩和所述第二秩分别基于第一CMR和第二CMR测量得到,所述第一CMR和第二CMR分别为所述两个CMR组 中CRI信息所对应的CMR。
  25. 根据权利要求21至24中任一项所述的方法,其中,所述CRI信息的比特数为log 2(K/2)或者log 2(max(K/2,N)),其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
  26. 根据权利要求17所述的方法,其中,所述RI的第一取值范围指示一个秩,所述RI的第二取值范围指示两个秩。
  27. 根据权利要求26所述的方法,其中,在所述RI指示一个秩的情况下,所述秩基于第三CMR测量得到,所述第三CMR为所述两个CMR组的K个CMR中CRI信息所对应的CMR。
  28. 根据权利要求26所述的方法,其中,在所述RI指示两个秩的情况下,所述两个秩分别基于第三CMR和第四CMR测量得到,所述第三CMR和第四CMR为所述两个CMR组中用于NC-JT测量的N个CMR组合中CRI信息所对应的一个CMR组合。
  29. 根据权利要求26至28中任一项所述的方法,其中,所述CRI信息的比特数为log 2(K)、log 2(K/2)或者log 2(max(K,N)),其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
  30. 一种终端设备,包括:处理单元,用于通过信道状态信息CSI上报中的第一信息指示CSI的测量假设;通过所述CSI上报中的秩指示RI信息指示所述测量假设下的秩。
  31. 根据权利要求30所述的终端设备,其中,所述终端设备还包括:测量单元,用于根据网络设备配置的两个信道测量资源CMR组进行CSI测量。
  32. 根据权利要求31所述的终端设备,其中,用于信道测量的非零功率信道状态信息参考信号CSI-RS资源集合中包括所述两个CMR组。
  33. 根据权利要求30至32中任一项所述的终端设备,其中,所述测量假设为所述CSI测量所基于的CMR或者CMR的数量。
  34. 根据权利要求30至33中任一项所述的终端设备,其中,所述第一信息为所述CSI上报中的信道状态信息参考信号资源指示CRI信息、RI信息或者测量假设信息。
  35. 根据权利要求30至34中任一项所述的终端设备,其中,所述处理单元用于通过CSI上报中的第一信息指示CSI的测量假设,包括:在所述第一信息为CRI信息的情况下,所述CRI信息指示用于CSI测量的两个CMR组中的一个或者两个CMR作为所述CSI的测量假设。
  36. 根据权利要求35所述的终端设备,其中,所述CRI信息的比特数为log 2(K+N),其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
  37. 根据权利要求30至34中任一项所述的终端设备,其中,所述处理单元用于终端设备通过CSI上报中的第一信息指示CSI的测量假设,包括:在所述第一信息为RI信息的情况下,所述RI信息指示的不同秩的取值或者指示的秩的数量对应不同的测量假设。
  38. 根据权利要求37所述的终端设备,其中,所述RI信息指示一个或两个秩;
    在所述RI信息指示一个秩的情况下,所述CSI基于单个CMR的测量假设;和/或
    在所述RI信息指示两个秩的情况下,所述CSI基于两个CMR的测量假设。
  39. 根据权利要求37所述的终端设备,其中,所述RI信息指示两个秩;
    在所述RI信息指示的两个秩中其中一个秩取值为零的情况下,所述CSI基于单个CMR的测量假设;和/或
    在所述RI信息指示的两个秩均大于零的情况下,所述CSI基于两个CMR的测量假设。
  40. 根据权利要求37至39中任一项所述的终端设备,其中,所述CSI上报中包括的CRI信息的比特数为以下至少之一:
    log 2(K);
    log 2(max(K,N));
    log 2(K/2);
    log 2(max(K/2,N));
    其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
  41. 根据权利要求30至34中任一项所述的终端设备,其中,所述处理单元用于通过CSI上报中的第一信息指示CSI的测量假设,包括:在所述第一信息为测量假设信息的情况下,所述测量假设信息的不同取值分别对应基于单个CMR的测量假设和基于两个CMR的测量假设,或者,所述测量假设信息的不同取值分别对应基于单个TRP的测量假设和基于NC-JT的测量假设。
  42. 根据权利要求41所述的终端设备,其中,所述CSI上报中包括的CRI信息的比特数为log 2(max(K,N)),其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
  43. 根据权利要求30至42中任一项所述的终端设备,其中,所述RI信息包括两个RI,且所述两个RI中的第一RI的比特数大于第二RI的比特数。
  44. 根据权利要求43所述的终端设备,其中,
    在所述测量假设为所述CSI测量基于单个CMR的情况下,所述第一RI基于所述单个CMR测量得到,所述第二RI不指示秩的取值;和/或
    在所述测量假设为所述CSI测量基于两个CMR的情况下,所述第一RI和第二RI分别基于所述两个CMR测量得到。
  45. 根据权利要求43或44所述的终端设备,其中,所述第一RI指示的秩不大于所述第二RI能够指示的最大秩。
  46. 根据权利要求30至42中任一项所述的终端设备,其中,所述RI信息包括一个RI,所述RI用于指示一个或者两个秩。
