WO2023103409A1 - 太阳能电池及其制备方法 - Google Patents

太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2023103409A1
WO2023103409A1 PCT/CN2022/108594 CN2022108594W WO2023103409A1 WO 2023103409 A1 WO2023103409 A1 WO 2023103409A1 CN 2022108594 W CN2022108594 W CN 2022108594W WO 2023103409 A1 WO2023103409 A1 WO 2023103409A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
oxide
doped
conductive
Prior art date
Application number
PCT/CN2022/108594
Other languages
English (en)
French (fr)
Inventor
张海川
石建华
蒙春才
袁强
付昊鑫
杜俊霖
孟凡英
刘正新
Original Assignee
中威新能源(成都)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中威新能源(成都)有限公司 filed Critical 中威新能源(成都)有限公司
Priority to AU2022328406A priority Critical patent/AU2022328406A1/en
Priority to EP22847108.2A priority patent/EP4216283A4/en
Priority to US18/043,284 priority patent/US20240204118A1/en
Publication of WO2023103409A1 publication Critical patent/WO2023103409A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/206Particular processes or apparatus for continuous treatment of the devices, e.g. roll-to roll processes, multi-chamber deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of semiconductor devices, in particular to a solar cell and a preparation method thereof.
  • amorphous silicon thin-film solar cells have emerged, and their cost can be greatly reduced compared with crystalline silicon cells.
  • amorphous silicon thin-film solar cells can be prepared by low-temperature process, the preparation process is simple, the cost is low, and they are suitable for large-scale production, but the serious Staebler-Wronski effect affects the stability of cell performance, and the conversion efficiency of cells is low, which limits its development.
  • heterojunction solar cells utilizing amorphous silicon thin film/single crystal silicon substrate heterojunction structures have attracted great interest, which combines single crystal silicon and amorphous silicon
  • the advantages of solar cells such as good stability, high conversion efficiency, low cost and low temperature process.
  • the stability includes light stability and temperature stability: good light stability specifically means that the Staebler-Wronski effect of the heterojunction solar cell is weak or even non-existent; good temperature stability means that the heterojunction solar cell has a temperature coefficient, etc. It is even better than crystalline silicon cells, so that heterojunction solar cells still have good output even under the condition of heating up by light.
  • the heterojunction solar cells are thinned, but the loss of the solar spectrum through the cells increases, resulting in a sharp drop in the short-circuit current.
  • the thickness of the silicon wafer is 150 ⁇ m, the transmission loss of the heterojunction solar cell begins to exist in the 950nm band. If the thickness of the silicon wafer continues to decrease, the wavelength band of the solar spectrum transmission loss will start from a shorter wavelength band (800nm or 700nm), and the loss of sunlight will continue to increase, which will further reduce the efficiency of the heterojunction solar cell.
  • a solar cell including: a substrate, a first passivation layer, an emission layer, a first conductive layer, a second passivation layer, a back field layer, and a second conductive layer;
  • the first passivation layer, the emission layer and the first conductive layer are sequentially stacked on one side surface of the substrate, the second passivation layer, the back field layer and the first Two conductive layers are sequentially stacked on the other side surface of the substrate;
  • the first conductive layer includes a first transparent conductive oxide layer, a first conductive metal layer and a second transparent conductive oxide layer stacked in sequence.
  • the material of the first transparent conductive oxide layer is selected from aluminum-doped zinc oxide, gallium-doped aluminum zinc oxide, fluorine-doped tin oxide, tin-doped indium oxide, and titanium-doped indium oxide. at least one.
  • the material of the second transparent conductive oxide layer is selected from aluminum-doped zinc oxide, gallium-doped aluminum zinc oxide, fluorine-doped tin oxide, tin-doped indium oxide, and titanium-doped indium oxide. at least one.
  • the material of the second conductive layer is selected from at least one of aluminum-doped zinc oxide, gallium-doped aluminum zinc oxide, fluorine-doped tin oxide, tin-doped indium oxide, and titanium-doped indium oxide. A sort of.
  • the material of the first conductive metal layer is selected from at least one of copper, silver, magnesium and aluminum.
  • the conductivity type of the back field layer is N type or P type
  • the conductivity type of the substrate is the same as that of the back field layer
  • the emission layer and the back field layer The conductivity type is opposite.
  • the material of the first passivation layer is selected from at least one of intrinsic amorphous silicon and intrinsic microcrystalline silicon.
  • the material of the second passivation layer is selected from at least one of intrinsic amorphous silicon and intrinsic microcrystalline silicon.
  • the solar cell further includes a first electrode and a second electrode, the first electrode is disposed on the first conductive layer, and the second electrode is disposed on the second on the conductive layer.
  • a method for preparing a solar cell comprising the following steps:
  • the material of the first transparent conductive oxide layer is selected from aluminum-doped zinc oxide, gallium-doped aluminum zinc oxide, fluorine-doped tin oxide, tin-doped indium oxide, and titanium-doped indium oxide. at least one.
  • the material of the second transparent conductive oxide layer is selected from aluminum-doped zinc oxide, gallium-doped aluminum zinc oxide, fluorine-doped tin oxide, tin-doped indium oxide, and titanium-doped indium oxide. at least one.
  • the material of the second conductive layer is selected from at least one of aluminum-doped zinc oxide, gallium-doped aluminum zinc oxide, fluorine-doped tin oxide, tin-doped indium oxide, and titanium-doped indium oxide. A sort of.
  • the material of the first conductive metal layer is selected from at least one of copper, silver, magnesium and aluminum.
  • the conductivity type of the back field layer is N type or P type
  • the conductivity type of the substrate is the same as that of the back field layer
  • the emission layer and the back field layer The conductivity type is opposite.
  • the material of the first passivation layer is selected from at least one of intrinsic amorphous silicon and intrinsic microcrystalline silicon.
  • the material of the second passivation layer is selected from at least one of intrinsic amorphous silicon and intrinsic microcrystalline silicon.
  • preparing the first passivation layer, the emission layer, the first transparent conductive oxide layer, the first conductive metal layer, and the second transparent conductive oxide layer, the second passivation layer, the back field layer and the second conductive layer are each independently selected from chemical vapor deposition or physical vapor deposition.
  • the temperature is 130°C-250°C, and the pressure is 0.1Pa-100Pa.
  • a step of texturizing the substrate is also included.
  • step b further comprising the step of preparing the first electrode on the second transparent oxidized conductive oxide layer.
