WO2023101005A1 - Film and polyimide-based resin - Google Patents

Film and polyimide-based resin Download PDF

Info

Publication number
WO2023101005A1
WO2023101005A1 PCT/JP2022/044523 JP2022044523W WO2023101005A1 WO 2023101005 A1 WO2023101005 A1 WO 2023101005A1 JP 2022044523 W JP2022044523 W JP 2022044523W WO 2023101005 A1 WO2023101005 A1 WO 2023101005A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
group
mass
molecular weight
polyimide resin
Prior art date
Application number
PCT/JP2022/044523
Other languages
French (fr)
Japanese (ja)
Inventor
敏之 横藤田
康司 石渡
孝至 桜井
拓也 森
ズームベルト,アーリヤン
マンチェスター,ショーン
Original Assignee
住友化学株式会社
ザイマージェン インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, ザイマージェン インコーポレイテッド filed Critical 住友化学株式会社
Publication of WO2023101005A1 publication Critical patent/WO2023101005A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a film used as a material for a flexible display device, a polyimide resin capable of forming the film, and a flexible display device comprising the film.
  • Films are used in a variety of applications, including display devices such as liquid crystal and organic EL, touch sensors, speakers, and semiconductors.
  • display devices such as liquid crystal and organic EL, touch sensors, speakers, and semiconductors.
  • touch sensor substrate materials aromatic polyimide films and aliphatic polyimide films having dimensional stability are known (for example, Patent Documents 1 and 2).
  • touch sensor substrate materials used in such flexible display devices are also required to have a high degree of bending resistance.
  • the polyimide film containing structural units derived from an aliphatic diamine used as a touch sensor substrate material does not have sufficient bending resistance.
  • an object of the present invention is to provide a film having excellent bending resistance, a polyimide resin capable of forming the film, and a flexible display device comprising the film.
  • the present inventors have found that, in a film containing a polyimide resin having a structural unit derived from an aliphatic diamine and a fluorine atom, the content of an oligomer having a molecular weight of 10,000 or less is reduced to 6
  • the inventors have found that the above problems can be solved by adjusting the concentration to 1% by mass or less, and have completed the present invention. That is, the present invention includes the following preferred aspects.
  • the oligomer comprises a cyclic oligomer.
  • [5] The film according to any one of [1] to [4], wherein the weight average molecular weight (Mw) of the film is 150,000 or more.
  • Mw weight average molecular weight
  • [6] The film according to any one of [1] to [5], wherein the content of fluorine atoms in the polyimide resin is 10% by mass or more based on the mass of the polyimide resin.
  • [7] The film according to any one of [1] to [6], wherein the polyimide resin has an imidization rate of 99% or more.
  • the polyimide resin has the formula (1): [In the formula (1), X represents a divalent organic group, Y represents a tetravalent organic group, among the organic groups of X and Y, at least one contains a fluorine atom, * is a bond represents]
  • the structural unit represented by formula (1) is represented by formula (2) as Y: [In formula (2), R 2 to R 7 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, V is a single bond, -O-, -CH 2 -, -CH 2 -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -C(CF 3 ) 2 -, - represents SO 2 —, —S—, —CO— or —N(R 8 )—, hydrogen atoms contained in R 2 to R 7 and V are independently of each other optionally substituted with halogen atoms; R 8 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom, * represents a bond]
  • a flexible display device comprising the film according to any one of [1] to [9].
  • the flexible display device according to [15] further comprising a polarizing plate.
  • the film of the present invention has excellent bending resistance. Therefore, it can be suitably used as a material for flexible display devices.
  • FIG. 1 is a diagram showing the peaks of oligomers having a molecular weight of 10,000 or less in the GPC data of the film obtained in Example 1.
  • FIG. 1 is a diagram showing the peaks of oligomers having a molecular weight of 10,000 or less in the GPC data of the polyimide resin obtained in Example 1.
  • FIG. 2 is a diagram showing the results of MALDI-MS measurement of the polyimide resin obtained in Example 1.
  • the film of the present invention contains a polyimide resin having a structural unit derived from an aliphatic diamine and a fluorine atom, and the content of an oligomer having a molecular weight of 10,000 or less is 6.1% by mass or less with respect to the mass of the film. be.
  • an oligomer having a molecular weight of 10,000 or less is sometimes referred to as an "oligomer having a molecular weight of 10,000 or less”
  • the content of the oligomer having a molecular weight of 10,000 or less is referred to as an "oligomer weight of 10,000 or less”.
  • the present inventors have investigated the relationship between a film containing a polyimide resin having a structural unit derived from an aliphatic diamine and a fluorine atom and the flex resistance. Oligomers having a molecular weight of 10,000 or less are likely to be formed, and thus the film containing the polyimide resin has a relatively large amount of the oligomers, and it was found that the flex resistance of the film is lowered due to the influence of the oligomers. Accordingly, the present inventors found that when the amount of oligomers having a molecular weight of 10,000 or less in the film is adjusted to 6.1% by mass or less, the flex resistance is remarkably improved.
  • the film of the present invention has a molecular weight of 10,000 or less and an oligomer content of 6.1% by mass or less.
  • the amount of the oligomer having a molecular weight of 10,000 or less exceeds 6.1% by mass, the bending resistance tends to decrease.
  • the present inventors have investigated the film-forming properties of films containing polyimide resins, and found that polyimide resins having structural units and fluorine atoms derived from aliphatic diamines are difficult to dissolve in general-purpose solvents such as cyclohexanone. , agglomeration, etc. may occur, and it was found that the film formability of the film was not sufficient. Therefore, the present inventors focused on the relationship between the amount of oligomer and the film-forming property of the film, and conducted further studies. It has been found that the solubility of the polyimide resin in the solvent during film formation can be improved, that is, the film formability can be improved.
  • solubility of a polyimide resin in a solvent may be simply referred to as "resin solubility".
  • the film of the present invention contains a polyimide resin having structural units derived from an aliphatic diamine and fluorine atoms.
  • the polyimide resin means a polymer containing a repeating structural unit (also referred to as a structural unit) containing an imide group, and may further contain a repeating structural unit containing an amide group. may contain.
  • the aliphatic diamine in the structural unit derived from the aliphatic diamine constituting the polyimide resin represents a diamine having an aliphatic group, and may contain other substituents in part of its structure, but the aromatic ring is It does not have.
  • the polyimide-based resin contains structural units derived from aliphatic diamines, the optical properties of the obtained film can be improved, for example, retardation can be easily reduced.
  • Aliphatic diamines include, for example, acyclic aliphatic diamines and cycloaliphatic diamines, and acyclic aliphatic diamines are preferable from the viewpoint of easily increasing the optical properties and heat resistance of the film.
  • polyimide resins containing structural units derived from acyclic aliphatic diamines tend to have a relatively high content of oligomers with a molecular weight of 10,000 or less, such as cyclic oligomers, which can reduce bending resistance. Therefore, by reducing the content of the oligomer to a predetermined amount or less, the effect of the present invention relating to improvement in bending resistance is likely to be exhibited. Furthermore, polyimide resins containing structural units derived from acyclic aliphatic diamines tend to be difficult to dissolve in general-purpose solvents such as cyclohexanone. The effect of the present invention for improving the solubility of the resin is likely to be exhibited by adjusting the amount to a fixed amount or more.
  • the meaning of “easy to improve bending resistance” is to obtain the effect of the present invention related to improving (or improving) bending resistance by adjusting the amount of oligomer to the upper limit or less.
  • the meaning of “easy to improve the solubility of the resin” also includes the meaning of “easy to improve the solubility of the resin", and the effect of the present invention related to improving (or improving) the solubility of the resin by adjusting the amount of oligomer to the lower limit or more. It also includes the meaning of being easy to obtain.
  • Acyclic aliphatic diamines include, for example, 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane (sometimes referred to as 1,4-DAB), 1,5-diaminopentane, 1,6-diaminohexane, 1,2-diaminopropane, 1,2-diaminobutane, 1,3-diaminobutane, 2-methyl-1,2-diaminopropane, 2-methyl-1,3-diaminopropane linear or branched diaminoalkanes having 2 to 10 carbon atoms, and diamines in which at least some of the hydrogen atoms contained in these diamines are substituted with fluorine atoms.
  • Cycloaliphatic diamines include, for example, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, norbornanediamine, 4,4'-diaminodicyclohexylmethane, and their diamines. Examples include diamines in which at least part of hydrogen atoms are substituted with fluorine atoms. These can be used alone or in combination of two or more.
  • optical properties mean optical properties possessed by the film, including retardation, transparency, and UV shielding properties.
  • the retardation includes both thickness retardation and in-plane retardation.
  • the polyimide resin may contain structural units derived from aromatic diamines in addition to structural units derived from aliphatic diamines.
  • An aromatic diamine represents a diamine having an aromatic ring, and may contain an aliphatic group or other substituents in part of its structure.
  • This aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and fluorene ring.
  • aromatic diamines examples include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene and 2,6-diaminonaphthalene.
  • aromatic diamines having one aromatic ring 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′- Diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4 -aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl] Propane, 2,2-bis[4-(3-
  • diamines diamines in which at least part of the hydrogen atoms contained in these diamines are substituted with fluorine atoms; 2,2′-bis(trifluoromethyl)-4,4′-diaminodiphenyl (also referred to as TFMB); 4,4 '-(Hexafluoropropylidene)dianiline; 9,9-bis(4-amino-3-fluorophenyl)fluorene and the like.
  • aromatic diamines can be used singly or in combination of two or more.
  • the polyimide-based resin can further contain structural units derived from a tetracarboxylic acid compound.
  • a structural unit derived from a tetracarboxylic acid compound is contained, the optical properties, heat resistance, bending resistance, and solubility of the resin of the film are likely to be improved.
  • tetracarboxylic acid compounds include aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic dianhydride; aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic dianhydride.
  • a tetracarboxylic acid compound may be used independently and may be used in combination of 2 or more type.
  • the tetracarboxylic acid compound may be a dianhydride or a tetracarboxylic acid compound analog such as an acid chloride compound.
  • aromatic tetracarboxylic dianhydrides include non-condensed polycyclic aromatic tetracarboxylic dianhydrides, monocyclic aromatic tetracarboxylic dianhydrides and condensed polycyclic aromatic tetracarboxylic dianhydrides.
  • Carboxylic acid dianhydrides are mentioned.
  • Non-fused polycyclic aromatic tetracarboxylic dianhydrides include, for example, 4,4′-oxydiphthalic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 2,2 ',3,3'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride , 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-di Carboxyphenyl)propane dianhydride, 2,2-bis(3,4-dicarboxyphenoxyphenyl)propane dianhydride, 1,2-bis(2,3-dicarboxyphenyl)
  • the monocyclic aromatic tetracarboxylic dianhydride includes, for example, 1,2,4,5-benzenetetracarboxylic dianhydride, and at least one hydrogen atom contained in the tetracarboxylic dianhydride.
  • examples include tetracarboxylic dianhydrides whose moieties are substituted with fluorine atoms
  • the condensed polycyclic aromatic tetracarboxylic dianhydrides include, for example, 2,3,6,7-naphthalenetetracarboxylic dianhydride, and tetracarboxylic dianhydrides in which at least part of the hydrogen atoms contained in the tetracarboxylic dianhydrides are substituted with fluorine atoms. These can be used singly or in combination of two or more.
  • the aliphatic tetracarboxylic dianhydrides include cyclic or acyclic aliphatic tetracarboxylic dianhydrides.
  • the cyclic aliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples thereof include 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
  • 1,2,3,4-cyclobutanetetracarboxylic dianhydride cycloalkanetetracarboxylic dianhydride such as 1,2,3,4-cyclopentanetetracarboxylic dianhydride, bicyclo[2.2 .2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, dicyclohexyl-3,3′,4,4′-tetracarboxylic dianhydride; regioisomers thereof; tetracarboxylic dianhydride in which at least part of the hydrogen atoms contained in the tetracarboxylic dianhydride are substituted with fluorine atoms.
  • cycloalkanetetracarboxylic dianhydride such as 1,2,3,4-cyclopentanetetracarboxylic dianhydride, bicyclo[2.2 .2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride
  • acyclic aliphatic tetracarboxylic dianhydrides include 1,2,3,4-butanetetracarboxylic dianhydride; 1,2,3,4-pentanetetracarboxylic dianhydride; tetracarboxylic dianhydride in which at least part of the hydrogen atoms contained in the tetracarboxylic dianhydride are substituted with fluorine atoms, and these can be used alone or in combination of two or more.
  • a cyclic aliphatic tetracarboxylic dianhydride and an acyclic aliphatic tetracarboxylic dianhydride may also be used in combination.
  • 4,4'-oxydiphthalic dianhydride and 3,3',4,4' are preferred from the viewpoint of easily increasing the optical properties, heat resistance, flexibility and solubility of the resin of the film.
  • -benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3', 4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 6FDA, and mixtures thereof are preferred, with 6FDA being more preferred.
  • the ratio of structural units derived from aliphatic diamines is preferably 30 mol% or more, more preferably 50 mol%, relative to the total molar amount of all structural units derived from diamines constituting the polyimide resin. mol % or more, more preferably 70 mol % or more, particularly preferably 90 mol % or more, and preferably 100 mol % or less.
  • the ratio of the structural units can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • the polyimide-based resin in addition to the structural units derived from the tetracarboxylic acid compound, other tetracarboxylic acid-derived structural units and tricarboxylic acid-derived structural units and their may further contain structural units derived from anhydrides and derivatives of.
  • tetracarboxylic acids include water adducts of the above tetracarboxylic acid compound anhydrides.
  • tricarboxylic acid compounds include aromatic tricarboxylic acids, aliphatic tricarboxylic acids, their analogous acid chloride compounds, acid anhydrides, and the like, and two or more of them may be used in combination. Specific examples include anhydride of 1,2,4-benzenetricarboxylic acid; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; a single bond between phthalic anhydride and benzoic acid; , —CH 2 —, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —SO 2 —, or compounds linked by a phenylene group.
  • the polyimide resin has the formula (1): [In the formula (1), X represents a divalent organic group, Y represents a tetravalent organic group, among the organic groups of X and Y, at least one contains a fluorine atom, * is a bond represents] In the structural unit represented by formula (1), X preferably contains a divalent aliphatic group. When such a polyimide-based resin is included, the optical properties, heat resistance, flex resistance, and resin solubility of the film are likely to be improved.
  • Each X in formula (1) independently represents a divalent organic group, preferably a divalent organic group having 2 to 40 carbon atoms.
  • divalent organic groups include divalent aromatic groups and divalent aliphatic groups.
  • a divalent aromatic group is a divalent organic group having an aromatic group, and may contain an aliphatic group or other substituents in part of its structure.
  • a divalent aliphatic group is a divalent organic group having an aliphatic group, and may contain other substituents in part of its structure, but does not contain an aromatic group.
  • At least one of the organic groups of X and Y contains a fluorine atom. That is, the fluorine atom may be contained in either one of X and Y, or may be contained in both. In one embodiment of the present invention, it is preferable that at least Y contains a fluorine atom, and X contains a fluorine atom, from the viewpoint of easily increasing the optical properties, heat resistance, flex resistance, and solubility of the resin of the film. and Y contains a fluorine atom. In addition, when Y has a plurality of types of organic groups, at least one organic group among the plurality of types may contain a fluorine atom. The same is true for X.
  • X in formula (1) includes a divalent aliphatic group
  • the divalent aliphatic group includes, for example, a divalent acyclic aliphatic group or a divalent cycloaliphatic group.
  • a divalent acyclic aliphatic group is preferable from the viewpoint of easily improving the optical properties, heat resistance, flex resistance, and solubility of the resin of the film.
  • the divalent acyclic aliphatic group for X in formula (1) includes, for example, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group and propylene group.
  • 1,2-butanediyl group, 1,3-butanediyl group, 2-methyl-1,2-propanediyl group, 2-methyl-1,3-propanediyl group, and other linear or branched alkylene groups is mentioned.
  • a hydrogen atom in the divalent acyclic aliphatic group may be substituted with a halogen atom, preferably a fluorine atom, and a carbon atom may be substituted with a heteroatom (e.g., oxygen atom, nitrogen atom, etc.) good.
  • the number of carbon atoms in the linear or branched alkylene group is preferably 2 or more, more preferably 3 or more, and still more preferably 3 or more, from the viewpoint of easily improving the optical properties, heat resistance, flex resistance, and solubility of the resin of the film. is 4 or more, preferably 10 or less, more preferably 8 or less, still more preferably 6 or less.
  • divalent acyclic aliphatic groups from the viewpoint of easily improving the optical properties, heat resistance, flex resistance and solubility of the resin of the film, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, An alkylene group having 2 to 6 carbon atoms such as a hexamethylene group is preferred, and a tetramethylene group is more preferred.
  • the divalent aromatic group or divalent cycloaliphatic group for X in formula (1) includes formula (10), formula (11), formula (12), formula (13), a group represented by formula (14), formula (15), formula (16), formula (17) and formula (18); a group represented by those formulas (10) to (18) groups in which hydrogen atoms therein are substituted with methyl groups, fluoro groups, chloro groups or trifluoromethyl groups; and chain hydrocarbon groups having 6 or less carbon atoms.
  • V 1 , V 2 and V 3 are each independently a single bond, —O—, —S—, —CH 2 —, —CH 2 —CH 2 —, —CH(CH 3 )—, —C(CH 3 ) represents 2- , -C(CF 3 ) 2 -, -SO 2 -, -CO- or -N(Q)-;
  • Q represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom.
  • the monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom includes, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert -butyl group, n-pentyl group, 2-methyl-butyl group, 3-methylbutyl group, 2-ethyl-propyl group, n-hexyl, n-heptyl group, n-octyl group, tert-octyl group, n-nonyl group and n-decyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • V 1 and V 3 are a single bond, -O- or -S- and V 2 is -CH 2 -, -C(CH 3 ) 2 -, -C(CF 3 ) 2 - or -SO 2 -.
  • the bonding positions of V 1 and V 2 to each ring and the bonding positions of V 2 and V 3 to each ring independently of each other are preferably meta-position or para-position, more preferably para-position. rank.
  • the hydrogen atoms on the rings in formulas (10) to (18) are substituted with an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. good too.
  • alkyl groups having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, 2-methyl- butyl group, 3-methylbutyl group, 2-ethyl-propyl group, n-hexyl group and the like.
  • alkoxy groups having 1 to 6 carbon atoms include methoxy, ethoxy, propyloxy, isopropyloxy, butoxy, isobutoxy, tert-butoxy, pentyloxy, hexyloxy and cyclohexyloxy groups. mentioned.
  • Examples of the aryl group having 6 to 12 carbon atoms include phenyl group, tolyl group, xylyl group, naphthyl group and biphenyl group. These divalent cycloaliphatic groups or divalent aromatic groups can be used alone or in combination of two or more.
  • the polyimide resin in the present invention may contain multiple types of X, and the multiple types of X may be the same or different.
  • X in formula (1) may include a divalent acyclic aliphatic group, a divalent aromatic group and/or a divalent cycloaliphatic group.
  • the ratio of structural units in which X in formula (1) is a divalent aliphatic group, preferably a divalent acyclic aliphatic group is represented by formula (1) It is preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less based on the total molar amount of the structural units. be.
  • the ratio of structural units in which X in formula (1) is a divalent aliphatic group, preferably a divalent acyclic aliphatic group is within the above range, the optical properties, heat resistance, and resistance of the film are improved. It is easy to improve flexibility and resin solubility.
  • the ratio of the structural units can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • each Y independently represents a tetravalent organic group, preferably a tetravalent organic group having 4 to 40 carbon atoms, more preferably a tetravalent organic group having 4 to 40 carbon atoms and having a cyclic structure. represents a valent organic group.
  • Cyclic structures include alicyclic, aromatic and heterocyclic structures.
  • the organic group is an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a halogen-substituted hydrocarbon group.
  • the number of carbon atoms is preferably 1-8.
  • the polyimide resin in the present invention may contain multiple types of Y, and the multiple types of Y may be the same or different.
  • Y is represented by the following formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) and a group represented by the formula (29); a group in which the hydrogen atoms in the groups represented by the formulas (20) to (29) are substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group and a tetravalent chain hydrocarbon group having 6 or less carbon atoms.
  • W 1 is a single bond, —O—, —CH 2 —, —CH 2 —CH 2 —, —CH(CH 3 )—, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, -Ar-, -SO 2 -, -CO-, -O-Ar-O-, -Ar-O-Ar-, -Ar-CH 2 -Ar-, -Ar-C(CH 3 ) 2 -Ar- or -Ar-SO 2 -Ar-.
  • Ar represents an arylene group having 6 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom, and specific examples thereof include a phenylene group.
  • formula (26), formula (28) or formula A group represented by (29) is preferred, and a group represented by formula (26) is more preferred.
  • W 1 is each independently a single bond, —O—, —CH 2 —, —CH 2 —CH 2 from the viewpoint of easily increasing the optical properties, heat resistance, flex resistance, and solubility of the resin of the film.
  • the structural unit represented by formula (1) is represented by Y as represented by formula (2):
  • R 2 to R 7 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms
  • V is a single bond, -O-, -CH 2 -, -CH 2 -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -C(CF 3 ) 2 -, - represents SO 2 —, —S—, —CO— or —N(R 8 )—
  • hydrogen atoms contained in R 2 to R 7 and V are independently of each other optionally substituted with halogen atoms
  • R 8 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom
  • * represents a bond
  • R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or It represents an aryl group having 6 to 12 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms are respectively the above-exemplified alkyl groups having 1 to 6 carbon atoms and alkoxy groups having 1 to 6 carbon atoms. and aryl groups having 6 to 12 carbon atoms.
  • R 2 to R 7 each independently represent preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • V is a single bond, -O-, -CH 2 -, -CH 2 -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -C(CF 3 ) 2 -, -SO 2 -, -S represents -, -CO- or -N(R 8 )-, where hydrogen atoms contained in R 2 to R 7 and V may be independently substituted with halogen atoms.
  • the halogen atom includes those exemplified above, and is preferably a fluorine atom.
  • R 8 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom.
  • the monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom the monovalent hydrocarbon groups having 1 to 12 carbon atoms which may be substituted with a halogen atom are exemplified above. things are mentioned.
  • V is a single bond, -O-, -CH 2 -, -CH(CH 3 )-, - C(CH 3 ) 2 - or -C(CF 3 ) 2 - is preferred, and single bond, -C(CH 3 ) 2 - or -C(CF 3 ) 2 - is more preferred, and single More preferably, it is a bond or -C(CF 3 ) 2 -.
  • formula (2) is represented by formula (2'): [In formula (2′), * represents a bond] is represented by
  • the film tends to exhibit excellent optical properties, heat resistance and bending resistance.
  • the skeleton containing elemental fluorine improves the solubility of the resin in a solvent, suppresses the viscosity of the varnish to a low level, and facilitates the enhancement of the film formability of the film.
  • Y in formula (1) when Y in formula (1) includes a structure represented by formula (2), Y in formula (1) is the ratio of structural units represented by formula (2) is preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, and particularly preferably 90 mol% or more, relative to the total molar amount of the structural units represented by formula (1). and preferably 100 mol % or less.
  • the proportion of structural units in which Y in formula (1) is represented by formula (2) can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • Polyimide resin in the present invention in addition to the structural unit represented by the formula (1), even if it contains a structural unit represented by the formula (30) and / or a structural unit represented by the formula (31) good.
  • Y 1 is a tetravalent organic group, preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • Y 1 is represented by formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) and a group represented by the formula (29), a group in which hydrogen atoms in the groups represented by the formulas (20) to (29) are substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group; and tetravalent chain hydrocarbon groups having 6 or less carbon atoms.
  • the polyimide resin may contain multiple types of Y 1 , and the multiple types of Y 1 may be the same or different.
  • Y 2 is a trivalent organic group, preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • the polyimide-based resin may contain multiple types of Y 2 , and the multiple types of Y 2 may be the same or different.
  • X 1 and X 2 independently represent a divalent organic group, preferably a divalent organic group having 2 to 40 carbon atoms.
  • the divalent organic group include a divalent aromatic group and a divalent aliphatic group.
  • the divalent aliphatic group include a divalent acyclic aliphatic group and a divalent Cycloaliphatic groups are included.
  • the above formula (10), formula (11), formula (12), formula (13), formula (14) , groups represented by formula (15), formula (16), formula (17) and formula (18); hydrogen atoms in the groups represented by formulas (10) to (18) are methyl groups, a group substituted with a fluoro group, a chloro group or a trifluoromethyl group; and a chain hydrocarbon group having 6 or less carbon atoms.
  • divalent acyclic aliphatic groups examples include ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, propylene, 1,2-butanediyl, 1,3-butanediyl, 2 -Methyl-1,2-propanediyl group, 2-methyl-1,3-propanediyl group, and the like linear or branched alkylene groups having 2 to 10 carbon atoms.
  • a hydrogen atom in the divalent acyclic aliphatic group may be substituted with a halogen atom, preferably a fluorine atom, and a carbon atom may be substituted with a heteroatom (e.g., oxygen atom, nitrogen atom, etc.) good.
  • the polyimide resin is a structural unit represented by formula (1), and optionally a structural unit represented by formula (30) and a structural unit represented by formula (31) It consists of at least one selected structural unit.
  • the proportion of the structural unit represented by the formula (1) in the polyimide resin is included in the polyimide resin.
  • the polyimide-based resin in the present invention is preferably a polyimide resin from the viewpoint of easily improving the optical properties, heat resistance, flex resistance, and solubility of the resin of the film.
  • the polyimide resin in the present invention contains fluorine atoms.
  • fluorine atoms By including fluorine atoms in the polyimide resin, the optical properties, heat resistance, bending resistance, and resin solubility of the film can be easily improved.
  • a fluorine atom may be present in the resin, and the form of introduction of the fluorine atom is not particularly limited, but the fluorine atom is introduced into the polyimide resin by a fluorine-containing substituent is preferred.
  • the fluorine-containing substituent includes, for example, a fluoro group and a trifluoromethyl group, from the viewpoint of easily increasing the optical properties, heat resistance, flex resistance, and solubility of the resin of the film.
  • the content of fluorine atoms in the polyimide resin in the present invention is preferably 1% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more, and even more preferably, relative to the mass of the polyimide resin. is 15% by mass or more, particularly preferably 20% by mass or more, preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
  • the fluorine atom content is at least the above lower limit, the optical properties, heat resistance, flex resistance, and resin solubility of the film are likely to be enhanced.
  • the content of fluorine atoms is equal to or less than the above upper limit, synthesis becomes easier.
  • the content of fluorine atoms can be determined, for example, by the method described in Examples.
  • the imidization rate of the polyimide resin is preferably 90% or higher, more preferably 93% or higher, still more preferably 95% or higher, even more preferably 97% or higher, and particularly preferably 99% or higher.
  • the upper limit of the imidization rate is 100% or less.
  • the imidization ratio indicates the ratio of the molar amount of imide bonds in the polyimide resin to twice the molar amount of the structural units derived from the tetracarboxylic acid compound in the polyimide resin.
  • the polyimide resin contains a tricarboxylic acid compound
  • a value twice the molar amount of the structural units derived from the tetracarboxylic acid compound in the polyimide resin, and the molar amount of the structural units derived from the tricarboxylic acid compound It shows the ratio of the molar amount of imide bonds in the polyimide resin to the total of .
  • the imidization rate can be determined by an IR method, an NMR method, or the like, and can be determined, for example, by the method described in Examples.
  • the content of the polyimide resin is preferably 40% by mass or more, more preferably 50% by mass or more, still more preferably 60% by mass, particularly preferably 80% by mass, based on the mass of the film. % by mass or more, preferably 100% by mass or less.
  • the content of the polyimide-based resin is within the above range, it is easy to improve the optical properties, heat resistance, flex resistance, and solubility of the resin of the resulting film.
  • the method for producing the polyimide resin in the present invention is not particularly limited, for example, the polyimide resin containing the structural unit represented by the formula (1) is obtained by reacting a diamine compound and a tetracarboxylic acid compound to obtain a polyamic acid. and imidizing the polyamic acid. In addition to the tetracarboxylic acid compound, a tricarboxylic acid compound may be reacted.
  • the tetracarboxylic acid compound, the diamine compound and the tricarboxylic acid compound used for synthesizing the polyimide resin are the same as the tetracarboxylic acid compound, the diamine compound and the tricarboxylic acid compound described in the ⁇ Polyimide resin> section, respectively. can be used.
  • the amounts of the diamine compound, the tetracarboxylic acid compound and the tricarboxylic acid compound to be used can be appropriately selected according to the desired ratio of each structural unit of the resin.
  • the amount of the diamine compound used is preferably 0.94 mol or more, more preferably 0.96 mol or more, still more preferably 0.98 mol or more, per 1 mol of the tetracarboxylic acid compound. mol or more, particularly preferably 0.99 mol or more, preferably 1.20 mol or less, more preferably 1.10 mol or less, even more preferably 1.05 mol or less, particularly preferably 1.02 mol or less .
  • the amount of the diamine compound used relative to the tetracarboxylic acid compound is within the above range, it is easy to improve the optical properties, heat resistance, flex resistance, and solubility of the resin of the film.
  • the reaction temperature of the diamine compound and the tetracarboxylic acid compound is not particularly limited, and may be, for example, 5 to 200° C.
  • the reaction time is also not particularly limited, and may be, for example, about 30 minutes to 72 hours.
  • the reaction temperature is preferably 5 to 200°C, more preferably 50 to 190°C, still more preferably 100 to 180°C, and the reaction time is preferably 3 to 24 hours. More preferably 5 to 20 hours. With such a reaction temperature and reaction time, it is easy to improve the optical properties, heat resistance, flex resistance, and solubility of the resin of the film.
  • the Mw and Mn of the polyimide resin are respectively reaction conditions such as reaction time and reaction temperature; types and amounts of diamine compound, tetracarboxylic acid compound, catalyst, and solvent; composition of good solvent and poor solvent in precipitation operation and can be adjusted by appropriately changing the composition of the cleaning solution.
  • the reaction between the diamine compound and the tetracarboxylic acid compound is preferably carried out in a solvent.
  • the solvent is not particularly limited as long as it does not affect the reaction, but examples include water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, Alcohol solvents such as 2-butoxyethanol and propylene glycol monomethyl ether; Phenol solvents such as phenol and cresol; Ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, ⁇ -valerolactone, propylene glycol methyl ether acetate , ethyl lactate and other ester solvents; acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, methyl iso
  • phenol-based solvents and amide-based solvents can be preferably used from the viewpoint of solubility.
  • the solvent used in the reaction is preferably a solvent that has been rigorously dehydrated to a water content of 700 ppm or less. The use of such a solvent tends to improve the optical properties, heat resistance, flex resistance, and solubility of the resin of the film.
  • the reaction between the diamine compound and the tetracarboxylic acid compound may be carried out under conditions of an inert atmosphere (nitrogen atmosphere, argon atmosphere, etc.) or reduced pressure, if necessary, and an inert atmosphere (nitrogen atmosphere, argon atmosphere, etc.). It is preferable to conduct the reaction in a strictly controlled dehydrated solvent while stirring. Under such conditions, it is easy to improve the optical properties, heat resistance, flex resistance, and solubility of the resin of the film.
  • imidization may be performed using an imidization catalyst, imidization by heating, or a combination thereof.
  • the imidization catalyst used in the imidization step include aliphatic amines such as tripropylamine, dibutylpropylamine and ethyldibutylamine; N-ethylpiperidine, N-propylpiperidine, N-butylpyrrolidine, N-butylpiperidine, and cycloaliphatic amines (monocyclic) such as N-propylhexahydroazepine; azabicyclo[2.2.1]heptane, azabicyclo[3.2.1]octane, azabicyclo[2.2.2]octane, and Alicyclic amines (polycyclic) such as azabicyclo[3.2.2]nonane; and pyridine, 2-methylpyridine (2-picoline), 3-methylpyridine (3-picoline), 4-methylpyridine
  • Acid anhydrides include conventional acid anhydrides used in imidization reactions, and specific examples thereof include aliphatic acid anhydrides such as acetic anhydride, propionic anhydride and butyric anhydride, and aromatic acid anhydrides such as phthalic acid. and acid anhydrides.
  • the reaction temperature when imidating, is preferably 40°C or higher, more preferably 60°C or higher, still more preferably 80°C or higher, and preferably 190°C or lower, more preferably 170°C. It is below.
  • the reaction time for the imidization step is preferably 30 minutes to 24 hours, more preferably 1 to 12 hours. When the reaction temperature and reaction time are within the above ranges, the optical properties, heat resistance, flex resistance and solubility of the resin of the film are likely to be improved.
  • an imidization catalyst may be added in advance, and the step of obtaining the polyamic acid and the imidization step may be performed simultaneously. can.
  • the polyimide resin may be isolated (separated and purified) by a conventional method such as filtration, concentration, extraction, crystallization, recrystallization, column chromatography or other separation means, or a combination of these separation means.
  • a large amount of an alcoholic solvent such as methanol, ethanol, n-propanol, isopropanol is added to a reaction solution containing a resin to precipitate the resin, followed by concentration, filtration, drying, and the like.
  • the content of oligomers having a molecular weight of 10,000 or less is 6.1 mass % or less.
  • oligomer refers to a polymer in which monomers are combined, which is a dimer or more and has a molecular weight of 10,000 or less.
  • the content of the oligomer having a molecular weight of 10,000 or less is 6.1% by mass or less, preferably 6.0% by mass or less, more preferably 5.8% by mass or less, and still more preferably 5.5% by mass, relative to the mass of the film. % or less, more preferably 5.0 mass % or less, particularly preferably 4.5 mass % or less, and even more preferably 4.0 mass % or less.
  • the content of the oligomer having a molecular weight of 10,000 or less is equal to or less than the above upper limit, the flex resistance of the film is likely to be improved.
  • the content of the oligomer having a molecular weight of 10,000 or less is preferably 1.0% by mass or more, more preferably 1.5% by mass or more, still more preferably 2.0% by mass or more, and still more preferably 1.0% by mass or more, based on the mass of the film. It is preferably 2.5% by mass or more, particularly preferably 3.0% by mass or more.
  • the solubility of the polyimide resin in a solvent during film formation is likely to be improved.
  • the content of oligomers having a molecular weight of 10,000 or less can be obtained by performing gel permeation chromatography (GPC) measurement and converting to standard polystyrene, for example, it can be calculated by the method described in Examples.
  • GPC gel permeation chromatography
  • the lower limit of the molecular weight of the oligomer in the film is not particularly limited, it is preferably 700 or more, more preferably 800 or more, even more preferably 900 or more, and still more preferably 1,000 or more.
  • the lower limit of the molecular weight of the oligomer can be the molecular weight of the dimer.
  • the film may contain 1 or 2 or more oligomers, preferably 2 or more, more preferably 4 or more, still more preferably 6 or more, preferably 20 or less, more preferably 15 or less. , and more preferably 10 or less.
  • the different types of oligomers means not only different types of monomer units constituting the oligomers, but also different monomer unit ratios, molecular weights, and the like.
  • the type of oligomer is not particularly limited, and examples thereof include polyimide-based oligomers, polyamide-based oligomers, polyester-based oligomers, polyolefin-based oligomers, polycarbonate-based oligomers, polystyrene-based oligomers, and polyvinyl alcohol-based oligomers.
  • Polyimide-based oligomers are preferred from the standpoint of facilitating the enhancement of flexibility and resin solubility.
  • the polyimide-based oligomer means an oligomer containing an imide group and optionally an amide group, and from the viewpoint of easily improving the flexibility of the film and the solubility of the resin, the diamine compound described in the section ⁇ Polyimide-based resin> above.
  • the tetracarboxylic acid compound and optionally the tricarboxylic acid compound as monomer units (structural units), and more preferably an oligomer having a structural unit represented by formula (1). It is more preferable that the oligomer has a structural unit described as preferable among the structural units represented by formula (1).
  • the oligomer may be intentionally added during the film manufacturing process, but in a preferred embodiment of the present invention, the polyimide resin manufacturing process and/or the film manufacturing process, particularly the polyimide resin manufacturing process
  • the oligomer preferably comprises the same monomeric units as the polyimide-based resin in the film, since oligomers can be formed at .
  • Oligomers may be linear oligomers or cyclic oligomers.
  • the oligomer preferably contains a cyclic oligomer from the viewpoint of easily improving the flexibility of the film and the solubility of the resin.
  • a cyclic oligomer when included, it is easy to effectively suppress stacking between resins and aggregation of the resins due to this, so that the solubility of the resin in a solvent can be easily improved.
  • the cyclic oligomer is a cyclic multimer, such as a 2- to 20-mer, preferably a 2- to 15-mer, more preferably a 2- to 10-mer, from the viewpoint of easily improving the flexibility of the film and the solubility of the resin.
  • the cyclic oligomer has formula (A): [In Formula (A), X and Y are the same as X and Y in Formula (1), respectively, and n represents an integer of 1 or more] is a cyclic oligomer represented by
  • the cyclic oligomer is represented by the formula (A)
  • the oligomer in the present invention preferably contains a plurality of cyclic oligomers represented by formula (A) from the viewpoint of improving flexibility and resin solubility.
  • preferred X and Y in formula (A) are respectively the same as preferred X and Y in formula (1).
  • two or more X's may be the same or different, and two or more Y's may be the same or different.
  • n represents an integer of 1 or more.
  • n is preferably an integer of 1 to 19, more preferably an integer of 1 to 14, still more preferably an integer of 1 to 9, still more preferably an integer from the viewpoint of easily improving the flex resistance of the film and the solubility of the resin.
  • the cyclic oligomer has formula (B): [n is synonymous with n in formula (A)] It is preferably a cyclic oligomer represented by.
  • the cyclic oligomer is a cyclic oligomer represented by formula (B)
  • the oligomer in the present invention preferably contains a plurality of cyclic oligomers represented by formula (B) from the viewpoint of improving flexibility and resin solubility.
  • Oligomers with a molecular weight of 10,000 or less can be assigned using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-MS measurement), for example, by the method described in the Examples.
  • MALDI-MS measurement matrix-assisted laser desorption/ionization time-of-flight mass spectrometer
  • the content of the cyclic oligomer is preferably 30% by mass or more, more preferably 50% by mass or more, still more preferably 70% by mass, based on the mass of the oligomer contained in the film. % by mass or more, more preferably 90% by mass or more, particularly preferably 95% by mass or more, and the upper limit is 100% by mass or less.
  • the content of the polyimide-based oligomer in the film is at least the above lower limit, it is easy to improve the flexibility of the film and the solubility of the resin.
  • Methods for adjusting the amount of oligomers in the film include, for example, a method by molecular weight fractionation; a method using the method for purifying the resin according to the preferred embodiment of the present invention; a method for adjusting the monomer concentration in the polymerization step of the polyimide resin; A method of adjusting the solvent ratio of a poor solvent and a good solvent (reaction solvent) in the purification (or precipitation) step; and a method of adjusting the polymer concentration in the resin purification (or precipitation) step.
  • the method of dropping a poor solvent such as an alcoholic solvent into the reaction solution tends to reduce the amount of oligomers more than the method of dropping the reaction solution into the poor solvent.
  • the amount of oligomer tends to be reduced as the monomer concentration in the resin polymerization step is increased. Furthermore, the smaller the ratio of the poor solvent to the good solvent (reaction solvent) in the resin purification (or precipitation) step, the more the oligomer content tends to be reduced. In addition, the amount of oligomer tends to decrease as the polymer concentration in the resin purification (or precipitation) step decreases.
  • the film of the present invention contains a polyimide resin having a structural unit derived from an aliphatic diamine and a fluorine atom, and contains 6.1% by mass or less of an oligomer having a molecular weight of 10,000 or less. Therefore, bending resistance can be improved, and excellent bending resistance can be obtained. Furthermore, the film according to the preferred embodiment of the present invention, in which the content of the oligomer having a molecular weight of 10,000 or less is 1.0% by mass or more, can improve the solubility of the resin in a solvent, and thus has excellent flex resistance and , and excellent resin solubility can be compatible. Therefore, the film of the present invention can be suitably used as a material for flexible display devices and the like. Moreover, the film of the present invention is preferably an optical film, and the film has excellent optical properties.
  • the weight average molecular weight (Mw) of the film is preferably 50,000 or more, more preferably 70,000 or more, still more preferably 100,000 or more, still more preferably 150,000 or more, Particularly preferably 170,000 or more, particularly more preferably 180,000 or more, extremely preferably 197,000 or more, preferably 750,000 or less, more preferably 650,000 or less, further preferably 550,000 or less be.
  • Mw of the film is at least the above lower limit, the heat resistance and bending resistance of the film are likely to be enhanced. Further, when the Mw is equal to or less than the above upper limit, it is easy to improve the thickness retardation of the film, workability and the solubility of the resin.
  • the number average molecular weight (sometimes abbreviated as Mn) of the film is preferably 10,000 or more, more preferably 15,000 or more, still more preferably 20,000 or more, still more preferably It is 25,000 or more, preferably 150,000 or less, more preferably 120,000 or less, still more preferably 100,000 or less, even more preferably 50,000 or less, and particularly preferably 40,000 or less.
  • Mn of the film is at least the above lower limit, the heat resistance and flex resistance are likely to be enhanced. Further, when the Mn is equal to or less than the above upper limit, it is easy to improve the thickness retardation of the film, the workability and the solubility of the resin.
  • Each of the Mw and Mn of the film can be obtained by performing gel permeation chromatography (GPC) measurement and converting to standard polystyrene, and can be calculated, for example, by the method described in Examples.
  • the Mw and Mn of the film were measured by GPC after dissolving the film itself.
  • the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the film is preferably 15 or less, more preferably 13 or less, still more preferably 10 or less, and preferably is 2.0 or more, more preferably 3.0 or more, and still more preferably 4.0 or more.
  • Mw/Mn weight average molecular weight
  • the molecular weight distribution (Mw/Mn) of the film is equal to or less than the above upper limit, it is easy to improve the thickness retardation of the film, the workability and the solubility of the resin, and the molecular weight distribution (Mw/Mn) of the film is equal to or lower than the above lower limit. It is easy to improve heat resistance and bending resistance as it is above.
  • the number of times of bending at a bending radius of 1 mm is preferably 100,000 or more, more preferably 150,000 or more, and more preferably 200,000. times or more, more preferably 300,000 times or more, still more preferably 400,000 times or more.
  • the upper limit of the number of bends is usually 5,000,000 or less.
  • the number of bends of the film can be measured using a planar body no-load U-shaped stretch tester (tabletop durability tester) under the conditions of a test speed of 30 rpm and a bending radius R of 1 mm, for example, by the method described in Examples. can.
  • the thickness of the film of the present invention can be appropriately selected depending on the application, and is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 15 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and still more preferably 60 ⁇ m. Below, it is particularly preferably 50 ⁇ m or less. When the thickness of the film is within the above range, it is advantageous from the viewpoint of the bending resistance of the film.
  • the thickness of the film can be measured using a thickness meter or the like, for example, by the method described in Examples.
  • the film of the present invention may contain an ultraviolet absorber.
  • the film of the present invention contains the polyimide resin, and the content of the oligomer having a molecular weight of 10,000 or less is adjusted to the above upper limit or less. there is Moreover, in a preferred embodiment of the present invention, the content of the oligomer having a molecular weight of 10,000 or less is adjusted to the above lower limit or more. can be improved, that is, the film formability during film production can be improved.
  • ultraviolet absorbers examples include benzotriazole derivatives (benzotriazole-based ultraviolet absorbers), triazine derivatives (triazine-based ultraviolet absorbers) such as 1,3,5-triphenyltriazine derivatives (triazine-based ultraviolet absorbers), benzophenone derivatives (benzophenone-based ultraviolet absorbers ), and salicylate derivatives (salicylate-based ultraviolet absorbers), and at least one selected from the group consisting of these can be used.
  • benzotriazole derivatives such as 1,3,5-triphenyltriazine derivatives (triazine-based ultraviolet absorbers), benzophenone derivatives (benzophenone-based ultraviolet absorbers )
  • salicylate derivatives salicylate-based ultraviolet absorbers
  • benzotriazole-based UV absorbers include the compound represented by formula (I), trade name of Sumitomo Chemical Co., Ltd.: Sumisorb (registered trademark) 250 (2-[2-hydroxy-3-(3 ,4,5,6-tetrahydrophthalimido-methodiyl)-5-methylphenyl]benzotriazole), trade name manufactured by BASF Japan Ltd.: Tinuvin (registered trademark) 360 (2,2′-methylenebis[6-(2H -benzotriazol-2-yl)-4-tert-octylphenol]) and Tinuvin 213 (methyl 3-[3-(2H-benzotriazol-2-yl)5-tert-butyl-4-hydroxyphenyl]propionate with PEG300 and reaction products), which can be used alone or in combination of two or more.
  • formula (I) trade name of Sumitomo Chemical Co., Ltd.: Sumisorb (registered trademark) 250 (2-[2-hydroxy-3-(3 ,4,5
  • Specific examples of the compound represented by the formula (I) include trade names manufactured by Sumitomo Chemical Co., Ltd.: Sumisorb 200 (2-(2-hydroxy-5-methylphenyl)benzotriazole), Sumisorb 300 (2-(3 -tert-butyl-2-hydroxy-5-methylphenyl)-5-chlorobenzotriazole), Sumisorb 340 (2-(2-hydroxy-5-tert-octylphenyl)benzotriazole), Sumisorb 350 (2-(2 -Hydroxy 3,5-di-tert-pentylphenyl)benzotriazole) and BASF Japan Ltd.
  • Tinuvin 327 (2-(2'-hydroxy-3',5'-di-tert-butyl phenyl)-5-chlorobenzotriazole), Tinuvin 571 (2-(2H-benzotriazol-2-yl)-6-dodecyl-4-methyl-phenol) and Tinuvin 234 (2-(2H-benzotriazol-2-yl )-4,6-bis(1-methyl-1-phenylethyl)phenol) and ADEKA Corporation's product name: ADEKA STAB (registered trademark) LA-31 (2,2'-methylenebis[6-(2H-benzo triazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol]).
  • the ultraviolet absorber is preferably the compound represented by formula (I) and Tinuvin 213 (methyl 3-[3-(2H-benzotriazol-2-yl) 5-tert-butyl-4-hydroxyphenyl]propionate It is a reaction product with PEG300, more preferably trade names manufactured by Sumitomo Chemical Co., Ltd.: Sumisorb 200 (2-(2-hydroxy-5-methylphenyl)benzotriazole), Sumisorb 300 (2-(3-tert -butyl-2-hydroxy-5-methylphenyl)-5-chlorobenzotriazole), Sumisorb 340 (2-(2-hydroxy-5-tert-octylphenyl)benzotriazole), Sumisorb 350 (2-(2-hydroxy 3,5-di-tert-pentylphenyl)benzotriazole), product name of ADEKA Corporation: ADEKA STAB LA-31 (2,2'-methylenebis[6-(2H-benzotriazol-2-yl)-4- (1,1,
  • Tinuvin 327 (2-(2′-hydroxy-3′,5′-di-tert-butylphenyl )-5-chlorobenzotriazole) and Tinuvin 571 (2-(2H-benzotriazol-2-yl)-6-dodecyl-4-methyl-phenol), most preferably manufactured by Sumitomo Chemical Co., Ltd.
  • X I is a hydrogen atom, a fluorine atom, a chlorine atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms
  • R I1 and R I2 are each independently a hydrogen atom. or a hydrocarbon group having 1 to 20 carbon atoms
  • at least one of R 11 and R 12 is a hydrocarbon group having 1 to 20 carbon atoms.
  • the alkyl group having 1 to 5 carbon atoms in X I includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, 2- Examples include methyl-butyl group, 3-methylbutyl group, 2-ethyl-propyl group and the like.
  • the alkoxy group having 1 to 5 carbon atoms in X I includes a methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, 2-methyl-butoxy group, 3-methylbutoxy group, 2-ethyl-propoxy group and the like.
  • X I is preferably a hydrogen atom, a fluorine atom, a chlorine atom or a methyl group, more preferably a hydrogen atom, a fluorine atom or a chlorine atom.
  • R 11 and R 12 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and at least one of R 11 and R 12 is a hydrocarbon group.
  • R I1 and R I2 is a hydrocarbon group, it is preferably a hydrocarbon group having 1 to 12 carbon atoms, more preferably a hydrocarbon group having 1 to 8 carbon atoms. Specific examples include methyl group, tert-butyl group, tert-pentyl group and tert-octyl group.
  • Triazine-based ultraviolet absorbent is used in a film containing a polyimide-based resin as an ultraviolet absorbent according to another preferred embodiment.
  • Triazine-based UV absorbers include compounds represented by the following formula (II).
  • a specific example thereof is the product name of ADEKA Corporation: ADEKA STAB LA-46 (2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[2-(2-ethyl hexanoyloxy)ethoxy]phenol), trade name manufactured by BASF Japan Ltd.: Tinuvin 400 (2-[4-[2-hydroxy-3-tridecyloxypropyl]oxy]-2-hydroxyphenyl]-4,6 -bis(2,4-dimethylphenyl)-1,3,5-triazine), 2-[4-[2-hydroxy-3-didecyloxypropyl]oxy]-2-hydroxyphenyl]-4,6-bis (2,4-dimethylphenyl)-1,3,5-triazine),
  • KEMISORB registered trademark
  • the compound represented by formula (II) is preferably Adekastab LA-46(2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[2-(2-ethyl hexanoyloxy)ethoxy]phenol).
  • Y I1 to Y I4 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a hydroxy group, an alkyl group having 1 to 20 carbon atoms or an alkoxy group having 1 to 20 carbon atoms, preferably is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms, more preferably a hydrogen atom.
  • R I3 is a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms containing one oxygen atom, or an alkylketooxy having 1 to 12 carbon atoms.
  • It is an alkoxy group having 2 to 4 carbon atoms, more preferably an alkoxy group having 2 to 4 carbon atoms substituted with an alkylketooxy group having 8 to 12 carbon atoms.
  • alkyl groups having 1 to 20 carbon atoms as Y I1 to Y I4 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n -pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group and n-undecyl group.
  • alkoxy groups having 1 to 20 carbon atoms include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentyloxy, n -hexyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, n-dodecyloxy group and n-undecyloxy group.
  • the ultraviolet absorber preferably has light absorption of 300 to 400 nm, more preferably 320 to 360 nm, and even more preferably around 350 nm.
  • the content of the ultraviolet absorber is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, with respect to 100 parts by mass of the polyimide resin. It is preferably 0.8 parts by mass or more, particularly preferably 1 part by mass or more, preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and even more preferably 5 parts by mass or less.
  • the content of the UV absorber is at least the above lower limit, it is easy to improve the UV cut property of the film, and when the content of the UV absorber is at most the above upper limit, the optical properties, heat resistance, and bending resistance of the film are improved. It is easy to improve properties and resin solubility.
  • the film of the present invention may contain at least one filler.
  • the filler include organic particles and inorganic particles, preferably inorganic particles.
  • inorganic particles include metal oxide particles such as silica, zirconia, alumina, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), antimony oxide, and cerium oxide;
  • metal fluoride particles such as sodium chloride, and among these, silica particles, zirconia particles, and alumina particles are preferable from the viewpoint that the film tends to have well-balanced optical properties, heat resistance, and flex resistance. and more preferably silica particles.
  • These fillers can be used singly or in combination of two or more.
  • the average primary particle size of the filler preferably silica particles
  • the average primary particle size of the filler is usually 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, still more preferably 15 nm or more, particularly preferably 20 nm or more, and preferably 100 nm or less, more preferably It is 80 nm or less, more preferably 60 nm or less, still more preferably 40 nm or less.
  • the average primary particle size of the filler can be measured by the BET method.
  • the average primary particle size may be measured by image analysis using a transmission electron microscope or a scanning electron microscope.
  • the content of the filler is usually 0.1% by mass or more, preferably 1% by mass or more, more preferably 5% by mass, based on the mass of the film. Above, more preferably 10% by mass or more, preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 40% by mass or less.
  • the content of the filler is within the above range, it is easy to improve the optical properties, heat resistance, and flex resistance of the film.
  • the film of the present invention may further contain additives other than ultraviolet absorbers and fillers.
  • additives include, for example, antioxidants, release agents, stabilizers, bluing agents, flame retardants, pH adjusters, silica dispersants, lubricants, thickeners, and leveling agents.
  • the content is preferably 0.001 to 20% by mass, more preferably 0.01 to 15% by mass, more preferably 0.1 to 10% by mass, based on the mass of the film. % by mass.
  • the film of the present invention may be a single layer or a laminate.
  • the film of the present invention may be used as it is, or may be used as a laminate with another film. You may When the film is a laminate, the film includes all layers laminated on one side or both sides of the film.
  • the film of the present invention When the film of the present invention is a laminate, it preferably has one or more functional layers on at least one surface of the film.
  • functional layers include a hard coat layer, a primer layer, a gas barrier layer, an ultraviolet absorption layer, an adhesive layer, a hue adjustment layer, a refractive index adjustment layer and the like.
  • a functional layer can be used individually or in combination of 2 or more types.
  • the film of the present invention may have a protective film on at least one side (single side or both sides).
  • the protective film may be laminated on the film side surface or the functional layer side surface, or may be laminated on both the film side and the functional layer side.
  • the protective film may be laminated on one functional layer side surface, or may be laminated on both functional layer side surfaces.
  • the protective film is a film for temporarily protecting the surface of the film or the functional layer, and is not particularly limited as long as it is a peelable film that can protect the surface of the film or the functional layer.
  • protective films include polyester resin films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefin resin films such as polyethylene and polypropylene films; acrylic resin films; It is preferably selected from the group consisting of a terephthalate resin film and an acrylic resin film.
  • each protective film may be the same or different.
  • the thickness of the protective film is not particularly limited, but is usually 10-120 ⁇ m, preferably 15-110 ⁇ m, more preferably 20-100 ⁇ m. When the film of the present invention has two protective films, the thickness of each protective film may be the same or different.
  • the film of the present invention is not particularly limited, but for example the following steps: (a) a step of preparing a liquid (also referred to as varnish) containing the polyimide resin (hereinafter referred to as a varnish preparation step); (b) a step of applying a varnish to a substrate to form a coating film (hereinafter referred to as a coating step); and (c) a step of drying the applied liquid (coating film) to form a film (hereinafter referred to as film forming process) It can be manufactured by a method comprising
  • the varnish is prepared by dissolving the polyimide resin in a solvent, adding the additives as necessary, and stirring and mixing.
  • the solvent used for preparing the varnish is not particularly limited as long as it can dissolve the polyimide resin.
  • solvents include amide solvents such as N,N-dimethylacetamide (DMAc) and N,N-dimethylformamide (DMF); lactone solvents such as ⁇ -butyrolactone (GBL) and ⁇ -valerolactone; ketone solvents such as methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone; sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide and sulfolane; carbonate solvents such as ethylene carbonate and propylene carbonate; and combinations thereof is mentioned.
  • amide solvents such as N,N-dimethylacetamide (DMAc) and N,N-dimethylformamide (DMF)
  • lactone solvents such as ⁇ -butyrolactone (GBL) and ⁇ -
  • amide solvents, lactone solvents and ketone solvents are preferred. These solvents can be used alone or in combination of two or more.
  • the varnish may contain water, alcohol solvents, acyclic ester solvents, ether solvents, and the like.
  • the amount of oligomer is adjusted to the above lower limit or more, so that the resin can be easily dissolved even when using a ketone-based solvent in which polyimide-based resins such as cyclohexanone are difficult to dissolve.
  • a film having excellent optical properties, bending resistance, and the like can be formed.
  • the solid content concentration of the varnish is preferably 1-30% by mass, more preferably 5-25% by mass, and still more preferably 10-20% by mass.
  • the solid content of the varnish indicates the total amount of the components of the varnish excluding the solvent.
  • the viscosity of the varnish is preferably 5 to 100 Pa ⁇ s, more preferably 10 to 50 Pa ⁇ s. When the viscosity of the varnish is within the above range, it is easy to make the film uniform, and it is easy to obtain a film excellent in optical properties, heat resistance and bending resistance.
  • the varnish is applied to the substrate by a known coating method to form a coating film.
  • Known coating methods include, for example, wire bar coating, reverse coating, roll coating such as gravure coating, die coating, comma coating, lip coating, spin coating, screen coating, fountain coating, dipping, Examples include a spray method and a casting method.
  • the film can be formed by drying the coating film and peeling it off from the substrate.
  • a drying step for drying the film may be performed after the peeling. Drying of the coating film can be carried out at a temperature of usually 50 to 350°C, preferably 50 to 220°C. In a preferred embodiment of the invention, it is preferred to carry out the drying in stages.
  • a varnish containing a high-molecular-weight resin tends to have a high viscosity, making it generally difficult to obtain a uniform film, and optical properties (especially transparency), bending resistance, and heat resistance may deteriorate.
  • stepwise drying it is possible to uniformly dry the varnish containing the high molecular weight resin, and it has excellent optical properties (especially transparency), a high Tg, and excellent heat resistance and bending resistance. you can get the film.
  • heating can be performed at 185-220°C. Drying (or heating time) is preferably 5 minutes to 5 hours, more preferably 10 minutes to 1 hour.
  • drying of the coating may be performed under inert atmospheric conditions. Further, if the film is dried under vacuum conditions, minute air bubbles may be generated and remain in the film, which may cause deterioration of transparency. Therefore, it is preferable to dry the film under atmospheric pressure.
  • base materials include glass substrates, PET films, PEN films, and other polyimide resin or polyamide resin films.
  • a glass substrate, a PET film, a PEN film, and the like are preferable from the viewpoint of excellent heat resistance, and a glass substrate or a PET film is more preferable from the viewpoint of adhesion to the film and cost.
  • the film of the present invention can be suitably used as a substrate for display devices, particularly touch sensors.
  • display devices include wearable devices such as televisions, smartphones, mobile phones, car navigation systems, tablet PCs, mobile game machines, electronic paper, indicators, bulletin boards, watches, and smart watches.
  • the invention includes flexible displays comprising the films of the invention.
  • Examples of the flexible display device include display devices having flexible characteristics, such as televisions, smartphones, mobile phones, and smart watches.
  • a flexible display device is a display device that is used with an operation such as repeatedly bending or winding the display device, and examples thereof include a rollable display and a foldable display.
  • a rollable display is an image display device in which an image display portion is wound into a roll and is used in a state in which the image display portion is pulled out to form a flat or curved surface. is an image display device that is performed each time it is used.
  • a foldable display is an image display device in which an image display portion is folded and used in a state where the image display portion is opened to form a flat surface or a curved surface. It is an image display device that can be used.
  • a specific configuration of the flexible display device is not particularly limited, but includes, for example, a configuration including a laminate for a flexible display device and an organic EL display panel.
  • Such a flexible display device of the present invention preferably further includes a polarizing plate and/or a touch sensor.
  • polarizing plates or touch sensors may be used, and these may be included in the laminate for a flexible display device.
  • Polarizing plates include, for example, circularly polarizing plates
  • touch sensors include various modes such as a resistive film system, a surface acoustic wave system, an infrared system, an electromagnetic induction system, and a capacitance system.
  • a touch sensor substrate (or a touch sensor film) used in such a flexible display device is required to have bending resistance, and the film of the present invention has excellent bending resistance. (or a touch sensor film).
  • the laminate for a flexible display device preferably further includes a window film on the viewing side.
  • the sensor and the polarizing plate may be laminated in this order. These members may be laminated using an adhesive or pressure-sensitive adhesive, and other members other than these members may be included.
  • the present invention is a polyimide resin having a structural unit derived from an aliphatic diamine and a fluorine atom, and having a content of an oligomer having a molecular weight of 10,000 or less is 5.5% by mass or less with respect to the mass of the polyimide resin. encompasses Since the content of the oligomer having a molecular weight of 10,000 or less is 5.5% by mass or less, the polyimide resin of the present invention can form a film having excellent bending resistance. When the content of the oligomer having a molecular weight of 10,000 or less in the polyimide resin exceeds 5.5% by mass, the flex resistance of the film tends to decrease.
  • the content of the oligomer having a molecular weight of 10,000 or less is 5.5% by mass or less, preferably 5.0% by mass or less, more preferably 4.5% by mass, based on the mass of the polyimide resin. % or less, more preferably 4.0 mass % or less, still more preferably 3.5 mass % or less.
  • the content of the oligomer having a molecular weight of 10,000 or less is equal to or less than the above upper limit, the bending resistance of the obtained film is likely to be improved.
  • the content of the oligomer having a molecular weight of 10,000 or less is preferably more than 0.7% by mass, more preferably 1.0% by mass or more, more preferably 1.0% by mass or more, and more preferably It is 1.5% by mass or more, more preferably 2.0% by mass or more, and particularly preferably 2.5% by mass or more.
  • the solubility of the polyimide resin in a solvent during film formation is likely to be improved.
  • the polyimide resin has a content of oligomers with a molecular weight of 10,000 or less, which is adjusted to more than 0.7% by mass and 5.5% by mass or less, so that excellent flex resistance and excellent solubility.
  • the content of oligomers having a molecular weight of 10,000 or less can be obtained by performing gel permeation chromatography (GPC) measurement and converting to standard polystyrene, for example, it can be calculated by the method described in Examples.
  • the oligomer content in the polyimide resin before film formation tends to be smaller than the oligomer content in the film.
  • the oligomer in the polyimide resin of the present invention is the same as the oligomer described in the section ⁇ Oligomer> above, except for the content range.
  • the weight average molecular weight (Mw) of the polyimide resin is preferably 100,000 or more, more preferably 150,000 or more, still more preferably 170,000 or more, still more preferably 200,000. or more, particularly preferably 220,000 or more, particularly more preferably 230,000 or more, extremely preferably 250,000 or more, preferably 800,000 or less, more preferably 700,000 or less, further preferably 600,000 It is below.
  • Mw of the polyimide resin is at least the above lower limit, the heat resistance and flex resistance of the film can be easily improved. Further, when the Mw of the polyimide-based resin is equal to or less than the above upper limit, it is easy to improve the thickness retardation of the film, the workability and the solubility of the resin.
  • the number average molecular weight (Mn) of the polyimide resin is preferably 15,000 or more, more preferably 20,000 or more, still more preferably 25,000 or more, still more preferably 35,000 above, particularly preferably 40,000 or more, particularly more preferably 45,000 or more, preferably 180,000 or less, more preferably 150,000 or less, still more preferably 130,000 or less, still more preferably 80, 000 or less, particularly preferably 70,000 or less.
  • Mn of the polyimide resin is at least the above lower limit, the heat resistance and flex resistance of the film are likely to be improved.
  • the Mn of the polyimide resin is equal to or less than the above upper limit, it is easy to improve the thickness retardation of the film, workability and the solubility of the resin.
  • the Mw and Mn of the polyimide resin can each be obtained by performing gel permeation chromatography (GPC) measurement and converting to standard polystyrene, and can be calculated, for example, by the method described in Examples.
  • the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the polyimide resin is preferably 13 or less, more preferably 11 or less, and still more preferably 8.0 or less. , preferably 1.5 or more, more preferably 2.0 or more, and still more preferably 3.0 or more.
  • the polyimide-based resin of the present invention is a resin composed of one or more polyimide-based resins, and includes a mixture of two or more polyimide-based resins (sometimes referred to as a polyimide-based resin blend).
  • the polyimide-based resin in the present invention is a polyimide-based resin blend
  • the above Mw of the polyimide-based resin blend can be determined by measuring the polyimide-based resin blend itself by GPC and converting it to standard polystyrene.
  • Mn, molecular weight distribution (Mw/Mn), imidization rate, and fluorine atom content are similarly determined by measuring the polyimide resin blend itself.
  • the polyimide-based resin of the present invention is the same as the polyimide-based resin described in the section ⁇ Polyimide-based resin> above, except for the range of Mw, Mn and molecular weight distribution.
  • the method for producing the polyimide resin of the present invention is the same as the method described in ⁇ Method for producing polyimide resin> above.
  • Oligomers having a molecular weight of 10,000 or less in polyimide resins and films obtained in Examples and Comparative Examples were attributed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-MS measurement) shown below. carried out. (MALDI-MS conditions) Apparatus: JEOL Ltd.
  • JMS-S3000 Mode Spiral positive Laser intensity: 35 Laser Mode: 250Hz Delay time: 200ns m/z: 250-5000 Detector: 55 Plate: ⁇ -Focus-MALDI Plate (manufactured by HST) Preprocessing: The sample was dissolved in NMP, and 2,5-dihydroxybenzoic acid (DHB) was used as the matrix (MA), dissolved in methanol, and the sample solution and the matrix solution were dropped and dried in this order.
  • DAB 2,5-dihydroxybenzoic acid
  • ⁇ Thickness> The thickness of the films obtained in Examples and Comparative Examples was measured three times using a contact-type digital thickness gauge (manufactured by Mitutoyo), and the average value of the three measured values was taken as the film thickness.
  • ⁇ Flexibility test> The number of bending times of the films obtained in Examples and Comparative Examples was determined as follows.
  • the film was cut into strips of width 10 mm ⁇ length 120 mm using a dumbbell cutter.
  • Solubility in solvents of the polyimide resins obtained in Examples and Comparative Examples was evaluated as follows. When a resin having a solid content concentration of 13 to 17% by mass was stirred in cyclohexanone at 25° C. for 8 hours, the presence or absence of undissolved residue was visually confirmed. In the solubility evaluation, cyclohexanone was used as an example of a solvent in which the polyimide resin is difficult to dissolve.
  • Example 1 polyimide resin
  • m-cresol manufactured by Honshu Chemical Industry Co., Ltd.
  • 1,4-DAB manufactured by AnQore
  • 6FDA manufactured by Hakko Tsusho Co., Ltd.
  • the obtained polyimide resin had a weight average molecular weight (Mw) of 249,000, a number average molecular weight (Mn) of 37,000, a molecular weight distribution (Mw/Mn) of 6.6, and a molecular weight of 10,000.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mw/Mn molecular weight distribution
  • Mw/Mn molecular weight of 10,000.
  • the content of 000 or less oligomers was 4.6% by mass.
  • the imidization rate of the polyimide resin was 99.6%, and the content of fluorine atoms was 22% by mass.
  • a varnish was prepared by dissolving the polyimide resin obtained above in cyclohexanone and adding 2 phr (2 parts by mass to 100 parts by mass of the polyimide resin) of Sumisorb 340 as an ultraviolet absorber (UVA). Then, the obtained varnish was applied to a glass substrate, heated at 140° C. for 10 minutes, further heated at 200° C. for 30 minutes, and peeled off from the glass substrate to obtain a film with a thickness of 50 ⁇ m. The bending number of the obtained film was 400,000 times or more.
  • the polyimide resin in the film had a weight average molecular weight (Mw) of 198,000 and a number average molecular weight (Mn) of 28,000.
  • Mw/Mn weight average molecular weight
  • the molecular weight distribution (Mw/Mn) was 7.1, and the content of oligomers having a molecular weight of 10,000 or less was 5.8% by mass.
  • Example 2 polyimide resin
  • m-cresol Hybrid Chemical Industry Co., Ltd.
  • 1,4-DAB manufactured by AnQore
  • 6FDA manufactured by Hakko Tsusho Co., Ltd.
  • the resulting polyimide resin had a weight average molecular weight (Mw) of 218,000, a number average molecular weight (Mn) of 34,000, a molecular weight distribution (Mw/Mn) of 6.5, and a molecular weight of 10,000.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mw/Mn molecular weight distribution
  • Mw/Mn molecular weight of 10,000.
  • the content of 000 or less oligomers was 4.4% by mass.
  • the imidization rate of the polyimide resin was 99.7%.
  • the film A film was obtained in the same manner as in Example 1 using the polyimide resin obtained above. In addition, the number of bending times of the obtained film was 150,000. According to the results of GPC when the obtained film was redissolved, the polyimide resin in the film had a weight average molecular weight (Mw) of 176,000 and a number average molecular weight (Mn) of 30,000. The molecular weight distribution (Mw/Mn) was 5.8, and the content of oligomers having a molecular weight of 10,000 or less was 4.8% by mass.
  • Example 3 polyimide resin
  • m-cresol Hybrid Chemical Industry Co., Ltd.
  • 1,4-DAB manufactured by ThermoFisher
  • 6FDA manufactured by Hakko Tsusho Co., Ltd.
  • 3 g of isoquinoline manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • the temperature was raised to 130° C.
  • the mixture was stirred for 8 hours, and then diluted with m-cresol (75 g). Cooled to °C.
  • the obtained polyimide resin had a weight average molecular weight (Mw) of 228,000, a number average molecular weight (Mn) of 52,000, a molecular weight distribution (Mw/Mn) of 4.4, and a molecular weight of 10,000.
  • the content of 000 or less oligomers was 2.7% by mass.
  • the film A film was obtained in the same manner as in Example 1 using the polyimide resin obtained above. In addition, the number of bending times of the obtained film was 350,000. According to the results of GPC when the obtained film was redissolved, the polyimide resin in the film had a weight average molecular weight (Mw) of 196,000 and a number average molecular weight (Mn) of 20,000. The molecular weight distribution (Mw/Mn) was 9.7, and the content of oligomers having a molecular weight of 10,000 or less was 4.2% by mass.
  • Example 4 polyimide resin
  • m-cresol Hybrid Chemical Industry Co., Ltd.
  • 1,4-DAB manufactured by ThermoFisher
  • 6FDA manufactured by Hakko Tsusho Co., Ltd.
  • 3 g of isoquinoline manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • the temperature was raised to 130° C.
  • the mixture was stirred for 8 hours, and then diluted with m-cresol (119 g). Cooled to °C.
  • the obtained polyimide resin had a weight average molecular weight (Mw) of 302,000, a number average molecular weight (Mn) of 50,000, a molecular weight distribution (Mw/Mn) of 6.0, and a molecular weight of 10,000.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mw/Mn molecular weight distribution
  • Mw/Mn molecular weight
  • the film A film was obtained in the same manner as in Example 1 using the polyimide resin obtained above. In addition, the number of bending times of the obtained film was 400,000 times or more. According to the results of GPC when the obtained film was redissolved, the polyimide resin in the film had a weight average molecular weight (Mw) of 196,000 and a number average molecular weight (Mn) of 20,000. The molecular weight distribution (Mw/Mn) was 9.7, and the content of oligomers having a molecular weight of 10,000 or less was 4.2% by mass.
  • polyimide resin A polyimide resin (A) (6FDA-DAB) consisting of 6FDA-derived structural units and 1,4-DAB-derived structural units was produced by the method described in International Publication No. 2019/156717.
  • the resulting polyimide resin (A) has a weight average molecular weight (Mw) of 151,000, a number average molecular weight (Mn) of 26,000, and a molecular weight distribution (Mw/Mn) of 5.7.
  • the content of oligomers having a molecular weight of 10,000 or less was 6.0% by mass.
  • a polyimide-based resin (B) (6FDA-DAB) consisting of 6FDA-derived structural units and 1,4-DAB-derived structural units was produced.
  • the resulting polyimide resin (B) has a weight average molecular weight (Mw) of 280,000, a number average molecular weight (Mn) of 37,000, and a molecular weight distribution (Mw/Mn) of 8.3.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mw/Mn molecular weight distribution
  • a polyimide resin was obtained by mixing the polyimide resin (A) and the polyimide resin (B) obtained above so that the weight ratio was 1:1.
  • the resulting polyimide resin had a weight average molecular weight (Mw) of 216,000, a number average molecular weight (Mn) of 32,000, a molecular weight distribution (Mw/Mn) of 6.8, and a molecular weight of 10,000.
  • the content of 000 or less oligomers was 5.8% by weight.
  • the film A film was obtained in the same manner as in Example 1 by dissolving the polyimide resin obtained above in cyclohexanone. In addition, the bending number of the obtained film was 90,000 times. According to the results of GPC when the obtained film was redissolved, the weight average molecular weight (Mw) was 190,000, the number average molecular weight (Mn) was 25,000, and the molecular weight distribution (Mw/ Mn) was 7.5, and the content of oligomers having a molecular weight of 10,000 or less was 6.2% by mass.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mw/ Mn molecular weight distribution
  • polyimide resin A polyimide resin (C) (6FDA-DAB) consisting of 6FDA-derived structural units and 1,4-DAB-derived structural units was produced by the method described in International Publication No. 2019/156717.
  • the resulting polyimide resin (C) has a weight average molecular weight (Mw) of 183,000, a number average molecular weight (Mn) of 27,000, and a molecular weight distribution (Mw/Mn) of 6.8.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mw/Mn molecular weight distribution
  • a polyimide resin was obtained by mixing the polyimide resin (C) obtained above and the polyimide resin (B) in a weight ratio of 1:2.
  • the resulting polyimide resin had a weight average molecular weight (Mw) of 248,000, a number average molecular weight (Mn) of 34,000, a molecular weight distribution (Mw/Mn) of 7.8, and a molecular weight of 10,000.
  • the content of 000 or less oligomers was 5.8% by mass.
  • the film A film was obtained in the same manner as in Example 1 by dissolving the polyimide resin obtained above in cyclohexanone. In addition, the bending number of the obtained film was 30,000 times. According to the results of GPC when the obtained film was redissolved, the polyimide resin in the film had a weight average molecular weight (Mw) of 205,000 and a number average molecular weight (Mn) of 21,000. The molecular weight distribution (Mw/Mn) was 9.8, and the content of oligomers having a molecular weight of 10,000 or less was 6.3% by mass.
  • Table 1 shows the results of the flexibility test of the films obtained in Examples and Comparative Examples and the solubility evaluation of the polyimide resin in solvents by the above method. Table 1 also shows the Mw and the amount of oligomer obtained by the GPC measurement of the film and the polyimide resin. 1 shows the peaks of oligomers with a molecular weight of 10,000 or less in the GPC data of the film obtained in Example 1, and FIG. Below 10,000 oligomer peaks are shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention relates to a film which comprises a polyimide-based resin having a structural unit derived from an aliphatic diamine and a fluorine atom, wherein the content of an oligomer having a molecular weight of at most 10,000 is 6.1 mass% or less with respect to the mass of the film.

Description

フィルム及びポリイミド系樹脂Film and polyimide resin
 本特許出願は日本国特許出願第2021-197339号(出願日:2021年12月3日)についてパリ条約上の優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。 This patent application claims priority under the Paris Convention of Japanese Patent Application No. 2021-197339 (filing date: December 3, 2021), and is hereby incorporated by reference in its entirety. shall be incorporated into the book.
 本発明は、フレキシブル表示装置の材料等に使用されるフィルム及び該フィルムを形成可能なポリイミド系樹脂、並びに該フィルムを備えるフレキシブル表示装置に関する。 The present invention relates to a film used as a material for a flexible display device, a polyimide resin capable of forming the film, and a flexible display device comprising the film.
 フィルムは、液晶や有機EL等の表示装置、タッチセンサ、スピーカー、半導体など、種々の用途に用いられている。例えば、タッチセンサ基板材料としては、寸法安定性等を有する芳香族ポリイミド系フィルムや脂肪族ポリイミド系フィルムなどが知られている(例えば特許文献1及び2)。近年、フレキシブル表示装置の普及に伴い、このようなフレキシブル表示装置に使用されるタッチセンサ基板材料にも高度な耐屈曲性が要求されている。 Films are used in a variety of applications, including display devices such as liquid crystal and organic EL, touch sensors, speakers, and semiconductors. For example, as touch sensor substrate materials, aromatic polyimide films and aliphatic polyimide films having dimensional stability are known (for example, Patent Documents 1 and 2). In recent years, with the spread of flexible display devices, touch sensor substrate materials used in such flexible display devices are also required to have a high degree of bending resistance.
特開2005-336243号公報JP-A-2005-336243 WO2019/156717号WO2019/156717
 しかし、本発明者の検討によれば、タッチセンサ基板材料として用いられる脂肪族ジアミン由来の構成単位を含むポリイミド系フィルムは、耐屈曲性が十分でないことがわかった。 However, according to the study of the present inventor, it was found that the polyimide film containing structural units derived from an aliphatic diamine used as a touch sensor substrate material does not have sufficient bending resistance.
 従って、本発明の目的は、耐屈曲性に優れたフィルム及び該フィルムを形成可能なポリイミド系樹脂、並びに該フィルムを備えるフレキシブル表示装置を提供することにある。 Accordingly, an object of the present invention is to provide a film having excellent bending resistance, a polyimide resin capable of forming the film, and a flexible display device comprising the film.
 本発明者は、上記課題を解決するために鋭意検討した結果、脂肪族ジアミン由来の構成単位及びフッ素原子を有するポリイミド系樹脂を含むフィルムにおいて、分子量が10,000以下のオリゴマーの含有量を6.1質量%以下に調整すれば、上記課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明には、以下の好適な態様が含まれる。 As a result of intensive studies to solve the above problems, the present inventors have found that, in a film containing a polyimide resin having a structural unit derived from an aliphatic diamine and a fluorine atom, the content of an oligomer having a molecular weight of 10,000 or less is reduced to 6 The inventors have found that the above problems can be solved by adjusting the concentration to 1% by mass or less, and have completed the present invention. That is, the present invention includes the following preferred aspects.
[1]脂肪族ジアミン由来の構成単位及びフッ素原子を有するポリイミド系樹脂を含み、分子量が10,000以下のオリゴマーの含有量は、フィルムの質量に対して6.1質量%以下である、フィルム。
[2]分子量が10,000以下のオリゴマーの含有量は、フィルムの質量に対して1.0質量%以上である、[1]に記載のフィルム。
[3]前記オリゴマーは環状オリゴマーを含む、[1]又は[2]に記載のフィルム。
[4]前記オリゴマーの分子量は700以上である、[1]~[3]のいずれかに記載のフィルム。
[5]前記フィルムの重量平均分子量(Mw)は150,000以上である、[1]~[4]のいずれかに記載のフィルム。
[6]前記ポリイミド系樹脂中のフッ素原子の含有量は、ポリイミド系樹脂の質量に対して10質量%以上である、[1]~[5]のいずれかに記載のフィルム。
[7]前記ポリイミド系樹脂のイミド化率は99%以上である、[1]~[6]のいずれかに記載のフィルム。
[8]前記ポリイミド系樹脂は、式(1):
Figure JPOXMLDOC01-appb-C000003
[式(1)中、Xは2価の有機基を表し、Yは4価の有機基を表し、X及びYの有機基のうち、少なくとも1つはフッ素原子を含有し、*は結合手を表す]
で表される構成単位を有し、式(1)で表される構成単位は、Xとして、2価の脂肪族基を含む、[1]~[7]のいずれかに記載のフィルム。
[9]式(1)で表される構成単位は、Yとして、式(2):
Figure JPOXMLDOC01-appb-C000004
[式(2)中、R~Rは、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表し、Vは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-S-、-CO-又は-N(R)-を表し、R~R及びVに含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、Rは、水素原子、又はハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基を表し、*は結合手を表す]
で表される構造を含む、[8]に記載のフィルム。
[10]脂肪族ジアミン由来の構成単位及びフッ素原子を有し、分子量が10,000以下のオリゴマーの含有量は、ポリイミド系樹脂の質量に対して5.5質量%以下である、ポリイミド系樹脂。
[11]分子量が10,000以下のオリゴマーの含有量は、ポリイミド系樹脂の質量に対して0.7質量%超である、[10]に記載のポリイミド系樹脂。
[12]前記オリゴマーは環状オリゴマーを含む、[10]又は[11]に記載のポリイミド系樹脂。
[13]前記オリゴマーの分子量は700以上である、[10]~[12]のいずれかに記載のポリイミド系樹脂。
[14]前記ポリイミド系樹脂の重量平均分子量(Mw)は170,000以上である、[10]~[13]のいずれかに記載のポリイミド系樹脂。
[15][1]~[9]のいずれかに記載のフィルムを備える、フレキシブル表示装置。
[16]さらに偏光板を備える、[15]に記載のフレキシブル表示装置。
[17]さらにタッチセンサを備える、[15]又は[16]に記載のフレキシブル表示装置。
[1] A film containing a polyimide resin having a structural unit derived from an aliphatic diamine and a fluorine atom, and having a molecular weight of 10,000 or less and an oligomer content of 6.1% by mass or less based on the mass of the film. .
[2] The film according to [1], wherein the content of the oligomer having a molecular weight of 10,000 or less is 1.0% by mass or more relative to the mass of the film.
[3] The film according to [1] or [2], wherein the oligomer comprises a cyclic oligomer.
[4] The film according to any one of [1] to [3], wherein the oligomer has a molecular weight of 700 or more.
[5] The film according to any one of [1] to [4], wherein the weight average molecular weight (Mw) of the film is 150,000 or more.
[6] The film according to any one of [1] to [5], wherein the content of fluorine atoms in the polyimide resin is 10% by mass or more based on the mass of the polyimide resin.
[7] The film according to any one of [1] to [6], wherein the polyimide resin has an imidization rate of 99% or more.
[8] The polyimide resin has the formula (1):
Figure JPOXMLDOC01-appb-C000003
[In the formula (1), X represents a divalent organic group, Y represents a tetravalent organic group, among the organic groups of X and Y, at least one contains a fluorine atom, * is a bond represents]
The film according to any one of [1] to [7], wherein the structural unit represented by formula (1) contains a divalent aliphatic group as X.
[9] The structural unit represented by formula (1) is represented by formula (2) as Y:
Figure JPOXMLDOC01-appb-C000004
[In formula (2), R 2 to R 7 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, V is a single bond, -O-, -CH 2 -, -CH 2 -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -C(CF 3 ) 2 -, - represents SO 2 —, —S—, —CO— or —N(R 8 )—, hydrogen atoms contained in R 2 to R 7 and V are independently of each other optionally substituted with halogen atoms; R 8 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom, * represents a bond]
The film according to [8], comprising the structure represented by
[10] A polyimide-based resin having a structural unit derived from an aliphatic diamine and a fluorine atom and having a molecular weight of 10,000 or less and an oligomer content of 5.5% by mass or less based on the mass of the polyimide-based resin. .
[11] The polyimide-based resin according to [10], wherein the content of the oligomer having a molecular weight of 10,000 or less is more than 0.7% by mass based on the mass of the polyimide-based resin.
[12] The polyimide resin according to [10] or [11], wherein the oligomer includes a cyclic oligomer.
[13] The polyimide resin according to any one of [10] to [12], wherein the oligomer has a molecular weight of 700 or more.
[14] The polyimide resin according to any one of [10] to [13], wherein the polyimide resin has a weight average molecular weight (Mw) of 170,000 or more.
[15] A flexible display device comprising the film according to any one of [1] to [9].
[16] The flexible display device according to [15], further comprising a polarizing plate.
[17] The flexible display device according to [15] or [16], further comprising a touch sensor.
 本発明のフィルムは、耐屈曲性に優れている。そのため、フレキシブル表示装置の材料等として好適に使用できる。 The film of the present invention has excellent bending resistance. Therefore, it can be suitably used as a material for flexible display devices.
実施例1で得られたフィルムのGPCデータにおいて、分子量10,000以下オリゴマーのピークを示す図である。1 is a diagram showing the peaks of oligomers having a molecular weight of 10,000 or less in the GPC data of the film obtained in Example 1. FIG. 実施例1で得られたポリイミド系樹脂のGPCデータにおいて、分子量10,000以下オリゴマーのピークを示す図である。1 is a diagram showing the peaks of oligomers having a molecular weight of 10,000 or less in the GPC data of the polyimide resin obtained in Example 1. FIG. 実施例1で得られたポリイミド系樹脂のMALDI-MS測定の結果を示す図である。2 is a diagram showing the results of MALDI-MS measurement of the polyimide resin obtained in Example 1. FIG.
[フィルム]
 本発明のフィルムは、脂肪族ジアミン由来の構成単位及びフッ素原子を有するポリイミド系樹脂を含み、分子量が10,000以下のオリゴマーの含有量が、フィルムの質量に対して6.1質量%以下である。なお、本明細書において、分子量が10,000以下のオリゴマーを「分子量10,000以下オリゴマー」ということがあり、分子量が10,000以下のオリゴマーの含有量を「分子量10,000以下オリゴマー量」又は単に「オリゴマー量」ということがある。
[the film]
The film of the present invention contains a polyimide resin having a structural unit derived from an aliphatic diamine and a fluorine atom, and the content of an oligomer having a molecular weight of 10,000 or less is 6.1% by mass or less with respect to the mass of the film. be. In this specification, an oligomer having a molecular weight of 10,000 or less is sometimes referred to as an "oligomer having a molecular weight of 10,000 or less", and the content of the oligomer having a molecular weight of 10,000 or less is referred to as an "oligomer weight of 10,000 or less". Or it may simply be called "oligomer amount".
 本発明者は、脂肪族ジアミン由来の構成単位及びフッ素原子を有するポリイミド系樹脂を含むフィルムと耐屈曲性との関係について検討を進めたところ、樹脂の製造過程で脂肪族ジアミンに起因して分子量10,000以下オリゴマーが生成しやすいため、前記ポリイミド系樹脂を含むフィルムは該オリゴマー量が比較的多く、該オリゴマーの影響によりフィルムの耐屈曲性が低下していることを見出した。そこで、本発明者は、フィルムの分子量10,000以下オリゴマー量を6.1質量%以下に調整したところ、耐屈曲性が顕著に向上することを見出した。したがって、本発明のフィルムは、分子量10,000以下オリゴマー量が6.1質量%以下である。分子量10,000以下オリゴマー量が6.1質量%を超えると、耐屈曲性が低下する傾向がある。 The present inventors have investigated the relationship between a film containing a polyimide resin having a structural unit derived from an aliphatic diamine and a fluorine atom and the flex resistance. Oligomers having a molecular weight of 10,000 or less are likely to be formed, and thus the film containing the polyimide resin has a relatively large amount of the oligomers, and it was found that the flex resistance of the film is lowered due to the influence of the oligomers. Accordingly, the present inventors found that when the amount of oligomers having a molecular weight of 10,000 or less in the film is adjusted to 6.1% by mass or less, the flex resistance is remarkably improved. Therefore, the film of the present invention has a molecular weight of 10,000 or less and an oligomer content of 6.1% by mass or less. When the amount of the oligomer having a molecular weight of 10,000 or less exceeds 6.1% by mass, the bending resistance tends to decrease.
 さらに本発明者は、ポリイミド系樹脂を含むフィルムの製膜性について検討を進めたところ、脂肪族ジアミン由来の構成単位及びフッ素原子を有するポリイミド系樹脂は、シクロヘキサノン等の汎用の溶媒に溶解しにくく、凝集等が生じ得る場合があり、フィルムの製膜性が十分でないことがわかった。そこで、本発明者は、オリゴマー量とフィルムの製膜性との関係に着目してさらに検討を進めたところ、フィルム中の分子量10,000以下オリゴマーの含有量を1.0質量%以上になるように調整すると、製膜時にポリイミド系樹脂の該溶媒への溶解性を向上できる、すなわち、製膜性を改善できることを見出した。これは、所定量以上の分子量10,000以下オリゴマーがポリイミド系樹脂の分子間に侵入することにより、樹脂同士のスタックを有効に抑制し得るからだと推定される。なお、本明細書において、ポリイミド系樹脂の溶媒への溶解性を、単に「樹脂の溶解性」ということがある。 Furthermore, the present inventors have investigated the film-forming properties of films containing polyimide resins, and found that polyimide resins having structural units and fluorine atoms derived from aliphatic diamines are difficult to dissolve in general-purpose solvents such as cyclohexanone. , agglomeration, etc. may occur, and it was found that the film formability of the film was not sufficient. Therefore, the present inventors focused on the relationship between the amount of oligomer and the film-forming property of the film, and conducted further studies. It has been found that the solubility of the polyimide resin in the solvent during film formation can be improved, that is, the film formability can be improved. It is presumed that this is because a predetermined amount or more of the oligomer having a molecular weight of 10,000 or less enters between the molecules of the polyimide resin, thereby effectively suppressing the stacking of the resins. In this specification, the solubility of a polyimide resin in a solvent may be simply referred to as "resin solubility".
 <ポリイミド系樹脂>
 本発明のフィルムは、脂肪族ジアミン由来の構成単位及びフッ素原子を有するポリイミド系樹脂を含む。ポリイミド系樹脂とは、イミド基を含む繰返し構造単位(構成単位ともいう)を含有する重合体を意味し、さらにアミド基を含む繰り返し構造単位を含有していてもよく、これら以外の構成単位を含有していてもよい。
<Polyimide resin>
The film of the present invention contains a polyimide resin having structural units derived from an aliphatic diamine and fluorine atoms. The polyimide resin means a polymer containing a repeating structural unit (also referred to as a structural unit) containing an imide group, and may further contain a repeating structural unit containing an amide group. may contain.
 ポリイミド系樹脂を構成する脂肪族ジアミン由来の構成単位における脂肪族ジアミンとは、脂肪族基を有するジアミンを表し、その構造の一部にその他の置換基を含んでいてもよいが、芳香環は有しないものである。ポリイミド系樹脂が脂肪族ジアミン由来の構成単位を含むと、得られるフィルムの光学特性を向上、例えば位相差を低減しやすい。脂肪族ジアミンとしては、例えば非環式脂肪族ジアミン、環式脂肪族ジアミン等が挙げられ、フィルムの光学特性及び耐熱性を高めやすい観点から、非環式脂肪族ジアミンが好ましい。また、非環式脂肪族ジアミン由来の構成単位を含むポリイミド系樹脂は、耐屈曲性を低下させ得る分子量10,000以下オリゴマーの含有量、例えば環状オリゴマーの含有量が比較的多くなる傾向があるため、オリゴマーの含有量を所定量以下に低減させることによる耐屈曲性向上に係る本発明の効果を発現しやすい。さらに、非環式脂肪族ジアミン由来の構成単位を含むポリイミド系樹脂は、シクロヘキサノン等の汎用の溶媒に溶解しにくい傾向があるため、樹脂同士のスタックを抑制し得るオリゴマーの含有量を好ましくは所定量以上に調整することによる樹脂の溶解性向上に係る本発明の効果を発現しやすい。なお、本明細書において、以下、「耐屈曲性を向上しやすい」という意味には、オリゴマー量を上限値以下に調整することによる耐屈曲性向上(又は改善)にかかる本発明の効果を得られやすいという意味も包含し、「樹脂の溶解性を向上しやすい」という意味には、オリゴマー量を下限値以上に調整することによる樹脂の溶解性向上(又は改善)にかかる本発明の効果を得られやすいという意味も包含する。非環式脂肪族ジアミンとしては、例えば、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン(1,4-DABということがある)、1,5-ジアミノペンタン、1,6-ジアミノヘキンサン、1,2-ジアミノプロパン、1,2-ジアミノブタン、1,3-ジアミノブタン、2-メチル-1,2-ジアミノプロパン、2-メチル-1,3-ジアミノプロパン等の炭素数2~10の直鎖状又は分岐鎖状ジアミノアルカン、及びこれらのジアミンに含まれる水素原子の少なくとも一部をフッ素原子に置換したジアミン等が挙げられる。環式脂肪族ジアミンとしては、例えば1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ノルボルナンジアミン、4,4’-ジアミノジシクロヘキシルメタン、及びこれらのジアミンに含まれる水素原子の少なくとも一部をフッ素原子に置換したジアミン等が挙げられる。これらは単独で又は2種以上を組合せて用いることができる。これらの中でも、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を向上しやすい観点から、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,2-ジアミノプロパン、1,2-ジアミノブタン、1,3-ジアミノブタン、2-メチル-1,2-ジアミノプロパン、2-メチル-1,3-ジアミノプロパン等の炭素数2~10のジアミノアルカンが好ましく、炭素数2~6のジアミノアルカンがより好ましく、1,4-ジアミノブタンがさらに好ましい。これらの脂肪族ジアミンは単独又は2種以上組み合わせて使用できる。なお、本明細書において、光学特性とは、位相差、透明性及び紫外線カット性を含むフィルムが有する光学的な特性を意味する。位相差は特に特記しない限り、厚み位相差と面内位相差との両方を含む。 The aliphatic diamine in the structural unit derived from the aliphatic diamine constituting the polyimide resin represents a diamine having an aliphatic group, and may contain other substituents in part of its structure, but the aromatic ring is It does not have. When the polyimide-based resin contains structural units derived from aliphatic diamines, the optical properties of the obtained film can be improved, for example, retardation can be easily reduced. Aliphatic diamines include, for example, acyclic aliphatic diamines and cycloaliphatic diamines, and acyclic aliphatic diamines are preferable from the viewpoint of easily increasing the optical properties and heat resistance of the film. In addition, polyimide resins containing structural units derived from acyclic aliphatic diamines tend to have a relatively high content of oligomers with a molecular weight of 10,000 or less, such as cyclic oligomers, which can reduce bending resistance. Therefore, by reducing the content of the oligomer to a predetermined amount or less, the effect of the present invention relating to improvement in bending resistance is likely to be exhibited. Furthermore, polyimide resins containing structural units derived from acyclic aliphatic diamines tend to be difficult to dissolve in general-purpose solvents such as cyclohexanone. The effect of the present invention for improving the solubility of the resin is likely to be exhibited by adjusting the amount to a fixed amount or more. In the present specification, hereinafter, the meaning of "easy to improve bending resistance" is to obtain the effect of the present invention related to improving (or improving) bending resistance by adjusting the amount of oligomer to the upper limit or less. The meaning of "easy to improve the solubility of the resin" also includes the meaning of "easy to improve the solubility of the resin", and the effect of the present invention related to improving (or improving) the solubility of the resin by adjusting the amount of oligomer to the lower limit or more. It also includes the meaning of being easy to obtain. Acyclic aliphatic diamines include, for example, 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane (sometimes referred to as 1,4-DAB), 1,5-diaminopentane, 1,6-diaminohexane, 1,2-diaminopropane, 1,2-diaminobutane, 1,3-diaminobutane, 2-methyl-1,2-diaminopropane, 2-methyl-1,3-diaminopropane linear or branched diaminoalkanes having 2 to 10 carbon atoms, and diamines in which at least some of the hydrogen atoms contained in these diamines are substituted with fluorine atoms. Cycloaliphatic diamines include, for example, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, norbornanediamine, 4,4'-diaminodicyclohexylmethane, and their diamines. Examples include diamines in which at least part of hydrogen atoms are substituted with fluorine atoms. These can be used alone or in combination of two or more. Among these, 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,4-diaminobutane, 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,4-diaminobutane, 5-diaminopentane, 1,6-diaminohexane, 1,2-diaminopropane, 1,2-diaminobutane, 1,3-diaminobutane, 2-methyl-1,2-diaminopropane, 2-methyl-1, Diaminoalkanes having 2 to 10 carbon atoms such as 3-diaminopropane are preferred, diaminoalkanes having 2 to 6 carbon atoms are more preferred, and 1,4-diaminobutane is even more preferred. These aliphatic diamines can be used singly or in combination of two or more. In this specification, optical properties mean optical properties possessed by the film, including retardation, transparency, and UV shielding properties. Unless otherwise specified, the retardation includes both thickness retardation and in-plane retardation.
 ポリイミド系樹脂は、脂肪族ジアミン由来の構成単位の他、芳香族ジアミン由来の構成単位を含んでいてもよい。芳香族ジアミンとは、芳香環を有するジアミンを表し、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。この芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環及びフルオレン環等が例示されるが、これらに限定されるわけではない。 The polyimide resin may contain structural units derived from aromatic diamines in addition to structural units derived from aliphatic diamines. An aromatic diamine represents a diamine having an aromatic ring, and may contain an aliphatic group or other substituents in part of its structure. This aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and fluorene ring.
 芳香族ジアミンとしては、例えばp-フェニレンジアミン、m-フェニレンジアミン、2,4-トルエンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン等の、芳香環を1つ有する芳香族ジアミン;4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、等の、芳香環を2つ以上有する芳香族ジアミン;これらのジアミンに含まれる水素原子の少なくとも一部をフッ素原子に置換したジアミン;2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMBともいう);4,4’-(ヘキサフルオロプロピリデン)ジアニリン;9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレンなどが挙げられる。これらの芳香族ジアミンは単独又は2種以上組み合わせて使用できる。 Examples of aromatic diamines include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene and 2,6-diaminonaphthalene. of aromatic diamines having one aromatic ring; 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′- Diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4 -aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl] Propane, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2′-dimethylbenzidine, 4,4′-bis(4-aminophenoxy)biphenyl, 9,9-bis(4- Aromatics having two or more aromatic rings such as aminophenyl)fluorene, 9,9-bis(4-amino-3-methylphenyl)fluorene, 9,9-bis(4-amino-3-chlorophenyl)fluorene, etc. diamines; diamines in which at least part of the hydrogen atoms contained in these diamines are substituted with fluorine atoms; 2,2′-bis(trifluoromethyl)-4,4′-diaminodiphenyl (also referred to as TFMB); 4,4 '-(Hexafluoropropylidene)dianiline; 9,9-bis(4-amino-3-fluorophenyl)fluorene and the like. These aromatic diamines can be used singly or in combination of two or more.
 ポリイミド系樹脂は、さらにテトラカルボン酸化合物由来の構成単位を含むことができる。テトラカルボン酸化合物由来の構成単位を含むと、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を高めやすい。テトラカルボン酸化合物としては、芳香族テトラカルボン酸二無水物等の芳香族テトラカルボン酸化合物;脂肪族テトラカルボン酸二無水物等の脂肪族テトラカルボン酸化合物等が挙げられる。テトラカルボン酸化合物は、単独で用いてもよいし、2種以上を組合せて用いてもよい。テトラカルボン酸化合物は、二無水物の他、酸クロリド化合物等のテトラカルボン酸化合物類縁体であってもよい。 The polyimide-based resin can further contain structural units derived from a tetracarboxylic acid compound. When a structural unit derived from a tetracarboxylic acid compound is contained, the optical properties, heat resistance, bending resistance, and solubility of the resin of the film are likely to be improved. Examples of tetracarboxylic acid compounds include aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic dianhydride; aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic dianhydride. A tetracarboxylic acid compound may be used independently and may be used in combination of 2 or more type. The tetracarboxylic acid compound may be a dianhydride or a tetracarboxylic acid compound analog such as an acid chloride compound.
 芳香族テトラカルボン酸二無水物の具体例としては、非縮合多環式の芳香族テトラカルボン酸二無水物、単環式の芳香族テトラカルボン酸二無水物及び縮合多環式の芳香族テトラカルボン酸二無水物が挙げられる。非縮合多環式の芳香族テトラカルボン酸二無水物としては、例えば4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物;これらのテトラカルボン酸二無水物に含まれる水素原子の少なくとも一部をフッ素原子に置換したテトラカルボン酸二無水物;4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDAということがある)等が挙げられる。また、単環式の芳香族テトラカルボン酸二無水物としては、例えば1,2,4,5-ベンゼンテトラカルボン酸二無水物、及び該テトラカルボン酸二無水物に含まれる水素原子の少なくとも一部をフッ素原子に置換したテトラカルボン酸二無水物が挙げられ、縮合多環式の芳香族テトラカルボン酸二無水物としては、例えば2,3,6,7-ナフタレンテトラカルボン酸二無水物、及び該テトラカルボン酸二無水物に含まれる水素原子の少なくとも一部をフッ素原子に置換したテトラカルボン酸二無水物が挙げられる。これらは単独又は2種以上組合せて使用できる。 Specific examples of aromatic tetracarboxylic dianhydrides include non-condensed polycyclic aromatic tetracarboxylic dianhydrides, monocyclic aromatic tetracarboxylic dianhydrides and condensed polycyclic aromatic tetracarboxylic dianhydrides. Carboxylic acid dianhydrides are mentioned. Non-fused polycyclic aromatic tetracarboxylic dianhydrides include, for example, 4,4′-oxydiphthalic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 2,2 ',3,3'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride , 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-di Carboxyphenyl)propane dianhydride, 2,2-bis(3,4-dicarboxyphenoxyphenyl)propane dianhydride, 1,2-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,1 -bis(2,3-dicarboxyphenyl)ethane dianhydride, 1,2-bis(3,4-dicarboxyphenyl)ethane dianhydride, 1,1-bis(3,4-dicarboxyphenyl)ethane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, bis(2,3-dicarboxyphenyl)methane dianhydride, 4,4'-(p-phenylenedioxy)diphthalic dianhydride products, 4,4'-(m-phenylenedioxy) diphthalic dianhydride; tetracarboxylic dianhydrides in which at least part of the hydrogen atoms contained in these tetracarboxylic dianhydrides are substituted with fluorine atoms; 4,4'-(Hexafluoroisopropylidene)diphthalic dianhydride (sometimes referred to as 6FDA) and the like. Further, the monocyclic aromatic tetracarboxylic dianhydride includes, for example, 1,2,4,5-benzenetetracarboxylic dianhydride, and at least one hydrogen atom contained in the tetracarboxylic dianhydride. Examples include tetracarboxylic dianhydrides whose moieties are substituted with fluorine atoms, and the condensed polycyclic aromatic tetracarboxylic dianhydrides include, for example, 2,3,6,7-naphthalenetetracarboxylic dianhydride, and tetracarboxylic dianhydrides in which at least part of the hydrogen atoms contained in the tetracarboxylic dianhydrides are substituted with fluorine atoms. These can be used singly or in combination of two or more.
 脂肪族テトラカルボン酸二無水物としては、環式又は非環式の脂肪族テトラカルボン酸二無水物が挙げられる。環式脂肪族テトラカルボン酸二無水物とは、脂環式炭化水素構造を有するテトラカルボン酸二無水物であり、その具体例としては、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物等のシクロアルカンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジシクロヘキシル-3,3’,4,4’-テトラカルボン酸二無水物;これらの位置異性体;これらのテトラカルボン酸二無水物に含まれる水素原子の少なくとも一部をフッ素原子に置換したテトラカルボン酸二無水物が挙げられる。これらは単独又は2種以上を組合せて用いることができる。非環式脂肪族テトラカルボン酸二無水物の具体例としては、1,2,3,4-ブタンテトラカルボン酸二無水物;1,2,3,4-ペンタンテトラカルボン酸二無水物;これらのテトラカルボン酸二無水物に含まれる水素原子の少なくとも一部をフッ素原子に置換したテトラカルボン酸二無水物等が挙げられ、これらは単独又は2種以上を組合せて用いることができる。また、環式脂肪族テトラカルボン酸二無水物及び非環式脂肪族テトラカルボン酸二無水物を組合せて用いてもよい。 The aliphatic tetracarboxylic dianhydrides include cyclic or acyclic aliphatic tetracarboxylic dianhydrides. The cyclic aliphatic tetracarboxylic dianhydride is a tetracarboxylic dianhydride having an alicyclic hydrocarbon structure, and specific examples thereof include 1,2,4,5-cyclohexanetetracarboxylic dianhydride. 1,2,3,4-cyclobutanetetracarboxylic dianhydride, cycloalkanetetracarboxylic dianhydride such as 1,2,3,4-cyclopentanetetracarboxylic dianhydride, bicyclo[2.2 .2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, dicyclohexyl-3,3′,4,4′-tetracarboxylic dianhydride; regioisomers thereof; tetracarboxylic dianhydride in which at least part of the hydrogen atoms contained in the tetracarboxylic dianhydride are substituted with fluorine atoms. These can be used singly or in combination of two or more. Specific examples of acyclic aliphatic tetracarboxylic dianhydrides include 1,2,3,4-butanetetracarboxylic dianhydride; 1,2,3,4-pentanetetracarboxylic dianhydride; tetracarboxylic dianhydride in which at least part of the hydrogen atoms contained in the tetracarboxylic dianhydride are substituted with fluorine atoms, and these can be used alone or in combination of two or more. A cyclic aliphatic tetracarboxylic dianhydride and an acyclic aliphatic tetracarboxylic dianhydride may also be used in combination.
 上記テトラカルボン酸化合物の中でも、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を高めやすい観点から、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、6FDA、並びにこれらの混合物が好ましく、6FDAがより好ましい。 Among the above tetracarboxylic acid compounds, 4,4'-oxydiphthalic dianhydride and 3,3',4,4' are preferred from the viewpoint of easily increasing the optical properties, heat resistance, flexibility and solubility of the resin of the film. -benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3', 4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 6FDA, and mixtures thereof are preferred, with 6FDA being more preferred.
 本発明の一実施態様において、脂肪族ジアミン由来の構成単位の割合は、ポリイミド系樹脂を構成するジアミン由来の全構成単位の総モル量に対して、好ましくは30モル%以上、より好ましくは50モル%以上、さらに好ましくは70モル%以上、特に好ましくは90モル%以上であり、好ましくは100モル%以下である。脂肪族ジアミン由来の構成単位の割合が上記の範囲内であると、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を向上しやすい。該構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 In one embodiment of the present invention, the ratio of structural units derived from aliphatic diamines is preferably 30 mol% or more, more preferably 50 mol%, relative to the total molar amount of all structural units derived from diamines constituting the polyimide resin. mol % or more, more preferably 70 mol % or more, particularly preferably 90 mol % or more, and preferably 100 mol % or less. When the proportion of the structural unit derived from the aliphatic diamine is within the above range, the optical properties, heat resistance, bending resistance and solubility of the resin of the film are likely to be improved. The ratio of the structural units can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
 なお、上記ポリイミド系樹脂は、フィルムの各種物性を損なわない範囲で、上記のテトラカルボン酸化合物由来の構成単位に加えて、他のテトラカルボン酸由来の構成単位及びトリカルボン酸由来の構成単位並びにそれらの無水物及び誘導体由来の構成単位をさらに含んでいてもよい。 Incidentally, the polyimide-based resin, in addition to the structural units derived from the tetracarboxylic acid compound, other tetracarboxylic acid-derived structural units and tricarboxylic acid-derived structural units and their may further contain structural units derived from anhydrides and derivatives of.
 他のテトラカルボン酸としては、上記テトラカルボン酸化合物の無水物の水付加体が挙げられる。 Other tetracarboxylic acids include water adducts of the above tetracarboxylic acid compound anhydrides.
 トリカルボン酸化合物としては、芳香族トリカルボン酸、脂肪族トリカルボン酸及びそれらの類縁の酸クロリド化合物、酸無水物等が挙げられ、2種以上を組合せて用いてもよい。具体例としては、1,2,4-ベンゼントリカルボン酸の無水物;2,3,6-ナフタレントリカルボン酸-2,3-無水物;フタル酸無水物と安息香酸とが単結合、-O-、-CH-、-C(CH-、-C(CF-、-SO-若しくはフェニレン基で連結された化合物が挙げられる。 Examples of tricarboxylic acid compounds include aromatic tricarboxylic acids, aliphatic tricarboxylic acids, their analogous acid chloride compounds, acid anhydrides, and the like, and two or more of them may be used in combination. Specific examples include anhydride of 1,2,4-benzenetricarboxylic acid; 2,3,6-naphthalenetricarboxylic acid-2,3-anhydride; a single bond between phthalic anhydride and benzoic acid; , —CH 2 —, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —SO 2 —, or compounds linked by a phenylene group.
 本発明の好適な実施態様において、ポリイミド系樹脂は、式(1):
Figure JPOXMLDOC01-appb-C000005
[式(1)中、Xは2価の有機基を表し、Yは4価の有機基を表し、X及びYの有機基のうち、少なくとも1つはフッ素原子を含有し、*は結合手を表す]
で表される構成単位を有し、式(1)で表される構成単位は、Xとして、2価の脂肪族基を含むことが好ましい。このようなポリイミド系樹脂を含むと、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を向上しやすい。
In a preferred embodiment of the present invention, the polyimide resin has the formula (1):
Figure JPOXMLDOC01-appb-C000005
[In the formula (1), X represents a divalent organic group, Y represents a tetravalent organic group, among the organic groups of X and Y, at least one contains a fluorine atom, * is a bond represents]
In the structural unit represented by formula (1), X preferably contains a divalent aliphatic group. When such a polyimide-based resin is included, the optical properties, heat resistance, flex resistance, and resin solubility of the film are likely to be improved.
 式(1)中のXは、それぞれ独立に2価の有機基を表し、好ましくは炭素数2~40の2価の有機基を表す。2価の有機基としては、例えば2価の芳香族基、2価の脂肪族基等が挙げられる。なお、本明細書において、2価の芳香族基は芳香族基を有する2価の有機基であり、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。また、2価の脂肪族基は脂肪族基を有する2価の有機基であり、その構造の一部にその他の置換基を含んでいてもよいが、芳香族基は含まない。 Each X in formula (1) independently represents a divalent organic group, preferably a divalent organic group having 2 to 40 carbon atoms. Examples of divalent organic groups include divalent aromatic groups and divalent aliphatic groups. In this specification, a divalent aromatic group is a divalent organic group having an aromatic group, and may contain an aliphatic group or other substituents in part of its structure. A divalent aliphatic group is a divalent organic group having an aliphatic group, and may contain other substituents in part of its structure, but does not contain an aromatic group.