  47. 根据权利要求46所述的终端设备,其中,在所述测量假设为所述CSI测量基于单个CMR的情况下,所述RI用于指示一个秩,所述秩基于所述单个CMR测量得到,所述单个CMR通过所述CSI上报中的CRI信息指示。
  48. 根据权利要求46所述的终端设备,其中,在所述测量假设为所述CSI测量基于两个CMR的情况下,所述RI用于指示两个秩的组合,所述两个秩分别基于所述两个CMR测量得到,所述两个CMR通过所述CSI上报中的CRI信息指示。
  49. 根据权利要求46至48中任一项所述的终端设备,其中,所述CSI上报中的CRI信息的比特数为log 2(max(K,N))或者log 2(K+N),其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于 CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
  50. 根据权利要求30至42中任一项所述的终端设备,其中,所述RI信息包括一个RI,所述RI用于指示第一秩和第二秩的组合。
  51. 根据权利要求50所述的终端设备,其中,所述RI的取值范围包括:
    所述RI的第一取值范围指示的第一秩大于0,第二秩等于0;
    所述RI的第二取值范围指示的第一秩等于0,第二秩大于0;
    所述RI的第三取值范围指示的第一秩和第二秩都大于0。
  52. 根据权利要求51所述的终端设备,其中,在所述第一秩大于0,所述第二秩等于0的情况下,所述CSI基于第一CMR测量得到,所述第一CMR为所述两个CMR组中的第一CMR组中CRI信息所对应的CMR。
  53. 根据权利要求51所述的终端设备,其中,在所述第一秩和所述第二秩都大于0的情况下,所述第一秩和所述第二秩分别基于第一CMR和第二CMR测量得到,所述第一CMR和第二CMR分别为所述两个CMR组中CRI信息所对应的CMR。
  54. 根据权利要求50至53中任一项所述的终端设备,其中,所述CRI信息的比特数为log 2(K/2)或者log 2(max(K/2,N)),其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
  55. 根据权利要求54所述的终端设备,其中,所述RI的第一取值范围指示一个秩,所述RI的第二取值范围指示两个秩。
  56. 根据权利要求55所述的终端设备,其中,在所述RI指示一个秩的情况下,所述秩基于第三CMR测量得到,所述第三CMR为所述两个CMR组的K个CMR中CRI信息所对应的CMR。
  57. 根据权利要求55所述的终端设备,其中,在所述RI指示两个秩的情况下,所述两个秩分别基于第三CMR和第四CMR测量得到,所述第三CMR和第四CMR为所述两个CMR组中用于NC-JT测量的N个CMR组合中CRI信息所对应的一个CMR组合。
  58. 根据权利要求55至57中任一项所述的终端设备,其中,所述CRI信息的比特数为log 2(K)、log 2(K/2)或者log 2(max(K,N)),其中,K为用于CSI测量的两个CMR组中包括的CMR的总数,N为用于CSI测量的两个CMR组中用于NC-JT测量的CMR组合的数量。
  59. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述终端设备执行如权利要求1至29中任一项所述的方法。
  60. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至29中任一项所述的方法。
  61. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至29中任一项所述的方法。
  62. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至29中任一项所述的方法。
  63. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至29中任一项所述的方法。
PCT/CN2021/085141 2021-04-01 2021-04-01 信息处理方法和终端设备 WO2022205390A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/085141 WO2022205390A1 (zh) 2021-04-01 2021-04-01 信息处理方法和终端设备
EP21934047.8A EP4271026A4 (en) 2021-04-01 2021-04-01 INFORMATION PROCESSING METHOD AND TERMINAL DEVICE
CN202180078556.0A CN116671154A (zh) 2021-04-01 2021-04-01 信息处理方法和终端设备
US18/227,878 US20230379027A1 (en) 2021-04-01 2023-07-28 Information processing method and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/085141 WO2022205390A1 (zh) 2021-04-01 2021-04-01 信息处理方法和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/227,878 Continuation US20230379027A1 (en) 2021-04-01 2023-07-28 Information processing method and terminal device