  • the method for preparing the first electrode is selected from screen printing, evaporation, magnetron sputtering or inkjet printing.
  • step b the step of preparing the second electrode on the second conductive layer is further included.
  • the method for preparing the second electrode is selected from screen printing, evaporation, magnetron sputtering or inkjet printing.
  • FIG. 1 is a schematic diagram of a solar cell structure according to some embodiments.
  • 10 solar cell; 100: substrate; 201: first passivation layer; 202: emission layer; 203: first conductive layer; 2031: first transparent conductive oxide layer; 2032: first conductive metal layer; 2033: The second transparent conductive oxide layer; 204: the first electrode; 301: the second passivation layer; 302: the back field layer; 303: the second conductive layer; 304: the second electrode.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity or order of the indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • an embodiment of the present disclosure provides a solar cell, including: a substrate 100 , a first passivation layer 201 , an emission layer 202 and a second a conductive layer 203, and a second passivation layer 301, a back field layer 302 and a second conductive layer 303 which are sequentially stacked on the other side surface of the substrate 100,
  • the first conductive layer 203 includes a first transparent conductive oxide layer 2031 , a first conductive metal layer 2032 and a second transparent conductive oxide layer 2033 stacked in sequence.
  • the conductivity of the first conductive layer is 500S/cm ⁇ 10000S/cm.
  • the substrate 100 includes two sides, wherein one side of the second passivation layer 301, the back field layer 302, the second conductive layer 303 and the second electrode 304 refers to the side receiving solar energy, and the other side refers to the side receiving solar energy. The opposite side of one side.
  • the thickness of the first transparent conductive oxide layer 2031 is 20nm-50nm
  • the thickness of the first conductive metal layer 2032 is 5nm-15nm
  • the thickness of the second transparent conductive oxide layer 2033 is 20nm-40nm.
  • the material of the substrate 100 may be, but not limited to, at least one of single crystal silicon and polycrystalline silicon, preferably single crystal silicon.
  • the thickness of the substrate 100 is 70 ⁇ m ⁇ 180 ⁇ m.
  • the material of the second conductive layer 303, the material of the first transparent conductive oxide layer 2031 and the material of the second transparent conductive oxide layer 2033 are each independently selected from aluminum-doped zinc oxide (AZO), gallium-doped At least one of aluminum zinc oxide (GAZO), fluorine-doped tin oxide (FTO), tin-doped indium oxide (ITO) and titanium-doped indium oxide (ITIO).
  • AZO aluminum-doped zinc oxide
  • GAZO gallium-doped At least one of aluminum zinc oxide (GAZO), fluorine-doped tin oxide (FTO), tin-doped indium oxide (ITO) and titanium-doped indium oxide (ITIO).
  • the thickness of the second conductive layer is 65nm ⁇ 100nm.
  • the material of the first conductive metal layer 2032 is selected from at least one of copper, silver, magnesium and aluminum.
  • the back field layer 302 has a first conductivity type
  • the substrate 100 has a first conductivity type
  • the emission layer 202 has a second conductivity type, wherein the first conductivity type is opposite to the second conductivity type.
  • the back field layer 302 is N-type, and the emission layer 202 is P-type; if the substrate 100 is P-type, the back field layer 302 is P-type, and the emission layer 202 is N-type.
  • the thickness of the emission layer is 8nm-20nm, and the thickness of the back field layer is 5nm-15nm.
  • the emission layer material and the back field layer material can be doped with at least one of intrinsic amorphous silicon and microcrystalline silicon as the base material, and the doping material can be but not limited to B2H 6 and pH 3 . It can be understood that the doping concentration of the doping material in the base material is 1%-3%.
  • the material of the first passivation layer 201 and the material of the second passivation layer 301 are each independently selected from at least one of intrinsic amorphous silicon and microcrystalline silicon.
  • the thickness of the first passivation layer is 5nm-20nm
  • the thickness of the second passivation layer is 5nm-20nm
  • the solar cell further includes a first electrode 204 disposed on the first conductive layer 203 , and a second electrode 304 disposed on the second conductive layer 303 .
  • the material of the first electrode 204 and the material of the second electrode 304 are each independently selected from at least one of gold and silver, and further, the number and position of the first electrode 204 and the second electrode 304 are not Subject to the restrictions shown in Figure 1, it can be designed according to actual needs.
  • the thickness of the first electrode 204 is 2 ⁇ m ⁇ 50 ⁇ m
  • the thickness of the second electrode 304 is 2 ⁇ m ⁇ 50 ⁇ m.
  • the first conductive layer in the above solar cell adopts the structure of the first transparent conductive oxide layer, the first conductive metal layer and the second transparent conductive oxide layer stacked in sequence.
  • the sandwich structure can effectively reflect through the substrate to reach the transparent electrode on the back.
  • the sunlight increases the secondary use of light by the heterojunction solar cell, thereby increasing the short-circuit current of the heterojunction cell; at the same time, the conductivity of the metal layer is better than that of the traditional transparent conductive oxide due to the addition of the metal layer to the sandwich structure.
  • Thin films can effectively increase the fill factor of heterojunction solar cells, thereby improving the photoelectric conversion efficiency of heterojunction solar cells.
  • the sandwich structure can reduce the total thickness of the transparent conductive oxide film, reduce the consumption of transparent conductive oxide target materials, and achieve the purpose of reducing costs.
  • the present invention also provides a method for preparing a solar cell as described above, comprising the following steps:
  • Step S10 on one side surface of the substrate 100, the first passivation layer 201, the emission layer 202, the first transparent conductive oxide layer 2031, the first conductive metal layer 2032 and the second transparent conductive oxide layer are sequentially stacked and prepared Layer 2033.
  • Step S20 the second passivation layer 301 , the back field layer 302 and the second conductive layer 303 are sequentially stacked on the other surface of the substrate 100 .
  • step S10 and step S20 are in no particular order, and the other side of the substrate 100 cannot be deposited until one side of the substrate 100 is completed. Specifically, alternate deposition may be performed on the substrate 100 .
  • the methods of the back field layer 302 and the second conductive layer 303 are each independently selected from at least one of chemical vapor deposition or physical vapor deposition.
  • the preparation method of the first passivation layer 201 , the second passivation layer 301 , the emission layer 202 and the back field layer 302 is preferably chemical vapor deposition.
  • the chemical vapor deposition method may be, but not limited to, at least one of plasma enhanced chemical vapor deposition, high density plasma chemical vapor deposition and catalytic chemical vapor deposition.