 式(1)において、X及びYの有機基のうち、少なくとも1つはフッ素原子を含有する。すなわち、フッ素原子は、X及びYのいずれか1つに含有していればよく、両方に含有していてもよい。本発明の一実施態様では、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を高めやすい観点から、少なくともYにフッ素原子を含有していることが好ましく、Xにフッ素原子を含有せず、かつYにフッ素原子を含有していることがより好ましい。なお、Yが複数種の有機基を有する場合、複数種のうち、少なくとも1つの有機基にフッ素原子を含有していればよい。Xについても同様である。 In formula (1), at least one of the organic groups of X and Y contains a fluorine atom. That is, the fluorine atom may be contained in either one of X and Y, or may be contained in both. In one embodiment of the present invention, it is preferable that at least Y contains a fluorine atom, and X contains a fluorine atom, from the viewpoint of easily increasing the optical properties, heat resistance, flex resistance, and solubility of the resin of the film. and Y contains a fluorine atom. In addition, when Y has a plurality of types of organic groups, at least one organic group among the plurality of types may contain a fluorine atom. The same is true for X.
 式(1)中のXは、2価の脂肪族基を含み、2価の脂肪族基としては、例えば2価の非環式脂肪族基又は2価の環式脂肪族基が挙げられる。これらの中でも、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を向上しやすい観点から、2価の非環式脂肪族基が好ましい。 X in formula (1) includes a divalent aliphatic group, and the divalent aliphatic group includes, for example, a divalent acyclic aliphatic group or a divalent cycloaliphatic group. Among these, a divalent acyclic aliphatic group is preferable from the viewpoint of easily improving the optical properties, heat resistance, flex resistance, and solubility of the resin of the film.
 本発明の一実施態様において、式(1)中のXにおける2価の非環式脂肪族基としては、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、プロピレン基、1,2-ブタンジイル基、1,3-ブタンジイル基、2-メチル-1,2-プロパンジイル基、2-メチル-1,3-プロパンジイル基等の直鎖状又は分岐鎖状アルキレン基などが挙げられる。2価の非環式脂肪族基中の水素原子は、ハロゲン原子、好ましくはフッ素原子で置換されていてもよく、炭素原子はヘテロ原子(例えば酸素原子、窒素原子等)で置換されていてもよい。直鎖状又は分岐鎖状アルキレン基の炭素数は、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を向上しやすい観点から、好ましくは2以上、より好ましくは3以上、さらに好ましくは4以上であり、好ましくは10以下、より好ましくは8以下、さらに好ましくは6以下である。上記2価の非環式脂肪族基の中でも、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を向上しやすい観点から、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等の炭素数2~6のアルキレン基が好ましく、テトラメチレン基がより好ましい。 In one embodiment of the present invention, the divalent acyclic aliphatic group for X in formula (1) includes, for example, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group and propylene group. , 1,2-butanediyl group, 1,3-butanediyl group, 2-methyl-1,2-propanediyl group, 2-methyl-1,3-propanediyl group, and other linear or branched alkylene groups is mentioned. A hydrogen atom in the divalent acyclic aliphatic group may be substituted with a halogen atom, preferably a fluorine atom, and a carbon atom may be substituted with a heteroatom (e.g., oxygen atom, nitrogen atom, etc.) good. The number of carbon atoms in the linear or branched alkylene group is preferably 2 or more, more preferably 3 or more, and still more preferably 3 or more, from the viewpoint of easily improving the optical properties, heat resistance, flex resistance, and solubility of the resin of the film. is 4 or more, preferably 10 or less, more preferably 8 or less, still more preferably 6 or less. Among the divalent acyclic aliphatic groups, from the viewpoint of easily improving the optical properties, heat resistance, flex resistance and solubility of the resin of the film, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, An alkylene group having 2 to 6 carbon atoms such as a hexamethylene group is preferred, and a tetramethylene group is more preferred.
 本発明の一実施態様において、式(1)中のXにおける2価の芳香族基又は2価の環式脂肪族基としては、式(10)、式(11)、式(12)、式(13)、式(14)、式(15)、式(16)、式(17)及び式(18)で表される基;それらの式(10)~式(18)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに炭素数6以下の鎖式炭化水素基が挙げられる。 In one embodiment of the present invention, the divalent aromatic group or divalent cycloaliphatic group for X in formula (1) includes formula (10), formula (11), formula (12), formula (13), a group represented by formula (14), formula (15), formula (16), formula (17) and formula (18); a group represented by those formulas (10) to (18) groups in which hydrogen atoms therein are substituted with methyl groups, fluoro groups, chloro groups or trifluoromethyl groups; and chain hydrocarbon groups having 6 or less carbon atoms.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(10)~式(18)中、
 *は結合手を表し、
 V、V及びVは、互いに独立に、単結合、-O-、-S-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-CO-又は-N(Q)-を表す。ここで、Qはハロゲン原子で置換されていてもよい炭素数1~12の1価の炭化水素基を表す。ハロゲン原子で置換されていてもよい炭素数1~12の1価の炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチル-ブチル基、3-メチルブチル基、2-エチル-プロピル基、n-ヘキシル、n-ヘプチル基、n-オクチル基、tert-オクチル基、n-ノニル基及びn-デシル基等が挙げられる。前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子などが挙げられる。
 1つの例は、V及びVが単結合、-O-又は-S-であり、かつ、Vが-CH-、-C(CH-、-C(CF-又は-SO-である。VとVとの各環に対する結合位置、及び、VとVとの各環に対する結合位置は、互いに独立に、各環に対して好ましくはメタ位又はパラ位、より好ましくはパラ位である。なお、式(10)~式(18)における環上の水素原子は、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基で置換されていてもよい。炭素数1~6のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチル-ブチル基、3-メチルブチル基、2-エチル-プロピル基、n-ヘキシル基等が挙げられる。炭素数1~6のアルコキシ基としては、例えばメトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基及びシクロヘキシルオキシ基等が挙げられる。炭素数6~12のアリール基としては、例えばフェニル基、トリル基、キシリル基、ナフチル基及びビフェニル基等が挙げられる。これらの2価の環式脂肪族基又は2価の芳香族基は、単独又は2種以上組み合わせて使用できる。
In formulas (10) to (18),
* represents a bond,
V 1 , V 2 and V 3 are each independently a single bond, —O—, —S—, —CH 2 —, —CH 2 —CH 2 —, —CH(CH 3 )—, —C(CH 3 ) represents 2- , -C(CF 3 ) 2 -, -SO 2 -, -CO- or -N(Q)-; Here, Q represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom. The monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom includes, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert -butyl group, n-pentyl group, 2-methyl-butyl group, 3-methylbutyl group, 2-ethyl-propyl group, n-hexyl, n-heptyl group, n-octyl group, tert-octyl group, n-nonyl group and n-decyl group. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
One example is V 1 and V 3 are a single bond, -O- or -S- and V 2 is -CH 2 -, -C(CH 3 ) 2 -, -C(CF 3 ) 2 - or -SO 2 -. The bonding positions of V 1 and V 2 to each ring and the bonding positions of V 2 and V 3 to each ring independently of each other are preferably meta-position or para-position, more preferably para-position. rank. The hydrogen atoms on the rings in formulas (10) to (18) are substituted with an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. good too. Examples of alkyl groups having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, 2-methyl- butyl group, 3-methylbutyl group, 2-ethyl-propyl group, n-hexyl group and the like. Examples of alkoxy groups having 1 to 6 carbon atoms include methoxy, ethoxy, propyloxy, isopropyloxy, butoxy, isobutoxy, tert-butoxy, pentyloxy, hexyloxy and cyclohexyloxy groups. mentioned. Examples of the aryl group having 6 to 12 carbon atoms include phenyl group, tolyl group, xylyl group, naphthyl group and biphenyl group. These divalent cycloaliphatic groups or divalent aromatic groups can be used alone or in combination of two or more.
 本発明におけるポリイミド系樹脂は、複数種のXを含み得、複数種のXは、互いに同一であっても、異なっていてもよい。例えば、式(1)中のXとして、2価の非環式脂肪族基と、2価の芳香族基及び/又は2価の環式脂肪族基とを含んでいてもよい。 The polyimide resin in the present invention may contain multiple types of X, and the multiple types of X may be the same or different. For example, X in formula (1) may include a divalent acyclic aliphatic group, a divalent aromatic group and/or a divalent cycloaliphatic group.
 本発明の一実施態様において、式(1)中のXが2価の脂肪族基、好ましくは2価の非環式脂肪族基である構成単位の割合は、式(1)で表される構成単位の総モル量に対して、好ましくは30モル%以上、より好ましくは50モル%以上、さらに好ましくは70モル%以上、特に好ましくは90モル%以上であり、好ましくは100モル%以下である。式(1)中のXが2価の脂肪族基、好ましくは2価の非環式脂肪族基である構成単位の割合が上記の範囲内であると、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を向上しやすい。該構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 In one embodiment of the present invention, the ratio of structural units in which X in formula (1) is a divalent aliphatic group, preferably a divalent acyclic aliphatic group, is represented by formula (1) It is preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less based on the total molar amount of the structural units. be. When the ratio of structural units in which X in formula (1) is a divalent aliphatic group, preferably a divalent acyclic aliphatic group, is within the above range, the optical properties, heat resistance, and resistance of the film are improved. It is easy to improve flexibility and resin solubility. The ratio of the structural units can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
 式(1)において、Yは、それぞれ独立に4価の有機基を表し、好ましくは炭素数4~40の4価の有機基を表し、より好ましくは環状構造を有する炭素数4~40の4価の有機基を表す。環状構造としては、脂環、芳香環、ヘテロ環構造が挙げられる。前記有機基は、有機基中の水素原子が炭化水素基又はハロゲン置換された炭化水素基で置換されていてもよい有機基であり、その場合、炭化水素基及びハロゲン置換された炭化水素基の炭素数は好ましくは1~8である。本発明におけるポリイミド系樹脂は、複数種のYを含み得、複数種のYは、互いに同一でよく、異なっていてもよい。Yとしては、以下の式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基;それらの式(20)~式(29)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに4価の炭素数6以下の鎖式炭化水素基が挙げられる。 In formula (1), each Y independently represents a tetravalent organic group, preferably a tetravalent organic group having 4 to 40 carbon atoms, more preferably a tetravalent organic group having 4 to 40 carbon atoms and having a cyclic structure. represents a valent organic group. Cyclic structures include alicyclic, aromatic and heterocyclic structures. The organic group is an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a halogen-substituted hydrocarbon group. The number of carbon atoms is preferably 1-8. The polyimide resin in the present invention may contain multiple types of Y, and the multiple types of Y may be the same or different. Y is represented by the following formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) and a group represented by the formula (29); a group in which the hydrogen atoms in the groups represented by the formulas (20) to (29) are substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group and a tetravalent chain hydrocarbon group having 6 or less carbon atoms.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(20)~式(29)中、
 *は結合手を表し、
 Wは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-Ar-、-SO-、-CO-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-又は-Ar-SO-Ar-を表す。Arは、水素原子がフッ素原子で置換されていてもよい炭素数6~20のアリーレン基を表し、具体例としてはフェニレン基が挙げられる。
In formulas (20) to (29),
* represents a bond,
W 1 is a single bond, —O—, —CH 2 —, —CH 2 —CH 2 —, —CH(CH 3 )—, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, -Ar-, -SO 2 -, -CO-, -O-Ar-O-, -Ar-O-Ar-, -Ar-CH 2 -Ar-, -Ar-C(CH 3 ) 2 -Ar- or -Ar-SO 2 -Ar-. Ar represents an arylene group having 6 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom, and specific examples thereof include a phenylene group.
 式(20)~式(29)で表される基の中でも、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を高めやすい観点から、式(26)、式(28)又は式(29)で表される基が好ましく、式(26)で表される基がより好ましい。また、Wは、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を高めやすい観点から、それぞれ独立に、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-又は-C(CF-であることが好ましく、単結合、-O-、-CH-、-CH(CH)-、-C(CH-又は-C(CF-であることがより好ましく、単結合、-C(CH-又は-C(CF-であることがさらに好ましい。 Among the groups represented by formulas (20) to (29), from the viewpoint of easily increasing the optical properties, heat resistance, flex resistance and solubility of the resin of the film, formula (26), formula (28) or formula A group represented by (29) is preferred, and a group represented by formula (26) is more preferred. W 1 is each independently a single bond, —O—, —CH 2 —, —CH 2 —CH 2 from the viewpoint of easily increasing the optical properties, heat resistance, flex resistance, and solubility of the resin of the film. -, -CH(CH 3 )-, -C(CH 3 ) 2 - or -C(CF 3 ) 2 -, preferably a single bond, -O-, -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 - or -C(CF 3 ) 2 -, more preferably a single bond, -C(CH 3 ) 2 - or -C(CF 3 ) 2 - is more preferred.
 本発明の好適な実施態様において、式(1)で表される構成単位は、Yとして、式(2):
Figure JPOXMLDOC01-appb-C000008
[式(2)中、R~Rは、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表し、Vは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-S-、-CO-又は-N(R)-を表し、R~R及びVに含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、Rは、水素原子、又はハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基を表し、*は結合手を表す]
で表される構造を含む。このような実施態様であると、フィルムは、優れた光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を発現しやすい。なお、式(1)で表される構成単位は、Yとして、式(2)で表される構造を1種又は複数種含んでいてもよい。
In a preferred embodiment of the present invention, the structural unit represented by formula (1) is represented by Y as represented by formula (2):
Figure JPOXMLDOC01-appb-C000008
[In formula (2), R 2 to R 7 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, V is a single bond, -O-, -CH 2 -, -CH 2 -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -C(CF 3 ) 2 -, - represents SO 2 —, —S—, —CO— or —N(R 8 )—, hydrogen atoms contained in R 2 to R 7 and V are independently of each other optionally substituted with halogen atoms; R 8 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom, * represents a bond]
contains the structure represented by In such an embodiment, the film tends to exhibit excellent optical properties, heat resistance, bending resistance, and resin solubility. The structural unit represented by formula (1) may contain, as Y, one or a plurality of structures represented by formula (2).
 式(2)において、R、R、R、R、R及びRは、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表す。炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基としてはそれぞれ、上記に例示の炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基が挙げられる。R~Rは、互いに独立に、好ましくは水素原子又は炭素数1~6のアルキル基を表し、より好ましくは水素原子又は炭素数1~3のアルキル基を表し、Vは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-S-、-CO-又は-N(R)-を表し、ここで、R~R及びVに含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよい。ハロゲン原子としては、上記に例示のものが挙げられ、好ましくはフッ素原子である。Rは、水素原子、又はハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基を表す。ハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基としては、ハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基として上記に例示のものが挙げられる。これらの中でも、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を高めやすい観点から、Vは、単結合、-O-、-CH-、-CH(CH)-、-C(CH-又は-C(CF-であることが好ましく、単結合、-C(CH-又は-C(CF-であることがより好ましく、単結合又は-C(CF-であることがさらに好ましい。 In formula (2), R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or It represents an aryl group having 6 to 12 carbon atoms. The alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms and the aryl group having 6 to 12 carbon atoms are respectively the above-exemplified alkyl groups having 1 to 6 carbon atoms and alkoxy groups having 1 to 6 carbon atoms. and aryl groups having 6 to 12 carbon atoms. R 2 to R 7 each independently represent preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, V is a single bond, -O-, -CH 2 -, -CH 2 -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -C(CF 3 ) 2 -, -SO 2 -, -S represents -, -CO- or -N(R 8 )-, where hydrogen atoms contained in R 2 to R 7 and V may be independently substituted with halogen atoms. The halogen atom includes those exemplified above, and is preferably a fluorine atom. R 8 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom. As the monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom, the monovalent hydrocarbon groups having 1 to 12 carbon atoms which may be substituted with a halogen atom are exemplified above. things are mentioned. Among these, V is a single bond, -O-, -CH 2 -, -CH(CH 3 )-, - C(CH 3 ) 2 - or -C(CF 3 ) 2 - is preferred, and single bond, -C(CH 3 ) 2 - or -C(CF 3 ) 2 - is more preferred, and single More preferably, it is a bond or -C(CF 3 ) 2 -.
 本発明の好適な実施態様においては、式(2)は、式(2’):
Figure JPOXMLDOC01-appb-C000009
[式(2’)中、*は結合手を表す]
で表される。このような実施態様であると、フィルムは、優れた光学特性、耐熱性及び耐屈曲性を発現しやすい。また、フッ素元素を含有する骨格により樹脂の溶媒への溶解性を向上し、ワニスの粘度を低く抑制することができ、フィルムの製膜性を高めやすい。
In a preferred embodiment of the present invention, formula (2) is represented by formula (2'):
Figure JPOXMLDOC01-appb-C000009
[In formula (2′), * represents a bond]
is represented by In such an embodiment, the film tends to exhibit excellent optical properties, heat resistance and bending resistance. In addition, the skeleton containing elemental fluorine improves the solubility of the resin in a solvent, suppresses the viscosity of the varnish to a low level, and facilitates the enhancement of the film formability of the film.
 本発明の一実施態様において、式(1)中のYとして、式(2)で表される構造を含む場合、式(1)中のYが式(2)で表される構成単位の割合は、式(1)で表される構成単位の総モル量に対して、好ましくは30モル%以上、より好ましくは50モル%以上、さらに好ましくは70モル%以上、特に好ましくは90モル%以上であり、好ましくは100モル%以下である。式(1)中のYが式(2)で表される構成単位の割合が上記の範囲内であると、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を高めやすい。式(1)中のYが式(2)で表される構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。 In one embodiment of the present invention, when Y in formula (1) includes a structure represented by formula (2), Y in formula (1) is the ratio of structural units represented by formula (2) is preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, and particularly preferably 90 mol% or more, relative to the total molar amount of the structural units represented by formula (1). and preferably 100 mol % or less. When the ratio of the structural unit represented by formula (2) for Y in formula (1) is within the above range, the optical properties, heat resistance, flex resistance, and resin solubility of the film are likely to be enhanced. The proportion of structural units in which Y in formula (1) is represented by formula (2) can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of raw materials.
 本発明におけるポリイミド系樹脂は、式(1)で表される構成単位の他に、式(30)で表される構成単位及び/又は式(31)で表される構成単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000010
Polyimide resin in the present invention, in addition to the structural unit represented by the formula (1), even if it contains a structural unit represented by the formula (30) and / or a structural unit represented by the formula (31) good.
Figure JPOXMLDOC01-appb-C000010
 式(30)において、Yは4価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基、それらの式(20)~式(29)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基、並びに4価の炭素数6以下の鎖式炭化水素基が挙げられる。本発明の一実施態様において、ポリイミド系樹脂は、複数種のYを含み得、複数種のYは、互いに同一であっても、異なっていてもよい。 In formula (30), Y 1 is a tetravalent organic group, preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. Y 1 is represented by formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) and a group represented by the formula (29), a group in which hydrogen atoms in the groups represented by the formulas (20) to (29) are substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group; and tetravalent chain hydrocarbon groups having 6 or less carbon atoms. In one embodiment of the present invention, the polyimide resin may contain multiple types of Y 1 , and the multiple types of Y 1 may be the same or different.
 式(31)において、Yは3価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、上記の式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基の結合手のいずれか1つが水素原子に置き換わった基、及び3価の炭素数6以下の鎖式炭化水素基が挙げられる。本発明の一実施態様において、ポリイミド系樹脂は、複数種のYを含み得、複数種のYは、互いに同一であっても、異なっていてもよい。 In formula (31), Y 2 is a trivalent organic group, preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group. As Y 2 , the above formulas (20), (21), (22), (23), (24), (25), (26), (27), (28) ), a group in which one of the bonds of the group represented by formula (29) is replaced with a hydrogen atom, and a trivalent chain hydrocarbon group having 6 or less carbon atoms. In one embodiment of the present invention, the polyimide-based resin may contain multiple types of Y 2 , and the multiple types of Y 2 may be the same or different.
 式(30)及び式(31)において、X及びXは、互いに独立に、2価の有機基を表し、好ましくは炭素数2~40の2価の有機基を表す。2価の有機基としては、例えば2価の芳香族基、2価の脂肪族基等が挙げられ、2価の脂肪族基としては、例えば2価の非環式脂肪族基又は2価の環式脂肪族基が挙げられる。X及びXにおける2価の環式脂肪族基又は2価の芳香族基としては、上記の式(10)、式(11)、式(12)、式(13)、式(14)、式(15)、式(16)、式(17)及び式(18)で表される基;それらの式(10)~式(18)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに炭素数6以下の鎖式炭化水素基などが挙げられる。2価の非環式脂肪族基としては、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、プロピレン基、1,2-ブタンジイル基、1,3-ブタンジイル基、2-メチル-1,2-プロパンジイル基、2-メチル-1,3-プロパンジイル基等の炭素数2~10の直鎖状又は分岐鎖状アルキレン基などが挙げられる。2価の非環式脂肪族基中の水素原子は、ハロゲン原子、好ましくはフッ素原子で置換されていてもよく、炭素原子はヘテロ原子(例えば酸素原子、窒素原子等)で置換されていてもよい。 In formulas (30) and (31), X 1 and X 2 independently represent a divalent organic group, preferably a divalent organic group having 2 to 40 carbon atoms. Examples of the divalent organic group include a divalent aromatic group and a divalent aliphatic group. Examples of the divalent aliphatic group include a divalent acyclic aliphatic group and a divalent Cycloaliphatic groups are included. As the divalent cycloaliphatic group or divalent aromatic group in X 1 and X 2 , the above formula (10), formula (11), formula (12), formula (13), formula (14) , groups represented by formula (15), formula (16), formula (17) and formula (18); hydrogen atoms in the groups represented by formulas (10) to (18) are methyl groups, a group substituted with a fluoro group, a chloro group or a trifluoromethyl group; and a chain hydrocarbon group having 6 or less carbon atoms. Examples of divalent acyclic aliphatic groups include ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, propylene, 1,2-butanediyl, 1,3-butanediyl, 2 -Methyl-1,2-propanediyl group, 2-methyl-1,3-propanediyl group, and the like linear or branched alkylene groups having 2 to 10 carbon atoms. A hydrogen atom in the divalent acyclic aliphatic group may be substituted with a halogen atom, preferably a fluorine atom, and a carbon atom may be substituted with a heteroatom (e.g., oxygen atom, nitrogen atom, etc.) good.
 本発明の一実施態様において、ポリイミド系樹脂は、式(1)で表される構成単位、並びに、場合により式(30)で表される構成単位及び式(31)で表される構成単位から選択される少なくとも1つの構成単位からなる。また、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を向上しやすい観点から、上記ポリイミド系樹脂において、式(1)で表される構成単位の割合は、ポリイミド系樹脂に含まれる全構成単位、例えば式(1)で表される構成単位、並びに、場合により式(30)で表される構成単位及び式(31)で表される構成単位から選択される少なくとも1つの構成単位の総モル量に基づいて、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上である。なお、ポリイミド系樹脂において、式(1)で表される構成単位の割合の上限は100モル%以下である。なお、上記割合は、例えば、H-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。また、本発明におけるポリイミド系樹脂は、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を向上しやすい観点から、好ましくはポリイミド樹脂である。 In one embodiment of the present invention, the polyimide resin is a structural unit represented by formula (1), and optionally a structural unit represented by formula (30) and a structural unit represented by formula (31) It consists of at least one selected structural unit. In addition, from the viewpoint of easily improving the optical properties, heat resistance, flex resistance and solubility of the resin of the film, the proportion of the structural unit represented by the formula (1) in the polyimide resin is included in the polyimide resin. all structural units represented by formula (1), and optionally at least one structural unit selected from structural units represented by formula (30) and structural units represented by formula (31) It is preferably 80 mol % or more, more preferably 90 mol % or more, and still more preferably 95 mol % or more, based on the total molar amount of the units. In addition, in polyimide resin, the upper limit of the ratio of the structural unit represented by Formula (1) is 100 mol% or less. The above ratio can be measured, for example, using 1 H-NMR, or can be calculated from the charging ratio of raw materials. Moreover, the polyimide-based resin in the present invention is preferably a polyimide resin from the viewpoint of easily improving the optical properties, heat resistance, flex resistance, and solubility of the resin of the film.
 本発明におけるポリイミド系樹脂はフッ素原子を含む。ポリイミド系樹脂中にフッ素原子を含むことで、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を高めやすい。本発明におけるポリイミド系樹脂は、樹脂中にフッ素原子が存在していればよく、フッ素原子の導入形態は特に限定されないが、フッ素含有置換基によりポリイミド系樹脂中にフッ素原子が導入されていることが好ましい。フッ素含有置換基としては、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を高めやすい観点から、例えばフルオロ基及びトリフルオロメチル基などが挙げられる。 The polyimide resin in the present invention contains fluorine atoms. By including fluorine atoms in the polyimide resin, the optical properties, heat resistance, bending resistance, and resin solubility of the film can be easily improved. In the polyimide resin of the present invention, a fluorine atom may be present in the resin, and the form of introduction of the fluorine atom is not particularly limited, but the fluorine atom is introduced into the polyimide resin by a fluorine-containing substituent is preferred. The fluorine-containing substituent includes, for example, a fluoro group and a trifluoromethyl group, from the viewpoint of easily increasing the optical properties, heat resistance, flex resistance, and solubility of the resin of the film.
 本発明におけるポリイミド系樹脂中のフッ素原子の含有量は、ポリイミド系樹脂の質量に対して、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上、さらにより好ましくは15質量%以上、特に好ましくは20質量%以上であり、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下である。フッ素原子の含有量が上記の下限以上であると、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を高めやすい。フッ素原子の含有量が上記の上限以下であると、合成がしやすくなる。なお、フッ素原子の含有量は、例えば実施例に記載の方法により求められる。 The content of fluorine atoms in the polyimide resin in the present invention is preferably 1% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more, and even more preferably, relative to the mass of the polyimide resin. is 15% by mass or more, particularly preferably 20% by mass or more, preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less. When the fluorine atom content is at least the above lower limit, the optical properties, heat resistance, flex resistance, and resin solubility of the film are likely to be enhanced. When the content of fluorine atoms is equal to or less than the above upper limit, synthesis becomes easier. The content of fluorine atoms can be determined, for example, by the method described in Examples.
 ポリイミド系樹脂のイミド化率は、好ましくは90%以上、より好ましくは93%以上、さらに好ましくは95%以上、さらにより好ましくは97%以上、特に好ましくは99%以上である。イミド化率が上記の下限以上であると、光学特性を高めやすい。イミド化率の上限は100%以下である。イミド化率は、ポリイミド系樹脂中のテトラカルボン酸化合物に由来する構成単位のモル量の2倍の値に対する、ポリイミド系樹脂中のイミド結合のモル量の割合を示す。なお、ポリイミド系樹脂がトリカルボン酸化合物を含む場合には、ポリイミド系樹脂中のテトラカルボン酸化合物に由来する構成単位のモル量の2倍の値と、トリカルボン酸化合物に由来する構成単位のモル量との合計に対する、ポリイミド系樹脂中のイミド結合のモル量の割合を示す。また、イミド化率は、IR法、NMR法などにより求めることができ、例えば実施例に記載の方法により求めることができる。 The imidization rate of the polyimide resin is preferably 90% or higher, more preferably 93% or higher, still more preferably 95% or higher, even more preferably 97% or higher, and particularly preferably 99% or higher. When the imidization rate is at least the above lower limit, it is easy to improve the optical properties. The upper limit of the imidization rate is 100% or less. The imidization ratio indicates the ratio of the molar amount of imide bonds in the polyimide resin to twice the molar amount of the structural units derived from the tetracarboxylic acid compound in the polyimide resin. In the case where the polyimide resin contains a tricarboxylic acid compound, a value twice the molar amount of the structural units derived from the tetracarboxylic acid compound in the polyimide resin, and the molar amount of the structural units derived from the tricarboxylic acid compound It shows the ratio of the molar amount of imide bonds in the polyimide resin to the total of . Also, the imidization rate can be determined by an IR method, an NMR method, or the like, and can be determined, for example, by the method described in Examples.
 本発明の一実施態様において、前記ポリイミド系樹脂の含有量は、フィルムの質量に対して、好ましくは40質量%以上、より好ましくは50質量%以上、さらに好ましくは60質量%、特に好ましくは80質量%以上であり、好ましくは100質量%以下である。ポリイミド系樹脂の含有量が上記範囲内であると、得られるフィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を向上しやすい。 In one embodiment of the present invention, the content of the polyimide resin is preferably 40% by mass or more, more preferably 50% by mass or more, still more preferably 60% by mass, particularly preferably 80% by mass, based on the mass of the film. % by mass or more, preferably 100% by mass or less. When the content of the polyimide-based resin is within the above range, it is easy to improve the optical properties, heat resistance, flex resistance, and solubility of the resin of the resulting film.
 <ポリイミド系樹脂の製造方法>
 本発明におけるポリイミド系樹脂の製造方法は特に限定されないが、例えば、式(1)で表される構成単位を含むポリイミド系樹脂は、ジアミン化合物とテトラカルボン酸化合物とを反応させてポリアミック酸を得る工程、及び該ポリアミック酸をイミド化する工程を含む方法により製造できる。なお、テトラカルボン酸化合物の他に、トリカルボン酸化合物を反応させてもよい。
<Method for producing polyimide resin>
Although the method for producing the polyimide resin in the present invention is not particularly limited, for example, the polyimide resin containing the structural unit represented by the formula (1) is obtained by reacting a diamine compound and a tetracarboxylic acid compound to obtain a polyamic acid. and imidizing the polyamic acid. In addition to the tetracarboxylic acid compound, a tricarboxylic acid compound may be reacted.
 ポリイミド系樹脂の合成に用いられるテトラカルボン酸化合物、ジアミン化合物及びトリカルボン酸化合物はそれぞれ、例えば、<ポリイミド系樹脂>の項に記載の上記テトラカルボン酸化合物、上記ジアミン化合物及び上記トリカルボン酸化合物と同様のものを使用できる。 The tetracarboxylic acid compound, the diamine compound and the tricarboxylic acid compound used for synthesizing the polyimide resin are the same as the tetracarboxylic acid compound, the diamine compound and the tricarboxylic acid compound described in the <Polyimide resin> section, respectively. can be used.
 ポリイミド系樹脂の製造において、ジアミン化合物、テトラカルボン酸化合物及びトリカルボン酸化合物の使用量は、所望とする樹脂の各構成単位の比率に応じて適宜選択できる。
 本発明の好適な実施態様においては、ジアミン化合物の使用量は、テトラカルボン酸化合物1モルに対して、好ましくは0.94モル以上、より好ましくは0.96モル以上、さらに好ましくは0.98モル以上、特に好ましくは0.99モル以上であり、好ましくは1.20モル以下、より好ましくは1.10モル以下、さらに好ましくは1.05モル以下、特に好ましくは1.02モル以下である。テトラカルボン酸化合物に対するジアミン化合物の使用量が上記の範囲内であると、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を向上しやすい。
In the production of the polyimide resin, the amounts of the diamine compound, the tetracarboxylic acid compound and the tricarboxylic acid compound to be used can be appropriately selected according to the desired ratio of each structural unit of the resin.
In a preferred embodiment of the present invention, the amount of the diamine compound used is preferably 0.94 mol or more, more preferably 0.96 mol or more, still more preferably 0.98 mol or more, per 1 mol of the tetracarboxylic acid compound. mol or more, particularly preferably 0.99 mol or more, preferably 1.20 mol or less, more preferably 1.10 mol or less, even more preferably 1.05 mol or less, particularly preferably 1.02 mol or less . When the amount of the diamine compound used relative to the tetracarboxylic acid compound is within the above range, it is easy to improve the optical properties, heat resistance, flex resistance, and solubility of the resin of the film.
 ジアミン化合物とテトラカルボン酸化合物との反応温度は、特に限定されず、例えば5~200℃であってもよく、反応時間も特に限定されず、例えば30分~72時間程度であってもよい。本発明の好適な実施態様においては、反応温度は、好ましくは5~200℃、より好ましくは50~190℃、さらに好ましくは100~180℃であり、反応時間は、好ましくは3~24時間、より好ましくは5~20時間である。このような反応温度及び反応時間であると、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を向上しやすい。なお、ポリイミド系樹脂のMw及びMnはそれぞれ、反応時間及び反応温度等の反応条件;ジアミン化合物、テトラカルボン酸化合物、触媒、及び溶媒の種類及び使用量;析出操作における良溶媒と貧溶媒の組成;並びに洗浄溶液の組成等を適宜変更することにより調整できる。 The reaction temperature of the diamine compound and the tetracarboxylic acid compound is not particularly limited, and may be, for example, 5 to 200° C., and the reaction time is also not particularly limited, and may be, for example, about 30 minutes to 72 hours. In a preferred embodiment of the present invention, the reaction temperature is preferably 5 to 200°C, more preferably 50 to 190°C, still more preferably 100 to 180°C, and the reaction time is preferably 3 to 24 hours. More preferably 5 to 20 hours. With such a reaction temperature and reaction time, it is easy to improve the optical properties, heat resistance, flex resistance, and solubility of the resin of the film. The Mw and Mn of the polyimide resin are respectively reaction conditions such as reaction time and reaction temperature; types and amounts of diamine compound, tetracarboxylic acid compound, catalyst, and solvent; composition of good solvent and poor solvent in precipitation operation and can be adjusted by appropriately changing the composition of the cleaning solution.
 ジアミン化合物とテトラカルボン酸化合物との反応は、溶媒中で行うことが好ましい。溶媒としては、反応に影響を与えない限り特に限定されないが、例えば、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、1-メトキシ-2-プロパノール、2-ブトキシエタノール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;フェノール、クレゾール等のフェノール系溶媒;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、γ-バレロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル系溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、メチルイソブチルケトン等のケトン系溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;エチルシクロヘキサン等の脂環式炭化水素溶媒;トルエン、キシレン等の芳香族炭化水素溶媒;アセトニトリル等のニトリル系溶媒;テトラヒドロフラン及びジメトキシエタン等のエーテル系溶媒;クロロホルム及びクロロベンゼン等の塩素含有溶媒;N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;及びそれらの組合せなどが挙げられる。これらの中でも、溶解性の観点から、フェノール系溶媒、アミド系溶媒を好適に使用できる。
 本発明の好適な実施態様においては、反応に使用する溶媒は、水分量700ppm以下まで厳密に脱水した溶媒であることが好ましい。このような溶媒を用いると、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を向上しやすい。
The reaction between the diamine compound and the tetracarboxylic acid compound is preferably carried out in a solvent. The solvent is not particularly limited as long as it does not affect the reaction, but examples include water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, Alcohol solvents such as 2-butoxyethanol and propylene glycol monomethyl ether; Phenol solvents such as phenol and cresol; Ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, γ-butyrolactone, γ-valerolactone, propylene glycol methyl ether acetate , ethyl lactate and other ester solvents; acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, methyl isobutyl ketone and other ketone solvents; pentane, hexane, heptane and other aliphatic hydrocarbon solvents; cyclic hydrocarbon solvents; aromatic hydrocarbon solvents such as toluene and xylene; nitrile solvents such as acetonitrile; ether solvents such as tetrahydrofuran and dimethoxyethane; chlorine-containing solvents such as chloroform and chlorobenzene; amide solvents such as N,N-dimethylformamide; sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide and sulfolane; carbonate solvents such as ethylene carbonate and propylene carbonate; and combinations thereof. Among these, phenol-based solvents and amide-based solvents can be preferably used from the viewpoint of solubility.
In a preferred embodiment of the present invention, the solvent used in the reaction is preferably a solvent that has been rigorously dehydrated to a water content of 700 ppm or less. The use of such a solvent tends to improve the optical properties, heat resistance, flex resistance, and solubility of the resin of the film.
 ジアミン化合物とテトラカルボン酸化合物との反応は、必要に応じて、不活性雰囲気(窒素雰囲気、アルゴン雰囲気等)又は減圧の条件下において行ってもよく、不活性雰囲気(窒素雰囲気、アルゴン雰囲気等)下、厳密に制御された脱水溶媒中で撹拌しながら行うことが好ましい。このような条件であると、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を向上しやすい。 The reaction between the diamine compound and the tetracarboxylic acid compound may be carried out under conditions of an inert atmosphere (nitrogen atmosphere, argon atmosphere, etc.) or reduced pressure, if necessary, and an inert atmosphere (nitrogen atmosphere, argon atmosphere, etc.). It is preferable to conduct the reaction in a strictly controlled dehydrated solvent while stirring. Under such conditions, it is easy to improve the optical properties, heat resistance, flex resistance, and solubility of the resin of the film.
 イミド化工程では、イミド化触媒を用いてイミド化しても、加熱によりイミド化しても、これらを組み合わせてもよい。イミド化工程で使用するイミド化触媒としては、例えばトリプロピルアミン、ジブチルプロピルアミン、エチルジブチルアミン等の脂肪族アミン;N-エチルピペリジン、N-プロピルピペリジン、N-ブチルピロリジン、N-ブチルピペリジン、及びN-プロピルヘキサヒドロアゼピン等の脂環式アミン(単環式);アザビシクロ[2.2.1]ヘプタン、アザビシクロ[3.2.1]オクタン、アザビシクロ[2.2.2]オクタン、及びアザビシクロ[3.2.2]ノナン等の脂環式アミン(多環式);並びにピリジン、2-メチルピリジン(2-ピコリン)、3-メチルピリジン(3-ピコリン)、4-メチルピリジン(4-ピコリン)、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、2,4-ジメチルピリジン、2,4,6-トリメチルピリジン、3,4-シクロペンテノピリジン、5,6,7,8-テトラヒドロイソキノリン、及びイソキノリン等の芳香族アミンが挙げられる。また、イミド化反応を促進しやすい観点から、イミド化触媒とともに、酸無水物を用いることが好ましい。酸無水物は、イミド化反応に用いられる慣用の酸無水物等が挙げられ、その具体例としては、無水酢酸、無水プロピオン酸、無水酪酸等の脂肪族酸無水物、フタル酸等の芳香族酸無水物などが挙げられる。 In the imidization step, imidization may be performed using an imidization catalyst, imidization by heating, or a combination thereof. Examples of the imidization catalyst used in the imidization step include aliphatic amines such as tripropylamine, dibutylpropylamine and ethyldibutylamine; N-ethylpiperidine, N-propylpiperidine, N-butylpyrrolidine, N-butylpiperidine, and cycloaliphatic amines (monocyclic) such as N-propylhexahydroazepine; azabicyclo[2.2.1]heptane, azabicyclo[3.2.1]octane, azabicyclo[2.2.2]octane, and Alicyclic amines (polycyclic) such as azabicyclo[3.2.2]nonane; and pyridine, 2-methylpyridine (2-picoline), 3-methylpyridine (3-picoline), 4-methylpyridine (4 -picoline), 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 2,4-dimethylpyridine, 2,4,6-trimethylpyridine, 3,4-cyclopentenopyridine, 5,6,7, Aromatic amines such as 8-tetrahydroisoquinoline and isoquinoline are included. Moreover, from the viewpoint of facilitating the imidization reaction, it is preferable to use an acid anhydride together with the imidization catalyst. Acid anhydrides include conventional acid anhydrides used in imidization reactions, and specific examples thereof include aliphatic acid anhydrides such as acetic anhydride, propionic anhydride and butyric anhydride, and aromatic acid anhydrides such as phthalic acid. and acid anhydrides.
 本発明の一実施態様では、イミド化する場合、反応温度は、好ましくは40℃以上、より好ましくは60℃以上、さらに好ましくは80℃以上であり、好ましくは190℃以下、より好ましくは170℃以下である。イミド化工程の反応時間は、好ましくは30分~24時間、より好ましくは1~12時間である。反応温度及び反応時間が上記の範囲内にあると、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を向上しやすい。なお、ポリアミック酸を得る工程において、ジアミン化合物とテトラカルボン酸化合物とを反応させる際に、予め、イミド化触媒を加えておき、ポリアミック酸を得る工程とイミド化工程とを同時進行で行うこともできる。 In one embodiment of the present invention, when imidating, the reaction temperature is preferably 40°C or higher, more preferably 60°C or higher, still more preferably 80°C or higher, and preferably 190°C or lower, more preferably 170°C. It is below. The reaction time for the imidization step is preferably 30 minutes to 24 hours, more preferably 1 to 12 hours. When the reaction temperature and reaction time are within the above ranges, the optical properties, heat resistance, flex resistance and solubility of the resin of the film are likely to be improved. In the step of obtaining the polyamic acid, when the diamine compound and the tetracarboxylic acid compound are reacted, an imidization catalyst may be added in advance, and the step of obtaining the polyamic acid and the imidization step may be performed simultaneously. can.
 ポリイミド系樹脂は、慣用の方法、例えば、濾過、濃縮、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組合せた分離手段により単離(分離精製)してもよく、好ましい態様に係る樹脂の精製法では、樹脂を含む反応液に、多量のメタノール、エタノール、n-プロパノール、イソプロパノール等のアルコール系溶媒を加え、樹脂を析出させ、濃縮、濾過、乾燥等を行うことにより単離することができる。 The polyimide resin may be isolated (separated and purified) by a conventional method such as filtration, concentration, extraction, crystallization, recrystallization, column chromatography or other separation means, or a combination of these separation means. In a method for purifying a resin according to a preferred embodiment, a large amount of an alcoholic solvent such as methanol, ethanol, n-propanol, isopropanol is added to a reaction solution containing a resin to precipitate the resin, followed by concentration, filtration, drying, and the like. can be isolated by
 <オリゴマー>
 本発明のフィルムは、分子量が10,000以下のオリゴマーの含有量が6.1質量%以下である。本明細書において、オリゴマーは、モノマーが結合した重合体であり、2量体以上であって、かつ分子量が10,000以下のものを示す。
<Oligomer>
In the film of the present invention, the content of oligomers having a molecular weight of 10,000 or less is 6.1 mass % or less. As used herein, the term "oligomer" refers to a polymer in which monomers are combined, which is a dimer or more and has a molecular weight of 10,000 or less.
 分子量10,000以下オリゴマーの含有量は、フィルムの質量に対して6.1質量%以下、好ましくは6.0質量%以下、より好ましくは5.8質量%以下、さらに好ましくは5.5質量%以下、さらにより好ましくは5.0質量%以下、特に好ましくは4.5質量%以下、特により好ましくは4.0質量%以下である。分子量10,000以下オリゴマーの含有量が上記の上限以下であると、フィルムの耐屈曲性を向上しやすい。また、分子量10,000以下オリゴマーの含有量は、フィルムの質量に対して好ましくは1.0質量%以上、より好ましくは1.5質量%以上、さらに好ましくは2.0質量%以上、さらにより好ましくは2.5質量%以上、特に好ましくは3.0質量%以上である。分子量10,000以下オリゴマーの含有量が上記の下限以上であると、フィルムの製膜時におけるポリイミド系樹脂の溶媒への溶解性を向上しやすい。分子量10,000以下オリゴマーの含有量は、ゲル浸透クロマトグラフィー(GPC)測定を行い、標準ポリスチレン換算により求めることができ、例えば実施例に記載の方法により算出できる。 The content of the oligomer having a molecular weight of 10,000 or less is 6.1% by mass or less, preferably 6.0% by mass or less, more preferably 5.8% by mass or less, and still more preferably 5.5% by mass, relative to the mass of the film. % or less, more preferably 5.0 mass % or less, particularly preferably 4.5 mass % or less, and even more preferably 4.0 mass % or less. When the content of the oligomer having a molecular weight of 10,000 or less is equal to or less than the above upper limit, the flex resistance of the film is likely to be improved. In addition, the content of the oligomer having a molecular weight of 10,000 or less is preferably 1.0% by mass or more, more preferably 1.5% by mass or more, still more preferably 2.0% by mass or more, and still more preferably 1.0% by mass or more, based on the mass of the film. It is preferably 2.5% by mass or more, particularly preferably 3.0% by mass or more. When the content of the oligomer having a molecular weight of 10,000 or less is at least the above lower limit, the solubility of the polyimide resin in a solvent during film formation is likely to be improved. The content of oligomers having a molecular weight of 10,000 or less can be obtained by performing gel permeation chromatography (GPC) measurement and converting to standard polystyrene, for example, it can be calculated by the method described in Examples.
 フィルム中のオリゴマーの分子量の下限は、特に限定されないが、好ましくは700以上、より好ましくは800以上、さらに好ましくは900以上、さらにより好ましくは1,000以上である。オリゴマーの分子量が上記の下限以上であると、フィルムの耐屈曲性及び樹脂の溶解性を向上しやすい。オリゴマーの分子量の下限は、2量体の分子量とすることができる。フィルムはオリゴマーを1又は2種以上含むことができ、好ましくは2種以上、より好ましくは4種以上、さらに好ましくは6種以上含むことができ、好ましくは20種以下、より好ましくは15種以下、さらに好ましくは10種以下含むことができる。ここで、オリゴマーの種類が異なるとは、オリゴマーを構成するモノマー単位の種類が異なるだけでなく、モノマー単位の比率や分子量等が異なることも含む意味である。 Although the lower limit of the molecular weight of the oligomer in the film is not particularly limited, it is preferably 700 or more, more preferably 800 or more, even more preferably 900 or more, and still more preferably 1,000 or more. When the molecular weight of the oligomer is at least the above lower limit, the flex resistance of the film and the solubility of the resin are likely to be improved. The lower limit of the molecular weight of the oligomer can be the molecular weight of the dimer. The film may contain 1 or 2 or more oligomers, preferably 2 or more, more preferably 4 or more, still more preferably 6 or more, preferably 20 or less, more preferably 15 or less. , and more preferably 10 or less. Here, the different types of oligomers means not only different types of monomer units constituting the oligomers, but also different monomer unit ratios, molecular weights, and the like.
 具体的にオリゴマーの種類は、特に限定されず、例えば、ポリイミド系オリゴマー、ポリアミド系オリゴマー、ポリエステル系オリゴマー、ポリオレフィン系オリゴマー、ポリカーボネート系オリゴマー、ポリスチレン系オリゴマー、ポリビニルアルコール系オリゴマーなどが挙げられ、フィルムの耐屈曲性及び樹脂の溶解性を高めやすい観点から、ポリイミド系オリゴマーであることが好ましい。ポリイミド系オリゴマーは、イミド基及び任意にアミド基を含むオリゴマーを意味し、フィルムの耐屈曲性及び樹脂の溶解性を向上しやすい観点から、上記<ポリイミド系樹脂>の項に記載の前記ジアミン化合物及び前記テトラカルボン酸化合物並びに任意にトリカルボン酸化合物をモノマー単位(構成単位)として含むオリゴマーであることが好ましく、式(1)で表される構成単位を有するオリゴマーであることがより好ましい。オリゴマーは、式(1)で表される構成単位の中でも好ましいと記載された構成単位を有することがさらに好ましい。オリゴマーは、フィルムの製造過程で意図的に添加してもよいが、本発明の好適な実施態様では、前記ポリイミド系樹脂の製造過程及び/又はフィルムの製造過程、特に前記ポリイミド系樹脂の製造過程でオリゴマーが生成し得るため、オリゴマーは、好ましくはフィルム中のポリイミド系樹脂と同じモノマー単位を含んでなる。 Specifically, the type of oligomer is not particularly limited, and examples thereof include polyimide-based oligomers, polyamide-based oligomers, polyester-based oligomers, polyolefin-based oligomers, polycarbonate-based oligomers, polystyrene-based oligomers, and polyvinyl alcohol-based oligomers. Polyimide-based oligomers are preferred from the standpoint of facilitating the enhancement of flexibility and resin solubility. The polyimide-based oligomer means an oligomer containing an imide group and optionally an amide group, and from the viewpoint of easily improving the flexibility of the film and the solubility of the resin, the diamine compound described in the section <Polyimide-based resin> above. and the tetracarboxylic acid compound and optionally the tricarboxylic acid compound as monomer units (structural units), and more preferably an oligomer having a structural unit represented by formula (1). It is more preferable that the oligomer has a structural unit described as preferable among the structural units represented by formula (1). The oligomer may be intentionally added during the film manufacturing process, but in a preferred embodiment of the present invention, the polyimide resin manufacturing process and/or the film manufacturing process, particularly the polyimide resin manufacturing process The oligomer preferably comprises the same monomeric units as the polyimide-based resin in the film, since oligomers can be formed at .
 オリゴマーは、鎖状オリゴマーであっても環状オリゴマーであってもよい。フィルムの耐屈曲性及び樹脂の溶解性を向上しやすい観点から、オリゴマーは環状オリゴマーを含むことが好ましい。特に環状オリゴマーを含むと、樹脂間のスタック及びこれによる樹脂の凝集を有効に抑制しやすいため、樹脂の溶媒への溶解性を向上しやすい。また、環状オリゴマーは、フィルムの耐屈曲性及び樹脂の溶解性を向上しやすい観点から、環状多量体、例えば2~20量体、好ましくは2~15量体、より好ましくは2~10量体、さらに好ましくは2~8量体であってよい。
 本発明の好適な実施態様において、環状オリゴマーは、式(A):
Figure JPOXMLDOC01-appb-C000011
[式(A)中、X及びYは、それぞれ式(1)中のX及びYと同義であり、nは1以上の整数を示す]
で表される環状オリゴマーである。環状オリゴマーが式(A)で表される環状オリゴマーであると、フィルムの耐屈曲性及び樹脂の溶解性を向上しやすい。本発明におけるオリゴマーは、式(A)で表される環状オリゴマーを複数種含むことが耐屈曲性及び樹脂の溶解性を向上させる観点から好ましい。
Oligomers may be linear oligomers or cyclic oligomers. The oligomer preferably contains a cyclic oligomer from the viewpoint of easily improving the flexibility of the film and the solubility of the resin. In particular, when a cyclic oligomer is included, it is easy to effectively suppress stacking between resins and aggregation of the resins due to this, so that the solubility of the resin in a solvent can be easily improved. In addition, the cyclic oligomer is a cyclic multimer, such as a 2- to 20-mer, preferably a 2- to 15-mer, more preferably a 2- to 10-mer, from the viewpoint of easily improving the flexibility of the film and the solubility of the resin. , more preferably 2-8mers.
In a preferred embodiment of the invention, the cyclic oligomer has formula (A):
Figure JPOXMLDOC01-appb-C000011
[In Formula (A), X and Y are the same as X and Y in Formula (1), respectively, and n represents an integer of 1 or more]
is a cyclic oligomer represented by When the cyclic oligomer is represented by the formula (A), the flex resistance of the film and the solubility of the resin are likely to be improved. The oligomer in the present invention preferably contains a plurality of cyclic oligomers represented by formula (A) from the viewpoint of improving flexibility and resin solubility.
 フィルムの耐屈曲性及び樹脂の溶解性を向上しやすい観点から、式(A)中の好ましいX及びYはそれぞれ、式(1)中の好ましいX及びYと同じである。式(A)中、2以上のXは互いに同一又は異なっていてもよく、2以上のYは互いに同一又は異なっていてもよい。フィルムの耐屈曲性及び樹脂の溶解性を向上しやすい観点から、式(A)中の2以上のX及び2以上のYは、それぞれ同一であることが好ましい。 From the viewpoint of easily improving the flexibility of the film and the solubility of the resin, preferred X and Y in formula (A) are respectively the same as preferred X and Y in formula (1). In formula (A), two or more X's may be the same or different, and two or more Y's may be the same or different. From the viewpoint of easily improving the flexibility of the film and the solubility of the resin, it is preferable that two or more Xs and two or more Ys in the formula (A) are the same.
 式(A)中、nは1以上の整数を示す。nは、フィルムの耐屈曲性及び樹脂の溶解性を向上しやすい観点から、好ましくは1~19の整数、より好ましくは1~14の整数、さらに好ましくは1~9の整数、さらにより好ましくは1~7の整数である。 In formula (A), n represents an integer of 1 or more. n is preferably an integer of 1 to 19, more preferably an integer of 1 to 14, still more preferably an integer of 1 to 9, still more preferably an integer from the viewpoint of easily improving the flex resistance of the film and the solubility of the resin. An integer from 1 to 7.
 本発明の好適な実施態様において、環状オリゴマーは、式(B):
Figure JPOXMLDOC01-appb-C000012
[nは、式(A)中のnと同義である]
で表される環状オリゴマーであることが好ましい。環状オリゴマーが式(B)で表される環状オリゴマーであると、フィルムの耐屈曲性及び樹脂の溶解性を向上しやすい。本発明におけるオリゴマーは、式(B)で表される環状オリゴマーを複数種含むことが耐屈曲性及び樹脂の溶解性を向上させる観点から好ましい。
In a preferred embodiment of the invention, the cyclic oligomer has formula (B):
Figure JPOXMLDOC01-appb-C000012
[n is synonymous with n in formula (A)]
It is preferably a cyclic oligomer represented by. When the cyclic oligomer is a cyclic oligomer represented by formula (B), it is easy to improve the flexibility of the film and the solubility of the resin. The oligomer in the present invention preferably contains a plurality of cyclic oligomers represented by formula (B) from the viewpoint of improving flexibility and resin solubility.
 分子量10,000以下オリゴマーの帰属は、マトリックス支援レーザー脱離イオン化飛行時間質量分析計(MALDI-MS測定)を用いて行うことができ、例えば実施例に記載の方法により帰属できる。 Oligomers with a molecular weight of 10,000 or less can be assigned using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-MS measurement), for example, by the method described in the Examples.
 環状オリゴマー、好ましくは式(A)で表される環状オリゴマーの含有量は、フィルムに含まれるオリゴマーの質量に対して、好ましくは30質量%以上、より好ましくは50質量%以上、さらに好ましくは70質量%以上、さらにより好ましくは90質量%以上、特に好ましくは95質量%以上であり、上限は100質量%以下である。フィルム中のポリイミド系オリゴマーの含有量が上記の下限以上であると、フィルムの耐屈曲性及び樹脂の溶解性を向上しやすい。 The content of the cyclic oligomer, preferably the cyclic oligomer represented by formula (A), is preferably 30% by mass or more, more preferably 50% by mass or more, still more preferably 70% by mass, based on the mass of the oligomer contained in the film. % by mass or more, more preferably 90% by mass or more, particularly preferably 95% by mass or more, and the upper limit is 100% by mass or less. When the content of the polyimide-based oligomer in the film is at least the above lower limit, it is easy to improve the flexibility of the film and the solubility of the resin.
 フィルム中のオリゴマー量を調整する方法としては、例えば分子量分画による方法;上記本発明の好ましい態様に係る樹脂の精製法を用いる方法;ポリイミド系樹脂の重合工程におけるモノマー濃度を調整する方法;樹脂の精製(又は析出)工程における貧溶媒と良溶媒(反応溶媒)との溶媒比を調整する方法;樹脂の精製(又は析出)工程におけるポリマー濃度を調整する方法などが挙げられる。樹脂の精製(又は析出)工程において、反応液にアルコール系溶媒等の貧溶媒を滴下する方法は、貧溶媒に反応液を滴下する方法よりもオリゴマー量が低減される傾向がある。また、樹脂の重合工程におけるモノマー濃度を大きくするほど、オリゴマー量が低減される傾向がある。さらに、樹脂の精製(又は析出)工程における良溶媒(反応溶媒)に対する貧溶媒の割合を小さくするほど、オリゴマー量が低減される傾向がある。また、樹脂の精製(又は析出)工程におけるポリマー濃度を小さくするほど、オリゴマー量が低減される傾向がある。 Methods for adjusting the amount of oligomers in the film include, for example, a method by molecular weight fractionation; a method using the method for purifying the resin according to the preferred embodiment of the present invention; a method for adjusting the monomer concentration in the polymerization step of the polyimide resin; A method of adjusting the solvent ratio of a poor solvent and a good solvent (reaction solvent) in the purification (or precipitation) step; and a method of adjusting the polymer concentration in the resin purification (or precipitation) step. In the step of refining (or precipitating) the resin, the method of dropping a poor solvent such as an alcoholic solvent into the reaction solution tends to reduce the amount of oligomers more than the method of dropping the reaction solution into the poor solvent. Also, the amount of oligomer tends to be reduced as the monomer concentration in the resin polymerization step is increased. Furthermore, the smaller the ratio of the poor solvent to the good solvent (reaction solvent) in the resin purification (or precipitation) step, the more the oligomer content tends to be reduced. In addition, the amount of oligomer tends to decrease as the polymer concentration in the resin purification (or precipitation) step decreases.
 <フィルム>
 本発明のフィルムは、脂肪族ジアミン由来の構成単位及びフッ素原子を有するポリイミド系樹脂を含み、分子量10,000以下オリゴマーの含有量が6.1質量%以下である。そのため、耐屈曲性を向上でき、優れた耐屈曲性を有することができる。さらに、分子量10,000以下オリゴマーの含有量が1.0質量%以上である本発明の好適な実施態様にかかるフィルムは、樹脂の溶媒への溶解性を向上できるため、優れた耐屈曲性と、優れた樹脂の溶解性とを両立できる。そのため、本発明のフィルムは、フレキシブル表示装置等の材料として好適に使用できる。また、本発明のフィルムは、光学フィルムであることが好ましく、該フィルムは優れた光学特性を有する。
<Film>
The film of the present invention contains a polyimide resin having a structural unit derived from an aliphatic diamine and a fluorine atom, and contains 6.1% by mass or less of an oligomer having a molecular weight of 10,000 or less. Therefore, bending resistance can be improved, and excellent bending resistance can be obtained. Furthermore, the film according to the preferred embodiment of the present invention, in which the content of the oligomer having a molecular weight of 10,000 or less is 1.0% by mass or more, can improve the solubility of the resin in a solvent, and thus has excellent flex resistance and , and excellent resin solubility can be compatible. Therefore, the film of the present invention can be suitably used as a material for flexible display devices and the like. Moreover, the film of the present invention is preferably an optical film, and the film has excellent optical properties.
 本発明の一実施態様において、フィルムの重量平均分子量(Mw)は、好ましくは50,000以上、より好ましくは70,000以上、さらに好ましくは100,000以上、さらにより好ましくは150,000以上、特に好ましくは170,000以上、特により好ましくは180,000以上、極めて好ましくは197,000以上であり、好ましくは750,000以下、より好ましくは650,000以下、さらに好ましくは550,000以下である。フィルムのMwが上記の下限以上であると、フィルムの耐熱性及び耐屈曲性を高めやすい。また、Mwが上記の上限以下であると、フィルムの厚み位相差、加工性及び樹脂の溶解性を向上しやすい。 In one embodiment of the present invention, the weight average molecular weight (Mw) of the film is preferably 50,000 or more, more preferably 70,000 or more, still more preferably 100,000 or more, still more preferably 150,000 or more, Particularly preferably 170,000 or more, particularly more preferably 180,000 or more, extremely preferably 197,000 or more, preferably 750,000 or less, more preferably 650,000 or less, further preferably 550,000 or less be. When the Mw of the film is at least the above lower limit, the heat resistance and bending resistance of the film are likely to be enhanced. Further, when the Mw is equal to or less than the above upper limit, it is easy to improve the thickness retardation of the film, workability and the solubility of the resin.
 本発明の一実施態様において、フィルムの数平均分子量(Mnと略すことがある)は、好ましくは10,000以上、より好ましくは15,000以上、さらに好ましくは20,000以上、さらにより好ましくは25,000以上であり、好ましくは150,000以下、より好ましくは120,000以下、さらに好ましくは100,000以下、さらにより好ましくは50,000以下、特に好ましくは40,000以下である。フィルムのMnが上記の下限以上であると、耐熱性及び耐屈曲性を高めやすい。また、Mnが上記の上限以下であると、フィルムの厚み位相差、加工性及び樹脂の溶解性を向上しやすい。フィルムのMw及びMnはそれぞれ、ゲル浸透クロマトグラフィー(GPC)測定を行い、標準ポリスチレン換算により求めることができ、例えば実施例に記載の方法により算出できる。なお、フィルムのMw及びMnは、フィルム自体を溶解してGPC測定を行ったものである。 In one embodiment of the present invention, the number average molecular weight (sometimes abbreviated as Mn) of the film is preferably 10,000 or more, more preferably 15,000 or more, still more preferably 20,000 or more, still more preferably It is 25,000 or more, preferably 150,000 or less, more preferably 120,000 or less, still more preferably 100,000 or less, even more preferably 50,000 or less, and particularly preferably 40,000 or less. When the Mn of the film is at least the above lower limit, the heat resistance and flex resistance are likely to be enhanced. Further, when the Mn is equal to or less than the above upper limit, it is easy to improve the thickness retardation of the film, the workability and the solubility of the resin. Each of the Mw and Mn of the film can be obtained by performing gel permeation chromatography (GPC) measurement and converting to standard polystyrene, and can be calculated, for example, by the method described in Examples. The Mw and Mn of the film were measured by GPC after dissolving the film itself.
 フィルムの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn;分子量分布ともいう)は、好ましくは15以下、より好ましくは13以下、さらに好ましくは10以下であり、好ましくは2.0以上、より好ましくは3.0以上、さらに好ましくは4.0以上である。フィルムの分子量分布(Mw/Mn)が上記の上限以下であると、フィルムの厚み位相差、加工性及び樹脂の溶解性を向上しやすく、またフィルムの分子量分布(Mw/Mn)が上記の下限以上であると、耐熱性及び耐屈曲性を高めやすい。 The ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the film (Mw/Mn; also referred to as molecular weight distribution) is preferably 15 or less, more preferably 13 or less, still more preferably 10 or less, and preferably is 2.0 or more, more preferably 3.0 or more, and still more preferably 4.0 or more. When the molecular weight distribution (Mw/Mn) of the film is equal to or less than the above upper limit, it is easy to improve the thickness retardation of the film, the workability and the solubility of the resin, and the molecular weight distribution (Mw/Mn) of the film is equal to or lower than the above lower limit. It is easy to improve heat resistance and bending resistance as it is above.
 本発明の一実施態様において、本発明のフィルムは、耐屈曲試験において、屈曲半径1mmにおける屈曲回数が、好ましくは100,000回以上、より好ましくは150,000回以上、より好ましくは200,000回以上、さらに好ましくは300,000回以上、さらにより好ましくは400,000回以上である。屈曲回数が上記の下限以上であると、フィルムを繰り返し折り曲げてもフィルムの破損等を有効に抑制しやすい。屈曲回数の上限は通常5,000,000回以下である。フィルムの屈曲回数は、面状体無負荷U字伸縮試験(卓上型耐久試験)機を用いて、試験速度30rpm、屈曲半径R=1mmの条件で測定でき、例えば実施例に記載の方法により測定できる。 In one embodiment of the present invention, in a bending endurance test, the number of times of bending at a bending radius of 1 mm is preferably 100,000 or more, more preferably 150,000 or more, and more preferably 200,000. times or more, more preferably 300,000 times or more, still more preferably 400,000 times or more. When the number of times of bending is equal to or more than the above lower limit, it is easy to effectively suppress breakage of the film even if the film is repeatedly bent. The upper limit of the number of bends is usually 5,000,000 or less. The number of bends of the film can be measured using a planar body no-load U-shaped stretch tester (tabletop durability tester) under the conditions of a test speed of 30 rpm and a bending radius R of 1 mm, for example, by the method described in Examples. can.
 本発明のフィルムの厚みは、用途に応じて適宜選択でき、好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは15μm以上であり、好ましくは100μm以下、より好ましくは80μm以下、さらに好ましくは60μm以下、特に好ましくは50μm以下である。フィルムの厚みが上記範囲内であると、フィルムの耐屈曲性の観点から有利である。フィルムの厚みは、厚み計等を用いて測定でき、例えば実施例に記載の方法により測定できる。 The thickness of the film of the present invention can be appropriately selected depending on the application, and is preferably 5 µm or more, more preferably 10 µm or more, still more preferably 15 µm or more, preferably 100 µm or less, more preferably 80 µm or less, and still more preferably 60 µm. Below, it is particularly preferably 50 μm or less. When the thickness of the film is within the above range, it is advantageous from the viewpoint of the bending resistance of the film. The thickness of the film can be measured using a thickness meter or the like, for example, by the method described in Examples.
 本発明の一実施態様において、本発明のフィルムは、紫外線吸収剤を含有していてよい。本発明のフィルムは、前記ポリイミド系樹脂を含み、分子量10,000以下オリゴマーの含有量が上記の上限以下に調整されているため、紫外線吸収剤を含有していても、耐屈曲性に優れている。しかも、本発明の好適な実施態様では、分子量10,000以下オリゴマーの含有量が上記の下限以上に調整されているため、紫外線吸収剤を含有していても、フィルム製造時の樹脂の溶解性を向上できる、すなわち、フィルム製造時の製膜性を向上できる。紫外線吸収剤としては、例えば、ベンゾトリアゾール誘導体(ベンゾトリアゾール系紫外線吸収剤)、1,3,5-トリフェニルトリアジン誘導体等のトリアジン誘導体(トリアジン系紫外線吸収剤)、ベンゾフェノン誘導体(ベンゾフェノン系紫外線吸収剤)、及びサリシレート誘導体(サリシレート系紫外線吸収剤)が挙げられ、これらからなる群から選択される少なくとも1つを用いることができる。300~400nm、好ましくは320~360nm付近の紫外線吸収性を有し、可視光域での透過率を低下させることなく、フィルムの紫外線カット性を向上し得る観点から、ベンゾトリアゾール系紫外線吸収剤及びトリアジン系紫外線吸収剤からなる群から選ばれる少なくとも1つを用いることが好ましく、ベンゾトリアゾール系紫外線吸収剤がより好ましい。 In one embodiment of the present invention, the film of the present invention may contain an ultraviolet absorber. The film of the present invention contains the polyimide resin, and the content of the oligomer having a molecular weight of 10,000 or less is adjusted to the above upper limit or less. there is Moreover, in a preferred embodiment of the present invention, the content of the oligomer having a molecular weight of 10,000 or less is adjusted to the above lower limit or more. can be improved, that is, the film formability during film production can be improved. Examples of ultraviolet absorbers include benzotriazole derivatives (benzotriazole-based ultraviolet absorbers), triazine derivatives (triazine-based ultraviolet absorbers) such as 1,3,5-triphenyltriazine derivatives (triazine-based ultraviolet absorbers), benzophenone derivatives (benzophenone-based ultraviolet absorbers ), and salicylate derivatives (salicylate-based ultraviolet absorbers), and at least one selected from the group consisting of these can be used. 300 to 400 nm, preferably around 320 to 360 nm UV absorption, without reducing the transmittance in the visible light region, from the viewpoint of improving the UV cut properties of the film, a benzotriazole-based UV absorber and At least one selected from the group consisting of triazine-based ultraviolet absorbers is preferably used, and benzotriazole-based ultraviolet absorbers are more preferable.
 ベンゾトリアゾール系紫外線吸収剤の具体例としては、式(I)で表される化合物、住友化学(株)製の商品名:Sumisorb(登録商標) 250(2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミド-メトジイル)-5-メチルフェニル]ベンゾトリアゾール)、BASFジャパン(株)製の商品名:Tinuvin(登録商標) 360(2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール])及びTinuvin 213(メチル3-[3-(2H-ベンゾトリアゾール-2-イル)5-tert-ブチル-4-ヒドロキシフェニル]プロピオネートとPEG300との反応生成物)が挙げられ、これらは単独又は2種以上を組み合わせて用いることができる。式(I)で表される化合物の具体例としては、住友化学(株)製の商品名:Sumisorb 200(2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール)、Sumisorb300(2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール)、Sumisorb 340(2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール)、Sumisorb 350(2-(2-ヒドロキシ3,5-ジ-tert-ペンチルフェニル)ベンゾトリアゾール)、及びBASFジャパン(株)製の商品名:Tinuvin 327(2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール)、Tinuvin 571(2-(2H-ベンゾトリアゾ-2-イル)-6-ドデシル-4-メチル-フェノール)及びTinuvin 234(2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール)及びADEKA(株)の製品名:アデカスタブ(登録商標) LA-31(2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール])が挙げられる。紫外線吸収剤は、好ましくは、式(I)で表される化合物及びTinuvin 213(メチル3-[3-(2H-ベンゾトリアゾール-2-イル)5-tert-ブチル-4-ヒドロキシフェニル]プロピオネートとPEG300との反応生成物であり、より好ましくは住友化学(株)製の商品名:Sumisorb 200(2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール)、Sumisorb 300(2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール)、Sumisorb 340(2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール)、Sumisorb 350(2-(2-ヒドロキシ3,5-ジ-tert-ペンチルフェニル)ベンゾトリアゾール)、(株)ADEKAの製品名:アデカスタブ LA-31(2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール])及びBASFジャパン(株)製の商品名:Tinuvin 327(2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール)及びTinuvin 571(2-(2H-ベンゾトリアゾ-2-イル)-6-ドデシル-4-メチル-フェノール)であり、最も好ましくは住友化学(株)製の商品名:Sumisorb 340(2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール)、Sumisorb350(2-(2-ヒドロキシ3,5-ジ-tert-ペンチルフェニル)ベンゾトリアゾール)、及び(株)ADEKAの製品名:アデカスタブ LA-31(2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール])である。 Specific examples of benzotriazole-based UV absorbers include the compound represented by formula (I), trade name of Sumitomo Chemical Co., Ltd.: Sumisorb (registered trademark) 250 (2-[2-hydroxy-3-(3 ,4,5,6-tetrahydrophthalimido-methodiyl)-5-methylphenyl]benzotriazole), trade name manufactured by BASF Japan Ltd.: Tinuvin (registered trademark) 360 (2,2′-methylenebis[6-(2H -benzotriazol-2-yl)-4-tert-octylphenol]) and Tinuvin 213 (methyl 3-[3-(2H-benzotriazol-2-yl)5-tert-butyl-4-hydroxyphenyl]propionate with PEG300 and reaction products), which can be used alone or in combination of two or more. Specific examples of the compound represented by the formula (I) include trade names manufactured by Sumitomo Chemical Co., Ltd.: Sumisorb 200 (2-(2-hydroxy-5-methylphenyl)benzotriazole), Sumisorb 300 (2-(3 -tert-butyl-2-hydroxy-5-methylphenyl)-5-chlorobenzotriazole), Sumisorb 340 (2-(2-hydroxy-5-tert-octylphenyl)benzotriazole), Sumisorb 350 (2-(2 -Hydroxy 3,5-di-tert-pentylphenyl)benzotriazole) and BASF Japan Ltd. trade name: Tinuvin 327 (2-(2'-hydroxy-3',5'-di-tert-butyl phenyl)-5-chlorobenzotriazole), Tinuvin 571 (2-(2H-benzotriazol-2-yl)-6-dodecyl-4-methyl-phenol) and Tinuvin 234 (2-(2H-benzotriazol-2-yl )-4,6-bis(1-methyl-1-phenylethyl)phenol) and ADEKA Corporation's product name: ADEKA STAB (registered trademark) LA-31 (2,2'-methylenebis[6-(2H-benzo triazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol]). The ultraviolet absorber is preferably the compound represented by formula (I) and Tinuvin 213 (methyl 3-[3-(2H-benzotriazol-2-yl) 5-tert-butyl-4-hydroxyphenyl]propionate It is a reaction product with PEG300, more preferably trade names manufactured by Sumitomo Chemical Co., Ltd.: Sumisorb 200 (2-(2-hydroxy-5-methylphenyl)benzotriazole), Sumisorb 300 (2-(3-tert -butyl-2-hydroxy-5-methylphenyl)-5-chlorobenzotriazole), Sumisorb 340 (2-(2-hydroxy-5-tert-octylphenyl)benzotriazole), Sumisorb 350 (2-(2-hydroxy 3,5-di-tert-pentylphenyl)benzotriazole), product name of ADEKA Corporation: ADEKA STAB LA-31 (2,2'-methylenebis[6-(2H-benzotriazol-2-yl)-4- (1,1,3,3-tetramethylbutyl)phenol]) and BASF Japan Ltd. product name: Tinuvin 327 (2-(2′-hydroxy-3′,5′-di-tert-butylphenyl )-5-chlorobenzotriazole) and Tinuvin 571 (2-(2H-benzotriazol-2-yl)-6-dodecyl-4-methyl-phenol), most preferably manufactured by Sumitomo Chemical Co., Ltd. under the trade name: Sumisorb 340 (2-(2-hydroxy-5-tert-octylphenyl)benzotriazole), Sumisorb 350 (2-(2-hydroxy-3,5-di-tert-pentylphenyl)benzotriazole), and ADEKA Corporation Product name: Adekastab LA-31 (2,2'-methylenebis[6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol]).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(I)中、Xは水素原子、フッ素原子、塩素原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基であり、RI1及びRI2はそれぞれ独立に、水素原子又は炭素数1~20の炭化水素基であり、RI1又はRI2のうち少なくともいずれか一方は炭素数1~20の炭化水素基である。 In formula (I), X I is a hydrogen atom, a fluorine atom, a chlorine atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms, and R I1 and R I2 are each independently a hydrogen atom. or a hydrocarbon group having 1 to 20 carbon atoms, and at least one of R 11 and R 12 is a hydrocarbon group having 1 to 20 carbon atoms.
 Xにおける炭素数1~5のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチル-ブチル基、3-メチルブチル基、2-エチル-プロピル基等が挙げられる。
 Xにおける炭素数1~5のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、2-メチル-ブトキシ基、3-メチルブトキシ基、2-エチル-プロポキシ基等が挙げられる。
 Xは、好ましくは水素原子、フッ素原子、塩素原子又はメチル基であり、より好ましくは水素原子、フッ素原子又は塩素原子である。
The alkyl group having 1 to 5 carbon atoms in X I includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, 2- Examples include methyl-butyl group, 3-methylbutyl group, 2-ethyl-propyl group and the like.
The alkoxy group having 1 to 5 carbon atoms in X I includes a methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, 2-methyl-butoxy group, 3-methylbutoxy group, 2-ethyl-propoxy group and the like.
X I is preferably a hydrogen atom, a fluorine atom, a chlorine atom or a methyl group, more preferably a hydrogen atom, a fluorine atom or a chlorine atom.
 RI1及びRI2はそれぞれ独立に水素原子又は炭素数1~20の炭化水素基であり、RI1及びRI2のうち少なくともいずれか一方は炭化水素基である。RI1及びRI2は、それぞれ炭化水素基である場合、好ましくは炭素数1~12の炭化水素基であり、より好ましくは炭素数1~8の炭化水素基である。具体的にはメチル基、tert-ブチル基、tert-ペンチル基及びtert-オクチル基が例示される。 R 11 and R 12 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and at least one of R 11 and R 12 is a hydrocarbon group. When each of R I1 and R I2 is a hydrocarbon group, it is preferably a hydrocarbon group having 1 to 12 carbon atoms, more preferably a hydrocarbon group having 1 to 8 carbon atoms. Specific examples include methyl group, tert-butyl group, tert-pentyl group and tert-octyl group.
 別の好ましい一態様に係る紫外線吸収剤は、ポリイミド系樹脂を含有するフィルムにおいて、トリアジン系紫外線吸収剤が用いられる。トリアジン系紫外線吸収剤としては、下記式(II)で表される化合物が挙げられる。その具体例としては、(株)ADEKAの製品名:アデカスタブ LA-46(2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイロキシ)エトキシ]フェノール)、BASFジャパン(株)製の商品名:Tinuvin 400(2-[4-[2-ヒドロキシ-3-トリデシロキシプロピル]オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン)、2-[4-[2-ヒドロキシ-3-ジデシロキシプロピル]オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン)、Tinuvin 405(2-[4(2-ヒドロキシ-3-(2’-エチル)ヘキシル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン)、Tinuvin 460(2,4-ビス(2-ヒドロキシ-4-ブチロキシフェニル)-6-(2,4-ビス-ブチロキシフェニル)-1,3,5-トリアジン)、Tinuvin 479(ヒドロキシフェニルトリアジン系紫外線吸収剤)、及びケミプロ化成(株)の製品名:KEMISORB(登録商標) 102(2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(n-オクチロキシ)フェノール)等が挙げられ、これらは単独又は2種以上を組み合わせて用いることができる。式(II)で表される化合物は、好ましくは、アデカスタブ LA-46(2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイロキシ)エトキシ]フェノール)である。 A triazine-based ultraviolet absorbent is used in a film containing a polyimide-based resin as an ultraviolet absorbent according to another preferred embodiment. Triazine-based UV absorbers include compounds represented by the following formula (II). A specific example thereof is the product name of ADEKA Corporation: ADEKA STAB LA-46 (2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[2-(2-ethyl hexanoyloxy)ethoxy]phenol), trade name manufactured by BASF Japan Ltd.: Tinuvin 400 (2-[4-[2-hydroxy-3-tridecyloxypropyl]oxy]-2-hydroxyphenyl]-4,6 -bis(2,4-dimethylphenyl)-1,3,5-triazine), 2-[4-[2-hydroxy-3-didecyloxypropyl]oxy]-2-hydroxyphenyl]-4,6-bis (2,4-dimethylphenyl)-1,3,5-triazine), Tinuvin 405 (2-[4(2-hydroxy-3-(2'-ethyl)hexyl)oxy]-2-hydroxyphenyl]-4 ,6-bis(2,4-dimethylphenyl)-1,3,5-triazine), Tinuvin 460 (2,4-bis(2-hydroxy-4-butyloxyphenyl)-6-(2,4-bis -Butyroxyphenyl)-1,3,5-triazine), Tinuvin 479 (hydroxyphenyltriazine-based UV absorber), and Chemipro Kasei Co., Ltd. product name: KEMISORB (registered trademark) 102 (2-[4,6 -Bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(n-octyloxy)phenol) and the like, which may be used alone or in combination of two or more. can be done. The compound represented by formula (II) is preferably Adekastab LA-46(2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[2-(2-ethyl hexanoyloxy)ethoxy]phenol).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(II)中、YI1~YI4は、それぞれ独立に、水素原子、フッ素原子、塩素原子、ヒドロキシ基、炭素数1~20のアルキル基又は炭素数1~20のアルコキシ基であり、好ましくは水素原子、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基であり、より好ましくは水素原子である。 In formula (II), Y I1 to Y I4 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a hydroxy group, an alkyl group having 1 to 20 carbon atoms or an alkoxy group having 1 to 20 carbon atoms, preferably is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms, more preferably a hydrogen atom.
 式(II)中、RI3は水素原子、炭素数1~20の炭化水素基、含まれる酸素原子が1つである炭素数1~20のアルコキシ基、又は炭素数1~12のアルキルケトオキシ基で置換されている炭素数1~4のアルコキシ基であり、好ましくは1個の酸素原子を含む炭素数1~12のアルコキシ基又は炭素数8~12のアルキルケトオキシ基で置換されている炭素数2~4のアルコキシ基であり、より好ましくは炭素数8~12のアルキルケトオキシ基で置換されている炭素数2~4のアルコキシ基である。 In formula (II), R I3 is a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms containing one oxygen atom, or an alkylketooxy having 1 to 12 carbon atoms. an alkoxy group having 1 to 4 carbon atoms substituted with a group, preferably substituted with an alkoxy group having 1 to 12 carbon atoms containing one oxygen atom or an alkylketooxy group having 8 to 12 carbon atoms. It is an alkoxy group having 2 to 4 carbon atoms, more preferably an alkoxy group having 2 to 4 carbon atoms substituted with an alkylketooxy group having 8 to 12 carbon atoms.
 YI1~YI4としての炭素数1~20のアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-へプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-ウンデシル基が挙げられる。炭素数1~20のアルコキシ基の例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、n-へプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、n-ドデシルオキシ基、n-ウンデシルオキシ基が挙げられる。 Examples of alkyl groups having 1 to 20 carbon atoms as Y I1 to Y I4 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n -pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group and n-undecyl group. Examples of alkoxy groups having 1 to 20 carbon atoms include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentyloxy, n -hexyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, n-dodecyloxy group and n-undecyloxy group.
 紫外線吸収剤は、300~400nmの光吸収を有するものが好ましく、320~360nmの光吸収を有するものがより好ましく、350nm付近の光吸収を有するものがさらに好ましい。 The ultraviolet absorber preferably has light absorption of 300 to 400 nm, more preferably 320 to 360 nm, and even more preferably around 350 nm.
 本発明のフィルムが紫外線吸収を含有する場合、紫外線吸収剤の含有量は、ポリイミド系樹脂100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、さらに好ましくは0.8質量部以上、特に好ましくは1質量部以上であり、好ましくは10質量部以下、より好ましくは8質量部以下、さらに好ましくは5質量部以下である。紫外線吸収剤の含有量が上記の下限以上であると、フィルムの紫外線カット性を向上しやすく、紫外線吸収剤の含有量が上記の上限以下であると、フィルムの光学特性、耐熱性、耐屈曲性及び樹脂の溶解性を向上しやすい。 When the film of the present invention contains ultraviolet absorption, the content of the ultraviolet absorber is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, with respect to 100 parts by mass of the polyimide resin. It is preferably 0.8 parts by mass or more, particularly preferably 1 part by mass or more, preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and even more preferably 5 parts by mass or less. When the content of the UV absorber is at least the above lower limit, it is easy to improve the UV cut property of the film, and when the content of the UV absorber is at most the above upper limit, the optical properties, heat resistance, and bending resistance of the film are improved. It is easy to improve properties and resin solubility.
 本発明のフィルムは、少なくとも1種のフィラーを含んでよい。フィラーを含むと、フィルムの光学特性、耐熱性及び耐屈曲性を高めやすい。フィラーとしては、例えば有機粒子、無機粒子などが挙げられ、好ましくは無機粒子が挙げられる。無機粒子としては、シリカ、ジルコニア、アルミナ、チタニア、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、インジウムスズ酸化物(ITO)、酸化アンチモン、酸化セリウム等の金属酸化物粒子、フッ化マグネシウム、フッ化ナトリウム等の金属フッ化物粒子などが挙げられ、これらの中でも、フィルムの光学特性、耐熱性及び耐屈曲性をバランス良く有しやすい観点から、好ましくはシリカ粒子、ジルコニア粒子、アルミナ粒子が挙げられ、より好ましくはシリカ粒子が挙げられる。これらのフィラーは単独又は2種以上を組合せて使用できる。 The film of the present invention may contain at least one filler. When the filler is contained, the optical properties, heat resistance and bending resistance of the film are likely to be improved. Examples of the filler include organic particles and inorganic particles, preferably inorganic particles. Examples of inorganic particles include metal oxide particles such as silica, zirconia, alumina, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), antimony oxide, and cerium oxide; Examples include metal fluoride particles such as sodium chloride, and among these, silica particles, zirconia particles, and alumina particles are preferable from the viewpoint that the film tends to have well-balanced optical properties, heat resistance, and flex resistance. and more preferably silica particles. These fillers can be used singly or in combination of two or more.
 フィラー、好ましくはシリカ粒子の平均一次粒子径は、通常1nm以上、好ましくは5nm以上、より好ましくは10nm以上、さらに好ましくは15nm以上、特に好ましくは20nm以上であり、好ましくは100nm以下、より好ましくは80nm以下、さらに好ましくは60nm以下、さらにより好ましくは40nm以下である。シリカ粒子の平均一次粒子径が上記範囲内であると、シリカ粒子の凝集を抑制し、得られるフィルムの光学特性、耐熱性及び耐屈曲性を向上しやすい。フィラーの平均一次粒子径は、BET法により測定できる。なお、透過型電子顕微鏡や走査型電子顕微鏡の画像解析により、平均一次粒子径を測定してもよい。 The average primary particle size of the filler, preferably silica particles, is usually 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, still more preferably 15 nm or more, particularly preferably 20 nm or more, and preferably 100 nm or less, more preferably It is 80 nm or less, more preferably 60 nm or less, still more preferably 40 nm or less. When the average primary particle size of the silica particles is within the above range, aggregation of the silica particles is suppressed, and the optical properties, heat resistance and flex resistance of the resulting film are likely to be improved. The average primary particle size of the filler can be measured by the BET method. The average primary particle size may be measured by image analysis using a transmission electron microscope or a scanning electron microscope.
 本発明のフィルムがフィラー、好ましくはシリカ粒子を含有する場合、フィラーの含有量は、フィルムの質量に対して、通常0.1質量%以上、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上であり、好ましくは60質量%以下、より好ましくは50質量%以下、さらに好ましくは40質量%以下である。フィラーの含有量が上記の範囲内であると、フィルムの光学特性、耐熱性及び耐屈曲性を向上しやすい。 When the film of the present invention contains a filler, preferably silica particles, the content of the filler is usually 0.1% by mass or more, preferably 1% by mass or more, more preferably 5% by mass, based on the mass of the film. Above, more preferably 10% by mass or more, preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 40% by mass or less. When the content of the filler is within the above range, it is easy to improve the optical properties, heat resistance, and flex resistance of the film.
 本発明のフィルムは、紫外線吸収剤及びフィラー以外の他の添加剤をさらに含有していてもよい。他の添加剤としては、例えば、酸化防止剤、離型剤、安定剤、ブルーイング剤、難燃剤、pH調整剤、シリカ分散剤、滑剤、増粘剤、及びレベリング剤等が挙げられる。他の添加剤を含有する場合、その含有量は、フィルムの質量に対して、好ましくは0.001~20質量%、より好ましくは0.01~15質量%、さらに好ましくは0.1~10質量%であってよい。 The film of the present invention may further contain additives other than ultraviolet absorbers and fillers. Other additives include, for example, antioxidants, release agents, stabilizers, bluing agents, flame retardants, pH adjusters, silica dispersants, lubricants, thickeners, and leveling agents. When other additives are contained, the content is preferably 0.001 to 20% by mass, more preferably 0.01 to 15% by mass, more preferably 0.1 to 10% by mass, based on the mass of the film. % by mass.
 本発明のフィルムの用途は特に限定されず、種々の用途、例えばタッチセンサー用基板、フレキシブル表示装置用材料、保護フィルム、ベゼル印刷用途フィルム、半導体用途、スピーカー振動板、IRカットフィルターなどに使用してもよい。本発明のフィルムは、上記に述べたように単層であっても、積層体であってもよく、本発明のフィルムをそのまま使用してもよいし、さらに他のフィルムとの積層体として使用してもよい。なお、フィルムが積層体である場合、フィルムの片面又は両面に積層された全ての層を含めてフィルムと称する。 Applications of the film of the present invention are not particularly limited, and various applications such as substrates for touch sensors, materials for flexible display devices, protective films, films for bezel printing, semiconductor applications, speaker diaphragms, IR cut filters, etc. may As described above, the film of the present invention may be a single layer or a laminate. The film of the present invention may be used as it is, or may be used as a laminate with another film. You may When the film is a laminate, the film includes all layers laminated on one side or both sides of the film.
 本発明のフィルムが積層体である場合、フィルムの少なくとも一方の面に1以上の機能層を有することが好ましい。機能層としては、例えばハードコート層、プライマー層、ガスバリア層、紫外線吸収層、粘着層、色相調整層、屈折率調整層などが挙げられる。機能層は単独又は二種以上組合せて使用できる。 When the film of the present invention is a laminate, it preferably has one or more functional layers on at least one surface of the film. Examples of functional layers include a hard coat layer, a primer layer, a gas barrier layer, an ultraviolet absorption layer, an adhesive layer, a hue adjustment layer, a refractive index adjustment layer and the like. A functional layer can be used individually or in combination of 2 or more types.
 本発明の一実施態様において、本発明のフィルムは、少なくとも一方の面(片面又は両面)に保護フィルムを有していてもよい。例えば本発明のフィルムの片面に機能層を有する場合には、保護フィルムは、フィルム側の表面又は機能層側の表面に積層されていてもよく、フィルム側と機能層側の両方に積層されていてもよい。本発明のフィルムの両面に機能層を有する場合には、保護フィルムは、片方の機能層側の表面に積層されていてもよく、両方の機能層側の表面に積層されていてもよい。保護フィルムは、フィルム又は機能層の表面を一時的に保護するためのフィルムであり、フィルム又は機能層の表面を保護できる剥離可能なフィルムである限り特に限定されない。保護フィルムとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂フィルム;ポリエチレン、ポリプロピレンフィルムなどのポリオレフィン系樹脂フィルム、アクリル系樹脂フィルム等が挙げられ、ポリオレフィン系樹脂フィルム、ポリエチレンテレフタレート系樹脂フィルム及びアクリル系樹脂フィルムからなる群から選択されることが好ましい。本発明のフィルムが保護フィルムを2つ有する場合、各保護フィルムは同一又は異なっていてもよい。 In one embodiment of the present invention, the film of the present invention may have a protective film on at least one side (single side or both sides). For example, when the film of the present invention has a functional layer on one side, the protective film may be laminated on the film side surface or the functional layer side surface, or may be laminated on both the film side and the functional layer side. may When the film of the present invention has functional layers on both sides, the protective film may be laminated on one functional layer side surface, or may be laminated on both functional layer side surfaces. The protective film is a film for temporarily protecting the surface of the film or the functional layer, and is not particularly limited as long as it is a peelable film that can protect the surface of the film or the functional layer. Examples of protective films include polyester resin films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefin resin films such as polyethylene and polypropylene films; acrylic resin films; It is preferably selected from the group consisting of a terephthalate resin film and an acrylic resin film. When the film of the present invention has two protective films, each protective film may be the same or different.
 保護フィルムの厚さは、特に限定されるものではないが、通常、10~120μm、好ましくは15~110μm、より好ましくは20~100μmである。本発明のフィルムが保護フィルムを2つ有する場合、各保護フィルムの厚さは同じであっても、異なっていてもよい。 The thickness of the protective film is not particularly limited, but is usually 10-120 μm, preferably 15-110 μm, more preferably 20-100 μm. When the film of the present invention has two protective films, the thickness of each protective film may be the same or different.
[フィルムの製造方法]
 本発明のフィルムは、特に限定されないが、例えば以下の工程:
(a)前記ポリイミド系樹脂を含む液(ワニスともいう)を調製する工程(以下、ワニス調製工程という)、
(b)ワニスを基材に塗布して塗膜を形成する工程(以下、塗布工程という)、及び
(c)塗布された液(塗膜)を乾燥させて、フィルムを形成する工程(以下、フィルム形成工程という)
を含む方法によって製造することができる。
[Film manufacturing method]
The film of the present invention is not particularly limited, but for example the following steps:
(a) a step of preparing a liquid (also referred to as varnish) containing the polyimide resin (hereinafter referred to as a varnish preparation step);
(b) a step of applying a varnish to a substrate to form a coating film (hereinafter referred to as a coating step); and (c) a step of drying the applied liquid (coating film) to form a film (hereinafter referred to as film forming process)
It can be manufactured by a method comprising
 ワニス調製工程において、前記ポリイミド系樹脂を溶媒に溶解し、必要に応じて前記添加剤を添加して撹拌混合することによりワニスを調製する。 In the varnish preparation process, the varnish is prepared by dissolving the polyimide resin in a solvent, adding the additives as necessary, and stirring and mixing.
 ワニスの調製に用いられる溶媒は、前記ポリイミド系樹脂を溶解可能であれば特に限定されない。かかる溶媒としては、例えばN,N-ジメチルアセトアミド(DMAc)、N,N-ジメチルホルムアミド(DMF)等のアミド系溶媒;γ-ブチロラクトン(GBL)、γ-バレロラクトン等のラクトン系溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、メチルイソブチルケトン等のケトン系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;及びそれらの組合せが挙げられる。これらの中でも、アミド系溶媒、ラクトン系溶媒又はケトン系溶媒が好ましい。これらの溶媒は単独又は二種以上組合せて使用できる。また、ワニスには水、アルコール系溶媒、非環状エステル系溶媒、エーテル系溶媒などが含まれてもよい。特に本発明の好適な実施態様では、オリゴマー量が上記の下限以上に調整されているため、シクロヘキサノン等のポリイミド系樹脂が溶解しにくいケトン系溶媒などを用いても、樹脂を容易に溶解でき、優れた光学特性及び耐屈曲性等を有するフィルムを形成できる。 The solvent used for preparing the varnish is not particularly limited as long as it can dissolve the polyimide resin. Examples of such solvents include amide solvents such as N,N-dimethylacetamide (DMAc) and N,N-dimethylformamide (DMF); lactone solvents such as γ-butyrolactone (GBL) and γ-valerolactone; ketone solvents such as methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone; sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide and sulfolane; carbonate solvents such as ethylene carbonate and propylene carbonate; and combinations thereof is mentioned. Among these, amide solvents, lactone solvents and ketone solvents are preferred. These solvents can be used alone or in combination of two or more. In addition, the varnish may contain water, alcohol solvents, acyclic ester solvents, ether solvents, and the like. In particular, in a preferred embodiment of the present invention, the amount of oligomer is adjusted to the above lower limit or more, so that the resin can be easily dissolved even when using a ketone-based solvent in which polyimide-based resins such as cyclohexanone are difficult to dissolve. A film having excellent optical properties, bending resistance, and the like can be formed.
 ワニスの固形分濃度は、好ましくは1~30質量%、より好ましくは5~25質量%、さらに好ましくは10~20質量%である。なお、本明細書において、ワニスの固形分とは、ワニスから溶媒を除いた成分の合計量を示す。また、ワニスの粘度は、好ましくは5~100Pa・s、より好ましくは10~50Pa・sである。ワニスの粘度が上記の範囲内であると、フィルムを均一化しやすく、光学特性、耐熱性及び耐屈曲性に優れたフィルムが得られやすい。 The solid content concentration of the varnish is preferably 1-30% by mass, more preferably 5-25% by mass, and still more preferably 10-20% by mass. In addition, in this specification, the solid content of the varnish indicates the total amount of the components of the varnish excluding the solvent. Also, the viscosity of the varnish is preferably 5 to 100 Pa·s, more preferably 10 to 50 Pa·s. When the viscosity of the varnish is within the above range, it is easy to make the film uniform, and it is easy to obtain a film excellent in optical properties, heat resistance and bending resistance.
 塗布工程において、公知の塗布方法により、基材上にワニスを塗布して塗膜を形成する。公知の塗布方法としては、例えばワイヤーバーコーティング法、リバースコーティング、グラビアコーティング等のロールコーティング法、ダイコート法、カンマコート法、リップコート法、スピンコーティング法、スクリーンコーティング法、ファウンテンコーティング法、ディッピング法、スプレー法、流涎成形法等が挙げられる。 In the coating process, the varnish is applied to the substrate by a known coating method to form a coating film. Known coating methods include, for example, wire bar coating, reverse coating, roll coating such as gravure coating, die coating, comma coating, lip coating, spin coating, screen coating, fountain coating, dipping, Examples include a spray method and a casting method.
 フィルム形成工程において、塗膜を乾燥し、基材から剥離することによって、フィルムを形成することができる。剥離後にさらにフィルムを乾燥する乾燥工程を行ってもよい。塗膜の乾燥は、通常50~350℃、好ましくは50~220℃の温度にて行うことができる。本発明の好適な実施態様では、段階的に乾燥を行うことが好ましい。高分子量樹脂を含むワニスは高粘度になりやすく、一般的に均一なフィルムを得ることが困難となり、光学特性(特に透明性)、耐屈曲性及び耐熱性が低下することがある。そこで、段階的に乾燥を行うことにより、高分子量樹脂を含むワニスを均一に乾燥することができ、優れた光学特性(特に透明性)とともに、Tgが高く、耐熱性及び耐屈曲性に優れたフィルムを得ることができる。本発明のより好適な実施態様では、100~170℃の比較的低温下で加熱した後、185~220℃で加熱することができる。乾燥(又は加熱時間)は、好ましくは5分~5時間、より好ましくは10分~1時間である。このような範囲内で段階的に低温から高温に加熱することにより、光学特性、耐熱性及び耐屈曲性に優れたフィルムが得られやすい。必要に応じて、不活性雰囲気条件下において塗膜の乾燥を行ってよい。また、フィルムの乾燥を真空条件下で行うと、フィルム中に微小な気泡が発生、残存することがあり、透明性が低下する要因となるため大気圧下で行うことが好ましい。 In the film forming process, the film can be formed by drying the coating film and peeling it off from the substrate. A drying step for drying the film may be performed after the peeling. Drying of the coating film can be carried out at a temperature of usually 50 to 350°C, preferably 50 to 220°C. In a preferred embodiment of the invention, it is preferred to carry out the drying in stages. A varnish containing a high-molecular-weight resin tends to have a high viscosity, making it generally difficult to obtain a uniform film, and optical properties (especially transparency), bending resistance, and heat resistance may deteriorate. Therefore, by performing stepwise drying, it is possible to uniformly dry the varnish containing the high molecular weight resin, and it has excellent optical properties (especially transparency), a high Tg, and excellent heat resistance and bending resistance. you can get the film. In a more preferred embodiment of the present invention, after heating at a relatively low temperature of 100-170°C, heating can be performed at 185-220°C. Drying (or heating time) is preferably 5 minutes to 5 hours, more preferably 10 minutes to 1 hour. By stepwise heating from low temperature to high temperature within such a range, a film excellent in optical properties, heat resistance and flex resistance can be easily obtained. If desired, drying of the coating may be performed under inert atmospheric conditions. Further, if the film is dried under vacuum conditions, minute air bubbles may be generated and remain in the film, which may cause deterioration of transparency. Therefore, it is preferable to dry the film under atmospheric pressure.
 基材の例としては、ガラス基板、PETフィルム、PENフィルム、他のポリイミド系樹脂又はポリアミド系樹脂フィルム等が挙げられる。中でも、耐熱性に優れる観点から、ガラス基板、PETフィルム、PENフィルム等が好ましく、さらにフィルムとの密着性及びコストの観点から、ガラス基板又はPETフィルムがより好ましい。 Examples of base materials include glass substrates, PET films, PEN films, and other polyimide resin or polyamide resin films. Among them, a glass substrate, a PET film, a PEN film, and the like are preferable from the viewpoint of excellent heat resistance, and a glass substrate or a PET film is more preferable from the viewpoint of adhesion to the film and cost.
 本発明のフィルムは、表示装置、特にタッチセンサ用基板として好適に使用できる。また、表示装置としては、テレビ、スマートフォン、携帯電話、カーナビゲーション、タブレットPC、携帯ゲーム機、電子ペーパー、インジケーター、掲示板、時計、及びスマートウォッチ等のウェアラブルデバイス等が挙げられる。 The film of the present invention can be suitably used as a substrate for display devices, particularly touch sensors. Examples of display devices include wearable devices such as televisions, smartphones, mobile phones, car navigation systems, tablet PCs, mobile game machines, electronic paper, indicators, bulletin boards, watches, and smart watches.
[フレキシブル表示装置]
 本発明は、本発明のフィルムを備えるフレキシブル表示装置を包含する。該フレキシブル表示装置としては、フレキシブル特性を有する表示装置、例えばテレビ、スマートフォン、携帯電話、スマートウォッチ等が挙げられる。
 フレキシブル表示装置は、表示装置を繰り返し折り曲げる、繰り返し巻く等の操作を伴い使用される表示装置であり、例えばローラブルディスプレイやフォルダブルディスプレイなどが挙げられる。ローラブルディスプレイとは、画像表示部分がロール状に巻き取られており、該画像表示部分を引き出して平面又は曲面にした状態で使用される画像表示装置であり、ロール状に巻き取る等の操作が使用の度に行われるような画像表示装置である。また、フォルダブルディスプレイとは、画像表示部分が折り曲げられており、該画像表示部分を開いて平面又は曲面にした状態で使用される画像表示装置であり、折り曲げる等の操作が使用の度に行われるような画像表示装置である。
[Flexible display device]
The invention includes flexible displays comprising the films of the invention. Examples of the flexible display device include display devices having flexible characteristics, such as televisions, smartphones, mobile phones, and smart watches.
A flexible display device is a display device that is used with an operation such as repeatedly bending or winding the display device, and examples thereof include a rollable display and a foldable display. A rollable display is an image display device in which an image display portion is wound into a roll and is used in a state in which the image display portion is pulled out to form a flat or curved surface. is an image display device that is performed each time it is used. A foldable display is an image display device in which an image display portion is folded and used in a state where the image display portion is opened to form a flat surface or a curved surface. It is an image display device that can be used.
 フレキシブル表示装置の具体的な構成としては、特に限定されないが、例えばフレキシブル表示装置用積層体及び有機EL表示パネルを含んでなる構成が挙げられる。このような本発明のフレキシブル表示装置は、さらに偏光板及び/又はタッチセンサを備えることが好ましい。偏光板又はタッチセンサとしては、慣用のものを用いることができ、これらは前記フレキシブル表示装置用積層体に含まれていてよい。偏光板としては、例えば円偏光板が挙げられ、タッチセンサとしては、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式等の様々な様式が挙げられる。このようなフレキシブル表示装置に使用されるタッチセンサ用基板(又はタッチセンサ用フィルム)には、耐屈曲性が求められるが、本発明のフィルムは、耐屈曲性に優れるため、前記タッチセンサ用基板(又はタッチセンサ用フィルム)として好適に使用することができる。 A specific configuration of the flexible display device is not particularly limited, but includes, for example, a configuration including a laminate for a flexible display device and an organic EL display panel. Such a flexible display device of the present invention preferably further includes a polarizing plate and/or a touch sensor. Commonly used polarizing plates or touch sensors may be used, and these may be included in the laminate for a flexible display device. Polarizing plates include, for example, circularly polarizing plates, and touch sensors include various modes such as a resistive film system, a surface acoustic wave system, an infrared system, an electromagnetic induction system, and a capacitance system. A touch sensor substrate (or a touch sensor film) used in such a flexible display device is required to have bending resistance, and the film of the present invention has excellent bending resistance. (or a touch sensor film).
 また、本発明の一実施態様では、フレキシブル表示装置用積層体は、視認側に、さらにウインドウフィルムを含むことが好ましく、例えば、視認側からウインドウフィルム、偏光板、タッチセンサ、又はウインドウフィルム、タッチセンサ、偏光板の順に積層されていてもよい。これらの部材は、接着剤又は粘着剤を用いて積層してもよく、これらの部材以外の他の部材を含むこともできる。 In one embodiment of the present invention, the laminate for a flexible display device preferably further includes a window film on the viewing side. The sensor and the polarizing plate may be laminated in this order. These members may be laminated using an adhesive or pressure-sensitive adhesive, and other members other than these members may be included.
[ポリイミド系樹脂]
 本発明は、脂肪族ジアミン由来の構成単位及びフッ素原子を有し、分子量が10,000以下のオリゴマーの含有量が、ポリイミド系樹脂の質量に対して5.5質量%以下であるポリイミド系樹脂を包含する。本発明のポリイミド系樹脂は、分子量10,000以下オリゴマーの含有量が5.5質量%以下であるため、耐屈曲性に優れるフィルムを形成できる。ポリイミド系樹脂中の分子量10,000以下オリゴマーの含有量が5.5質量%を超えると、フィルムの耐屈曲性が低下する傾向がある。
[Polyimide resin]
The present invention is a polyimide resin having a structural unit derived from an aliphatic diamine and a fluorine atom, and having a content of an oligomer having a molecular weight of 10,000 or less is 5.5% by mass or less with respect to the mass of the polyimide resin. encompasses Since the content of the oligomer having a molecular weight of 10,000 or less is 5.5% by mass or less, the polyimide resin of the present invention can form a film having excellent bending resistance. When the content of the oligomer having a molecular weight of 10,000 or less in the polyimide resin exceeds 5.5% by mass, the flex resistance of the film tends to decrease.
 本発明のポリイミド系樹脂において、分子量10,000以下オリゴマーの含有量は、ポリイミド系樹脂の質量に対して5.5質量%以下、好ましくは5.0質量%以下、より好ましくは4.5質量%以下、さらに好ましくは4.0質量%以下、さらにより好ましくは3.5質量%以下である。分子量10,000以下オリゴマーの含有量が上記の上限以下であると、得られるフィルムの耐屈曲性を向上しやすい。 In the polyimide resin of the present invention, the content of the oligomer having a molecular weight of 10,000 or less is 5.5% by mass or less, preferably 5.0% by mass or less, more preferably 4.5% by mass, based on the mass of the polyimide resin. % or less, more preferably 4.0 mass % or less, still more preferably 3.5 mass % or less. When the content of the oligomer having a molecular weight of 10,000 or less is equal to or less than the above upper limit, the bending resistance of the obtained film is likely to be improved.
 本発明のポリイミド系樹脂は、分子量10,000以下オリゴマーの含有量が、ポリイミド系樹脂の質量に対して、好ましくは0.7質量%超、より好ましくは1.0質量%以上、さらに好ましくは1.5質量%以上、さらにより好ましくは2.0質量%以上、特に好ましくは2.5質量%以上である。分子量10,000以下オリゴマーの含有量が上記の下限以上であると、フィルムの製膜時におけるポリイミド系樹脂の溶媒への溶解性を向上しやすい。本発明の好適な実施態様では、ポリイミド系樹脂は、分子量10,000以下オリゴマーの含有量が0.7質量%超、かつ5.5質量%以下に調整されているため、優れた耐屈曲性と、優れた溶解性とを両立できる。分子量10,000以下オリゴマーの含有量は、ゲル浸透クロマトグラフィー(GPC)測定を行い、標準ポリスチレン換算により求めることができ、例えば実施例に記載の方法により算出できる。 In the polyimide resin of the present invention, the content of the oligomer having a molecular weight of 10,000 or less is preferably more than 0.7% by mass, more preferably 1.0% by mass or more, more preferably 1.0% by mass or more, and more preferably It is 1.5% by mass or more, more preferably 2.0% by mass or more, and particularly preferably 2.5% by mass or more. When the content of the oligomer having a molecular weight of 10,000 or less is at least the above lower limit, the solubility of the polyimide resin in a solvent during film formation is likely to be improved. In a preferred embodiment of the present invention, the polyimide resin has a content of oligomers with a molecular weight of 10,000 or less, which is adjusted to more than 0.7% by mass and 5.5% by mass or less, so that excellent flex resistance and excellent solubility. The content of oligomers having a molecular weight of 10,000 or less can be obtained by performing gel permeation chromatography (GPC) measurement and converting to standard polystyrene, for example, it can be calculated by the method described in Examples.
 ポリイミド系樹脂は、フィルム形成時に熱により分解し得るため、フィルム形成前のポリイミド系樹脂中のオリゴマーの含有量は、フィルム中のオリゴマーの含有量よりも小さくなる傾向がある。本発明のポリイミド系樹脂中のオリゴマーは、その含有量の範囲以外は、上記<オリゴマー>の項に記載のオリゴマーと同じである。 Because polyimide resins can be thermally decomposed during film formation, the oligomer content in the polyimide resin before film formation tends to be smaller than the oligomer content in the film. The oligomer in the polyimide resin of the present invention is the same as the oligomer described in the section <Oligomer> above, except for the content range.
 本発明の一実施態様において、ポリイミド系樹脂の重量平均分子量(Mw)は、好ましくは100,000以上、より好ましくは150,000以上、さらに好ましくは170,000以上、さらにより好ましくは200,000以上、特に好ましくは220,000以上、特により好ましくは230,000以上、極めて好ましくは250,000以上であり、好ましくは800,000以下、より好ましくは700,000以下、さらに好ましくは600,000以下である。ポリイミド系樹脂のMwが上記の下限以上であると、フィルムの耐熱性及び耐屈曲性を高めやすい。また、ポリイミド系樹脂のMwが上記の上限以下であると、フィルムの厚み位相差、加工性及び樹脂の溶解性を向上しやすい。 In one embodiment of the present invention, the weight average molecular weight (Mw) of the polyimide resin is preferably 100,000 or more, more preferably 150,000 or more, still more preferably 170,000 or more, still more preferably 200,000. or more, particularly preferably 220,000 or more, particularly more preferably 230,000 or more, extremely preferably 250,000 or more, preferably 800,000 or less, more preferably 700,000 or less, further preferably 600,000 It is below. When the Mw of the polyimide resin is at least the above lower limit, the heat resistance and flex resistance of the film can be easily improved. Further, when the Mw of the polyimide-based resin is equal to or less than the above upper limit, it is easy to improve the thickness retardation of the film, the workability and the solubility of the resin.
 本発明の一実施態様において、ポリイミド系樹脂の数平均分子量(Mn)は、好ましくは15,000以上、より好ましくは20,000以上、さらに好ましくは25,000以上、さらにより好ましくは35,000以上、特に好ましくは40,000以上、特により好ましくは45,000以上であり、好ましくは180,000以下、より好ましくは150,000以下、さらに好ましくは130,000以下、さらにより好ましくは80,000以下、特に好ましくは70,000以下である。ポリイミド系樹脂のMnが上記の下限以上であると、フィルムの耐熱性及び耐屈曲性を高めやすい。また、ポリイミド系樹脂のMnが上記の上限以下であると、フィルムの厚み位相差、加工性及び樹脂の溶解性を向上しやすい。ポリイミド系樹脂のMw及びMnはそれぞれ、ゲル浸透クロマトグラフィー(GPC)測定を行い、標準ポリスチレン換算により求めることができ、例えば実施例に記載の方法により算出できる。 In one embodiment of the present invention, the number average molecular weight (Mn) of the polyimide resin is preferably 15,000 or more, more preferably 20,000 or more, still more preferably 25,000 or more, still more preferably 35,000 above, particularly preferably 40,000 or more, particularly more preferably 45,000 or more, preferably 180,000 or less, more preferably 150,000 or less, still more preferably 130,000 or less, still more preferably 80, 000 or less, particularly preferably 70,000 or less. When the Mn of the polyimide resin is at least the above lower limit, the heat resistance and flex resistance of the film are likely to be improved. Further, when the Mn of the polyimide resin is equal to or less than the above upper limit, it is easy to improve the thickness retardation of the film, workability and the solubility of the resin. The Mw and Mn of the polyimide resin can each be obtained by performing gel permeation chromatography (GPC) measurement and converting to standard polystyrene, and can be calculated, for example, by the method described in Examples.
 ポリイミド系樹脂の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn;分子量分布)は、好ましくは13以下、より好ましくは11以下、さらに好ましくは8.0以下であり、好ましくは1.5以上、より好ましくは2.0以上、さらに好ましくは3.0以上である。ポリイミド系樹脂の分子量分布(Mw/Mn)が上記の上限以下であると、フィルムの厚み位相差、加工性及び樹脂の溶解性を向上しやすく、またポリイミド系樹脂の分子量分布(Mw/Mn)が上記の下限以上であると、フィルムの耐熱性及び耐屈曲性を高めやすい。 The ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the polyimide resin (Mw/Mn; molecular weight distribution) is preferably 13 or less, more preferably 11 or less, and still more preferably 8.0 or less. , preferably 1.5 or more, more preferably 2.0 or more, and still more preferably 3.0 or more. When the molecular weight distribution (Mw/Mn) of the polyimide resin is the above upper limit or less, the thickness retardation of the film, the processability and the solubility of the resin are easily improved, and the molecular weight distribution (Mw/Mn) of the polyimide resin is at least the above lower limit, the heat resistance and flex resistance of the film tend to be enhanced.
 本発明のポリイミド系樹脂は、1種類以上のポリイミド系樹脂からなる樹脂であり、2種類以上のポリイミド系樹脂の混合物(ポリイミド系樹脂ブレンドということがある)を含む意味である。本発明におけるポリイミド系樹脂がポリイミド系樹脂ブレンドである場合、ポリイミド系樹脂ブレンドの上記Mwは、ポリイミド系樹脂ブレンド自体をGPCで測定し、標準ポリスチレン換算により求めることができる。Mn、分子量分布(Mw/Mn)、イミド化率及びフッ素原子の含有量も同様に、ポリイミド系樹脂ブレンド自体を測定することで求められる。 The polyimide-based resin of the present invention is a resin composed of one or more polyimide-based resins, and includes a mixture of two or more polyimide-based resins (sometimes referred to as a polyimide-based resin blend). When the polyimide-based resin in the present invention is a polyimide-based resin blend, the above Mw of the polyimide-based resin blend can be determined by measuring the polyimide-based resin blend itself by GPC and converting it to standard polystyrene. Mn, molecular weight distribution (Mw/Mn), imidization rate, and fluorine atom content are similarly determined by measuring the polyimide resin blend itself.
 ポリイミド系樹脂は、フィルム形成時に熱により分解し得るため、ポリイミド系樹脂の平均分子量は、上記フィルムの平均分子量よりも大きくなる傾向がある。本発明のポリイミド系樹脂は、Mw、Mn及び分子量分布の範囲以外は、上記<ポリイミド系樹脂>の項に記載のポリイミド系樹脂と同様である。また、本発明のポリイミド系樹脂の製造方法は、上記<ポリイミド系樹脂の製造方法>に記載の方法と同様である。  Since the polyimide resin can be thermally decomposed during film formation, the average molecular weight of the polyimide resin tends to be larger than the average molecular weight of the film. The polyimide-based resin of the present invention is the same as the polyimide-based resin described in the section <Polyimide-based resin> above, except for the range of Mw, Mn and molecular weight distribution. The method for producing the polyimide resin of the present invention is the same as the method described in <Method for producing polyimide resin> above.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。まず測定方法について説明する。 The present invention will be described in more detail below based on examples and comparative examples, but the present invention is not limited to the following examples. First, the measurement method will be explained.
 <樹脂及びフィルムのMw、Mn、オリゴマー量>
 実施例及び比較例で得られたポリイミド系樹脂及びフィルムの重量平均分子量(Mw)、数平均分子量(Mn)、及び分子量が10,000以下のオリゴマーの含有量はそれぞれ、GPCを用いて、以下の条件により測定した。
 (GPC条件)
装置:島津LC-20A
カラム:TSKgel GMHHR-M (ミックスカラム、排除限界分子量:400万)
ガードカラム:TSKgel guardcolumn HHR-H
移動相:N-メチル-2-ピロリジノン(NMP) 10mM LiBr添加
※NMPはHPLC用グレード、LiBrは試薬一級(無水物)を使用
流速:1mL/min
測定時間:20分
カラムオーブン:40℃
検出:UV 275nm
洗浄溶媒:NMP
試料濃度:1mg/mL (20wt%反応マスは移動相で5mg/mLに希釈して分析)
分子量較正:ポリマーラボラトリーズ製 標準ポリスチレン(分子量500~400万の17分子量)
<Mw, Mn, Oligomer Amount of Resin and Film>
The weight-average molecular weight (Mw), number-average molecular weight (Mn), and content of oligomers having a molecular weight of 10,000 or less of the polyimide resins and films obtained in Examples and Comparative Examples were determined using GPC as follows. was measured under the conditions of
(GPC conditions)
Apparatus: Shimadzu LC-20A
Column: TSKgel GMHHR-M (mix column, exclusion limit molecular weight: 4 million)
Guard column: TSKgel guard column HHR-H
Mobile phase: N-methyl-2-pyrrolidinone (NMP), 10 mM LiBr added * NMP is HPLC grade, LiBr is reagent first grade (anhydride) Flow rate: 1 mL/min
Measurement time: 20 minutes Column oven: 40°C
Detection: UV 275nm
Wash solvent: NMP
Sample concentration: 1 mg/mL (20 wt% reaction mass diluted to 5 mg/mL with mobile phase for analysis)
Molecular weight calibration: Standard polystyrene manufactured by Polymer Laboratories (17 molecular weights with a molecular weight of 5-4 million)
 (解析条件)
ソフトウェア:島津製作所製 LabSolutions
アルゴリズム:i-Peak Finder
ピーク検出感度:5
ピーク検出範囲:0-12分
ベースライン処理:ベースライン長さ
         10min
ピークフィルタ:最小面積:10000 uV*sec
        最小高さ:10uV
        最小高さ/幅:3000uV/min
(analysis conditions)
Software: LabSolutions manufactured by Shimadzu Corporation
Algorithm: i-Peak Finder
Peak detection sensitivity: 5
Peak detection range: 0-12 min Baseline processing: Baseline length 10 min
Peak filter: minimum area: 10000 uV*sec
Minimum height: 10uV
Minimum height/width: 3000uV/min
 <オリゴマーの帰属>
 実施例及び比較例で得られたポリイミド系樹脂中及びフィルム中の分子量が10,000以下のオリゴマーは、下記に示すマトリックス支援レーザー脱離イオン化飛行時間質量分析計(MALDI-MS測定)にて帰属を実施した。
 (MALDI-MS条件)
装置:日本電子(株) JMS-S3000
モード:Spiral positive
レーザー強度:35
Laser Mode:250Hz
Delay time:200ns
m/z:250~5000
Detector:55
プレート:μ-Focus-MALDI Plate(HST社製)
前処理:
試料はNMPに溶解させ、マトリクス(MA)は2,5-ジヒドロキシ安息香酸(DHB)を用い、メタノールに溶解させ、試料溶液、マトリクス溶液の順に滴下・乾燥させた。
<Assignment of Oligomer>
Oligomers having a molecular weight of 10,000 or less in polyimide resins and films obtained in Examples and Comparative Examples were attributed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-MS measurement) shown below. carried out.
(MALDI-MS conditions)
Apparatus: JEOL Ltd. JMS-S3000
Mode: Spiral positive
Laser intensity: 35
Laser Mode: 250Hz
Delay time: 200ns
m/z: 250-5000
Detector: 55
Plate: μ-Focus-MALDI Plate (manufactured by HST)
Preprocessing:
The sample was dissolved in NMP, and 2,5-dihydroxybenzoic acid (DHB) was used as the matrix (MA), dissolved in methanol, and the sample solution and the matrix solution were dropped and dried in this order.
 <イミド化率>
 実施例及び比較例で得られたポリイミド系樹脂のイミド化率は、NMRを用いて、以下の条件により測定した。
 (NMR条件)
 ポリイミド系樹脂10mgを秤量し、重DMSO 0.75mlを添加後、120℃で20分加熱することで溶解した。溶液をNMR管に移し、ブルカー製AV600装置を用いて、100℃で1H NMR測定を実施した。1H NMRスペクトルよりイミド基由来のプロトンとアミド基由来のプロトンを帰属し、次式を用いてイミド化率を求めた。
イミド化率 = {イミド基積分比/(イミド基積分比+アミド基積分比)}×100 
<Imidation rate>
The imidization ratios of the polyimide resins obtained in Examples and Comparative Examples were measured using NMR under the following conditions.
(NMR conditions)
10 mg of polyimide resin was weighed, and after adding 0.75 ml of heavy DMSO, the resin was dissolved by heating at 120° C. for 20 minutes. The solution was transferred to an NMR tube and 1H NMR measurements were performed at 100° C. using a Bruker AV600 instrument. Protons derived from the imide group and protons derived from the amide group were assigned from the 1H NMR spectrum, and the imidization rate was determined using the following equation.
Imidation rate = {imido group integral ratio/(imido group integral ratio + amide group integral ratio)} × 100
 <フッ素原子の含有量>
 実施例及び比較例で得られたポリイミド系樹脂中のフッ素原子の含有量は、ポリイミド系樹脂をフラスコ内で燃焼分解し、発生ガスをフラスコ内の水酸化ナトリウム水溶液に吸収させ、該水中のフッ素イオン濃度をイオンクロマトグラフィー(「ICS-5000」、Thermo Fisher Scientific製)で測定することにより求めた。
<Content of fluorine atoms>
The content of fluorine atoms in the polyimide resins obtained in Examples and Comparative Examples was obtained by burning and decomposing the polyimide resin in a flask, absorbing the generated gas into an aqueous sodium hydroxide solution in the flask, and determining the fluorine content in the water. The ion concentration was obtained by measuring with ion chromatography (“ICS-5000”, manufactured by Thermo Fisher Scientific).
 <厚み>
 実施例及び比較例で得られたフィルムの厚みは、接触式のデジタル厚み計(ミツトヨ社製)を用いて3回測定を行い、3回測定した値の平均値をフィルムの厚みとした。
<Thickness>
The thickness of the films obtained in Examples and Comparative Examples was measured three times using a contact-type digital thickness gauge (manufactured by Mitutoyo), and the average value of the three measured values was taken as the film thickness.
 <耐屈曲性試験>
 実施例及び比較例で得られたフィルムの屈曲回数を以下のように求めた。該フィルムを、ダンベルカッターを用いて幅10mm×長さ120mmの短冊状にカットした。カットしたフィルムを面状体無負荷U字伸縮試験(卓上型耐久試験)機(「型式DMLHB-FS」、ユアサシステム(株))にて、本体にセットして、試験速度30rpm、屈曲半径R=1mmの条件で、フィルムが破断するまでの折曲げ回数を測定し、これを屈曲回数(回)とした。なお、評価は400,000回を上限として実施した。
<Flexibility test>
The number of bending times of the films obtained in Examples and Comparative Examples was determined as follows. The film was cut into strips of width 10 mm×length 120 mm using a dumbbell cutter. The cut film is set on the main body with a planar body no-load U-shaped stretching test (desktop type durability test) machine ("model DMLHB-FS", Yuasa System Co., Ltd.), and the test speed is 30 rpm and the bending radius is R. = 1 mm, the number of times of bending until the film was broken was measured, and this was defined as the number of times of bending. Note that the evaluation was performed with 400,000 times as the upper limit.
 <溶媒への溶解性評価>
 実施例及び比較例で得られたポリイミド系樹脂の溶媒への溶解性を以下のように評価した。固形分濃度13~17質量%の樹脂をシクロヘキサノン中で25℃、8時間攪拌した際に目視にて溶け残りの有無を確認した。
 なお、溶解性の評価において、シクロヘキサノンは、ポリイミド系樹脂が溶解しにくい溶媒の一例として用いた。
<Evaluation of Solubility in Solvent>
Solubility in solvents of the polyimide resins obtained in Examples and Comparative Examples was evaluated as follows. When a resin having a solid content concentration of 13 to 17% by mass was stirred in cyclohexanone at 25° C. for 8 hours, the presence or absence of undissolved residue was visually confirmed.
In the solubility evaluation, cyclohexanone was used as an example of a solvent in which the polyimide resin is difficult to dissolve.
[実施例1]
 (ポリイミド系樹脂)
 窒素ガス雰囲気下、撹拌翼を備えた反応容器に、m-クレゾール(本州化学工業(株)製)893kg、1,4-DAB(AnQore社製)40kg、6FDA(八幸通商(株)製)201kg、及びイソキノリン(C-Chem(株)製)17kgを添加した後、130℃に昇温し、8時間撹拌した後、得られた反応液を40℃まで冷却した。攪拌しながら、メタノール(住友化学(株)製)を1,680kg添加して析出させた後、ろ過した。ろ過した析出物をメタノール(706kg)で3回洗浄し、洗浄した析出物を70℃で40時間乾燥させることで、ポリイミド系樹脂を209kg得た。
 得られたポリイミド系樹脂の重量平均分子量(Mw)は249,000であり、数平均分子量(Mn)は37,000であり、分子量分布(Mw/Mn)は6.6であり、分子量10,000以下オリゴマーの含有量は4.6質量%であった。また、ポリイミド系樹脂のイミド化率は99.6%であり、フッ素原子の含有量は22質量%であった。
[Example 1]
(polyimide resin)
In a nitrogen gas atmosphere, m-cresol (manufactured by Honshu Chemical Industry Co., Ltd.) 893 kg, 1,4-DAB (manufactured by AnQore) 40 kg, 6FDA (manufactured by Hakko Tsusho Co., Ltd.) are placed in a reaction vessel equipped with a stirring blade. After adding 201 kg and 17 kg of isoquinoline (manufactured by C-Chem Co., Ltd.), the temperature was raised to 130°C, and after stirring for 8 hours, the obtained reaction solution was cooled to 40°C. While stirring, 1,680 kg of methanol (manufactured by Sumitomo Chemical Co., Ltd.) was added to precipitate, followed by filtration. The filtered precipitate was washed with methanol (706 kg) three times, and the washed precipitate was dried at 70° C. for 40 hours to obtain 209 kg of polyimide resin.
The obtained polyimide resin had a weight average molecular weight (Mw) of 249,000, a number average molecular weight (Mn) of 37,000, a molecular weight distribution (Mw/Mn) of 6.6, and a molecular weight of 10,000. The content of 000 or less oligomers was 4.6% by mass. The imidization rate of the polyimide resin was 99.6%, and the content of fluorine atoms was 22% by mass.
 (フィルム)
 上記で得られたポリイミド系樹脂をシクロヘキサノンに溶解し、紫外線吸収剤(UVA)として、Sumisorb340を2phr(ポリイミド系樹脂100質量部に対して2質量部)添加してワニスを調製した。次いで、得られたワニスを、ガラス基板に塗布し、140℃で10分加熱した後、さらに200℃で30分間加熱し、ガラス基板から剥離することで、厚さ50μmのフィルムを得た。得られたフィルムの屈曲回数は400,000回以上であった。
 また、得られたフィルムを再溶解した際のGPCの結果によれば、フィルム中のポリイミド系樹脂の重量平均分子量(Mw)は198,000であり、数平均分子量(Mn)は28,000であり、分子量分布(Mw/Mn)は7.1であり、分子量10,000以下オリゴマーの含有量は5.8質量%であった。
(the film)
A varnish was prepared by dissolving the polyimide resin obtained above in cyclohexanone and adding 2 phr (2 parts by mass to 100 parts by mass of the polyimide resin) of Sumisorb 340 as an ultraviolet absorber (UVA). Then, the obtained varnish was applied to a glass substrate, heated at 140° C. for 10 minutes, further heated at 200° C. for 30 minutes, and peeled off from the glass substrate to obtain a film with a thickness of 50 μm. The bending number of the obtained film was 400,000 times or more.
Further, according to the results of GPC when the obtained film was redissolved, the polyimide resin in the film had a weight average molecular weight (Mw) of 198,000 and a number average molecular weight (Mn) of 28,000. The molecular weight distribution (Mw/Mn) was 7.1, and the content of oligomers having a molecular weight of 10,000 or less was 5.8% by mass.
[実施例2]
 (ポリイミド系樹脂)
 窒素ガス雰囲気下、撹拌翼を備えた反応容器に、m-クレゾール(本州化学工業(株))893kg、1,4-DAB(AnQore社製)40kg、6FDA(八幸通商(株)製)201kg、及びイソキノリン(C-Chem(株)製)17kgを添加した後、130℃に昇温し、8時間撹拌した後、得られた反応液を40℃まで冷却した。攪拌しながら、メタノール(住友化学(株)製)を1,680kg添加して析出させた後、ろ過した。ろ過した析出物をメタノール(706kg)で5回洗浄し、洗浄した析出物を70℃で40時間乾燥させることで、ポリイミド系樹脂を210kg得た。得られたポリイミド系樹脂の重量平均分子量(Mw)は218,000であり、数平均分子量(Mn)は34,000であり、分子量分布(Mw/Mn)は6.5であり、分子量10,000以下オリゴマーの含有量は4.4質量%であった。また、ポリイミド系樹脂のイミド化率は99.7%であった。
[Example 2]
(polyimide resin)
In a nitrogen gas atmosphere, 893 kg of m-cresol (Honshu Chemical Industry Co., Ltd.), 40 kg of 1,4-DAB (manufactured by AnQore), and 201 kg of 6FDA (manufactured by Hakko Tsusho Co., Ltd.) are placed in a reaction vessel equipped with a stirring blade. , and 17 kg of isoquinoline (manufactured by C-Chem Co., Ltd.) were added, the temperature was raised to 130°C, and after stirring for 8 hours, the resulting reaction solution was cooled to 40°C. While stirring, 1,680 kg of methanol (manufactured by Sumitomo Chemical Co., Ltd.) was added to precipitate, followed by filtration. The filtered precipitate was washed with methanol (706 kg) five times, and the washed precipitate was dried at 70° C. for 40 hours to obtain 210 kg of polyimide resin. The resulting polyimide resin had a weight average molecular weight (Mw) of 218,000, a number average molecular weight (Mn) of 34,000, a molecular weight distribution (Mw/Mn) of 6.5, and a molecular weight of 10,000. The content of 000 or less oligomers was 4.4% by mass. Also, the imidization rate of the polyimide resin was 99.7%.
 (フィルム)
 上記で得られたポリイミド系樹脂を用いて、実施例1と同様にしてフィルムを得た。また、得られたフィルムの屈曲回数は150,000回であった。
 なお、得られたフィルムを再溶解した際のGPCの結果によれば、フィルム中のポリイミド系樹脂の重量平均分子量(Mw)は176,000であり、数平均分子量(Mn)は30,000であり、分子量分布(Mw/Mn)は5.8であり、分子量10,000以下オリゴマーの含有量は4.8質量%であった。
(the film)
A film was obtained in the same manner as in Example 1 using the polyimide resin obtained above. In addition, the number of bending times of the obtained film was 150,000.
According to the results of GPC when the obtained film was redissolved, the polyimide resin in the film had a weight average molecular weight (Mw) of 176,000 and a number average molecular weight (Mn) of 30,000. The molecular weight distribution (Mw/Mn) was 5.8, and the content of oligomers having a molecular weight of 10,000 or less was 4.8% by mass.
[実施例3]
 (ポリイミド系樹脂)
 窒素ガス雰囲気下、撹拌翼を備えた反応容器に、m-クレゾール(本州化学工業(株))104g、1,4-DAB(ThermoFisher社製)8g、6FDA(八幸通商(株)製)40g、及びイソキノリン(富士フィルム和光純薬(株)製)3gを添加した後、130℃に昇温し、8時間撹拌した後、m-クレゾール(75g)で希釈し、得られた反応液を20℃まで冷却した。攪拌しながら、SOLMIX AP-1(日本アルコール販売(株)製;変性アルコール(組成:エタノール85.5%、イソプロパノール13.4%、メタノール1.1%))を336g添加して析出させた後、ろ過した。ろ過した析出物をSOLMIX AP-1(141g)で5回洗浄し、洗浄した析出物を70℃で12時間乾燥させることで、ポリイミド系樹脂を42g得た。得られたポリイミド系樹脂の重量平均分子量(Mw)は228,000であり、数平均分子量(Mn)は52,000であり、分子量分布(Mw/Mn)は4.4であり、分子量10,000以下オリゴマーの含有量は2.7質量%であった。
[Example 3]
(polyimide resin)
In a nitrogen gas atmosphere, 104 g of m-cresol (Honshu Chemical Industry Co., Ltd.), 8 g of 1,4-DAB (manufactured by ThermoFisher), and 40 g of 6FDA (manufactured by Hakko Tsusho Co., Ltd.) were added to a reaction vessel equipped with a stirring blade. , and 3 g of isoquinoline (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were added, the temperature was raised to 130° C., the mixture was stirred for 8 hours, and then diluted with m-cresol (75 g). Cooled to °C. While stirring, after adding 336 g of SOLMIX AP-1 (manufactured by Nippon Alcohol Sales Co., Ltd.; denatured alcohol (composition: 85.5% ethanol, 13.4% isopropanol, 1.1% methanol)) to precipitate. , filtered. The filtered precipitate was washed with SOLMIX AP-1 (141 g) five times, and the washed precipitate was dried at 70° C. for 12 hours to obtain 42 g of polyimide resin. The obtained polyimide resin had a weight average molecular weight (Mw) of 228,000, a number average molecular weight (Mn) of 52,000, a molecular weight distribution (Mw/Mn) of 4.4, and a molecular weight of 10,000. The content of 000 or less oligomers was 2.7% by mass.
 (フィルム)
 上記で得られたポリイミド系樹脂を用いて、実施例1と同様にしてフィルムを得た。また、得られたフィルムの屈曲回数は350,000回であった。
 なお、得られたフィルムを再溶解した際のGPCの結果によれば、フィルム中のポリイミド系樹脂の重量平均分子量(Mw)は196,000であり、数平均分子量(Mn)は20,000であり、分子量分布(Mw/Mn)は9.7であり、分子量10,000以下オリゴマーの含有量は4.2質量%であった。
(the film)
A film was obtained in the same manner as in Example 1 using the polyimide resin obtained above. In addition, the number of bending times of the obtained film was 350,000.
According to the results of GPC when the obtained film was redissolved, the polyimide resin in the film had a weight average molecular weight (Mw) of 196,000 and a number average molecular weight (Mn) of 20,000. The molecular weight distribution (Mw/Mn) was 9.7, and the content of oligomers having a molecular weight of 10,000 or less was 4.2% by mass.
[実施例4]
 (ポリイミド系樹脂)
 窒素ガス雰囲気下、撹拌翼を備えた反応容器に、m-クレゾール(本州化学工業(株))134g、1,4-DAB(ThermoFisher社製)8g、6FDA(八幸通商(株)製)40g、及びイソキノリン(富士フィルム和光純薬(株)製)3gを添加した後、130℃に昇温し、8時間撹拌した後、m-クレゾール(119g)で希釈し、得られた反応液を20℃まで冷却した。攪拌しながら、SOLMIX AP-1(日本アルコール販売(株)製)を476g添加して析出させた後、ろ過した。ろ過した析出物をSOLMIX AP-1(141g)で5回洗浄し、洗浄した析出物を70℃で12時間乾燥させることで、ポリイミド系樹脂を38g得た。得られたポリイミド系樹脂の重量平均分子量(Mw)は302,000であり、数平均分子量(Mn)は50,000であり、分子量分布(Mw/Mn)は6.0であり、分子量10,000以下オリゴマーの含有量は3.1質量%であった。
[Example 4]
(polyimide resin)
In a nitrogen gas atmosphere, 134 g of m-cresol (Honshu Chemical Industry Co., Ltd.), 8 g of 1,4-DAB (manufactured by ThermoFisher), and 40 g of 6FDA (manufactured by Hakko Tsusho Co., Ltd.) were added to a reaction vessel equipped with a stirring blade. , and 3 g of isoquinoline (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were added, the temperature was raised to 130° C., the mixture was stirred for 8 hours, and then diluted with m-cresol (119 g). Cooled to °C. While stirring, 476 g of SOLMIX AP-1 (manufactured by Nippon Alcohol Trading Co., Ltd.) was added to precipitate, followed by filtration. The filtered precipitate was washed with SOLMIX AP-1 (141 g) five times, and the washed precipitate was dried at 70° C. for 12 hours to obtain 38 g of a polyimide resin. The obtained polyimide resin had a weight average molecular weight (Mw) of 302,000, a number average molecular weight (Mn) of 50,000, a molecular weight distribution (Mw/Mn) of 6.0, and a molecular weight of 10,000. The content of 000 or less oligomers was 3.1 mass %.
 (フィルム)
 上記で得られたポリイミド系樹脂を用いて、実施例1と同様にしてフィルムを得た。また、得られたフィルムの屈曲回数は400,000回以上であった。
 なお、得られたフィルムを再溶解した際のGPCの結果によれば、フィルム中のポリイミド系樹脂の重量平均分子量(Mw)は196,000であり、数平均分子量(Mn)は20,000であり、分子量分布(Mw/Mn)は9.7であり、分子量10,000以下オリゴマーの含有量は4.2質量%であった。
(the film)
A film was obtained in the same manner as in Example 1 using the polyimide resin obtained above. In addition, the number of bending times of the obtained film was 400,000 times or more.
According to the results of GPC when the obtained film was redissolved, the polyimide resin in the film had a weight average molecular weight (Mw) of 196,000 and a number average molecular weight (Mn) of 20,000. The molecular weight distribution (Mw/Mn) was 9.7, and the content of oligomers having a molecular weight of 10,000 or less was 4.2% by mass.
[比較例1]
 (ポリイミド系樹脂)
 国際公開第2019/156717号に記載の方法により、6FDA由来の構成単位と1,4-DAB由来の構成単位とからなるポリイミド系樹脂(A)(6FDA-DAB)を製造した。得られたポリイミド系樹脂(A)の重量平均分子量(Mw)は151,000であり、数平均分子量(Mn)は26,000であり、分子量分布(Mw/Mn)は5.7であり、分子量10,000以下オリゴマーの含有量は6.0質量%であった。
[Comparative Example 1]
(polyimide resin)
A polyimide resin (A) (6FDA-DAB) consisting of 6FDA-derived structural units and 1,4-DAB-derived structural units was produced by the method described in International Publication No. 2019/156717. The resulting polyimide resin (A) has a weight average molecular weight (Mw) of 151,000, a number average molecular weight (Mn) of 26,000, and a molecular weight distribution (Mw/Mn) of 5.7. The content of oligomers having a molecular weight of 10,000 or less was 6.0% by mass.
 次いで、国際公開第2019/156717号に記載の方法により、6FDA由来の構成単位と1,4-DAB由来の構成単位とからなるポリイミド系樹脂(B)(6FDA-DAB)を製造した。得られたポリイミド系樹脂(B)の重量平均分子量(Mw)は280,000であり、数平均分子量(Mn)は37,000であり、分子量分布(Mw/Mn)は8.3であり、分子量10,000以下オリゴマーの含有量は5.5質量%であった。 Next, according to the method described in International Publication No. 2019/156717, a polyimide-based resin (B) (6FDA-DAB) consisting of 6FDA-derived structural units and 1,4-DAB-derived structural units was produced. The resulting polyimide resin (B) has a weight average molecular weight (Mw) of 280,000, a number average molecular weight (Mn) of 37,000, and a molecular weight distribution (Mw/Mn) of 8.3. The content of oligomers having a molecular weight of 10,000 or less was 5.5 mass %.
 上記で得られたポリイミド系樹脂(A)とポリイミド系樹脂(B)の重量比率が1:1となるように混合したポリイミド系樹脂を得た。得られたポリイミド系樹脂の重量平均分子量(Mw)は216,000であり、数平均分子量(Mn)は32,000であり、分子量分布(Mw/Mn)は6.8であり、分子量10,000以下オリゴマーの含有量は5.8質量%であった。 A polyimide resin was obtained by mixing the polyimide resin (A) and the polyimide resin (B) obtained above so that the weight ratio was 1:1. The resulting polyimide resin had a weight average molecular weight (Mw) of 216,000, a number average molecular weight (Mn) of 32,000, a molecular weight distribution (Mw/Mn) of 6.8, and a molecular weight of 10,000. The content of 000 or less oligomers was 5.8% by weight.
 (フィルム)
 上記で得られたポリイミド系樹脂をシクロヘキサノンに溶解し、実施例1と同様にしてフィルムを得た。また、得られたフィルムの屈曲回数は90,000回であった。
 なお、得られたフィルムを再溶解した際のGPCの結果によれば、重量平均分子量(Mw)は190,000であり、数平均分子量(Mn)は25,000であり、分子量分布(Mw/Mn)は7.5であり、分子量10,000以下オリゴマーの含有量は6.2質量%であった。
(the film)
A film was obtained in the same manner as in Example 1 by dissolving the polyimide resin obtained above in cyclohexanone. In addition, the bending number of the obtained film was 90,000 times.
According to the results of GPC when the obtained film was redissolved, the weight average molecular weight (Mw) was 190,000, the number average molecular weight (Mn) was 25,000, and the molecular weight distribution (Mw/ Mn) was 7.5, and the content of oligomers having a molecular weight of 10,000 or less was 6.2% by mass.
[比較例2]
 (ポリイミド系樹脂)
 国際公開第2019/156717号に記載の方法により、6FDA由来の構成単位と1,4-DAB由来の構成単位とからなるポリイミド系樹脂(C)(6FDA-DAB)を製造した。得られたポリイミド系樹脂(C)の重量平均分子量(Mw)は183,000であり、数平均分子量(Mn)は27,000であり、分子量分布(Mw/Mn)は6.8であり、分子量10,000以下オリゴマーの含有量は6.3質量%であった。
[Comparative Example 2]
(polyimide resin)
A polyimide resin (C) (6FDA-DAB) consisting of 6FDA-derived structural units and 1,4-DAB-derived structural units was produced by the method described in International Publication No. 2019/156717. The resulting polyimide resin (C) has a weight average molecular weight (Mw) of 183,000, a number average molecular weight (Mn) of 27,000, and a molecular weight distribution (Mw/Mn) of 6.8. The content of oligomers having a molecular weight of 10,000 or less was 6.3% by mass.
 上記で得られたポリイミド系樹脂(C)とポリイミド系樹脂(B)の重量比率が1:2となるように混合したポリイミド系樹脂を得た。得られたポリイミド系樹脂の重量平均分子量(Mw)は248,000であり、数平均分子量(Mn)は34,000であり、分子量分布(Mw/Mn)は7.8であり、分子量10,000以下オリゴマーの含有量は5.8質量%であった。 A polyimide resin was obtained by mixing the polyimide resin (C) obtained above and the polyimide resin (B) in a weight ratio of 1:2. The resulting polyimide resin had a weight average molecular weight (Mw) of 248,000, a number average molecular weight (Mn) of 34,000, a molecular weight distribution (Mw/Mn) of 7.8, and a molecular weight of 10,000. The content of 000 or less oligomers was 5.8% by mass.
 (フィルム)
 上記で得られたポリイミド系樹脂をシクロヘキサノンに溶解し、実施例1と同様にしてフィルムを得た。また、得られたフィルムの屈曲回数は30,000回であった。
 なお、得られたフィルムを再溶解した際のGPCの結果によれば、フィルム中のポリイミド系樹脂の重量平均分子量(Mw)は205,000であり、数平均分子量(Mn)は21,000であり、分子量分布(Mw/Mn)は9.8であり、分子量10,000以下オリゴマーの含有量は6.3質量%であった。
(the film)
A film was obtained in the same manner as in Example 1 by dissolving the polyimide resin obtained above in cyclohexanone. In addition, the bending number of the obtained film was 30,000 times.
According to the results of GPC when the obtained film was redissolved, the polyimide resin in the film had a weight average molecular weight (Mw) of 205,000 and a number average molecular weight (Mn) of 21,000. The molecular weight distribution (Mw/Mn) was 9.8, and the content of oligomers having a molecular weight of 10,000 or less was 6.3% by mass.
 上記の方法により、実施例及び比較例で得られたフィルムの屈曲性試験、及びポリイミド系樹脂の溶媒への溶解性評価を行った結果を表1に示す。なお、フィルム及びポリイミド系樹脂の上記GPC測定により得られたMw及びオリゴマー量もそれぞれ表1に示す。また、図1に、実施例1で得られたフィルムのGPCデータにおいて、分子量10,000以下オリゴマーのピークを示し、図2に、実施例1で得られたポリイミド系樹脂のGPCデータにおいて、分子量10,000以下オリゴマーのピークを示す。 Table 1 shows the results of the flexibility test of the films obtained in Examples and Comparative Examples and the solubility evaluation of the polyimide resin in solvents by the above method. Table 1 also shows the Mw and the amount of oligomer obtained by the GPC measurement of the film and the polyimide resin. 1 shows the peaks of oligomers with a molecular weight of 10,000 or less in the GPC data of the film obtained in Example 1, and FIG. Below 10,000 oligomer peaks are shown.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 (分子量10,000以下オリゴマーの帰属)
 上記の方法により、実施例及び比較例で得られたフィルム及びポリイミド系樹脂のMALDI-MS測定を行い、分子量が10,000以下の成分の帰属を行ったところ、1,4-DABと6FDAとが結合して形成された環状多量体のピークが検出された。環状多量体として、少なくとも環状2~7量体が含まれていた。よって、分子量10,000以下オリゴマーは環状オリゴマーであることが確認された。なお、図3に実施例1で得られたポリイミド系樹脂のMALDI-MS測定の結果を示す。
(Assignment of oligomers with a molecular weight of 10,000 or less)
By the above method, the films and polyimide resins obtained in Examples and Comparative Examples were subjected to MALDI-MS measurement, and the attribution of the components having a molecular weight of 10,000 or less was performed. A peak of a cyclic multimer formed by binding was detected. At least 2 to 7 cyclic cyclic multimers were included as cyclic multimers. Therefore, it was confirmed that the oligomer having a molecular weight of 10,000 or less was a cyclic oligomer. The results of MALDI-MS measurement of the polyimide resin obtained in Example 1 are shown in FIG.

Claims (17)

  1.  脂肪族ジアミン由来の構成単位及びフッ素原子を有するポリイミド系樹脂を含み、分子量が10,000以下のオリゴマーの含有量は、フィルムの質量に対して6.1質量%以下である、フィルム。 A film containing a polyimide resin having a structural unit derived from an aliphatic diamine and a fluorine atom, and containing an oligomer having a molecular weight of 10,000 or less in an amount of 6.1% by mass or less relative to the mass of the film.
  2.  分子量が10,000以下のオリゴマーの含有量は、フィルムの質量に対して1.0質量%以上である、請求項1に記載のフィルム。 The film according to claim 1, wherein the content of the oligomer having a molecular weight of 10,000 or less is 1.0% by mass or more relative to the mass of the film.
  3.  前記オリゴマーは環状オリゴマーを含む、請求項1又は2に記載のフィルム。 The film according to claim 1 or 2, wherein the oligomer includes a cyclic oligomer.
  4.  前記オリゴマーの分子量は700以上である、請求項1~3のいずれかに記載のフィルム。 The film according to any one of claims 1 to 3, wherein the oligomer has a molecular weight of 700 or more.
  5.  前記フィルムの重量平均分子量(Mw)は150,000以上である、請求項1~4のいずれかに記載のフィルム。 The film according to any one of claims 1 to 4, wherein the weight average molecular weight (Mw) of the film is 150,000 or more.
  6.  前記ポリイミド系樹脂中のフッ素原子の含有量は、ポリイミド系樹脂の質量に対して10質量%以上である、請求項1~5のいずれかに記載のフィルム。 The film according to any one of claims 1 to 5, wherein the content of fluorine atoms in the polyimide resin is 10% by mass or more with respect to the mass of the polyimide resin.
  7.  前記ポリイミド系樹脂のイミド化率は99%以上である、請求項1~6のいずれかに記載のフィルム。 The film according to any one of claims 1 to 6, wherein the polyimide resin has an imidization rate of 99% or more.
  8.  前記ポリイミド系樹脂は、式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Xは2価の有機基を表し、Yは4価の有機基を表し、X及びYの有機基のうち、少なくとも1つはフッ素原子を含有し、*は結合手を表す]
    で表される構成単位を有し、式(1)で表される構成単位は、Xとして、2価の脂肪族基を含む、請求項1~7のいずれかに記載のフィルム。
    The polyimide resin has the formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), X represents a divalent organic group, Y represents a tetravalent organic group, among the organic groups of X and Y, at least one contains a fluorine atom, * is a bond represents]
    8. The film according to any one of claims 1 to 7, wherein the structural unit represented by formula (1) contains a divalent aliphatic group as X.
  9.  式(1)で表される構成単位は、Yとして、式(2):
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、R~Rは、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表し、Vは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-S-、-CO-又は-N(R)-を表し、R~R及びVに含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、Rは、水素原子、又はハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基を表し、*は結合手を表す]
    で表される構造を含む、請求項8に記載のフィルム。
    The structural unit represented by formula (1) is represented by formula (2) as Y:
    Figure JPOXMLDOC01-appb-C000002
    [In formula (2), R 2 to R 7 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, V is a single bond, -O-, -CH 2 -, -CH 2 -CH 2 -, -CH(CH 3 )-, -C(CH 3 ) 2 -, -C(CF 3 ) 2 -, - represents SO 2 —, —S—, —CO— or —N(R 8 )—, hydrogen atoms contained in R 2 to R 7 and V are independently of each other optionally substituted with halogen atoms; R 8 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom, * represents a bond]
    9. The film of claim 8, comprising a structure represented by:
  10.  脂肪族ジアミン由来の構成単位及びフッ素原子を有し、分子量が10,000以下のオリゴマーの含有量は、ポリイミド系樹脂の質量に対して5.5質量%以下である、ポリイミド系樹脂。 A polyimide resin in which the content of an oligomer having a structural unit derived from an aliphatic diamine and a fluorine atom and having a molecular weight of 10,000 or less is 5.5% by mass or less relative to the mass of the polyimide resin.
  11.  分子量が10,000以下のオリゴマーの含有量は、ポリイミド系樹脂の質量に対して0.7質量%超である、請求項10に記載のポリイミド系樹脂。 The polyimide-based resin according to claim 10, wherein the content of the oligomer having a molecular weight of 10,000 or less is more than 0.7% by mass based on the mass of the polyimide-based resin.
  12.  前記オリゴマーは環状オリゴマーを含む、請求項10又は11に記載のポリイミド系樹脂。 The polyimide resin according to claim 10 or 11, wherein the oligomer includes a cyclic oligomer.
  13.  前記オリゴマーの分子量は700以上である、請求項10~12のいずれかに記載のポリイミド系樹脂。 The polyimide resin according to any one of claims 10 to 12, wherein the oligomer has a molecular weight of 700 or more.
  14.  前記ポリイミド系樹脂の重量平均分子量(Mw)は170,000以上である、請求項10~13のいずれかに記載のポリイミド系樹脂。 The polyimide resin according to any one of claims 10 to 13, wherein the polyimide resin has a weight average molecular weight (Mw) of 170,000 or more.
  15.  請求項1~9のいずれかに記載のフィルムを備える、フレキシブル表示装置。 A flexible display device comprising the film according to any one of claims 1 to 9.
  16.  さらに偏光板を備える、請求項15に記載のフレキシブル表示装置。 The flexible display device according to claim 15, further comprising a polarizing plate.
  17.  さらにタッチセンサを備える、請求項15又は16に記載のフレキシブル表示装置。 The flexible display device according to claim 15 or 16, further comprising a touch sensor.
PCT/JP2022/044523 2021-12-03 2022-12-02 Film and polyimide-based resin WO2023101005A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-197339 2021-12-03
JP2021197339A JP2023083147A (en) 2021-12-03 2021-12-03 Film and polyimide-based resin

Publications (1)

Publication Number Publication Date
WO2023101005A1 true WO2023101005A1 (en) 2023-06-08

Family

ID=86612376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044523 WO2023101005A1 (en) 2021-12-03 2022-12-02 Film and polyimide-based resin

Country Status (2)

Country Link
JP (1) JP2023083147A (en)
WO (1) WO2023101005A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288344A (en) * 1991-03-18 1992-10-13 Sanyo Chem Ind Ltd Protective film and member having protective layer
WO2006132144A1 (en) * 2005-06-07 2006-12-14 University Of Yamanashi Polyimide resin and electrolyte membrane
WO2008013151A1 (en) * 2006-07-23 2008-01-31 Ube Industries, Ltd. Polyimide film made of multicomponent polyimide and process for production thereof
JP2018095715A (en) * 2016-12-12 2018-06-21 コニカミノルタ株式会社 Polyimide film and display device using the film
WO2018190179A1 (en) * 2017-04-10 2018-10-18 大日本印刷株式会社 Polyimide film, layered product, surface material for display
JP2019130890A (en) * 2018-01-29 2019-08-08 住友化学株式会社 Optical laminate
WO2021070767A1 (en) * 2019-10-10 2021-04-15 住友化学株式会社 Molded article and substrate formed from said molded article
JP2021063979A (en) * 2019-10-11 2021-04-22 住友化学株式会社 Optical film and flexible display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288344A (en) * 1991-03-18 1992-10-13 Sanyo Chem Ind Ltd Protective film and member having protective layer
WO2006132144A1 (en) * 2005-06-07 2006-12-14 University Of Yamanashi Polyimide resin and electrolyte membrane
WO2008013151A1 (en) * 2006-07-23 2008-01-31 Ube Industries, Ltd. Polyimide film made of multicomponent polyimide and process for production thereof
JP2018095715A (en) * 2016-12-12 2018-06-21 コニカミノルタ株式会社 Polyimide film and display device using the film
WO2018190179A1 (en) * 2017-04-10 2018-10-18 大日本印刷株式会社 Polyimide film, layered product, surface material for display
JP2019130890A (en) * 2018-01-29 2019-08-08 住友化学株式会社 Optical laminate
WO2021070767A1 (en) * 2019-10-10 2021-04-15 住友化学株式会社 Molded article and substrate formed from said molded article
JP2021063979A (en) * 2019-10-11 2021-04-22 住友化学株式会社 Optical film and flexible display device

Also Published As

Publication number Publication date
JP2023083147A (en) 2023-06-15

Similar Documents

Publication Publication Date Title
KR101952823B1 (en) Film, resin composition and method for producing polyamide-imide resin
TWI779750B (en) Optical film and flexible device using the same
JP7072140B2 (en) Polyimide film
WO2022004856A1 (en) Optical film
TW201922868A (en) Optical film being excellent in bending resistance and producing excellent stability in terms of optical properties under high temperature and high humidity
WO2019189483A1 (en) Varnish containing transparent polyimide-based polymer and solvent
KR20190053105A (en) Optical film
WO2022163759A1 (en) Optical film and flexible display device provided with optical film
WO2023101005A1 (en) Film and polyimide-based resin
JP2022013625A (en) Optical film
WO2022004861A1 (en) Method for manufacturing optical film containing polyimide-based resin
WO2022004860A1 (en) Method for producing long optical film containing polyimide resin
KR101989112B1 (en) Laminate
WO2022163757A1 (en) Polyimide resin
WO2022004857A1 (en) Optical film
WO2022163758A1 (en) Laminated film
JP2022013624A (en) Optical film
WO2023101006A1 (en) Method for producing polyimide-based resin
JP2023132813A (en) Method for producing polyimide film
WO2024024570A1 (en) Polyimide film
TW202012508A (en) Method for producing polyamide-based resin powder and polyamide-based resin composition capable of facilitating efficient production of a polyamide-based resin powder
JP2019085549A (en) Optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901435

Country of ref document: EP

Kind code of ref document: A1