WO2023102629A2 - Enzima quimérica e processo para a produção de alcenos terminais - Google Patents

Enzima quimérica e processo para a produção de alcenos terminais Download PDF

Info

Publication number
WO2023102629A2
WO2023102629A2 PCT/BR2022/050482 BR2022050482W WO2023102629A2 WO 2023102629 A2 WO2023102629 A2 WO 2023102629A2 BR 2022050482 W BR2022050482 W BR 2022050482W WO 2023102629 A2 WO2023102629 A2 WO 2023102629A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
enzyme
chimeric enzyme
chimeric
acid
Prior art date
Application number
PCT/BR2022/050482
Other languages
English (en)
French (fr)
Other versions
WO2023102629A3 (pt
Inventor
Leticia Maria ZANPHORLIN MURAKAMI
Wesley CARDOSO GENEROSO
Gabriela FELIX PERSINOTI
Original Assignee
Cnpem - Centro Nacional De Pesquisa Em Energia E Materiais
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR102021024672-3A external-priority patent/BR102021024672A2/pt
Application filed by Cnpem - Centro Nacional De Pesquisa Em Energia E Materiais filed Critical Cnpem - Centro Nacional De Pesquisa Em Energia E Materiais
Publication of WO2023102629A2 publication Critical patent/WO2023102629A2/pt
Publication of WO2023102629A3 publication Critical patent/WO2023102629A3/pt

Links

Definitions

  • the present invention deals with a chimeric enzyme constructed for the production of terminal alkenes from fatty acids, as well as the process for the production of said alkenes using said enzyme.
  • the present invention belongs to the field of industrial biotechnology and has application in the biofuel and renewable chemical industry.
  • Terminal alkenes or alpha olefins, are chemical compounds that can be synthesized from fatty acids of renewable origin. These molecules make up a relevant platform for the industrial production of polymers, fertilizers, lubricants, surfactants, biofuels and other compounds currently obtained by petrochemical routes, and the market size for them is projected at USD 13,464 million for 2022.
  • CN 107201356 QINGDAO INSTITUTE OF BIOENERGY & BIOPROCESS TECHNOLOGY CAS BOEING INVESTMENT
  • CN 107201356 presents, as a solution, the addition of a ferredoxin - ferredoxin reductase system to support the activity of the OleTJE enzyme.
  • CN112111477 (YANGZHOU UNIVERSITY) proposes the use of a glucose - glucose oxidase system for the generation of hydrogen peroxide, in a mild and controlled manner, to support an engineered enzyme (P450BS) in the conversion of fatty acids to alkenes.
  • P450BS engineered enzyme
  • EP1940348 (DUPONT NUTRITION BIOSCIENCES), which presents a composition comprising a system of coupled enzymes in which oxidoreductases generate hydrogen peroxide from sugars in the reaction medium for consumption by a decarboxylase enzyme.
  • glycerol a waste of extreme relevance in the current scenario is glycerol.
  • product such as bioethanol and biodiesel
  • 100 kilos of glycerol are generated.
  • other important industries such as oleochemicals, for example, also generate glycerol as a process residue.
  • the volume of glycerol currently generated is greater than the capacity the market can absorb.
  • this waste has a low added value and, as an aggravating factor, unused glycerol is destined for burning: in addition to the environmental problems inherent in burning compounds in general, the partial burning of glycerol generates acrolein, a molecule with carcinogenic potential.
  • the conversion of glycerol by biotechnological processes into products with higher added value is a relevant alternative to reduce these problems. [0009] Given this information, there are gaps to be filled and improved, aiming to make the biotechnological route of converting fatty acids to terminal alkenes even more practical and industrially attractive.
  • the present invention is, in a first aspect, a chimeric enzyme built for the production of terminal alkenes from fatty acids.
  • the chimeric enzyme of the present invention is the combination of a decarboxylase enzyme, which converts fatty acids to terminal alkenes, with a peroxide-generating enzyme, a reaction cofactor, through a linker sequence.
  • the main advantage of the chimeric enzyme of the present invention is the fact that it has both functions necessary for the reaction in a single product, bringing economy and ease to the process.
  • the enzyme of the present invention is capable of producing hydrogen peroxide in situ from glycerol, which favors a more sustainable industry, within the concept of circular economy, by allocating part of what would be disintegrated by burning to a larger application. added value.
  • the chimeric enzyme of the present invention does not require salt-saturated media to carry out the conversion of fatty acids to alkenes.
  • the present invention is, in a second aspect, a process for the production of alkenes from fatty acids using the chimeric enzyme referred to in this invention.
  • the process of the present invention presents a performance similar to that of the conventional process, which involves the isolated decarboxylase enzyme and the direct addition of hydrogen peroxide to the medium, from low concentrations of the enzyme of the present invention, which reinforces that the sequences claimed below are functional and present an advance in regarding the state of the art.
  • the process provides an alternative destination for burning glycerol, using it to produce compounds with high added value and reducing the environmental impacts caused by the current handling of this residue.
  • Figure 1 graphically shows the percentage of conversion of myristic acid (C 14:0) to its corresponding terminal alkene (1 -tridecene) by means of the chimeric enzyme of the present invention, using said enzyme with flexible binding sequence ( SEQ ID NO: 3) at 1 pM, 0.5 mM myristic acid and concentrations between 0.5 and 10% glycerol in the reaction medium (50 mM sodium phosphate buffer, pH 7.5). The reaction was carried out at 37 °C with slow stirring (300 rpm) for 30 min. Comparatively, the result of the conversion obtained by means of the enzyme decarboxylase (SEQ ID NO: 1) in the presence of hydrogen peroxide added to the medium (1 mM) is presented.
  • SEQ ID NO: 3 flexible binding sequence
  • Figure 2 graphically shows the percentage of conversion of myristic acid (C 14:0) to its corresponding terminal alkene (1 -tridecene) by means of the chimeric enzyme of the present invention, using said enzyme with rigid binding sequence ( SEQ ID NO: 4) at 1 pM, 0.5 mM myristic acid and concentrations between 0.5 and 10% glycerol in the reaction medium (50 mM sodium phosphate buffer, pH 7.5). The reaction was carried out at 37 °C with slow stirring (300 rpm) for 30 min. Comparatively, the result of the conversion obtained by means of the enzyme decarboxylase (SEQ ID NO: 1) in the presence of hydrogen peroxide added to the medium (1 mM) is presented.
  • SEQ ID NO: 4 rigid binding sequence
  • the present invention is a chimeric enzyme constructed for the production of terminal alkenes from fatty acids, as well as the process for the production of said alkenes using said enzyme. From this point on, aspects of the present invention are detailed.
  • the chimeric enzyme for the production of terminal alkenes of the present invention is characterized, firstly, by the fact that it performs the conversion of fatty acids using glycerol as substrate for the production of hydrogen peroxide in situ.
  • the chimeric enzyme for the production of terminal alkenes of the present invention is characterized by comprising the enzyme decarboxylase SEQ ID NO: 1 joined in its terminal portion to the beginning of the enzyme alditol oxidase SEQ ID NO: 2, hydrogen peroxide generating enzyme , through a linker sequence.
  • Said linker sequence is preferably selected from the group comprising SEQ ID NO: 3 and SEQ ID NO: 4.
  • an object of the present invention is a chimeric enzyme for the production of terminal alkenes characterized by having SEQ ID NO: 5, which is the decarboxylase enzyme SEQ ID NO: 1, joined in its terminal portion to the sequence of link SEQ ID NO: 3, in turn joined to the initial portion of the enzyme alditol oxidase SEQ ID NO: 2.
  • a chimeric enzyme for the production of terminal alkenes characterized by having SEQ ID NO: 6, which is the decarboxylase enzyme SEQ ID NO: 1, joined in its terminal portion to the linking sequence SEQ ID NO: 4, in turn joined to the initial portion of the enzyme alditol oxidase SEQ ID NO: 2.
  • the chimeric enzyme of the present invention has application in the conversion of fatty acids to alkenes. In this way, it is also an object of the present invention a process for the production of terminal alkenes.
  • the process of the present invention is characterized by comprising the steps of: a) Contacting a chimeric enzyme with a fatty acid in the presence of glycerol, forming a reaction medium; b) Keep the reaction medium under heating and stirring for a period of time; and, c) Collect the product.
  • the chimeric enzyme to be used is the decarboxylase SEQ ID NO: 1 joined in its terminal portion to the beginning of the alditol oxidase SEQ ID NO: 2 by means of a linking sequence.
  • Said binding sequence is preferably selected from the group comprising SEQ ID NO: 3 and SEQ ID NO: 4. More specifically, the chimeric enzyme to be employed in step a) can be selected from the group comprising SEQ ID NO: 5 and SEQ ID NO: 6.
  • the fatty acid may be selected from the group comprising capric acid (C10:0), lauric acid (C12:0), myristic acid (C14:0), palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1) or combinations thereof.
  • the preferred ratio of chimeric enzyme to fatty acid in the medium is 1.0 pMol L' 1 enzyme to 0.5 mMol L 1 fatty acid.
  • Glycerol can preferably be present in concentrations between 0.5 and 10% in the reaction medium.
  • step b) the reaction medium must be heated to a temperature between 30 and 40 °C, preferably at 37 °C.
  • the agitation imposed on the reaction medium at this stage of the process should be mild, up to 500 rpm, preferably 300 rpm.
  • the pH of the reaction medium should be maintained between 7.0 and 8.0, preferably 7.5.
  • reaction medium must be maintained under the conditions provided for, preferably, a time of 30 minutes.
  • step c) the collected product can be optionally purified.
  • any separation and purification techniques known to a person skilled in the art can be employed.
  • EXAMPLE 1 Procedure for expression of chimeric enzymes [0031]
  • the coding region of the enzymes of the present invention (SEQ ID NO: 7 and SEQ ID NO: 8) were cloned individually into pET28a expression vectors, with a 6xHisTag tail to facilitate purification of the products.
  • Recombinant vectors were transformed into E. coli BL21, and expression of each of the chimeric enzymes was conducted in Terrific Broth (TB) medium. For expression, transformed bacteria were grown in 1 L of TB medium at 30°C containing the appropriate antibiotics.
  • the temperature of the medium was reduced to 18 °C and the induction of expression of the enzymes of the present invention was started with 0.2 mMol L' 1 of IPTG, 20 pMol L' 1 of hemin and 100 pMol L' 1 5-aminolevulinate.
  • cells were isolated and used for purification of chimeric enzymes. Purification was carried out on nickel resin, with 25 mMol L' 1 sodium phosphate buffer (pH 7.5) and 500 mMol L 1 NaCl.
  • the chimeric enzymes were recovered in an imidazole gradient, from 0-500 mMol L' 1 . Both constructs resulted in the production of soluble and functional chimeric enzymes (SEQ ID NO: 5 and SEQ ID NO: 6).
  • the present invention enables the generation of peroxide in the reaction medium from glycerol. Instead of adding hydrogen peroxide to the medium, the addition of glycerol brings a new perspective for the effective disposal of this industrial waste, based on a single chimeric enzyme, without the need to use two enzyme systems. for carrying out the conversion reaction.

Abstract

A presente invenção se refere a uma enzima quimérica construída para a produção de alcenos terminais a partir de ácidos graxos, de maneira que o cofator necessário para a reação é produzido in situ a partir de resíduo industrial, favorecendo a economia circular. Além disso, a presente invenção trata do processo de produção de alcenos terminais empregando dita enzima quimérica. Esta invenção pertence ao campo da biotecnologia industrial e encontra aplicação na indústria de biocombustíveis e químicos renováveis.

Description

ENZIMA QUIMÉRICA E PROCESSO PARA A PRODUÇÃO DE ALCENOS TERMINAIS
CAMPO DA DESCRIÇÃO
[0001] A presente invenção trata-se de uma enzima quimérica construída para a produção de alcenos terminais a partir de ácidos graxos, bem como do processo para a produção de ditos alcenos empregando-se a referida enzima. A presente invenção pertence ao campo de biotecnologia industrial e tem aplicação na indústria de biocombustíveis e químicos renováveis.
FUNDAMENTOS DA INVENÇÃO E ESTADO DA TÉCNICA
[0002] Alcenos terminais, ou alfa olefinas, são compostos químicos que podem ser sintetizados a partir de ácidos graxos de origem renovável. Estas moléculas compõem uma relevante plataforma para a produção industrial de polímeros, fertilizantes, lubrificantes, surfactantes, biocombustíveis e outros compostos atualmente obtidos por rotas petroquímicas, e o tamanho do mercado para elas está projetado em USD 13.464 milhões para 2022.
[0003] Diante da relevância destes compostos para a indústria química e de biocombustíveis, esforços no desenvolvimento de processos de produção de alcenos terminais vem sendo empregados. Dentre as tecnologias existentes atualmente para produção destas moléculas a partir de ácidos graxos, a rota química é uma das possibilidades, mas esta é dependente de alta temperatura, de alta pressão e de catálise por metais pesados, os quais são prejudiciais ao meio ambiente. Alternativamente, a conversão dos ácidos graxos em alcenos terminais pode ser realizada por rota biotecnológica, empregando-se condições mais brandas e sustentáveis. Esta rota torna-se especialmente interessante diante da discussão sobre a necessidade de desenvolvimento econômico responsável, associada à preservação ambiental. Almeja-se que processos realizados de forma ambientalmente sustentável, com o emprego de materiais e insumos oriundos de fontes renováveis ou que façam uso de resíduos de outros processos, se tomem cada vez mais presentes no cenário mundial, contribuindo para a concretização do conceito de economia circular. [0004] Desta forma, no âmbito da rota biotecnológica para a produção de alcenos terminais, a literatura científica reporta que a enzima descarboxilase/ peroxigenase denominada OleTJE, pertencente à família 152 da superclasse P450, apresenta uma propriedade única de remoção do oxigênio de ácidos graxos de cadeia longa (C12-C20), gerando 1-alceno como produto. No entanto, trata-se de uma enzima bastante instável, de difícil produção e que necessita de altas concentrações de sais (NaCI ou KCI) para reação de descarboxilação, o que traz gargalos para seu uso industrial.
[0005] Assim como OleTJE, existem enzimas oriundas de microrganismos como Kokuria rhizophila, Corynebacterium efficiens, Bacillus subtilis, Jeotgalicoccus sp., Staphylococcus massi lien sis, Alicyclobacillus acidocaldarius e outras espécies, também com capacidade reportada de realizar a conversão de ácidos graxos a alcenos terminais. Contudo, um ponto a se levar em consideração é o de que, em geral, a rota enzimática de descarboxilação de ácidos graxos é dependente de peróxido de hidrogênio como cofator. A adição de peróxidos ao meio reacional em escala industrial impõe um custo e a necessidade de um mecanismo de injeção automática em tempos pré-determinados.
[0006] Uma possível forma de contorno da necessidade de adição de peróxido de hidrogênio ao longo do processo é a sua geração in situ para consumo durante a reação de conversão. Neste sentido, CN 107201356 (QINGDAO INSTITUTE OF BIOENERGY & BIOPROCESS TECHNOLOGY CAS BOEING INVESTMENT) apresenta, como solução, a adição de um sistema ferredoxina - ferredoxina redutase para dar suporte à atividade da enzima OleTJE. Similarmente, CN112111477 (YANGZHOU UNIVERSITY) propõe o uso de um sistema glicose - glicose oxidase para a geração de peróxido de hidrogênio, de forma branda e controlada, para dar suporte a uma enzima engenheirada (P450BS) na conversão de ácidos graxos a alcenos. Proposta parecida também pode ser encontrada em EP1940348 (DUPONT NUTRITION BIOSCIENCES), que apresenta uma composição compreendendo um sistema de enzimas acopladas na qual oxidorredutases geram peróxido de hidrogênio a partir de açúcares do meio reacional para consumo de uma enzima descarboxilase.
[0007] Nota-se que, apesar de proporcionarem uma alternativa à adição direta e controlada de peróxido de hidrogênio ao processo, as soluções existentes no estado da técnica impõem um aumento no número de reagentes necessários para a realização da conversão e demandam controle para que ambas as enzimas (geradora de peróxido e descarboxilase) estejam ativas nas condições de reação. É sempre interessante e preferível que um processo possua poucas etapas, facilidade de controle e de operação. Outro ponto a se observar é o de que o acoplamento de um sistema de geração de peróxido in situ necessita de um substrato próprio para que esta reação aconteça. Como descrito, as soluções propostas no estado da técnica empregam ferredoxina ou glicose/açúcares como substratos, mas uma possibilidade de tornar o processo de geração de peróxido in situ ainda mais sustentável, aderente ao conceito de economia circular, seria a de se realizar esta reação a partir de rejeitos de outros processos.
[0008] Dentro deste contexto, um rejeito de extrema relevância no cenário atual é o glicerol. Só na produção de bicombustíveis, estima-se que, a cada 1000 quilos de produto como bioetanol e biodiesel, são gerados 100 quilos de glicerol. É importante frisar que outras indústrias importantes, como a oleoquímica, por exemplo, também geram glicerol como um resíduo de processo. O volume de glicerol atualmente gerado é maior do que a capacidade que o mercado consegue absorver. Com isto, este rejeito possui um baixo valor agregado e como agravante, o glicerol não aproveitado tem a queima como destino: além dos problemas ambientais inerentes à queima de compostos em geral, a queima parcial do glicerol gera acroleína, uma molécula com potencial cancerígeno. A conversão de glicerol por processos biotecnológicos em produtos de maior valor agregado é uma alternativa relevante para a redução destes problemas. [0009] Diante destas informações, observam-se lacunas a serem preenchidas e melhoradas, visando tornar a rota biotecnológica de conversão de ácidos graxos a alcenos terminais ainda mais prática e industrialmente atrativa.
SUMÁRIO DA INVENÇÃO
[0010] Como forma de solucionar os gargalos apresentados, a presente invenção trata-se, em um primeiro aspecto, de uma enzima quimérica construída para a produção de alcenos terminais a partir de ácidos graxos. A enzima quimérica da presente invenção trata-se da junção de uma enzima descarboxilase, que realiza a conversão de ácidos graxos a alcenos terminais, com uma enzima geradora de peróxido, cofator da reação, por meio de uma sequência de ligação (“linker”). A principal vantagem da enzima quimérica da presente invenção está no fato de ela possuir ambas as funções necessárias para a reação em um único produto, trazendo economia e facilidade para o processo. Ainda, a enzima da presente invenção é capaz de produzir peróxido de hidrogênio in situ a partir do glicerol, o que favorece uma indústria mais sustentável, dentro do conceito de economia circular, por destinar parte do que seria desintegrado por queima para uma aplicação de maior valor agregado. Além disso, a enzima quimérica da presente invenção não necessita de meios saturados de sais para realizar a conversão de ácidos graxos a alcenos.
[0011] É válido ressaltar que nem toda enzima com alguma similaridade à proposta neste invento será passível de aplicação em um processo industrial por não possuir estabilidade na forma solúvel, característica fundamental e apresentada pela enzima quimérica da presente invenção. Ainda, a junção de duas ou mais sequências pode resultar em um produto não funcional ou com desempenho aquém das expectativas.
[0012] Neste sentido, perante o mencionado, a presente invenção trata-se, em um segundo aspecto, de um processo de produção de alcenos a partir de ácidos graxos empregando a enzima quimérica de que trata este invento. Como vantagem, o processo da presente invenção apresenta um desempenho similar ao do processo convencional, que envolve a enzima descarboxilase isolada e a adição direta de peróxido de hidrogênio ao meio, a partir de baixas concentrações da enzima do presente invento, o que reforça que as sequências reivindicadas adiante são funcionais e apresentam um avanço em relação ao estado da técnica. Além disso, o processo fornece um destino alternativo à queima do glicerol, utilizando-o para a produção de compostos de alto valor agregado e reduzindo os impactos ambientais causados pelo manejo atual deste resíduo.
BREVE DESCRIÇÃO DAS FIGURAS
[0013] A Figura 1 apresenta graficamente a porcentagem de conversão do ácido mirístico (C 14:0) ao seu alceno terminal correspondente (1 -trideceno) por meio da enzima quimérica da presente invenção, utilizando a referida enzima com sequência de ligação flexível (SEQ ID NO: 3) a 1 pM, ácido mirístico a 0,5 mM e concentrações entre 0,5 e 10 % de glicerol no meio reacional (tampão fosfato de sódio 50 mM, pH 7,5). A reação foi conduzida a 37 °C com agitação lenta (300 rpm) por 30 min. Comparativamente, apresenta-se o resultado da conversão obtida por meio da enzima descarboxilase (SEQ ID NO: 1 ) na presença de peróxido de hidrogênio adicionado ao meio (1 mM).
[0014] A Figura 2 apresenta graficamente a porcentagem de conversão do ácido mirístico (C 14:0) ao seu alceno terminal correspondente (1 -trideceno) por meio da enzima quimérica da presente invenção, utilizando a referida enzima com sequência de ligação rígida (SEQ ID NO: 4) a 1 pM, ácido mirístico a 0,5 mM e concentrações entre 0,5 e 10 % de glicerol no meio reacional (tampão fosfato de sódio 50 mM, pH 7,5). A reação foi conduzida a 37 °C com agitação lenta (300 rpm) por 30 min. Comparativamente, apresenta-se o resultado da conversão obtida por meio da enzima descarboxilase (SEQ ID NO: 1 ) na presença de peróxido de hidrogênio adicionado ao meio (1 mM).
DESCRIÇÃO DETALHADA DA INVENÇÃO
[0015] Conforme anteriormente dito, a presente invenção trata-se de uma enzima quimérica construída para a produção de alcenos terminais a partir de ácidos graxos, bem como do processo para a produção de ditos alcenos empregando- se a referida enzima. A partir deste ponto, detalham-se os aspectos da presente invenção.
[0016] A enzima quimérica para a produção de alcenos terminais do presente invento é caracterizada, primeiramente, pelo fato de que ela realiza a conversão de ácidos graxos utilizando o glicerol como substrato para a produção de peróxido de hidrogênio in situ.
[0017] A enzima quimérica para a produção de alcenos terminais do presente invento é caracterizada por compreender a enzima descarboxilase SEQ ID NO: 1 unida em sua porção terminal ao início da enzima alditol oxidase SEQ ID NO: 2, enzima geradora de peróxido de hidrogênio, por meio de uma sequência de ligação (“linker”). Dita sequência de ligação é preferencialmente selecionada dentre o grupo que compreende SEQ ID NO: 3 e SEQ ID NO: 4.
[0018] Desta forma, é um objeto da presente invenção uma enzima quimérica para a produção de alcenos terminais caracterizada por possuir SEQ ID NO: 5, que se trata da enzima descarboxilase SEQ ID NO: 1 , unida em sua porção terminal à sequência de ligação SEQ ID NO: 3, por sua vez unida à porção inicial da enzima alditol oxidase SEQ ID NO: 2.
[0019] Também é um objeto da presente invenção uma enzima quimérica para a produção de alcenos terminais caracterizada por possuir SEQ ID NO: 6, que se trata da enzima descarboxilase SEQ ID NO: 1 , unida em sua porção terminal à sequência de ligação SEQ ID NO: 4, por sua vez unida à porção inicial da enzima alditol oxidase SEQ ID NO: 2.
[0020] A enzima quimérica do presente invento possui aplicação na conversão de ácidos graxos a alcenos. Desta forma, também é um objeto da presente invenção um processo para a produção de alcenos terminais.
[0021] O processo da presente invenção é caracterizado por compreender as etapas de: a) Contatar enzima quimérica a um ácido graxo na presença de glicerol, formando um meio reacional; b) Manter o meio reacional sob aquecimento e agitação por um intervalo de tempo; e, c) Recolher o produto.
[0022] Na etapa a), a enzima quimérica a ser empregada trata-se da descarboxilase SEQ ID NO: 1 unida em sua porção terminal ao início da alditol oxidase SEQ ID NO: 2 por meio de uma sequência de ligação. Dita sequência de ligação é preferencialmente selecionada dentre o grupo que compreende SEQ ID NO: 3 e SEQ ID NO: 4. Mais especificamente, a enzima quimérica a ser empregada na etapa a) pode ser selecionada dentre o grupo que compreende SEQ ID NO: 5 e SEQ ID NO: 6.
[0023] O ácido graxo pode ser selecionado dentre o grupo que compreende o ácido cáprico (C10:0), o ácido láurico (C12:0), o ácido mirístico (C14:0), o ácido palmítico (C16:0), o ácido esteárico (C18:0), o ácido oleico (C18:1 ) ou combinações entre estes.
[0024] Além disso, a razão preferencial entre enzima quimérica e ácido graxo no meio é de 1 ,0 pMol L’1 de enzima para 0,5 mMol L1 de ácido graxo. O glicerol pode estar em concentrações preferencialmente entre 0,5 e 10 % no meio reacional.
[0025] Na etapa b), o meio reacional deve ser aquecido a uma temperatura entre 30 e 40 °C, preferencialmente a 37 °C.
[0026] A agitação imposta ao meio reacional nesta etapa do processo deve ser branda, até 500 rpm, preferencialmente 300 rpm.
[0027] O pH do meio reacional deve ser mantido entre 7,0 e 8,0, preferencialmente 7,5.
[0028] Por fim, o meio reacional deve ser mantido nas condições dispostas por, preferencialmente, um tempo de 30 minutos.
[0029] Na etapa c), o produto recolhido pode ser, opcionalmente, purificado. Para tal etapa, podem ser empregadas quaisquer técnicas de separação e purificação conhecidas por um técnico do assunto.
[0030] Adiante, a título de embasamento, porém sem se restringir a eles, apresentam-se exemplos de concretização da presente invenção.
EXEMPLO 1 : Procedimento de expressão das enzimas quiméricas [0031] A região codificadora das enzimas da presente invenção (SEQ ID NO: 7 e SEQ ID NO: 8) foram clonadas individualmente em vetores de expressão pET28a, com cauda 6xHisTag para facilitar purificação dos produtos. Os vetores recombinantes foram transformados em E. coli BL21 , e a expressão de cada uma das enzimas quiméricas foi conduzida em meio “Terrific Broth” (TB). Para expressão, as bactérias transformadas foram crescidas em 1 L de meio TB, a 30 °C, contendo os antibióticos adequados. Ao atingir um valor de densidade ótica igual a 1 , a temperatura do meio foi reduzida para 18 °C e a indução da expressão das enzimas da presente invenção foi iniciada com 0,2 mMol L’1 de IPTG, 20 pMol L’1 de hemina e 100 pMol L’1 de 5-aminolevulinato. Após 24h de indução, as células foram isoladas e utilizadas para purificação das enzimas quiméricas. A purificação foi conduzida em resina de níquel, com tampão fosfato de sódio 25 mMol L’1(pH 7.5) e NaCI 500 mMol L1. As enzimas quiméricas foram recuperadas em um gradiente de imidazol, de 0-500 mMol L’1. Ambas as construções resultaram na produção de enzimas quiméricas solúveis e funcionais (SEQ ID NO: 5 e SEQ ID NO: 6).
EXEMPLO 2: Ensaio de produção de alcenos terminais com as enzimas quiméricas
[0032] Reações de conversão do ácido mirístico ao seu alceno terminal correspondente (1-trideceno) foram realizadas com as enzimas quiméricas separadamente, empregando-se um volume final de 1 mL. Em todos os casos, compôs-se o meio reacional com a enzima quimérica a testar, na concentração de 1 pMol L’1, o ácido graxo, na concentração de 0,5 mMol L’1, e tampão fosfato de sódio 50 mM, pH 7,5. Concentrações distintas de glicerol (0,5, 1 , 5 ou 10 %) foram adicionadas à cada reação para avaliação da taxa de conversão (%) de ácido miristico em 1-trideceno. Todas as reações foram conduzidas a 37 °C, com agitação branda (300 rpm), por 30 min.
[0033] Para comparação, uma reação com o processo tradicional de conversão de ácidos graxos a alcenos foi realizada empregando-se as mesmas condições processuais, porém substituindo-se as enzimas quiméricas pela descarboxilase SEQ ID NO: 1 e o glicerol por peróxido de hidrogênio na concentração de 1 mM (final).
[0034] Como resultado, a condição tradicional permitiu com que se atingisse uma conversão do ácido mirístico a 1-trideceno em tomo de 55 %. Conforme pode-se observar na Figura 1 , os ensaios realizados com a enzima quimérica SEQ ID NO: 5 da presente invenção apresentaram uma porcentagem de conversão entre 40 e 50 %, sendo o resultado maior atingido com uma concentração de 10 % de glicerol. Já na Figura 2, onde se apresentam os resultados de performance da enzima quimérica SEQ ID NO: 6, percebe-se uma conversão entre 40 e 55 %, atingindo-se estes níveis já a partir de 5 % de glicerol no meio reacional.
[0035] Desta maneira, observa-se que a presente invenção toma capaz a geração de peróxido no meio reacional a partir do glicerol. Em detrimento de se realizar a adição de peróxido de hidrogênio ao meio, a adição de glicerol traz uma nova perspectiva para a destinação deste resíduo industrial de uma maneira eficaz, a partir de uma enzima quimérica única, sem a necessidade de emprego de dois sistemas enzimáticos distintos para a realização da reação de conversão.

Claims

REIVINDICAÇÕES
1. Enzima quimérica para a produção de alcenos terminais caracterizada por compreender a enzima descarboxilase SEQ ID NO: 1 unida em sua porção terminal ao início da enzima alditol oxidase SEQ ID NO: 2 por meio de uma sequência de ligação.
2. Enzima quimérica, de acordo com a reivindicação 1 , caracterizada pelo fato de a sequência de ligação ser selecionada dentre o grupo que compreende SEQ ID NO: 3 e SEQ ID NO: 4.
3. Enzima quimérica, de acordo com a reivindicação 1 , caracterizada por possuir SEQ ID NO: 5.
4. Enzima quimérica, de acordo com a reivindicação 1 , caracterizada por possuir SEQ ID NO: 6.
5. Processo para a produção de alcenos terminais caracterizado por compreender as etapas de: a) Contatar enzima quimérica a um ácido graxo na presença de glicerol, formando um meio reacional; b) Manter o meio reacional sob aquecimento e agitação por um intervalo de tempo, e c) Recolher o produto.
6. Processo, de acordo com a reivindicação 5, caracterizado pelo fato de que a enzima quimérica é a descarboxilase SEQ ID NO: 1 unida em sua porção terminal ao início da alditol oxidase SEQ ID NO: 2 por meio de uma sequência de ligação.
7. Processo, de acordo com a reivindicação 6, caracterizado pelo fato de que a sequência de ligação ser selecionada dentre o grupo que compreende SEQ ID NO: 3 e SEQ ID NO: 4.
8. Processo, de acordo com a reivindicação 5, caracterizado pelo fato de que a enzima é selecionada dentre o grupo que compreende SEQ ID NO: 5 e SEQ ID NO: 6.
9. Processo, de acordo com a reivindicação 5, caracterizado pelo fato de que o ácido graxo é selecionado dentre o grupo que compreende o ácido cáprico (C10:0), o ácido láurico (C12:0), o ácido mirístico (C14:0), o ácido palmítico (C16:0), o ácido esteárico (C18:0), o ácido oleico (C18:1) ou combinações entre estes.
10. Processo, de acordo com a reivindicação 5, caracterizado pelo fato de que a razão preferencial entre enzima quimérica e ácido graxo no meio é de, 1 ,0 pMol L’1 de enzima para 0,5 mMol 1 de ácido graxo.
11. Processo, de acordo com a reivindicação 5, caracterizado pelo fato de que a concentração de glicerol no meio é, preferencialmente, entre 0,5 e 10 %.
12. Processo, de acordo com a reivindicação 5, caracterizado pelo fato de que o meio reacional deve ser aquecido a uma temperatura entre 30 e 40 °C, preferencialmente a 37 °C.
13. Processo, de acordo com a reivindicação 5, caracterizado pelo fato de que agitação imposta ao meio é de até 500 rpm, preferencialmente 300 rpm.
14. Processo, de acordo com a reivindicação 5, caracterizado pelo fato de que o pH do meio reacional é mantido entre 7,0 e 8,0, preferencialmente 7,5.
15. Processo, de acordo com a reivindicação 5, caracterizado pelo fato de que o tempo é de, preferencialmente, 30 minutos.
PCT/BR2022/050482 2021-12-06 2022-12-06 Enzima quimérica e processo para a produção de alcenos terminais WO2023102629A2 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102021024672-3A BR102021024672A2 (pt) 2021-12-06 Enzima quimérica e processo para a produção de alcenos terminais
BR1020210246723 2021-12-06

Publications (2)

Publication Number Publication Date
WO2023102629A2 true WO2023102629A2 (pt) 2023-06-15
WO2023102629A3 WO2023102629A3 (pt) 2023-08-10

Family

ID=86731410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2022/050482 WO2023102629A2 (pt) 2021-12-06 2022-12-06 Enzima quimérica e processo para a produção de alcenos terminais

Country Status (1)

Country Link
WO (1) WO2023102629A2 (pt)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3674400A1 (en) * 2012-04-02 2020-07-01 Genomatica, Inc. Improved production of fatty acid derivatives
CA2937594A1 (en) * 2015-02-26 2016-08-26 Evonik Degussa Gmbh Alkene production
EP3246401A1 (en) * 2016-05-20 2017-11-22 Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives New fatty acid decarboxylase and its uses

Also Published As

Publication number Publication date
WO2023102629A3 (pt) 2023-08-10

Similar Documents

Publication Publication Date Title
Sadler et al. Microbial synthesis of vanillin from waste poly (ethylene terephthalate)
Liu et al. Hydrogen peroxide-independent production of α-alkenes by OleT JE P450 fatty acid decarboxylase
Crouch et al. The contribution of non-catalytic carbohydrate binding modules to the activity of lytic polysaccharide monooxygenases
Joo et al. Alkene hydrogenation activity of enoate reductases for an environmentally benign biosynthesis of adipic acid
Bjorck et al. Biotechnological conversion of methane to methanol: evaluation of progress and potential
Zhang et al. Developing a protein scaffolding system for rapid enzyme immobilization and optimization of enzyme functions for biocatalysis
Könst et al. A study on the applicability of L-aspartate α-decarboxylase in the biobased production of nitrogen containing chemicals
Su et al. Efficient bioconversion of sucrose to high‐value‐added glucaric acid by in vitro metabolic engineering
RU2013122680A (ru) Способ получения алкенов путем комбинированного ферментативного превращения 3-гидроксиалкановых кислот
CN108467861B (zh) 催化合成线性ɑ-烯烃生物催化剂OleT-BM3R的序列、制备方法及其应用
Fan et al. Engineering artificial fusion proteins for enhanced methanol bioconversion
Singh et al. Sustainable biotechnology-enzymatic resources of renewable energy
Gärtner et al. Expression of Shewanella oneidensis MR-1 [FeFe]-hydrogenase genes in Anabaena sp. strain PCC 7120
Graham et al. The role of binding modules in enzymatic poly (ethylene terephthalate) hydrolysis at high-solids loadings
Min et al. Elevated conversion of CO2 to versatile formate by a newly discovered formate dehydrogenase from Rhodobacter aestuarii
Sugano et al. A carbon nanotube structured biomimetic catalyst for polysaccharide degradation
CN105925518A (zh) 烯烃生产
Chen et al. Building a thermostable metabolon for facilitating coenzyme transport and in vitro hydrogen production at elevated temperature
Kokorin et al. Artificial Fusions between P450 BM3 and an Alcohol Dehydrogenase for Efficient (+)‐Nootkatone Production
Wei et al. Stoichiometric Regeneration of ATP by A NAD (P)/CoA‐free and Phosphate‐balanced In Vitro Synthetic Enzymatic Biosystem
Geinitz et al. Gas fermentation expands the scope of a process network for material conversion
Averesch et al. Metabolic network analysis of microbial methane utilization for biomass formation and upgrading to bio-fuels
Assil‐Companioni et al. Hydrogen‐driven cofactor regeneration for stereoselective whole‐cell C= C bond reduction in Cupriavidus necator
WO2023102629A2 (pt) Enzima quimérica e processo para a produção de alcenos terminais
Benítez-Mateos et al. Spheroplasts preparation boosts the catalytic potential of a squalene-hopene cyclase