WO2023103193A1 - 一种基于现场实时反馈的岸基智能系泊系统及方法 - Google Patents
一种基于现场实时反馈的岸基智能系泊系统及方法 Download PDFInfo
- Publication number
- WO2023103193A1 WO2023103193A1 PCT/CN2022/080049 CN2022080049W WO2023103193A1 WO 2023103193 A1 WO2023103193 A1 WO 2023103193A1 CN 2022080049 W CN2022080049 W CN 2022080049W WO 2023103193 A1 WO2023103193 A1 WO 2023103193A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ship
- mooring
- telescopic arm
- wave
- cable
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000013461 design Methods 0.000 claims abstract description 26
- 239000011159 matrix material Substances 0.000 claims description 18
- 238000013178 mathematical model Methods 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 5
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 3
- 230000002706 hydrostatic effect Effects 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 4
- 239000003643 water by type Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B21/00—Tying-up; Shifting, towing, or pushing equipment; Anchoring
- B63B21/50—Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B21/00—Tying-up; Shifting, towing, or pushing equipment; Anchoring
- B63B21/20—Adaptations of chains, ropes, hawsers, or the like, or of parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B21/00—Tying-up; Shifting, towing, or pushing equipment; Anchoring
- B63B21/20—Adaptations of chains, ropes, hawsers, or the like, or of parts thereof
- B63B2021/203—Mooring cables or ropes, hawsers, or the like; Adaptations thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/30—Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways
Definitions
- the invention relates to the technical field of ship berthing, in particular to a shore-based intelligent mooring system and method based on on-site real-time feedback.
- the influencing factors of mooring safety are very complex, not only affected by natural conditions such as wind, waves, currents and other external natural conditions, but also affected by their own parameters such as ships, wharves and mooring forms.
- the mooring lines and external environmental conditions play a decisive role in the mooring safety.
- the range of movement of some degrees of freedom of the ship will be very large, so that the cables will alternate between relaxation and tension repeatedly, the cable force between the cables is very uneven, and it is easy to generate a large impact tension, causing cable fatigue and thus risking cable breakage.
- the constant tension mooring system can not only reduce the shaking of the hull, make the ship more stable during operation, and improve the operating efficiency, but also improve the degree of shaking of the hull and improve Operating conditions, increasing the allowable operating days under the current standard.
- the constant tension mooring system can be used to improve the existing wharf. The investment in the transformation is relatively small, and it has the characteristics of saving and environmental protection. It will have broad prospects in terminal operations in long-period wave waters.
- the purpose of the present invention is to provide a shore-based intelligent mooring system and method based on on-site real-time feedback, so as to solve the problems raised in the above-mentioned background technology.
- a shore-based intelligent mooring system based on real-time on-site feedback, including a hydraulic control system, a tension sensor, a telescopic arm threshold design module, a high-strength cable selection module, and a tension threshold design module
- the hydraulic control system is signal-connected to the external main controller
- the output end of the tension sensor is connected to the input end signal of the hydraulic control system
- the telescopic boom threshold design module is connected to the external main controller signal
- the cable selection module is signal-connected with the external main controller
- the output end of the pulling force threshold design module is signal-connected with the external main controller.
- the hydraulic control system includes a hydraulic telescopic rod, a quick release buckle and a high-strength cable, the hydraulic telescopic rod is installed on the ground of the port, and the quick release buckle is installed on the output end of the telescopic arm One end of the cable is connected to a quick release buckle.
- the hydraulic telescopic rod is signal-connected to the threshold value design module of the telescopic arm, and a tension sensor is installed at the output end of the telescopic arm, and the tension sensor is connected to the signal of the quick disengagement buckle.
- the tension sensor When the tension reaches a certain level, the tension sensor The quick release buckle will be activated, and the end of the high-strength cable away from the quick release buckle is connected to the ship.
- a shore-based intelligent mooring method based on on-site real-time feedback comprising the following steps:
- M is the mass of the ship in the air; , m is the additional mass in water; K s is the still water stiffness; K m is the total stiffness provided by the mooring system.
- a ij is the inertial mass matrix of the ship
- m ij (t) is the additional mass matrix of the ship
- K ij (t) is the delay function matrix
- C ij is the hydrostatic restoring force matrix
- F i (t) is the external excitation force
- X j (t) is the ship displacement matrix.
- the delay function matrix K ij (t) is:
- F Wave is the wave force on the ship
- F C is the current force on the ship
- F Wind is the wind load on the ship
- F Fender is the impact force on the ship
- F Mooring is the mooring force.
- the wind, wave and current conditions in the port and the mooring layout design the wind, wave, current load and the pulling force provided by the mooring system can be obtained, and the equation (2) can be solved to obtain the ship's sway motion amplitude A1 and surge motion Amplitude A2.
- the travel threshold of the telescopic arm is 2A1 ⁇ L ⁇ 2.5A1; when the device is used at a berth with large surge motion, the travel threshold of the telescopic arm is 2A2 ⁇ L ⁇ 2.5A2;
- the pulling force of the cable should not be greater than 45% of the minimum breaking force T.
- an alarm prompt will be issued to prepare for quick untwisting operation.
- the establishment of the wave mathematical model in the S1 needs to be based on the relevant information of the port where the ship is calling, and the wave height and wave frequency characteristics at the berth must be analyzed. Integral natural period with mooring system composition.
- the cable selection in S2 needs to test the wave height and wave frequency characteristics at the berth and the overall natural period of the ship and the mooring system. If the period of the two is close, it is easy to produce a large low-frequency movement, and the amplitude of the movement is analyzed.
- the value A provides a reference for the design of the stroke threshold L of the telescopic arm.
- the stretching and retracting of the telescopic arm in S3 is performed by a hydraulic telescopic rod, the tension in S3 is detected by a tension sensor, and the cable release in S3 is performed by a guide pulley.
- the cable is connected with the quick release buckle in the S3, and the quick release buckle is connected with the tension sensor in the S3.
- the shore-based intelligent mooring system and method based on on-site real-time feedback can clearly understand the tension on the cable by setting the tension sensor, so the cable can be controlled by the hydraulic control system to perform line release or take-up operations, so that The cable is always within the set safe tension range, which not only avoids the occurrence of cable slack, but also avoids the occurrence of excessive cable tension, ensuring the safe use of the cable.
- the shore-based intelligent mooring system and method based on on-site real-time feedback, through the setting of the telescopic arm, the stress caused by the ship's displacement caused by the elongation and deformation of the cable is transferred to the movement of the telescopic arm, and the high-strength cable strengthens the ship.
- the overall constraint stiffness of the mooring system effectively constrains the amplitude of the ship's motion.
- the shore-based intelligent mooring system and method based on on-site real-time feedback, by installing a quick release buckle in the hydraulic control system, can untie the cable in time when the line operation cannot be performed, thereby avoiding the problem of cable breakage .
- Fig. 1 is a flow chart of the technical route of the present invention
- Fig. 2 is the schematic diagram of traditional mooring cable arrangement of wharf mooring ship of the present invention
- Fig. 3 is a dock installation schematic diagram of the present invention.
- Fig. 4 is a three-dimensional schematic diagram of the telescopic structure of the present invention.
- Fig. 5 is a comparison diagram of the surge time history under the traditional mooring cable of the mooring ship of the present invention and the surge motion time history after applying the present invention;
- Fig. 6 is the comparison diagram of the time course of cable tension under the traditional mooring cable of the mooring ship of the present invention and the time course of cable tension after applying the present invention.
- hydraulic telescopic rod 1 telescopic arm 2
- quick release buckle 3 high-strength cable 4
- column 5 guide wheel 6.
- a shore-based intelligent mooring system based on on-site real-time feedback, including a hydraulic control system, a tension sensor, a telescopic arm threshold design module, a high-strength cable selection module and tension Threshold value design module
- the hydraulic control system is connected with the external main controller signal
- the output end of the tension sensor is connected with the input end signal of the hydraulic control system
- the telescopic arm threshold value design module is connected with the external main controller signal
- the high-strength cable selection module is connected with the external
- the main controller signal is connected
- the output terminal of the tension threshold design module is connected with the external main controller signal.
- the hydraulic control system includes a hydraulic telescopic rod 1, a telescopic arm 2, a quick release buckle 3, a high-strength cable 4, a column 5 and a guide wheel 6.
- the hydraulic telescopic rod 1 is installed on the ground of the port, and the telescopic boom 2 is installed on the At the output end, the quick release buckle 3 is installed on the output end of the telescopic arm 2, one end of the high-strength cable 4 is connected with the quick release buckle 3, the column 5 is installed on the ground of the port, and the guide pulley 6 is installed on the outer wall of the column 5, hydraulic telescopic
- the rod 1 is signal-connected to the threshold design module of the telescopic arm, and the output end of the telescopic arm 2 is equipped with a tension sensor, which is connected to the quick release buckle 3 for signal.
- a shore-based intelligent mooring method based on on-site real-time feedback comprising the following steps:
- the mathematical model of the ship, fender and mooring system is established to obtain the additional mass m of the ship, the still water stiffness K s and the total stiffness K m of the mooring system.
- M is the mass of the ship in the air; , m is the additional mass in water; K s is the still water stiffness; K m is the total stiffness provided by the mooring system.
- a ij is the inertial mass matrix of the ship
- m ij (t) is the additional mass matrix of the ship
- K ij (t) is the delay function matrix
- C ij is the hydrostatic restoring force matrix
- F i (t) is the external excitation force
- X j (t) is the ship displacement matrix.
- the delay function matrix K ij (t) is:
- F Wave is the wave force on the ship
- F C is the current force on the ship
- F Wind is the wind load on the ship
- F Fender is the impact force on the ship
- F Mooring is the mooring force.
- the wind, wave and current conditions in the port and the mooring layout design the wind, wave, current load and the pulling force provided by the mooring system can be obtained, and the equation (2) can be solved to obtain the ship's sway motion amplitude A1 and surge motion Amplitude A2.
- the travel threshold of the telescopic arm is 2A1 ⁇ L ⁇ 2.5A1; when the device is used at a berth with large surge motion, the travel threshold of the telescopic arm is 2A2 ⁇ L ⁇ 2.5A2.
- the pulling force of the cable should not be greater than 45% of the minimum breaking force T.
- an alarm prompt will be issued to prepare for quick untwisting operation.
- the cable can be subjected to a constant safe pulling force range F, and the breaking force of the cable is T0.
- the maximum pulling force of the cable should not be greater than 50% of the minimum breaking force, so for the sake of safety, here we set F ⁇ 0.40 *T0; where the stroke of the telescopic arm needs to be greater than the maximum amplitude of the ship's movement, the device senses the tension on the cable to change within a certain range through the sensor, and when it is greater than F, the control system issues a command to shrink the telescopic arm or release the telescopic arm, until the tension returns to the specified range.
- the ship When in use, the ship will shake and move under the traction of sea wind and waves. At this time, when the ship moves, it will generate traction on the high-strength cables, and the high-strength cables will be taut. When the high-strength cables are tight, the tension The sensor will detect the pulling force of the high-strength cable at this time. If the pulling force of the high-strength cable reaches the agenda level, the output end of the hydraulic telescopic rod will push the telescopic arm to extend, so that the measured cable pulling force is within the safe working range; On the contrary, retract the telescopic arm.
- the tension sensor detects that the tension of the cable fails to return to the safe working range, an alarm will be issued, and the data will be transmitted to the external master controller , the external general controller opens the quick release buckle, so that the cable is separated from the telescopic arm, avoiding the breakage of the cable.
- Fig. 5 and Fig. 6 are effect comparison diagrams after implementation. It can be seen from the diagrams that after using the invention, the surge motion amplitude of the ship is reduced by 30%, and the tension of the cable is also well adjusted. In the cable mode, the tension of the cable fluctuates from 0 to nearly 40t, and the range of change is very fast. At the same time, the cable is in a loose state for a short time, and the tension is 0. This law of reciprocating is very unfavorable to the service life of the cable; After the invention, the variation range of the tension of the cable is very small, constant at about 30t, which is beneficial to reduce the fatigue damage of the cable.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
Abstract
一种基于现场实时反馈的岸基智能系泊系统及方法,包括液压控制系统、拉力传感器、伸缩臂阈值设计模块、高强度缆绳选取模块和拉力阈值设计模块,液压控制系统与外界主控制器信号连接,拉力传感器的输出端与液压控制系统的输入端信号连接,伸缩臂阈值设计模块与外界主控制器信号连接。该系泊系统使缆绳一直处于设定的安全拉力范围内,保证了缆绳的安全使用,并且增强了船舶与系泊系统整体的约束刚度,有效地约束了船舶运动幅值。
Description
本发明涉及船舶停靠技术领域,具体为一种基于现场实时反馈的岸基智能系泊系统及方法。
系泊安全性影响因素因素十分复杂,既有自然条件的风、浪、流等外界自然条件的影响,也受船舶、码头及系泊形式等自身参数的影响。在码头和船舶一定的条件下,系泊缆和外界环境条件对系泊安全性起决定性的作用。在某些波浪条件作用下,船舶某些自由度的运动量变化幅度会非常大,这样缆绳会出现松弛张紧反复交替的现象,缆绳间的缆力非常不均匀,并且极易产生较大的冲击张力,造成缆绳疲劳,从而引发断缆的风险。
国内外一些港口多次发生断缆事故,严重影响码头作业及安全。恒张力系泊系统作为一种可以改善长周期水域中船舶系泊条件的手段,不仅可以减小船体的晃动,使作业时船舶更加稳定,提升作业效率,也可以通过改善船体的晃动程度,提高作业条件,增加现行标准下的允许作业天数。作为一种在长周期水域中应用的较为新颖的系泊减摇手段,恒张力系泊系统能够很好地对于现有码头进行改造提升,改造成本投入相对较小,具有节约环保的特性,在长周期波浪水域的码头作业中必将具有广阔的前景。
目前的恒张力系泊系统大多是系泊绞车,通过缓慢收绳子与放绳子,保持恒张力不变,在小幅运动时为了保持恒定张力比较有效,但这种结构对系泊系统与浮体组成的耦合系统的固有周期影响较小,多应用在吊装作业等过程。当系泊船舶运动幅度较大时,不适宜采用该结构。
发明内容
本发明的目的在于提供一种基于现场实时反馈的岸基智能系泊系统及方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种基于现场实时反馈的岸基智能系泊系统,包括液压控制系统、拉力传感器、伸缩臂阈值设计模块、高强度缆绳选取模块和拉力阈值设计模块,所述液压控制系统与外界主控制器信号连接,所述拉力传感器的输出端与液压控制系统的输入端信号连接,所述伸缩臂阈值设计模块与外界主控制器信号连接,所述高强度缆绳选取模块与外界主控制器信号连接,所述拉力阈值设计模块的输出端与外界主控制器信号连接。
优选的,所述液压控制系统包括液压伸缩杆、快速脱离卡扣和高强度缆绳,所述液压伸缩杆安装于港口地面,所述快速脱离卡扣安装于伸缩臂的输出端,所述高强度缆绳的一端与快速脱离卡扣连接。
优选的,所述液压伸缩杆与伸缩臂阈值设计模块信号连接,所述伸缩臂的输出端安装有拉力传感器,所述拉力传感器与快速脱离卡扣信号连接,当拉力达到一定程度后,拉力传感器便会启动快速脱离卡扣,所述高强度缆绳远离快速脱离卡扣的一端与船舶连接。
一种基于现场实时反馈的岸基智能系泊方法,包括以下步骤:
S1、收集数据
建立泊位处的波浪数学和潮流数学模型,获得泊位处的波浪条件和潮流条件;并搜集泊位的风速、风向数据。
S2、获取停靠船舶的水动力参数
建立船舶、护舷与系泊系统的数学模型,得到船舶的附加质量m、静水刚度K
s以及系泊系统的总刚度K
m;
S3、选取缆绳
其中,M是船舶空气中的质量;,m是水中的附加质量;K
s是静水刚度;K
m是系泊系统提供的总刚度。
根据公式(1)计算船舶与系泊系统整体的固有周期T,如果周期T与泊位波浪周期T
wave接近,则改变系泊系统的总刚度K
m,使其避开港内的波浪周期;然后可依此给出推荐的总系泊刚度,给出缆绳的强度(最小破断力T)和需要布置的缆绳根数n;
S4、确定伸缩臂的行程
根据船舶、护舷与系泊系统的数学模型,分析横荡运动和纵荡运动的幅值A1、A2,为伸缩臂的行程阈值L设计提供数据;
其中,a
ij为船舶的惯性质量矩阵,m
ij(t)为船舶的附加质量矩阵,K
ij(t)为延迟函数矩阵,C
ij为静水恢复力矩阵,F
i(t)为外界激励力,X
j(t)为船舶位移矩阵。
延迟函数矩阵K
ij(t)为:
外界激励力由以下几部分组成:
F
i(t)=F
Wave(t)+F
C(t)+F
Wind(t)+F
Fender(t)+F
Mooring(t)
其中,F
Wave为船舶所受的波浪力,F
C为船舶所受的流力,F
Wind为船舶所受的风载荷,F
Fender为船舶所受的撞击力,F
Mooring为系缆力。
已知港内的风浪流条件和系泊布置设计,则可获得风、浪、流载荷和系泊系统提供的拉力,求解方程(2),可获得船舶的横荡运动幅值A1和纵荡运动幅值A2.当该装置用在横荡运动大的泊位处时,伸缩臂的行程阈值2A1<L<2.5A1;当该装置用在纵荡运动大的泊位处时,伸缩臂的行程阈值2A2<L<2.5A2;
S5、建立系统
根据系泊作业规范,缆绳拉力不应大于最小破断力T的45%,考虑到安全以及高强度缆绳的使用寿命问题,设定0.2T<F1≤0.4T;当实测拉力F2>F1时,则伸长收缩臂,使实测缆绳拉力在安全工作范围内;反之,当实测拉力F2<F1时,则收回伸缩臂;若伸长收缩臂,达到伸缩臂的最大行程时,实测缆绳拉力也未能回到安全工作范围内,则发出报警提示,准备快速脱缆操作。
优选的,所述S1中建立波浪数学模型需要根据船舶停靠港口的相关资料,并分析泊位处的波高及波浪频率特性,建立船舶与系泊系统的数学模型需要根据传统系缆布置,并分析船与系泊系统组成的整体固有周期。
优选的,所述S2中缆绳选取需要测试泊位处的波高及波浪频率特性和船与系泊系统组成的整体固有周期,如果二者的周期接近,则容易产生大幅的低频运动,分析运动的幅值A,为伸缩臂的行程阈值L设计提供参考。
优选的,所述S3中伸缩臂的伸长与收回通过液压伸缩杆进行工作,所述S3中的拉力大小通过拉力传感器进行检测,所述S3中缆绳放线通过导线轮进行工作。
优选的,所述S3中缆绳与快速脱离卡扣连接,所述S3中快速脱离卡扣 与拉力传感器连接。
与现有技术相比,本发明的有益效果是:
1.该基于现场实时反馈的岸基智能系泊系统及方法,通过设置拉力传感器,可以清楚的了解到缆绳所承受的拉力,因此可以通过液压控制系统控制缆绳进行放线或收线操作,使缆绳一直处于设定的安全拉力范围内,既避免缆绳松弛情况的出现,也避免了缆绳拉力过大情况的出现,保证了缆绳的安全使用。
2.该基于现场实时反馈的岸基智能系泊系统及方法,通过伸缩臂的设置,将船舶位移引起缆绳伸长变形受力,转移到伸缩臂的移动上,通过高强度缆绳,增强了船舶与系泊系统整体的约束刚度,有效地约束了船舶运动幅值。
3.该基于现场实时反馈的岸基智能系泊系统及方法,通过在液压控制系统内安装快速脱离卡扣,可以在无法进行放线操作时,及时解开缆绳,从而避免缆绳断裂的问题发生。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的技术路线流程图;
图2为本发明的码头系泊船舶传统系缆布置示意图;
图3为本发明的码头安装示意图;
图4为本发明的伸缩结构立体示意图;
图5为本发明的系泊船舶传统系缆下的纵荡时间历程与应用本发明后的纵荡运动时间历程对比图;
图6为本发明的系泊船舶传统系缆下的缆绳拉力时间历程与应用本发明 后的缆绳拉力时间历程对比图。
图中:液压伸缩杆1、伸缩臂2、快速脱离卡扣3、高强度缆绳4、立柱5、导线轮6。
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
请参阅图1-6,本发明提供一种技术方案:一种基于现场实时反馈的岸基智能系泊系统,包括液压控制系统、拉力传感器、伸缩臂阈值设计模块、高强度缆绳选取模块和拉力阈值设计模块,液压控制系统与外界主控制器信号连接,拉力传感器的输出端与液压控制系统的输入端信号连接,伸缩臂阈值设计模块与外界主控制器信号连接,高强度缆绳选取模块与外界主控制器信号连接,拉力阈值设计模块的输出端与外界主控制器信号连接。
液压控制系统包括液压伸缩杆1、伸缩臂2、快速脱离卡扣3、高强度缆绳4、立柱5和导线轮6,液压伸缩杆1安装于港口地面,伸缩臂2安装于液压伸缩杆1的输出端,快速脱离卡扣3安装于伸缩臂2的输出端,高强度缆绳4的一端与快速脱离卡扣3连接,立柱5安装于港口地面,导线轮6安装于立柱5的外壁,液压伸缩杆1与伸缩臂阈值设计模块信号连接,伸缩臂2 的输出端安装有拉力传感器,拉力传感器与快速脱离卡扣3信号连接。
一种基于现场实时反馈的岸基智能系泊方法,包括以下步骤:
S1、收集数据
建立泊位处的波浪数学和潮流数学模型,获得泊位处的波浪条件和潮流条件;并搜集泊位的风速、风向数据。
S2、获取停靠船舶的水动力参数
建立船舶、护舷与系泊系统的数学模型,得到船舶的附加质量m、静水刚度K
s以及系泊系统的总刚度K
m。
S3、选取缆绳
其中,M是船舶空气中的质量;,m是水中的附加质量;K
s是静水刚度;K
m是系泊系统提供的总刚度。
根据公式(1)计算船舶与系泊系统整体的固有周期T,如果周期T与泊位波浪周期T
wave接近,则改变系泊系统的总刚度K
m,使其避开港内的波浪周期;然后可依此给出推荐的总系泊刚度,给出缆绳的强度(最小破断力T)和需要布置的缆绳根数n。
S4、确定伸缩臂的行程
根据船舶、护舷与系泊系统的数学模型,分析横荡运动和纵荡运动的幅值A1、A2,为伸缩臂的行程阈值L设计提供数据;
其中,a
ij为船舶的惯性质量矩阵,m
ij(t)为船舶的附加质量矩阵,K
ij(t)为延迟函数矩阵,C
ij为静水恢复力矩阵,F
i(t)为外界激励力,X
j(t)为船舶位移矩阵。
延迟函数矩阵K
ij(t)为:
外界激励力由以下几部分组成:
F
i(t)=F
Wave(t)+F
C(t)+F
Wind(t)+F
Fender(t)+F
Mooring(t)
其中,F
Wave为船舶所受的波浪力,F
C为船舶所受的流力,F
Wind为船舶所受的风载荷,F
Fender为船舶所受的撞击力,F
Mooring为系缆力。
已知港内的风浪流条件和系泊布置设计,则可获得风、浪、流载荷和系泊系统提供的拉力,求解方程(2),可获得船舶的横荡运动幅值A1和纵荡运动幅值A2.当该装置用在横荡运动大的泊位处时,伸缩臂的行程阈值2A1<L<2.5A1;当该装置用在纵荡运动大的泊位处时,伸缩臂的行程阈值2A2<L<2.5A2。
S5、建立系统
根据系泊作业规范,缆绳拉力不应大于最小破断力T的45%,考虑到安全以及高强度缆绳的使用寿命问题,设定0.2T<F1≤0.4T;当实测拉力F2>F1时,则伸长收缩臂,使实测缆绳拉力在安全工作范围内;反之,当实测拉力F2<F1时,则收回伸缩臂;若伸长收缩臂,达到伸缩臂的最大行程时,实测缆 绳拉力也未能回到安全工作范围内,则发出报警提示,准备快速脱缆操作。
通过该装置可以实现缆绳受到恒定的安全拉力范围F,缆绳的破断力为T0,根据规范要求,缆绳的最大拉力不应大于50%的最小破断力,故为了安全起见,此处设F≤0.40*T0;其中伸缩臂的行程需大于船舶运动的最大幅值,该装置通过传感器感应缆绳上的张力在一定范围内变化,当大于F时,控制系统发出收缩伸缩臂或发放伸缩臂的命令,直至张力重新回到制定范围内。
在使用时,船只会在海风与海浪的牵引下进行晃动并移动,此时船只移动时,会对高强度缆绳产生牵引,高强度缆绳便会出现绷紧,在高强度缆绳绷紧时,拉力传感器便会检测此时高强度缆绳的拉力大小,若高强度缆绳的拉力达到议程程度时,液压伸缩杆的输出端便会推动伸缩臂进行伸长,从而使实测缆绳拉力在安全工作范围内;反之,则收回伸缩臂,若伸长收缩臂,达到伸缩臂的最大行程时,拉力传感器检测到缆绳拉力也未能回到安全工作范围内,则发出报警提示,并且将数据传输外界总控制器,外界总控制器打开快速脱离卡扣,使得缆绳与伸缩臂分离,避免出现缆绳断裂的情况出现,通过在液压控制系统内安装快速脱离卡扣,可以在无法进行放线操作时,及时解开缆绳,从而避免缆绳断裂的问题发生。
图5和图6是实施后的效果对比图,从图中可以看出,使用该发明后,船舶的纵荡运动幅值降低了30%,同时缆绳拉力也得到了很好的调节,原系缆方式下,缆绳拉力从0到将近40t的浮动,变化幅度很快,同时有较短时刻缆绳是松弛状态,拉力为0,一直往复这种规律,对缆绳的使用寿命非常不利;而使用该发明后,缆绳拉力变化幅度很小,恒定在30t左右附近,有利于减小缆绳的疲劳损坏。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包 括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (8)
- 一种基于现场实时反馈的岸基智能系泊系统,包括液压控制系统、拉力传感器、伸缩臂阈值设计模块、高强度缆绳选取模块和拉力阈值设计模块,其特征在于:所述液压控制系统与外界主控制器信号连接,所述拉力传感器的输出端与液压控制系统的输入端信号连接,所述伸缩臂阈值设计模块与外界主控制器信号连接,所述高强度缆绳选取模块与外界主控制器信号连接,所述拉力阈值设计模块的输出端与外界主控制器信号连接。
- 根据权利要求1所述的一种基于现场实时反馈的岸基智能系泊系统,其特征在于:所述液压控制系统包括液压伸缩杆(1)、伸缩臂(2)、快速脱离卡扣(3)、高强度缆绳(4)、立柱(5)和导线轮(6),所述液压伸缩杆(1)安装于港口地面,所述伸缩臂(2)安装于液压伸缩杆(1)的输出端,所述快速脱离卡扣(3)安装于伸缩臂(2)的输出端,所述高强度缆绳(4)的一端与快速脱离卡扣(3)连接,所述立柱(5)安装于港口地面,所述导线轮(6)安装于立柱(5)的外壁。
- 根据权利要求2所述的一种基于现场实时反馈的岸基智能系泊系统,其特征在于:所述液压伸缩杆(1)与伸缩臂阈值设计模块信号连接,所述伸缩臂(2)的输出端安装有拉力传感器,所述拉力传感器与快速脱离卡扣(3)信号连接。
- 一种基于现场实时反馈的岸基智能系泊方法,其特征在于:包括以下步骤:S1、收集数据建立泊位处的波浪数学和潮流数学模型,获得泊位处的波浪条件和潮流条件;并搜集泊位的风速、风向数据;S2、获取停靠船舶的水动力参数建立船舶、护舷与系泊系统的数学模型,得到船舶的附加质量m、静水刚 度K S以及系泊系统的总刚度K m。S3、选取缆绳其中,M是船舶空气中的质量;,m是水中的附加质量;K S是静水刚度;K m是系泊系统提供的总刚度。根据公式(1)计算船舶与系泊系统整体的固有周期T,如果周期T与泊位波浪周期T wave接近,则改变系泊系统的总刚度K m,使其避开港内的波浪周期;然后可依此给出推荐的总系泊刚度,给出缆绳的强度(最小破断力T)和需要布置的缆绳根数n。S4、确定伸缩臂的行程根据船舶、护舷与系泊系统的数学模型,分析横荡运动和纵荡运动的幅值A1、A2,为伸缩臂的行程阈值L设计提供数据;其中,a ij为船舶的惯性质量矩阵,m ij(t)为船舶的附加质量矩阵,K ij(t)为延迟函数矩阵,C ij为静水恢复力矩阵,F i(t)为外界激励力,X j(t)为船舶位移矩阵。延迟函数矩阵K ij(t)为:外界激励力由以下几部分组成:F i(t)=F Wave(t)+F C(t)+F Wind(t)+F Fender(t)+F mooring(t)其中,F Wave为船舶所受的波浪力,F C为船舶所受的流力,F Wind为船舶所受的风载荷,F Fender为船舶所受的撞击力,F Mooring为系缆力。已知港内的风浪流条件和系泊布置设计,则可获得风、浪、流载荷和系泊系统提供的拉力,求解方程(2),可获得船舶的横荡运动幅值A1和纵荡运动幅值A2.当该装置用在横荡运动大的泊位处时,伸缩臂的行程阈值2A1<L<2.5A1;当该装置用在纵荡运动大的泊位处时,伸缩臂的行程阈值2A2<L<2.5A2;S5、建立系统根据系泊作业规范,缆绳拉力不应大于最小破断力T的45%,考虑到安全以及高强度缆绳的使用寿命问题,设定0.2T<F1≤0.4T;当实测拉力F2>F1时,则伸长收缩臂,使实测缆绳拉力在安全工作范围内;反之,当实测拉力F2<F1时,则收回伸缩臂;若伸长收缩臂,达到伸缩臂的最大行程时,实测缆绳拉力也未能回到安全工作范围内,则发出报警提示,准备快速脱缆操作。
- 根据权利要求4所述的一种基于现场实时反馈的岸基智能系泊方法,其特征在于:所述S1中建立波浪数学模型需要根据船舶停靠港口的相关资料,并分析泊位处的波高及波浪频率特性,建立船舶与系泊系统的数学模型需要根据传统系缆布置,并分析船与系泊系统组成的整体固有周期。
- 根据权利要求4所述的一种基于现场实时反馈的岸基智能系泊方法,其特征在于:所述S2中缆绳选取需要测试泊位处的波高及波浪频率特性和船与系泊系统组成的整体固有周期,如果二者的周期接近,则容易产生大幅的 低频运动,分析运动的幅值A,为伸缩臂的行程阈值L设计提供参考。
- 根据权利要求4所述的一种基于现场实时反馈的岸基智能系泊方法,其特征在于:所述S3中伸缩臂的伸长与收回通过液压伸缩杆进行工作,所述S3中的拉力大小通过拉力传感器进行检测,所述S3中缆绳放线通过导线轮进行工作。
- 根据权利要求4所述的一种基于现场实时反馈的岸基智能系泊方法,其特征在于:所述S3中缆绳与快速脱离卡扣连接,所述S3中快速脱离卡扣与拉力传感器连接。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ZA2023/00484A ZA202300484B (en) | 2021-12-08 | 2023-01-11 | Shore-based intelligent mooring system and method based on on-site real-time feedback |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111495175.0 | 2021-12-08 | ||
CN202111495175.0A CN114162266B (zh) | 2021-12-08 | 2021-12-08 | 一种基于现场实时反馈的岸基智能系泊系统及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023103193A1 true WO2023103193A1 (zh) | 2023-06-15 |
Family
ID=80484637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/080049 WO2023103193A1 (zh) | 2021-12-08 | 2022-03-10 | 一种基于现场实时反馈的岸基智能系泊系统及方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN114162266B (zh) |
WO (1) | WO2023103193A1 (zh) |
ZA (1) | ZA202300484B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118246297A (zh) * | 2024-05-30 | 2024-06-25 | 烟台哈尔滨工程大学研究院 | 一种大型船体结构应力场的构建方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116198660A (zh) * | 2023-03-07 | 2023-06-02 | 华能太仓港务有限责任公司 | 一种船舶缆绳拉力检测及自动调整方法及系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2411266B1 (en) * | 2009-03-27 | 2013-06-05 | ShoreTension Holding B.V. | A hydraulic mooring cable holding device |
CN203519351U (zh) * | 2013-08-30 | 2014-04-02 | 广州广船国际股份有限公司 | 一种用于系泊试验的加载装置 |
US20140338581A1 (en) * | 2012-01-31 | 2014-11-20 | Keith Gill | Load Compensating Mooring Hooks |
CN105314067A (zh) * | 2015-11-02 | 2016-02-10 | 上海中船船舶设计技术国家工程研究中心有限公司 | 一种船舶系泊装置及方法 |
CN112050740A (zh) * | 2020-09-03 | 2020-12-08 | 交通运输部天津水运工程科学研究所 | 系泊安全监测及预警系统 |
CN113226910A (zh) * | 2018-11-26 | 2021-08-06 | 帝人株式会社 | 系泊索监视系统、系泊管理系统、系泊索监视方法及系泊管理方法 |
CN214930431U (zh) * | 2021-04-15 | 2021-11-30 | 交通运输部天津水运工程科学研究所 | 一种自动化系靠泊装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101876167B (zh) * | 2009-09-30 | 2012-08-29 | 中交水运规划设计院有限公司 | 码头系泊系统的系缆方法 |
CN105438399A (zh) * | 2015-08-21 | 2016-03-30 | 河海大学 | 一种系泊船舶物理模型及其试验方法 |
CN107268523A (zh) * | 2017-05-15 | 2017-10-20 | 沪东中华造船(集团)有限公司 | 一种双船并靠的码头系泊方法 |
CN109146179B (zh) * | 2018-08-23 | 2021-07-23 | 交通运输部天津水运工程科学研究所 | 沿海港口船舶作业条件监测预警方法 |
CN111444624A (zh) * | 2020-04-03 | 2020-07-24 | 交通运输部天津水运工程科学研究所 | 一种港区内停靠船舶作业状态安全的判断方法及系统 |
-
2021
- 2021-12-08 CN CN202111495175.0A patent/CN114162266B/zh active Active
-
2022
- 2022-03-10 WO PCT/CN2022/080049 patent/WO2023103193A1/zh unknown
-
2023
- 2023-01-11 ZA ZA2023/00484A patent/ZA202300484B/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2411266B1 (en) * | 2009-03-27 | 2013-06-05 | ShoreTension Holding B.V. | A hydraulic mooring cable holding device |
US20140338581A1 (en) * | 2012-01-31 | 2014-11-20 | Keith Gill | Load Compensating Mooring Hooks |
CN203519351U (zh) * | 2013-08-30 | 2014-04-02 | 广州广船国际股份有限公司 | 一种用于系泊试验的加载装置 |
CN105314067A (zh) * | 2015-11-02 | 2016-02-10 | 上海中船船舶设计技术国家工程研究中心有限公司 | 一种船舶系泊装置及方法 |
CN113226910A (zh) * | 2018-11-26 | 2021-08-06 | 帝人株式会社 | 系泊索监视系统、系泊管理系统、系泊索监视方法及系泊管理方法 |
CN112050740A (zh) * | 2020-09-03 | 2020-12-08 | 交通运输部天津水运工程科学研究所 | 系泊安全监测及预警系统 |
CN214930431U (zh) * | 2021-04-15 | 2021-11-30 | 交通运输部天津水运工程科学研究所 | 一种自动化系靠泊装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118246297A (zh) * | 2024-05-30 | 2024-06-25 | 烟台哈尔滨工程大学研究院 | 一种大型船体结构应力场的构建方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114162266A (zh) | 2022-03-11 |
ZA202300484B (en) | 2023-08-30 |
CN114162266B (zh) | 2022-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023103193A1 (zh) | 一种基于现场实时反馈的岸基智能系泊系统及方法 | |
US10843904B2 (en) | Offshore crane heave compensation control system and method using visual ranging | |
CN101780923B (zh) | 超大型浮吊的重载打捞波浪补偿系统 | |
CN204675691U (zh) | 一种大型海洋浮标吊放装置 | |
CN101850831A (zh) | 一种大型远洋海工平台生活区总段吊装方法 | |
CN102128311B (zh) | 一种典型水下管汇摆动安装方法及装置 | |
CN205314061U (zh) | 一种智能吸附式大吨位船舶靠泊的缓冲装置 | |
CN102079363A (zh) | 基于小型船只的锚泊式海洋观测研究浮标布放系统及方法 | |
Wang et al. | Pendulous installation method and its installation analysis for a deepwater manifold in South China Sea | |
CN103274314A (zh) | 一种海洋吊机波浪补偿装置 | |
CN104692247A (zh) | 深水水下结构物防扭转的安装方法 | |
CN105398545A (zh) | 一种系泊锚腿的张紧方法 | |
CN104016236A (zh) | 力矩限制系统、起重机和力矩限制方法 | |
CN110185057A (zh) | 一种用于海上风电单桩基础钢管桩起吊立桩的工装及施工方法 | |
CN201236337Y (zh) | 一种码头系缆装置 | |
CN209852529U (zh) | 一种海上移动平台原油外输大抓力锚加双缆系泊系统 | |
CN208377003U (zh) | 一种单点系泊船体偏荡运动控制装置 | |
Zhu et al. | Nonlinear hydrodynamic response of marine cable-body system under random dynamic excitations | |
CN113779698B (zh) | 一种水流作用下的船舶系泊系统简化设计方法 | |
CN109987530B (zh) | 波浪补偿活塞张紧器及其使用方法 | |
CN210258748U (zh) | 船舶固定系统 | |
CN207730562U (zh) | 能够对系船缆载荷进行监测和寿命预测的系泊笼耳装置 | |
Firdaus et al. | Preliminary Modeling of Coupled Motion Response for Floating Crane and Suspended Module by Using Boundary Element Approach and Empirical Model | |
CN110696963A (zh) | 船体码头系泊方法 | |
CN2546327Y (zh) | 船艇快速打捞救助装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22902637 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |