WO2023103091A1 - 微型发光二极管触控显示面板 - Google Patents

微型发光二极管触控显示面板 Download PDF

Info

Publication number
WO2023103091A1
WO2023103091A1 PCT/CN2021/140367 CN2021140367W WO2023103091A1 WO 2023103091 A1 WO2023103091 A1 WO 2023103091A1 CN 2021140367 W CN2021140367 W CN 2021140367W WO 2023103091 A1 WO2023103091 A1 WO 2023103091A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
signal line
voltage signal
power supply
display panel
Prior art date
Application number
PCT/CN2021/140367
Other languages
English (en)
French (fr)
Inventor
易士娟
孙亮
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/623,700 priority Critical patent/US20240118757A1/en
Publication of WO2023103091A1 publication Critical patent/WO2023103091A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04184Synchronisation with the driving of the display or the backlighting unit to avoid interferences generated internally
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the invention relates to the field of display technology, in particular to a micro light emitting diode touch display panel.
  • Micro-LED Micro Light-Emitting Diode
  • Micro-LED is composed of a micron-scale semiconductor light-emitting unit array. It is a comprehensive technology that integrates new display technology and Light-Emitting Diode (LED) technology. It has The advantages of self-illumination, high efficiency, low power consumption, high integration, high stability, and all-weather work are considered to be one of the most promising next-generation new display and light-emitting devices. Because of its small size, high flexibility, and easy disassembly and combination, Micro-LED can be applied to any existing display application from the smallest to the largest size, and in many cases Micro-LED will be better than liquid crystal displays and Organic light-emitting diode displays play a more unique effect.
  • the touch screen is currently the simplest and fastest way of human-computer interaction, and it is an attractive new multimedia interactive device.
  • the currently known touch technology in organic light-emitting diode displays is no longer applicable to Micro-LED displays, and if an external touch screen is used, it will also increase the cost, increase the thickness of the screen, and reduce the comfort of use.
  • An embodiment of the present invention provides a micro light-emitting diode touch display panel to solve the technical problem that the existing Micro-LED touch display screen adopts an external touch screen, resulting in increased screen thickness and increased production costs.
  • An embodiment of the present invention provides a micro light-emitting diode touch display panel, including:
  • An array substrate including a plurality of pixel driving circuits arranged in an array
  • a plurality of power supply voltage signal lines are arranged on the array substrate and are electrically connected to the corresponding pixel driving circuits;
  • a plurality of first contact electrodes distributed in an array are arranged on the power supply voltage signal line and are electrically connected to the corresponding power supply voltage signal line;
  • a plurality of micro-light-emitting units distributed in an array include LED chips and first electrodes, and the first electrodes are bound and connected to the corresponding first contact electrodes;
  • the power supply voltage signal line transmits a power supply voltage signal to the pixel driving circuit
  • the first contact electrode is multiplexed as a touch electrode, and the power voltage signal line is multiplexed as a touch signal line to transmit touch signals;
  • Every several first contact electrodes are multiplexed as one touch electrode, and the several first contact electrodes are distributed along the first direction and the second direction, and the first direction and the second direction intersect;
  • the first contact electrodes arranged in the first direction are in contact with each other, and the first contact electrodes arranged in the second direction are all electrically connected to the same power supply voltage signal line.
  • the micro light-emitting diode touch display panel includes a display area and a binding part located outside the display area, the binding part is electrically connected to a driving chip, and the driving chip time-sharing Controlling display driving and touch driving of the micro light emitting diode touch display panel, the first contact electrode is located in the display area, and part of the power supply voltage signal line is electrically connected to the binding part.
  • the micro light-emitting diode touch display panel includes a plurality of scanning lines and a plurality of data lines interlaced, and the scanning lines and the data lines are connected with the pixel driving circuit Electrically connected, the driving period of the micro light emitting diode touch display panel in one frame of display screen includes a first time period and a second time period set adjacently;
  • the driver chip transmits a DC potential signal to the power supply voltage signal line, loads a scan signal row by row to the scan lines of each row, and loads a data voltage signal to the data lines of each column;
  • the driving chip transmits touch signals to the power supply voltage signal line, and the scan lines in each row and the data lines in each column are in a floating state; wherein, the first time period is the same as the first time period The second time period does not overlap, and the sum of the first time period and the second time period is equal to one frame display period.
  • the micro light-emitting diode touch display panel includes a plurality of scanning lines and a plurality of data lines interlaced, and the scanning lines and the data lines are connected with the pixel driving circuit Electrically connected, the driving period of the miniature light-emitting diode touch display panel in one frame of display screen includes at least two first display intervals and at least two first touch intervals, the first display interval and the first touch interval The intervals are set alternately in turn;
  • the driver chip transmits a DC potential signal to the power supply voltage signal line, loads a scan signal row by row to some of the scan lines, and loads a data voltage signal to the data lines of each column;
  • the drive chip transmits touch signals to the power supply voltage signal line, and the scan lines in each row and the data lines in each column are in a floating state; wherein, the first display interval and the The first touch intervals do not overlap, and the sum of the at least two first display intervals and the at least two first touch intervals is equal to the driving period of one frame of display screen.
  • the power supply voltage signal line includes a first power signal line for transmitting a DC high potential signal in the display phase, and a first power supply signal line for transmitting a DC low potential signal in the display phase
  • the second power signal line wherein at least one of the first power signal line and the second power signal line is multiplexed as the touch signal line.
  • any adjacent touch electrodes are insulated from each other, and one touch electrode corresponds to at least one of the plurality of power supply voltage signal lines electrically connected to the binding internal electrical connection.
  • the embodiment of the present invention also provides another micro light-emitting diode touch display panel, including:
  • An array substrate including a plurality of pixel driving circuits arranged in an array
  • a plurality of power supply voltage signal lines are arranged on the array substrate and are electrically connected to the corresponding pixel driving circuits;
  • a plurality of first contact electrodes distributed in an array are arranged on the power supply voltage signal line and are electrically connected to the corresponding power supply voltage signal line;
  • a plurality of micro-light-emitting units distributed in an array the micro-light-emitting units include a first electrode, and the first electrode is bound and connected to the corresponding first contact electrode;
  • the power supply voltage signal line transmits a power supply voltage signal to the pixel driving circuit
  • the first contact electrodes are multiplexed as touch electrodes, and the power supply voltage signal lines are multiplexed as touch signal lines to transmit touch signals.
  • every several first contact electrodes are multiplexed as one touch electrode, the several first contact electrodes are distributed along the first direction and the second direction, and the first The direction intersects with the second direction; wherein, the first contact electrodes arranged along the first direction are in contact with each other, and the first contact electrodes arranged along the second direction are all electrically connected to the same A signal line of the power supply voltage.
  • the micro light-emitting diode touch display panel includes a display area and a binding part located outside the display area, the binding part is electrically connected to a driver chip, and the driver chip is divided into
  • the first contact electrode is located in the display area, and part of the power supply voltage signal line is electrically connected to the binding part.
  • the micro light-emitting diode touch display panel includes a plurality of scanning lines and a plurality of data lines interlaced, and the scanning lines and the data lines are connected with the pixel driving circuit Electrically connected, the driving period of the micro light emitting diode touch display panel in one frame of display screen includes a first time period and a second time period set adjacently;
  • the driver chip transmits a DC potential signal to the power supply voltage signal line, loads a scan signal row by row to the scan lines of each row, and loads a data voltage signal to the data lines of each column;
  • the driving chip transmits touch signals to the power supply voltage signal line, and the scan lines in each row and the data lines in each column are in a floating state; wherein, the first time period is the same as the first time period The second time period does not overlap, and the sum of the first time period and the second time period is equal to one frame display period.
  • the micro light-emitting diode touch display panel includes a plurality of scanning lines and a plurality of data lines interlaced, and the scanning lines and the data lines are connected with the pixel driving circuit Electrically connected, the driving cycle of the micro light emitting diode touch display panel in one frame of display screen includes at least two first display intervals and at least two first touch intervals, the first display interval and the second touch interval The intervals are set alternately in turn;
  • the driver chip transmits a DC potential signal to the power supply voltage signal line, loads a scan signal row by row to some of the scan lines, and loads a data voltage signal to the data lines of each column;
  • the drive chip transmits touch signals to the power supply voltage signal line, and the scan lines in each row and the data lines in each column are in a floating state; wherein, the first display interval and the The first touch intervals do not overlap, and the sum of the at least two first display intervals and the at least two first touch intervals is equal to the driving period of one frame of display screen.
  • the power supply voltage signal line includes a first power signal line for transmitting a DC high potential signal in the display phase, and a first power supply signal line for transmitting a DC low potential signal in the display phase
  • the second power signal line wherein at least one of the first power signal line and the second power signal line is multiplexed as the touch signal line.
  • the second power signal line is multiplexed as the touch signal line.
  • any adjacent touch electrodes are insulated from each other, and one touch electrode corresponds to at least one of the plurality of power supply voltage signal lines electrically connected to the binding internal electrical connection.
  • the plurality of first contact electrodes include:
  • a plurality of first touch electrodes distributed in an array are arranged in multiple rows along the first direction, and the first touch electrodes in each row are electrically connected;
  • a plurality of second touch electrodes distributed in an array and insulated from the first touch electrodes are arranged along the second direction in multiple columns, and the second touch electrodes in each column are electrically connected.
  • the micro light-emitting diode touch display panel further includes a plurality of first bridge lines, and the first bridge lines are electrically connected to two adjacent second touch electrodes in the same column. , two adjacent first touch electrodes in the same row are electrically connected through the corresponding first contact electrodes; the first touch electrodes and the second touch electrodes are arranged on the same layer, and the first touch electrodes A touch electrode is arranged in a different layer from the first bridge line.
  • a row of the first touch electrodes or a row of the second touch electrodes are electrically connected to the binding part through the same power supply voltage signal line.
  • a first insulating layer is provided between the first contact electrode and the power supply voltage signal line, the first insulating layer includes a first contact hole, and the first contact The electrodes are electrically connected to the corresponding power supply voltage signal lines through the first contact holes.
  • the micro light-emitting diode touch display panel further includes a plurality of second contact electrodes distributed in an array, and the second contact electrodes are arranged on the same layer as the first contact electrodes, so that A second insulating layer is provided on the first contact electrode and the second contact electrode, the second insulating layer includes a plurality of second contact holes and a plurality of third contact holes, and the first electrode passes through the first The second contact hole is electrically connected to the first contact electrode, and the micro light emitting unit further includes a second electrode, and the second electrode is electrically connected to the second contact electrode through the third contact hole.
  • the second contact electrodes are arranged along the first direction and the second direction, and the second contact electrodes and the first contact electrodes are arranged in alternating rows.
  • An embodiment of the present invention provides a micro light-emitting diode touch display panel, including a plurality of pixel drive circuits, a plurality of power supply voltage signal lines, a plurality of first contact electrodes, and a plurality of micro light-emitting units distributed in an array, and a plurality of power supply voltage signal lines
  • the line is electrically connected to the pixel driving circuit and the first contact electrode, the micro-light-emitting unit is bound and connected to the first contact electrode, and in the display driving stage, the power supply voltage signal line is connected to the pixel driving circuit Transmission of power supply voltage signals; in the touch driving stage, the first contact electrodes are multiplexed as touch electrodes, and the power supply voltage signal lines are multiplexed as touch signal lines to transmit touch signals.
  • FIG. 1 is a film stack composition diagram of a micro light-emitting diode touch display panel provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a touch electrode provided by an embodiment of the present invention.
  • FIG. 3 is a schematic plan view of a micro LED touch display panel provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a circuit principle of a pixel driving circuit provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a first contact electrode and a power supply voltage signal line provided by an embodiment of the present invention.
  • FIG. 6 is a timing diagram of a driving cycle of a frame of display screen provided by an embodiment of the present invention.
  • FIG. 7 is a timing diagram of a driving period of a display frame provided by another embodiment of the present invention.
  • FIG. 8 is a timing diagram of a driving period of a frame of a display screen provided by another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a first contact electrode and a power supply voltage signal line provided by another embodiment of the present invention.
  • first and second are used for description purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of said features.
  • plural means two or more, unless otherwise specifically defined.
  • a first feature being “on” or “under” a second feature may include that the first and second features are in direct contact, and may also include that the first and second features are not in direct contact with each other. contact but through additional feature contact between them.
  • the first feature being “on” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • an embodiment of the present invention provides a micro LED touch display panel 100
  • the micro LED touch display panel 100 includes an array substrate 10, a plurality of power supply voltage signals arranged on the array substrate 10 line 20 , a plurality of first contact electrodes 31 and a plurality of second contact electrodes 32 arranged on the power supply voltage signal line 20 , and a plurality of micro-light emitting units 40 distributed in an array.
  • the array substrate 10 includes a plurality of pixel driving circuits 12 arranged in an array, and the pixel driving circuits 12 are used to drive the micro light emitting units 40 to emit light.
  • the power supply voltage signal line 20 is electrically connected to the corresponding pixel driving circuit 12
  • the first contact electrode 31 is electrically connected to the corresponding power supply voltage signal line 20
  • the micro light emitting unit 40 includes a first electrode 41 and the second electrode 43
  • the first electrode 41 is bound and connected to the corresponding first contact electrode 31
  • the second electrode 43 is bound and connected to the corresponding second contact electrode 32
  • the first The electrode 41 is one of the N electrode (cathode) and the P electrode (anode)
  • the second electrode 43 is the other of the N electrode and the P electrode.
  • the micro-light emitting unit 40 is electrically connected to the pixel driving circuit 12 by bonding with the corresponding first contact electrode 31 and the second contact electrode 32 .
  • an insulating layer is provided between adjacent film layers such as the pixel driving circuit 12 , the power supply voltage signal line 20 , the first contact electrode 31 and the micro light emitting unit 40 to separate them.
  • a first insulating layer 90 is provided between the first contact electrode 31 and the power supply voltage signal line 20, the first insulating layer 90 includes a first contact hole 101, and the first contact electrode 31 passes through the first contact hole 101.
  • a contact hole 101 is electrically connected to the corresponding power voltage signal line 20 .
  • the second contact electrode 32 is set on the same layer as the first contact electrode 31, and a second insulating layer 70 is provided on the first contact electrode 31 and the second contact electrode 32 to protect the first contact electrode.
  • the first electrode 41 is electrically connected to the first contact electrode 31 through the second contact hole 102
  • the second electrode 43 is electrically connected to the second contact electrode 32 through the third contact hole 103 .
  • each micro light emitting unit 40 includes at least one micro light emitting diode (Micro LED).
  • the micro light emitting unit 40 includes a Micro LED chip 42 and the first electrode 41 and the second electrode 43 protruding from the Micro LED chip 42 .
  • the power supply voltage signal line 20 includes a first power signal line and a second power signal line.
  • the line is used to transmit a DC high potential signal
  • the second power signal line is used to transmit a DC low potential signal.
  • the first power signal line can transmit a power supply positive voltage signal VDD
  • the second power signal line can transmit Transmit the power supply negative voltage signal VSS or the initialization voltage signal Vi. Please refer to FIG.
  • the micro light emitting diode touch display panel 100 includes a plurality of scanning lines G1 ⁇ G(n) and a plurality of data lines D1 ⁇ D(n), and the scanning lines G1 ⁇ G(n) and the The data lines G1 ⁇ G(n) intersect to define a plurality of pixel areas, the pixel driving circuit 12 and the micro-light emitting unit 40 are located in the corresponding pixel areas, and the scanning line G(n) is connected to the The pixel driving circuit 12 transmits a scanning signal Scan(n), and the data line D(n) transmits a data voltage signal Data to the pixel driving circuit 12 .
  • FIG. 4 is a schematic diagram of the pixel driving circuit 12 provided by the embodiment of the present invention.
  • the pixel driving circuit 12 can be 2T1C (2 transistors and 1 storage capacitor), 6T1C (6 transistors and 1 storage capacitor) or 7T1C (7 transistors and 1 storage capacitor), the embodiment of the present invention uses a 6T1C circuit as an example for illustration.
  • the pixel driving circuit 12 includes a first transistor T1, a second transistor T2, a third transistor T3, a fourth transistor T4, a fifth transistor T5 and a sixth transistor T6, the first transistor T1 is a driving transistor, and the first transistor T1 is a driving transistor.
  • the second transistor T2 is a switching transistor
  • the third transistor T3 is a compensation transistor
  • the fourth transistor T4 is an initialization transistor
  • the fifth transistor T5 is a first light-emitting control transistor
  • the sixth transistor T6 is a second light-emitting transistor. control transistor.
  • the gate of the second transistor T2 is electrically connected to the nth-level scanning signal line G(n), its drain is electrically connected to the data line D(n), and its source is electrically connected to the fifth transistor.
  • the drain of T5, the gate of the fifth transistor T5 is electrically connected to the light emission control signal line EM, the source of the fifth transistor T5 is electrically connected to the power signal line that transmits the positive piezoelectric signal VDD of the power supply, and the fourth transistor T4
  • the gate is electrically connected to the n-1th level scanning signal line G(n-1), the source of the fourth transistor T4 is electrically connected to the initialization signal line transmitting the initialization signal VI, and the drain of the fourth transistor T4 is electrically connected to the first
  • the gate of the sixth transistor T6 is electrically connected to the light emission control signal line EM, the source of the sixth transistor T6 is electrically connected to the drain of the first transistor T1 and the drain of the third transistor T3, and the sixth transistor T6 is electrically connected to the fifth transistor
  • the drain of the six-transistor T6 is electrically connected to the anode (P junction) of the corresponding micro-light emitting unit 40 , and the cathode (N junction) of the micro-light emitting unit 40 is electrically connected to the power signal line that transmits the power supply negative voltage signal VSS.
  • the gate of the third transistor T3 is electrically connected to the n-th scan signal line G(n)
  • the source of the third transistor T3 is electrically connected to the gate of the first transistor T1
  • the gate of the first transistor T1 The gate also serves as an electrode plate of the storage capacitor Cst, and the other electrode plate of the storage capacitor Cst is electrically connected to the source of the fifth transistor.
  • the aforementioned transistors T1 - T6 may be P-type transistors, and may also be N-type transistors in other embodiments.
  • the third transistor T3 and the fourth transistor T4 may be double-gate transistors.
  • the driving display phase of the pixel driving circuit 12 includes three processes of reset, compensation and light emission.
  • Reset process when the scan line scan (n-1) is at low level, the fourth transistor T4 is turned on to initialize the signal input to reset the gate of the first transistor T1 (point G in Figure 4), and the storage capacitor Cst is discharged;
  • compensation Stage the scanning line scan (n) becomes low level, the second transistor T2, the third transistor T3, and the first transistor T1 are turned on, the data voltage signal is input, and the potential of point G becomes Vdata+Vth (Vdata is the input of the data line Data voltage, Vth is the threshold voltage), the capacitor Cst is charged to realize the input of the data signal and the compensation of Vth;
  • the light-emitting stage the light-emitting control signal line EM becomes low level, the fifth transistor T5 and the sixth transistor T6 are turned on, and the first The power signal line inputs a DC high-potential signal to provide power, and the Micro LED continues to emit light.
  • the external touch structure is generally adopted, that is, the touch substrate and the display substrate are prepared separately through two substrates, and then the two are bonded together, and the external touch display panel will increase Screen thickness and increased production costs.
  • the embedded touch structure integrates the touch layer inside the display substrate. Although it can reduce the thickness of the screen to a certain extent, it will use a separate metal layer for the design of the touch signal line, which will increase the array process of the display substrate and the cost of the display substrate. Production time, reducing capacity.
  • the present invention aims at the defects existing in the above-mentioned existing Micro LED touch display panel, improves the touch structure, and multiplexes the power supply voltage signal line 20 on the array substrate 10 as a touch signal line, without adding a new process, and can Reduce production costs and increase productivity.
  • the power supply voltage signal line 20 transmits a power supply voltage signal to the pixel driving circuit 12;
  • the first contact electrodes 31 are distributed in an array, the first contact electrodes 31 are multiplexed as touch electrodes 80 , and the power voltage signal lines 20 are multiplexed as touch signal lines to transmit touch signals. In this way, it is not necessary to add a new film layer structure to realize the touch function of the Micro LED touch display panel, which can greatly save the process and increase the production capacity.
  • the embodiment of the present invention uses several first contact electrodes 31 to be multiplexed into one touch electrode 80 .
  • every several first contact electrodes 31 are multiplexed as one touch electrode 80, and the several first contact electrodes 31 are distributed along the first direction X and the second direction Y, and the first direction X and the second direction Y
  • the second direction Y intersects; wherein, the first contact electrodes 31 arranged along the first direction X are in contact with each other, that is, the first contact electrodes 31 in the same row are connected to each other, along the
  • the first contact electrodes 31 arranged in the second direction Y are all electrically connected to the same power voltage signal line 20 , that is, one power voltage signal line 20 is electrically connected to the power voltage signal lines 20 in the same column.
  • Such a design can not only enable a plurality of first contact electrodes 31 to communicate with each other, and be multiplexed as a touch electrode 80, but also realize the transmission of the power supply voltage signal line 20 to the pixel driving circuit 12 corresponding to each micro-light emitting unit 40. supply voltage signal.
  • first contact electrodes 31 that need to be multiplexed for one touch electrode 80 depends on the actual size of the micro-light emitting units 40 and the distance between the micro-light emitting units 40 .
  • the second contact electrodes 32 are arranged along the first direction X and the second direction Y, and the second contact electrodes 32 and the first contact electrodes 31 are distributed in alternating rows.
  • the number of the second contact electrodes 32 is the same as the number of the first contact electrodes 31 .
  • the first contact electrodes 31 in the same row are connected to each other to form a strip-shaped electrode arrangement, and a plurality of the power supply voltage signal lines 20 are arranged along the first Arranged in one direction X and extending along the second direction Y, the power supply voltage signal line 20 and the elongated electrode cross each other to form a metal grid pattern, so the pattern of the touch electrode 80 can be regarded as a metal mesh grid pattern.
  • the micro LED touch display panel 100 includes a display area and a binding portion 50 located outside the display area, the binding portion 50 is electrically connected to a driver chip (not shown in the figure), so The first contact electrode 31 is located in the display area, and part of the power voltage signal line 20 is electrically connected to the binding part 50 .
  • the binding portion 50 is electrically connected to a flexible circuit board 60
  • the driving chip is electrically connected to the flexible circuit board 60 .
  • the driving chip can be a chip integrated with touch control function and display control function, and can control the touch driving and display driving of the micro LED touch display panel 100 in a time-sharing manner.
  • a vertical time-sharing method can be used for display driving and touch driving, that is, a driving cycle of a frame of picture includes only one display time period and one touch time period.
  • V Blanking Timing a vertical time-sharing method
  • the first contact electrode 31 and the power supply voltage signal line 20 first transmit the power supply voltage signal to drive the pixels to display.
  • the first contact electrode 31 is used as the touch electrode 80 again, and the power voltage signal line 20 is used as the touch signal line to complete the touch driving.
  • the horizontal driving method can also be used for display driving and touch driving, that is, the driving cycle of one frame of display screen includes at least two display time periods and two touch time periods, and The time period and the touch time period are alternately set.
  • the first contact electrode 31 and the power voltage signal line 20 first drive some pixels for display, and after completing a part of each frame, they are converted into touch electrodes 80 and touch signal lines.
  • the touch drive is then executed; when the first display time period and the first touch time period are completed, then enter the second display time period and the second touch time period in sequence, to This cycle is completed until the driving period of the one frame picture is completed. Setting each driving cycle as at least two display time periods and at least two touch time periods arranged alternately can further improve the sensing accuracy when the first contact electrodes 31 are used as the touch electrodes 80 .
  • the duration of the display period may be equal to the duration of the touch period, and in other embodiments, the duration of the display period may also be different from the duration of the touch period.
  • FIG. 6 is a timing diagram of a driving cycle of a frame in the vertical time-sharing method.
  • the micro-LED touch display panel 100 displays a frame
  • the driving cycle T in includes a first time period T1 and a second time period T2 which are set adjacently; in the first time period T1, the drive chip transmits a DC potential signal to the power supply voltage signal line 20, and sends a DC potential signal to each row
  • the scan lines are loaded with scan signals row by row, and the data voltage signals are loaded to the data lines of each column; in the second time period T2, the drive chip transmits touch signals to the power voltage signal line 20, and each row
  • the scanning line G(n) and the data line D(n) of each column are in a floating state; wherein, the first time period T1 does not overlap with the second time period T2, and the first time period T1
  • Fig. 7 and Fig. 8 are partial timing diagrams of the driving cycle of one frame of picture in the horizontal driving method in different embodiments of the present invention, in some embodiments of the present invention, described miniature LED
  • the driving period T of the touch display panel 100 in one frame of display screen includes at least two first display intervals t1 and at least two first touch intervals t2, and the first display interval t1 and the first touch interval t2 are sequentially Alternate settings.
  • the driving chip transmits a DC potential signal to the power voltage signal line 20, loads a scan signal row by row to some of the scan lines, and loads a data voltage signal to each column of the data lines.
  • the drive chip transmits a touch signal to the power supply voltage signal line 20, the first contact electrode 31 is multiplexed as a touch electrode to sense the touch capacitance change, and each row of the scan
  • the data lines and the data lines in each column are in a floating state; wherein, the first display interval t1 and the first touch interval t2 do not overlap, and the at least two first display intervals t1 and the at least two second touch intervals
  • the sum of one touch interval t2 is equal to the driving period T of one frame of display screen.
  • only one row of pixels can be driven to display in each first display interval t1, and then the touch driving is completed in the next first touch interval t2, and the cycle is repeated.
  • the first display time interval t1 and the first touch time interval t2 until the display driving of all rows of pixels is completed.
  • first display time interval t1 within each first display time interval t1, three rows of pixels can be driven to display row by row, and then within the next first touch interval t2, touch control is completed. driving, repeating the cycle of the first display time interval t1 and the first touch time interval t2 until the display driving of all rows of pixels is completed.
  • the second power signal line may be multiplexed as a touch signal line, specifically, a power signal line transmitting a power supply negative voltage signal VSS may be selected to be multiplexed as a touch signal line. That is, in the display phase, the second power signal line transmits a power negative voltage signal VSS, and in the touch phase, the second power signal line transmits a touch signal Touch, and the touch signal Touch may include a pulse signal.
  • the micro-LED touch display panel 100 can be a self-capacitance touch display panel, and a plurality of the first contact electrodes 31 are multiplexed as sensing electrode.
  • the pattern of the touch electrodes 80 can be square or rectangular. Any adjacent touch electrodes 80 are insulated from each other, that is, the first contact electrodes 31 corresponding to adjacent touch electrodes 80 are disconnected from each other. At least one of the plurality of power supply voltage signal lines 20 electrically connected to one touch electrode 80 is electrically connected to the binding portion 50 .
  • the micro-LED touch display panel 100 includes a substrate 11, a buffer layer disposed on the substrate 11, a semiconductor layer disposed on the buffer layer, and a second semiconductor layer disposed on the semiconductor layer.
  • the first insulating layer 90 and the second insulating layer 70 can also be planarization layers, which play the role of insulation and planarization.
  • the semiconductor layer includes an active layer 121 for forming each transistor of the pixel driving circuit 12, and the first metal layer includes a gate 122 and a scanning layer for forming each transistor of the pixel driving circuit 12.
  • the second metal layer includes an electrode plate 123 for forming the storage capacitor of the pixel driving circuit 12 and an initialization signal line for transmitting the initialization signal Vi
  • the third metal layer includes an electrode plate 123 for forming the storage capacitor of the pixel driving circuit 12.
  • the source and drain layers 124 and data lines of each transistor of the pixel driving circuit 12, the fourth metal layer includes a power supply voltage signal line 20, such as a first power signal line and a second power signal line, and the fifth metal layer includes The first contact electrode 31 and the second contact electrode 32 .
  • the micro-LED touch display panel 100 can be a mutual capacitance touch display panel, and the plurality of first contact electrodes 31 include a plurality of first touch electrodes distributed in an array.
  • the plurality of first touch electrodes 81 are arranged in multiple rows along the first direction X, and the plurality of first touch electrodes 81 in each row are electrically connected.
  • the plurality of second touch electrodes 82 are arranged along the second direction Y in multiple columns, and the second touch electrodes 82 in each column are electrically connected.
  • the first direction X may be a row direction
  • the second direction Y may be a column direction.
  • the first direction X and the second direction Y may intersect vertically.
  • the patterns of the first touch electrodes 81 and the second touch electrodes 82 may be diamond patterns.
  • the micro LED touch display panel 100 can also include a plurality of first bridge lines 33, the first bridge lines 33 are electrically connected to two adjacent second touch electrodes 82 in the same column, and two adjacent second touch electrodes 82 in the same row are electrically connected to each other.
  • the two first touch electrodes 81 are electrically connected through the corresponding first contact electrodes 31; the first touch electrodes 81 and the second touch electrodes 82 are arranged on the same layer, and the first touch electrodes
  • the control electrode 81 is arranged in a different layer from the first bridge wire 33 .
  • a row of the first touch electrodes 81 or a row of the second touch electrodes 82 are electrically connected to the binding via the same power supply voltage signal line 20 Section 50.
  • a row of the first touch electrodes 81 can be led out to the binding part 50 through a power supply voltage signal line 20 in a first touch electrode at the edge
  • a row of the second touch electrodes 82 can be led out to the binding part 50 through One power supply voltage signal line 20 in one second touch electrode 82 at the edge is led out to the binding portion 50 .
  • the embodiment of the present invention provides a micro light-emitting diode touch display panel 100, which includes a plurality of pixel drive circuits 12, a plurality of power supply voltage signal lines 20, a plurality of first contact electrodes 31, and a plurality of micro-light emitting diodes distributed in an array.
  • Unit 40 a plurality of power supply voltage signal lines 20 are electrically connected to the pixel driving circuit 12 and the first contact electrode 31, and the micro-light emitting unit 40 is bound and connected to the first contact electrode 31.
  • the power supply voltage signal line 20 transmits a power supply voltage signal to the pixel driving circuit 12; in the touch driving stage, the power supply voltage signal line 20 is multiplexed as a touch signal line to transmit touch signals.
  • the manufacturing process cost can be reduced and the production capacity can be increased, and good touch and display effects can be guaranteed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种微型发光二极管触控显示面板(100),包括像素驱动电路(12)、与像素驱动电路(12)电连接的电源电压信号线(20)、与电源电压信号线(20)电连接的第一接触电极(31)以及与第一接触电极(31)绑定连接的微发光单元(40),在触控驱动阶段,第一接触电极(31)复用为触控电极(80),电源电压信号线(20)复用为触控信号线,不仅能降低制程成本和提高产能,且能保证触控和显示效果。

Description

微型发光二极管触控显示面板 技术领域
本发明涉及显示技术领域,尤其涉及一种微型发光二极管触控显示面板。
背景技术
微型发光二极管(Micro Light-Emitting Diode,Micro-LED)由微米级半导体发光单元阵列组成,是新型显示技术与发光二极管(Light-Emitting Diode,LED)技术二者复合集成的综合性技术,其具有自发光、高效率、低功耗、高集成、高稳定性、全天候工作的优点,被认为是最有前途的下一代新型显示与发光器件之一。Micro-LED因其体积小、灵活性高、易于拆解合并等特点,能够应用在现有的从最小到最大尺寸的任何显示应用场合中,并且在很多情况下Micro-LED将比液晶显示和有机发光二极管显示发挥更独特的效果。
触摸屏作为一种最新的输入设备,它是目前最简单、快捷的一种人机交互方式,是极富吸引力的全新多媒体交互设备。但目前已知的有机发光二极管显示中的触控技术不再适用于Micro-LED显示,且如若采用外挂触摸屏的方式,也将增加成本,增加屏幕厚度,降低使用舒适度。
综上,亟需提供一种Micro-LED触控显示屏的触控设计方案。
技术问题
本发明实施例提供一种微型发光二极管触控显示面板,以解决现有的Micro-LED触控显示屏采用外挂触控屏,导致屏幕厚度增加,增加生产成本的技术问题。
技术解决方案
为解决上述问题,本发明提供的技术方案如下:
本发明实施例提供一种微型发光二极管触控显示面板,包括:
阵列基板,包括阵列设置的多个像素驱动电路;
多条电源电压信号线,设置于所述阵列基板上,且与对应的所述像素驱动电路电连接;
呈阵列分布的多个第一接触电极,设置于所述电源电压信号线上,且与对应的所述电源电压信号线电连接;以及
阵列分布的多个微发光单元,所述微发光单元包括LED芯片和第一电极,所述第一电极与对应的所述第一接触电极绑定连接;其中,
在所述微型发光二极管触控显示面板的显示驱动阶段,所述电源电压信号线向所述像素驱动电路传输电源电压信号;
在所述微型发光二极管触控显示面板的触控驱动阶段,所述第一接触电极复用为触控电极,所述电源电压信号线复用为触控信号线以传输触控信号;
每若干个第一接触电极复用为一个所述触控电极,所述若干个第一接触电极沿第一方向和第二方向分布,所述第一方向和所述第二方向相交;沿所述第一方向排列的所述第一接触电极之间相互接触连接,沿所述第二方向排列的所述第一接触电极均电连接至同一条所述电源电压信号线。
在本发明的至少一种实施例中,所述微型发光二极管触控显示面板包括显示区和位于显示区之外的绑定部,所述绑定部电连接驱动芯片,所述驱动芯片分时控制所述微型发光二极管触控显示面板的显示驱动和触控驱动,所述第一接触电极位于所述显示区,部分所述电源电压信号线电连接至所述绑定部。
在本发明的至少一种实施例中,所述微型发光二极管触控显示面板包括相互交错的多条扫描线和多条数据线,所述扫描线和所述数据线均与所述像素驱动电路电连接,所述微型发光二极管触控显示面板在一帧显示画面中的驱动周期包括相邻设置的第一时间段和第二时间段;
在所述第一时间段,所述驱动芯片向所述电源电压信号线传输直流电位信号,向各行所述扫描线逐行加载扫描信号,向各列所述数据线加载数据电压信号;
在所述第二时间段,所述驱动芯片向所述电源电压信号线传输触控信号,各行所述扫描线和各列所述数据线处于浮置状态;其中,所述第一时间段与所述第二时间段不重叠,所述第一时间段与所述第二时间段之和等于一帧显示周期。
在本发明的至少一种实施例中,所述微型发光二极管触控显示面板包括相互交错的多条扫描线和多条数据线,所述扫描线和所述数据线均与所述像素驱动电路电连接,所述微型发光二极管触控显示面板在一帧显示画面中的驱动周期包括至少两第一显示间隔和至少两第一触控间隔,所述第一显示间隔和所述第一触控间隔依次交替设置;
在第一显示间隔,所述驱动芯片向所述电源电压信号线传输直流电位信号,向部分所述扫描线逐行加载扫描信号,向各列所述数据线加载数据电压信号;
在第一触控间隔,所述驱动芯片向所述电源电压信号线传输触控信号,各行所述扫描线和各列所述数据线处于浮置状态;其中,所述第一显示间隔和所述第一触控间隔不重叠,且所述至少两第一显示间隔和所述至少两第一触控间隔之和等于一帧显示画面的驱动周期。
在本发明的至少一种实施例中,所述电源电压信号线包括在所述显示阶段用于传输直流高电位信号的第一电源信号线,以及在所述显示阶段用于传输直流低电位信号的第二电源信号线,其中,所述第一电源信号线和所述第二电源信号线中的至少之一复用为所述触控信号线。
在本发明的至少一种实施例中,任意相邻的触控电极之间相互绝缘,一个所述触控电极对应电连接的若干条所述电源电压信号线中的至少一条与所述绑定部电连接。
本发明实施例还提供另一种微型发光二极管触控显示面板,包括:
阵列基板,包括阵列设置的多个像素驱动电路;
多条电源电压信号线,设置于所述阵列基板上,且与对应的所述像素驱动电路电连接;
阵列分布的多个第一接触电极,设置于所述电源电压信号线上,且与对应的所述电源电压信号线电连接;以及
阵列分布的多个微发光单元,所述微发光单元包括第一电极,所述第一电极与对应的所述第一接触电极绑定连接;其中,
在所述微型发光二极管触控显示面板的显示驱动阶段,所述电源电压信号线向所述像素驱动电路传输电源电压信号;
在所述微型发光二极管触控显示面板的触控驱动阶段,所述第一接触电极复用为触控电极,所述电源电压信号线复用为触控信号线以传输触控信号。
在本发明的至少一种实施例中,每若干个第一接触电极复用为一个所述触控电极,所述若干个第一接触电极沿第一方向和第二方向分布,所述第一方向和所述第二方向相交;其中,沿所述第一方向排列的所述第一接触电极之间相互接触连接,沿所述第二方向排列的所述第一接触电极均电连接至同一条所述电源电压信号线。
在本发明的至少一种实施例中,所述微型发光二极管触控显示面板包括显示区和位于显示区之外的绑定部,所述绑定部电连接有驱动芯片,所述驱动芯片分时控制所述微型发光二极管触控显示面板的显示驱动和触控驱动,所述第一接触电极位于所述显示区,部分所述电源电压信号线电连接至所述绑定部。
在本发明的至少一种实施例中,所述微型发光二极管触控显示面板包括相互交错的多条扫描线和多条数据线,所述扫描线和所述数据线均与所述像素驱动电路电连接,所述微型发光二极管触控显示面板在一帧显示画面中的驱动周期包括相邻设置的第一时间段和第二时间段;
在所述第一时间段,所述驱动芯片向所述电源电压信号线传输直流电位信号,向各行所述扫描线逐行加载扫描信号,向各列所述数据线加载数据电压信号;
在所述第二时间段,所述驱动芯片向所述电源电压信号线传输触控信号,各行所述扫描线和各列所述数据线处于浮置状态;其中,所述第一时间段与所述第二时间段不重叠,所述第一时间段与所述第二时间段之和等于一帧显示周期。
在本发明的至少一种实施例中,所述微型发光二极管触控显示面板包括相互交错的多条扫描线和多条数据线,所述扫描线和所述数据线均与所述像素驱动电路电连接,所述微型发光二极管触控显示面板在一帧显示画面中的驱动周期包括至少两第一显示间隔和至少两第一触控间隔,所述第一显示间隔和所述第二触控间隔依次交替设置;
在第一显示间隔,所述驱动芯片向所述电源电压信号线传输直流电位信号,向部分所述扫描线逐行加载扫描信号,向各列所述数据线加载数据电压信号;
在第一触控间隔,所述驱动芯片向所述电源电压信号线传输触控信号,各行所述扫描线和各列所述数据线处于浮置状态;其中,所述第一显示间隔和所述第一触控间隔不重叠,且所述至少两第一显示间隔和所述至少两第一触控间隔之和等于一帧显示画面的驱动周期。
在本发明的至少一种实施例中,所述电源电压信号线包括在所述显示阶段用于传输直流高电位信号的第一电源信号线,以及在所述显示阶段用于传输直流低电位信号的第二电源信号线,其中,所述第一电源信号线和所述第二电源信号线中的至少之一复用为所述触控信号线。
在本发明的至少一种实施例中,所述第二电源信号线复用为所述触控信号线。
在本发明的至少一种实施例中,任意相邻的触控电极之间相互绝缘,一个所述触控电极对应电连接的若干条所述电源电压信号线中的至少一条与所述绑定部电连接。
在本发明的至少一种实施例中,所述多个第一接触电极包括:
阵列分布的多个第一触控电极,沿所述第一方向排布且呈多行排列,每一行的所述第一触控电极之间电连接;以及
阵列分布且与所述第一触控电极绝缘的多个第二触控电极,沿所述第二方向排布且呈多列排列,每一列的所述第二触控电极之间电连接。
在本发明的至少一种实施例中,所述微型发光二极管触控显示面板还包括多条第一桥接线,所述第一桥接线电连接同一列的相邻两所述第二触控电极,同一行的相邻两所述第一触控电极之间通过对应的所述第一接触电极电连接;所述第一触控电极与所述第二触控电极同层设置,所述第一触控电极与所述第一桥接线异层设置。
在本发明的至少一种实施例中,一行所述第一触控电极或一列所述第二触控电极通过同一条所述电源电压信号线电连接至所述绑定部。
在本发明的至少一种实施例中,所述第一接触电极和所述电源电压信号线之间设有第一绝缘层,所述第一绝缘层包括第一接触孔,所述第一接触电极通过所述第一接触孔与对应的所述电源电压信号线电连接。
在本发明的至少一种实施例中,所述微型发光二极管触控显示面板还包括阵列分布的多个第二接触电极,所述第二接触电极与所述第一接触电极同层设置,所述第一接触电极和所述第二接触电极上设有第二绝缘层,所述第二绝缘层包括多个第二接触孔和多个第三接触孔,所述第一电极通过所述第二接触孔与所述第一接触电极电连接,所述微发光单元还包括第二电极,所述第二电极通过所述第三接触孔与所述第二接触电极电连接。
在本发明的至少一种实施例中,所述第二接触电极沿所述第一方向和所述第二方向排布,所述第二接触电极和所述第一接触电极呈交替行分布。
有益效果
本发明实施例提供一种微型发光二极管触控显示面板,包括多个像素驱动电路、多条电源电压信号线、多个第一接触电极以及阵列分布的多个微发光单元,多条电源电压信号线与所述像素驱动电路以及所述第一接触电极电连接,所述微发光单元与所述第一接触电极绑定连接,在显示驱动阶段,所述电源电压信号线向所述像素驱动电路传输电源电压信号;在触控驱动阶段,所述第一接触电极复用为触控电极,所述电源电压信号线复用为触控信号线以传输触控信号,此种设计,可降低制程成本和提高产能,且又能保证很好的触控和显示效果。
附图说明
图1为本发明实施例提供的微型发光二极管触控显示面板的膜层叠构图。
图2为本发明实施例提供的一个触控电极的结构示意图。
图3为本发明实施例提供的微型发光二极管触控显示面板的平面示意图。
图4为本发明实施例提供的像素驱动电路的电路原理示意图。
图5为本发明实施例提供的第一接触电极和电源电压信号线的结构示意图。
图6为本发明实施例提供的一帧显示画面的驱动周期的时序图。
图7为本发明另一实施例提供的一帧显示画面的驱动周期的时序图。
图8为本发明又一实施例提供的一帧显示画面的驱动周期的时序图。
图9为本发明另一实施例提供的第一接触电极和电源电压信号线的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“上”、包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。
请参阅图1,本发明实施例提供一种微型发光二极管触控显示面板100,所述微型发光二极管触控显示面板100包括阵列基板10、设置于所述阵列基板10上的多条电源电压信号线20、设置于所述电源电压信号线20上的多个第一接触电极31和多个第二接触电极32,以及阵列分布的多个微发光单元40。其中,所述阵列基板10包括阵列设置的多个像素驱动电路12,所述像素驱动电路12用以驱动所述微发光单元40发光。所述电源电压信号线20与对应的所述像素驱动电路12电连接,所述第一接触电极31与对应的所述电源电压信号线20电连接,所述微发光单元40包括第一电极41和第二电极43,所述第一电极41与对应的所述第一接触电极31绑定连接,所述第二电极43与对应的所述第二接触电极32绑定连接,所述第一电极41为N电极(阴极)、P电极(阳极)中的一者,所述第二电极43为N电极、P电极中的另一者。所述微发光单元40通过与对应的所述第一接触电极31和所述第二接触电极32绑定连接来实现与所述像素驱动电路12的电连接。
可以理解的是,所述像素驱动电路12、所述电源电压信号线20、所述第一接触电极31以及所述微发光单元40等相邻膜层之间设置有绝缘层以隔开。
所述第一接触电极31和所述电源电压信号线20之间设有第一绝缘层90,所述第一绝缘层90包括第一接触孔101,所述第一接触电极31通过所述第一接触孔101与对应的所述电源电压信号线20电连接。
所述第二接触电极32与所述第一接触电极31同层设置,所述第一接触电极31和所述第二接触电极32上设有第二绝缘层70,以保护所述第一接触电极31、第二接触电极32及其下方的金属器件,所述第二绝缘层70包括多个第二接触孔102和多个第三接触孔103,所述第二接触孔102露出相应的所述第一接触电极31的部分表面,所述第三接触孔103露出相应的所述第二接触电极32的部分表面。所述第一电极41通过所述第二接触孔102与所述第一接触电极31电连接,所述第二电极43通过所述第三接触孔103与所述第二接触电极32电连接。
在本发明实施例中,每一所述微发光单元40包括至少一微发光二极管(Micro LED)。具体地,所述微发光单元40包括Micro LED芯片42以及凸出于所述Micro LED芯片42的所述第一电极41和所述第二电极43。
在本发明的实施例中,所述电源电压信号线20包括第一电源信号线和第二电源信号线,在所述像素驱动电路12驱动显示时(即显示阶段),所述第一电源信号线用于传输直流高电位信号,所述第二电源信号线用于传输直流低电位信号,具体地,所述第一电源信号线可传输电源正电压信号VDD,所述第二电源信号线可传输电源负电压信号VSS或者初始化电压信号Vi。请参阅图3,所述微型发光二极管触控显示面板100包括多条扫描线G1~G(n)和多条数据线D1~D(n),所述扫描线G1~G(n)和所述数据线G1~G(n)交叉限定出多个像素区域,所述像素驱动电路12和所述微发光单元40位于对应的所述像素区域内,所述扫描线G(n)向所述像素驱动电路12传输扫描信号Scan(n),所述数据线D(n)向所述像素驱动电路12传输数据电压信号Data。
请参阅图4,图4为本发明实施例提供的像素驱动电路12的原理图,所述像素驱动电路12可为2T1C(2个晶体管和1个存储电容)、6T1C(6个晶体管和1个存储电容)或者7T1C(7个晶体管和1个存储电容),本发明实施例以6T1C电路为例进行说明。所述像素驱动电路12包括第一晶体管T1、第二晶体管T2、第三晶体管T3、第四晶体管T4、第五晶体管T5以及第六晶体管T6,所述第一晶体管T1为驱动晶体管,所述第二晶体管T2为开关晶体管,所述第三晶体管T3为补偿晶体管,所述第四晶体管T4为初始化晶体管,所述第五晶体管T5为第一发光控制晶体管,所述第六晶体管T6为第二发光控制晶体管。
具体地,具体地,所述第二晶体管T2的栅极电连接第n级扫描信号线G(n),其漏极电连接数据线D(n),其源极电连接所述第五晶体管T5的漏极,所述第五晶体管T5的栅极电连接发光控制信号线EM,所述第五晶体管T5的源极电连接传输电源正压电信号VDD的电源信号线,第四晶体管T4的栅极电连接第n-1级扫描信号线G(n-1),第四晶体管T4的源极电连接传输初始化信号VI的初始化信号线,第四晶体管T4的漏极电连接所述第一晶体管的栅极,所述第六晶体管T6的栅极电连接发光控制信号线EM,第六晶体管T6的源极电连接所述第一晶体管T1的漏极以及第三晶体管T3的漏极,第六晶体管T6的漏极电连接对应的微发光单元40的阳极(P结),微发光单元40的阴极(N结)电连接传输电源负电压信号VSS的电源信号线。所述第三晶体管T3的栅极电连接第n级扫描信号线G(n),所述第三晶体管T3的源极电连接所述第一晶体管T1的栅极,所述第一晶体管T1的栅极还作为存储电容Cst的一电极板,存储电容Cst的另一电极板与所述第五晶体管的源极电连接。
上述晶体管T1~T6可为P型晶体管,在其他实施例中还可为N型晶体管。所述第三晶体管T3和所述第四晶体管T4可为双栅极晶体管。
所述像素驱动电路12的驱动显示阶段包括复位、补偿和发光三个过程。复位过程:当扫描线scan(n-1)为低电平时,第四晶体管T4打开,初始化信号输入,以复位第一晶体管T1的栅极(图4中G点),存储电容Cst放电;补偿阶段:扫描线scan(n)变为低电平,第二晶体管T2、第三晶体管T3、第一晶体管T1打开,数据电压信号输入,G点电位变成Vdata+Vth(Vdata为数据线输入的数据电压,Vth为阈值电压),电容Cst充电,实现数据信号的输入及Vth的补偿;发光阶段:发光控制信号线EM变为低电平,第五晶体管T5、第六晶体管T6打开,第一电源信号线输入直流高电位信号,提供电源,Micro LED持续发光。
在现有的Micro LED触控显示面板中,一般采用外挂式触控结构,即将触控基板和显示基板单独通过两块基板制备,然后再将两者贴合,外挂式触控显示面板会增加屏幕厚度和增加生产成本。嵌入式触控结构将触控层集成在显示基板内部,虽然在一定程度上能够减薄屏幕厚度,但会采用单独金属层进行触控信号线设计,会增加显示基板的阵列制程和显示基板的生产时间,降低产能。本发明针对上述现有的Micro LED触控显示面板存在的缺陷,对触控结构进行改进,将阵列基板10上的电源电压信号线20复用为触控信号线,不必增加新的制程,可降低生产成本和提高产能。
具体地,在所述微型发光二极管触控显示面板100的显示驱动阶段,所述电源电压信号线20向所述像素驱动电路12传输电源电压信号;在所述微型发光二极管触控显示面板100的触控驱动阶段,所述第一接触电极31阵列分布,所述第一接触电极31复用为触控电极80,所述电源电压信号线20复用为触控信号线以传输触控信号。如此一来,实现Micro LED触控显示面板的触控功能便不必增加新的膜层结构,可大大节约制程和提高产能。
请参阅图2,由于Micro LED芯片的尺寸较小,为几十微米,触控电极的尺寸为3~5毫米,因此一个第一接触电极31的尺寸不足以满足触控电极80的触控精度要求,因此本发明实施例采用若干个所述第一接触电极31来复用为一个触控电极80。具体地,每若干个第一接触电极31复用为一个所述触控电极80,所述若干个第一接触电极31沿第一方向X和第二方向Y分布,所述第一方向X和所述第二方向Y相交;其中,沿所述第一方向X排列的所述第一接触电极31之间相互接触连接,即同一行的所述第一接触电极31之间彼此连接,沿所述第二方向Y排列的所述第一接触电极31均电连接至同一条所述电源电压信号线20,即一条所述电源电压信号线20电连接同一列的所述电源电压信号线20。如此设计,既可使得若干个第一接触电极31之间能够相互连通,复用为一个触控电极80,又能实现电源电压信号线20向每一个微发光单元40对应的像素驱动电路12传输电源电压信号。
可以理解的是,一个所述触控电极80需要复用的第一接触电极31的数量,视实际的微发光单元40的尺寸大小以及微发光单元40之间的间距而定。
所述第二接触电极32沿所述第一方向X和所述第二方向Y排布,所述第二接触电极32和所述第一接触电极31呈交替行分布。所述第二接触电极32的数量与所述第一接触电极31的数量相同。
在本发明的实施例中,在一个触控电极80中,同一行的所述第一接触电极31之间相互连接以呈长条形电极排布,多条所述电源电压信号线20沿第一方向X排布,沿第二方向Y延伸,所述电源电压信号线20与该长条形电极相互交叉形成金属网格状图案,因此所述触控电极80的图案可以看做为金属网格状图案。
请参阅图5,所述微型发光二极管触控显示面板100包括显示区和位于显示区之外的绑定部50,所述绑定部50电连接有驱动芯片(图中未示出),所述第一接触电极31位于所述显示区,部分所述电源电压信号线20电连接所述绑定部50。具体地,所述绑定部50与一柔性电路板60电连接,所述驱动芯片与所述柔性电路板60电连接。
所述驱动芯片可为集成有触控控制功能和显示控制功能的芯片,可分时控制微型发光二极管触控显示面板100的触控驱动和显示驱动。
在一些实施例中,可采用垂直分时法(V Blanking Timing)进行显示驱动和触控驱动,即一帧画面的驱动周期仅包括一个显示时间段和一个触控时间段。在一帧显示画面的驱动周期中,第一接触电极31和电源电压信号线20先传输电源电压信号以驱动像素显示,完成所有行的像素的显示驱动后,在一帧驱动周期的剩下的时间内,第一接触电极31再作为触控电极80,电源电压信号线20作为触控信号线,完成触控驱动。
在其他实施例中,也可采用水平驱动法(Long H Blanking Timing)进行显示驱动和触控驱动,即一帧显示画面的驱动周期包括至少两个显示时间段和两个触控时间段,显示时间段和触控时间段交替设置,第一接触电极31和电源电压信号线20先驱动部分像素进行显示,完成每一帧画面的一部分后,再转换为触控电极80和触控信号线,在该一帧画面的下一部分接着执行触控驱动;当完成第一个显示时间段和第一个触控时间段,再依次进入第二个显示时间段和第二个触控时间段,以此循环至完成该一帧画面的驱动周期。将每一驱动周期设置为交替排布的至少两显示时间段和至少两触控时间段,可以更进一步地提高第一接触电极31作为触控电极80用时的感测精确度。
其中,所述显示时间段的时长可与所述触控时间段的时长相等,在其他实施例中,所述显示时间段的时长也可与所述触控时间段的时长不等。
具体地,请参阅图6,图6为垂直分时法中一帧画面的驱动周期的时序图,在本发明的一些实施例中,所述微型发光二极管触控显示面板100在一帧显示画面中的驱动周期T包括相邻设置的第一时间段T1和第二时间段T2;在所述第一时间段T1,所述驱动芯片向所述电源电压信号线20传输直流电位信号,向各行所述扫描线逐行加载扫描信号,向各列所述数据线加载数据电压信号;在所述第二时间段T2,所述驱动芯片向所述电源电压信号线20传输触控信号,各行所述扫描线G(n)和各列所述数据线D(n)处于浮置状态;其中,所述第一时间段T1与所述第二时间段T2不重叠,所述第一时间段T1与所述第二时间段T2之和等于一帧显示周期T,即T=T1+T2。
请参阅图7和图8,图7和图8为本发明不同实施例中的水平驱动法中一帧画面的驱动周期的部分时序图,在本发明的一些实施例中,所述微型发光二极管触控显示面板100在一帧显示画面中的驱动周期T包括至少两第一显示间隔t1和至少两第一触控间隔t2,所述第一显示间隔t1和所述第一触控间隔t2依次交替设置。在第一显示间隔t1,所述驱动芯片向所述电源电压信号线20传输直流电位信号,向部分所述扫描线逐行加载扫描信号,向各列所述数据线加载数据电压信号。在第一触控间隔t2,所述驱动芯片向所述电源电压信号线20传输触控信号,所述第一接触电极31复用为触控电极以感测触控电容变化,各行所述扫描线和各列所述数据线处于浮置状态;其中,所述第一显示间隔t1和所述第一触控间隔t2不重叠,且所述至少两第一显示间隔t1和所述至少两第一触控间隔t2之和等于一帧显示画面的驱动周期T。
如图7所示,在具体的实施例中,在每一第一显示间隔t1内,可仅驱动一行像素显示,再在接下来的第一触控间隔t2内,完成触控驱动,重复循环第一显示时间间隔t1和第一触控时间间隔t2,直至完成所有行像素的显示驱动。
如图8所示,在其他具体的实施例中,在每一第一显示时间间隔t1内,可逐行驱动三行像素显示,再在接下来的第一触控间隔t2内,完成触控驱动,重复循环第一显示时间间隔t1和第一触控时间间隔t2,直至完成所有行像素的显示驱动。
在一些实施例中,所述第一电源信号线和所述第二电源信号线中的至少之一复用为所述触控信号线。在本发明的具体实施例中,可将所述第二电源信号线复用为触控信号线,具体地,可选用传输电源负电压信号VSS的电源信号线来复用为触控信号线。即在显示阶段,所述第二电源信号线传输电源负电压信号VSS,在触控阶段,所述第二电源信号线传输触控信号Touch,所述触控信号Touch可包括脉冲信号。
请参阅图2和图5,在本发明的一些实施例中,所述微型发光二极管触控显示面板100可为自电容触控显示面板,多个所述第一接触电极31均复用为感应电极。所述触控电极80的图案可为方形或矩形图案。任意相邻的触控电极80之间均相互绝缘,即相邻的触控电极80所对应的第一接触电极31之间相互断开。一个所述触控电极80对应电连接的若干条所述电源电压信号线20中的至少一条与所述绑定部50电连接。在本发明的实施例中,由于每个触控电极80中的第一接触电极31之间彼此是连通的,因此每个触控电极80中仅需引出一条所述电源电压信号线20绑定连接至所述绑定部50,便能实现电源电压信号向每个像素驱动电路12的传递。
请参阅图1,所述微型发光二极管触控显示面板100包括衬底11、设于衬底11上的缓冲层、设于所述缓冲层上的半导体层、设于所述半导体层上的第一栅绝缘层、设于所述第一栅绝缘层上的第一金属层、设于所述第一金属层上的第二栅绝缘层、设于第二栅绝缘层上的第二金属层、设于所述第二金属层上的层间介质层、设于所述层间介质层上的第三金属层、设于所述第三金属层上的第一平坦化层、设于所述第一平坦化层上的第四金属层、设于所述第四金属层上的第一绝缘层90、设于所述第一绝缘层90上的第五金属层,以及设于所述第五金属层上的第二绝缘层70。第一绝缘层90、第二绝缘层70也可为平坦化层,起到绝缘和平坦作用。
其中,所述半导体层包括用于形成所述像素驱动电路12的各个晶体管的有源层121,所述第一金属层包括用于形成所述像素驱动电路12的各个晶体管的栅极122和扫描线,所述第二金属层包括用于形成所述像素驱动电路12的存储电容的一个电极板123和用于传输初始化信号Vi的初始化信号线,所述第三金属层包括用于形成所述像素驱动电路12的各个晶体管的源漏极层124和数据线,所述第四金属层包括电源电压信号线20,例如第一电源信号线和第二电源信号线,所述第五金属层包括第一接触电极31和第二接触电极32。
在其他实施例中,如图9所示,所述微型发光二极管触控显示面板100可为互电容触控显示面板,多个所述第一接触电极31包括阵列分布的多个第一触控电极81和阵列分布的多个第二触控电极82,所述第一触控电极81和所述第二触控电极82之间相互绝缘。多个所述第一触控电极81沿第一方向X排布且呈多行排列,每一行的多个第一触控电极81之间电连接。多个所述第二触控电极82沿第二方向Y排布且呈多列排列,每一列的所述第二触控电极82之间电连接。
所述第一方向X可为行方向,所述第二方向Y可为列方向,在具体的实施例中,所述第一方向X和所述第二方向Y可垂直相交。所述第一接触电极31在复用为触控电极80时,所述第一触控电极81和所述第二触控电极82中的一者可为发射电极,另一者可为接收电极。
在具体的实施例中,所述第一触控电极81和所述第二触控电极82的图案可为菱形图案。
所述微型发光二极管触控显示面板100还可包括多条第一桥接线33,所述第一桥接线33电连接同一列的相邻两所述第二触控电极82,同一行的相邻两所述第一触控电极81之间通过对应的所述第一接触电极31电连接;所述第一触控电极81与所述第二触控电极82同层设置,所述第一触控电极81与所述第一桥接线33异层设置。
如图9所示,在互电容触控方案中,一行所述第一触控电极81或一列所述第二触控电极82通过同一条所述电源电压信号线20电连接至所述绑定部50。具体地,一行所述第一触控电极81可通过边缘的一个第一触控电极中的一条电源电压信号线20引出至所述绑定部50,一列所述第二触控电极82可通过边缘的一个第二触控电极82中的一条电源电压信号线20引出至所述绑定部50。
综上,本发明实施例提供一种微型发光二极管触控显示面板100,包括多个像素驱动电路12、多条电源电压信号线20、多个第一接触电极31以及阵列分布的多个微发光单元40,多条电源电压信号线20与所述像素驱动电路12以及所述第一接触电极31电连接,所述微发光单元40与所述第一接触电极31绑定连接,在显示驱动阶段,所述电源电压信号线20向所述像素驱动电路12传输电源电压信号;在触控驱动阶段,所述电源电压信号线20复用为触控信号线以传输触控信号,此种设计,可降低制程成本和提高产能,且又能保证很好的触控和显示效果。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本发明实施例所提供的一种微型发光二极管触控显示面板进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例的技术方案的范围。

Claims (20)

  1. 一种微型发光二极管触控显示面板,包括:
    阵列基板,包括阵列设置的多个像素驱动电路;
    多条电源电压信号线,设置于所述阵列基板上,且与对应的所述像素驱动电路电连接;
    呈阵列分布的多个第一接触电极,设置于所述电源电压信号线上,且与对应的所述电源电压信号线电连接;以及
    阵列分布的多个微发光单元,所述微发光单元包括LED芯片和第一电极,所述第一电极与对应的所述第一接触电极绑定连接;其中,
    在所述微型发光二极管触控显示面板的显示驱动阶段,所述电源电压信号线向所述像素驱动电路传输电源电压信号;
    在所述微型发光二极管触控显示面板的触控驱动阶段,所述第一接触电极复用为触控电极,所述电源电压信号线复用为触控信号线以传输触控信号;
    每若干个第一接触电极复用为一个所述触控电极,所述若干个第一接触电极沿第一方向和第二方向分布,所述第一方向和所述第二方向相交;沿所述第一方向排列的所述第一接触电极之间相互接触连接,沿所述第二方向排列的所述第一接触电极均电连接至同一条所述电源电压信号线。
  2. 根据权利要求1所述的微型发光二极管触控显示面板,其中,所述微型发光二极管触控显示面板包括显示区和位于显示区之外的绑定部,所述绑定部电连接驱动芯片,所述驱动芯片分时控制所述微型发光二极管触控显示面板的显示驱动和触控驱动,所述第一接触电极位于所述显示区,部分所述电源电压信号线电连接至所述绑定部。
  3. 根据权利要求2所述的微型发光二极管触控显示面板,其中,所述微型发光二极管触控显示面板包括相互交错的多条扫描线和多条数据线,所述扫描线和所述数据线均与所述像素驱动电路电连接,所述微型发光二极管触控显示面板在一帧显示画面中的驱动周期包括相邻设置的第一时间段和第二时间段;
    在所述第一时间段,所述驱动芯片向所述电源电压信号线传输直流电位信号,向各行所述扫描线逐行加载扫描信号,向各列所述数据线加载数据电压信号;
    在所述第二时间段,所述驱动芯片向所述电源电压信号线传输触控信号,各行所述扫描线和各列所述数据线处于浮置状态;其中,所述第一时间段与所述第二时间段不重叠,所述第一时间段与所述第二时间段之和等于一帧显示周期。
  4. 根据权利要求2所述的微型发光二极管触控显示面板,其中,所述微型发光二极管触控显示面板包括相互交错的多条扫描线和多条数据线,所述扫描线和所述数据线均与所述像素驱动电路电连接,所述微型发光二极管触控显示面板在一帧显示画面中的驱动周期包括至少两第一显示间隔和至少两第一触控间隔,所述第一显示间隔和所述第一触控间隔依次交替设置;
    在第一显示间隔,所述驱动芯片向所述电源电压信号线传输直流电位信号,向部分所述扫描线逐行加载扫描信号,向各列所述数据线加载数据电压信号;
    在第一触控间隔,所述驱动芯片向所述电源电压信号线传输触控信号,各行所述扫描线和各列所述数据线处于浮置状态;其中,所述第一显示间隔和所述第一触控间隔不重叠,且所述至少两第一显示间隔和所述至少两第一触控间隔之和等于一帧显示画面的驱动周期。
  5. 根据权利要求2所述的微型发光二极管触控显示面板,其中,所述电源电压信号线包括在所述显示阶段用于传输直流高电位信号的第一电源信号线,以及在所述显示阶段用于传输直流低电位信号的第二电源信号线,其中,所述第一电源信号线和所述第二电源信号线中的至少之一复用为所述触控信号线。
  6. 根据权利要求5所述的微型发光二极管触控显示面板,其中,任意相邻的触控电极之间相互绝缘,一个所述触控电极对应电连接的若干条所述电源电压信号线中的至少一条与所述绑定部电连接。
  7. 一种微型发光二极管触控显示面板,包括:
    阵列基板,包括阵列设置的多个像素驱动电路;
    多条电源电压信号线,设置于所述阵列基板上,且与对应的所述像素驱动电路电连接;
    呈阵列分布的多个第一接触电极,设置于所述电源电压信号线上,且与对应的所述电源电压信号线电连接;以及
    阵列分布的多个微发光单元,所述微发光单元包括第一电极,所述第一电极与对应的所述第一接触电极绑定连接;其中,
    在所述微型发光二极管触控显示面板的显示驱动阶段,所述电源电压信号线向所述像素驱动电路传输电源电压信号;
    在所述微型发光二极管触控显示面板的触控驱动阶段,所述第一接触电极复用为触控电极,所述电源电压信号线复用为触控信号线以传输触控信号。
  8. 根据权利要求7所述的微型发光二极管触控显示面板,其中,每若干个第一接触电极复用为一个所述触控电极,所述若干个第一接触电极沿第一方向和第二方向分布,所述第一方向和所述第二方向相交;其中,
    沿所述第一方向排列的所述第一接触电极之间相互接触连接,沿所述第二方向排列的所述第一接触电极均电连接至同一条所述电源电压信号线。
  9. 根据权利要求8所述的微型发光二极管触控显示面板,其中,所述微型发光二极管触控显示面板包括显示区和位于显示区之外的绑定部,所述绑定部电连接的驱动芯片,所述驱动芯片分时控制所述微型发光二极管触控显示面板的显示驱动和控制触控驱动,所述第一接触电极位于所述显示区,部分所述电源电压信号线电连接至所述绑定部。
  10. 根据权利要求9所述的微型发光二极管触控显示面板,其中,所述微型发光二极管触控显示面板包括相互交错的多条扫描线和多条数据线,所述扫描线和所述数据线均与所述像素驱动电路电连接,所述微型发光二极管触控显示面板在一帧显示画面中的驱动周期包括相邻设置的第一时间段和第二时间段;
    在所述第一时间段,所述驱动芯片向所述电源电压信号线传输直流电位信号,向各行所述扫描线逐行加载扫描信号,向各列所述数据线加载数据电压信号;
    在所述第二时间段,所述驱动芯片向所述电源电压信号线传输触控信号,各行所述扫描线和各列所述数据线处于浮置状态;其中,所述第一时间段与所述第二时间段不重叠,所述第一时间段与所述第二时间段之和等于一帧显示周期。
  11. 根据权利要求9所述的微型发光二极管触控显示面板,其中,所述微型发光二极管触控显示面板包括相互交错的多条扫描线和多条数据线,所述扫描线和所述数据线均与所述像素驱动电路电连接,所述微型发光二极管触控显示面板在一帧显示画面中的驱动周期包括至少两第一显示间隔和至少两第一触控间隔,所述第一显示间隔和所述第一触控间隔依次交替设置;
    在第一显示间隔,所述驱动芯片向所述电源电压信号线传输直流电位信号,向部分所述扫描线逐行加载扫描信号,向各列所述数据线加载数据电压信号;
    在第一触控间隔,所述驱动芯片向所述电源电压信号线传输触控信号,各行所述扫描线和各列所述数据线处于浮置状态;其中,所述第一显示间隔和所述第一触控间隔不重叠,且所述至少两第一显示间隔和所述至少两第一触控间隔之和等于一帧显示画面的驱动周期。
  12. 根据权利要求9所述的微型发光二极管触控显示面板,其中,所述电源电压信号线包括在所述显示阶段用于传输直流高电位信号的第一电源信号线,以及在所述显示阶段用于传输直流低电位信号的第二电源信号线,其中,所述第一电源信号线和所述第二电源信号线中的至少之一复用为所述触控信号线。
  13. 根据权利要求12所述的微型发光二极管触控显示面板,其中,所述第二电源信号线复用为所述触控信号线。
  14. 根据权利要求13所述的微型发光二极管触控显示面板,其中,任意相邻的触控电极之间相互绝缘,一个所述触控电极对应电连接的若干条所述电源电压信号线中的至少一条与所述绑定部电连接。
  15. 根据权利要求12所述的微型发光二极管触控显示面板,其中,所述多个触控电极包括:
    阵列分布的多个第一触控电极,沿所述第一方向排布且呈多行排列,每一行的所述第一触控电极之间电连接;以及
    阵列分布且与所述第一触控电极绝缘的多个第二触控电极,沿所述第二方向排布且呈多列排列,每一列的所述第二触控电极之间电连接。
  16. 根据权利要求15所述的微型发光二极管触控显示面板,其中,所述微型发光二极管触控显示面板还包括多条第一桥接线,所述第一桥接线电连接同一列的相邻两所述第二触控电极,同一行的相邻两所述第一触控电极之间通过对应的所述第一接触电极电连接;所述第一触控电极与所述第二触控电极同层设置,所述第一触控电极与所述第一桥接线异层设置。
  17. 根据权利要求16所述的微型发光二极管触控显示面板,其中,一行所述第一触控电极或一列所述第二触控电极通过同一条所述电源电压信号线电连接至所述绑定部。
  18. 根据权利要求13所述的微型发光二极管触控显示面板,其中,所述第一接触电极和所述电源电压信号线之间设有第一绝缘层,所述第一绝缘层包括第一接触孔,所述第一接触电极通过所述第一接触孔与对应的所述电源电压信号线电连接。
  19. 根据权利要求18所述的微型发光二极管触控显示面板,其中,所述微型发光二极管触控显示面板还包括阵列分布的多个第二接触电极,所述第二接触电极与所述第一接触电极同层设置,所述第一接触电极和所述第二接触电极上设有第二绝缘层,所述第二绝缘层包括多个第二接触孔和多个第三接触孔,所述第一电极通过所述第二接触孔与所述第一接触电极电连接,所述微发光单元还包括第二电极,所述第二电极通过所述第三接触孔与所述第二接触电极电连接。
  20. 根据权利要求19所述的微型发光二极管触控显示面板,其中,所述第二接触电极沿所述第一方向和所述第二方向排布,所述第二接触电极和所述第一接触电极呈交替行分布。
PCT/CN2021/140367 2021-12-11 2021-12-22 微型发光二极管触控显示面板 WO2023103091A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/623,700 US20240118757A1 (en) 2021-12-11 2021-12-22 Micro light emitting diode touch display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111510958.1A CN114201073B (zh) 2021-12-11 2021-12-11 微型发光二极管触控显示面板
CN202111510958.1 2021-12-11

Publications (1)

Publication Number Publication Date
WO2023103091A1 true WO2023103091A1 (zh) 2023-06-15

Family

ID=80652574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140367 WO2023103091A1 (zh) 2021-12-11 2021-12-22 微型发光二极管触控显示面板

Country Status (3)

Country Link
US (1) US20240118757A1 (zh)
CN (1) CN114201073B (zh)
WO (1) WO2023103091A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597229B (zh) * 2022-03-22 2023-06-27 业成科技(成都)有限公司 触控式微型发光二极体显示器及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782959A (zh) * 2019-02-02 2019-05-21 京东方科技集团股份有限公司 触摸显示屏、驱动方法及显示装置
CN109840033A (zh) * 2018-11-26 2019-06-04 友达光电股份有限公司 显示装置
CN110010021A (zh) * 2019-04-26 2019-07-12 京东方科技集团股份有限公司 无机发光二极管显示基板、显示装置及驱动方法
CN111580702A (zh) * 2020-06-02 2020-08-25 上海天马微电子有限公司 显示面板及显示装置
CN111653212A (zh) * 2020-06-10 2020-09-11 武汉华星光电技术有限公司 微型发光二极管显示面板及其制作方法、显示装置
KR20210057941A (ko) * 2019-11-13 2021-05-24 엘지디스플레이 주식회사 센서를 포함하는 led 표시장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109213361B (zh) * 2017-07-06 2022-07-08 鸿富锦精密工业(深圳)有限公司 微型led显示面板
CN111796712A (zh) * 2020-06-04 2020-10-20 上海天马微电子有限公司 触控装置及触控检测方法
CN111930259A (zh) * 2020-08-20 2020-11-13 上海天马微电子有限公司 一种触控显示装置、触控显示面板、阵列基板及驱动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109840033A (zh) * 2018-11-26 2019-06-04 友达光电股份有限公司 显示装置
CN109782959A (zh) * 2019-02-02 2019-05-21 京东方科技集团股份有限公司 触摸显示屏、驱动方法及显示装置
CN110010021A (zh) * 2019-04-26 2019-07-12 京东方科技集团股份有限公司 无机发光二极管显示基板、显示装置及驱动方法
KR20210057941A (ko) * 2019-11-13 2021-05-24 엘지디스플레이 주식회사 센서를 포함하는 led 표시장치
CN111580702A (zh) * 2020-06-02 2020-08-25 上海天马微电子有限公司 显示面板及显示装置
CN111653212A (zh) * 2020-06-10 2020-09-11 武汉华星光电技术有限公司 微型发光二极管显示面板及其制作方法、显示装置

Also Published As

Publication number Publication date
CN114201073A (zh) 2022-03-18
US20240118757A1 (en) 2024-04-11
CN114201073B (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
US11837179B2 (en) Smart pixel lighting and display microcontroller
CN112562593B (zh) 一种显示面板和显示装置
WO2016206274A1 (zh) 内嵌式触摸显示屏、其驱动方法及显示装置
WO2016206224A1 (zh) 一种内嵌式触摸显示屏、其驱动方法及显示装置
WO2016206251A1 (zh) 一种内嵌式触摸显示屏、其驱动方法及显示装置
WO2020233233A1 (zh) 触控显示基板及其制作方法、触控显示装置
WO2021102905A1 (zh) 显示基板及其制作方法、显示装置
CN111508978A (zh) 一种显示面板及其制作方法、显示装置
CN111128048B (zh) 显示面板以及显示装置
CN106206670B (zh) Amoled显示装置及其阵列基板
US11877482B2 (en) Display substrate and method for manufacturing the same, driving method and display device
WO2019200901A1 (zh) 信号处理电路及其驱动方法、显示面板及其驱动方法及显示装置
WO2023103091A1 (zh) 微型发光二极管触控显示面板
CN111430434A (zh) 像素阵列、显示面板及显示装置
CN113205773B (zh) 显示面板及显示装置
CN114743504B (zh) 像素电路、显示面板及显示装置
CN114898711A (zh) 显示面板及显示装置
CN111722756A (zh) 一种内嵌触控模组及其驱动方法、触控面板
CN113299722A (zh) 显示面板
CN219285937U (zh) 显示面板及显示装置
CN215731718U (zh) 阵列基板、显示面板和显示装置
CN109559679B (zh) 触控显示面板及其驱动方法、像素电路、电子装置
WO2022160125A1 (zh) 像素驱动电路及其驱动方法、显示基板、显示装置
WO2023044679A1 (zh) 显示基板和显示装置
WO2023201609A1 (zh) 显示面板及其像素电路的驱动方法、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17623700

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967003

Country of ref document: EP

Kind code of ref document: A1