Publications (1)

Publication Number Publication Date
WO2022205390A1 true WO2022205390A1 (zh) 2022-10-06

Family

ID=83457605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085141 WO2022205390A1 (zh) 2021-04-01 2021-04-01 信息处理方法和终端设备

Country Status (4)

Country Link
US (1) US20230379027A1 (zh)
EP (1) EP4271026A4 (zh)
CN (1) CN116671154A (zh)
WO (1) WO2022205390A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391404A (zh) * 2017-08-10 2019-02-26 电信科学技术研究院有限公司 一种csi的反馈及其控制方法、装置
US20200373985A1 (en) * 2019-05-24 2020-11-26 Mediatek Inc. Csi reporting for multiple transmission points

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391404A (zh) * 2017-08-10 2019-02-26 电信科学技术研究院有限公司 一种csi的反馈及其控制方法、装置
US20200373985A1 (en) * 2019-05-24 2020-11-26 Mediatek Inc. Csi reporting for multiple transmission points

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "CSI enhancement for NCJT and FR1 FDD reciprocity", 3GPP DRAFT; R1-2100583, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), XP051971054 *
NEC: "Discussion on CSI enhancement for multi-TRP transmission", 3GPP DRAFT; R1-2100954, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), XP051971293 *
OPPO: "CSI enhancements: MTRP and FR1 FDD reciprocity", 3GPP DRAFT; R1-2100124, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 18 January 2021 (2021-01-18), XP051970244 *
See also references of EP4271026A4 *

Also Published As

Publication number Publication date
EP4271026A4 (en) 2024-02-28
CN116671154A (zh) 2023-08-29
US20230379027A1 (en) 2023-11-23
EP4271026A1 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
US20230063901A1 (en) Sidelink feedback method and terminal device
TW202013921A (zh) 發送上行信號的方法和設備
CN113490278B (zh) 下行信号传输的方法和设备
WO2020248101A1 (zh) 上报csi的方法和终端设备
WO2020167215A1 (en) Network node, ue and methods performed therein for handling communication
WO2021217378A1 (zh) 无线通信方法、终端设备和网络设备
WO2023273869A1 (zh) 信道状态信息报告的优先级确定方法与装置、相关设备
US20220173847A1 (en) Downlink transmission method and terminal device
WO2022205390A1 (zh) 信息处理方法和终端设备
WO2022233010A1 (zh) 确定信道状态信息的方法、终端设备和网络设备
WO2023201594A1 (zh) 一种指示方法、终端设备和网络设备
WO2022188081A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023123399A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023141824A1 (zh) 无线通信的方法和终端设备
WO2023115583A1 (zh) 通信方法、终端设备和网络设备
WO2023123409A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024011553A9 (zh) 无线通信的方法、终端设备和网络设备
WO2023070375A1 (zh) 资源指示的方法、终端设备和网络设备
WO2023279399A1 (zh) 侧行传输资源的确定方法、发送方法、装置、设备及介质
WO2024022525A1 (zh) 信道状态信息报告传输方法与装置、终端设备和网络设备
WO2022205459A1 (zh) 无线通信方法、终端设备和网络设备
WO2022021032A1 (zh) 信息处理方法、终端设备和网络设备
WO2022056870A1 (zh) 无线通信方法、终端设备和网络设备
WO2024017233A1 (zh) 通信方法与装置、终端设备、网络设备和芯片
WO2024011579A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934047

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180078556.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021934047

Country of ref document: EP

Effective date: 20230727

NENP Non-entry into the national phase

Ref country code: DE