  • the method of preparing the first transparent conductive oxide layer 2031 , the first conductive metal layer 2032 , the second transparent conductive oxide layer 2033 and the second conductive layer 303 is preferably physical vapor deposition.
  • the method of physical vapor deposition may be but not limited to at least one of radio frequency sputtering, direct current sputtering and pulse sputtering.
  • the first conductive metal layer 2032 can be, but not limited to, a metal film or a metal grid line.
  • the temperature is 130° C. to 250° C.
  • the air pressure is 0.1 Pa to 100 Pa.
  • step S10 a step of texturizing the substrate 100 is also included.
  • the above-mentioned texturing treatment of the substrate 100 can reduce the reflection of the battery surface, so that more photons can be absorbed by the crystalline silicon wafer 110 : at the same time, it can also remove the surface damage of the crystalline silicon.
  • a pyramid-shaped light-trapping structure is formed, which is more conducive to the oblique incidence of light into the interior of the substrate 100, reducing the reflectivity of light on the surface of the battery, making the optical path longer and the number of photons absorbed increasing.
  • step S20 the step of preparing the first electrode 204 on the second transparent oxidized conductive oxide layer and the second electrode 304 on the second conductive layer 303 is also included, wherein, preparing the first electrode 204 and preparing The method of the second electrode 304 is independently selected from at least one of screen printing, vapor deposition, magnetron sputtering and inkjet printing.
  • the preferred preparation method of the first passivation layer 201 , the emission layer 202 , the second passivation layer 301 and the back field layer 302 is plasma enhanced chemical vapor deposition (PECVD).
  • PECVD plasma enhanced chemical vapor deposition
  • the temperature is 200°C-250°C
  • the air pressure is 50Pa-90Pa.
  • the temperature is 170° C. to 240° C.
  • the air pressure is 50 Pa to 90 Pa.
  • the preferred preparation method of the first transparent conductive oxide layer 2031, the first conductive metal layer 2032, the second transparent conductive oxide layer 2033 and the second conductive layer 203 in the first conductive layer 203 is the magnetron sputtering method .
  • the temperature is 130° C. ⁇ 170° C.
  • the air pressure is 0.1 Pa ⁇ 10 Pa.
  • the first conductive layer in the above solar cell adopts the structure of the first transparent conductive oxide layer, the first conductive metal layer and the second transparent conductive oxide layer stacked in sequence.
  • the sandwich structure can effectively reflect through the substrate to reach the transparent electrode on the back.
  • the sunlight increases the secondary use of light by the heterojunction solar cell, thereby increasing the short-circuit current of the heterojunction cell; at the same time, the conductivity of the metal layer is better than that of the traditional transparent conductive oxide due to the addition of the metal layer to the sandwich structure.
  • Thin films can effectively increase the fill factor of heterojunction solar cells, thereby improving the photoelectric conversion efficiency of heterojunction solar cells.
  • the sandwich structure can reduce the total thickness of the transparent conductive oxide film, reduce the consumption of transparent conductive oxide target materials, and achieve the purpose of reducing costs.
  • This embodiment provides a solar cell, the structure of which includes sequentially stacked 20nm silver grid wires as the first electrode, 30nm tin-doped indium oxide (10wt.% tin doping mass percentage) as the second transparent conductive oxide layer, 9nm copper film as the first conductive metal layer, 30nm tin-doped indium oxide (10wt.% tin doping mass percentage) as the first transparent conductive oxide layer, 12nm B 2 H 6 amorphous silicon with a doping concentration of 1.5% as the emission layer, 8nm intrinsic amorphous silicon as the first passivation layer, 150 ⁇ m N-type single crystal silicon as the substrate, 8nm intrinsic amorphous silicon as the second passivation layer, and 10nm amorphous silicon with PH 3 doping concentration of 2% as the back field layer, 80nm tin-doped indium oxide (3 wt.% tin-doped mass percentage) as the second conductive layer, and 20nm silver grid wire as
  • the preparation method of above-mentioned solar cell is specifically as follows:
  • the second passivation layer is to prepare the emission layer on the first passivation layer at 180°C with a pressure of 65Pa by PECVD method; to prepare the first emission layer on the emission layer at 150°C with a pressure of 0.4Pa by magnetron sputtering Transparent conductive oxide layer, prepare the first conductive metal layer on the first transparent conductive oxide layer at 150°C, the pressure is 0.4Pa and prepare the second transparent conductive metal layer on the first conductive metal layer at 150°C, the pressure is 0.4Pa Oxide layer; use PECVD method to prepare a back field layer on the second passivation layer at 220°C with a pressure of 85Pa, and then prepare a second passivation layer at 150°C with a pressure of 0.35Pa on the back field layer by magnetron sputtering The second conductive layer, and finally the first electrode and the second electrode are respectively prepared on the second transparent conductive oxide layer and the second conductive layer by screen printing.
  • This embodiment provides a solar cell, the structure of which includes sequentially stacked 20nm silver grid wires as the first electrode, 30nm tin-doped indium oxide (tin-doped mass percentage 10wt.%) as the second transparent conductive oxide layer, 12nm copper film as the first conductive metal layer, 40nm tin-doped indium oxide (10wt.% tin-doped mass percentage) as the first transparent conductive oxide layer, 12nm B 2 H 6 amorphous silicon with a doping concentration of 1.5% as the emission layer, 8nm intrinsic amorphous silicon as the first passivation layer, 130 ⁇ m N-type single crystal silicon as the substrate, 8nm intrinsic amorphous silicon as the second passivation layer, and 10nm amorphous silicon with a PH 3 doping concentration of 1.8% as the back field layer, 80nm tin-doped indium oxide (3 wt.% tin-doped mass percentage) as the second conductive layer, and 20n
  • the preparation method of above-mentioned solar cell is specifically as follows:
  • Conductive oxide layer prepare the first conductive metal layer on the first transparent conductive oxide layer at 150°C, the pressure is 0.4Pa and prepare the second transparent conductive oxide layer on the first conductive metal layer at 150°C, the pressure is 0.4Pa material layer; the back field layer was prepared on the second passivation layer at 220°C with a pressure of 85Pa by PECVD method, and then the second passivation layer was prepared on the back field layer at 150°C with a pressure of 0.45Pa by magnetron sputtering The conductive layer is finally screen printed on the second transparent conductive oxide layer and the second conductive layer to prepare the first electrode and the second electrode respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本公开涉及一种太阳能电池,包括:衬底、第一钝化层、发射层、第一导电层、第二钝化层、背场层和第二导电层;第一钝化层、发射层和第一导电层依次层叠设置在衬底的一侧表面上,第二钝化层、背场层和第二导电层依次层叠设置在衬底另一侧表面上;第一导电层包括依次层叠的第一透明导电氧化物层、第一导电金属层以及第二透明导电氧化物层。

Description

太阳能电池及其制备方法
本申请要求于2021年12月11日提交中国专利局、申请号为2021115128830、发明名称为“太阳能电池及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体器件技术领域,特别是涉及一种太阳能电池及其制备方法。
背景技术
能源是人类社会发展的基础,而随着科技的发展,全球对能源的需求激增,使得传统能源的有限性及其对环境的危害逐渐突显出来。为了解决发展过程中产生的环境污染与能源危机等问题,新能源便随之进入人们的研究领域,特别是太阳能,由于其取之不尽用之不竭的特点,以及对环境无污染的优点,备受人们关注。目前,晶体硅电池仍占据太阳能电池的主要市场。由于晶体硅电池在制备过程中需要许多复杂的工艺,来获取高转换效率,成本难以继续下降。
因此,人们一直寻求低成本的太阳能电池。为了满足人们对低成本光伏电池的需要,非晶硅薄膜太阳能电池应运而生,其成本相比于晶硅电池得以大幅度降低。非晶硅薄膜太阳能电池虽然可以使用低温工艺制备且制备工艺简单,成本较低,适合大面积生产,但是严重的Staebler-Wronski效应影响了电池性能的稳定性,而且电池的转换效率偏低,限制了其发展。为了保持高的转换效率同时实现降低成本,利用非晶硅薄膜/单晶硅衬底异质结结构的异质结太阳能电池引起了人们极大的兴趣,其结合了单晶硅和非晶硅太阳能电池的优点,如稳定性好、转换效率高、 成本低廉以及低温工艺等。其中的稳定性包括光照稳定性和温度稳定性:光照稳定性好具体指异质结太阳能电池的Staebler-Wronski效应很弱甚至不存在;温度稳定性好意味着异质结太阳能电池在温度系数等方面甚至好于晶硅电池,使得异质结太阳能电池即使在光照升温的情况下仍然具有很好的输出。
进一步地,为了降低成本对异质结太阳电池薄片化,但是太阳光谱透过电池的损失增加,导致其短路电流急剧下降。当硅片厚度为150μm时,异质结太阳电池在950nm波段开始存在透过损失。若硅片厚度继续减薄,太阳光谱透过损失的波段将会从更短波段(800nm或700nm)开始,太阳光损失将会继续增大,会进一步降低异质结太阳能电池效率。
发明内容
根据本公开的一些实施例,提供了一种太阳能电池,包括:衬底、第一钝化层、发射层、第一导电层、第二钝化层、背场层和第二导电层;
所述第一钝化层、所述发射层和所述第一导电层依次层叠设置在所述衬底的一侧表面上,所述第二钝化层、所述背场层和所述第二导电层依次层叠设置在所述衬底另一侧表面上;
所述第一导电层包括依次层叠的第一透明导电氧化物层、第一导电金属层以及第二透明导电氧化物层。
在本公开的其中一些实施例中,所述第一透明导电氧化物层的材料选自掺铝氧化锌、掺镓铝氧化锌、掺氟氧化锡、掺锡氧化铟以及掺钛氧化铟中的至少一种。
在本公开的其中一些实施例中,所述第二透明导电氧化物层的材料选自掺铝氧化锌、掺镓铝氧化锌、掺氟氧化锡、掺锡氧化铟以及掺钛氧化铟中的至少一种。
在本公开的其中一些实施例中,所述第二导电层的材料选自选自掺铝氧化锌、掺镓铝氧化锌、掺氟氧化锡、掺锡氧化铟以及掺钛氧化铟中的至少一种。
在本公开的其中一些实施例中,所述第一导电金属层的材料选自铜、银、镁以及铝中的至少一种。
在本公开的其中一些实施例中,所述背场层的导电类型为N型或P型,所述衬底与所述背场层的导电类型相同,所述发射层与所述背场层的导电类型相反。
在本公开的其中一些实施例中,所述第一钝化层的材料选自本征非晶硅和本征微晶硅中的至少一种。
在本公开的其中一些实施例中,所述第二钝化层的材料选自本征非晶硅和本征微晶硅中的至少一种。
在本公开的其中一些实施例中,所述太阳能电池还包括第一电极和第二电极,所述第一电极设置于所述第一导电层上,所述第二电极设置于所述第二导电层上。
根据本公开的又一些实施例,提供了一种太阳能电池的制备方法,包括以下步骤:
a.在衬底上的一侧表面上依次制备第一钝化层、发射层、第一透明导电氧化物层、第一导电金属层以及第二透明导电氧化物层;
b.在衬底上的另一侧表面上依次制备第二钝化层、背场层以及第二导电层。
在本公开的其中一些实施例中,所述第一透明导电氧化物层的材料选自掺铝氧化锌、掺镓铝氧化锌、掺氟氧化锡、掺锡氧化铟以及掺钛氧化铟中的至少一种。
在本公开的其中一些实施例中,所述第二透明导电氧化物层的材料选 自掺铝氧化锌、掺镓铝氧化锌、掺氟氧化锡、掺锡氧化铟以及掺钛氧化铟中的至少一种。
在本公开的其中一些实施例中,所述第二导电层的材料选自选自掺铝氧化锌、掺镓铝氧化锌、掺氟氧化锡、掺锡氧化铟以及掺钛氧化铟中的至少一种。
在本公开的其中一些实施例中,所述第一导电金属层的材料选自铜、银、镁以及铝中的至少一种。
在本公开的其中一些实施例中,所述背场层的导电类型为N型或P型,所述衬底与所述背场层的导电类型相同,所述发射层与所述背场层的导电类型相反。
在本公开的其中一些实施例中,所述第一钝化层的材料选自本征非晶硅和本征微晶硅中的至少一种。
在本公开的其中一些实施例中,所述第二钝化层的材料选自本征非晶硅和本征微晶硅中的至少一种。
在本公开的其中一些实施例中,制备所述第一钝化层、所述发射层、所述第一透明导电氧化物层、所述第一导电金属层、所述第二透明导电氧化物层、所述第二钝化层、所述背场层和所述第二导电层的方法各自独立地选自化学气相沉积或物理气相沉积。
在本公开的其中一些实施例中,制备所述第一钝化层、所述发射层、所述第一透明导电氧化物层、所述第一导电金属层、所述第二透明导电氧化物层、所述第二钝化层、所述背场层和所述第二导电层过程中,温度为130℃~250℃,气压为0.1Pa~100Pa。
在本公开的其中一些实施例中,在步骤a之前,还包括对所述衬底进行制绒处理的步骤。
在本公开的其中一些实施例中,在步骤b之后,还包括在所述第二透 明氧化导电氧化物层上制备所述第一电极的步骤。
在本公开的其中一些实施例中,制备所述第一电极的方法选自丝网印刷、蒸镀、磁控溅射或喷墨打印。
在本公开的其中一些实施例中,在步骤b之后,还包括在所述第二导电层上制备所述第二电极的步骤。
在本公开的其中一些实施例中,制备所述第二电极的方法选自丝网印刷、蒸镀、磁控溅射或喷墨打印。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明本申请的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为根据一些实施例的太阳能电池结构示意图;
其中,附图标记说明如下:
10:太阳能电池;100:衬底;201:第一钝化层;202:发射层;203:第一导电层;2031:第一透明导电氧化物层;2032:第一导电金属层;2033:第二透明导电氧化物层;204:第一电极;301:第二钝化层;302:背场层;303:第二导电层;304:第二电极。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是,本申请可以以许多不同的形 式来实现,并不限于本文所描述的实施例。应该理解,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或顺序。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在描述位置关系时,除非另有规定,否则当一元件例如层、膜或基板被指为在另一膜层“上”时,其能直接在其他膜层上或亦可存在中间膜层。进一步说,当层被指为在另一层“下”时,其可直接在下方,亦可存在一或多个中间层。亦可以理解的是,当层被指为在两层“之间”时,其可为两层之间的唯一层,或亦可存在一或多个中间层。
除非相反地提及,否则单数形式的术语可以包括复数形式,并不能理解为其数量为一个。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
如图1所示,本公开的一实施方式提供了一种太阳能电池,包括:衬底100、位于衬底100一侧表面之上依次层叠设置的第一钝化层201、发射层202和第一导电层203,以及位于衬底100另一侧表面之上依次层叠设置的第二钝化层301、背场层302和第二导电层303,
其中,第一导电层203包括依次层叠的第一透明导电氧化物层2031、第一导电金属层2032以及第二透明导电氧化物层2033。
可以理解地,第一导电层的电导率为500S/cm~10000S/cm。
衬底100包括两侧,其中第二钝化层301、背场层302和第二导电层 303以及第二电极304的一侧指的是接收太阳能的一面,另一侧指的是接收太阳能的一面的相对面。
进一步地,第一透明导电氧化物层2031的厚度为20nm~50nm,第一导电金属层2032的厚度为5nm~15nm,第二透明导电氧化物层2033的厚度为20nm~40nm。
可以理解地,衬底100的材料可以但不限于是单晶硅和多晶硅中的至少一种,优选为单晶硅。
进一步地,衬底100的厚度为70μm~180μm。
在一个具体示例中,第二导电层303的材料、第一透明导电氧化物层2031的材料与第二透明导电氧化物层2033的材料各自独立地选自掺铝氧化锌(AZO)、掺镓铝氧化锌(GAZO)、掺氟氧化锡(FTO)、掺锡氧化铟(ITO)以及掺钛氧化铟(ITIO)中的至少一种。
进一步地,第二导电层的厚度为65nm~100nm。
在一个具体示例中,第一导电金属层2032的材料选自铜、银、镁以及铝中的至少一种。
在一个具体示例中,背场层302具有第一导电类型,衬底100具有第一导电类型,发射层202具有第二导电类型,其中第一导电类型与第二导电类型相反。
可以理解地,衬底100为N型则背场层302为N型,发射层202为P型;衬底100为P型则背场层302为P型,发射层202为N型。
进一步地,发射层的厚度为8nm~20nm,背场层的厚度为5nm~15nm。
可以理解地,发射层材料与背场层材料可以但不限于本征非晶硅和微晶硅中的至少一种为基础材料向其中进行掺杂,掺杂材料可以但不限于是B 2H 6和PH 3。可以理解地,掺杂材料在基础材料中的掺杂浓度为1%~3%。
在一个具体示例中,第一钝化层201的材料和第二钝化层301的材料 各自独立地选自本征非晶硅和微晶硅中的至少一种。
进一步地,第一钝化层的厚度为5nm~20nm,第二钝化层的厚度为5nm~20nm。
在一个具体示例中,太阳能电池还包括置于第一导电层203上的第一电极204,以及置于第二导电层303上的第二电极304。
可以理解地,上述第一电极204的材料与第二电极304的材料各自独立地选自金和银中的至少一种,进一步地,第一电极204与第二电极304的数量以及位置并不受图1所示的限制,可根据实际需要进行设计。
进一步地,第一电极204的厚度为2μm~50μm,第二电极304的厚度为2μm~50μm。
上述太阳能电池中第一导电层采用依次层叠的第一透明导电氧化物层、第一导电金属层以及第二透明导电氧化物层结构,该三明治结构能够有效的反射透过衬底达到背面透明电极的太阳光,增加了异质结太阳能电池对光的二次利用,进而提升异质结电池的短路电流;同时由于金属层的加入该三明治结构中使其电导率优于传统的透明导电氧化物薄膜,可有效提升异质结太阳能电池的填充因子,进而提升异质结太阳电池的光电转换效率。此外,三明治结构可减少透明导电氧化物膜的总厚度,降低透明导电氧化物靶材消耗,达到降低成本的目的。
进一步地,本发明还提供一种如上述的太阳能电池的制备方法,包括以下步骤:
步骤S10:在衬底100上的一侧表面之上依次层叠制备第一钝化层201、发射层202、第一透明导电氧化物层2031、第一导电金属层2032以及第二透明导电氧化物层2033。
步骤S20:在衬底100上的另一侧表面之上依次层叠制备第二钝化层301、背场层302以及第二导电层303。
可以理解地,上述步骤S10与步骤S20不分先后顺序,也并非衬底100一侧完成后才能进行另一侧的沉积。具体地,可以在衬底100上进行交替沉积。
在一个具体示例中,制备第一钝化层201、发射层202、第一透明导电氧化物层2031、第一导电金属层2032、第二透明导电氧化物层2033、第二钝化层301、背场层302和第二导电层303的方法各自独立地选自化学气相沉积或物理气相沉积中的至少一种。
可以理解地,第一钝化层201、第二钝化层301、发射层202和背场层302的制备方法优选为化学气相沉积。化学气相沉积方法可以但不限于是等离子体增强化学气相沉积法、高密度等离子体化学气相沉积法以及催化化学气相沉积中的至少一种。
进一步地,制备第一透明导电氧化物层2031、第一导电金属层2032、第二透明导电氧化物层2033和第二导电层303的方法优选为物理气相沉积。物理气相沉积的方法可以但不限于是射频溅射、直流溅射以及脉冲溅射中的至少一种。
需要说明的是第一导电金属层2032可以但不限是金属膜或是金属栅线。
在一个具体示例中,制备过程中,温度为130℃~250℃,气压为0.1Pa~100Pa。
可以理解地,上述气压指的是工艺腔压力。
在一个具体示例中,在步骤S10之前,还包括对衬底100进行制绒处理的步骤。
可以理解地,上述对衬底100制绒处理可以减小电池表面的反射,使得更多的光子能够被晶体硅片110吸收:同时还具有能够去除晶体硅表面损伤的作用。形成金字塔形陷光结构,这样更有利于光线斜射到衬底100的内部,降低电池表面的光的反射率,使得光程变大,吸收的光子数量变多。
进一步地,在步骤S20之后,还包括在第二透明氧化导电氧化物层上制备第一电极204以及在第二导电层303上制备第二电极304的步骤,其中,制备第一电极204以及制备第二电极304的方法各自独立地选自丝网印刷、蒸镀、磁控溅射以及喷墨打印中的至少一种。
具体地,上述第一钝化层201、发射层202、第二钝化层301与背场层302优选的制备方法为等离子体增强化学的气相沉积法(PECVD)。
可以理解地,上述第一钝化层201和第二钝化层制备过程中,温度为200℃~250℃,气压为50Pa~90Pa。
上述背场层302以及发射层202制备过程中,温度为170℃~240℃,气压为50Pa~90Pa。
进一步地,第一导电层203中的第一透明导电氧化物层2031、第一导电金属层2032、第二透明导电氧化物层2033以及第二导电层203优选的制备方法为磁控溅射法。
上述第一导电层203以及第二导电层203制备过程中,温度为130℃~170℃,气压为0.1Pa~10Pa。
上述太阳能电池中第一导电层采用依次层叠的第一透明导电氧化物层、第一导电金属层以及第二透明导电氧化物层结构,该三明治结构能够有效的反射透过衬底达到背面透明电极的太阳光,增加了异质结太阳能电池对光的二次利用,进而提升异质结电池的短路电流;同时由于金属层的加入该三明治结构中使其电导率优于传统的透明导电氧化物薄膜,可有效提升异质结太阳能电池的填充因子,进而提升异质结太阳电池的光电转换效率。此外,三明治结构可减少透明导电氧化物膜的总厚度,降低透明导电氧化物靶材消耗,达到降低成本的目的。
以下提供具体的实施例对本发明的太阳能电池作进一步详细地说明。
实施例1
本实施例提供一种太阳能电池,其结构包括依次层叠的20nm银栅线作为第一电极、30nm掺锡氧化铟(锡掺杂质量百分数10wt.%)作为第二透明导电氧化物层、9nm铜膜作为第一导电金属层、30nm掺锡氧化铟(锡掺杂质量百分数10wt.%)作为第一透明导电氧化物层、12nmB 2H 6掺杂浓度为1.5%的非晶硅作为发射层、8nm本征非晶硅作为第一钝化层、150μmN型单晶硅作为衬底、8nm本征非晶硅作为第二钝化层、10nmPH 3掺杂浓度为2%的非晶硅作为背场层、80nm掺锡氧化铟(锡掺杂质量百分数3wt.%)作为第二导电层以及20nm银栅线作为第二电极。
上述太阳能电池的制备方法具体如下:
清洗N型单晶硅衬底表面的机械损伤层,形成洁净的金字塔陷光结构,利用PECVD,在230℃,气压为70Pa分别在单晶硅衬底两侧分别制备第一钝化层和第二钝化层,利用PECVD法,在180℃,气压为65Pa下在第一钝化层上制备发射层;利用磁控溅射法,在150℃,气压为0.4Pa在发射层上制备第一透明导电氧化物层,在150℃,气压为0.4Pa在第一透明导电氧化物层上制备第一导电金属层以及在150℃,气压为0.4Pa在第一导电金属层上制备第二透明导电氧化物层;利用PECVD法,在220℃,气压为85Pa在第二钝化层上制备背场层,随后在背场层上利用磁控溅射法,在150℃,气压为0.35Pa制备第二导电层,最后再利用丝网印刷在第二透明导电氧化物层以及第二导电层上分别制备第一电极和第二电极。
实施例2
本实施例提供一种太阳能电池,其结构包括依次层叠的20nm银栅线作为第一电极、30nm掺锡氧化铟(锡掺杂质量百分数10wt.%)作为第二透明导电氧化物层、12nm铜膜作为第一导电金属层、40nm掺锡氧化铟(锡掺杂质量百分数10wt.%)作为第一透明导电氧化物层、12nmB 2H 6掺杂浓度为1.5%的非晶硅作为发射层、8nm本征非晶硅作为第一钝化层、130μmN型单 晶硅作为衬底、8nm本征非晶硅作为第二钝化层、10nmPH 3掺杂浓度为1.8%的非晶硅作为背场层、80nm掺锡氧化铟(锡掺杂质量百分数3wt.%)作为第二导电层以及20nm银栅线作为第二电极。
上述太阳能电池的制备方法具体如下:
清洗N型单晶硅衬底表面的机械损伤层,形成洁净的金字塔陷光结构,利用PECVD,在230℃,气压为80Pa分别在单晶硅衬底两侧分别制备第一钝化层和第二钝化层,利用PECVD法,在180℃,气压为65Pa下在第一钝化层制备发射层;利用磁控溅射法,在150℃,气压为0.4Pa在发射层上制备第一透明导电氧化物层,在150℃,气压为0.4Pa在第一透明导电氧化物层上制备第一导电金属层以及在150℃,气压为0.4Pa在第一导电金属层上制备第二透明导电氧化物层;利用PECVD法,在220℃,气压为85Pa在第二钝化层上制备背场层,随后在背场层上利用磁控溅射法,在150℃,气压为0.45Pa制备第二导电层,最后再利用丝网印刷在第二透明导电氧化物层以及第二导电层上分别制备第一电极和第二电极。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准,说明书及附图可以用于解释权利要求的内容。

Claims (24)

  1. 一种太阳能电池,包括:衬底、第一钝化层、发射层、第一导电层、第二钝化层、背场层和第二导电层;
    所述第一钝化层、所述发射层和所述第一导电层依次层叠设置在所述衬底的一侧表面上,所述第二钝化层、所述背场层和所述第二导电层依次层叠设置在所述衬底另一侧表面上;
    所述第一导电层包括依次层叠的第一透明导电氧化物层、第一导电金属层以及第二透明导电氧化物层。
  2. 根据权利要求1所述的太阳能电池,所述第一透明导电氧化物层的材料选自掺铝氧化锌、掺镓铝氧化锌、掺氟氧化锡、掺锡氧化铟以及掺钛氧化铟中的至少一种。
  3. 根据权利要求1所述的太阳能电池,所述第二透明导电氧化物层的材料选自掺铝氧化锌、掺镓铝氧化锌、掺氟氧化锡、掺锡氧化铟以及掺钛氧化铟中的至少一种。
  4. 根据权利要求1所述的太阳能电池,所述第二导电层的材料选自选自掺铝氧化锌、掺镓铝氧化锌、掺氟氧化锡、掺锡氧化铟以及掺钛氧化铟中的至少一种。
  5. 根据权利要求1所述的太阳能电池,所述第一导电金属层的材料选自铜、银、镁以及铝中的至少一种。
  6. 根据权利要求1所述的太阳能电池,所述背场层的导电类型为N型或P型,所述衬底与所述背场层的导电类型相同,所述发射层与所述背场层的导电类型相反。
  7. 根据权利要求1所述的太阳能电池,所述第一钝化层的材料选自本征非晶硅和本征微晶硅中的至少一种。
  8. 根据权利要求1所述的太阳能电池,所述第二钝化层的材料选自本征非晶硅和本征微晶硅中的至少一种。
  9. 根据权利要求1~8任一项所述的太阳能电池,所述太阳能电池还包括第一电极和第二电极,所述第一电极设置于所述第一导电层上,所述第二电极设置于所述第二导电层上。
  10. 一种太阳能电池的制备方法,包括以下步骤:
    a.在衬底上的一侧表面上依次制备第一钝化层、发射层、第一透明导电氧化物层、第一导电金属层以及第二透明导电氧化物层;
    b.在衬底上的另一侧表面上依次制备第二钝化层、背场层以及第二导电层。
  11. 根据权利要求10所述的太阳能电池的制备方法,所述第一透明导电氧化物层的材料选自掺铝氧化锌、掺镓铝氧化锌、掺氟氧化锡、掺锡氧化铟以及掺钛氧化铟中的至少一种。
  12. 根据权利要求10所述的太阳能电池的制备方法,所述第二透明导电氧化物层的材料选自掺铝氧化锌、掺镓铝氧化锌、掺氟氧化锡、掺锡氧化铟以及掺钛氧化铟中的至少一种。
  13. 根据权利要求10所述的太阳能电池的制备方法,所述第二导电层的材料选自选自掺铝氧化锌、掺镓铝氧化锌、掺氟氧化锡、掺锡氧化铟以及掺钛氧化铟中的至少一种。
  14. 根据权利要求10所述的太阳能电池的制备方法,所述第一导电金属层的材料选自铜、银、镁以及铝中的至少一种。
  15. 根据权利要求10所述的太阳能电池的制备方法,所述背场层的导电类型为N型或P型,所述衬底与所述背场层的导电类型相同,所述发射层与所述背场层的导电类型相反。
  16. 根据权利要求10所述的太阳能电池的制备方法,所述第一钝化层的材料选自本征非晶硅和本征微晶硅中的至少一种。
  17. 根据权利要求10所述的太阳能电池的制备方法,所述第二钝化层的材料选自本征非晶硅和本征微晶硅中的至少一种。
  18. 根据权利要求10所述的太阳能电池的制备方法,制备所述第一钝化层、所述发射层、所述第一透明导电氧化物层、所述第一导电金属层、所述第 二透明导电氧化物层、所述第二钝化层、所述背场层和所述第二导电层的方法各自独立地选自化学气相沉积或物理气相沉积。
  19. 根据权利要求18所述的太阳能电池的制备方法,制备所述第一钝化层、所述发射层、所述第一透明导电氧化物层、所述第一导电金属层、所述第二透明导电氧化物层、所述第二钝化层、所述背场层和所述第二导电层过程中,温度为130℃~250℃,气压为0.1Pa~100Pa。
  20. 根据权利要求10~19任一项所述的太阳能电池的制备方法,在步骤a之前,还包括对所述衬底进行制绒处理的步骤。
  21. 根据权利要求10~19任一项所述的太阳能电池的制备方法,在步骤b之后,还包括在所述第二透明氧化导电氧化物层上制备所述第一电极的步骤。
  22. 根据权利要求21所述的太阳能电池的制备方法,制备所述第一电极的方法选自丝网印刷、蒸镀、磁控溅射或喷墨打印。
  23. 根据权利要求10~19任一项所述的太阳能电池的制备方法,在步骤b之后,还包括在所述第二导电层上制备所述第二电极的步骤。
  24. 根据权利要求23所述的太阳能电池的制备方法,制备所述第二电极的方法选自丝网印刷、蒸镀、磁控溅射或喷墨打印。
PCT/CN2022/108594 2021-12-11 2022-07-28 太阳能电池及其制备方法 WO2023103409A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2022328406A AU2022328406A1 (en) 2021-12-11 2022-07-28 Solar cell and manufacturing method thereof
EP22847108.2A EP4216283A4 (en) 2021-12-11 2022-07-28 SOLAR CELL AND MANUFACTURING METHODS THEREFOR
US18/043,284 US20240204118A1 (en) 2021-12-11 2022-07-28 Solar cell and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111512883.0 2021-12-11
CN202111512883.0A CN114220876A (zh) 2021-12-11 2021-12-11 太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2023103409A1 true WO2023103409A1 (zh) 2023-06-15

Family

ID=80701109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108594 WO2023103409A1 (zh) 2021-12-11 2022-07-28 太阳能电池及其制备方法

Country Status (5)

Country Link
US (1) US20240204118A1 (zh)
EP (1) EP4216283A4 (zh)
CN (1) CN114220876A (zh)
AU (1) AU2022328406A1 (zh)
WO (1) WO2023103409A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114220876A (zh) * 2021-12-11 2022-03-22 中威新能源(成都)有限公司 太阳能电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205960004U (zh) * 2016-07-26 2017-02-15 福建金石能源有限公司 一种高效异质结太阳能电池
CN110970523A (zh) * 2018-09-28 2020-04-07 君泰创新(北京)科技有限公司 一种硅基异质结太阳能电池及制造方法
CN111916523A (zh) * 2019-05-07 2020-11-10 君泰创新(北京)科技有限公司 异质结太阳能电池及其组件、制备方法
CN113555453A (zh) * 2021-01-05 2021-10-26 宣城睿晖宣晟企业管理中心合伙企业(有限合伙) 一种异质结太阳能电池及制备方法
CN114220876A (zh) * 2021-12-11 2022-03-22 中威新能源(成都)有限公司 太阳能电池及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207409506U (zh) * 2017-07-07 2018-05-25 君泰创新(北京)科技有限公司 一种双面发电的带本征薄层异质结电池
CN113782645B (zh) * 2021-09-14 2024-05-17 浙江爱旭太阳能科技有限公司 异质结电池的制作方法、异质结电池以及太阳能电池组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205960004U (zh) * 2016-07-26 2017-02-15 福建金石能源有限公司 一种高效异质结太阳能电池
CN110970523A (zh) * 2018-09-28 2020-04-07 君泰创新(北京)科技有限公司 一种硅基异质结太阳能电池及制造方法
CN111916523A (zh) * 2019-05-07 2020-11-10 君泰创新(北京)科技有限公司 异质结太阳能电池及其组件、制备方法
CN113555453A (zh) * 2021-01-05 2021-10-26 宣城睿晖宣晟企业管理中心合伙企业(有限合伙) 一种异质结太阳能电池及制备方法
CN114220876A (zh) * 2021-12-11 2022-03-22 中威新能源(成都)有限公司 太阳能电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4216283A4 *

Also Published As

Publication number Publication date
EP4216283A1 (en) 2023-07-26
EP4216283A4 (en) 2024-05-29
AU2022328406A1 (en) 2023-06-29
US20240204118A1 (en) 2024-06-20
CN114220876A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
US9023681B2 (en) Method of fabricating heterojunction battery
EP2095429B1 (en) Solar cell and method for manufacturing the same
US12009446B2 (en) Solar cell, method for producing same and solar cell module
CN101976710A (zh) 基于氢化微晶硅薄膜的晶体硅异质结太阳电池的制备方法
CN103000741A (zh) 一种黑色异质结晶硅电池及其制造方法
CN111554763A (zh) 一种高开压高效钙钛矿/晶硅叠层电池
CN110993718A (zh) 一种高转化效率的异质结电池及其制备方法
CN113782566A (zh) 一种基于背接触的叠层电池及其制备方法
WO2023103409A1 (zh) 太阳能电池及其制备方法
CN107342331B (zh) 一种t型顶电极背反射薄膜太阳电池的生产工艺
WO2019233223A1 (zh) 一种半叠层柔性硅基薄膜太阳能电池及其制备方法
CN201323204Y (zh) 一种背点接触异质结太阳能电池
CN101393942B (zh) 多晶硅-碳化硅叠层薄膜太阳能电池
CN113224182A (zh) 一种异质结太阳电池及其制备方法
CN211238272U (zh) 一种晶硅/非晶硅异质结电池
CN102201480A (zh) 基于n型硅片的碲化镉半导体薄膜异质结太阳电池
KR101411996B1 (ko) 고효율 태양전지
CN115172602B (zh) 一种掺杂金属氧化物复合层结构
CN115799375A (zh) 无ito电极的钙钛矿/硅异质结两端串联太阳能电池及其制备方法
CN102938430B (zh) 包含中间层的柔性衬底硅基多结叠层太阳电池及其制造方法
CN211238271U (zh) 一种高转化效率的异质结电池
CN212874518U (zh) 太阳能电池
CN108538937B (zh) 一种太阳电池及其制备方法
CN102290450A (zh) 一种n型晶体硅太阳能电池
CN114171632A (zh) 异质结太阳能电池及光伏组件

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022847108

Country of ref document: EP

Effective date: 20230131

WWE Wipo information: entry into national phase

Ref document number: 18043284

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022328406

Country of ref document: AU

Date of ref document: 20220728

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE