WO2023100932A1 - Gas separation membrane system and gas separation membrane regeneration method - Google Patents

Gas separation membrane system and gas separation membrane regeneration method Download PDF

Info

Publication number
WO2023100932A1
WO2023100932A1 PCT/JP2022/044193 JP2022044193W WO2023100932A1 WO 2023100932 A1 WO2023100932 A1 WO 2023100932A1 JP 2022044193 W JP2022044193 W JP 2022044193W WO 2023100932 A1 WO2023100932 A1 WO 2023100932A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
separation membrane
gas separation
membrane unit
line
Prior art date
Application number
PCT/JP2022/044193
Other languages
French (fr)
Japanese (ja)
Inventor
叙彦 福田
智英 中村
洋樹 印出
Original Assignee
Ube株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube株式会社 filed Critical Ube株式会社
Publication of WO2023100932A1 publication Critical patent/WO2023100932A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration

Definitions

  • the present invention relates to a gas separation membrane system and a method for regenerating a gas separation membrane used in the gas separation membrane system.
  • a membrane separation method that utilizes the difference in gas permeation speed with respect to a membrane is known.
  • a raw material mixed gas containing two or more gases is supplied to a gas separation membrane and separated into a permeable gas enriched with a high-permeability gas and an impermeable gas enriched with a low-permeability gas.
  • Gas separation membranes are generally used as a separation membrane module in which a gas separation membrane having gas selective permeability is housed in a container provided with at least a gas inlet, a permeable gas outlet, and an impermeable gas outlet. ing.
  • the gas separation membrane is mounted in the container so that the spaces on the gas supply side and the gas permeation side thereof are separated.
  • a plurality of separation membrane modules are combined in parallel and used in order to obtain a required membrane area.
  • the raw material mixed gas may itself contain high-boiling organic matter.
  • oil mist from the compressor that supplies the raw material mixed gas to the gas separation membrane may be mixed into the raw material mixed gas.
  • the high-boiling organic matter and oil mist adhere to the gas separation membrane to which the raw material mixed gas is supplied.
  • the permeability of the gas separation membrane decreases over time.
  • Patent Document 1 discloses that two or more gas separation systems are used to separate the supplied raw material mixed gas into a permeable gas and an impermeable gas, and the permeated gas separated in one gas separation system.
  • the gas is supplied to the impermeable gas supply port of another module of the gas separation system to which the supply of the raw material mixed gas is stopped, and the impurities adhering to the hollow fiber membrane are removed along with the permeated gas.
  • US Pat. No. 5,300,004 relates to a single-stage gas system and also requires a complex system for regeneration.
  • gas separation is known to be performed by a system in which multiple stages of gas separation membrane units are combined to improve the recovery rate and purity.
  • no study has been made on regenerating the gas separation membrane without removing the separation membrane module from the gas separation membrane system.
  • an object of the present invention is to efficiently and easily restore the permeability of the gas separation membranes without removing the gas separation membrane module in a gas separation membrane system in which two stages of gas separation membrane units are combined.
  • An object of the present invention is to provide a membrane system and a method for regenerating a separation membrane.
  • the present invention is a gas separation membrane system comprising at least a first gas separation membrane unit and a second gas separation membrane unit having gas separation performance, each gas separation membrane unit comprises at least a gas inlet, a permeable gas outlet and an impermeable gas outlet;
  • a supply gas line is connected to the gas inlet of the first gas separation membrane unit, and compression means and heating means are interposed in the middle of the supply gas line, connecting the impermeable gas outlet of the first gas separation membrane unit and the gas inlet of the second gas separation membrane unit by a first impermeable gas outlet line; connecting the permeated gas outlet of the second gas separation membrane unit and a position on the suction side of the compression means in the supply gas line by a second permeated gas return line; connecting a second impermeable gas discharge line to the impermeable gas discharge port of the second gas separation membrane unit; connecting the first permeated gas discharge line to the permeated gas discharge port of the first gas separation membrane unit; After heating the gas for regeneration of the gas separation membrane introduced into the supply gas
  • the present invention also provides a method for regenerating a gas separation membrane in a gas separation membrane system comprising at least a first gas separation membrane unit and a second gas separation membrane unit having gas separation performance, comprising: each gas separation membrane unit comprises at least a gas inlet, a permeable gas outlet and an impermeable gas outlet;
  • a supply gas line is connected to the gas inlet of the first gas separation membrane unit, and compression means and heating means are interposed in the middle of the supply gas line, connecting the impermeable gas outlet of the first gas separation membrane unit and the gas inlet of the second gas separation membrane unit by a first impermeable gas outlet line; connecting the permeated gas outlet of the second gas separation membrane unit and a position on the suction side of the compression means in the supply gas line by a second permeated gas return line; connecting a second impermeable gas discharge line to the impermeable gas discharge port of the second gas separation membrane unit; connecting the first permeated gas discharge line to the permeated gas discharge port of the first gas separation membrane unit
  • the system further comprises a third gas separation membrane unit having gas separation performance, the third gas separation membrane unit comprises at least a gas inlet, a permeable gas outlet and an impermeable gas outlet; connecting the impermeable gas outlet of the third gas separation membrane unit and a position on the suction side of the compression means in the supply gas line by a third impermeable gas return line; connecting the permeated gas discharge port of the first gas separation membrane unit and the gas inlet of the third gas separation membrane unit by the first permeated gas discharge line; A third permeated gas discharge line may be connected to the permeated gas discharge port of the third gas separation membrane unit.
  • the permeability of the gas separation membrane can be efficiently and easily regenerated without removing the gas separation membrane module.
  • a membrane system and a method for regenerating a separation membrane are provided.
  • FIG. 1 is a schematic diagram showing an example of the gas separation membrane system of the present invention.
  • FIG. 1(a) shows the gas flow path during operation for gas separation
  • FIG. 1(b) shows the gas flow path during regeneration of the gas separation membrane.
  • FIG. 2 is a schematic diagram showing the structure of an example of a separation membrane module used in the gas separation membrane system of the present invention.
  • FIG. 3 is a schematic diagram showing another example of the gas separation membrane system of the present invention.
  • FIG. 3(a) shows the gas flow path during operation for gas separation, and
  • FIG. 3(b) shows the gas flow path during regeneration of the gas separation membrane.
  • FIG. 4 is a schematic diagram showing another example of the gas separation membrane system of the present invention.
  • FIG. 4(a) shows the gas flow path during operation for gas separation
  • FIG. 4(a) shows the gas flow path during operation for gas separation
  • FIG. 4(a) shows the gas flow path during operation for gas separation
  • FIG. 4(a) shows the gas flow path during operation for
  • FIG. 4(b) shows the gas flow path during regeneration of the gas separation membrane.
  • FIG. 5 is a schematic diagram showing another example of the gas separation membrane system of the present invention.
  • FIG. 5(a) shows the gas flow path during operation for gas separation
  • FIG. 5(b) shows the gas flow path during regeneration of the gas separation membrane.
  • FIG. 6 is a schematic diagram showing an example of the gas separation membrane system of the present invention.
  • FIG. 6(a) shows the gas flow path during operation for gas separation
  • FIG. 6(b) shows the gas flow path during regeneration of the gas separation membrane.
  • FIG. 7 is a schematic diagram showing another example of the gas separation membrane system of the present invention.
  • FIG. 7(a) shows the gas flow path during operation for gas separation
  • FIG. 7(b) shows the gas flow path during regeneration of the gas separation membrane.
  • FIG. 8 is a schematic diagram showing another example of the gas separation membrane system of the present invention.
  • FIG. 8(a) shows the gas flow path during operation for gas separation
  • FIG. 8(b) shows the gas flow path during regeneration of the gas separation membrane.
  • FIG. 9 is a schematic diagram showing another example of the gas separation membrane system of the present invention.
  • FIG. 9(a) shows the gas flow path during operation for gas separation
  • FIG. 9(b) shows the gas flow path during regeneration of the gas separation membrane.
  • FIG. 10 is a schematic diagram showing another example of the gas separation membrane system of the present invention.
  • FIG. 10(a) shows the gas flow path during operation for gas separation
  • FIG. 10(b) shows the gas flow path during regeneration of the gas separation membrane.
  • FIG. 11 is a schematic diagram showing another example of the gas separation membrane system of the present invention.
  • FIG. 11(a) shows the gas flow path during operation for gas separation
  • FIG. 11(b) shows the gas flow path during regeneration of the gas separation membrane.
  • regeneration refers to a decrease in the permeation gas flow rate (Nm 3 /h) due to deposition of impurities on the gas separation membrane, or improvement of the phenomenon associated with the decrease in the permeation gas flow rate.
  • the phenomenon associated with the decrease in the flow rate of the permeating gas referred to here includes a decrease in the flow rate of the processing gas, a decrease in the purity of the product gas, and the like.
  • 1, 3 to 11 respectively show gas separation membrane systems 10, 10', 10'', 10''', 110, 110', 110'', 110''', 110' of embodiments of the present invention.
  • ''', 110'''' (hereinafter also referred to as '10 to 110'''').
  • double lines indicate lines through which gas flows outside the gas separation membrane unit
  • dotted lines indicate paths through which gas flows inside the gas separation membrane unit. Arrows indicate the direction of gas flow.
  • a solid single line indicates a line through which no gas is flowing.
  • a solid single line indicates a line through which no gas is flowing.
  • FIGS. 1 and 3 to 11 (a) show the gas separation membrane system in the gas separation membrane system during operation for gas separation and the gas flow paths in the system, and FIGS. 1 and 3 to 11 ( b) shows the gas separation membrane system and the gas flow path in the system during regeneration of the gas separation membrane.
  • the gas separation membrane systems 10 to 10''' shown in FIGS. 1 and 3 to 5 are provided with two gas separation membrane units, a first gas separation membrane unit 11 and a second gas separation membrane unit 12. 110 to 110''' described in FIGS.
  • a module 40 can be used in which a gas separation membrane 20 made of a hollow fiber membrane or the like and having gas selective permeability is accommodated in a casing 31.
  • Each of the gas separation membrane units 11, 12, 13 of this embodiment uses one gas separation membrane module 40 shown in FIG. 2, or a plurality of such modules 40 are arranged in parallel. .
  • the separation membrane module is a container containing a plurality of hollow fiber membranes having gas separation performance.
  • Hollow fiber membranes can be made compact and have a large membrane area, so they are efficient and economical.
  • the hollow fiber membrane may be homogeneous or heterogeneous such as a composite membrane or an asymmetric membrane, and may be microporous or nonporous.
  • the hollow fiber membrane has a thickness of 10 to 500 ⁇ m and an outer diameter of 50 to 2000 ⁇ m.
  • Hollow fiber membranes are made of polymer materials such as polyimide, polyetherimide, polyamide, polyamideimide, polysulfone, polycarbonate, silicone resin, and cellulose-based polymers, materials obtained by carbonizing or partially carbonizing polymer materials, and ceramic materials such as zeolite.
  • a suitable gas separation membrane can be mentioned.
  • an asymmetric polyimide gas separation membrane is preferable because it not only has high gas separation performance but also excellent properties such as heat resistance, durability, and solvent resistance.
  • a large number of hollow fiber membranes (for example, hundreds to hundreds of thousands) are bundled to form a hollow fiber membrane bundle, and at least one end of the hollow fiber membrane bundle is coated with a material such as epoxy resin.
  • a hollow fiber separation membrane element is formed by fixing a hollow fiber membrane element with a thermosetting resin, a hot-melt thermoplastic resin, or the like so that the hollow fiber membranes are open at the ends.
  • the thread element is mounted in a container having at least a gas inlet, a permeable gas outlet, and an impermeable gas outlet, so that the space leading to the inside of the hollow fiber membrane and the space leading to the outside of the hollow fiber membrane are isolated.
  • Containers are manufactured from composite materials such as metal materials such as stainless steel, plastic materials, and fiber-reinforced plastic materials.
  • the form of the separation membrane module is not particularly limited and may be one commonly used.
  • the fiber arrangement form of the hollow fiber membrane bundle may be a parallel arrangement, a cross arrangement, a woven fabric, a spiral, or the like.
  • the hollow fiber membrane bundle may have a core tube substantially at the center, and a film may be wound around the outer peripheral portion of the hollow fiber membrane bundle.
  • the shape of the hollow fiber membrane bundle may be cylindrical, flat, prismatic, or the like, and may be stored in the container as it is, or may be stored in the container while being bent in a U-shape or wound in a spiral.
  • FIG. 2 An example of the separation membrane module is shown as module 40 in FIG.
  • the casing 31 in the module 40 is open on two opposite sides to form an opening 32 .
  • this opening 32 is for inserting the gas separation membrane 20 into the casing 31 and is not an opening in the gas separation membrane 20 .
  • the gas separation membrane 20 is housed inside the casing 31 through this opening 32 .
  • the gas separation membrane 20 consists of a bundle of hollow fiber membranes
  • the gas separation membrane 20 is arranged in the casing 31 so that each end of the hollow fiber membrane is open near each opening 32 of the casing 31 in the housed state. are housed in
  • the gas separation membrane 20 When the gas separation membrane 20 is accommodated in the casing 31, the gas separation membrane 20 is fixed to the inner wall of the casing 31 by the tube plates 33 and 34 at both ends in the Y direction, which is the direction in which the hollow fiber membranes extend. It is Each opening 32 of the casing 31 is closed by lids 35 and 36 . A gas inlet 37 is provided in the lid 35 . On the other hand, the lid 36 is provided with an impermeable gas outlet 38 . A gas to be separated is introduced into the module from the gas inlet 37 of the lid 35 . Of the introduced gas, the gas that permeates the gas separation membrane 20 is discharged outside the module from the permeated gas discharge port 39 provided in the casing 31 .
  • the impermeable gas that has not permeated the gas separation membrane 20 is discharged from the impermeable gas outlet 38 of the lid 36 to the outside of the module.
  • the casing 31 may be provided with a purge gas supply port (not shown).
  • the separation membrane module is not limited to the hollow feed type shown in FIG. 2, but may be a shell feed type, and may be a type using a carrier gas or a type not using a carrier gas.
  • a carrier gas introduction port is arranged in the container, or a carrier gas introduction pipe is arranged as a core tube of the hollow fiber membrane bundle.
  • first gas separation membrane unit 11 and the second gas separation membrane unit 12 are connected in series. Specifically, the first gas separation membrane unit 11 and the second gas separation membrane unit 12 are separated from the impermeable gas outlet 11b of the first gas separation membrane unit 11 and the gas inlet of the second gas separation membrane unit 12. 12a are connected by a first impermeable gas discharge line 14. As shown in FIG. 1, as shown in the figure, the first gas separation membrane unit 11 and the second gas separation membrane unit 12 are connected in series. Specifically, the first gas separation membrane unit 11 and the second gas separation membrane unit 12 are separated from the impermeable gas outlet 11b of the first gas separation membrane unit 11 and the gas inlet of the second gas separation membrane unit 12. 12a are connected by a first impermeable gas discharge line 14. As shown in FIG.
  • a supply gas line 6 for supplying regeneration gas to the first gas separation membrane unit 11 and the second gas separation membrane unit 12 is connected.
  • a compressing means 21 is interposed in the middle of the supply gas line 6 .
  • the compressing means 21 is installed for the purpose of compressing the raw material mixed gas supplied from the gas source and the permeating gas returned from the second gas separation membrane unit 12, and compressing the regeneration gas.
  • the compression means 21 the same means as have been used so far in the relevant technical field can be used.
  • a compressor compressor
  • raw material mixed gas in this specification means the target gas for gas separation supplied to the gas separation membrane system.
  • the raw material mixed gas is supplied to the separation membrane module 40 in a state of being compressed by a compressor or the like.
  • raw material mixed gases containing two or more kinds of gases include air, biogas, natural gas, by-product gas and exhaust gas from petrochemical plants, various thermal decomposition gases, and the like.
  • the two or more gases contained in the raw material mixed gas include H 2 , He, CO, CO 2 , O 2 , N 2 , H 2 O, H 2 S, organic vapor, CH 4 , C 2 H 6 and ethanol.
  • the composition of the raw material mixed gas after being introduced into the gas separation membrane system may change depending on whether or not it permeates the gas separation membrane.
  • the term "separation target gas” may be used for the raw material mixed gas whose composition has changed due to permeation or non-permeation of the gas separation membrane.
  • the types of the raw material mixed gas and the separation membrane module are not limited, for example, the separation membrane module 40 to which the raw material mixed gas is supplied has a higher permeation rate of carbon dioxide (CO 2 ) than that of methane (CH 4 ). and a gas containing CH 4 and CO 2 as the raw material mixed gas ; and a gas containing N 2 and O 2 as the raw material mixed gas.
  • Raw material mixed gases containing CH 4 and CO 2 include biogas, landfill gas and natural gas.
  • air is mentioned as raw material mixed gas containing N2 and O2 .
  • biogas is a gas that is generated when a biomass raw material is brought into contact with microorganisms under anaerobic conditions and fermentation such as methane fermentation is performed by the microorganisms.
  • Biomass raw materials include organic matter such as food waste, agricultural residue, sewage sludge, and livestock waste.
  • Landfill gas refers to gas generated by microbial decomposition of organic matter in waste landfill sites. Biogas and landfill gas are typically composed primarily of methane and carbon dioxide.
  • Impurities in the present embodiment include moisture and dust contained in the raw material mixed gas, high boiling point components, oil and oil mist mixed from the compressor, and the like. Impurities are usually organic. Examples of organic impurities include aliphatic hydrocarbons, aromatic hydrocarbons, sulfur-containing compounds, silicon-containing compounds, ketones, esters, and fatty acids. These may be substituted with halogen such as chlorine. For example, in a separation membrane module in which biogas or landfill gas is supplied as a raw material mixed gas, hydrocarbons having 3 or more carbon atoms can be mentioned, and specific examples include acetone, 4-methyl-2-pentanone, and the like.
  • ketones higher fatty acids such as palmitic acid and salts and esters thereof; saturated or unsaturated aliphatic alcohols such as 2-methyl-3-buten-2-ol; aromatics such as toluene, benzene, ethylbenzene, dimethylbenzene, and cymene long-chain or branched-chain or cyclic alkanes such as hexane, cyclohexane, n-octane, n-nonane, 2,2,4-trimethylpentane (isooctane); thiolenes, thiols, thioethers, 3- Thiophenes such as methylthiophene, sulfur-containing compounds such as thioalkanes such as 1-methylthiopropane; heterocycle-containing compounds; 2,6-dimethyl-4-octene, 2,6-dimethyl-1,7-diotadiene, 3,7 - long-chain or branched uns
  • compressor oil mist short-chain, long-chain or branched alkanes; short-chain, long-chain or branched-chain or Cyclic alcohols; short, long, branched, or aromatic cyclic esters; short, long, or branched organic acids; short, long, or branched ketones; aromatic hydrocarbons. These may be substituted with halogen or the like.
  • the forms in which these adhere to the hollow fiber membrane 20 include condensing or adsorbing on the surface of the hollow fiber membrane 20 or inside the membrane.
  • a heating means 61 is interposed in the middle of the supply gas line 6 .
  • the heating means 61 is mainly arranged to heat the regeneration gas and supply it to the first gas separation membrane unit 11 and the second gas separation membrane unit 12 .
  • the heating means 61 may be used to bring the gas supplied to the first gas separation membrane unit 11 to a predetermined temperature during operation for gas separation. It is preferable that the heating means 61 be arranged on the first gas separation membrane unit 11 side of the compression means 21 in order to facilitate temperature control of the gas supplied to the first gas separation membrane unit 11 .
  • the same means as have been used in the relevant technical field can be used. For example, a heater using electricity, gas, or the like as a heat source can be used.
  • the permeated gas discharge port 12 c is connected to the suction side of the compression means 21 in the supply gas line 6 by the second permeated gas return line 17 .
  • a second impermeable gas discharge line 18 is connected to the impermeable gas discharge port 12 b of the second gas separation membrane unit 12 .
  • a first permeated gas discharge line 19 is connected to the permeated gas discharge port 11 c of the first gas separation membrane unit 11 .
  • a raw material mixed gas to be separated is supplied from a mixed gas source (not shown) through a supply gas line 6 to the first gas separation membrane unit 11 . Prior to supply, the mixed gas is pressurized by compression means 21 to increase its pressure.
  • the raw material mixed gas is two different types of gases to be separated, which are the gas A having a high permeation rate through the gas separation membrane and the permeation through the gas separation membrane compared to the gas A. It contains at least the gas B with low polarities.
  • the permeation gas which is the gas that has permeated the gas separation membrane, It is separated into a gas and an impermeable gas, which is the gas that did not permeate the gas separation membrane.
  • the impermeable gas discharged from the first gas separation membrane unit 11 is discharged from the impermeable gas discharge port 11b of the first gas separation membrane unit 11, and passes through the first impermeable gas discharge line 14 to the second gas separation membrane unit 12. supplied to On the other hand, in the permeated gas from the first gas separation membrane unit 11 , the gas A is more concentrated than the raw material mixed gas, and is taken out of the system through the first permeated gas discharge line 19 .
  • the impermeable gas discharged from the impermeable gas outlet 11 b of the first gas separation membrane unit 11 is introduced into the second gas separation membrane unit 12 .
  • the gas introduced into the second gas separation membrane unit 12 is separated into a permeable gas and an impermeable gas by the same unit 12 .
  • the gas B is further concentrated and enriched compared to the gas introduced into the second gas separation membrane unit 12, and the second impermeable gas discharge line 18 is discharged from the impermeable gas discharge port 12b of the same unit 12. It is taken out of the system through On the other hand, the permeated gas is discharged from the permeated gas outlet 12c of the second gas separation membrane unit 12 and is compressed in the supply gas line 6 via the second permeated gas return line 17 connected to the outlet 12c. It is fed back to the suction side of means 21 . The returned permeated gas is pressurized by the compression means 21 after being mixed with the raw material mixed gas.
  • the organic impurities in the raw material mixed gas adhere to the first gas separation membrane unit 11 and the second gas separation membrane unit 12, so that the first gas separation membrane unit 11 and the second gas
  • the gas permeation performance of the separation membrane unit 12 is lowered.
  • the first gas separation membrane unit 11 and the second gas separation membrane unit 12 are Organic impurities are volatilized and removed from the unit 12 to restore the permeation performance.
  • FIG. 1(b) shows the flow path of regeneration gas during regeneration of the gas separation membrane in the gas separation membrane system 10 shown in FIG.
  • the regeneration gas may be the same as the raw material mixed gas, or may be different.
  • Examples of regenerative gases include biogas, landfill gas, air, nitrogen, and natural gas. It is preferable to use nitrogen, air, and a raw material mixed gas during operation for gas separation as the regeneration gas, particularly from the viewpoint of ease of procurement of the regeneration gas.
  • the gas separation membrane of the first gas separation membrane unit 11 is a polyimide membrane having a separation selectivity P'O2 / P'N2 at 40°C of 4 to 8, particularly preferably 5 to 7,
  • P'O2 / P'N2 separation selectivity
  • an appropriate amount of regeneration gas permeates the gas separation membrane of the first gas separation membrane unit 11 to remove impurities adhering to the permeation side of the gas separation membrane of the same unit 11, while separating the second gas.
  • This is preferable in that a sufficient amount of impermeable gas can be reliably sent to the membrane unit 12 to increase the regeneration efficiency of the second gas separation membrane unit 12 .
  • the gas separation membranes constituting the second gas separation membrane unit 12 have a P'O2 / P'N2 ratio of 4 to 8 at 40°C.
  • the examples described later use polyimide membranes having separation selectivities within these ranges.
  • the above P′ is the permeation rate, which is the permeation volume per unit membrane area, unit time, and unit partial pressure difference with respect to the membrane of gas, and the unit is ( ⁇ 10 ⁇ 5 cm 3 (STP)/cm 2 ⁇ sec ⁇ cmHg).
  • STP permeation volume per unit membrane area, unit time, and unit partial pressure difference with respect to the membrane of gas
  • not using the permeated gas of another module as the regeneration gas here means that the regeneration gas is first circulated in the gas separation membrane system, and another module outside the gas separation membrane system is used. This means that no permeating gas is used. For this reason, "not using the permeated gas from another module as regeneration gas” means that in the system of FIG. allow the case.
  • the regeneration gas is separated into a permeable gas and an impermeable gas by the gas separation membrane, so that the gas composition may differ from the beginning of the introduction of the system. It is also preferable that the present regeneration method does not use the permeated gas of the same module in the gas separation membrane system as the regeneration gas.
  • the present invention regenerates a gas separation membrane module while it is placed in a gas separation system.
  • the gas for regeneration of the gas separation membrane introduced into the supply gas line 6 is heated to a temperature higher by 10° C. or more and 80° C. or less than the operating temperature T1 for gas separation using the heating means 61. , the first gas separation membrane unit and the second gas separation membrane unit.
  • the temperature T1 during operation for gas separation here means the separation target gas (here, the mixture of the raw material mixed gas and the return gas) when introduced into the first gas separation membrane unit 11 during the operation for gas separation. gas) temperature.
  • the difference between the gas temperature at the time when the regeneration gas is first introduced into any of the gas separation membrane units 11 to 13 and the above T1 is 10° C. or more. 80°C or less.
  • the gas for regeneration is heated by the heating means 61 to a temperature higher by 10° C. or more and 80° C. or less than the gas temperature T1 during operation (during normal operation) for gas separation. It is introduced into the membrane unit 11 .
  • the temperature of the regeneration gas introduced into the first gas separation membrane unit 11 is also referred to as T2
  • the temperature of the regeneration gas introduced into the second gas separation membrane unit 12 is also referred to as T4.
  • the temperature T2 is the temperature of the regeneration gas at the gas inlet of the first gas separation membrane unit 11 in the embodiments of FIGS.
  • (T2-T1) is more preferably 20°C or higher and 80°C or lower, and particularly preferably 30°C or higher and 80°C or lower.
  • T1 is usually 5°C or higher and 60°C or lower.
  • T2 is preferably 40° C. or higher and 120° C. or lower. The present inventors have found that good regeneration efficiency can be obtained without heating the gas separation membranes themselves by circulating a high-temperature gas in a predetermined gas separation membrane system with two or more stages.
  • the pressure of the regeneration gas supplied to the first gas separation membrane unit 11 is a pressure for reliably circulating the regeneration gas to the first gas separation membrane unit and the second gas separation membrane unit.
  • 0.2 MPaG or more and 1.4 MPaG or less is more preferable, and 0.3 MPaG or more and 1.2 MPaG or less is still more preferable, for the reason of securing and preventing an increase in energy accompanying high pressure.
  • the supply pressure in the second gas separation membrane unit 12 may be in the same range (the same applies to other embodiments hereinafter).
  • the gas supply amount S2 to the unit into which the regeneration gas flows second is the unit into which the regeneration gas flows first (in this embodiment, the first unit).
  • the ratio S2/S1 to the gas supply amount S1 to the gas separation membrane unit 11) is 10% or more in terms of enhancing the effect of simultaneously regenerating the first gas separation membrane unit 11 and the second gas separation membrane unit 12. It is preferably 20% or more, more preferably 30% or more. Also, the S2/S1 ratio may be 95% or less, or 90% or less.
  • the gas return amount S4 of the permeating gas of the second gas separation membrane unit 12 to the first gas separation membrane unit 11 has a ratio S4/S2 to the gas supply amount S2 to the second gas separation membrane unit 12. It is preferably 90% or less, more preferably 80% or less, from the viewpoint of suppressing the load on the compression means 21 and the like due to the return gas.
  • the S4/S2 ratio may be 0%, but when the permeating gas of the second gas separation membrane unit 12 is returned to the first gas separation membrane unit 11, it may be 10% or more, or 20% or more. good too.
  • the gas supply pressure G2 to the unit into which the regeneration gas flows second (the second gas separation membrane unit 12 in this embodiment) is the same as the unit into which the regeneration gas flows first.
  • the ratio G2/G1 to the gas supply pressure G1 to (in this embodiment, the first gas separation membrane unit 11) is 10% or more. It is preferable from the point of enhancing the effect of regeneration, more preferably 20% or more, and even more preferably 50% or more. G2/G1 may be 95% or less, or 90% or less.
  • the amount of gas supplied to the unit into which the regeneration gas flows first among the units 11 to 13 is the first gas separation membrane unit 11 and the second gas separation membrane unit 11. From the viewpoint of enhancing the effect of simultaneously regenerating the gas separation membrane unit 12, it is preferably 10% or more, more preferably 20% or more, of the normal operation.
  • the reproduction time in this method is preferably 10 minutes or longer, and more preferably 20 minutes or longer.
  • the regeneration gas heated by the heating means 61 can be immediately circulated to the first gas separation membrane unit 11, and the gas separation membrane of the first gas separation membrane unit 11 is heated.
  • the organic impurities adhering to the gas separation membrane are volatilized. Some of the volatilized organic impurities are difficult to permeate the gas separation membrane system. Therefore, a certain proportion of the organic impurity volatiles adhering to the gas separation membranes of the first gas separation membrane unit 11 is introduced into the second gas separation membrane unit 12 along with the impermeable gas.
  • the gas separation membrane of the second gas separation membrane unit 12 In order to prevent the impermeable gas discharged from the first gas separation membrane unit 11 from contacting the gas separation membrane of the second gas separation membrane unit 12 and condensing, the gas separation membrane of the second gas separation membrane unit 12 Although the impermeable gas of the first gas separation membrane unit 11 may be introduced into the second gas separation membrane unit 12 in a heated state, in the present invention, the permeability of the gas separation membrane is improved without such preheating of the separation membrane. recovery is possible.
  • the permeated gas is taken out from the permeated gas discharge line 19 of the first gas separation membrane unit 11, and the permeated gas of the second gas separation membrane unit 12 is sent through the second permeated gas return line 17 to the supply gas line 6. is returned to A filter (not shown) using activated carbon or the like is interposed between the second permeated gas return line 17 and the confluence point of the compression means 21 and the line 17 in the supply gas line 6, or between the compression means 21 and the heating means 61.
  • the temperature T4 of the regeneration gas when introduced into the second gas separation membrane unit 12 is the same as that of the second gas separation membrane unit during operation for gas separation (during normal operation).
  • the difference (T4-T3) from the temperature T3 of the gas to be separated introduced into the 12 gas inlets is preferably 20°C or higher and 80°C or lower, more preferably 30°C or higher and 80°C or lower.
  • T3 is usually preferably 5°C or higher and 60°C or lower, and T4 is preferably 40°C or higher and 120°C or lower.
  • T4 is the temperature of the regeneration gas when it is introduced into the gas inlet of the second gas separation membrane unit 12 .
  • the temperature T4 of the regeneration gas when introduced into the gas inlet of the second gas separation membrane unit 12 is equal to that at the gas inlet of the first gas separation membrane unit 11 during operation for gas separation (during normal operation).
  • the difference (T4-T1) between the temperature T1 of the separation target gas introduced and the difference (T2-T3) between the temperatures T3 and T2 of the separation target gas introduced into the gas inlet of the second gas separation membrane unit 12 are also The temperature is preferably 20° C. or higher and 80° C. or lower, and more preferably 30° C. or higher and 80° C. or lower.
  • FIG. 3 the same reference numerals are assigned to the same configurations as those shown in FIG. In the embodiment of FIG. 3, differences from the embodiment of FIG. 1 will be mainly described, and descriptions of the same points as those of FIG. 1 will be omitted.
  • a second permeated gas discharge line 22 branched from the second permeated gas return line 17 is provided so that when the regeneration gas is introduced into the second gas separation membrane unit 12, the second gas separation membrane The permeated gas from the unit 12 is discharged out of the system through the second permeated gas discharge line 22 without returning to the supply gas line 6 .
  • the second permeated gas discharge line 22 is located at a position 22a in the second permeated gas return line 17 from the permeated gas discharge port 12c to the supply gas line 6 (hereinafter also referred to as a "branch point"). ) is a branch line branching from This is preferable because it facilitates switching of the flow path of the permeated gas discharged from the second gas separation membrane unit 12 . During operation for gas separation, the gas in the second permeated gas return line 17 does not flow into the second permeated gas discharge line 22 (FIG.
  • the second permeated gas return line 17 and the second The permeated gas discharge line 22 is conducted so that the permeated gas discharged from the second gas separation membrane unit 12 is introduced into the second permeated gas discharge line 22 at a branch point 22a.
  • all the permeated gas discharged from the second gas separation membrane unit 12 is introduced into the second permeated gas discharge line 22 .
  • Such switching is performed using a valve (not shown) at the branch point 22a.
  • the second permeated gas discharge line 22 connects the outside of the system and the middle position of the second permeated gas return line 17 . In this specification, all means no intentional exceptions, and the intention is that unavoidable exceptions are permitted.
  • the permeated gas from the second gas separation membrane unit 12 does not flow through the second permeated gas discharge line 22 during operation for gas separation as shown in FIG. It is returned to the feed gas line 6 through the return line 17 .
  • the flow path of the gas to be separated during operation for gas separation is the same as in the embodiment of FIG.
  • the permeated gas from the second gas separation membrane unit 12 is discharged from the second permeated gas discharge line 22 without returning to the supply gas line 6. It is designed to be discharged outside the system.
  • the gas separation membrane when the gas separation membrane is regenerated, it volatilizes from the state attached to the gas separation membrane of the second gas separation membrane unit 12 and is contained in the permeated gas of the second gas separation membrane unit 12.
  • the organic impurities that have become solidified can be immediately removed out of the system through the second permeated gas discharge line 22 without returning to the supply gas line 6 . Therefore, in this embodiment, the first gas separation membrane unit 11 and the second gas separation membrane unit 12 are more efficiently operated while reducing the regeneration time, the compressor power required for regeneration, etc., as compared with the embodiment of FIG. It is preferable in that it is possible to regenerate the gas separation membrane in.
  • the advantage of adopting the line 22 increases.
  • the organic impurities are contained in the permeating gas of the gas separation membrane of the second gas separation membrane unit 12 or in the impermeable gas depends on the type of raw material mixed gas during operation for gas separation and the regeneration gas. type, the temperature of the regeneration gas, and the type of impurities.
  • a regeneration gas having a line 22 as shown in FIG. 3 there is a high tendency for organic impurities to be contained in the gas permeating the gas separation membrane of the second gas separation membrane unit 12 during regeneration.
  • the pressure of the regeneration gas supplied to the first gas separation membrane unit 11 is set to ensure the circulation of the regeneration gas to the first gas separation membrane unit and the second gas separation membrane unit.
  • it is more preferably 0.2 MPaG or more and 1.4 MPaG or less, and still more preferably 0.3 MPaG or more and 1.2 MPaG or less.
  • FIG. 4 the form shown in FIG. 4 can also be used.
  • the same reference numerals are assigned to the same configurations as those shown in FIG.
  • differences from the embodiments of FIGS. 1 and 3 will be mainly described, and description of the same points as those of the embodiments of FIGS. 1 and 3 will be omitted.
  • the embodiment of FIG. 4 has a first bypass line 23 and a first inlet gas discharge line 24 in addition to the second permeated gas discharge line 22 described above.
  • the first bypass line 23 connects the position of the heating means 61 in the supply gas line 6 on the first gas separation membrane unit 11 side and the second impermeable gas discharge line 18 .
  • the first inlet gas discharge line 24 branches off from the supply gas line 6 on the first gas separation membrane unit 11 side of the connection point 23 a of the first bypass line 23 of the supply gas line 6 .
  • the first inlet gas discharge line 24 is a line that connects the outside of the system and the supply gas line 6 .
  • the gas from the supply gas line 6 flows into the first inlet during normal operation. Although it does not flow into the gas discharge line 24 (FIG. 4(a)), gas is introduced into the first inlet gas discharge line 24 from the first gas separation membrane unit 11 side of the connection point 24a in the supply gas line 6 during regeneration. , gas is prevented from flowing from the branch point 24a of the supply gas line 6 to the connection point 23a.
  • This switching of the gas flow path is performed by a valve (not shown) arranged at a branch point 24 a of the first inlet gas discharge line 24 from the supply gas line 6 .
  • the gas to be separated passes through the same gas flow path as in FIGS. 1 and 3 during normal operation.
  • the gas to be separated that flows through the supply gas line 6 and is pressurized by the compression means 21 is introduced into the first gas separation membrane unit 11 without passing through the first bypass line 23 .
  • the regeneration gas that flows through the supply gas line 6 and is pressurized by the compression means 21 is heated by the heating means 61 and flows through the first bypass line.
  • normal operation is performed in the line 18 from the connection point 23b via the connection point 23b with the first bypass line 23 in the second impermeable gas discharge line 18. It flows in the reverse direction and is introduced into the second gas separation membrane unit 12 from the impermeable gas discharge port 12b.
  • the gas that has permeated the gas separation membrane is discharged from the permeable gas outlet 12c, and the impermeable gas is discharged from the gas inlet 12a. be done.
  • the impermeable gas discharged from the gas inlet 12 a of the second gas separation membrane unit 12 is introduced into the first gas separation membrane unit 11 from the impermeable gas discharge port 11 b through the first impermeable gas discharge line 14 .
  • the permeable gas is taken out of the system through the permeable gas outlet 11c and the first permeable gas discharge line 19.
  • the impermeable gas is discharged from the gas inlet 11a of the first gas separation membrane unit.
  • the impermeable gas (regenerating gas) discharged from the gas inlet 11a of the first gas separation membrane unit is introduced into the first inlet gas discharge line 24 branched from the supply gas line 6, and the first inlet gas is discharged. It circulates through the line 24 and is discharged outside the system.
  • the gas is discharged from the first gas separation membrane unit 11 during regeneration. It is possible to easily prevent the impurities removed from adhering to the gas separation membrane of the second gas separation membrane unit 12, which has a relatively low degree of contamination, and the second impermeable gas discharge line 18 is the product during normal operation.
  • a downstream system such as a gas supply system
  • the temperature T4 of the regeneration gas introduced into the second gas separation membrane unit 12 the temperature T4' of the regeneration gas introduced into the impermeable gas outlet of the second gas separation membrane unit 12 is employed.
  • the pressure of the regeneration gas supplied to the second gas separation membrane unit 12 is a pressure for reliably circulating the regeneration gas to the first gas separation membrane unit and the second gas separation membrane unit. 0.2 MPaG or more and 1.4 MPaG or less is more preferable, and 0.3 MPaG or more and 1.2 MPaG or less is still more preferable, for the reason of securing and preventing an increase in energy accompanying high pressure.
  • FIG. 5 instead of the forms shown in FIGS. 1, 3 and 4, the form shown in FIG. 5 may be employed.
  • FIG. 5 the same reference numerals are assigned to the same configurations as those shown in FIG. In the embodiment of FIG. 5, differences from the embodiments of FIGS. 1, 3, and 4 will be mainly described, and descriptions of the same points as those of the embodiments of FIGS. 1, 3, and 4 will be omitted.
  • the embodiment of FIG. 5 includes a second bypass line 25 connecting the first bypass line 23 and the first impermeable gas discharge line 14, and A second inlet gas discharge line 28 branches off from the first impermeable gas discharge line 14 .
  • the second bypass line 25 is positioned between the two connection points 23a and 23b in the first bypass line 23 and between the discharge port 11b and the gas inlet 12a in the first impermeable gas discharge line 14. position (discharge port 11b side of connection point 28a).
  • first impermeable gas discharge line 14 at a connection point 25a between the line 14 and the second bypass line 25, gas is conducted between the first impermeable gas discharge line 14 and the second bypass line 25 during normal operation.
  • the gas from the second bypass line 25 flows from the connecting point 25a with the first impermeable gas discharge line 14 to the impermeable gas discharge port 11b in the line 14. It can be introduced into the first gas separation membrane unit 11 through the passage.
  • This switching of the gas flow path is performed by a valve (not shown) arranged at the connection point 25a.
  • the gas to be separated passes through the same gas flow paths as in FIGS. 1, 3 and 4 during normal operation. That is, the gas to be separated that flows through the supply gas line 6 and is pressurized by the compression means 21 is introduced into the first gas separation membrane unit 11 without passing through the first bypass line 23 and the second bypass line 25. has been made.
  • the regeneration gas that flows through the supply gas line 6 and is pressurized by the compression means 21 is heated by the heating means, and flows through the first bypass line 23 and the regeneration gas. It is introduced into the second bypass line 25 and introduced into the second gas separation membrane unit 12 from the impermeable gas outlet 12b through the first bypass line 23 in the same manner as in the embodiment of FIG. 1, the impermeable gas discharge line 14 is connected to the impermeable gas discharge port 11b and introduced into the first gas separation membrane unit 11 .
  • the gas that has permeated the gas separation membrane is discharged from the permeable gas outlet 12c, and the impermeable gas is discharged from the gas inlet 12a. be done.
  • the impermeable gas discharged from the gas inlet 12 a of the second gas separation membrane unit 12 is taken out of the system through the second inlet gas discharge line 28 .
  • the gas that has permeated the gas separation membrane passes through the permeable gas outlet 11c and the first permeable gas in the same manner as in the embodiment of FIG.
  • the gas is discharged out of the system through the gas discharge line 19 .
  • the impermeable gas (regeneration gas) discharged from the gas inlet of the first gas separation membrane unit flows through the first inlet gas discharge line 24 branched from the supply gas line 6 and is discharged outside the system. It is designed to
  • the regeneration gas can be circulated through the impermeable gas circulation path independently of each of the first gas separation membrane unit 11 and the second gas separation membrane unit 12. 2
  • the regeneration gas flow rate suitable for each configuration can be easily set.
  • Adopting this embodiment is also preferable in that the pressure loss of the regeneration gas can be reduced by shortening the flow path length of the regeneration gas, that is, the compression power of the regeneration gas can be suppressed.
  • the temperature T2' of the regeneration gas at the impermeable gas outlet of the first gas separation membrane unit 11 is used as T2, and the impermeable gas outlet of the second gas separation membrane unit 12 is used as T4. adopt the temperature T4' of the regeneration gas at .
  • the difference between T2' or T4' and T1 may be the range of T2-T1 described in the embodiment of FIG. 1, and both are within the above range. is preferred.
  • the pressure of the regeneration gas supplied to the first gas separation membrane unit 11 is more preferably 0.1 MPaG or more and 1.4 MPaG or less, and still more preferably 0.2 MPaG or more and 1.2 MPaG or less.
  • the pressure of the regeneration gas supplied to the second gas separation membrane unit 12 ensures the pressure for reliably circulating the regeneration gas to the second gas separation membrane unit 12, while maintaining a high pressure.
  • 0.1 MPaG or more and 1.4 MPaG or less is more preferable, and 0.2 MPaG or more and 1.2 MPaG or less is even more preferable, for the reason of preventing an increase in energy associated with quenching.
  • FIG. 6 we will explain the three-stage gas separation system.
  • FIG. 6 the same components as those shown in FIG. 1 are denoted by the same reference numerals.
  • FIG. 6 differences from FIG. 1 will be mainly described, and descriptions of the same points as those of the embodiment of FIG. 1 will be omitted.
  • the description of the configuration with the same reference numerals before FIG. 5 can be appropriately applied to this embodiment.
  • the first gas separation membrane unit 11 and the third gas separation membrane unit 13 are connected in series.
  • the first gas separation membrane unit 11 and the third gas separation membrane unit 13 are configured such that the permeated gas outlet 11c of the first gas separation membrane unit 11 and the gas inlet 13a of the third gas separation membrane unit 13 are connected by the first permeated gas discharge line 19 .
  • the gas separation membrane module constituting the third gas separation membrane unit 13 the same modules as those of the first gas separation membrane unit 11 and the second gas separation membrane unit 12 can be adopted.
  • the compression means 21 pressurizes the raw material mixed gas supplied from the gas source, the permeable gas returned from the second gas separation membrane unit 12 and the impermeable gas returned from the third gas separation membrane unit 13, and compresses the regeneration gas. It is installed for the purpose of pressurizing.
  • the impermeable gas discharge port 13b is connected to the suction side of the compression means 21 in the supply gas line 6 by the third impermeable gas return line 73.
  • a third permeated gas discharge line 72 is connected to the permeated gas discharge port 13 c of the third gas separation membrane unit 13 .
  • a raw material mixed gas to be separated is supplied from a mixed gas source (not shown) through a supply gas line 6 to the first gas separation membrane unit 11 . Prior to supply, the raw material mixed gas is pressurized by the compression means 21 to increase the pressure.
  • the raw material mixed gas contains at least two different types of gases to be separated: a gas A having a high permeation rate through the gas separation membrane and a gas B having a lower permeability through the gas separation membrane than the gas A. .
  • gas A having a high permeation rate through the gas separation membrane
  • gas B having a lower permeability through the gas separation membrane than the gas A.
  • the impermeable gas discharged from the first gas separation membrane unit 11 is discharged from the impermeable gas discharge port 11b of the first gas separation membrane unit 11, and passes through the first impermeable gas discharge line 14 to the second gas separation membrane unit 12. supplied to On the other hand, in the permeated gas from the first gas separation membrane unit 11, the gas A is concentrated compared to the mixed gas as the raw material, and is discharged from the permeated gas outlet 11c of the first gas separation membrane unit 11, and the first permeated gas It is supplied to the third gas separation membrane unit 13 through the discharge line 19 .
  • the gas introduced into the second gas separation membrane unit 12 is separated into a permeable gas and an impermeable gas by the same unit 12 .
  • the gas B is further concentrated and enriched compared to the gas introduced into the second gas separation membrane unit 12, and the second impermeable gas discharge line 18 is discharged from the impermeable gas discharge port 12b of the same unit 12. It is taken out of the system through On the other hand, the permeated gas is discharged from the permeated gas outlet 12c of the second gas separation membrane unit 12 and is compressed in the supply gas line 6 via the second permeated gas return line 17 connected to the outlet 12c. It is fed back to the suction side of means 21 . Also, the gas introduced into the third gas separation membrane unit 13 is separated into a permeable gas and an impermeable gas by the same unit 13 .
  • the gas A is more concentrated and enriched than the gas introduced into the third gas separation membrane unit 13, and the system is discharged from the permeated gas outlet 13c of the unit 13 through the third permeated gas discharge line 72. taken outside.
  • the impermeable gas is discharged from the impermeable gas discharge port 13b of the third gas separation membrane unit 13, and passes through the third impermeable gas return line 73 connected to the discharge port 13b to the supply gas line. 6 is fed back to the suction side of the compression means 21 .
  • the permeable gas and impermeable gas returned through lines 17 and 73 are mixed with the raw material mixed gas and then compressed by compression means 21 .
  • the organic impurities in the raw material mixed gas adhere to the first gas separation membrane unit 11, the second gas separation membrane unit 12, and the third gas separation membrane unit 13, so that the first gas The gas permeation performance of the separation membrane unit 11, the second gas separation membrane unit 12 and the third gas separation membrane unit 13 is lowered.
  • the decrease in permeation performance is generally greater in the order of the first gas separation membrane unit 11, the second gas separation membrane unit 12, and the third gas separation membrane unit 13.
  • the regeneration gas is heated by the heating means 61 and circulated to at least the first gas separation membrane unit 11 and the second gas separation membrane unit 12, and if necessary, the third gas separation membrane unit 13. , the organic impurities are volatilized and removed from the gas separation membrane unit through which the regeneration gas is circulated, and the permeation performance is recovered.
  • FIG. 6(b) shows the flow path of the regeneration gas in the gas separation membrane system 110 shown in FIG. As shown in FIGS. 6(a) and 6(b), in the gas separation membrane system 110 shown in FIG. It is similar to the gas flow path of gas.
  • the regeneration gas has been described above.
  • the gas separation membrane constituting the third gas separation membrane unit 13 preferably has a P'O2 / P'N2 ratio of 4 to 8 at 40°C, for example.
  • the examples described later use polyimide membranes having separation selectivities within these ranges.
  • the pressure of the regeneration gas supplied to the first gas separation membrane unit 11 is such that the regeneration gas is supplied to the first gas separation membrane unit, the second gas separation membrane unit, and the third gas separation membrane unit.
  • it is more preferably 0.3 MPaG or more and 1.4 MPaG or less, and even more preferably 0.4 MPaG or more and 1.3 MPaG or less.
  • the preferred range of the regeneration gas supply pressure in the second gas separation membrane unit 12 is the same as in the first gas separation membrane unit 11 .
  • the supply pressure of the regeneration gas in the third gas separation membrane unit 13 is more preferably 0.1 MPaG or more and 0.7 MPaG or less, and further preferably 0.2 MPaG or more and 0.5 MPaG or less.
  • the ratio S2/S1 of the gas supply amount S2 to the second gas separation membrane unit 12 to the gas supply amount S1 to the first gas separation membrane unit 11 is 10% or more. It is preferable in terms of enhancing the effect of simultaneously regenerating the unit 11 to the third gas separation membrane unit 13, more preferably 20% or more, and even more preferably 30% or more. Also, the S2/S1 ratio may be 95% or less, or 90% or less.
  • the ratio S3/S1 of the gas supply amount S3 to the third gas separation membrane unit 13 to the gas supply amount S1 to the first gas separation membrane unit 11 is 5% or more. It is preferable in terms of enhancing the effect of simultaneously regenerating the unit 11 to the third gas separation membrane unit 13, and more preferably 10% or more.
  • S3/S1 may be 90% or less, or 80% or less.
  • the ratio S4/S2 of the amount S4 of the gas supplied to the second gas separation membrane unit 12 and returned to the first gas separation membrane unit 11 as the permeating gas of the second gas separation membrane unit 12 is 90%. It is preferably 80% or less in terms of suppressing the load on the compression means 21 and the like due to the return gas.
  • the S4/S2 ratio may be 0%, but when the permeating gas of the second gas separation membrane unit 12 is returned to the first gas separation membrane unit 11, it may be 10% or more, or 20% or more.
  • the ratio S5/S3 of the amount S5 of the gas supplied to the third gas separation membrane unit 13 and returned to the first gas separation membrane unit 11 as the impermeable gas of the third gas separation membrane unit 13 is 90. % or less is preferable from the point of suppressing the load on the compression means 21 or the like due to the return gas, and 80% or less is more preferable. Also, the ratio of S5/S3 may be 5% or more, or 10% or more.
  • the amount of gas supplied to the unit into which the regeneration gas first flows is the first gas separation membrane unit 11 to the third gas separation membrane unit 13. From the viewpoint of enhancing the effect of simultaneous regeneration, it is preferably 10% or more, more preferably 20% or more, of the normal operation.
  • the ratio G2/G1 of the gas supply pressure G2 to the second gas separation membrane unit 12 to the gas supply pressure G1 to the first gas separation membrane unit 11 is 10% or more. is preferable from the point of enhancing the effect of simultaneously regenerating the first gas separation membrane unit 11 to the third gas separation membrane unit 13, more preferably 20% or more, and even more preferably 50% or more.
  • G2/G1 may be 98% or less, or 95% or less.
  • the ratio G3/G1 of the gas supply pressure G3 to the third gas separation membrane unit 13 to the gas supply pressure G1 to the first gas separation membrane unit 11 is 10% or more. It is preferable in terms of enhancing the effect of simultaneously regenerating the membrane unit 11 to the third gas separation membrane unit 13, and more preferably 20% or more. G3/G1 may be 50% or less, or 40% or less.
  • the playback time in this method is preferably 10 minutes or longer, and more preferably 20 minutes or longer.
  • the regeneration gas heated by the heating means 61 can immediately flow into the first gas separation membrane unit 11, and the gas separation membranes of the first gas separation membrane unit 11 can be heated.
  • the organic impurities adhering to the gas separation membrane are volatilized by contacting the regeneration gas.
  • the volatilized organic impurities there are some that are difficult to permeate through the gas separation membrane. Therefore, a certain proportion of the organic impurity volatiles adhering to the gas separation membranes of the first gas separation membrane unit 11 is introduced into the second gas separation membrane unit 12 along with the impermeable gas.
  • the impermeable gas containing organic impurity volatiles discharged from the first gas separation membrane unit 11 contacts the gas separation membrane of the second gas separation membrane unit 12 in a heated state, and the second gas separation membrane unit 12 volatilize the organic impurities adhering to the gas separation membrane.
  • a certain amount of these organic impurities are accompanied by the impermeable gas in the second gas separation membrane unit 12 and are removed through the second impermeable gas discharge line 18 .
  • organic impurities adhering to the gas separation membranes of the second gas separation membrane unit 12 may volatilize and be included in the permeated gas of the second gas separation membrane unit 12 .
  • the heated regeneration gas is introduced into the third gas separation membrane unit 13 as the permeating gas of the first gas separation membrane unit 11, and in a heated state, contacts the gas separation membranes of the third gas separation membrane unit 13, Organic impurities adhering to the gas separation membranes of the third gas separation membrane unit 13 are volatilized. A certain amount of organic impurities are accompanied by the permeated gas of the third gas separation membrane unit 13 and removed through the third permeated gas discharge line 72 . Also, organic impurities adhering to the gas separation membranes of the third gas separation membrane unit 13 may volatilize and be included in the impermeable gas of the third gas separation membrane unit 13 .
  • the regeneration gas from the first gas separation membrane unit 11 is supplied to the second gas separation membrane unit 12 and/or the third although it may be introduced into the gas separation membrane unit 13, the present invention allows restoration of the permeability of the gas separation membrane without such preheating of the separation membrane.
  • a filter or the like (not shown) is provided in the first impermeable gas discharge line 14 and/or the first permeable gas discharge line 19 to regenerate volatile organic impurities adhering to the gas separation membranes of the first gas separation membrane unit 11.
  • the gas for regeneration may be removed from the gas for regeneration, and the treated gas for regeneration may be supplied to the second gas separation membrane unit 12 and/or the third gas separation membrane unit 13 .
  • a filter (not shown) is provided in the return lines 17 and 73 so that the permeating gas of the second gas separation membrane unit 12 and the non-permeating gas of the third gas separation membrane unit 13 are removed from these gases before returning to the supply gas line 6.
  • Organic impurities may be removed.
  • the separation membranes of the first gas separation membrane unit 11, the second gas separation membrane unit 12, and the third gas separation membrane unit 13 can be regenerated without installing a regeneration line. It is possible to plan
  • the temperature T6 of the regeneration gas when introduced into the third gas separation membrane unit 13 is the same as that of the third gas separation membrane unit during operation for gas separation (during normal operation).
  • the difference (T6-T5) from the temperature T5 of the gas to be separated introduced into the gas inlet 13 is preferably 20°C or higher and 80°C or lower, more preferably 30°C or higher and 80°C or lower.
  • T5 is usually preferably 5°C or higher and 60°C or lower, and T6 is preferably 40°C or higher and 120°C or lower.
  • T6-T1, T6-T3, T2-T5, and T4-T5 are each preferably 20° C. or higher and 80° C. or lower, and more preferably 30° C. or higher and 80° C. or lower.
  • T6 is the temperature T6 of the regeneration gas when it is introduced into the gas inlet of the third gas separation membrane unit 13 .
  • the first gas separation membrane unit, the second gas separation membrane unit, and the third gas separation membrane unit can be removed from the gas separation membrane system. Since the high-temperature gas for regeneration can be shared by the first gas separation membrane unit, the second gas separation membrane unit, and the third gas separation membrane unit compared to the case of regenerating individually, it is necessary to raise the temperature of the regeneration gas. Another advantage is that the amount of heat required by the heating means can be suppressed.
  • FIG. 7 the same reference numerals are assigned to the same configurations as those shown before FIG.
  • differences from the embodiment before FIG. 6 will be mainly described, and description of the same points as in FIG. 6 will be omitted.
  • the description of the configuration with the same reference numerals before FIG. 5 can be appropriately applied to this embodiment.
  • a second permeated gas discharge line 22 branched from the second permeated gas return line 17 is provided, and when the regeneration gas is introduced into the second gas separation membrane unit 12, the second gas separation membrane unit 12
  • the permeated gas discharged from is discharged outside the system through the second permeated gas discharge line 22 without returning to the supply gas line 6, and the third non-permeated gas branched from the third non-permeated gas return line 73
  • a permeated gas discharge line 74 is provided, and the impermeable gas of the third gas separation membrane unit 13 into which the regeneration gas is introduced is discharged out of the system through the third impermeable gas discharge line 74 without returning to the supply gas line 6. It is made to be done.
  • the term "outside the system” means that the gas is taken out without being introduced into any of the first gas separation membrane unit 11, the second gas separation membrane unit 12, and the third gas separation membrane unit 13.
  • the second permeated gas discharge line 22 is located at a position 22a (also referred to as a "branch point 22a") in the second permeated gas return line 17 on the way from the permeated gas discharge port 12c to the supply gas line 6. ) branched from the second permeated gas return line 17 .
  • the gas in the second permeated gas return line 17 does not flow into the second permeated gas discharge line 22 (FIG. 7(a)).
  • the second permeated gas return line 17 and the second permeated gas discharge line 22 are connected at the branch point 22a, and the permeated gas discharged from the second gas separation membrane unit 12 is discharged through the second permeated gas discharge line 22.
  • the second permeated gas discharge line 22 connects the outside of the system and the middle position of the second permeated gas return line 17 .
  • the third impermeable gas discharge line 74 is located at a position 74a (hereinafter referred to as "branch point 74a ”). During operation for gas separation, the gas in the third non-permeable gas return line 73 does not flow into the third non-permeable gas discharge line 74 (Fig. 7(a)).
  • the third impermeable gas return line 73 and the third impermeable gas discharge line 74 are electrically connected, and the impermeable gas discharged from the third gas separation membrane unit 13 is transferred to the third It is introduced into the impermeable gas discharge line 74, and does not flow from the branch point 74a of the third impermeable gas return line 73 to the supply gas line 6 side (FIG. 7(b)).
  • Such switching is performed using a valve (not shown) at the branch point 74a.
  • a third impermeable gas discharge line 74 connects the outside of the system and a midpoint of the third impermeable gas return line 73 .
  • the permeated gas from the second gas separation membrane unit 12 does not flow through the second permeated gas discharge line 22 during operation for gas separation as shown in FIG. It is returned to the feed gas line 6 through the return line 17 .
  • the flow path of the separation target gas during operation for gas separation is the same as in the embodiment of FIG.
  • the permeated gas from the second gas separation membrane unit 12 is discharged outside the system without returning to the supply gas line 6 through the second permeated gas discharge line 22. It is made like this.
  • the impermeable gas from the third gas separation membrane unit 13 does not flow through the third impermeable gas discharge line 74 during operation for gas separation as shown in FIG. It is returned to feed gas line 6 through impermeable gas return line 73 .
  • the impermeable gas from the third gas separation membrane unit 13 does not return to the supply gas line 6 through the third impermeable gas discharge line 74, but exits the system. It is made to be discharged.
  • the organic impurities that have volatilized from the gas separation membranes of the third gas separation membrane unit 13 and are included in the impermeable gas of the third gas separation membrane unit 13 are removed from the supply gas line. 6, it can be immediately removed out of the system through the third impermeable gas discharge line 74.
  • the first gas separation membrane unit 11 and the second gas separation membrane unit 12 are more efficiently operated while reducing the regeneration time, the compressor power required for regeneration, etc., as compared with the embodiment of FIG. And it is preferable in that regeneration of the gas separation membrane in the third gas separation membrane unit 13 can be achieved.
  • the second permeated gas return line 17 and the third non-permeated gas return to the supply gas line 6 and the filter (not shown) interposed between the compression means and the heating means. It is also preferable in terms of reducing the load of the impurity-containing regeneration gas returned via the line 73 .
  • the advantage of adopting the line 22 increases.
  • the organic impurities are contained in the permeating gas of the gas separation membrane of the second gas separation membrane unit 12 or in the impermeable gas depends on the type of raw material mixed gas during operation for gas separation and the regeneration gas. type, the temperature of the regeneration gas, and the type of impurities.
  • a regeneration gas having a line 22 as shown in FIG. 7 there is a high tendency for organic impurities to be contained in the gas permeating the gas separation membrane of the second gas separation membrane unit 12 during regeneration.
  • T5 to T6 are the same as those in the embodiment of FIG.
  • the preferred ranges of T6-T5, T6-T1, T6-T3, T2-T5, and T4-T5 are also the same as in the embodiment of FIG.
  • the pressure of the regeneration gas supplied to the first gas separation membrane unit 11 is the same as the pressure for regeneration to the first gas separation membrane unit, the second gas separation membrane unit, and the third gas separation membrane unit.
  • the pressure is more preferably 0.3 MPaG or more and 1.4 MPaG or less, and further preferably 0.4 MPaG or more and 1.3 MPaG or less.
  • FIG. 8 the form shown in FIG. 8 is also available.
  • the same components as those shown in FIG. 7 are denoted by the same reference numerals.
  • differences from the embodiments of FIGS. 6 and 7 will be mainly described, and descriptions of the same points as those of FIGS. 6 and 7 will be omitted.
  • the description of the configuration with the same reference numerals before FIG. 5 can be appropriately applied to this embodiment.
  • the embodiment of FIG. 8 has a first bypass line 23 and a first inlet gas discharge line 24 in addition to the second permeated gas discharge line 22 described above.
  • the first bypass line 23 connects the position of the heating means 61 in the supply gas line 6 on the first gas separation membrane unit 11 side and the second impermeable gas discharge line 18 .
  • the first inlet gas discharge line 24 branches off from the supply gas line 6 on the first gas separation membrane unit 11 side of the connection point 23 a of the first bypass line 23 of the supply gas line 6 .
  • the first inlet gas discharge line 24 is a line that connects the outside of the system and the supply gas line 6 .
  • FIG. 8(a) during operation for gas separation (during normal operation), from the supply gas line 6, the first bypass line 23 and the first inlet gas discharge line 24 The raw material mixed gas is prevented from flowing into.
  • FIG. 8B during regeneration, the regeneration gas is flowed from the supply gas line 6 into the first bypass line 23, and the supply gas line 6 is located at the first bypass line 23 from the connection point 23a. 1 Gas separation membrane unit 11 side is prevented from flowing gas. This switching of the gas flow path is performed by a valve (not shown) arranged at the connection point 23 a between the first bypass line 23 and the supply gas line 6 .
  • gas does not flow from the supply gas line 6 during normal operation (Fig. 8 ( a))
  • gas is introduced into the first inlet gas discharge line 24 from the first gas separation membrane unit 11 side of the branch point 24a in the supply gas line 6, and is introduced from the branch point 24a in the supply gas line 6 to the branch point 23a. It is made so that gas does not flow to the side.
  • This switching of the gas flow path is performed by a valve (not shown) arranged at a branch point 24 a of the first inlet gas discharge line 24 from the supply gas line 6 .
  • the gas to be separated passes through the same gas flow path as in FIGS. 6 and 7 during normal operation. Therefore, the gas to be separated that flows through the supply gas line 6 and is pressurized by the compression means 21 is introduced into the first gas separation membrane unit 11 without passing through the first bypass line 23 .
  • the regeneration gas that flows through the supply gas line 6 and is pressurized by the compression means 21 is heated by the heating means to the first bypass line 23.
  • the gas during normal operation It circulates in the direction opposite to the direction of flow, and is introduced into the second gas separation membrane unit 12 from the impermeable gas discharge port 12b.
  • the gas that has permeated the gas separation membrane is discharged from the permeable gas outlet 12c, and the impermeable gas is discharged from the gas inlet 12a. be done.
  • the impermeable gas discharged from the gas inlet 12 a of the second gas separation membrane unit 12 is introduced into the first gas separation membrane unit 11 from the impermeable gas discharge port 11 b through the first impermeable gas discharge line 14 .
  • the permeable gas is introduced into the third gas separation membrane unit 13 and thereafter flows in the same manner as in FIG.
  • impermeable gas is discharged from the gas inlet of the first gas separation membrane unit.
  • the impermeable gas (regenerating gas) discharged from the gas inlet 11a of the first gas separation membrane unit is introduced into the first inlet gas discharge line 24 branched from the supply gas line 6, and the first inlet gas is discharged. It circulates through the line 24 and is discharged outside the system.
  • the gas discharged from the first gas separation membrane unit 11 during regeneration It is possible to easily prevent the impurities from adhering to the gas separation membrane of the second gas separation membrane unit 12, which has a relatively low degree of contamination, and the second impermeable gas discharge line 18 is the product gas during normal operation.
  • a downstream system such as a supply system
  • the temperature T2 of the regeneration gas introduced into the first gas separation membrane unit 11 is the temperature T2′ of the regeneration gas introduced into the impermeable gas outlet of the first gas separation membrane unit 11. to adopt.
  • the temperature T4 of the regeneration gas introduced into the second gas separation membrane unit 12 the temperature T4' of the regeneration gas introduced into the impermeable gas outlet of the second gas separation membrane unit 12 is employed.
  • the temperature of the regeneration gas when introduced into the third gas separation membrane unit 13 is the temperature of the regeneration gas when introduced into the gas inlet of the third gas separation membrane unit 13. to adopt.
  • the pressure of the regeneration gas supplied to the second gas separation membrane unit 12 is such that the regeneration gas is supplied to the second gas separation membrane unit, the first gas separation membrane unit, and the third gas separation membrane unit.
  • it is more preferably 0.4 MPaG or more and 1.4 MPaG or less, and still more preferably 0.5 MPaG or more and 1.3 MPaG or less.
  • FIG. 9 the form shown in FIG. 9 may be adopted.
  • the same components as those shown in FIG. 8 are denoted by the same reference numerals.
  • differences from the embodiments of FIGS. 6, 7, and 8 will be mainly described, and descriptions of the same points as those of FIGS. 6, 7, and 8 will be omitted.
  • the description of the configuration with the same reference numerals before FIG. 5 can be appropriately applied to this embodiment.
  • a second bypass line 25 connecting the first bypass line 23 and the first impermeable gas discharge line 14 is provided, and a second inlet gas discharge line branching from the first impermeable gas discharge line 14 is provided. 28.
  • FIG. 9(a) during operation for gas separation (during normal operation), from the first impermeable gas discharge line 14 to the second bypass line 25 and the second inlet Gas is prevented from flowing into the gas discharge line 28 .
  • FIG. 9B in the first impermeable gas discharge line 14 during regeneration, all the gas from the gas inlet 12a is introduced from the connection point 28a to the second inlet gas discharge line 28, and the connection point 28a is not introduced into the impermeable gas discharge port 11b side. This switching of the gas flow path is performed by a valve (not shown) arranged at the connection point 28a.
  • connection point 25a of the first impermeable gas discharge line 14 with the second bypass line 25 gas is not conducted between the first impermeable gas discharge line 14 and the second bypass line 25 during normal operation.
  • FIG. 9(a) gas is not conducted between the first impermeable gas discharge line 14 and the second bypass line 25 during normal operation.
  • the gas from the second bypass line 25 passes through the passage from the connection point 25a of the first non-permeable gas discharge line 14 to the non-permeable gas discharge port 11b to the first gas separation membrane unit. 11 can be introduced.
  • This switching of the gas flow path is performed by a valve (not shown) arranged at the connection point 25a.
  • the regeneration gas that flows through the supply gas line 6 and is pressurized by the compression means 21 is heated by the heating means, and flows through the first bypass line 23 and the regeneration gas. It is introduced into the second bypass line 25 and is introduced into the second gas separation membrane unit 12 through the first bypass line 23 from the non-permeable gas outlet 12b as in the embodiment of FIG. 1 from the connection point 25 a with the impermeable gas discharge line 14 to the impermeable gas discharge port 11 b and introduced into the first gas separation membrane unit 11 .
  • the gas that has permeated the gas separation membrane is discharged from the permeable gas outlet 12c, and the impermeable gas is discharged from the gas inlet. 12a is discharged.
  • the impermeable gas discharged from the gas inlet 12 a of the second gas separation membrane unit 12 is taken out of the system through the second inlet gas discharge line 28 .
  • the regeneration gas introduced into the first gas separation membrane unit 11 from the impermeable gas outlet 11b the gas that has permeated the gas separation membrane passes through the permeable gas outlet 11c and the first permeable gas outlet 11c in the same manner as in the embodiment of FIG.
  • the impermeable gas (regeneration gas) discharged from the gas inlet of the first gas separation membrane unit is introduced into the first inlet gas discharge line 24 branched from the supply gas line 6, and the first inlet gas It circulates through the discharge line 24 and is discharged out of the system.
  • the flow path of the gas reaching the third gas separation membrane unit 13 is the same as in the embodiments of FIGS. 7 and 8. FIG.
  • the regeneration gas can be circulated through the impermeable gas circulation path independently of each of the first gas separation membrane unit 11 and the second gas separation membrane unit 12. 2
  • the regeneration gas flow rate suitable for each configuration can be easily set. 8
  • the regeneration gas that does not pass through the second gas separation membrane unit 12 can be introduced into the third gas separation membrane unit 13, and the regeneration gas introduced into the third gas separation membrane unit 13 can be made with less organic impurities.
  • Adopting this embodiment is also preferable in that the pressure loss of the regeneration gas can be reduced by shortening the flow path length of the regeneration gas, that is, the compression power of the regeneration gas can be suppressed.
  • the temperature T2′ of the regeneration gas at the impermeable gas outlet of the first gas separation membrane unit 11 or the temperature T4 of the regeneration gas at the impermeable gas outlet of the second gas separation membrane unit 12 It is sufficient that the difference T2'-T1 or T4'-T1 between T' and T1 is in the range (T2-T1) described in FIG. 1 above, and both are preferably in the above range.
  • the pressure of the regeneration gas supplied to the first gas separation membrane unit 11 is more preferably 0.3 MPaG or more and 1.4 MPaG or less, still more preferably 0.4 MPaG or more and 1.3 MPaG or less. Further, in the embodiment of FIG.
  • the pressure of the regeneration gas supplied to the second gas separation membrane unit 12 ensures the pressure for reliably circulating the regeneration gas to the second gas separation membrane unit 12, while maintaining a high pressure.
  • 0.1 MPaG or more and 1.4 MPaG or less is more preferable, and 0.2 MPaG or more and 1.3 MPaG or less is still more preferable for the reason of preventing an increase in energy associated with quenching.
  • FIG. 10 may be adopted in place of the forms shown in FIGS. 6 and 7 to 9.
  • FIG. 10 the same components as those shown in FIG. 9 are given the same reference numerals.
  • differences from the embodiments of FIGS. 6 and 7 to 9 will be mainly described, and descriptions of the same points as those of FIGS. 6 and 7 to 9 will be omitted.
  • the description of the configuration with the same reference numerals before FIG. 5 can be appropriately applied to this embodiment.
  • a third unit avoidance line 76 branched from the first permeated gas discharge line 19 is provided, and the permeated gas discharged from the first gas separation membrane unit 11 is discharged from the third gas separation membrane unit 13 during regeneration. It is possible to output to the outside of the system without going through
  • the third unit avoidance line 76 branches off from a branch point 19a at a position between the permeated gas discharge port 11c and the gas inlet 13a in the first permeated gas discharge line 19, and exits the system. It is connected. According to the embodiment of FIG. 10, gas is prevented from flowing into the third unit avoidance line 76 from the permeated gas discharge line 19 during operation for gas separation (during normal operation).
  • gas is prevented from flowing into the third unit avoidance line 76 from the permeated gas discharge line 19 during operation for gas separation (during normal operation).
  • FIG. 10(b) in the first permeated gas discharge line 19 during regeneration, all the gas discharged from the permeated gas discharge port 11c is introduced from the branch point 19a into the third unit avoidance line 76. It is designed not to be introduced into the 3-gas separation membrane unit 13 . This switching of the gas flow path is performed by a valve (not shown) arranged at the branch point 19a.
  • the regeneration gas permeated in the first gas separation membrane unit 11 is not allowed to flow through the third gas separation membrane unit 13, so that the gas contained in the permeated gas of the first gas separation membrane unit 11 is It is possible to reliably prevent the organic impurities contained in the permeating gas from adhering to the gas separation membranes of the third gas separation membrane unit 13 .
  • FIG. 11 may be adopted in place of the forms shown in FIGS. 6 and 7 to 10.
  • FIG. 11 the same reference numerals are assigned to the same configurations as those shown in FIG. In the embodiment of FIG. 11, differences from the embodiments of FIGS. 6 and 7 to 10 will be mainly described, and descriptions of the same points as those of FIGS. 6 and 7 to 10 will be omitted. The description of the configuration with the same reference numerals before FIG. 5 can be appropriately applied to this embodiment.
  • FIG. 11 includes a third bypass line 77 connecting the first bypass line 23 and the third impermeable gas return line 73, and a third inlet gas discharge line 78 branching from the first permeated gas discharge line 19, respectively.
  • the third inlet gas discharge line 78 branches off from the first permeated gas discharge line 19 on the third gas separation membrane unit 13 side of the third unit avoidance line 76 .
  • the third bypass line 77 branches from the branch point 23c of the first bypass line 23, and is connected to the third impermeable gas return line 73 at the connection point 73a in FIG. .
  • the connection point 23 c of the first bypass line 23 is located between the connection point 25 b with the second bypass line 25 and the connection point 23 b between the first bypass line 23 and the second impermeable gas discharge line 18 .
  • the connection point 73a is located between a branch point 74a, which is a connection point of the third impermeable gas return line 73 with the third impermeable gas discharge line 74, and the impermeable gas discharge port 13b. As shown in FIG.
  • gas is prevented from flowing from the third impermeable gas return line 73 to the third bypass line 77 during operation for gas separation (during normal operation).
  • gas is introduced from the first bypass line 23 into the third bypass line 77 during regeneration, and the gas in the third bypass line 77 flows from the connection point 73a to the impermeable gas return line 73. All of them are switched to be introduced into the impermeable gas outlet 13 b of the third gas separation membrane unit 13 . This switching of the gas flow path is performed by a valve (not shown) arranged at the connection point 73a.
  • FIG. 11(a) during operation for gas separation (during normal operation), from the first permeated gas discharge line 19 to the third unit avoidance line 76 and the third inlet Gas is prevented from flowing into the gas discharge line 78 .
  • FIG. 11(b) in the first permeated gas discharge line 19 during regeneration, the gas from the gas inlet 13a flows into the line 78 from the connection point 78a between the line 19 and the third inlet gas discharge line 78. All the permeated gas is introduced through the first permeated gas discharge line 19 so as not to be introduced from the connection point 78a to the permeated gas discharge port 11c side. This switching of the gas flow path is performed by a valve (not shown) arranged at the connection point 78a.
  • the gas to be separated passes through the same gas flow paths as in FIGS.
  • the regeneration gas heated by the heating means 61 is introduced into the first bypass line 23, introduced into the third bypass line 77 from the connecting point 23c, and then returned to the third impermeable gas from the connecting point 73a.
  • the gas is introduced into the third gas separation membrane unit 13 from the impermeable gas discharge port 13b through the line 73 in a reverse direction to the gas flow direction during normal operation, and from the gas inlet 13a of the third gas separation membrane unit 13.
  • the regeneration gas which is the discharged non-permeable gas, is discharged out of the system through the third inlet gas discharge line 78 .
  • the third gas separation membrane unit 13 also independently supplies the regeneration gas to the impermeable gas flow path. Since it can be circulated, organic impurities discharged from the first gas separation membrane unit 11 during regeneration can be easily prevented from adhering to the gas separation membrane of the third gas separation membrane unit 13, and the first gas separation membrane It is possible to easily set regeneration gas flow rates suitable for the configurations of the unit 11, the second gas separation membrane unit 12, and the third gas separation membrane unit 13, respectively.
  • the temperature T6' of the regeneration gas introduced into the impermeable gas outlet of the third gas separation membrane unit 13 is employed as the temperature T6 of the regeneration gas introduced into the third gas separation membrane unit 13 as the temperature T6 of the regeneration gas introduced into the third gas separation membrane unit 13 is employed.
  • the heated regeneration gas is caused to flow back through the non-permeable gas circulation space of the gas separation membrane module constituting the third gas separation membrane unit 13, so that the gas separation membrane in the gas separation membrane module It is also preferable in that organic impurities adhering to the non-permeable side can be effectively removed.
  • the permeability of the gas separation membranes can be efficiently and easily regenerated without removing the gas separation membrane module from the state in which three gas separation membrane units are combined.
  • Example 1 Gas Separation Using the system 10 shown in FIG. 1, a raw material mixed gas (biogas) in which the highly permeable gas A is carbon dioxide and the low permeable gas B is methane was separated.
  • a raw material mixed gas biogas
  • the highly permeable gas A is carbon dioxide and the low permeable gas B is methane was separated.
  • the first gas separation membrane unit 11 one module ( P'O2 / P'N2 at 40°C of 4 to 8) using a hollow fiber membrane made of polyimide was used.
  • the second gas separation membrane unit 12 one module using a hollow fiber membrane made of polyimide ( P'O2 / P'N2 at 40°C is 4 to 8) was used.
  • a compressor was used as the compression means 21 .
  • An electric heater was used as the heating means 61 .
  • the composition of the raw material mixed gas was approximately 40 mol % of gas A and approximately 60 mol % of gas B.
  • the supply flow rate of the raw material mixed gas to the supply gas line 6 was 135 Nm 3 /h.
  • the system was operated at a pressure of 1.2 MPaG and a temperature of 25° C. at the gas inlet of the first gas separation membrane unit 11 via a compressor and an electric heater.
  • the methane concentration in the impermeable gas of the second gas separation membrane unit 12 which represents system performance, was 98.0%.
  • the methane concentration in the impermeable gas of the two-gas separation membrane unit 12 decreased to 90.9%.
  • Regeneration Air was introduced into the supply gas line 6 as a regeneration gas.
  • the regeneration gas (compressed air) pressurized to 0.7 MPaG by the compression means 21 was heated to 100° C. by an electric heater and supplied.
  • the amount of regeneration gas supplied to the first gas separation membrane unit 11 was 115 Nm 3 /h
  • the amount of supply to the second gas separation membrane unit 12 was 100 Nm 3 /h
  • the regeneration gas to the second gas separation membrane unit 12 was 100 Nm 3 /h.
  • the supply pressure was 0.56 MPaG, and the amount S4 of the permeated gas flowing back from the permeated gas outlet of the second gas separation membrane unit 12 to the first gas separation membrane unit 11 was 40 Nm 3 /h.
  • the required heat of the electric heater was 53 kW.
  • the regeneration treatment was carried out for 3 hours. (3) Reoperation When the feed air was supplied to the supply gas line 6 at a supply flow rate of 135 Nm 3 /h, the methane concentration in the impermeable gas of the second gas separation membrane unit 12 recovered to 97.4%.
  • Example 1 [Comparative Example 1] (1) and (3) were carried out in the same manner as in Example 1.
  • the first gas separation membrane unit 11 and the second gas separation membrane unit 12 were removed from the gas separation membrane system and individually regenerated.
  • the supply temperature, supply pressure, and supply flow rate of the regeneration gas (compressed air) to each gas separation membrane unit were the same as in Example 1.
  • the heat amount of the electric heater required for regeneration of the first gas separation membrane unit 11 was 53 kW
  • the heat amount of the electric heater required for regeneration of the second gas separation membrane unit 12 was 38 kW, for a total of 91 kW.
  • Tables 1 and 2 summarize the operating conditions and regeneration results of the above examples and comparative examples.
  • Example 2 (1) Gas Separation The procedure was carried out in the same manner as in Example 1, except that the system shown in FIG. 3 was used. (2) Regeneration The introduction amount of air was set so that the supply flow rate to the second gas separation membrane unit 12 was the same as in the first embodiment. The reflux amount S4 was 0 Nm 3 /h. The regeneration treatment was carried out for 3 hours. The required heat of the electric heater was 52 kW. (3) Reoperation When the feed air was supplied to the supply gas line 6 at a supply flow rate of 135 Nm 3 /h, the methane concentration in the impermeable gas of the second gas separation membrane unit 12 recovered to 97.4%.
  • Tables 3 and 4 summarize the operating conditions and regeneration conditions of Example 2 above.
  • Example 2 using the system of FIG. 3 since there is no recycle gas during regeneration, the oxygen concentration of the air supplied to the first gas separation membrane unit 11 does not increase, and Example 1 using the system of FIG. Compared to , the ratio of the permeating gas in the first gas separation membrane unit 11 can be suppressed. As a result, the amount of air supplied to the first gas separation membrane unit 11 can be reduced by 2% compared to the configuration of FIG. did it.
  • Example 1 The reason why the regeneration efficiency is the same between Example 1 and Example 2 is that even if impurities are present in the permeating gas of the second unit and the non-permeating gas of the third unit, the compression means 21 and the heating This is because impurities are removed by a filter (not shown) positioned between the means 61 (the same applies to Examples 3 and 4 below).
  • the permeability of the gas separation membrane can be efficiently and easily regenerated without removing the gas separation membrane module from the state in which two gas separation membrane units are combined.
  • Example 3 (1) Gas Separation Using the system 10 shown in FIG. 6, a raw material mixed gas in which the high-permeability gas A is carbon dioxide and the low-permeability gas B is methane was separated.
  • the first gas separation membrane unit 11 P'O2 / P'N2 at 40°C is 4 to 8
  • one module using a hollow fiber membrane made of polyimide was used.
  • the second gas separation membrane unit 12 one module using a hollow fiber membrane made of polyimide ( P'O2 / P'N2 at 40°C is 4 to 8) was used.
  • the third gas separation membrane unit 13 one module using a hollow fiber membrane made of polyimide ( P'O2 / P'N2 at 40°C is 4 to 8) was used.
  • a compressor was used as the compression means 21 .
  • An electric heater was used as the heating means 61 .
  • the composition of the raw material mixed gas was approximately 40 mol % of gas A and approximately 60 mol % of gas B.
  • the temperature of the raw material mixed gas was 25°C.
  • the supply flow rate of the raw material mixed gas to the supply gas line 6 was 94 Nm 3 /h.
  • the system was operated at a pressure of 1.2 MPaG and a temperature of 25° C. at the gas inlet of the first gas separation membrane unit 11 via a compressor and an electric heater.
  • the methane concentration in the impermeable gas of the second gas separation membrane unit 12, which represents system performance was 98.0%.
  • the methane concentration in the impermeable gas of the two-gas separation membrane unit 12 decreased to 90.8%.
  • a filter (not shown) between the compressing means 21 and the heating means 61, an activated carbon filter was used.
  • (2) Regeneration Air was introduced into the supply gas line 6 as a regeneration gas.
  • the regeneration gas (compressed air) pressurized to 1.0 MPaG by the compression means 21 was heated to 100° C. by an electric heater and supplied.
  • the supply amount of the regeneration gas to the first gas separation membrane unit 11 is 115 Nm 3 /h
  • the supply amount to the second gas separation membrane unit 12 is 100 Nm 3 /h
  • the supply amount to the third gas separation membrane unit 13 is It was 15 Nm 3 /h.
  • the required heat quantity of the electric heater was 73 kW.
  • the regeneration treatment was carried out for 3 hours.
  • the amount of reflux from the second gas separation membrane unit 12 to the first gas separation membrane unit 11 (S4) was 70 Nm 3 /h
  • the amount of reflux from the third gas separation membrane unit 13 to the first gas separation membrane unit 11 ( S5) was 2 Nm 3 /h.
  • (3) Reoperation When the feed air was supplied to the supply gas line 6 at a supply flow rate of 94 Nm 3 /h, the methane concentration in the impermeable gas of the second gas separation membrane unit 12 recovered to 97.4%.
  • Example 2 [Comparative Example 2] (1) and (3) were carried out in the same manner as in Example 3.
  • the first gas separation membrane unit 11, the second gas separation membrane unit 12, and the third gas separation membrane unit 13 were removed from the gas separation membrane system and individually regenerated.
  • the supply temperature, supply pressure, and supply flow rate of the regeneration gas (compressed air) to each gas separation membrane unit were the same as in the example.
  • the heat amount of the electric heater required for regeneration of the first gas separation membrane unit 11 is 73 kW
  • the heat amount of the electric heater required for regeneration of the second gas separation membrane unit 12 is 58 kW
  • the heat amount required for regeneration of the third gas separation membrane unit 13 is 58 kW.
  • the heat quantity of the electric heater was 3 kW, and a total of 134 kW was required.
  • Example 3 The conditions and results of Example 3 and Comparative Example 2 are summarized in Tables 5 and 6 below.
  • Example 4 (1) Gas Separation The procedure was carried out in the same manner as in Example 3, except that the system shown in FIG. 7 was used. (2) Regeneration The introduction amount of air was set so that the supply flow rate to the second gas separation membrane unit 12 was the same as in the third embodiment. The amount returned from the second gas separation membrane unit 12 to the first gas separation membrane unit 11 (S4) was 0 Nm 3 /h, and the amount returned from the third gas separation membrane unit 13 to the first gas separation membrane unit 11 (S5). was 0 Nm 3 /h. The regeneration treatment was carried out for 3 hours. The required heat quantity of the electric heater required to obtain the same regeneration effect as in FIG. 1 was 71 kW. (3) Reoperation When the feed air was supplied to the supply gas line 6 at a supply flow rate of 94 Nm 3 /h, the methane concentration in the impermeable gas of the second gas separation membrane unit 12 recovered to 97.4%.
  • Example 4 The operating conditions and regeneration conditions of Example 4 are summarized in Tables 7 and 8.
  • Example 4 using the system of FIG. 7 since there is no recycled gas during regeneration, the oxygen concentration of the air supplied to the first gas separation membrane unit 11 does not increase, and Example 3 using the system of FIG. Compared to , the ratio of the permeating gas in the first gas separation membrane unit 11 can be suppressed. As a result, the amount of air supplied to the first gas separation membrane unit 11 can be reduced by 2% compared to the configuration of FIG. did it.
  • the permeability of the gas separation membranes can be efficiently and easily regenerated without removing the gas separation membrane module from the state in which three gas separation membrane units are combined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

In this invention: a gas inlet (11a) of a first gas separation membrane unit (11) is connected with a line (6); a compression means (21) and a heating means (61) are provided in an intermediate portion of the line (6); an impermeable gas outlet (11b) of the unit (11) is coupled by a line (14) to a gas inlet (12a) of a second gas separation membrane unit (12); a permeable gas outlet (12c) of the unit (12) is coupled by a line (17) to the suction side position of the compression means (21) on the line (6); a permeable gas outlet (11c) of the unit (11) is connected with a line (19); an outlet (12b) of the unit (12) is connected with a line (18); and regeneration gas introduced into the line (6) is circulated through the unit (11) and the unit (12) after being heated by the heating means (61) to a temperature 10 °C to 80 °C higher than that in the normal operation.

Description

ガス分離膜システム及びガス分離膜の再生方法Gas separation membrane system and gas separation membrane regeneration method
 本発明は、ガス分離膜システム、及びガス分離膜システムに用いられるガス分離膜の再生方法に関する。 The present invention relates to a gas separation membrane system and a method for regenerating a gas separation membrane used in the gas separation membrane system.
 異なる2種類以上のガスを含む原料混合ガスを各ガスに分離する方法として、膜に対するガスの透過速度の差を利用した膜分離法が知られている。この方法では、2種以上のガスを含む原料混合ガスをガス分離膜に供給し、高透過性ガスが富化された透過ガスと低透過性ガスが富化された不透過ガスとに分離する。一般に、ガス分離膜は、ガス選択透過性を有するガス分離膜を、少なくともガス入口、透過ガス排出口、不透過ガス排出口が備えられている容器内に収容してなる分離膜モジュールとして使用されている。ガス分離膜は、そのガス供給側とガス透過側の空間が隔離されるように、容器内に装着されている。ガス分離膜システムにおいては、所要の膜面積とするために、一般に複数の分離膜モジュールは、これを複数に並列に組み合わせて使用される。 As a method for separating a raw material mixed gas containing two or more different gases into each gas, a membrane separation method that utilizes the difference in gas permeation speed with respect to a membrane is known. In this method, a raw material mixed gas containing two or more gases is supplied to a gas separation membrane and separated into a permeable gas enriched with a high-permeability gas and an impermeable gas enriched with a low-permeability gas. . Gas separation membranes are generally used as a separation membrane module in which a gas separation membrane having gas selective permeability is housed in a container provided with at least a gas inlet, a permeable gas outlet, and an impermeable gas outlet. ing. The gas separation membrane is mounted in the container so that the spaces on the gas supply side and the gas permeation side thereof are separated. In a gas separation membrane system, generally a plurality of separation membrane modules are combined in parallel and used in order to obtain a required membrane area.
 原料混合ガスは、それ自体が高沸点の有機質を含有していることがある。また原料混合ガスをガス分離膜に供給する圧縮機のオイルミストが原料混合ガスに混入する場合もある。それらの場合、該原料混合ガスが供給されるガス分離膜に、それら高沸点の有機質やオイルミストが付着する。その付着の量によっては、ガス分離膜の透過性が経時的に低下してしまう。
 この問題に対し、特許文献1には、2系統以上のガス分離系統を用い、供給された原料混合ガスを、透過ガスと不透過ガスとに分離し、一のガス分離系統において分離された透過ガスを、原料混合ガスの供給が停止された他のガス分離系統のモジュールの不透過ガス供給口に供給して、中空糸膜に付着した不純物を該透過ガスに随伴させて除去することにより該他のガス分離系統が備える分離膜モジュールを再生する技術が記載されている。
The raw material mixed gas may itself contain high-boiling organic matter. In addition, oil mist from the compressor that supplies the raw material mixed gas to the gas separation membrane may be mixed into the raw material mixed gas. In those cases, the high-boiling organic matter and oil mist adhere to the gas separation membrane to which the raw material mixed gas is supplied. Depending on the amount of adhesion, the permeability of the gas separation membrane decreases over time.
In response to this problem, Patent Document 1 discloses that two or more gas separation systems are used to separate the supplied raw material mixed gas into a permeable gas and an impermeable gas, and the permeated gas separated in one gas separation system. The gas is supplied to the impermeable gas supply port of another module of the gas separation system to which the supply of the raw material mixed gas is stopped, and the impurities adhering to the hollow fiber membrane are removed along with the permeated gas. Techniques for regenerating separation membrane modules provided in other gas separation systems are described.
特開2019-48276号公報JP 2019-48276 A
 特許文献1は一段のガスシステムに関するものであり、また、再生のための複雑なシステムを必要とする。
 一方、従来、ガス分離を複数段のガス分離膜ユニットを組み合わせて回収率と純度を向上させたシステムにより行うことが知られている。しかしながら、このようなガス分離膜システムにおいて、分離膜モジュールをガス分離膜システムから取り出さずにガス分離膜の再生を行うことについて何ら検討されていない。
US Pat. No. 5,300,004 relates to a single-stage gas system and also requires a complex system for regeneration.
On the other hand, conventionally, gas separation is known to be performed by a system in which multiple stages of gas separation membrane units are combined to improve the recovery rate and purity. However, in such a gas separation membrane system, no study has been made on regenerating the gas separation membrane without removing the separation membrane module from the gas separation membrane system.
 したがって本発明の課題は、2段のガス分離膜ユニットを組み合わせたガス分離膜システムにおいて、ガス分離膜モジュールを取り外さずにガス分離膜の透過性を効率よく、簡便に回復させることができるガス分離膜システム及び分離膜の再生方法を提供することにある。 Accordingly, an object of the present invention is to efficiently and easily restore the permeability of the gas separation membranes without removing the gas separation membrane module in a gas separation membrane system in which two stages of gas separation membrane units are combined. An object of the present invention is to provide a membrane system and a method for regenerating a separation membrane.
 本発明はガス分離性能を有する第1ガス分離膜ユニット及び第2ガス分離膜ユニットを少なくとも備えたガス分離膜システムであって、
 各ガス分離膜ユニットは、ガス入口、透過ガス排出口及び不透過ガス排出口を少なくとも備え、
 第1ガス分離膜ユニットのガス入口に、供給ガスラインを連結するとともに、該供給ガスラインの途中に圧縮手段及び加熱手段を介在配置し、
 第1ガス分離膜ユニットの不透過ガス排出口と、第2ガス分離膜ユニットのガス入口とを第1不透過ガス排出ラインによって連結し、
 第2ガス分離膜ユニットの透過ガス排出口と、前記供給ガスラインにおける圧縮手段の吸込側の位置とを、第2透過ガス帰還ラインによって連結し、
 第2ガス分離膜ユニットの不透過ガス排出口に第2不透過ガス排出ラインを連結し、
 第1ガス分離膜ユニットの透過ガス排出口に第1透過ガス排出ラインを連結し、
 前記供給ガスラインに導入されたガス分離膜再生用のガスを、前記加熱手段を用い、ガス分離のための運転時より10℃以上80℃以下高い温度に加熱した後、第1ガス分離膜ユニット及び第2ガス分離膜ユニットに流通させるようになされている、ガス分離膜システムを提供する。
The present invention is a gas separation membrane system comprising at least a first gas separation membrane unit and a second gas separation membrane unit having gas separation performance,
each gas separation membrane unit comprises at least a gas inlet, a permeable gas outlet and an impermeable gas outlet;
A supply gas line is connected to the gas inlet of the first gas separation membrane unit, and compression means and heating means are interposed in the middle of the supply gas line,
connecting the impermeable gas outlet of the first gas separation membrane unit and the gas inlet of the second gas separation membrane unit by a first impermeable gas outlet line;
connecting the permeated gas outlet of the second gas separation membrane unit and a position on the suction side of the compression means in the supply gas line by a second permeated gas return line;
connecting a second impermeable gas discharge line to the impermeable gas discharge port of the second gas separation membrane unit;
connecting the first permeated gas discharge line to the permeated gas discharge port of the first gas separation membrane unit;
After heating the gas for regeneration of the gas separation membrane introduced into the supply gas line to a temperature higher by 10° C. or more and 80° C. or less than during operation for gas separation using the heating means, the first gas separation membrane unit and a second gas separation membrane unit.
 本発明はまた、ガス分離性能を有する第1ガス分離膜ユニット及び第2ガス分離膜ユニットを少なくとも備えたガス分離膜システムにおけるガス分離膜の再生方法であって、
 各ガス分離膜ユニットは、ガス入口、透過ガス排出口及び不透過ガス排出口を少なくとも備え、
 第1ガス分離膜ユニットのガス入口に、供給ガスラインを連結するとともに、該供給ガスラインの途中に圧縮手段及び加熱手段を介在配置し、
 第1ガス分離膜ユニットの不透過ガス排出口と、第2ガス分離膜ユニットのガス入口とを第1不透過ガス排出ラインによって連結し、
 第2ガス分離膜ユニットの透過ガス排出口と、前記供給ガスラインにおける圧縮手段の吸込側の位置とを、第2透過ガス帰還ラインによって連結し、
 第2ガス分離膜ユニットの不透過ガス排出口に第2不透過ガス排出ラインを連結し、
 第1ガス分離膜ユニットの透過ガス排出口に第1透過ガス排出ラインを連結し、
 前記供給ガスラインに導入されたガス分離膜再生用のガスを、前記加熱手段を用い、ガス分離のための運転時より10℃以上80℃以下高い温度に加熱した後、第1ガス分離膜ユニット及び第2ガス分離膜ユニットに流通させる、ガス分離膜の再生方法を提供する。
The present invention also provides a method for regenerating a gas separation membrane in a gas separation membrane system comprising at least a first gas separation membrane unit and a second gas separation membrane unit having gas separation performance, comprising:
each gas separation membrane unit comprises at least a gas inlet, a permeable gas outlet and an impermeable gas outlet;
A supply gas line is connected to the gas inlet of the first gas separation membrane unit, and compression means and heating means are interposed in the middle of the supply gas line,
connecting the impermeable gas outlet of the first gas separation membrane unit and the gas inlet of the second gas separation membrane unit by a first impermeable gas outlet line;
connecting the permeated gas outlet of the second gas separation membrane unit and a position on the suction side of the compression means in the supply gas line by a second permeated gas return line;
connecting a second impermeable gas discharge line to the impermeable gas discharge port of the second gas separation membrane unit;
connecting the first permeated gas discharge line to the permeated gas discharge port of the first gas separation membrane unit;
After heating the gas for regeneration of the gas separation membrane introduced into the supply gas line to a temperature higher by 10° C. or more and 80° C. or less than during operation for gas separation using the heating means, the first gas separation membrane unit and a method for regenerating a gas separation membrane by circulating it in a second gas separation membrane unit.
 前記システムは、ガス分離性能を有する第3ガス分離膜ユニットを更に備え、
 前記第3ガス分離膜ユニットは、ガス入口、透過ガス排出口及び不透過ガス排出口を少なくとも備え、
 第3ガス分離膜ユニットの不透過ガス排出口と、前記供給ガスラインにおける圧縮手段の吸込側の位置とを、第3不透過ガス帰還ラインによって連結し、
 第1ガス分離膜ユニットの透過ガス排出口と、第3ガス分離膜ユニットのガス入口とを前記第1透過ガス排出ラインによって連結し、
 第3ガス分離膜ユニットの透過ガス排出口に第3透過ガス排出ラインを連結するものであってもよい。
The system further comprises a third gas separation membrane unit having gas separation performance,
the third gas separation membrane unit comprises at least a gas inlet, a permeable gas outlet and an impermeable gas outlet;
connecting the impermeable gas outlet of the third gas separation membrane unit and a position on the suction side of the compression means in the supply gas line by a third impermeable gas return line;
connecting the permeated gas discharge port of the first gas separation membrane unit and the gas inlet of the third gas separation membrane unit by the first permeated gas discharge line;
A third permeated gas discharge line may be connected to the permeated gas discharge port of the third gas separation membrane unit.
 本発明によれば、2段以上のガス分離膜ユニットを組み合わせたガス分離膜システムにおいて、ガス分離膜モジュールを取り外さずにガス分離膜の透過性を効率よく、簡便に再生することができるガス分離膜システム及び分離膜の再生方法を提供する。 According to the present invention, in a gas separation membrane system in which two or more stages of gas separation membrane units are combined, the permeability of the gas separation membrane can be efficiently and easily regenerated without removing the gas separation membrane module. A membrane system and a method for regenerating a separation membrane are provided.
図1は、本発明のガス分離膜システムの一例を示す概略図である。図1(a)がガス分離のための運転時のガス流通経路を示し、図1(b)がガス分離膜再生時のガス流通経路を示す。FIG. 1 is a schematic diagram showing an example of the gas separation membrane system of the present invention. FIG. 1(a) shows the gas flow path during operation for gas separation, and FIG. 1(b) shows the gas flow path during regeneration of the gas separation membrane. 図2は、本発明のガス分離膜システムに用いられる分離膜モジュールの一例の構造を示す模式図である。FIG. 2 is a schematic diagram showing the structure of an example of a separation membrane module used in the gas separation membrane system of the present invention. 図3は、本発明のガス分離膜システムの他の一例を示す模式図である。図3(a)がガス分離のための運転時のガス流通経路を示し、図3(b)がガス分離膜再生時のガス流通経路を示す。FIG. 3 is a schematic diagram showing another example of the gas separation membrane system of the present invention. FIG. 3(a) shows the gas flow path during operation for gas separation, and FIG. 3(b) shows the gas flow path during regeneration of the gas separation membrane. 図4は、本発明のガス分離膜システムの他の一例を示す概略図である。図4(a)がガス分離のための運転時のガス流通経路を示し、図4(b)がガス分離膜再生時のガス流通経路を示す。FIG. 4 is a schematic diagram showing another example of the gas separation membrane system of the present invention. FIG. 4(a) shows the gas flow path during operation for gas separation, and FIG. 4(b) shows the gas flow path during regeneration of the gas separation membrane. 図5は、本発明のガス分離膜システムの他の一例を示す概略図である。図5(a)がガス分離のための運転時のガス流通経路を示し、図5(b)がガス分離膜再生時のガス流通経路を示す。FIG. 5 is a schematic diagram showing another example of the gas separation membrane system of the present invention. FIG. 5(a) shows the gas flow path during operation for gas separation, and FIG. 5(b) shows the gas flow path during regeneration of the gas separation membrane. 図6は、本発明のガス分離膜システムの一例を示す概略図である。図6(a)がガス分離のための運転時のガス流通経路を示し、図6(b)がガス分離膜再生時のガス流通経路を示す。FIG. 6 is a schematic diagram showing an example of the gas separation membrane system of the present invention. FIG. 6(a) shows the gas flow path during operation for gas separation, and FIG. 6(b) shows the gas flow path during regeneration of the gas separation membrane. 図7は、本発明のガス分離膜システムの他の一例を示す模式図である。図7(a)がガス分離のための運転時のガス流通経路を示し、図7(b)がガス分離膜再生時のガス流通経路を示す。FIG. 7 is a schematic diagram showing another example of the gas separation membrane system of the present invention. FIG. 7(a) shows the gas flow path during operation for gas separation, and FIG. 7(b) shows the gas flow path during regeneration of the gas separation membrane. 図8は、本発明のガス分離膜システムの他の一例を示す概略図である。図8(a)がガス分離のための運転時のガス流通経路を示し、図8(b)がガス分離膜再生時のガス流通経路を示す。FIG. 8 is a schematic diagram showing another example of the gas separation membrane system of the present invention. FIG. 8(a) shows the gas flow path during operation for gas separation, and FIG. 8(b) shows the gas flow path during regeneration of the gas separation membrane. 図9は、本発明のガス分離膜システムの他の一例を示す概略図である。図9(a)がガス分離のための運転時のガス流通経路を示し、図9(b)がガス分離膜再生時のガス流通経路を示す。FIG. 9 is a schematic diagram showing another example of the gas separation membrane system of the present invention. FIG. 9(a) shows the gas flow path during operation for gas separation, and FIG. 9(b) shows the gas flow path during regeneration of the gas separation membrane. 図10は、本発明のガス分離膜システムの他の一例を示す概略図である。図10(a)がガス分離のための運転時のガス流通経路を示し、図10(b)がガス分離膜再生時のガス流通経路を示す。FIG. 10 is a schematic diagram showing another example of the gas separation membrane system of the present invention. FIG. 10(a) shows the gas flow path during operation for gas separation, and FIG. 10(b) shows the gas flow path during regeneration of the gas separation membrane. 図11は、本発明のガス分離膜システムの他の一例を示す概略図である。図11(a)がガス分離のための運転時のガス流通経路を示し、図11(b)がガス分離膜再生時のガス流通経路を示す。FIG. 11 is a schematic diagram showing another example of the gas separation membrane system of the present invention. FIG. 11(a) shows the gas flow path during operation for gas separation, and FIG. 11(b) shows the gas flow path during regeneration of the gas separation membrane.
 以下本発明の再生方法及びガス分離膜システムを、その好ましい実施形態に基づき説明する。
 本発明において「再生」とは、不純物がガス分離膜に付着することに伴う透過ガス流量(Nm3/h)の低下、又は該透過ガス流量低下に伴う現象が改善することをいう。ここでいう透過ガス流量低下に伴う現象としては、処理ガス流量の低下や製品ガス純度の低下等が挙げられる。
The regeneration method and gas separation membrane system of the present invention will be described below based on preferred embodiments thereof.
In the present invention, the term "regeneration" refers to a decrease in the permeation gas flow rate (Nm 3 /h) due to deposition of impurities on the gas separation membrane, or improvement of the phenomenon associated with the decrease in the permeation gas flow rate. The phenomenon associated with the decrease in the flow rate of the permeating gas referred to here includes a decrease in the flow rate of the processing gas, a decrease in the purity of the product gas, and the like.
 図1、図3~図11はそれぞれ本発明の実施形態のガス分離膜システム10、10’、10’’、10’’’、110、110’、110’’、110’’’、110’’’’、110’’’’’(以下「10~110’’’’’」とも記載する)を示す。これら各図において、二重線はガス分離膜ユニット外でガスが流通するラインを示し、点線はガス分離膜ユニット内でガスが流通する経路を示す。矢印はガス流通方向を示す。一方、実線の一重線はガスが流通していないラインを指す。一方、実線の一重線はガスが流通していないラインを指す。
 図1、図3~図11の(a)はガス分離のための運転時におけるガス分離膜システムにおけるガス分離膜システム及び当該システムにおけるガス流通経路を示し、図1、図3~図11の(b)はガス分離膜再生時におけるガス分離膜システム及び当該システムにおけるガス流通経路を示す。
1, 3 to 11 respectively show gas separation membrane systems 10, 10', 10'', 10''', 110, 110', 110'', 110''', 110' of embodiments of the present invention. ''', 110''''' (hereinafter also referred to as '10 to 110'''''). In each of these figures, double lines indicate lines through which gas flows outside the gas separation membrane unit, and dotted lines indicate paths through which gas flows inside the gas separation membrane unit. Arrows indicate the direction of gas flow. On the other hand, a solid single line indicates a line through which no gas is flowing. On the other hand, a solid single line indicates a line through which no gas is flowing.
FIGS. 1 and 3 to 11 (a) show the gas separation membrane system in the gas separation membrane system during operation for gas separation and the gas flow paths in the system, and FIGS. 1 and 3 to 11 ( b) shows the gas separation membrane system and the gas flow path in the system during regeneration of the gas separation membrane.
 図1、図3~図5に示すガス分離膜システム10~10’’’は、2つのガス分離膜ユニットである第1ガス分離膜ユニット11、第2ガス分離膜ユニット12を備えている。図6~11に記載の110~110’’’’’はユニット11、ユニット12に加えて、第3ガス分離膜ユニット13を備えている。ユニット11,12,13としては、例えば、図2に示すとおり、中空糸膜等からなり、ガス選択透過性を有するガス分離膜20をケーシング31内に収容してなるモジュール40を用いることができる。本実施形態の各ガス分離膜ユニット11,12,13は、図2に示すガス分離膜モジュール40を一本用いたものであるか、或いは、このモジュール40を複数本並列してなるものである。 The gas separation membrane systems 10 to 10''' shown in FIGS. 1 and 3 to 5 are provided with two gas separation membrane units, a first gas separation membrane unit 11 and a second gas separation membrane unit 12. 110 to 110'''' described in FIGS. As the units 11, 12, and 13, for example, as shown in FIG. 2, a module 40 can be used in which a gas separation membrane 20 made of a hollow fiber membrane or the like and having gas selective permeability is accommodated in a casing 31. . Each of the gas separation membrane units 11, 12, 13 of this embodiment uses one gas separation membrane module 40 shown in FIG. 2, or a plurality of such modules 40 are arranged in parallel. .
 本実施形態において、分離膜モジュールとは、ガス分離性能を有する複数本の中空糸膜が容器内に収容されたものである。中空糸膜は、装置が小型化でき高膜面積になるので分離効率がよく経済的である。中空糸膜としては、均質性でもよく、複合膜や非対称膜などの不均一性でもよく、また微多孔性でも非多孔性でもよい。前記中空糸膜の膜厚は10~500μmで外径は50~2000μmのものを好適に挙げることができる。中空糸膜は、ポリイミド、ポリエーテルイミド、ポリアミド、ポリアミドイミド、ポリスルホン、ポリカーボネート、シリコーン樹脂、セルロース系ポリマーなどのポリマー材料、ポリマー材料を炭化又は部分炭素化した材料、ゼオライトなどのセラミックス材料などで形成されるガス分離膜を好適に挙げることができる。特に、非対称ポリイミドガス分離膜は、ガス分離性能が高いのみならず、耐熱性、耐久性、耐溶剤性などの特性が優れているので好ましい。 In the present embodiment, the separation membrane module is a container containing a plurality of hollow fiber membranes having gas separation performance. Hollow fiber membranes can be made compact and have a large membrane area, so they are efficient and economical. The hollow fiber membrane may be homogeneous or heterogeneous such as a composite membrane or an asymmetric membrane, and may be microporous or nonporous. Preferably, the hollow fiber membrane has a thickness of 10 to 500 μm and an outer diameter of 50 to 2000 μm. Hollow fiber membranes are made of polymer materials such as polyimide, polyetherimide, polyamide, polyamideimide, polysulfone, polycarbonate, silicone resin, and cellulose-based polymers, materials obtained by carbonizing or partially carbonizing polymer materials, and ceramic materials such as zeolite. A suitable gas separation membrane can be mentioned. In particular, an asymmetric polyimide gas separation membrane is preferable because it not only has high gas separation performance but also excellent properties such as heat resistance, durability, and solvent resistance.
 分離膜モジュールは通常、中空糸膜を多数本(例えば、数百本から数十万本)集束して中空糸膜束とし、その中空糸膜束の少なくとも一方の端部をエポキシ樹脂のような熱硬化性樹脂やホットメルト型熱可塑性樹脂などで、前記端部において中空糸膜が開口状態となるように固着して中空糸分離膜エレメントを構成し、更に、単数個又は複数個の前記中空糸エレメントを、少なくともガス入口、透過ガス排出口、及び、不透過ガス排出口を有する容器内に、中空糸膜の内側へ通じる空間と中空糸膜の外側へ通じる空間が隔絶するように装着されて構成されている。容器はステンレスなどの金属材料、プラスチック材料、繊維強化プラスチック材料などの複合材料で製造される。 In a separation membrane module, a large number of hollow fiber membranes (for example, hundreds to hundreds of thousands) are bundled to form a hollow fiber membrane bundle, and at least one end of the hollow fiber membrane bundle is coated with a material such as epoxy resin. A hollow fiber separation membrane element is formed by fixing a hollow fiber membrane element with a thermosetting resin, a hot-melt thermoplastic resin, or the like so that the hollow fiber membranes are open at the ends. The thread element is mounted in a container having at least a gas inlet, a permeable gas outlet, and an impermeable gas outlet, so that the space leading to the inside of the hollow fiber membrane and the space leading to the outside of the hollow fiber membrane are isolated. configured as follows. Containers are manufactured from composite materials such as metal materials such as stainless steel, plastic materials, and fiber-reinforced plastic materials.
 分離膜モジュールの形態は特に限定はなく通常用いられているものでよい。中空糸膜束の配糸形態は、平行配列でも交叉配列でも織物状でもスパイラル状などでも構わない。また、中空糸膜束は略中心部に芯管を備えていてもよく、中空糸膜束の外周部にフィルムが巻き付けられていても構わない。更に、中空糸膜束の形態は円柱状、平板状、角柱状などでよく、容器内に前記形態のまま、又は、U字状に折り曲げたり、スパイラル状に巻き付けて収納されていてもよい。 The form of the separation membrane module is not particularly limited and may be one commonly used. The fiber arrangement form of the hollow fiber membrane bundle may be a parallel arrangement, a cross arrangement, a woven fabric, a spiral, or the like. Further, the hollow fiber membrane bundle may have a core tube substantially at the center, and a film may be wound around the outer peripheral portion of the hollow fiber membrane bundle. Furthermore, the shape of the hollow fiber membrane bundle may be cylindrical, flat, prismatic, or the like, and may be stored in the container as it is, or may be stored in the container while being bent in a U-shape or wound in a spiral.
 分離膜モジュールの一例を図2のモジュール40として示す。図2において、モジュール40におけるケーシング31は、対向する二面が開口して開口部32を形成している。この開口部32は、ガス分離膜20をケーシング31内に挿入するためのものであり、ガス分離膜20の開口部ではない点に留意すべきである。ガス分離膜20は、この開口部32を通じてケーシング31内に収容される。ガス分離膜20が中空糸膜束からなる場合、該ガス分離膜20はその収容状態において、ケーシング31の各開口部32の付近において中空糸膜の各端部が開口するように、ケーシング31内に収容される。 An example of the separation membrane module is shown as module 40 in FIG. In FIG. 2, the casing 31 in the module 40 is open on two opposite sides to form an opening 32 . It should be noted that this opening 32 is for inserting the gas separation membrane 20 into the casing 31 and is not an opening in the gas separation membrane 20 . The gas separation membrane 20 is housed inside the casing 31 through this opening 32 . When the gas separation membrane 20 consists of a bundle of hollow fiber membranes, the gas separation membrane 20 is arranged in the casing 31 so that each end of the hollow fiber membrane is open near each opening 32 of the casing 31 in the housed state. are housed in
 ガス分離膜20がケーシング31内に収容された状態においては、中空糸膜の延びる方向であるY方向の両端部の位置において、ガス分離膜20が管板33,34によってケーシング31の内壁に固定されている。ケーシング31の各開口部32は、蓋体35,36によって閉塞されている。蓋体35にはガス入口37が設けられている。一方、蓋体36には不透過ガス排出口38が設けられている。分離対象となるガスは、蓋体35のガス入口37からモジュール内に導入される。導入されたガスのうち、ガス分離膜20を透過したガスは、ケーシング31に設けられた透過ガス排出口39からモジュール外に排出される。一方、ガス分離膜20を透過しなかった不透過ガスは、蓋体36の不透過ガス排出口38からモジュール外に排出される。また、場合によっては、ケーシング31にパージガスの供給口(図示せず)を設けてもよい。 When the gas separation membrane 20 is accommodated in the casing 31, the gas separation membrane 20 is fixed to the inner wall of the casing 31 by the tube plates 33 and 34 at both ends in the Y direction, which is the direction in which the hollow fiber membranes extend. It is Each opening 32 of the casing 31 is closed by lids 35 and 36 . A gas inlet 37 is provided in the lid 35 . On the other hand, the lid 36 is provided with an impermeable gas outlet 38 . A gas to be separated is introduced into the module from the gas inlet 37 of the lid 35 . Of the introduced gas, the gas that permeates the gas separation membrane 20 is discharged outside the module from the permeated gas discharge port 39 provided in the casing 31 . On the other hand, the impermeable gas that has not permeated the gas separation membrane 20 is discharged from the impermeable gas outlet 38 of the lid 36 to the outside of the module. In some cases, the casing 31 may be provided with a purge gas supply port (not shown).
 分離膜モジュールは図2に示す中空フィードタイプに限定されず、シェルフィードタイプでもよく、キャリアガスを用いるタイプでもキャリアガスを用いないタイプでも構わない。キャリアガスを用いるタイプでは、容器にキャリアガス導入口が配置されたり、中空糸膜束の芯管としてキャリアガス導入管が配置される。 The separation membrane module is not limited to the hollow feed type shown in FIG. 2, but may be a shell feed type, and may be a type using a carrier gas or a type not using a carrier gas. In the type using a carrier gas, a carrier gas introduction port is arranged in the container, or a carrier gas introduction pipe is arranged as a core tube of the hollow fiber membrane bundle.
 図1に戻ると、同図に示すとおり、第1ガス分離膜ユニット11と、第2ガス分離膜ユニット12とが直列に接続されている。具体的には、第1ガス分離膜ユニット11と、第2ガス分離膜ユニット12とは、第1ガス分離膜ユニット11の不透過ガス排出口11bと、第2ガス分離膜ユニット12のガス入口12aとを第1不透過ガス排出ライン14によって連結することで接続されている。 Returning to FIG. 1, as shown in the figure, the first gas separation membrane unit 11 and the second gas separation membrane unit 12 are connected in series. Specifically, the first gas separation membrane unit 11 and the second gas separation membrane unit 12 are separated from the impermeable gas outlet 11b of the first gas separation membrane unit 11 and the gas inlet of the second gas separation membrane unit 12. 12a are connected by a first impermeable gas discharge line 14. As shown in FIG.
 第1ガス分離膜ユニット11のガス入口11aには、原料である混合ガス源(図示せず)からの原料混合ガスを第1ガス分離膜ユニット11へ供給するとともに、ガス源(不図示)からの再生用ガスを第1ガス分離膜ユニット11及び第2ガス分離膜ユニット12に供給するための供給ガスライン6が連結されている。供給ガスライン6の途中には、圧縮手段21が介在配置されている。圧縮手段21は、ガス源から供給された原料混合ガスや第2ガス分離膜ユニット12から帰還した透過ガスを加圧したり、再生用のガスを加圧する目的で設置されている。圧縮手段21としては、当該技術分野においてこれまで用いられてきた手段と同様のものを用いることができる。例えばコンプレッサ(圧縮機)を用いることができる。 At the gas inlet 11a of the first gas separation membrane unit 11, a raw mixed gas from a mixed gas source (not shown), which is a raw material, is supplied to the first gas separation membrane unit 11, and from the gas source (not shown) A supply gas line 6 for supplying regeneration gas to the first gas separation membrane unit 11 and the second gas separation membrane unit 12 is connected. A compressing means 21 is interposed in the middle of the supply gas line 6 . The compressing means 21 is installed for the purpose of compressing the raw material mixed gas supplied from the gas source and the permeating gas returned from the second gas separation membrane unit 12, and compressing the regeneration gas. As the compression means 21, the same means as have been used so far in the relevant technical field can be used. For example, a compressor (compressor) can be used.
 なお、本明細書における「原料混合ガス」とは、ガス分離膜システムに供給されるガス分離対象ガスをいう。通常、原料混合ガスは、圧縮機等で圧縮された状態で分離膜モジュール40に供給される。具体的には、2種以上のガスを含む原料混合ガスとしては、大気やバイオガス、天然ガス、石油化学工場からの副生ガスや排ガス、各種の熱分解ガス等が挙げられる。原料混合ガスに含まれる2種以上のガスとしては、H、He、CO、CO、O、N、HO、HS、有機蒸気、CH、C、エタノール、メタノール、ケトン類、炭素原子数が3以上の炭化水素(以下、「C3」とも記載する)等のうち、中空糸膜20に対して透過速度の異なる任意の組み合わせが挙げられる。なお、ガス分離膜システムに導入された後の原料混合ガスはガス分離膜の透過・不透過等によって組成が変わりうる。以下では通常運転時の原料混合ガスの流通経路を説明する際にガス分離膜の透過・不透過等で組成変化した原料混合ガスに対して「分離対象ガス」の語を使用する場合がある。 In addition, the "raw material mixed gas" in this specification means the target gas for gas separation supplied to the gas separation membrane system. Normally, the raw material mixed gas is supplied to the separation membrane module 40 in a state of being compressed by a compressor or the like. Specifically, raw material mixed gases containing two or more kinds of gases include air, biogas, natural gas, by-product gas and exhaust gas from petrochemical plants, various thermal decomposition gases, and the like. The two or more gases contained in the raw material mixed gas include H 2 , He, CO, CO 2 , O 2 , N 2 , H 2 O, H 2 S, organic vapor, CH 4 , C 2 H 6 and ethanol. , methanol, ketones, hydrocarbons having 3 or more carbon atoms (hereinafter also referred to as “C3 + ”), and the like, any combination of which has a different permeation rate with respect to the hollow fiber membrane 20 . The composition of the raw material mixed gas after being introduced into the gas separation membrane system may change depending on whether or not it permeates the gas separation membrane. Hereinafter, when explaining the flow path of the raw material mixed gas during normal operation, the term "separation target gas" may be used for the raw material mixed gas whose composition has changed due to permeation or non-permeation of the gas separation membrane.
 原料混合ガス及び分離膜モジュールの種類としては限定されないが、例えば原料混合ガスが供給される分離膜モジュール40としてメタン(CH)に比べて二酸化炭素(CO)の透過速度の高いものを有するものを用い、且つ原料混合ガスとして、CH及びCOを含むガスを用いる例;原料混合ガスが供給される分離膜モジュール40として、窒素ガス(N)に比べて酸素ガス(O)の透過速度の高いものを用い、且つ原料混合ガスとしてN及びOを含むガスを用いる例等が挙げられる。CH及びCOを含む原料混合ガスとしては、バイオガス、ランドフィルガスや天然ガスなどが挙げられる。またN及びOを含む原料混合ガスとしては空気が挙げられる。なおバイオガスとは、バイオマス原料を嫌気性の条件下で微生物と接触させて微生物によるメタン発酵等の発酵処理を行うことに伴い発生するガスである。バイオマス原料としては食品廃棄物、農業残渣、下水汚泥、畜産系廃棄物等の有機物が挙げられる。ランドフィルガスは、廃棄物埋立地において有機物の微生物分解等により発生するガスを指す。バイオガスやランドフィルガスは通常、メタン及び二酸化炭素から主に構成される。 Although the types of the raw material mixed gas and the separation membrane module are not limited, for example, the separation membrane module 40 to which the raw material mixed gas is supplied has a higher permeation rate of carbon dioxide (CO 2 ) than that of methane (CH 4 ). and a gas containing CH 4 and CO 2 as the raw material mixed gas ; and a gas containing N 2 and O 2 as the raw material mixed gas. Raw material mixed gases containing CH 4 and CO 2 include biogas, landfill gas and natural gas. Moreover, air is mentioned as raw material mixed gas containing N2 and O2 . Note that biogas is a gas that is generated when a biomass raw material is brought into contact with microorganisms under anaerobic conditions and fermentation such as methane fermentation is performed by the microorganisms. Biomass raw materials include organic matter such as food waste, agricultural residue, sewage sludge, and livestock waste. Landfill gas refers to gas generated by microbial decomposition of organic matter in waste landfill sites. Biogas and landfill gas are typically composed primarily of methane and carbon dioxide.
 本実施形態でいう不純物は、原料混合ガス中に含まれる水分やダスト、高沸点成分、圧縮機から混入するオイルやオイルミスト等が挙げられる。不純物は通常有機質である。有機質の不純物としては、例えば、脂肪族炭化水素、芳香族炭化水素、含硫黄化合物、含ケイ素化合物、ケトン類、エステル類、脂肪酸などが挙げられる。これらは塩素等のハロゲンで置換されていてもよい。例えばバイオガスやランドフィルガスが原料混合ガスとして供給された分離膜モジュールにおいては、炭素数が3以上の炭化水素が挙げられ、具体的なものとしては、アセトン、4-メチル-2-ペンタノン等のケトン類;パルミチン酸などの高級脂肪酸やその塩やエステル;2-メチル-3-ブテン-2-オール等の飽和又は不飽和脂肪族アルコール;トルエン、ベンゼン、エチルベンゼン、ジメチルベンゼン、シメン等の芳香族化合物;ヘキサン、シクロヘキサン、n-オクタン、n-ノナン、2,2,4-トリメチルペンタン(イソオクタン)のような長鎖又は分岐鎖状又は環状のアルカン;チオレン、チオール類、チオエーテル類、3-メチルチオフェン等のチオフェン類、1-メチルチオプロパンといったチオアルカン類等の含硫黄化合物;ヘテロ環含有化合物;2,6-ジメチル-4-オクテン、2,6-ジメチル-1,7-ジオクタジエン、3,7-ジメチル-1,7-ジオクタジエン、5-メチル-4-ノネン、3,7-ジメチル-2-オクテン等の長鎖又は分岐鎖状の不飽和脂肪族化合物(アルケン)、3-メンテン等の飽和又は不飽和脂肪族環含有化合物、樟脳、リモネン、α-ピネン、β-ピネン等のテルペン;シロキサン等が挙げられる。また、圧縮機のオイルミストの成分としては、オイルが分解して生成する化合物として、短鎖状、長鎖状、又は分岐鎖状のアルカン;短鎖状、長鎖状、又は分岐鎖状又は環状のアルコール;短鎖状、長鎖状、分岐鎖状又は芳香族環状のエステル;短鎖状、長鎖状、又は分岐鎖状の有機酸;短鎖状、長鎖状、又は分岐鎖状のケトン類;芳香族炭化水素が挙げられる。これらはハロゲン等で置換されていてもよい。これらが中空糸膜20に付着する形態としては、中空糸膜20の表面又は膜の内部に凝縮又は吸着するなどが挙げられる。 Impurities in the present embodiment include moisture and dust contained in the raw material mixed gas, high boiling point components, oil and oil mist mixed from the compressor, and the like. Impurities are usually organic. Examples of organic impurities include aliphatic hydrocarbons, aromatic hydrocarbons, sulfur-containing compounds, silicon-containing compounds, ketones, esters, and fatty acids. These may be substituted with halogen such as chlorine. For example, in a separation membrane module in which biogas or landfill gas is supplied as a raw material mixed gas, hydrocarbons having 3 or more carbon atoms can be mentioned, and specific examples include acetone, 4-methyl-2-pentanone, and the like. ketones; higher fatty acids such as palmitic acid and salts and esters thereof; saturated or unsaturated aliphatic alcohols such as 2-methyl-3-buten-2-ol; aromatics such as toluene, benzene, ethylbenzene, dimethylbenzene, and cymene long-chain or branched-chain or cyclic alkanes such as hexane, cyclohexane, n-octane, n-nonane, 2,2,4-trimethylpentane (isooctane); thiolenes, thiols, thioethers, 3- Thiophenes such as methylthiophene, sulfur-containing compounds such as thioalkanes such as 1-methylthiopropane; heterocycle-containing compounds; 2,6-dimethyl-4-octene, 2,6-dimethyl-1,7-diotadiene, 3,7 - long-chain or branched unsaturated aliphatic compounds (alkenes) such as dimethyl-1,7-diotadiene, 5-methyl-4-nonene, 3,7-dimethyl-2-octene; saturated compounds such as 3-mentene; or terpenes such as unsaturated aliphatic ring-containing compounds, camphor, limonene, α-pinene, β-pinene; and siloxanes. Further, as components of compressor oil mist, short-chain, long-chain or branched alkanes; short-chain, long-chain or branched-chain or Cyclic alcohols; short, long, branched, or aromatic cyclic esters; short, long, or branched organic acids; short, long, or branched ketones; aromatic hydrocarbons. These may be substituted with halogen or the like. The forms in which these adhere to the hollow fiber membrane 20 include condensing or adsorbing on the surface of the hollow fiber membrane 20 or inside the membrane.
 図1に戻ると、供給ガスライン6の途中には、加熱手段61が介在配置されている。加熱手段61は主に、再生用ガスを加熱して第1ガス分離膜ユニット11及び第2ガス分離膜ユニット12に供給するために配置されている。加熱手段61は、ガス分離のための運転時に第1ガス分離膜ユニット11への供給ガスを所定の温度とするために用いてもよい。加熱手段61は、圧縮手段21の第1ガス分離膜ユニット11側に配置されていることが、第1ガス分離膜ユニット11への供給ガスの温度制御を容易にする点で好ましい。加熱手段61としては、当該技術分野においてこれまで用いられてきた手段と同様の物を用いることができ、例えば電気やガスなどを熱源とするヒーター等を用いることができる。 Returning to FIG. 1, a heating means 61 is interposed in the middle of the supply gas line 6 . The heating means 61 is mainly arranged to heat the regeneration gas and supply it to the first gas separation membrane unit 11 and the second gas separation membrane unit 12 . The heating means 61 may be used to bring the gas supplied to the first gas separation membrane unit 11 to a predetermined temperature during operation for gas separation. It is preferable that the heating means 61 be arranged on the first gas separation membrane unit 11 side of the compression means 21 in order to facilitate temperature control of the gas supplied to the first gas separation membrane unit 11 . As the heating means 61, the same means as have been used in the relevant technical field can be used. For example, a heater using electricity, gas, or the like as a heat source can be used.
 第2ガス分離膜ユニット12においては、その透過ガス排出口12cが、第2透過ガス帰還ライン17によって、供給ガスライン6における圧縮手段21の吸込側の位置と連結している。また、第2ガス分離膜ユニット12の不透過ガス排出口12bに第2不透過ガス排出ライン18を連結している。第1ガス分離膜ユニット11の透過ガス排出口11cに第1透過ガス排出ライン19を連結している。 In the second gas separation membrane unit 12 , the permeated gas discharge port 12 c is connected to the suction side of the compression means 21 in the supply gas line 6 by the second permeated gas return line 17 . A second impermeable gas discharge line 18 is connected to the impermeable gas discharge port 12 b of the second gas separation membrane unit 12 . A first permeated gas discharge line 19 is connected to the permeated gas discharge port 11 c of the first gas separation membrane unit 11 .
 以上の構成を有する本実施形態のガス分離膜システム10におけるガス分離のための運転時(以下「通常運転時」ともいう。)のガス経路について図1(a)に基づき説明する。分離対象となる原料混合ガスは、混合ガス源(図示せず)から供給ガスライン6を通じて第1ガス分離膜ユニット11に供給される。供給に先立ち、混合ガスは、圧縮手段21によって加圧され、その圧力が上昇する。 The gas path during operation for gas separation (hereinafter also referred to as "normal operation") in the gas separation membrane system 10 of this embodiment having the above configuration will be described based on FIG. 1(a). A raw material mixed gas to be separated is supplied from a mixed gas source (not shown) through a supply gas line 6 to the first gas separation membrane unit 11 . Prior to supply, the mixed gas is pressurized by compression means 21 to increase its pressure.
 図1(a)に示す通り、原料混合ガスは、分離対象となる異なる2種類のガスであるガス分離膜に対する透過速度の大きいガスA及び当該ガスAに比してガス分離膜に対して透過性に低いガスBを少なくとも含むものである。圧縮手段21によって加圧された状態の原料混合ガスが第1ガス分離膜ユニット11に供給されると、ガス分離膜に対する透過速度の相違に起因して、ガス分離膜を透過したガスである透過ガスと、ガス分離膜を透過しなかったガスである不透過ガスとに分離される。第1ガス分離膜ユニット11から排出された不透過ガスは、第1ガス分離膜ユニット11の不透過ガス排出口11bから排出され、第1不透過ガス排出ライン14を通じて第2ガス分離膜ユニット12に供給される。一方、第1ガス分離膜ユニット11からの透過ガスは、原料である混合ガスに比べてガスAが濃縮され、第1透過ガス排出ライン19を通じてシステム外へ取り出される。第1ガス分離膜ユニット11の不透過ガス排出口11bから排出された不透過ガスは、第2ガス分離膜ユニット12に導入される。第2ガス分離膜ユニット12に導入されたガスは、同ユニット12によって透過ガスと不透過ガスとに分離される。不透過ガスは、第2ガス分離膜ユニット12に導入されたガスに比べて、ガスBが更に濃縮富化されており同ユニット12の不透過ガス排出口12bから第2不透過ガス排出ライン18を通じてシステム外へ取り出される。一方、透過ガスは、第2ガス分離膜ユニット12の透過ガス排出口12cから排出され、該排出口12cに接続されている第2透過ガス帰還ライン17を経由して、供給ガスライン6における圧縮手段21の吸込側に帰還される。帰還された透過ガスは、原料混合ガスと混合された後に、圧縮手段21によって加圧される。 As shown in FIG. 1( a ), the raw material mixed gas is two different types of gases to be separated, which are the gas A having a high permeation rate through the gas separation membrane and the permeation through the gas separation membrane compared to the gas A. It contains at least the gas B with low polarities. When the raw material mixed gas pressurized by the compression means 21 is supplied to the first gas separation membrane unit 11, due to the difference in the permeation speed with respect to the gas separation membrane, the permeation gas, which is the gas that has permeated the gas separation membrane, It is separated into a gas and an impermeable gas, which is the gas that did not permeate the gas separation membrane. The impermeable gas discharged from the first gas separation membrane unit 11 is discharged from the impermeable gas discharge port 11b of the first gas separation membrane unit 11, and passes through the first impermeable gas discharge line 14 to the second gas separation membrane unit 12. supplied to On the other hand, in the permeated gas from the first gas separation membrane unit 11 , the gas A is more concentrated than the raw material mixed gas, and is taken out of the system through the first permeated gas discharge line 19 . The impermeable gas discharged from the impermeable gas outlet 11 b of the first gas separation membrane unit 11 is introduced into the second gas separation membrane unit 12 . The gas introduced into the second gas separation membrane unit 12 is separated into a permeable gas and an impermeable gas by the same unit 12 . In the impermeable gas, the gas B is further concentrated and enriched compared to the gas introduced into the second gas separation membrane unit 12, and the second impermeable gas discharge line 18 is discharged from the impermeable gas discharge port 12b of the same unit 12. It is taken out of the system through On the other hand, the permeated gas is discharged from the permeated gas outlet 12c of the second gas separation membrane unit 12 and is compressed in the supply gas line 6 via the second permeated gas return line 17 connected to the outlet 12c. It is fed back to the suction side of means 21 . The returned permeated gas is pressurized by the compression means 21 after being mixed with the raw material mixed gas.
 上記の通常運転が一定時間経過すると、原料混合ガス中の有機質不純物が第1ガス分離膜ユニット11及び第2ガス分離膜ユニット12に付着することにより、第1ガス分離膜ユニット11及び第2ガス分離膜ユニット12のガス透過性能が低下する。この際に、再生用ガスを加熱手段61にて加熱して第1ガス分離膜ユニット11及び第2ガス分離膜ユニット12に流通させることにより、第1ガス分離膜ユニット11及び第2ガス分離膜ユニット12から有機質不純物を揮発させて除去し、透過性能を回復させる。 After the above normal operation has passed for a certain period of time, the organic impurities in the raw material mixed gas adhere to the first gas separation membrane unit 11 and the second gas separation membrane unit 12, so that the first gas separation membrane unit 11 and the second gas The gas permeation performance of the separation membrane unit 12 is lowered. At this time, by heating the regeneration gas with the heating means 61 and circulating it through the first gas separation membrane unit 11 and the second gas separation membrane unit 12, the first gas separation membrane unit 11 and the second gas separation membrane unit 12 are Organic impurities are volatilized and removed from the unit 12 to restore the permeation performance.
 図1に示すガス分離膜システム10におけるガス分離膜の再生時の再生用ガスの流通経路を図1(b)に示す。図1(a)及び図1(b)に示す通り、図1に示すガス分離膜システム10では、ガス分離膜の再生用のガスの流通経路は、図1(a)の通常運転時の分離対象ガスのガス流通経路と同様である。再生用ガスは、原料混合ガスと同じものを用いてもよく、異なっていてもよい。再生用ガスとしては、バイオガス、ランドフィルガス、空気、窒素、天然ガス等が挙げられる。再生用ガスとして、窒素、空気、ガス分離のための運転時の原料混合ガスを用いることは、特に再生用ガスの調達容易性の点で好ましい。また第1ガス分離膜ユニット11のガス分離膜が40℃での分離選択性P’O2/P’N2が4~8、特に好ましくは5~7であるポリイミド膜である場合に再生用ガスとして空気を用いる事が、適量の再生用ガスが第1ガス分離膜ユニット11のガス分離膜を透過して同ユニット11のガス分離膜の透過側に付着した不純物を除去しつつ、第2ガス分離膜ユニット12にも十分量の不透過ガスを確実に送って第2ガス分離膜ユニット12の再生効率を高められる点で好ましい。なお、この場合に第2ガス分離膜ユニット12の再生効率の点から、第2ガス分離膜ユニット12を構成するガス分離膜は、40℃でのP’O2/P’N2が4~8であることが好ましい。例えば後述する実施例は分離選択性をこれらの範囲としたポリイミド膜を用いている。なお上記のP’とは、ガスの膜に対する単位膜面積・単位時間・単位分圧差あたりの透過体積である透過速度のことであり、単位は、(×10-5cm(STP)/cm・sec・cmHg)で表される。
 また、再生用ガスとして当該ガス分離膜システム外の別モジュールの透過ガスを用いないことがシステムの複雑化を防止するために好ましい。ただし、ここでいう「再生用ガスとして別モジュールの透過ガスを用いない」とは、再生用ガスをガス分離膜システム内で最初に流通させるユニットに対して、当該ガス分離膜システム外の別モジュールの透過ガスを用いないという意味である。このため、「再生用ガスとして別モジュールの透過ガスを用いない」ことは、図1のシステムにおいて、第2ガス分離膜ユニット12から還流される透過ガスが第1ガス分離膜ユニット11を流通する場合を許容する。なお、再生用ガスはガス分離膜によって透過ガス及び不透過ガスとして分離されることにより、システム導入当初からガス組成が異なりうる。また、本再生方法は、再生用ガスとして、ガス分離膜システム内の同一モジュールの透過ガスを用いるものでないことも好ましい。本発明はガス分離膜モジュールをガス分離用システム内に配置した状態で再生するものである。
FIG. 1(b) shows the flow path of regeneration gas during regeneration of the gas separation membrane in the gas separation membrane system 10 shown in FIG. As shown in FIGS. 1(a) and 1(b), in the gas separation membrane system 10 shown in FIG. It is the same as the gas distribution route of the target gas. The regeneration gas may be the same as the raw material mixed gas, or may be different. Examples of regenerative gases include biogas, landfill gas, air, nitrogen, and natural gas. It is preferable to use nitrogen, air, and a raw material mixed gas during operation for gas separation as the regeneration gas, particularly from the viewpoint of ease of procurement of the regeneration gas. Further, when the gas separation membrane of the first gas separation membrane unit 11 is a polyimide membrane having a separation selectivity P'O2 / P'N2 at 40°C of 4 to 8, particularly preferably 5 to 7, By using air, an appropriate amount of regeneration gas permeates the gas separation membrane of the first gas separation membrane unit 11 to remove impurities adhering to the permeation side of the gas separation membrane of the same unit 11, while separating the second gas. This is preferable in that a sufficient amount of impermeable gas can be reliably sent to the membrane unit 12 to increase the regeneration efficiency of the second gas separation membrane unit 12 . In this case, from the viewpoint of regeneration efficiency of the second gas separation membrane unit 12, the gas separation membranes constituting the second gas separation membrane unit 12 have a P'O2 / P'N2 ratio of 4 to 8 at 40°C. Preferably. For example, the examples described later use polyimide membranes having separation selectivities within these ranges. The above P′ is the permeation rate, which is the permeation volume per unit membrane area, unit time, and unit partial pressure difference with respect to the membrane of gas, and the unit is (×10 −5 cm 3 (STP)/cm 2 ·sec·cmHg).
In order to prevent complication of the system, it is preferable not to use the permeated gas of another module outside the gas separation membrane system as the regeneration gas. However, "not using the permeated gas of another module as the regeneration gas" here means that the regeneration gas is first circulated in the gas separation membrane system, and another module outside the gas separation membrane system is used. This means that no permeating gas is used. For this reason, "not using the permeated gas from another module as regeneration gas" means that in the system of FIG. allow the case. Incidentally, the regeneration gas is separated into a permeable gas and an impermeable gas by the gas separation membrane, so that the gas composition may differ from the beginning of the introduction of the system. It is also preferable that the present regeneration method does not use the permeated gas of the same module in the gas separation membrane system as the regeneration gas. The present invention regenerates a gas separation membrane module while it is placed in a gas separation system.
 本発明では、供給ガスライン6に導入されたガス分離膜再生用のガスを、加熱手段61を用い、ガス分離のための運転時の温度T1より10℃以上80℃以下高い温度に加熱した後、第1ガス分離膜ユニット及び第2ガス分離膜ユニットに流通させる。ここでいうガス分離のための運転時の温度T1とは、ガス分離のための運転時に第1ガス分離膜ユニット11に導入される際の分離対象ガス(ここでは原料混合ガスと帰還ガスの混合ガス)の温度とする。本発明では以後に説明するどの形態であっても、ガス分離膜ユニット11~13の何れかに再生用ガスが最初に導入される時点でのガス温度と、上記T1との差が10℃以上80℃以下である。
 本形態において、再生用のガスは、加熱手段61により、ガス分離のための運転時(通常運転時)ガス温度T1に比して10℃以上80℃以下高い温度とした状態で第1ガス分離膜ユニット11に導入される。以下では第1ガス分離膜ユニット11に導入される再生用ガスの温度をT2、第2ガス分離膜ユニット12に導入される再生用ガスの温度をT4とも記載する。
 温度T2は、図1、図3の形態において、第1ガス分離膜ユニット11のガス入口における再生用ガスの温度である。(T2-T1)を10℃以上とすることでガス分離膜の再生効率が高まり、(T2-T1)を80℃以下とすることで加熱手段の、通常運転時に要する熱量に対する過剰容量化を防ぐといった利点がある。この観点から、(T2-T1)は20℃以上80℃以下とすることがより好ましく、30℃以上80℃以下とすることが特に好ましい。T1は通常5℃以上60℃以下であることが好ましい。
 T2は通常40℃以上120℃以下であることが好ましい。
 本発明者は2段以上の所定のガス分離膜システムで高温のガスを流通させると、ガス分離膜自体を加熱せずとも良好な再生効率が得られることを見出した。
In the present invention, the gas for regeneration of the gas separation membrane introduced into the supply gas line 6 is heated to a temperature higher by 10° C. or more and 80° C. or less than the operating temperature T1 for gas separation using the heating means 61. , the first gas separation membrane unit and the second gas separation membrane unit. The temperature T1 during operation for gas separation here means the separation target gas (here, the mixture of the raw material mixed gas and the return gas) when introduced into the first gas separation membrane unit 11 during the operation for gas separation. gas) temperature. In the present invention, regardless of the form described below, the difference between the gas temperature at the time when the regeneration gas is first introduced into any of the gas separation membrane units 11 to 13 and the above T1 is 10° C. or more. 80°C or less.
In this embodiment, the gas for regeneration is heated by the heating means 61 to a temperature higher by 10° C. or more and 80° C. or less than the gas temperature T1 during operation (during normal operation) for gas separation. It is introduced into the membrane unit 11 . Hereinafter, the temperature of the regeneration gas introduced into the first gas separation membrane unit 11 is also referred to as T2, and the temperature of the regeneration gas introduced into the second gas separation membrane unit 12 is also referred to as T4.
The temperature T2 is the temperature of the regeneration gas at the gas inlet of the first gas separation membrane unit 11 in the embodiments of FIGS. By setting (T2-T1) to 10°C or higher, the regeneration efficiency of the gas separation membrane is increased, and by setting (T2-T1) to 80°C or lower, the heating means prevents an excessive amount of heat required during normal operation. There are advantages such as From this point of view, (T2-T1) is more preferably 20°C or higher and 80°C or lower, and particularly preferably 30°C or higher and 80°C or lower. Preferably, T1 is usually 5°C or higher and 60°C or lower.
T2 is preferably 40° C. or higher and 120° C. or lower.
The present inventors have found that good regeneration efficiency can be obtained without heating the gas separation membranes themselves by circulating a high-temperature gas in a predetermined gas separation membrane system with two or more stages.
 更に、本実施形態において、再生用ガスを一定以下の圧力で第1ガス分離膜ユニット11に供給して不純物を除去することが好ましい。図1の形態において、第1ガス分離膜ユニット11に供給される再生用ガスの圧力は、第1ガス分離膜ユニットおよび第2ガス分離膜ユニットへ再生用ガスを確実に流通させるための圧力を確保し、一方で高圧化に伴うエネルギー増加を防ぐ理由から、0.2MPaG以上1.4MPaG以下がより好ましく、0.3MPaG以上1.2MPaG以下が更に好ましい。なお第2ガス分離膜ユニット12における供給圧力も同様の範囲であってよい(以下、他の形態においても同様である)。 Furthermore, in the present embodiment, it is preferable to remove impurities by supplying the regeneration gas to the first gas separation membrane unit 11 at a pressure below a certain level. In the embodiment of FIG. 1, the pressure of the regeneration gas supplied to the first gas separation membrane unit 11 is a pressure for reliably circulating the regeneration gas to the first gas separation membrane unit and the second gas separation membrane unit. 0.2 MPaG or more and 1.4 MPaG or less is more preferable, and 0.3 MPaG or more and 1.2 MPaG or less is still more preferable, for the reason of securing and preventing an increase in energy accompanying high pressure. The supply pressure in the second gas separation membrane unit 12 may be in the same range (the same applies to other embodiments hereinafter).
 再生時において、2番目に再生用ガスが流入するユニット(本形態では第2ガス分離膜ユニット12)へのガス供給量S2は、1番目に再生用ガスが流入するユニット(本形態では第1ガス分離膜ユニット11)へのガス供給量S1に対する比S2/S1が10%以上であることが第1ガス分離膜ユニット11と第2ガス分離膜ユニット12とを同時に再生する効果を高める点で好ましく、20%以上であることがより好ましく、30%以上であることが更に好ましい。またS2/S1の比率は95%以下、或いは90%以下であってもよい。 During regeneration, the gas supply amount S2 to the unit into which the regeneration gas flows second (in this embodiment, the second gas separation membrane unit 12) is the unit into which the regeneration gas flows first (in this embodiment, the first unit). The ratio S2/S1 to the gas supply amount S1 to the gas separation membrane unit 11) is 10% or more in terms of enhancing the effect of simultaneously regenerating the first gas separation membrane unit 11 and the second gas separation membrane unit 12. It is preferably 20% or more, more preferably 30% or more. Also, the S2/S1 ratio may be 95% or less, or 90% or less.
 また再生時において、第2ガス分離膜ユニット12の透過ガスの第1ガス分離膜ユニット11へのガス帰還量S4は、第2ガス分離膜ユニット12へのガス供給量S2に対する比S4/S2が90%以下であることが帰還ガスによる圧縮手段21等への負荷を抑制する点で好ましく、80%以下であることがより好ましい。またS4/S2の比率は0%であってもよいが、第2ガス分離膜ユニット12の透過ガスを第1ガス分離膜ユニット11に還流させる場合は10%以上、或いは20%以上であってもよい。 Further, during regeneration, the gas return amount S4 of the permeating gas of the second gas separation membrane unit 12 to the first gas separation membrane unit 11 has a ratio S4/S2 to the gas supply amount S2 to the second gas separation membrane unit 12. It is preferably 90% or less, more preferably 80% or less, from the viewpoint of suppressing the load on the compression means 21 and the like due to the return gas. The S4/S2 ratio may be 0%, but when the permeating gas of the second gas separation membrane unit 12 is returned to the first gas separation membrane unit 11, it may be 10% or more, or 20% or more. good too.
 2段のシステムにおいて、再生時において、2番目に再生用ガスが流入するユニット(本形態では第2ガス分離膜ユニット12)へのガス供給圧力G2は、1番目に再生用ガスが流入するユニット(本形態では第1ガス分離膜ユニット11)へのガス供給圧力G1に対する比G2/G1が10%以上であることが、第1ガス分離膜ユニット11と第2ガス分離膜ユニット12とを同時に再生する効果を高める点で好ましく、20%以上であることがより好ましく、50%以上であることが更に好ましい。G2/G1は95%以下、或いは90%以下であってもよい。 In the two-stage system, during regeneration, the gas supply pressure G2 to the unit into which the regeneration gas flows second (the second gas separation membrane unit 12 in this embodiment) is the same as the unit into which the regeneration gas flows first. The ratio G2/G1 to the gas supply pressure G1 to (in this embodiment, the first gas separation membrane unit 11) is 10% or more. It is preferable from the point of enhancing the effect of regeneration, more preferably 20% or more, and even more preferably 50% or more. G2/G1 may be 95% or less, or 90% or less.
 再生時において、ユニット11~13のうち1番目に再生用ガスが流入するユニット(本形態では第1ガス分離膜ユニット11)へのガス供給量としては、第1ガス分離膜ユニット11及び第2ガス分離膜ユニット12を同時に再生する効果を高める点で、通常運転時の10%以上とすることが好適に挙げられ、20%以上がより好ましい。 At the time of regeneration, the amount of gas supplied to the unit into which the regeneration gas flows first among the units 11 to 13 (the first gas separation membrane unit 11 in this embodiment) is the first gas separation membrane unit 11 and the second gas separation membrane unit 11. From the viewpoint of enhancing the effect of simultaneously regenerating the gas separation membrane unit 12, it is preferably 10% or more, more preferably 20% or more, of the normal operation.
 本方法での再生時間は2つのユニットを効率良く再生させる観点から、例えば10分以上が好適であり、20分以上がより好適である。 From the viewpoint of efficiently reproducing the two units, the reproduction time in this method is preferably 10 minutes or longer, and more preferably 20 minutes or longer.
 本実施形態では、図1(b)に示す通り、加熱手段61で加熱した再生用ガスを直ちに第1ガス分離膜ユニット11に流通でき、第1ガス分離膜ユニット11のガス分離膜に加熱した再生用ガスを接触させることにより、ガス分離膜に付着した有機質不純物を揮発させる。揮発した有機質不純物には、ガス分離膜システムを透過しにくいものが存在する。従って、第1ガス分離膜ユニット11のガス分離膜に付着した有機質不純物の揮発物は一定の割合が不透過ガスに随伴されて第2ガス分離膜ユニット12に導入される。第1ガス分離膜ユニット11から排出された不透過ガスが第2ガス分離膜ユニット12のガス分離膜に接触して凝縮することを防止するために、第2ガス分離膜ユニット12のガス分離膜を加熱した状態で第1ガス分離膜ユニット11の不透過ガスを第2ガス分離膜ユニット12に導入してもよいが、本発明ではそのような分離膜の予熱なしにガス分離膜の透過性の回復が可能である。 In this embodiment, as shown in FIG. 1(b), the regeneration gas heated by the heating means 61 can be immediately circulated to the first gas separation membrane unit 11, and the gas separation membrane of the first gas separation membrane unit 11 is heated. By contacting the gas for regeneration, the organic impurities adhering to the gas separation membrane are volatilized. Some of the volatilized organic impurities are difficult to permeate the gas separation membrane system. Therefore, a certain proportion of the organic impurity volatiles adhering to the gas separation membranes of the first gas separation membrane unit 11 is introduced into the second gas separation membrane unit 12 along with the impermeable gas. In order to prevent the impermeable gas discharged from the first gas separation membrane unit 11 from contacting the gas separation membrane of the second gas separation membrane unit 12 and condensing, the gas separation membrane of the second gas separation membrane unit 12 Although the impermeable gas of the first gas separation membrane unit 11 may be introduced into the second gas separation membrane unit 12 in a heated state, in the present invention, the permeability of the gas separation membrane is improved without such preheating of the separation membrane. recovery is possible.
 また揮発した有機質不純物がガス分離膜の透過ガスに含有される場合が存在する。この場合、第1ガス分離膜ユニット11の透過ガス排出ライン19から透過ガスが取り出されるとともに、第2ガス分離膜ユニット12の透過ガスは第2透過ガス帰還ライン17を経由して供給ガスライン6に帰還される。第2透過ガス帰還ライン17や供給ガスライン6における圧縮手段21とライン17の合流地点の間、或いは圧縮手段21と加熱手段61の間に活性炭等を用いたフィルタ(不図示)等を介在配置させることで、透過ガス排出口12cから排出された透過ガスが供給ガスライン6に帰還するまでに当該透過ガス中に含まれる有機質不純物を除去するようにしてもよい。 In addition, there are cases where volatilized organic impurities are contained in the permeated gas of the gas separation membrane. In this case, the permeated gas is taken out from the permeated gas discharge line 19 of the first gas separation membrane unit 11, and the permeated gas of the second gas separation membrane unit 12 is sent through the second permeated gas return line 17 to the supply gas line 6. is returned to A filter (not shown) using activated carbon or the like is interposed between the second permeated gas return line 17 and the confluence point of the compression means 21 and the line 17 in the supply gas line 6, or between the compression means 21 and the heating means 61. By the time the permeate gas discharged from the permeate gas discharge port 12 c returns to the supply gas line 6 , the organic impurities contained in the permeate gas may be removed.
 以上の通り、図1に示す実施形態は、再生用のラインを設置せずとも第1ガス分離膜ユニット11及び第2ガス分離膜ユニット12の分離膜の再生を図ることが可能である。 As described above, in the embodiment shown in FIG. 1, it is possible to regenerate the separation membranes of the first gas separation membrane unit 11 and the second gas separation membrane unit 12 without installing a regeneration line.
 図1(b)に示すように、第2ガス分離膜ユニット12に導入される際の再生用ガスの温度T4は、ガス分離のための運転時(通常運転時)において第2ガス分離膜ユニット12のガス入口に導入される分離対象ガスの温度T3との差(T4-T3)が20℃以上80℃以下であることが好ましく、30℃以上80℃以下であることがより好ましい。T3は通常5℃以上60℃以下であることが好ましく、T4は40℃以上120℃以下が好ましい。本実施形態において、T4は第2ガス分離膜ユニット12のガス入口に導入される際の再生用ガスの温度である。
 また、第2ガス分離膜ユニット12のガス入口に導入される際の再生用ガスの温度T4は、ガス分離のための運転時(通常運転時)において第1ガス分離膜ユニット11のガス入口に導入される分離対象ガスの温度T1との差(T4-T1)及び第2ガス分離膜ユニット12のガス入口に導入される分離対象ガスの温度T3とT2の差(T2-T3)もそれぞれ、20℃以上80℃以下であることが好ましく、30℃以上80℃以下であることがより好ましい。
As shown in FIG. 1(b), the temperature T4 of the regeneration gas when introduced into the second gas separation membrane unit 12 is the same as that of the second gas separation membrane unit during operation for gas separation (during normal operation). The difference (T4-T3) from the temperature T3 of the gas to be separated introduced into the 12 gas inlets is preferably 20°C or higher and 80°C or lower, more preferably 30°C or higher and 80°C or lower. T3 is usually preferably 5°C or higher and 60°C or lower, and T4 is preferably 40°C or higher and 120°C or lower. In this embodiment, T4 is the temperature of the regeneration gas when it is introduced into the gas inlet of the second gas separation membrane unit 12 .
In addition, the temperature T4 of the regeneration gas when introduced into the gas inlet of the second gas separation membrane unit 12 is equal to that at the gas inlet of the first gas separation membrane unit 11 during operation for gas separation (during normal operation). The difference (T4-T1) between the temperature T1 of the separation target gas introduced and the difference (T2-T3) between the temperatures T3 and T2 of the separation target gas introduced into the gas inlet of the second gas separation membrane unit 12 are also The temperature is preferably 20° C. or higher and 80° C. or lower, and more preferably 30° C. or higher and 80° C. or lower.
 本実施形態の利点としては再生用ラインを設置する必要がない点に加えて、第1ガス分離膜ユニットおよび第2ガス分離膜ユニットをガス分離膜システムから取り外して個別に再生する場合に比べて、再生用の高温ガスを第1ガス分離膜ユニットと第2ガス分離膜ユニットとで共有できるために、再生用ガスの昇温に必要な加熱手段の熱量を抑えられるという利点が挙げられる。 As an advantage of this embodiment, in addition to the fact that it is not necessary to install a regeneration line, compared to the case where the first gas separation membrane unit and the second gas separation membrane unit are removed from the gas separation membrane system and individually regenerated Since the high-temperature gas for regeneration can be shared between the first gas separation membrane unit and the second gas separation membrane unit, there is an advantage that the amount of heat required for heating the regeneration gas can be suppressed.
 次に、図3に基づき、本発明の別の実施形態を説明する。図3において、図1に示す構成と同じ構成については同じ符号を付している。図3の形態において、図1の形態と異なる点について主に説明し、図1と同様の点については説明を省略する。 Next, another embodiment of the present invention will be described based on FIG. In FIG. 3, the same reference numerals are assigned to the same configurations as those shown in FIG. In the embodiment of FIG. 3, differences from the embodiment of FIG. 1 will be mainly described, and descriptions of the same points as those of FIG. 1 will be omitted.
 図3の形態では、第2透過ガス帰還ライン17から分岐する第2透過ガス排出ライン22を設け、第2ガス分離膜ユニット12に前記再生用のガスが導入される際、第2ガス分離膜ユニット12の透過ガスが供給ガスライン6に帰還せずに前記第2透過ガス排出ライン22を通じてシステム外に排出されるようになされている。 In the embodiment of FIG. 3, a second permeated gas discharge line 22 branched from the second permeated gas return line 17 is provided so that when the regeneration gas is introduced into the second gas separation membrane unit 12, the second gas separation membrane The permeated gas from the unit 12 is discharged out of the system through the second permeated gas discharge line 22 without returning to the supply gas line 6 .
 第2透過ガス排出ライン22は、図3に示すように、第2透過ガス帰還ライン17における、透過ガス排出口12cから供給ガスライン6に至る途中の位置22a(以下「分岐点」ともいう。)から分岐する分岐ラインである。これにより、第2ガス分離膜ユニット12から排出された透過ガスの流通経路の切り替えが容易であるために好ましい。ガス分離のための運転時には、第2透過ガス帰還ライン17のガスは第2透過ガス排出ライン22に流入せず(図3(a))、再生時に、第2透過ガス帰還ライン17と第2透過ガス排出ライン22が導通して、分岐点22aにおいて、第2ガス分離膜ユニット12から排出された透過ガスが第2透過ガス排出ライン22に導入されるようになされている。再生時、第2ガス分離膜ユニット12から排出された透過ガスはすべて第2透過ガス排出ライン22に導入されることが好ましい。このような切り替えは分岐点22aにおける不図示のバルブを用いてなされる。第2透過ガス排出ライン22はシステム外と第2透過ガス帰還ライン17の途中位置とを連結する。本明細書中、すべてとは意図的な例外がないことを意味し、不可避的な例外は許容される趣旨である。 As shown in FIG. 3, the second permeated gas discharge line 22 is located at a position 22a in the second permeated gas return line 17 from the permeated gas discharge port 12c to the supply gas line 6 (hereinafter also referred to as a "branch point"). ) is a branch line branching from This is preferable because it facilitates switching of the flow path of the permeated gas discharged from the second gas separation membrane unit 12 . During operation for gas separation, the gas in the second permeated gas return line 17 does not flow into the second permeated gas discharge line 22 (FIG. 3(a)), and during regeneration, the second permeated gas return line 17 and the second The permeated gas discharge line 22 is conducted so that the permeated gas discharged from the second gas separation membrane unit 12 is introduced into the second permeated gas discharge line 22 at a branch point 22a. During regeneration, it is preferable that all the permeated gas discharged from the second gas separation membrane unit 12 is introduced into the second permeated gas discharge line 22 . Such switching is performed using a valve (not shown) at the branch point 22a. The second permeated gas discharge line 22 connects the outside of the system and the middle position of the second permeated gas return line 17 . In this specification, all means no intentional exceptions, and the intention is that unavoidable exceptions are permitted.
 上述した通り、第2ガス分離膜ユニット12からの透過ガスは、図3(a)に示すようにガス分離のための運転時には、第2透過ガス排出ライン22を流通せずに第2透過ガス帰還ライン17を通じて供給ガスライン6に帰還させる。図3(a)に示すように、ガス分離のための運転時の分離対象ガスの流通経路は図1の形態と同様である。一方、図3(b)に示すように再生時には、第2ガス分離膜ユニット12からの透過ガスは、第2透過ガス排出ライン22から排出されることにより、供給ガスライン6に帰還せずにシステム外に排出されるようになされている。 As described above, the permeated gas from the second gas separation membrane unit 12 does not flow through the second permeated gas discharge line 22 during operation for gas separation as shown in FIG. It is returned to the feed gas line 6 through the return line 17 . As shown in FIG. 3(a), the flow path of the gas to be separated during operation for gas separation is the same as in the embodiment of FIG. On the other hand, as shown in FIG. 3(b), during regeneration, the permeated gas from the second gas separation membrane unit 12 is discharged from the second permeated gas discharge line 22 without returning to the supply gas line 6. It is designed to be discharged outside the system.
 以上の図3の形態によれば、ガス分離膜の再生時には、第2ガス分離膜ユニット12のガス分離膜に付着状態から揮発して第2ガス分離膜ユニット12の透過ガス中に含まれるようになった有機質不純物を、供給ガスライン6に帰還させずに、第2透過ガス排出ライン22を通じてシステム外へ直ちに除去できる。
 従って、本実施形態では図1の形態に比して、再生時間や再生に必要な圧縮機動力等を低減しながら、より効率的に第1ガス分離膜ユニット11及び第2ガス分離膜ユニット12におけるガス分離膜の再生を図ることができる点で好ましい。
According to the embodiment of FIG. 3 described above, when the gas separation membrane is regenerated, it volatilizes from the state attached to the gas separation membrane of the second gas separation membrane unit 12 and is contained in the permeated gas of the second gas separation membrane unit 12. The organic impurities that have become solidified can be immediately removed out of the system through the second permeated gas discharge line 22 without returning to the supply gas line 6 .
Therefore, in this embodiment, the first gas separation membrane unit 11 and the second gas separation membrane unit 12 are more efficiently operated while reducing the regeneration time, the compressor power required for regeneration, etc., as compared with the embodiment of FIG. It is preferable in that it is possible to regenerate the gas separation membrane in.
 また本実施形態を採用することは供給ガスライン6や、圧縮手段と加熱手段の間の位置に介在配置するフィルタ(不図示)に対する、第2透過ガス帰還ライン17を経由して帰還した不純物含有再生用ガスによる負荷を低減させる点でも好ましい。 In addition, by adopting this embodiment, the impurity-containing gas fed back via the second permeated gas return line 17 to the supply gas line 6 and the filter (not shown) interposed between the compression means and the heating means. It is also preferable in terms of reducing the load of the regeneration gas.
 例えば第2ガス分離膜ユニット12の再生時において、有機質不純物が第2ガス分離膜ユニット12のガス分離膜の透過ガスに含有される傾向が高い場合、ライン22を採用するメリットが大きくなる。有機質不純物が第2ガス分離膜ユニット12のガス分離膜の透過ガスに含有されるか不透過ガスに含有されるかは、ガス分離のための運転時の原料混合ガスの種類や、再生用ガスの種類、再生用ガスの温度、不純物の種類に依存する。図3のようにライン22を有する形態で再生時に有機質不純物が第2ガス分離膜ユニット12のガス分離膜の透過ガスに含有される傾向が高い再生用ガスとしては、空気が挙げられる。 For example, when regenerating the second gas separation membrane unit 12, if there is a high tendency for organic impurities to be contained in the gas permeating the gas separation membrane of the second gas separation membrane unit 12, the advantage of adopting the line 22 increases. Whether the organic impurities are contained in the permeating gas of the gas separation membrane of the second gas separation membrane unit 12 or in the impermeable gas depends on the type of raw material mixed gas during operation for gas separation and the regeneration gas. type, the temperature of the regeneration gas, and the type of impurities. As a regeneration gas having a line 22 as shown in FIG. 3, there is a high tendency for organic impurities to be contained in the gas permeating the gas separation membrane of the second gas separation membrane unit 12 during regeneration.
 なお、図3以降の形態において、T1~T4のそれぞれ好ましい範囲及びT2-T1、T4-T3、T4-T1及びT2-T3それぞれの好ましい範囲はいずれも図1の形態と同様である。また、図3の形態において、第1ガス分離膜ユニット11に供給される再生用ガスの圧力は、第1ガス分離膜ユニットおよび第2ガス分離膜ユニットへ再生用ガスを確実に流通させるための圧力を確保し、一方で高圧化に伴うエネルギー増加を防ぐ理由から、0.2MPaG以上1.4MPaG以下がより好ましく、0.3MPaG以上1.2MPaG以下が更に好ましい。 3 and subsequent figures, the preferred ranges of T1 to T4 and the preferred ranges of T2-T1, T4-T3, T4-T1 and T2-T3 are all the same as in the form of FIG. In addition, in the embodiment of FIG. 3, the pressure of the regeneration gas supplied to the first gas separation membrane unit 11 is set to ensure the circulation of the regeneration gas to the first gas separation membrane unit and the second gas separation membrane unit. In order to secure the pressure and prevent an increase in energy due to high pressure, it is more preferably 0.2 MPaG or more and 1.4 MPaG or less, and still more preferably 0.3 MPaG or more and 1.2 MPaG or less.
 更に図1、図3に示す形態に換えて、図4に示す形態も挙げられる。図4において、図3に示す構成と同じ構成については同じ符号を付している。図4の形態において、図1、図3の形態と異なる点について主に説明し、図1、図3の形態と同様の点については説明を省略する。 Furthermore, instead of the forms shown in FIGS. 1 and 3, the form shown in FIG. 4 can also be used. In FIG. 4, the same reference numerals are assigned to the same configurations as those shown in FIG. In the embodiment of FIG. 4, differences from the embodiments of FIGS. 1 and 3 will be mainly described, and description of the same points as those of the embodiments of FIGS. 1 and 3 will be omitted.
 図4の形態では、上述した第2透過ガス排出ライン22に加えて第1バイパスライン23と第1入口ガス排出ライン24とを有する。
 第1バイパスライン23は、供給ガスライン6における加熱手段61の第1ガス分離膜ユニット11側の位置と、第2不透過ガス排出ライン18とを連結する。また、第1入口ガス排出ライン24は、供給ガスライン6の第1バイパスライン23の連結箇所23aよりも第1ガス分離膜ユニット11側で、供給ガスライン6から分岐する。第1入口ガス排出ライン24はシステム外と供給ガスライン6とを連結するラインである。
The embodiment of FIG. 4 has a first bypass line 23 and a first inlet gas discharge line 24 in addition to the second permeated gas discharge line 22 described above.
The first bypass line 23 connects the position of the heating means 61 in the supply gas line 6 on the first gas separation membrane unit 11 side and the second impermeable gas discharge line 18 . The first inlet gas discharge line 24 branches off from the supply gas line 6 on the first gas separation membrane unit 11 side of the connection point 23 a of the first bypass line 23 of the supply gas line 6 . The first inlet gas discharge line 24 is a line that connects the outside of the system and the supply gas line 6 .
 図4の形態によれば、図4(a)に示すように、ガス分離のための運転時(通常運転時)には供給ガスライン6から第1バイパスライン23及び第1入口ガス排出ライン24にガスが流入されないようになされている。一方、図4(b)に示す通り、再生時には供給ガスライン6から第1バイパスライン23にガスが流入されて、供給ガスライン6における第1バイパスライン23との連結箇所23aよりも分離対象ガス流通方向の第1ガス分離膜ユニット11側にガスが流通しないようになされている。このガス流通経路の切り替えは、第1バイパスライン23と供給ガスライン6との連結箇所23aに配置された不図示のバルブによってなされる。 According to the embodiment of FIG. 4, as shown in FIG. 4(a), during operation for gas separation (during normal operation), from the supply gas line 6 to the first bypass line 23 and the first inlet gas discharge line 24 gas is prevented from flowing into the On the other hand, as shown in FIG. 4B, during regeneration, gas flows from the supply gas line 6 into the first bypass line 23, and the gas to be separated flows from the connection point 23a of the supply gas line 6 with the first bypass line 23. Gas is prevented from flowing to the first gas separation membrane unit 11 side in the direction of flow. This switching of the gas flow path is performed by a valve (not shown) arranged at the connection point 23 a between the first bypass line 23 and the supply gas line 6 .
 また供給ガスライン6における、第1入口ガス排出ライン24の連結箇所24a(以下「分岐点24a」ともいう。)においては、上述した通り、通常運転時には供給ガスライン6からのガスが第1入口ガス排出ライン24内に流入しないが(図4(a))、再生時には、供給ガスライン6における連結箇所24aの第1ガス分離膜ユニット11側から第1入口ガス排出ライン24にガスが導入され、供給ガスライン6における分岐点24aから連結箇所23a側にはガスが流通しないようになされている。このガス流通経路の切り替えは、第1入口ガス排出ライン24の供給ガスライン6からの分岐点24aに配置された不図示のバルブによってなされる。 In the supply gas line 6, at the connecting point 24a of the first inlet gas discharge line 24 (hereinafter also referred to as "branch point 24a"), as described above, the gas from the supply gas line 6 flows into the first inlet during normal operation. Although it does not flow into the gas discharge line 24 (FIG. 4(a)), gas is introduced into the first inlet gas discharge line 24 from the first gas separation membrane unit 11 side of the connection point 24a in the supply gas line 6 during regeneration. , gas is prevented from flowing from the branch point 24a of the supply gas line 6 to the connection point 23a. This switching of the gas flow path is performed by a valve (not shown) arranged at a branch point 24 a of the first inlet gas discharge line 24 from the supply gas line 6 .
 以上の構成により、図4(a)に示す通り、通常運転時には、分離対象ガスは図1及び図3と同様のガス流通経路を通る。つまり、供給ガスライン6を流通し圧縮手段21により加圧された分離対象ガスは、第1バイパスライン23を通らずに、第1ガス分離膜ユニット11に導入されるようになされている。 With the above configuration, as shown in FIG. 4(a), the gas to be separated passes through the same gas flow path as in FIGS. 1 and 3 during normal operation. In other words, the gas to be separated that flows through the supply gas line 6 and is pressurized by the compression means 21 is introduced into the first gas separation membrane unit 11 without passing through the first bypass line 23 .
 一方、図4(b)に示すように、再生時には、供給ガスライン6を流通し圧縮手段21により加圧された再生用ガスは、加熱手段61により加熱された状態で、前記第1バイパスライン23を通じて第2不透過ガス排出ライン18に導入された後に、第2不透過ガス排出ライン18における第1バイパスライン23との連結箇所23bを経由し、連結箇所23bから、ライン18中を通常運転時と逆方向に流通し、第2ガス分離膜ユニット12に不透過ガス排出口12bから導入されるようになされている。 On the other hand, as shown in FIG. 4(b), during regeneration, the regeneration gas that flows through the supply gas line 6 and is pressurized by the compression means 21 is heated by the heating means 61 and flows through the first bypass line. After being introduced into the second impermeable gas discharge line 18 through 23, normal operation is performed in the line 18 from the connection point 23b via the connection point 23b with the first bypass line 23 in the second impermeable gas discharge line 18. It flows in the reverse direction and is introduced into the second gas separation membrane unit 12 from the impermeable gas discharge port 12b.
 第2ガス分離膜ユニット12の不透過ガス排出口12bから導入された再生用ガスのうち、ガス分離膜を透過したガスは透過ガス排出口12cから排出され、不透過ガスはガス入口12aから排出される。第2ガス分離膜ユニット12のガス入口12aから排出された不透過ガスは、第1不透過ガス排出ライン14を通じて不透過ガス排出口11bから第1ガス分離膜ユニット11に導入される。第1ガス分離膜ユニット11に導入された不透過ガス(再生用ガス)のうち、透過ガスは透過ガス排出口11c及び第1透過ガス排出ライン19を通じてシステム外に取り出される。一方、不透過ガスは、第1ガス分離膜ユニットのガス入口11aから排出される。第1ガス分離膜ユニットのガス入口11aから排出された不透過ガス(再生用ガス)は、供給ガスライン6から分岐している第1入口ガス排出ライン24に導入され、当該第1入口ガス排出ライン24を流通して、システム外に排出するようになされている。 Of the regeneration gas introduced from the impermeable gas outlet 12b of the second gas separation membrane unit 12, the gas that has permeated the gas separation membrane is discharged from the permeable gas outlet 12c, and the impermeable gas is discharged from the gas inlet 12a. be done. The impermeable gas discharged from the gas inlet 12 a of the second gas separation membrane unit 12 is introduced into the first gas separation membrane unit 11 from the impermeable gas discharge port 11 b through the first impermeable gas discharge line 14 . Of the impermeable gas (regeneration gas) introduced into the first gas separation membrane unit 11, the permeable gas is taken out of the system through the permeable gas outlet 11c and the first permeable gas discharge line 19. On the other hand, the impermeable gas is discharged from the gas inlet 11a of the first gas separation membrane unit. The impermeable gas (regenerating gas) discharged from the gas inlet 11a of the first gas separation membrane unit is introduced into the first inlet gas discharge line 24 branched from the supply gas line 6, and the first inlet gas is discharged. It circulates through the line 24 and is discharged outside the system.
 以上の図4の形態によれば、加熱した再生用ガスを第1ガス分離膜ユニット11及び第2ガス分離膜ユニット12を構成するガス分離膜モジュールの不透過ガス流通空間を逆流させることで、ガス分離膜モジュールにおけるガス分離膜の不透過側に付着した有機質不純物を効果的に除去できるという利点がある。第2ガス分離膜ユニット12のガス分離膜に付着した有機質不純物の揮発物を含む第2ガス分離膜ユニット12の不透過ガスが、第1ガス分離膜ユニット11のガス分離膜に接触したときに該有機質不純物が凝縮することを防止するため、第1ガス分離膜ユニット11のガス分離膜を加熱した状態で第1ガス分離膜ユニット11に再生用ガスを流通させてもよい。 According to the embodiment of FIG. 4 described above, by causing the heated regeneration gas to flow back through the impermeable gas circulation spaces of the gas separation membrane modules that constitute the first gas separation membrane unit 11 and the second gas separation membrane unit 12, There is an advantage that organic impurities adhering to the impermeable side of the gas separation membrane in the gas separation membrane module can be effectively removed. When the impermeable gas of the second gas separation membrane unit 12 containing volatile organic impurities attached to the gas separation membrane of the second gas separation membrane unit 12 contacts the gas separation membrane of the first gas separation membrane unit 11 In order to prevent the organic impurities from condensing, the regeneration gas may be passed through the first gas separation membrane unit 11 while the gas separation membranes of the first gas separation membrane unit 11 are heated.
 また本実施形態を採用することは、第2ガス分離膜ユニット12に比して第1ガス分離膜ユニット11の汚染度の方が高い場合には、再生時に第1ガス分離膜ユニット11から排出された不純物が、相対的に汚染度が低かった第2ガス分離膜ユニット12のガス分離膜に付着することを容易に防止でき、また、第2不透過ガス排出ライン18が通常運転時の製品ガス供給システム等の下流のシステムに接続されている場合には、その下流のシステムを不純物含有再生用ガスによって汚染させない点でも好ましい。 Further, by adopting this embodiment, when the degree of contamination of the first gas separation membrane unit 11 is higher than that of the second gas separation membrane unit 12, the gas is discharged from the first gas separation membrane unit 11 during regeneration. It is possible to easily prevent the impurities removed from adhering to the gas separation membrane of the second gas separation membrane unit 12, which has a relatively low degree of contamination, and the second impermeable gas discharge line 18 is the product during normal operation. When connected to a downstream system such as a gas supply system, it is also preferable in that the downstream system is not contaminated by the impurity-containing regeneration gas.
 図4の形態において第1ガス分離膜ユニット11に導入される再生用ガスの温度T2としては、第1ガス分離膜ユニット11の不透過ガス排出口に導入される再生用ガスの温度T2’を採用する。第2ガス分離膜ユニット12に導入される再生用ガスの温度T4としては、第2ガス分離膜ユニット12の不透過ガス排出口に導入される再生用ガスの温度T4’を採用する。図4の形態において、第2ガス分離膜ユニット12に供給される再生用ガスの圧力は、第1ガス分離膜ユニットおよび第2ガス分離膜ユニットへ再生用ガスを確実に流通させるための圧力を確保し、一方で高圧化に伴うエネルギー増加を防ぐ理由から、0.2MPaG以上1.4MPaG以下がより好ましく、0.3MPaG以上1.2MPaG以下が更に好ましい。 As the temperature T2 of the regeneration gas introduced into the first gas separation membrane unit 11 in the embodiment of FIG. adopt. As the temperature T4 of the regeneration gas introduced into the second gas separation membrane unit 12, the temperature T4' of the regeneration gas introduced into the impermeable gas outlet of the second gas separation membrane unit 12 is employed. In the embodiment of FIG. 4, the pressure of the regeneration gas supplied to the second gas separation membrane unit 12 is a pressure for reliably circulating the regeneration gas to the first gas separation membrane unit and the second gas separation membrane unit. 0.2 MPaG or more and 1.4 MPaG or less is more preferable, and 0.3 MPaG or more and 1.2 MPaG or less is still more preferable, for the reason of securing and preventing an increase in energy accompanying high pressure.
 また図1、図3及び図4の形態に換えて、図5の形態を採用してもよい。
 図5において、図4に示す構成と同じ構成については同じ符号を付している。図5の形態において、図1、図3、図4の形態と異なる点について主に説明し、図1、図3、図4の形態と同様の点については説明を省略する。
Also, instead of the forms shown in FIGS. 1, 3 and 4, the form shown in FIG. 5 may be employed.
In FIG. 5, the same reference numerals are assigned to the same configurations as those shown in FIG. In the embodiment of FIG. 5, differences from the embodiments of FIGS. 1, 3, and 4 will be mainly described, and descriptions of the same points as those of the embodiments of FIGS. 1, 3, and 4 will be omitted.
 図5の形態では、第1バイパスライン23と第1不透過ガス排出ライン14とを結ぶ第2バイパスライン25を備え、且つ、
 第1不透過ガス排出ライン14から分岐する第2入口ガス排出ライン28を備える。図5に示すように、第2バイパスライン25は、第1バイパスライン23における2つの連結箇所23a及び23b間の位置と第1不透過ガス排出ライン14における排出口11b、ガス入口12aの間の位置(連結箇所28aよりも排出口11b側)とを連結している。
The embodiment of FIG. 5 includes a second bypass line 25 connecting the first bypass line 23 and the first impermeable gas discharge line 14, and
A second inlet gas discharge line 28 branches off from the first impermeable gas discharge line 14 . As shown in FIG. 5, the second bypass line 25 is positioned between the two connection points 23a and 23b in the first bypass line 23 and between the discharge port 11b and the gas inlet 12a in the first impermeable gas discharge line 14. position (discharge port 11b side of connection point 28a).
 図5の形態によれば、図5(a)に示すように、ガス分離のための運転時(通常運転時)には第1不透過ガス排出ライン14から第2バイパスライン25及び第2入口ガス排出ライン28にガスが流入されないようになされている。一方、図5(b)に示す通り、再生時には第1不透過ガス排出ライン14において、ガス入口12aから排出された再生用ガスは、当該ライン14を通じ、当該ライン14と第2入口ガス排出ライン28との連結箇所28aから該ライン28にすべて導入され、ライン14において連結箇所28aから不透過ガス排出口11b側には導入されないようになされている。このガス流通経路の切り替えは、連結箇所28aに配置された不図示のバルブによってなされる。 According to the embodiment of FIG. 5, as shown in FIG. 5(a), during operation for gas separation (during normal operation), from the first impermeable gas discharge line 14 to the second bypass line 25 and the second inlet Gas is prevented from flowing into the gas discharge line 28 . On the other hand, as shown in FIG. 5(b), the regeneration gas discharged from the gas inlet 12a in the first impermeable gas discharge line 14 during regeneration passes through the line 14 and the second inlet gas discharge line. All of the gas is introduced into the line 28 from the connection point 28a with 28, and is not introduced from the connection point 28a to the impermeable gas discharge port 11b side in the line 14. This switching of the gas flow path is performed by a valve (not shown) arranged at the connection point 28a.
 また第1不透過ガス排出ライン14における、該ライン14と第2バイパスライン25との連結箇所25aにおいては、通常運転時には第1不透過ガス排出ライン14と第2バイパスライン25とのガスの導通はなされないが(図5(a))、再生時には、第2バイパスライン25からのガスが第1不透過ガス排出ライン14との連結箇所25aからライン14における不透過ガス排出口11bまでの流路を通じて第1ガス分離膜ユニット11に導入可能となっている。このガス流通経路の切り替えは、連結箇所25aに配置された不図示のバルブによってなされる。 Also, in the first impermeable gas discharge line 14, at a connection point 25a between the line 14 and the second bypass line 25, gas is conducted between the first impermeable gas discharge line 14 and the second bypass line 25 during normal operation. (FIG. 5(a)), during regeneration, the gas from the second bypass line 25 flows from the connecting point 25a with the first impermeable gas discharge line 14 to the impermeable gas discharge port 11b in the line 14. It can be introduced into the first gas separation membrane unit 11 through the passage. This switching of the gas flow path is performed by a valve (not shown) arranged at the connection point 25a.
 以上の構成により、図5(a)に示す通り、通常運転時には、分離対象ガスは図1、図3及び図4と同様のガス流通経路を通る。つまり、供給ガスライン6を流通し圧縮手段21により加圧された分離対象ガスは、第1バイパスライン23及び第2バイパスライン25を通らずに、第1ガス分離膜ユニット11に導入されるようになされている。 With the above configuration, as shown in FIG. 5(a), the gas to be separated passes through the same gas flow paths as in FIGS. 1, 3 and 4 during normal operation. That is, the gas to be separated that flows through the supply gas line 6 and is pressurized by the compression means 21 is introduced into the first gas separation membrane unit 11 without passing through the first bypass line 23 and the second bypass line 25. has been made.
 一方、図5(b)に示すように、再生時には、供給ガスライン6を流通し圧縮手段21により加圧された再生用ガスは、加熱手段により加熱された状態で、第1バイパスライン23及び第2バイパスライン25に導入され、図4の形態と同様、第1バイパスライン23を通じて不透過ガス排出口12bから第2ガス分離膜ユニット12に導入されると同時に、第2バイパスライン25を通じて第1不透過ガス排出ライン14の連結箇所25aから不透過ガス排出口11bに流通され第1ガス分離膜ユニット11に導入されるようになされている。 On the other hand, as shown in FIG. 5(b), during regeneration, the regeneration gas that flows through the supply gas line 6 and is pressurized by the compression means 21 is heated by the heating means, and flows through the first bypass line 23 and the regeneration gas. It is introduced into the second bypass line 25 and introduced into the second gas separation membrane unit 12 from the impermeable gas outlet 12b through the first bypass line 23 in the same manner as in the embodiment of FIG. 1, the impermeable gas discharge line 14 is connected to the impermeable gas discharge port 11b and introduced into the first gas separation membrane unit 11 .
 第2ガス分離膜ユニット12に不透過ガス排出口12bから導入された再生用ガスのうち、ガス分離膜を透過したガスは透過ガス排出口12cから排出され、不透過ガスはガス入口12aから排出される。第2ガス分離膜ユニット12のガス入口12aから排出された不透過ガスは、第2入口ガス排出ライン28を通じてシステム外に取り出される。また、第1ガス分離膜ユニット11に不透過ガス排出口11bから導入された再生用ガスのうち、ガス分離膜を透過したガスは図4の形態と同様に透過ガス排出口11c及び第1透過ガス排出ライン19を通じてシステム外に排出される。一方、第1ガス分離膜ユニットのガス入口から排出された不透過ガス(再生用ガス)は、供給ガスライン6から分岐している第1入口ガス排出ライン24を流通して、システム外に排出するようになされている。 Of the regeneration gas introduced into the second gas separation membrane unit 12 from the impermeable gas outlet 12b, the gas that has permeated the gas separation membrane is discharged from the permeable gas outlet 12c, and the impermeable gas is discharged from the gas inlet 12a. be done. The impermeable gas discharged from the gas inlet 12 a of the second gas separation membrane unit 12 is taken out of the system through the second inlet gas discharge line 28 . Further, of the regeneration gas introduced into the first gas separation membrane unit 11 from the impermeable gas outlet 11b, the gas that has permeated the gas separation membrane passes through the permeable gas outlet 11c and the first permeable gas in the same manner as in the embodiment of FIG. The gas is discharged out of the system through the gas discharge line 19 . On the other hand, the impermeable gas (regeneration gas) discharged from the gas inlet of the first gas separation membrane unit flows through the first inlet gas discharge line 24 branched from the supply gas line 6 and is discharged outside the system. It is designed to
 以上の図5の形態によれば、第1ガス分離膜ユニット11及び第2ガス分離膜ユニット12それぞれを独立して不透過ガス流通経路に再生用ガスを流通させることができるため、再生時に第2ガス分離膜ユニット12から排出された有機質不純物が第1ガス分離膜ユニット11のガス分離膜に付着することを容易に防止できるほか、第1ガス分離膜ユニット11及び第2ガス分離膜ユニット12の構成にそれぞれ適した再生用ガス流量を容易に設定できる。 According to the embodiment of FIG. 5 described above, the regeneration gas can be circulated through the impermeable gas circulation path independently of each of the first gas separation membrane unit 11 and the second gas separation membrane unit 12. 2 In addition to being able to easily prevent organic impurities discharged from the gas separation membrane unit 12 from adhering to the gas separation membranes of the first gas separation membrane unit 11, the first gas separation membrane unit 11 and the second gas separation membrane unit 12 The regeneration gas flow rate suitable for each configuration can be easily set.
 また本実施形態を採用することは再生用ガスの流路長が短くなることにより再生用ガスの圧力損失を低減させることができ、即ち再生用ガスの圧縮動力を抑えられる点でも好ましい。 Adopting this embodiment is also preferable in that the pressure loss of the regeneration gas can be reduced by shortening the flow path length of the regeneration gas, that is, the compression power of the regeneration gas can be suppressed.
 図5の形態において、T2としては第1ガス分離膜ユニット11の不透過ガス排出口における再生用ガスの温度T2’を採用し、T4としては第2ガス分離膜ユニット12の不透過ガス排出口における再生用ガスの温度T4’を採用する。本形態ではT2’又はT4’とT1との差(T2’―T1又はT4’―T1)が、上記図1の形態で説明したT2―T1の範囲であればよく、両方が上記範囲であることが好ましい。図5の形態において、第1ガス分離膜ユニット11に供給される再生用ガスの圧力は、0.1MPaG以上1.4MPaG以下がより好ましく、0.2MPaG以上1.2MPaG以下が更に好ましい。また図5の形態において、第2ガス分離膜ユニット12に供給される再生用ガスの圧力は第2ガス分離膜ユニット12へ再生用ガスを確実に流通させるための圧力を確保し、一方で高圧化に伴うエネルギー増加を防ぐ理由から、0.1MPaG以上1.4MPaG以下がより好ましく、0.2MPaG以上1.2MPaG以下が更に好ましい。 5, the temperature T2' of the regeneration gas at the impermeable gas outlet of the first gas separation membrane unit 11 is used as T2, and the impermeable gas outlet of the second gas separation membrane unit 12 is used as T4. adopt the temperature T4' of the regeneration gas at . In this embodiment, the difference between T2' or T4' and T1 (T2'-T1 or T4'-T1) may be the range of T2-T1 described in the embodiment of FIG. 1, and both are within the above range. is preferred. In the embodiment of FIG. 5, the pressure of the regeneration gas supplied to the first gas separation membrane unit 11 is more preferably 0.1 MPaG or more and 1.4 MPaG or less, and still more preferably 0.2 MPaG or more and 1.2 MPaG or less. Further, in the embodiment of FIG. 5, the pressure of the regeneration gas supplied to the second gas separation membrane unit 12 ensures the pressure for reliably circulating the regeneration gas to the second gas separation membrane unit 12, while maintaining a high pressure. 0.1 MPaG or more and 1.4 MPaG or less is more preferable, and 0.2 MPaG or more and 1.2 MPaG or less is even more preferable, for the reason of preventing an increase in energy associated with quenching.
 以後では、三段のガス分離システムについて説明する。以下の図6において、図1に示す構成と同じ構成については同じ符号を付している。図6の形態において、図1と異なる点について主に説明し、図1の形態と同様の点については説明を省略する。なお図5以前における同符号の構成の説明は適宜本形態に適用できる。 In the following, we will explain the three-stage gas separation system. In FIG. 6 below, the same components as those shown in FIG. 1 are denoted by the same reference numerals. In the embodiment of FIG. 6, differences from FIG. 1 will be mainly described, and descriptions of the same points as those of the embodiment of FIG. 1 will be omitted. The description of the configuration with the same reference numerals before FIG. 5 can be appropriately applied to this embodiment.
 図6に示すとおり、第1ガス分離膜ユニット11と、第3ガス分離膜ユニット13とが直列に接続されている。具体的には、第1ガス分離膜ユニット11と、第3ガス分離膜ユニット13とは、第1ガス分離膜ユニット11の透過ガス排出口11cと、第3ガス分離膜ユニット13のガス入口13aとを第1透過ガス排出ライン19によって連結することで接続されている。第3ガス分離膜ユニット13を構成するガス分離膜モジュールとしては第1ガス分離膜ユニット11と、第2ガス分離膜ユニット12と同様の物を採用できる。 As shown in FIG. 6, the first gas separation membrane unit 11 and the third gas separation membrane unit 13 are connected in series. Specifically, the first gas separation membrane unit 11 and the third gas separation membrane unit 13 are configured such that the permeated gas outlet 11c of the first gas separation membrane unit 11 and the gas inlet 13a of the third gas separation membrane unit 13 are connected by the first permeated gas discharge line 19 . As the gas separation membrane module constituting the third gas separation membrane unit 13, the same modules as those of the first gas separation membrane unit 11 and the second gas separation membrane unit 12 can be adopted.
 圧縮手段21は、ガス源から供給された原料混合ガスや第2ガス分離膜ユニット12から帰還した透過ガス及び第3ガス分離膜ユニット13から帰還した不透過ガスを加圧したり、再生用ガスを加圧したりする目的で設置されている。 The compression means 21 pressurizes the raw material mixed gas supplied from the gas source, the permeable gas returned from the second gas separation membrane unit 12 and the impermeable gas returned from the third gas separation membrane unit 13, and compresses the regeneration gas. It is installed for the purpose of pressurizing.
 第3ガス分離膜ユニット13においては、その不透過ガス排出口13bが、第3不透過ガス帰還ライン73によって供給ガスライン6における圧縮手段21の吸込側の位置と連結している。第3ガス分離膜ユニット13の透過ガス排出口13cに第3透過ガス排出ライン72を連結している。 In the third gas separation membrane unit 13, the impermeable gas discharge port 13b is connected to the suction side of the compression means 21 in the supply gas line 6 by the third impermeable gas return line 73. A third permeated gas discharge line 72 is connected to the permeated gas discharge port 13 c of the third gas separation membrane unit 13 .
 以上の構成を有する本実施形態のガス分離膜システム110におけるガス分離のための運転時(以下「通常運転時」ともいう。)のガス経路について図6(a)に基づき説明する。分離対象となる原料混合ガスは、混合ガス源(図示せず)から供給ガスライン6を通じて第1ガス分離膜ユニット11に供給される。供給に先立ち、原料混合ガスは、圧縮手段21によって加圧され、その圧力が上昇する。 The gas path during operation for gas separation in the gas separation membrane system 110 of this embodiment having the above configuration (hereinafter also referred to as "normal operation") will be described with reference to FIG. 6(a). A raw material mixed gas to be separated is supplied from a mixed gas source (not shown) through a supply gas line 6 to the first gas separation membrane unit 11 . Prior to supply, the raw material mixed gas is pressurized by the compression means 21 to increase the pressure.
 原料混合ガスは、分離対象となる異なる2種類のガスであるガス分離膜に対する透過速度の大きいガスA及び当該ガスAに比してガス分離膜に対して透過性に低いガスBを少なくとも含むものである。図6(a)に示す通り、圧縮手段21によって加圧された状態の原料混合ガスが第1ガス分離膜ユニット11に供給されると、ガス分離膜に対する透過速度の相違に起因して、ガス分離膜を透過したガスである透過ガスと、ガス分離膜を透過しなかったガスである不透過ガスとに分離される。第1ガス分離膜ユニット11から排出された不透過ガスは、第1ガス分離膜ユニット11の不透過ガス排出口11bから排出され、第1不透過ガス排出ライン14を通じて第2ガス分離膜ユニット12に供給される。一方、第1ガス分離膜ユニット11からの透過ガスは、原料である混合ガスに比べてガスAが濃縮され、第1ガス分離膜ユニット11の透過ガス排出口11cから排出され、第1透過ガス排出ライン19を通じて第3ガス分離膜ユニット13に供給される。第2ガス分離膜ユニット12に導入されたガスは、同ユニット12によって透過ガスと不透過ガスとに分離される。不透過ガスは、第2ガス分離膜ユニット12に導入されたガスに比べて、ガスBが更に濃縮富化されており同ユニット12の不透過ガス排出口12bから第2不透過ガス排出ライン18を通じてシステム外へ取り出される。一方、透過ガスは、第2ガス分離膜ユニット12の透過ガス排出口12cから排出され、該排出口12cに接続されている第2透過ガス帰還ライン17を経由して、供給ガスライン6における圧縮手段21の吸込側に帰還される。また、第3ガス分離膜ユニット13に導入されたガスは、同ユニット13によって透過ガスと不透過ガスとに分離される。透過ガスは、第3ガス分離膜ユニット13に導入されたガスに比べて、ガスAが更に濃縮富化されており、同ユニット13の透過ガス排出口13cから第3透過ガス排出ライン72を通じてシステム外に取り出される。一方、不透過ガスは、第3ガス分離膜ユニット13の不透過ガス排出口13bから排出され、該排出口13bに接続されている第3不透過ガス帰還ライン73を経由して、供給ガスライン6における圧縮手段21の吸込側に帰還される。ライン17、73を通じて帰還された透過ガス及び不透過ガスは、原料混合ガスと混合された後に、圧縮手段21によって加圧される。 The raw material mixed gas contains at least two different types of gases to be separated: a gas A having a high permeation rate through the gas separation membrane and a gas B having a lower permeability through the gas separation membrane than the gas A. . As shown in FIG. 6( a ), when the raw material mixed gas pressurized by the compression means 21 is supplied to the first gas separation membrane unit 11 , gas It is separated into a permeated gas that has permeated through the separation membrane and an impermeable gas that has not permeated through the gas separation membrane. The impermeable gas discharged from the first gas separation membrane unit 11 is discharged from the impermeable gas discharge port 11b of the first gas separation membrane unit 11, and passes through the first impermeable gas discharge line 14 to the second gas separation membrane unit 12. supplied to On the other hand, in the permeated gas from the first gas separation membrane unit 11, the gas A is concentrated compared to the mixed gas as the raw material, and is discharged from the permeated gas outlet 11c of the first gas separation membrane unit 11, and the first permeated gas It is supplied to the third gas separation membrane unit 13 through the discharge line 19 . The gas introduced into the second gas separation membrane unit 12 is separated into a permeable gas and an impermeable gas by the same unit 12 . In the impermeable gas, the gas B is further concentrated and enriched compared to the gas introduced into the second gas separation membrane unit 12, and the second impermeable gas discharge line 18 is discharged from the impermeable gas discharge port 12b of the same unit 12. It is taken out of the system through On the other hand, the permeated gas is discharged from the permeated gas outlet 12c of the second gas separation membrane unit 12 and is compressed in the supply gas line 6 via the second permeated gas return line 17 connected to the outlet 12c. It is fed back to the suction side of means 21 . Also, the gas introduced into the third gas separation membrane unit 13 is separated into a permeable gas and an impermeable gas by the same unit 13 . In the permeated gas, the gas A is more concentrated and enriched than the gas introduced into the third gas separation membrane unit 13, and the system is discharged from the permeated gas outlet 13c of the unit 13 through the third permeated gas discharge line 72. taken outside. On the other hand, the impermeable gas is discharged from the impermeable gas discharge port 13b of the third gas separation membrane unit 13, and passes through the third impermeable gas return line 73 connected to the discharge port 13b to the supply gas line. 6 is fed back to the suction side of the compression means 21 . The permeable gas and impermeable gas returned through lines 17 and 73 are mixed with the raw material mixed gas and then compressed by compression means 21 .
 上記の通常運転が一定時間経過すると、原料混合ガス中の有機質不純物が第1ガス分離膜ユニット11、第2ガス分離膜ユニット12及び第3ガス分離膜ユニット13に付着することにより、第1ガス分離膜ユニット11、第2ガス分離膜ユニット12及び第3ガス分離膜ユニット13のガス透過性能が低下する。特にこの透過性能の低下は、通常、第1ガス分離膜ユニット11、第2ガス分離膜ユニット12、第3ガス分離膜ユニット13の順に大きい。この際に、再生用ガスを加熱手段61にて加熱して少なくとも第1ガス分離膜ユニット11及び第2ガス分離膜ユニット12、必要に応じて更に第3ガス分離膜ユニット13に流通させることにより、再生用ガスを流通させたガス分離膜ユニットから有機質不純物を揮発させて除去し、透過性能を回復させる。 After the above normal operation has passed for a certain period of time, the organic impurities in the raw material mixed gas adhere to the first gas separation membrane unit 11, the second gas separation membrane unit 12, and the third gas separation membrane unit 13, so that the first gas The gas permeation performance of the separation membrane unit 11, the second gas separation membrane unit 12 and the third gas separation membrane unit 13 is lowered. In particular, the decrease in permeation performance is generally greater in the order of the first gas separation membrane unit 11, the second gas separation membrane unit 12, and the third gas separation membrane unit 13. At this time, the regeneration gas is heated by the heating means 61 and circulated to at least the first gas separation membrane unit 11 and the second gas separation membrane unit 12, and if necessary, the third gas separation membrane unit 13. , the organic impurities are volatilized and removed from the gas separation membrane unit through which the regeneration gas is circulated, and the permeation performance is recovered.
 図6に示すガス分離膜システム110における再生用ガスの流通経路を図6(b)に示す。図6(a)及び図6(b)に示す通り、図6に示すガス分離膜システム110では、ガス分離膜の再生用ガスの流通経路は、図6(a)の通常運転時の分離対象ガスのガス流通経路と同様である。再生用ガスの説明は上記した通りである。第3ガス分離膜ユニット13を構成するガス分離膜は、例えば40℃でのP’O2/P’N2が4~8とすることが好適である。例えば後述する実施例は分離選択性をこれらの範囲としたポリイミド膜を用いている。 FIG. 6(b) shows the flow path of the regeneration gas in the gas separation membrane system 110 shown in FIG. As shown in FIGS. 6(a) and 6(b), in the gas separation membrane system 110 shown in FIG. It is similar to the gas flow path of gas. The regeneration gas has been described above. The gas separation membrane constituting the third gas separation membrane unit 13 preferably has a P'O2 / P'N2 ratio of 4 to 8 at 40°C, for example. For example, the examples described later use polyimide membranes having separation selectivities within these ranges.
 本実施形態において、再生用ガスを一定以下の圧力で第1ガス分離膜ユニット11に供給して不純物を除去することが好ましい。図6の形態において、第1ガス分離膜ユニット11に供給される再生用ガスの圧力は、第1ガス分離膜ユニット、第2ガス分離膜ユニット、および第3ガス分離膜ユニットへ再生用ガスを確実に流通させるための圧力を確保し、一方で高圧化に伴うエネルギー増加を防ぐ理由から、0.3MPaG以上1.4MPaG以下がより好ましく、0.4MPaG以上1.3MPaG以下が更に好ましい。第2ガス分離膜ユニット12における再生用ガスの供給圧力の好ましい範囲は第1ガス分離膜ユニット11と同様である。第3ガス分離膜ユニットの圧力を一定以下とすることが第1ガス分離膜ユニットでの供給圧力―透過圧力の差圧を大きくして、第1ガス分離膜ユニットでの透過を抑制しない点で好ましい。この点から、第3ガス分離膜ユニット13における再生用ガスの供給圧力は0.1MPaG以上0.7MPaG以下がより好ましく、0.2MPaG以上0.5MPaG以下が更に好ましい。 In this embodiment, it is preferable to remove impurities by supplying the regeneration gas to the first gas separation membrane unit 11 at a pressure below a certain level. In the embodiment of FIG. 6, the pressure of the regeneration gas supplied to the first gas separation membrane unit 11 is such that the regeneration gas is supplied to the first gas separation membrane unit, the second gas separation membrane unit, and the third gas separation membrane unit. In order to secure pressure for reliable circulation and prevent an increase in energy due to high pressure, it is more preferably 0.3 MPaG or more and 1.4 MPaG or less, and even more preferably 0.4 MPaG or more and 1.3 MPaG or less. The preferred range of the regeneration gas supply pressure in the second gas separation membrane unit 12 is the same as in the first gas separation membrane unit 11 . Setting the pressure of the third gas separation membrane unit below a certain level increases the differential pressure between the supply pressure and the permeation pressure in the first gas separation membrane unit, and does not suppress permeation in the first gas separation membrane unit. preferable. From this point, the supply pressure of the regeneration gas in the third gas separation membrane unit 13 is more preferably 0.1 MPaG or more and 0.7 MPaG or less, and further preferably 0.2 MPaG or more and 0.5 MPaG or less.
 再生時において、第2ガス分離膜ユニット12へのガス供給量S2は、第1ガス分離膜ユニット11へのガス供給量S1に対する比S2/S1が10%以上であることが第1ガス分離膜ユニット11~第3ガス分離膜ユニット13を同時に再生する効果を高める点で好ましく、20%以上であることがより好ましく、30%以上であることが更に好ましい。またS2/S1の比率は95%以下、或いは90%以下であってもよい。 During regeneration, the ratio S2/S1 of the gas supply amount S2 to the second gas separation membrane unit 12 to the gas supply amount S1 to the first gas separation membrane unit 11 is 10% or more. It is preferable in terms of enhancing the effect of simultaneously regenerating the unit 11 to the third gas separation membrane unit 13, more preferably 20% or more, and even more preferably 30% or more. Also, the S2/S1 ratio may be 95% or less, or 90% or less.
 再生時において、第3ガス分離膜ユニット13へのガス供給量S3は、第1ガス分離膜ユニット11へのガス供給量S1に対する比S3/S1が5%以上であることが第1ガス分離膜ユニット11~第3ガス分離膜ユニット13を同時に再生する効果を高める点で好ましく、10%以上であることがより好ましい。S3/S1は90%以下、或いは80%以下であってもよい。 During regeneration, the ratio S3/S1 of the gas supply amount S3 to the third gas separation membrane unit 13 to the gas supply amount S1 to the first gas separation membrane unit 11 is 5% or more. It is preferable in terms of enhancing the effect of simultaneously regenerating the unit 11 to the third gas separation membrane unit 13, and more preferably 10% or more. S3/S1 may be 90% or less, or 80% or less.
 再生時において、第2ガス分離膜ユニット12へのガス供給量S2中、第2ガス分離膜ユニット12の透過ガスとして第1ガス分離膜ユニット11へ還流する量S4の比S4/S2が90%以下であることが、帰還ガスによる圧縮手段21等への負荷を抑制する点で好ましく、80%以下であることがより好ましい。またS4/S2の比率は0%であってもよいが、第2ガス分離膜ユニット12の透過ガスを第1ガス分離膜ユニット11に還流させる場合は、10%以上、或いは20%以上であってもよい。 During regeneration, the ratio S4/S2 of the amount S4 of the gas supplied to the second gas separation membrane unit 12 and returned to the first gas separation membrane unit 11 as the permeating gas of the second gas separation membrane unit 12 is 90%. It is preferably 80% or less in terms of suppressing the load on the compression means 21 and the like due to the return gas. The S4/S2 ratio may be 0%, but when the permeating gas of the second gas separation membrane unit 12 is returned to the first gas separation membrane unit 11, it may be 10% or more, or 20% or more. may
 再生時において、第3ガス分離膜ユニット13へのガス供給量S3中、第3ガス分離膜ユニット13の不透過ガスとして第1ガス分離膜ユニット11へ還流する量S5の比S5/S3が90%以下であることが、帰還ガスによる圧縮手段21等への負荷を抑制する点で好ましく、80%以下であることがより好ましい。またS5/S3の比率は5%以上、或いは10%以上であってもよい。 During regeneration, the ratio S5/S3 of the amount S5 of the gas supplied to the third gas separation membrane unit 13 and returned to the first gas separation membrane unit 11 as the impermeable gas of the third gas separation membrane unit 13 is 90. % or less is preferable from the point of suppressing the load on the compression means 21 or the like due to the return gas, and 80% or less is more preferable. Also, the ratio of S5/S3 may be 5% or more, or 10% or more.
 再生時において、1番目に再生用ガスが流入するユニット(本形態では第1ガス分離膜ユニット11)へのガス供給量としては、第1ガス分離膜ユニット11~第3ガス分離膜ユニット13を同時に再生する効果を高める点で、通常運転時の10%以上とすることが好適に挙げられ、20%以上がより好ましい。 At the time of regeneration, the amount of gas supplied to the unit into which the regeneration gas first flows (in this embodiment, the first gas separation membrane unit 11) is the first gas separation membrane unit 11 to the third gas separation membrane unit 13. From the viewpoint of enhancing the effect of simultaneous regeneration, it is preferably 10% or more, more preferably 20% or more, of the normal operation.
 3段のシステムにおいて、再生時において、第2ガス分離膜ユニット12へのガス供給圧力G2は、第1ガス分離膜ユニット11へのガス供給圧力G1に対する比G2/G1が10%以上であることが第1ガス分離膜ユニット11~第3ガス分離膜ユニット13を同時に再生する効果を高める点で好ましく、20%以上であることがより好ましく、50%以上であることが更に好ましい。G2/G1は98%以下、或いは95%以下であってもよい。 In the three-stage system, during regeneration, the ratio G2/G1 of the gas supply pressure G2 to the second gas separation membrane unit 12 to the gas supply pressure G1 to the first gas separation membrane unit 11 is 10% or more. is preferable from the point of enhancing the effect of simultaneously regenerating the first gas separation membrane unit 11 to the third gas separation membrane unit 13, more preferably 20% or more, and even more preferably 50% or more. G2/G1 may be 98% or less, or 95% or less.
 再生時において、第3ガス分離膜ユニット13へのガス供給圧力G3は、第1ガス分離膜ユニット11へのガス供給圧力G1に対する比G3/G1が10%以上であることが、第1ガス分離膜ユニット11~第3ガス分離膜ユニット13を同時に再生する効果を高める点で好ましく、20%以上であることがより好ましい。G3/G1は50%以下、或いは40%以下であってもよい。 During regeneration, the ratio G3/G1 of the gas supply pressure G3 to the third gas separation membrane unit 13 to the gas supply pressure G1 to the first gas separation membrane unit 11 is 10% or more. It is preferable in terms of enhancing the effect of simultaneously regenerating the membrane unit 11 to the third gas separation membrane unit 13, and more preferably 20% or more. G3/G1 may be 50% or less, or 40% or less.
 本方法での再生時間は3つのユニットを同時に再生させる観点から、例えば10分以上が好適であり、20分以上がより好適である。 From the viewpoint of simultaneously reproducing three units, the playback time in this method is preferably 10 minutes or longer, and more preferably 20 minutes or longer.
 本実施形態では、図6(b)に示す通り、加熱手段61で加熱した再生用ガスを直ちに第1ガス分離膜ユニット11内に流通でき、第1ガス分離膜ユニット11のガス分離膜に加熱した再生用ガスとを接触させることにより、ガス分離膜に付着した有機質不純物を揮発させる。揮発した有機質不純物には、ガス分離膜を透過しにくいものが存在する。従って、第1ガス分離膜ユニット11のガス分離膜に付着した有機質不純物の揮発物は一定の割合が不透過ガスに随伴されて第2ガス分離膜ユニット12に導入される。第1ガス分離膜ユニット11から排出された有機質不純物の揮発物を含む不透過ガスは、加熱された状態で第2ガス分離膜ユニット12のガス分離膜に接触し、第2ガス分離膜ユニット12のガス分離膜に付着した有機質不純物を揮発させる。これらの有機質不純物は一定程度が第2ガス分離膜ユニット12の不透過ガスに随伴されて第2不透過ガス排出ライン18を通じて除去される。また第2ガス分離膜ユニット12のガス分離膜に付着した有機質不純物が揮発して第2ガス分離膜ユニット12の透過ガスに含まれる場合がある。 In this embodiment, as shown in FIG. 6(b), the regeneration gas heated by the heating means 61 can immediately flow into the first gas separation membrane unit 11, and the gas separation membranes of the first gas separation membrane unit 11 can be heated. The organic impurities adhering to the gas separation membrane are volatilized by contacting the regeneration gas. Among the volatilized organic impurities, there are some that are difficult to permeate through the gas separation membrane. Therefore, a certain proportion of the organic impurity volatiles adhering to the gas separation membranes of the first gas separation membrane unit 11 is introduced into the second gas separation membrane unit 12 along with the impermeable gas. The impermeable gas containing organic impurity volatiles discharged from the first gas separation membrane unit 11 contacts the gas separation membrane of the second gas separation membrane unit 12 in a heated state, and the second gas separation membrane unit 12 volatilize the organic impurities adhering to the gas separation membrane. A certain amount of these organic impurities are accompanied by the impermeable gas in the second gas separation membrane unit 12 and are removed through the second impermeable gas discharge line 18 . Also, organic impurities adhering to the gas separation membranes of the second gas separation membrane unit 12 may volatilize and be included in the permeated gas of the second gas separation membrane unit 12 .
 また加熱された再生用ガスは第1ガス分離膜ユニット11の透過ガスとして第3ガス分離膜ユニット13に導入され、加熱された状態で第3ガス分離膜ユニット13のガス分離膜に接触し、第3ガス分離膜ユニット13のガス分離膜に付着した有機質不純物を揮発させる。有機質不純物は一定程度が第3ガス分離膜ユニット13の透過ガスに随伴されて第3透過ガス排出ライン72を通じて除去される。また第3ガス分離膜ユニット13のガス分離膜に付着した有機質不純物が揮発して第3ガス分離膜ユニット13の不透過ガスに含まれる場合がある。 The heated regeneration gas is introduced into the third gas separation membrane unit 13 as the permeating gas of the first gas separation membrane unit 11, and in a heated state, contacts the gas separation membranes of the third gas separation membrane unit 13, Organic impurities adhering to the gas separation membranes of the third gas separation membrane unit 13 are volatilized. A certain amount of organic impurities are accompanied by the permeated gas of the third gas separation membrane unit 13 and removed through the third permeated gas discharge line 72 . Also, organic impurities adhering to the gas separation membranes of the third gas separation membrane unit 13 may volatilize and be included in the impermeable gas of the third gas separation membrane unit 13 .
 第1ガス分離膜ユニット11からの再生用ガス中の有機質不純物が第2ガス分離膜ユニット12及び/又は第3ガス分離膜ユニット13のガス分離膜中で凝縮することを防止するために、第2ガス分離膜ユニット12及び/又は第3ガス分離膜ユニット13のガス分離膜を加熱した状態で第1ガス分離膜ユニット11からの再生用ガスを第2ガス分離膜ユニット12及び/又は第3ガス分離膜ユニット13に導入してもよいが、本発明ではそのような分離膜の予熱なしにガス分離膜の透過性の回復が可能である。また、第1不透過ガス排出ライン14及び/又は第1透過ガス排出ライン19に不図示のフィルタ等を設けて第1ガス分離膜ユニット11のガス分離膜に付着した有機質不純物の揮発物を再生用ガスから除去処理し、処理後の再生用ガスを第2ガス分離膜ユニット12及び/又は第3ガス分離膜ユニット13に供給するようにしてもよい。同様に帰還ライン17、73に不図示のフィルタを設けて第2ガス分離膜ユニット12の透過ガスや第3ガス分離膜ユニット13の不透過ガスが供給ガスライン6に帰還する前にこれらガスから有機質不純物を除去するようにしてもよい。 In order to prevent organic impurities in the regeneration gas from the first gas separation membrane unit 11 from condensing in the gas separation membranes of the second gas separation membrane unit 12 and/or the third gas separation membrane unit 13, the second With the gas separation membranes of the second gas separation membrane unit 12 and/or the third gas separation membrane unit 13 heated, the regeneration gas from the first gas separation membrane unit 11 is supplied to the second gas separation membrane unit 12 and/or the third Although it may be introduced into the gas separation membrane unit 13, the present invention allows restoration of the permeability of the gas separation membrane without such preheating of the separation membrane. In addition, a filter or the like (not shown) is provided in the first impermeable gas discharge line 14 and/or the first permeable gas discharge line 19 to regenerate volatile organic impurities adhering to the gas separation membranes of the first gas separation membrane unit 11. The gas for regeneration may be removed from the gas for regeneration, and the treated gas for regeneration may be supplied to the second gas separation membrane unit 12 and/or the third gas separation membrane unit 13 . Similarly, a filter (not shown) is provided in the return lines 17 and 73 so that the permeating gas of the second gas separation membrane unit 12 and the non-permeating gas of the third gas separation membrane unit 13 are removed from these gases before returning to the supply gas line 6. Organic impurities may be removed.
 以上の通り、図6に示す実施形態は、再生用のラインを設置せずとも第1ガス分離膜ユニット11、第2ガス分離膜ユニット12及び第3ガス分離膜ユニット13の分離膜の再生を図ることが可能である。 As described above, in the embodiment shown in FIG. 6, the separation membranes of the first gas separation membrane unit 11, the second gas separation membrane unit 12, and the third gas separation membrane unit 13 can be regenerated without installing a regeneration line. It is possible to plan
 図6(b)に示すように、第3ガス分離膜ユニット13に導入される際の再生用ガスの温度T6は、ガス分離のための運転時(通常運転時)において第3ガス分離膜ユニット13のガス入口に導入される分離対象ガスの温度T5との差(T6-T5)が、20℃以上80℃以下であることが好ましく、30℃以上80℃以下であることがより好ましい。T5は通常5℃以上60℃以下であることが好ましく、T6は40℃以上120℃以下が好ましい。また、T6-T1、T6-T3、T2-T5、T4-T5もそれぞれ同様に、20℃以上80℃以下であることが好ましく、30℃以上80℃以下であることがより好ましい。本実施形態において、T6は第3ガス分離膜ユニット13のガス入口に導入される際の再生用ガスの温度T6である。 As shown in FIG. 6B, the temperature T6 of the regeneration gas when introduced into the third gas separation membrane unit 13 is the same as that of the third gas separation membrane unit during operation for gas separation (during normal operation). The difference (T6-T5) from the temperature T5 of the gas to be separated introduced into the gas inlet 13 is preferably 20°C or higher and 80°C or lower, more preferably 30°C or higher and 80°C or lower. T5 is usually preferably 5°C or higher and 60°C or lower, and T6 is preferably 40°C or higher and 120°C or lower. Likewise, T6-T1, T6-T3, T2-T5, and T4-T5 are each preferably 20° C. or higher and 80° C. or lower, and more preferably 30° C. or higher and 80° C. or lower. In this embodiment, T6 is the temperature T6 of the regeneration gas when it is introduced into the gas inlet of the third gas separation membrane unit 13 .
 本実施形態の利点としては再生用ラインを設置する必要がない点に加えて、第1ガス分離膜ユニット、第2ガス分離膜ユニット、および第3ガス分離膜ユニットをガス分離膜システムから取り外して個別に再生する場合に比べて、再生用の高温ガスを第1ガス分離膜ユニット、第2ガス分離膜ユニット、および第3ガス分離膜ユニットで共有できるために、再生用ガスの昇温に必要な加熱手段の熱量を抑えられるという利点が挙げられる。 As an advantage of this embodiment, in addition to the fact that it is not necessary to install a regeneration line, the first gas separation membrane unit, the second gas separation membrane unit, and the third gas separation membrane unit can be removed from the gas separation membrane system. Since the high-temperature gas for regeneration can be shared by the first gas separation membrane unit, the second gas separation membrane unit, and the third gas separation membrane unit compared to the case of regenerating individually, it is necessary to raise the temperature of the regeneration gas. Another advantage is that the amount of heat required by the heating means can be suppressed.
 次に、図7に基づき、本発明の別の実施形態を説明する。図7において、図6以前に示す構成と同じ構成については同じ符号を付している。図7の形態において、図6以前の形態と異なる点について主に説明し、図6と同様の点については説明を省略する。なお図5以前における同符号の構成の説明は適宜本形態に適用できる。 Next, another embodiment of the present invention will be described based on FIG. In FIG. 7, the same reference numerals are assigned to the same configurations as those shown before FIG. In the embodiment of FIG. 7, differences from the embodiment before FIG. 6 will be mainly described, and description of the same points as in FIG. 6 will be omitted. The description of the configuration with the same reference numerals before FIG. 5 can be appropriately applied to this embodiment.
 図7の形態では、第2透過ガス帰還ライン17から分岐する第2透過ガス排出ライン22を設け、第2ガス分離膜ユニット12に再生用ガスが導入される際、第2ガス分離膜ユニット12から排出される透過ガスが供給ガスライン6に帰還せずに第2透過ガス排出ライン22を通じてシステム外に排出されるようになされ、且つ、第3不透過ガス帰還ライン73から分岐する第3不透過ガス排出ライン74を設け、再生用のガスが導入された第3ガス分離膜ユニット13の不透過ガスが供給ガスライン6に帰還せずに第3不透過ガス排出ライン74を通じてシステム外に排出されるようになされている。なお、システム外に排出されるとは、第1ガス分離膜ユニット11、第2ガス分離膜ユニット12及び第3ガス分離膜ユニット13のいずれにも導入されずに取り出されることをいう。 In the embodiment of FIG. 7, a second permeated gas discharge line 22 branched from the second permeated gas return line 17 is provided, and when the regeneration gas is introduced into the second gas separation membrane unit 12, the second gas separation membrane unit 12 The permeated gas discharged from is discharged outside the system through the second permeated gas discharge line 22 without returning to the supply gas line 6, and the third non-permeated gas branched from the third non-permeated gas return line 73 A permeated gas discharge line 74 is provided, and the impermeable gas of the third gas separation membrane unit 13 into which the regeneration gas is introduced is discharged out of the system through the third impermeable gas discharge line 74 without returning to the supply gas line 6. It is made to be done. It should be noted that the term "outside the system" means that the gas is taken out without being introduced into any of the first gas separation membrane unit 11, the second gas separation membrane unit 12, and the third gas separation membrane unit 13.
 第2透過ガス排出ライン22は、図7に示すように、第2透過ガス帰還ライン17における、透過ガス排出口12cから供給ガスライン6に至る途中の位置22a(「分岐点22a」ともいう。)において第2透過ガス帰還ライン17から分岐する分岐ラインである。ガス分離のための運転時には、第2透過ガス帰還ライン17のガスは第2透過ガス排出ライン22に流入しない(図7(a))。
 一方、再生時には、第2透過ガス帰還ライン17と第2透過ガス排出ライン22が分岐点22aにおいて導通して、第2ガス分離膜ユニット12から排出された透過ガスが第2透過ガス排出ライン22に導入され、ライン17における分岐点22aの供給ガスライン6側には流通しないようになされている(図7(b))。このような切り替えは分岐点22aにおける不図示のバルブを用いてなされる。第2透過ガス排出ライン22はシステム外と第2透過ガス帰還ライン17の途中位置とを連結する。
As shown in FIG. 7, the second permeated gas discharge line 22 is located at a position 22a (also referred to as a "branch point 22a") in the second permeated gas return line 17 on the way from the permeated gas discharge port 12c to the supply gas line 6. ) branched from the second permeated gas return line 17 . During operation for gas separation, the gas in the second permeated gas return line 17 does not flow into the second permeated gas discharge line 22 (FIG. 7(a)).
On the other hand, during regeneration, the second permeated gas return line 17 and the second permeated gas discharge line 22 are connected at the branch point 22a, and the permeated gas discharged from the second gas separation membrane unit 12 is discharged through the second permeated gas discharge line 22. , so that it does not flow to the supply gas line 6 side of the branch point 22a in the line 17 (FIG. 7(b)). Such switching is performed using a valve (not shown) at the branch point 22a. The second permeated gas discharge line 22 connects the outside of the system and the middle position of the second permeated gas return line 17 .
 第3不透過ガス排出ライン74は、図7に示すように、第3不透過ガス帰還ライン73における、不透過ガス排出口13bから供給ガスライン6に至る途中の位置74a(以下「分岐点74a」ともいう。)から分岐する分岐ラインである。ガス分離のための運転時には、第3不透過ガス帰還ライン73のガスは第3不透過ガス排出ライン74に流入しない(図7(a))。一方、再生時には、第3不透過ガス帰還ライン73と第3不透過ガス排出ライン74が導通して、第3ガス分離膜ユニット13から排出された不透過ガスが、分岐点74aにおいて、第3不透過ガス排出ライン74に導入され、第3不透過ガス帰還ライン73における分岐点74aから供給ガスライン6側には流通しないようになされている(図7(b))。このような切り替えは分岐点74aにおける不図示のバルブを用いてなされる。第3不透過ガス排出ライン74はシステム外と、第3不透過ガス帰還ライン73の途中位置とを連結する。 As shown in FIG. 7, the third impermeable gas discharge line 74 is located at a position 74a (hereinafter referred to as "branch point 74a ”). During operation for gas separation, the gas in the third non-permeable gas return line 73 does not flow into the third non-permeable gas discharge line 74 (Fig. 7(a)). On the other hand, during regeneration, the third impermeable gas return line 73 and the third impermeable gas discharge line 74 are electrically connected, and the impermeable gas discharged from the third gas separation membrane unit 13 is transferred to the third It is introduced into the impermeable gas discharge line 74, and does not flow from the branch point 74a of the third impermeable gas return line 73 to the supply gas line 6 side (FIG. 7(b)). Such switching is performed using a valve (not shown) at the branch point 74a. A third impermeable gas discharge line 74 connects the outside of the system and a midpoint of the third impermeable gas return line 73 .
 上述した通り、第2ガス分離膜ユニット12からの透過ガスは、図7(a)に示すようにガス分離のための運転時には、第2透過ガス排出ライン22を流通せずに第2透過ガス帰還ライン17を通じて供給ガスライン6に帰還させる。図7(a)に示すように、ガス分離のための運転時の分離対象ガスの流通経路は図6の形態と同様である。一方、図7(b)に示すように再生時には、第2ガス分離膜ユニット12からの透過ガスは、第2透過ガス排出ライン22を通じて供給ガスライン6に帰還せずにシステム外に排出されるようになされている。 As described above, the permeated gas from the second gas separation membrane unit 12 does not flow through the second permeated gas discharge line 22 during operation for gas separation as shown in FIG. It is returned to the feed gas line 6 through the return line 17 . As shown in FIG. 7(a), the flow path of the separation target gas during operation for gas separation is the same as in the embodiment of FIG. On the other hand, as shown in FIG. 7B, during regeneration, the permeated gas from the second gas separation membrane unit 12 is discharged outside the system without returning to the supply gas line 6 through the second permeated gas discharge line 22. It is made like this.
 上述した通り、第3ガス分離膜ユニット13からの不透過ガスは、図7(a)に示すようにガス分離のための運転時には、第3不透過ガス排出ライン74を流通せずに第3不透過ガス帰還ライン73を通じて供給ガスライン6に帰還させる。一方、図7(b)に示すように再生時には、第3ガス分離膜ユニット13からの不透過ガスは、第3不透過ガス排出ライン74を通じて、供給ガスライン6に帰還せずにシステム外に排出されるようになされている。 As described above, the impermeable gas from the third gas separation membrane unit 13 does not flow through the third impermeable gas discharge line 74 during operation for gas separation as shown in FIG. It is returned to feed gas line 6 through impermeable gas return line 73 . On the other hand, as shown in FIG. 7B, during regeneration, the impermeable gas from the third gas separation membrane unit 13 does not return to the supply gas line 6 through the third impermeable gas discharge line 74, but exits the system. It is made to be discharged.
 以上の図7の形態によれば、再生時には、第2ガス分離膜ユニット12のガス分離膜に付着状態から揮発して第2ガス分離膜ユニット12の透過ガス中に含まれるようになった有機質不純物を、供給ガスライン6に帰還させずに、第2透過ガス排出ライン22を通じてシステム外へ直ちに除去できる。
 同様に、再生時には、第3ガス分離膜ユニット13のガス分離膜に付着状態から揮発して第3ガス分離膜ユニット13の不透過ガス中に含まれるようになった有機質不純物を、供給ガスライン6に帰還させずに、第3不透過ガス排出ライン74を通じてシステム外へ直ちに除去できる。
 従って、本実施形態では図6の形態に比して、再生時間や再生に必要な圧縮機動力等を低減しながら、より効率的に第1ガス分離膜ユニット11、第2ガス分離膜ユニット12及び第3ガス分離膜ユニット13におけるガス分離膜の再生を図ることができる点で好ましい。
According to the embodiment of FIG. 7 described above, during regeneration, the organic matter that has volatilized from the state attached to the gas separation membrane of the second gas separation membrane unit 12 and is included in the permeated gas of the second gas separation membrane unit 12 Impurities can be immediately removed out of the system through the second permeate gas discharge line 22 without being returned to the feed gas line 6 .
Similarly, during regeneration, the organic impurities that have volatilized from the gas separation membranes of the third gas separation membrane unit 13 and are included in the impermeable gas of the third gas separation membrane unit 13 are removed from the supply gas line. 6, it can be immediately removed out of the system through the third impermeable gas discharge line 74.
Therefore, in this embodiment, the first gas separation membrane unit 11 and the second gas separation membrane unit 12 are more efficiently operated while reducing the regeneration time, the compressor power required for regeneration, etc., as compared with the embodiment of FIG. And it is preferable in that regeneration of the gas separation membrane in the third gas separation membrane unit 13 can be achieved.
 また本実施形態を採用することは供給ガスライン6や、圧縮手段と加熱手段の間の位置に介在配置するフィルター(不図示)への、第2透過ガス帰還ライン17や第3不透過ガス帰還ライン73を経由して帰還した不純物含有再生用ガスによる負荷を低減させる点でも好ましい。 Further, by adopting this embodiment, the second permeated gas return line 17 and the third non-permeated gas return to the supply gas line 6 and the filter (not shown) interposed between the compression means and the heating means. It is also preferable in terms of reducing the load of the impurity-containing regeneration gas returned via the line 73 .
 例えば第2ガス分離膜ユニット12の再生時において、有機質不純物が第2ガス分離膜ユニット12のガス分離膜の透過ガスに含有される傾向が高い場合、ライン22を採用するメリットが大きくなる。有機質不純物が第2ガス分離膜ユニット12のガス分離膜の透過ガスに含有されるか不透過ガスに含有されるかは、ガス分離のための運転時の原料混合ガスの種類や、再生用ガスの種類、再生用ガスの温度、不純物の種類に依存する。図7のようにライン22を有する形態で再生時に有機質不純物が第2ガス分離膜ユニット12のガス分離膜の透過ガスに含有される傾向が高い再生用ガスとしては、空気が挙げられる。 For example, when regenerating the second gas separation membrane unit 12, if there is a high tendency for organic impurities to be contained in the gas permeating the gas separation membrane of the second gas separation membrane unit 12, the advantage of adopting the line 22 increases. Whether the organic impurities are contained in the permeating gas of the gas separation membrane of the second gas separation membrane unit 12 or in the impermeable gas depends on the type of raw material mixed gas during operation for gas separation and the regeneration gas. type, the temperature of the regeneration gas, and the type of impurities. As a regeneration gas having a line 22 as shown in FIG. 7, there is a high tendency for organic impurities to be contained in the gas permeating the gas separation membrane of the second gas separation membrane unit 12 during regeneration.
 なお、図7以後の形態において、T5~T6の好ましい温度はそれぞれ図6の形態と同様である。またT6-T5、T6-T1、T6-T3、T2-T5、T4-T5の好ましい範囲も図6の形態と同様である。また、図7の形態において、第1ガス分離膜ユニット11に供給される再生用ガスの圧力は、第1ガス分離膜ユニット、第2ガス分離膜ユニット、および第3ガス分離膜ユニットへ再生用ガスを確実に流通させるための圧力を確保し、一方で高圧化に伴うエネルギー増加を防ぐ理由から、0.3MPaG以上1.4MPaG以下がより好ましく、0.4MPaG以上1.3MPaG以下が更に好ましい。 In addition, in the embodiments after FIG. 7, preferable temperatures of T5 to T6 are the same as those in the embodiment of FIG. The preferred ranges of T6-T5, T6-T1, T6-T3, T2-T5, and T4-T5 are also the same as in the embodiment of FIG. In addition, in the embodiment of FIG. 7, the pressure of the regeneration gas supplied to the first gas separation membrane unit 11 is the same as the pressure for regeneration to the first gas separation membrane unit, the second gas separation membrane unit, and the third gas separation membrane unit. In order to secure a pressure for reliably circulating gas and to prevent an increase in energy due to high pressure, the pressure is more preferably 0.3 MPaG or more and 1.4 MPaG or less, and further preferably 0.4 MPaG or more and 1.3 MPaG or less.
 更に図6、図7に示す形態に換えて、図8に示す形態も挙げられる。図8において、図7に示す構成と同じ構成については同じ符号を付している。図8の形態において、図6、図7の形態と異なる点について主に説明し、図6、図7と同様の点については説明を省略する。なお図5以前における同符号の構成の説明は適宜本形態に適用できる。 Furthermore, instead of the forms shown in FIGS. 6 and 7, the form shown in FIG. 8 is also available. In FIG. 8, the same components as those shown in FIG. 7 are denoted by the same reference numerals. In the embodiment of FIG. 8, differences from the embodiments of FIGS. 6 and 7 will be mainly described, and descriptions of the same points as those of FIGS. 6 and 7 will be omitted. The description of the configuration with the same reference numerals before FIG. 5 can be appropriately applied to this embodiment.
 図8の形態では、上述した第2透過ガス排出ライン22に加えて第1バイパスライン23と第1入口ガス排出ライン24とを有する。
 第1バイパスライン23は、供給ガスライン6における加熱手段61の第1ガス分離膜ユニット11側の位置と、第2不透過ガス排出ライン18とを連結する。また、第1入口ガス排出ライン24は、供給ガスライン6の第1バイパスライン23の連結箇所23aよりも第1ガス分離膜ユニット11側で、供給ガスライン6から分岐する。第1入口ガス排出ライン24はシステム外と供給ガスライン6とを連結するラインである。
The embodiment of FIG. 8 has a first bypass line 23 and a first inlet gas discharge line 24 in addition to the second permeated gas discharge line 22 described above.
The first bypass line 23 connects the position of the heating means 61 in the supply gas line 6 on the first gas separation membrane unit 11 side and the second impermeable gas discharge line 18 . The first inlet gas discharge line 24 branches off from the supply gas line 6 on the first gas separation membrane unit 11 side of the connection point 23 a of the first bypass line 23 of the supply gas line 6 . The first inlet gas discharge line 24 is a line that connects the outside of the system and the supply gas line 6 .
 図8の形態によれば、図8(a)に示すように、ガス分離のための運転時(通常運転時)には供給ガスライン6から第1バイパスライン23及び第1入口ガス排出ライン24に原料混合ガスが流入されないようになされている。一方、図8(b)に示す通り、再生時には供給ガスライン6から第1バイパスライン23に再生用ガスが流入されて、供給ガスライン6における第1バイパスライン23との連結箇所23aよりも第1ガス分離膜ユニット11側にガスが流通しないようになされている。このガス流通経路の切り替えは、第1バイパスライン23と供給ガスライン6との連結箇所23aに配置された不図示のバルブによってなされる。 According to the embodiment of FIG. 8, as shown in FIG. 8(a), during operation for gas separation (during normal operation), from the supply gas line 6, the first bypass line 23 and the first inlet gas discharge line 24 The raw material mixed gas is prevented from flowing into. On the other hand, as shown in FIG. 8B, during regeneration, the regeneration gas is flowed from the supply gas line 6 into the first bypass line 23, and the supply gas line 6 is located at the first bypass line 23 from the connection point 23a. 1 Gas separation membrane unit 11 side is prevented from flowing gas. This switching of the gas flow path is performed by a valve (not shown) arranged at the connection point 23 a between the first bypass line 23 and the supply gas line 6 .
 また供給ガスライン6における、ライン6からの第1入口ガス排出ライン24の分岐点(連結箇所)24aにおいては、上述した通り、通常運転時には供給ガスライン6からガスが流通しないが(図8(a))、再生時には、供給ガスライン6における分岐点24aの第1ガス分離膜ユニット11側から第1入口ガス排出ライン24にガスが導入され、供給ガスライン6における分岐点24aから分岐点23a側にはガスが流通しないようになされている。このガス流通経路の切り替えは、第1入口ガス排出ライン24の供給ガスライン6からの分岐点24aに配置された不図示のバルブによってなされる。 Further, at the branch point (connecting point) 24a of the first inlet gas discharge line 24 from the line 6 in the supply gas line 6, as described above, gas does not flow from the supply gas line 6 during normal operation (Fig. 8 ( a)) During regeneration, gas is introduced into the first inlet gas discharge line 24 from the first gas separation membrane unit 11 side of the branch point 24a in the supply gas line 6, and is introduced from the branch point 24a in the supply gas line 6 to the branch point 23a. It is made so that gas does not flow to the side. This switching of the gas flow path is performed by a valve (not shown) arranged at a branch point 24 a of the first inlet gas discharge line 24 from the supply gas line 6 .
 以上の構成により、図8(a)に示す通り、通常運転時には、分離対象ガスは図6及び図7と同様のガス流通経路を通る。従って、供給ガスライン6を流通し圧縮手段21により加圧された分離対象ガスは、第1バイパスライン23を通らずに、第1ガス分離膜ユニット11に導入されるようになされている。 With the above configuration, as shown in FIG. 8(a), the gas to be separated passes through the same gas flow path as in FIGS. 6 and 7 during normal operation. Therefore, the gas to be separated that flows through the supply gas line 6 and is pressurized by the compression means 21 is introduced into the first gas separation membrane unit 11 without passing through the first bypass line 23 .
 一方、図8(b)に示すように、再生時には、供給ガスライン6を流通し圧縮手段21により加圧された再生用ガスは、加熱手段により加熱された状態で、前記第1バイパスライン23を通じて第2不透過ガス排出ライン18に導入された後に、第2不透過ガス排出ライン18の第1バイパスライン23との連結箇所23bの第2ガス分離膜ユニット12側において、通常運転時のガス流通方向と逆方向に流通し、第2ガス分離膜ユニット12に不透過ガス排出口12bから導入されるようになされている。 On the other hand, as shown in FIG. 8(b), during regeneration, the regeneration gas that flows through the supply gas line 6 and is pressurized by the compression means 21 is heated by the heating means to the first bypass line 23. After being introduced into the second impermeable gas discharge line 18 through the second gas separation membrane unit 12 side of the connection point 23b of the second impermeable gas discharge line 18 with the first bypass line 23, the gas during normal operation It circulates in the direction opposite to the direction of flow, and is introduced into the second gas separation membrane unit 12 from the impermeable gas discharge port 12b.
 第2ガス分離膜ユニット12の不透過ガス排出口12bから導入された再生用ガスのうち、ガス分離膜を透過したガスは透過ガス排出口12cから排出され、不透過ガスはガス入口12aから排出される。第2ガス分離膜ユニット12のガス入口12aから排出された不透過ガスは、第1不透過ガス排出ライン14を通じて不透過ガス排出口11bから第1ガス分離膜ユニット11に導入される。第1ガス分離膜ユニット11に導入された不透過ガス(再生用ガス)のうち、透過ガスは第3ガス分離膜ユニット13に導入され、以降は図7と同様の方法で流通する。一方、不透過ガスは、第1ガス分離膜ユニットのガス入口から排出される。第1ガス分離膜ユニットのガス入口11aから排出された不透過ガス(再生用ガス)は、供給ガスライン6から分岐している第1入口ガス排出ライン24に導入され、当該第1入口ガス排出ライン24を流通して、システム外に排出するようになされている。 Of the regeneration gas introduced from the impermeable gas outlet 12b of the second gas separation membrane unit 12, the gas that has permeated the gas separation membrane is discharged from the permeable gas outlet 12c, and the impermeable gas is discharged from the gas inlet 12a. be done. The impermeable gas discharged from the gas inlet 12 a of the second gas separation membrane unit 12 is introduced into the first gas separation membrane unit 11 from the impermeable gas discharge port 11 b through the first impermeable gas discharge line 14 . Of the impermeable gas (regenerating gas) introduced into the first gas separation membrane unit 11, the permeable gas is introduced into the third gas separation membrane unit 13 and thereafter flows in the same manner as in FIG. On the other hand, impermeable gas is discharged from the gas inlet of the first gas separation membrane unit. The impermeable gas (regenerating gas) discharged from the gas inlet 11a of the first gas separation membrane unit is introduced into the first inlet gas discharge line 24 branched from the supply gas line 6, and the first inlet gas is discharged. It circulates through the line 24 and is discharged outside the system.
 以上の図8の形態によれば、加熱した再生用ガスを第1ガス分離膜ユニット11及び第2ガス分離膜ユニット12を構成するガス分離膜モジュールの不透過ガス流通空間を逆流させることで、ガス分離膜モジュールにおけるガス分離膜の不透過側に付着した有機質不純物を効果的に除去できるという利点があり、特に第2ガス分離膜ユニット12の再生に有利である。第2ガス分離膜ユニット12の不透過ガスに含まれた、ユニット12のガス分離膜由来の有機質不純物の揮発物が、当該不透過ガスが第1ガス分離膜ユニット11のガス分離膜に接触したときに凝縮することを防止するため、第1ガス分離膜ユニット11のガス分離膜を加熱した状態で第1ガス分離膜ユニット11に再生用ガスを流通させてもよい。 According to the embodiment of FIG. 8 above, by causing the heated regeneration gas to flow backward through the impermeable gas circulation spaces of the gas separation membrane modules that constitute the first gas separation membrane unit 11 and the second gas separation membrane unit 12, There is an advantage that organic impurities adhering to the impermeable side of the gas separation membrane in the gas separation membrane module can be effectively removed, which is particularly advantageous for regeneration of the second gas separation membrane unit 12 . The organic impurity volatiles derived from the gas separation membrane of the unit 12 contained in the impermeable gas of the second gas separation membrane unit 12 came into contact with the gas separation membrane of the first gas separation membrane unit 11. In order to prevent condensation, the regeneration gas may be passed through the first gas separation membrane unit 11 while the gas separation membranes of the first gas separation membrane unit 11 are heated.
 また本実施形態を採用することは第2ガス分離膜ユニット12に比して第1ガス分離膜ユニット11の汚染度の方が高い場合には、再生時に第1ガス分離膜ユニット11から排出された不純物が、相対的に汚染度が低かった第2ガス分離膜ユニット12のガス分離膜に付着することを容易に防止でき、また、第2不透過ガス排出ライン18が通常運転時の製品ガス供給システム等の下流のシステムに接続されている場合には、その下流のシステムを不純物含有再生用ガスによって汚染させない点でも好ましい。 Further, by adopting this embodiment, when the degree of contamination of the first gas separation membrane unit 11 is higher than that of the second gas separation membrane unit 12, the gas discharged from the first gas separation membrane unit 11 during regeneration It is possible to easily prevent the impurities from adhering to the gas separation membrane of the second gas separation membrane unit 12, which has a relatively low degree of contamination, and the second impermeable gas discharge line 18 is the product gas during normal operation. When connected to a downstream system, such as a supply system, it is also preferred in that it does not contaminate the downstream system with the impurity-containing regeneration gas.
 図8の形態において、第1ガス分離膜ユニット11に導入される再生用ガスの温度T2としては、第1ガス分離膜ユニット11の不透過ガス排出口に導入される再生用ガスの温度T2’を採用する。第2ガス分離膜ユニット12に導入される再生用ガスの温度T4としては、第2ガス分離膜ユニット12の不透過ガス排出口に導入される再生用ガスの温度T4’を採用する。また、図8の形態において、第3ガス分離膜ユニット13に導入される際の再生用ガスの温度としては、第3ガス分離膜ユニット13のガス入口に導入される際の再生用ガスの温度を採用する。図8の形態において、第2ガス分離膜ユニット12に供給される再生用ガスの圧力は、第2ガス分離膜ユニット、第1ガス分離膜ユニット、および第3ガス分離膜ユニットへ再生用ガスを確実に流通させるための圧力を確保し、一方で高圧化に伴うエネルギー増加を防ぐ理由から、0.4MPaG以上1.4MPaG以下がより好ましく、0.5MPaG以上1.3MPaG以下が更に好ましい。 In the embodiment of FIG. 8, the temperature T2 of the regeneration gas introduced into the first gas separation membrane unit 11 is the temperature T2′ of the regeneration gas introduced into the impermeable gas outlet of the first gas separation membrane unit 11. to adopt. As the temperature T4 of the regeneration gas introduced into the second gas separation membrane unit 12, the temperature T4' of the regeneration gas introduced into the impermeable gas outlet of the second gas separation membrane unit 12 is employed. 8, the temperature of the regeneration gas when introduced into the third gas separation membrane unit 13 is the temperature of the regeneration gas when introduced into the gas inlet of the third gas separation membrane unit 13. to adopt. In the embodiment of FIG. 8, the pressure of the regeneration gas supplied to the second gas separation membrane unit 12 is such that the regeneration gas is supplied to the second gas separation membrane unit, the first gas separation membrane unit, and the third gas separation membrane unit. In order to secure pressure for reliable circulation and prevent an increase in energy due to high pressure, it is more preferably 0.4 MPaG or more and 1.4 MPaG or less, and still more preferably 0.5 MPaG or more and 1.3 MPaG or less.
 また図6、図7及び図8の形態に換えて、図9の形態を採用してもよい。
 図9において、図8に示す構成と同じ構成については同じ符号を付している。図9の形態において、図6、図7、図8の形態と異なる点について主に説明し、図6、図7、図8と同様の点については説明を省略する。なお図5以前における同符号の構成の説明は適宜本形態に適用できる。
Further, instead of the forms shown in FIGS. 6, 7 and 8, the form shown in FIG. 9 may be adopted.
In FIG. 9, the same components as those shown in FIG. 8 are denoted by the same reference numerals. In the embodiment of FIG. 9, differences from the embodiments of FIGS. 6, 7, and 8 will be mainly described, and descriptions of the same points as those of FIGS. 6, 7, and 8 will be omitted. The description of the configuration with the same reference numerals before FIG. 5 can be appropriately applied to this embodiment.
 図9の形態では、第1バイパスライン23と第1不透過ガス排出ライン14とを結ぶ第2バイパスライン25を備え、且つ、第1不透過ガス排出ライン14から分岐する第2入口ガス排出ライン28を備える。 In the embodiment of FIG. 9, a second bypass line 25 connecting the first bypass line 23 and the first impermeable gas discharge line 14 is provided, and a second inlet gas discharge line branching from the first impermeable gas discharge line 14 is provided. 28.
 図9の形態によれば、図9(a)に示すように、ガス分離のための運転時(通常運転時)には第1不透過ガス排出ライン14から第2バイパスライン25及び第2入口ガス排出ライン28にガスが流入されないようになされている。一方、図9(b)に示す通り、再生時には第1不透過ガス排出ライン14において、ガス入口12aからのガスは、連結箇所28aから第2入口ガス排出ライン28にすべて導入され、連結箇所28aから不透過ガス排出口11b側には導入されないようになされている。このガス流通経路の切り替えは、連結箇所28aに配置された不図示のバルブによってなされる。 According to the embodiment of FIG. 9, as shown in FIG. 9(a), during operation for gas separation (during normal operation), from the first impermeable gas discharge line 14 to the second bypass line 25 and the second inlet Gas is prevented from flowing into the gas discharge line 28 . On the other hand, as shown in FIG. 9B, in the first impermeable gas discharge line 14 during regeneration, all the gas from the gas inlet 12a is introduced from the connection point 28a to the second inlet gas discharge line 28, and the connection point 28a is not introduced into the impermeable gas discharge port 11b side. This switching of the gas flow path is performed by a valve (not shown) arranged at the connection point 28a.
 また第1不透過ガス排出ライン14における、第2バイパスライン25との連結箇所25aにおいては、通常運転時には第1不透過ガス排出ライン14と第2バイパスライン25とのガスの導通はなされないが(図9(a))、再生時には、第2バイパスライン25からのガスが第1不透過ガス排出ライン14の連結箇所25aから不透過ガス排出口11bまでの流路を通じて第1ガス分離膜ユニット11に導入可能となっている。このガス流通経路の切り替えは、連結箇所25aに配置された不図示のバルブによってなされる。 Further, at the connection point 25a of the first impermeable gas discharge line 14 with the second bypass line 25, gas is not conducted between the first impermeable gas discharge line 14 and the second bypass line 25 during normal operation. (FIG. 9(a)) During regeneration, the gas from the second bypass line 25 passes through the passage from the connection point 25a of the first non-permeable gas discharge line 14 to the non-permeable gas discharge port 11b to the first gas separation membrane unit. 11 can be introduced. This switching of the gas flow path is performed by a valve (not shown) arranged at the connection point 25a.
 以上の構成により、図9(a)に示す通り、通常運転時には、分離対象ガスは図6、図7及び図8と同様のガス流通経路を通る。従って、供給ガスライン6を流通し圧縮手段21により加圧された分離対象ガスは、第1バイパスライン23及び第2バイパスライン25を通らずに、第1ガス分離膜ユニット11に導入されるようになされている。 With the above configuration, as shown in FIG. 9(a), during normal operation, the gas to be separated passes through the same gas flow paths as in FIGS. 6, 7 and 8. Therefore, the gas to be separated that flows through the supply gas line 6 and is pressurized by the compression means 21 is introduced into the first gas separation membrane unit 11 without passing through the first bypass line 23 and the second bypass line 25. has been made.
 一方、図9(b)に示すように、再生時には、供給ガスライン6を流通し圧縮手段21により加圧された再生用ガスは、加熱手段により加熱された状態で、第1バイパスライン23及び第2バイパスライン25に導入され、図8の形態と同様、第1バイパスライン23を通じて不透過ガス排出口12bから第2ガス分離膜ユニット12に導入されると同時に、第2バイパスライン25を通じて第1不透過ガス排出ライン14との連結箇所25aから不透過ガス排出口11bに流通され第1ガス分離膜ユニット11に導入されるようになされている。 On the other hand, as shown in FIG. 9(b), during regeneration, the regeneration gas that flows through the supply gas line 6 and is pressurized by the compression means 21 is heated by the heating means, and flows through the first bypass line 23 and the regeneration gas. It is introduced into the second bypass line 25 and is introduced into the second gas separation membrane unit 12 through the first bypass line 23 from the non-permeable gas outlet 12b as in the embodiment of FIG. 1 from the connection point 25 a with the impermeable gas discharge line 14 to the impermeable gas discharge port 11 b and introduced into the first gas separation membrane unit 11 .
 再生時、第2ガス分離膜ユニット12の不透過ガス排出口12bから導入された再生用ガスのうち、ガス分離膜を透過したガスは透過ガス排出口12cから排出され、不透過ガスはガス入口12aから排出される。第2ガス分離膜ユニット12のガス入口12aから排出された不透過ガスは、第2入口ガス排出ライン28を通じてシステム外に取り出される。また、第1ガス分離膜ユニット11に不透過ガス排出口11bから導入された再生用ガスのうち、ガス分離膜を透過したガスは図8の形態と同様に透過ガス排出口11c及び第1透過ガス排出ライン19を通じて第3ガス分離膜ユニット13へ導入される。一方、第1ガス分離膜ユニットのガス入口から排出された不透過ガス(再生用ガス)は、供給ガスライン6から分岐している第1入口ガス排出ライン24に導入され、当該第1入口ガス排出ライン24を流通して、システム外に排出するようになされている。第3ガス分離膜ユニット13に到達したガスの流通経路は図7及び図8の形態と同様である。 During regeneration, of the regeneration gas introduced from the impermeable gas outlet 12b of the second gas separation membrane unit 12, the gas that has permeated the gas separation membrane is discharged from the permeable gas outlet 12c, and the impermeable gas is discharged from the gas inlet. 12a is discharged. The impermeable gas discharged from the gas inlet 12 a of the second gas separation membrane unit 12 is taken out of the system through the second inlet gas discharge line 28 . Further, of the regeneration gas introduced into the first gas separation membrane unit 11 from the impermeable gas outlet 11b, the gas that has permeated the gas separation membrane passes through the permeable gas outlet 11c and the first permeable gas outlet 11c in the same manner as in the embodiment of FIG. It is introduced into the third gas separation membrane unit 13 through the gas discharge line 19 . On the other hand, the impermeable gas (regeneration gas) discharged from the gas inlet of the first gas separation membrane unit is introduced into the first inlet gas discharge line 24 branched from the supply gas line 6, and the first inlet gas It circulates through the discharge line 24 and is discharged out of the system. The flow path of the gas reaching the third gas separation membrane unit 13 is the same as in the embodiments of FIGS. 7 and 8. FIG.
 以上の図9の形態によれば、第1ガス分離膜ユニット11及び第2ガス分離膜ユニット12それぞれを独立して不透過ガス流通経路に再生用ガスを流通させることができるため、再生時に第2ガス分離膜ユニット12から排出された有機質不純物が第1ガス分離膜ユニット11のガス分離膜に付着することを容易に防止できるほか、第1ガス分離膜ユニット11及び第2ガス分離膜ユニット12の構成にそれぞれ適した再生用ガス流量を容易に設定できる。また図8の形態に比べて、第2ガス分離膜ユニット12を経ない再生用ガスを第3ガス分離膜ユニット13に導入することができ、第3ガス分離膜ユニット13に導入する再生用ガスをより有機質不純物の少ないものとすることができる。 According to the embodiment of FIG. 9 described above, the regeneration gas can be circulated through the impermeable gas circulation path independently of each of the first gas separation membrane unit 11 and the second gas separation membrane unit 12. 2 In addition to being able to easily prevent organic impurities discharged from the gas separation membrane unit 12 from adhering to the gas separation membranes of the first gas separation membrane unit 11, the first gas separation membrane unit 11 and the second gas separation membrane unit 12 The regeneration gas flow rate suitable for each configuration can be easily set. 8, the regeneration gas that does not pass through the second gas separation membrane unit 12 can be introduced into the third gas separation membrane unit 13, and the regeneration gas introduced into the third gas separation membrane unit 13 can be made with less organic impurities.
 また本実施形態を採用することは再生用ガスの流路長が短くなることにより再生用ガスの圧力損失を低減させることができ、即ち再生用ガスの圧縮動力を抑えられる点でも好ましい。 Adopting this embodiment is also preferable in that the pressure loss of the regeneration gas can be reduced by shortening the flow path length of the regeneration gas, that is, the compression power of the regeneration gas can be suppressed.
 図9の形態において、第1ガス分離膜ユニット11の不透過ガス排出口における再生用ガスの温度T2’、又は、第2ガス分離膜ユニット12の不透過ガス排出口における再生用ガスの温度T4’とT1との差T2’―T1又はT4’―T1が上記図1で説明した(T2-T1)の範囲であればよく、両方が上記範囲であることが好ましい。図9の形態において、第1ガス分離膜ユニット11に供給される再生用ガスの圧力は、0.3MPaG以上1.4MPaG以下がより好ましく、0.4MPaG以上1.3MPaG以下が更に好ましい。また図9の形態において、第2ガス分離膜ユニット12に供給される再生用ガスの圧力は第2ガス分離膜ユニット12へ再生用ガスを確実に流通させるための圧力を確保し、一方で高圧化に伴うエネルギー増加を防ぐ理由から、0.1MPaG以上1.4MPaG以下がより好ましく、0.2MPaG以上1.3MPaG以下が更に好ましい。 In the embodiment of FIG. 9, the temperature T2′ of the regeneration gas at the impermeable gas outlet of the first gas separation membrane unit 11 or the temperature T4 of the regeneration gas at the impermeable gas outlet of the second gas separation membrane unit 12 It is sufficient that the difference T2'-T1 or T4'-T1 between T' and T1 is in the range (T2-T1) described in FIG. 1 above, and both are preferably in the above range. In the embodiment of FIG. 9, the pressure of the regeneration gas supplied to the first gas separation membrane unit 11 is more preferably 0.3 MPaG or more and 1.4 MPaG or less, still more preferably 0.4 MPaG or more and 1.3 MPaG or less. Further, in the embodiment of FIG. 9, the pressure of the regeneration gas supplied to the second gas separation membrane unit 12 ensures the pressure for reliably circulating the regeneration gas to the second gas separation membrane unit 12, while maintaining a high pressure. 0.1 MPaG or more and 1.4 MPaG or less is more preferable, and 0.2 MPaG or more and 1.3 MPaG or less is still more preferable for the reason of preventing an increase in energy associated with quenching.
 また図6、図7~図9の形態に換えて、図10の形態を採用してもよい。
 図10において、図9に示す構成と同じ構成については同じ符号を付している。図10の形態において、図6、図7~図9の形態と異なる点について主に説明し、図6、図7~図9と同様の点については説明を省略する。なお図5以前における同符号の構成の説明は適宜本形態に適用できる。
10 may be adopted in place of the forms shown in FIGS. 6 and 7 to 9. FIG.
In FIG. 10, the same components as those shown in FIG. 9 are given the same reference numerals. In the embodiment of FIG. 10, differences from the embodiments of FIGS. 6 and 7 to 9 will be mainly described, and descriptions of the same points as those of FIGS. 6 and 7 to 9 will be omitted. The description of the configuration with the same reference numerals before FIG. 5 can be appropriately applied to this embodiment.
 図10の形態では、第1透過ガス排出ライン19から分岐する第3ユニット回避ライン76を設け、再生時、第1ガス分離膜ユニット11から排出された透過ガスを、第3ガス分離膜ユニット13を介さずにシステム外に排出することを可能にしている。 In the embodiment of FIG. 10, a third unit avoidance line 76 branched from the first permeated gas discharge line 19 is provided, and the permeated gas discharged from the first gas separation membrane unit 11 is discharged from the third gas separation membrane unit 13 during regeneration. It is possible to output to the outside of the system without going through
 図10(a)に示すように、第3ユニット回避ライン76は第1透過ガス排出ライン19における透過ガス排出口11cからガス入口13aとの間の位置における分岐箇所19aから分岐し、システム外に繋がっている。図10の形態によれば、ガス分離のための運転時(通常運転時)には透過ガス排出ライン19から第3ユニット回避ライン76にガスが流入されないようになされている。一方、図10(b)に示す通り、再生時には第1透過ガス排出ライン19において、透過ガス排出口11cから排出されたガスは、分岐箇所19aから第3ユニット回避ライン76にすべて導入され、第3ガス分離膜ユニット13には導入されないようになされている。このガス流通経路の切り替えは、分岐箇所19aに配置された不図示のバルブによってなされる。 As shown in FIG. 10(a), the third unit avoidance line 76 branches off from a branch point 19a at a position between the permeated gas discharge port 11c and the gas inlet 13a in the first permeated gas discharge line 19, and exits the system. It is connected. According to the embodiment of FIG. 10, gas is prevented from flowing into the third unit avoidance line 76 from the permeated gas discharge line 19 during operation for gas separation (during normal operation). On the other hand, as shown in FIG. 10(b), in the first permeated gas discharge line 19 during regeneration, all the gas discharged from the permeated gas discharge port 11c is introduced from the branch point 19a into the third unit avoidance line 76. It is designed not to be introduced into the 3-gas separation membrane unit 13 . This switching of the gas flow path is performed by a valve (not shown) arranged at the branch point 19a.
 以上の図10の形態によれば、第1ガス分離膜ユニット11において透過された再生用ガスを第3ガス分離膜ユニット13に流通させないことで、第1ガス分離膜ユニット11の透過ガスに含まれる有機質不純物が透過ガスに含有されて第3ガス分離膜ユニット13のガス分離膜に付着することを確実に防止することができる。 According to the embodiment of FIG. 10 described above, the regeneration gas permeated in the first gas separation membrane unit 11 is not allowed to flow through the third gas separation membrane unit 13, so that the gas contained in the permeated gas of the first gas separation membrane unit 11 is It is possible to reliably prevent the organic impurities contained in the permeating gas from adhering to the gas separation membranes of the third gas separation membrane unit 13 .
 また図6、図7~図10の形態に換えて、図11の形態を採用してもよい。
 図11において、図10に示す構成と同じ構成については同じ符号を付している。図11の形態において、図6、図7~図10の形態と異なる点について主に説明し、図6、図7~図10と同様の点については説明を省略する。なお図5以前における同符号の構成の説明は適宜本形態に適用できる。
11 may be adopted in place of the forms shown in FIGS. 6 and 7 to 10. FIG.
In FIG. 11, the same reference numerals are assigned to the same configurations as those shown in FIG. In the embodiment of FIG. 11, differences from the embodiments of FIGS. 6 and 7 to 10 will be mainly described, and descriptions of the same points as those of FIGS. 6 and 7 to 10 will be omitted. The description of the configuration with the same reference numerals before FIG. 5 can be appropriately applied to this embodiment.
 図11の形態では、第1バイパスライン23と第3不透過ガス帰還ライン73を結ぶ第3バイパスライン77と、第1透過ガス排出ライン19から分岐する第3入口ガス排出ライン78をそれぞれ備える。第3入口ガス排出ライン78は、第3ユニット回避ライン76よりも第3ガス分離膜ユニット13側において、第1透過ガス排出ライン19から分岐する。 The embodiment of FIG. 11 includes a third bypass line 77 connecting the first bypass line 23 and the third impermeable gas return line 73, and a third inlet gas discharge line 78 branching from the first permeated gas discharge line 19, respectively. The third inlet gas discharge line 78 branches off from the first permeated gas discharge line 19 on the third gas separation membrane unit 13 side of the third unit avoidance line 76 .
 図11(a)に示すように、第3バイパスライン77は第1バイパスライン23の分岐箇所23cから分岐し、第3不透過ガス帰還ライン73に図11の連結箇所73aにて連結している。第1バイパスライン23における連結箇所23cは、第2バイパスライン25との連結箇所25bと、第1バイパスライン23と第2不透過ガス排出ライン18との連結箇所23bの間に位置する。連結箇所73aは第3不透過ガス帰還ライン73における第3不透過ガス排出ライン74との連結箇所である分岐点74aと不透過ガス排出口13bの間に位置している。図11(a)の通り、ガス分離のための運転時(通常運転時)には第3不透過ガス帰還ライン73から第3バイパスライン77にガスが流入されないようになされている。一方、図11(b)に示す通り、再生時には第1バイパスライン23から第3バイパスライン77にガスが導入され、第3バイパスライン77のガスは、連結箇所73aから不透過ガス帰還ライン73において全て第3ガス分離膜ユニット13の不透過ガス排出口13bに導入されるように切り替えがなされている。このガス流通経路の切り替えは、連結箇所73aに配置された不図示のバルブによってなされる。 As shown in FIG. 11(a), the third bypass line 77 branches from the branch point 23c of the first bypass line 23, and is connected to the third impermeable gas return line 73 at the connection point 73a in FIG. . The connection point 23 c of the first bypass line 23 is located between the connection point 25 b with the second bypass line 25 and the connection point 23 b between the first bypass line 23 and the second impermeable gas discharge line 18 . The connection point 73a is located between a branch point 74a, which is a connection point of the third impermeable gas return line 73 with the third impermeable gas discharge line 74, and the impermeable gas discharge port 13b. As shown in FIG. 11(a), gas is prevented from flowing from the third impermeable gas return line 73 to the third bypass line 77 during operation for gas separation (during normal operation). On the other hand, as shown in FIG. 11(b), gas is introduced from the first bypass line 23 into the third bypass line 77 during regeneration, and the gas in the third bypass line 77 flows from the connection point 73a to the impermeable gas return line 73. All of them are switched to be introduced into the impermeable gas outlet 13 b of the third gas separation membrane unit 13 . This switching of the gas flow path is performed by a valve (not shown) arranged at the connection point 73a.
 図11の形態によれば、図11(a)に示すように、ガス分離のための運転時(通常運転時)には第1透過ガス排出ライン19から第3ユニット回避ライン76及び第3入口ガス排出ライン78にガスが流入されないようになされている。一方、図11(b)に示す通り、再生時には第1透過ガス排出ライン19において、ガス入口13aからのガスは、ライン19と第3入口ガス排出ライン78との連結箇所78aから同ライン78にすべて導入され、第1透過ガス排出ライン19を通じて連結箇所78aから透過ガス排出口11c側に導入されないようになされている。このガス流通経路の切り替えは、連結箇所78aに配置された不図示のバルブによってなされる。 According to the embodiment of FIG. 11, as shown in FIG. 11(a), during operation for gas separation (during normal operation), from the first permeated gas discharge line 19 to the third unit avoidance line 76 and the third inlet Gas is prevented from flowing into the gas discharge line 78 . On the other hand, as shown in FIG. 11(b), in the first permeated gas discharge line 19 during regeneration, the gas from the gas inlet 13a flows into the line 78 from the connection point 78a between the line 19 and the third inlet gas discharge line 78. All the permeated gas is introduced through the first permeated gas discharge line 19 so as not to be introduced from the connection point 78a to the permeated gas discharge port 11c side. This switching of the gas flow path is performed by a valve (not shown) arranged at the connection point 78a.
 以上の図11の形態によれば、通常運転時には、分離対象ガスは図6、図7及び図8と同様のガス流通経路を通る。
 一方、再生時は、加熱手段61により加熱された再生用ガスは、第1バイパスライン23に導入され、連結箇所23cから第3バイパスライン77に導入され、連結箇所73aから第3不透過ガス帰還ライン73を通常運転時のガス流通方向に対して逆流して、第3ガス分離膜ユニット13にその不透過ガス排出口13bから導入されるとともに、第3ガス分離膜ユニット13のガス入口13aから排出された不透過ガスである再生用ガスが第3入口ガス排出ライン78を通じてシステム外に排出されるようになされている。
According to the embodiment of FIG. 11 described above, during normal operation, the gas to be separated passes through the same gas flow paths as in FIGS.
On the other hand, during regeneration, the regeneration gas heated by the heating means 61 is introduced into the first bypass line 23, introduced into the third bypass line 77 from the connecting point 23c, and then returned to the third impermeable gas from the connecting point 73a. The gas is introduced into the third gas separation membrane unit 13 from the impermeable gas discharge port 13b through the line 73 in a reverse direction to the gas flow direction during normal operation, and from the gas inlet 13a of the third gas separation membrane unit 13. The regeneration gas, which is the discharged non-permeable gas, is discharged out of the system through the third inlet gas discharge line 78 .
 以上の図11の形態によれば、第1ガス分離膜ユニット11、第2ガス分離膜ユニット12に加えて、第3ガス分離膜ユニット13も独立して不透過ガス流通経路に再生用ガスを流通させることができるため、再生時に第1ガス分離膜ユニット11から排出された有機質不純物が第3ガス分離膜ユニット13のガス分離膜に付着することを容易に防止できるほか、第1ガス分離膜ユニット11、第2ガス分離膜ユニット12及び第3ガス分離膜ユニット13の構成にそれぞれ適した再生用ガス流量を容易に設定できる。
 第3ガス分離膜ユニット13に導入される再生用ガスの温度T6としては、第3ガス分離膜ユニット13の不透過ガス排出口に導入される再生用ガスの温度T6’を採用する。
11, in addition to the first gas separation membrane unit 11 and the second gas separation membrane unit 12, the third gas separation membrane unit 13 also independently supplies the regeneration gas to the impermeable gas flow path. Since it can be circulated, organic impurities discharged from the first gas separation membrane unit 11 during regeneration can be easily prevented from adhering to the gas separation membrane of the third gas separation membrane unit 13, and the first gas separation membrane It is possible to easily set regeneration gas flow rates suitable for the configurations of the unit 11, the second gas separation membrane unit 12, and the third gas separation membrane unit 13, respectively.
As the temperature T6 of the regeneration gas introduced into the third gas separation membrane unit 13, the temperature T6' of the regeneration gas introduced into the impermeable gas outlet of the third gas separation membrane unit 13 is employed.
 また本実施形態を採用することは加熱した再生用ガスを第3ガス分離膜ユニット13を構成するガス分離膜モジュールの不透過ガス流通空間を逆流させることで、ガス分離膜モジュールにおけるガス分離膜の不透過側に付着した有機質不純物を効果的に除去できる点でも好ましい。 Further, by adopting this embodiment, the heated regeneration gas is caused to flow back through the non-permeable gas circulation space of the gas separation membrane module constituting the third gas separation membrane unit 13, so that the gas separation membrane in the gas separation membrane module It is also preferable in that organic impurities adhering to the non-permeable side can be effectively removed.
 また本実施形態を採用することは第1ガス分離膜ユニット11を介して第3ガス分離膜ユニット13へ再生用ガスを流通させるための圧力を確保する必要がないことから、第1ガス分離膜ユニットへ供給する再生用ガスの圧縮エネルギーを削減することができる点でも好ましい。 Further, by adopting this embodiment, it is not necessary to ensure the pressure for circulating the regeneration gas to the third gas separation membrane unit 13 via the first gas separation membrane unit 11, so the first gas separation membrane It is also preferable in that the compression energy of the regeneration gas to be supplied to the unit can be reduced.
 以上の通り、本発明のガス分離膜システムにより、3段のガス分離膜ユニットを組み合わせた状態からガス分離膜モジュールを取り外さずにガス分離膜の透過性を効率よく、簡便に再生することができる。 As described above, with the gas separation membrane system of the present invention, the permeability of the gas separation membranes can be efficiently and easily regenerated without removing the gas separation membrane module from the state in which three gas separation membrane units are combined. .
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、係る実施例に制限されない。 The present invention will be described in more detail below with reference to examples. However, the scope of the invention is not limited to such examples.
  〔実施例1〕
(1)ガス分離
 図1に示すシステム10を用いて、高透過性ガスAが二酸化炭素であり低透過性ガスBがメタンである原料混合ガス(バイオガス)の分離を行った。第1ガス分離膜ユニット11としては、ポリイミドからなる中空糸膜を用いたモジュール(40℃でのP’O2/P’N2が4~8)1本用いた。また第2ガス分離膜ユニット12としてはポリイミドからなる中空糸膜を用いたモジュール(40℃でのP’O2/P’N2が4~8)を1本用いた。圧縮手段21としては圧縮機を用いた。加熱手段61としては電気ヒーターを用いた。原料混合ガスの組成は、ガスAが概ね40モル%、ガスBが概ね60モル%のものであった。
 供給ガスライン6への原料混合ガスの供給流量(システムへの供給流量)は135Nm3/hであった。圧縮機および電気ヒーターを介して、第1ガス分離膜ユニット11のガス入口の圧力を1.2MPaG、温度を25℃に設定してシステムを運転した。初期定常状態において、システム性能を表す、第2ガス分離膜ユニット12の不透過ガス中のメタン濃度は98.0%であったが、一定時間運転した後、運転とともに同伴される不純物により、第2ガス分離膜ユニット12の不透過ガス中のメタン濃度は90.9%まで低下した。なお、圧縮手段21と加熱手段61との間の不図示のフィルタとしては、活性炭フィルタを用いた。
(2)再生
 再生用ガスとして空気を供給ガスライン6に導入した。圧縮手段21により0.7MPaGに圧力を付与された再生用ガス(圧縮空気)を電気ヒーターで100℃に加熱して供給した。再生用ガスの第1ガス分離膜ユニット11への供給量は115Nm3/h、第2ガス分離膜ユニット12への供給量は100Nm3/h、第2ガス分離膜ユニット12への再生用ガスの供給圧力は0.56MPaG、第2ガス分離膜ユニット12の透過ガス排出口から第1ガス分離膜ユニット11に還流する量S4が40Nm3/hであった。電気ヒーターの所要熱量は53kWであった。再生処理は3時間行った。
(3)再運転
 供給ガスライン6に原料空気の供給流量135Nm3/hで供給したところ、第2ガス分離膜ユニット12の不透過ガス中のメタン濃度は97.4%まで回復した。
[Example 1]
(1) Gas Separation Using the system 10 shown in FIG. 1, a raw material mixed gas (biogas) in which the highly permeable gas A is carbon dioxide and the low permeable gas B is methane was separated. As the first gas separation membrane unit 11, one module ( P'O2 / P'N2 at 40°C of 4 to 8) using a hollow fiber membrane made of polyimide was used. As the second gas separation membrane unit 12, one module using a hollow fiber membrane made of polyimide ( P'O2 / P'N2 at 40°C is 4 to 8) was used. A compressor was used as the compression means 21 . An electric heater was used as the heating means 61 . The composition of the raw material mixed gas was approximately 40 mol % of gas A and approximately 60 mol % of gas B.
The supply flow rate of the raw material mixed gas to the supply gas line 6 (supply flow rate to the system) was 135 Nm 3 /h. The system was operated at a pressure of 1.2 MPaG and a temperature of 25° C. at the gas inlet of the first gas separation membrane unit 11 via a compressor and an electric heater. In the initial steady state, the methane concentration in the impermeable gas of the second gas separation membrane unit 12, which represents system performance, was 98.0%. The methane concentration in the impermeable gas of the two-gas separation membrane unit 12 decreased to 90.9%. As a filter (not shown) between the compressing means 21 and the heating means 61, an activated carbon filter was used.
(2) Regeneration Air was introduced into the supply gas line 6 as a regeneration gas. The regeneration gas (compressed air) pressurized to 0.7 MPaG by the compression means 21 was heated to 100° C. by an electric heater and supplied. The amount of regeneration gas supplied to the first gas separation membrane unit 11 was 115 Nm 3 /h, the amount of supply to the second gas separation membrane unit 12 was 100 Nm 3 /h, and the regeneration gas to the second gas separation membrane unit 12 was 100 Nm 3 /h. The supply pressure was 0.56 MPaG, and the amount S4 of the permeated gas flowing back from the permeated gas outlet of the second gas separation membrane unit 12 to the first gas separation membrane unit 11 was 40 Nm 3 /h. The required heat of the electric heater was 53 kW. The regeneration treatment was carried out for 3 hours.
(3) Reoperation When the feed air was supplied to the supply gas line 6 at a supply flow rate of 135 Nm 3 /h, the methane concentration in the impermeable gas of the second gas separation membrane unit 12 recovered to 97.4%.
  〔比較例1〕
 (1)及び(3)は実施例1と同様に行った。第1ガス分離膜ユニット11および第2ガス分離膜ユニット12をガス分離膜システムから取り外し、個別に再生処理を行った。再生用ガス(圧縮空気)の各ガス分離膜ユニットへの供給温度、供給圧力、供給流量は実施例1と同一とした。第1ガス分離膜ユニット11の再生に必要な電気ヒーターの熱量は53kW、第2ガス分離膜ユニット12の再生に必要な電気ヒーターの熱量は38kWで、合計91kWを要した。
[Comparative Example 1]
(1) and (3) were carried out in the same manner as in Example 1. The first gas separation membrane unit 11 and the second gas separation membrane unit 12 were removed from the gas separation membrane system and individually regenerated. The supply temperature, supply pressure, and supply flow rate of the regeneration gas (compressed air) to each gas separation membrane unit were the same as in Example 1. The heat amount of the electric heater required for regeneration of the first gas separation membrane unit 11 was 53 kW, and the heat amount of the electric heater required for regeneration of the second gas separation membrane unit 12 was 38 kW, for a total of 91 kW.
 以上の実施例と比較例との運転条件及び再生結果を表1及び表2にまとめる。 Tables 1 and 2 summarize the operating conditions and regeneration results of the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 〔実施例2〕
 (1)ガス分離
 図3のシステムを用いた以外、実施例1と同様に行った。
 (2)再生
 空気の導入量としては、第2ガス分離膜ユニット12への供給流量が実施例1と同様となるように設定した。また還流する量S4が0Nm3/hであった。再生処理は3時間行った。電気ヒーターの所要熱量は52kWであった。
 (3)再運転
 供給ガスライン6に原料空気の供給流量135Nm3/hで供給したところ、第2ガス分離膜ユニット12の不透過ガス中のメタン濃度は97.4%まで回復した。
[Example 2]
(1) Gas Separation The procedure was carried out in the same manner as in Example 1, except that the system shown in FIG. 3 was used.
(2) Regeneration The introduction amount of air was set so that the supply flow rate to the second gas separation membrane unit 12 was the same as in the first embodiment. The reflux amount S4 was 0 Nm 3 /h. The regeneration treatment was carried out for 3 hours. The required heat of the electric heater was 52 kW.
(3) Reoperation When the feed air was supplied to the supply gas line 6 at a supply flow rate of 135 Nm 3 /h, the methane concentration in the impermeable gas of the second gas separation membrane unit 12 recovered to 97.4%.
 以上の実施例2の運転条件及び再生条件を表3及び表4にまとめる。図3のシステムを用いた実施例2では、再生時のリサイクルガスが無いので、第1ガス分離膜ユニット11へ供給される空気の酸素濃度が上がらず、図1のシステムを用いた実施例1に比べて、第1ガス分離膜ユニット11での透過ガスの割合を抑えられる。これにより実施例1と同等の再生効果を得ながら、第1ガス分離膜ユニット11へ供給する空気量を図1の形態に比べて、2%減少でき、ヒーターの熱量を2%減少させることができた。
 なお、実施例1と実施例2とで再生効率が同等であるのは、第2ユニットの透過ガス中、及び、第3ユニットの非透過ガス中に不純物が存在しても圧縮手段21と加熱手段61との間の位置にある不図示のフィルタにより、不純物が除去されるためである(下記の実施例3及び4についても同様)。
Tables 3 and 4 summarize the operating conditions and regeneration conditions of Example 2 above. In Example 2 using the system of FIG. 3, since there is no recycle gas during regeneration, the oxygen concentration of the air supplied to the first gas separation membrane unit 11 does not increase, and Example 1 using the system of FIG. Compared to , the ratio of the permeating gas in the first gas separation membrane unit 11 can be suppressed. As a result, the amount of air supplied to the first gas separation membrane unit 11 can be reduced by 2% compared to the configuration of FIG. did it.
The reason why the regeneration efficiency is the same between Example 1 and Example 2 is that even if impurities are present in the permeating gas of the second unit and the non-permeating gas of the third unit, the compression means 21 and the heating This is because impurities are removed by a filter (not shown) positioned between the means 61 (the same applies to Examples 3 and 4 below).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明のガス分離膜システムにより、2段のガス分離膜ユニットを組み合わせた状態からガス分離膜モジュールを取り外さずにガス分離膜の透過性を効率よく、簡便に再生することができる。 With the gas separation membrane system of the present invention, the permeability of the gas separation membrane can be efficiently and easily regenerated without removing the gas separation membrane module from the state in which two gas separation membrane units are combined.
  〔実施例3〕
(1)ガス分離
 図6に示すシステム10を用いて、高透過性ガスAが二酸化炭素であり低透過性ガスBがメタンである原料混合ガスの分離を行った。第1ガス分離膜ユニット11(40℃でのP’O2/P’N2が4~8)としては、ポリイミドからなる中空糸膜を用いたモジュールを1本用いた。第2ガス分離膜ユニット12としてはポリイミドからなる中空糸膜を用いたモジュール(40℃でのP’O2/P’N2が4~8)を1本用いた。第3ガス分離膜ユニット13としてはポリイミドからなる中空糸膜を用いたモジュール(40℃でのP’O2/P’N2が4~8)を1本用いた。圧縮手段21としては圧縮機を用いた。加熱手段61としては電気ヒーターを用いた。原料混合ガスの組成は、ガスAが概ね40モル%、ガスBが概ね60モル%のものであった。原料混合ガスの温度は25℃であった。
 供給ガスライン6への原料混合ガスの供給流量(システムへの供給流量)は94Nm3/hであった。圧縮機および電気ヒーターを介して、第1ガス分離膜ユニット11のガス入口の圧力を1.2MPaG、温度を25℃に設定してシステムを運転した。初期定常状態において、システム性能を表す、第2ガス分離膜ユニット12の不透過ガス中のメタン濃度は98.0%であったが、一定時間運転した後、運転とともに同伴される不純物により、第2ガス分離膜ユニット12の不透過ガス中のメタン濃度は90.8%まで低下した。なお、圧縮手段21と加熱手段61との間の不図示のフィルタとしては、活性炭フィルタを用いた。
(2)再生
 再生用ガスとして空気を供給ガスライン6に導入した。圧縮手段21により1.0MPaGに圧力を付与された再生用ガス(圧縮空気)を電気ヒーターで100℃に加熱して供給した。再生用ガスの第1ガス分離膜ユニット11への供給量が115Nm3/h、第2ガス分離膜ユニット12への供給量が100Nm3/h、第3ガス分離膜ユニット13への供給量が15Nm3/hであった。電気ヒーターの所要熱量は73kWであった。再生処理は3時間行った。なお、第2ガス分離膜ユニット12から第1ガス分離膜ユニット11に還流した量(S4)は70Nm3/h、第3ガス分離膜ユニット13から第1ガス分離膜ユニット11に還流した量(S5)は2Nm3/hであった。
(3)再運転
 供給ガスライン6に原料空気の供給流量94Nm3/hで供給したところ、第2ガス分離膜ユニット12の不透過ガス中のメタン濃度は97.4%まで回復した。
[Example 3]
(1) Gas Separation Using the system 10 shown in FIG. 6, a raw material mixed gas in which the high-permeability gas A is carbon dioxide and the low-permeability gas B is methane was separated. As the first gas separation membrane unit 11 ( P'O2 / P'N2 at 40°C is 4 to 8), one module using a hollow fiber membrane made of polyimide was used. As the second gas separation membrane unit 12, one module using a hollow fiber membrane made of polyimide ( P'O2 / P'N2 at 40°C is 4 to 8) was used. As the third gas separation membrane unit 13, one module using a hollow fiber membrane made of polyimide ( P'O2 / P'N2 at 40°C is 4 to 8) was used. A compressor was used as the compression means 21 . An electric heater was used as the heating means 61 . The composition of the raw material mixed gas was approximately 40 mol % of gas A and approximately 60 mol % of gas B. The temperature of the raw material mixed gas was 25°C.
The supply flow rate of the raw material mixed gas to the supply gas line 6 (supply flow rate to the system) was 94 Nm 3 /h. The system was operated at a pressure of 1.2 MPaG and a temperature of 25° C. at the gas inlet of the first gas separation membrane unit 11 via a compressor and an electric heater. In the initial steady state, the methane concentration in the impermeable gas of the second gas separation membrane unit 12, which represents system performance, was 98.0%. The methane concentration in the impermeable gas of the two-gas separation membrane unit 12 decreased to 90.8%. As a filter (not shown) between the compressing means 21 and the heating means 61, an activated carbon filter was used.
(2) Regeneration Air was introduced into the supply gas line 6 as a regeneration gas. The regeneration gas (compressed air) pressurized to 1.0 MPaG by the compression means 21 was heated to 100° C. by an electric heater and supplied. The supply amount of the regeneration gas to the first gas separation membrane unit 11 is 115 Nm 3 /h, the supply amount to the second gas separation membrane unit 12 is 100 Nm 3 /h, and the supply amount to the third gas separation membrane unit 13 is It was 15 Nm 3 /h. The required heat quantity of the electric heater was 73 kW. The regeneration treatment was carried out for 3 hours. The amount of reflux from the second gas separation membrane unit 12 to the first gas separation membrane unit 11 (S4) was 70 Nm 3 /h, and the amount of reflux from the third gas separation membrane unit 13 to the first gas separation membrane unit 11 ( S5) was 2 Nm 3 /h.
(3) Reoperation When the feed air was supplied to the supply gas line 6 at a supply flow rate of 94 Nm 3 /h, the methane concentration in the impermeable gas of the second gas separation membrane unit 12 recovered to 97.4%.
  〔比較例2〕
 (1)及び(3)は実施例3と同様に行った。第1ガス分離膜ユニット11、第2ガス分離膜ユニット12、および第3ガス分離膜ユニット13をガス分離膜システムから取り外し、個別に再生処理を行った。再生用ガス(圧縮空気)の各ガス分離膜ユニットへの供給温度、供給圧力、供給流量は実施例と同一とした。第1ガス分離膜ユニット11の再生に必要な電気ヒーターの熱量は73kW、第2ガス分離膜ユニット12の再生に必要な電気ヒーターの熱量は58kW、第3ガス分離膜ユニット13の再生に必要な電気ヒーターの熱量は3kWで、合計134kWを要した。
[Comparative Example 2]
(1) and (3) were carried out in the same manner as in Example 3. The first gas separation membrane unit 11, the second gas separation membrane unit 12, and the third gas separation membrane unit 13 were removed from the gas separation membrane system and individually regenerated. The supply temperature, supply pressure, and supply flow rate of the regeneration gas (compressed air) to each gas separation membrane unit were the same as in the example. The heat amount of the electric heater required for regeneration of the first gas separation membrane unit 11 is 73 kW, the heat amount of the electric heater required for regeneration of the second gas separation membrane unit 12 is 58 kW, and the heat amount required for regeneration of the third gas separation membrane unit 13 is 58 kW. The heat quantity of the electric heater was 3 kW, and a total of 134 kW was required.
 上記実施例3及び比較例2の条件・結果を下記表5及び表6にまとめた。 The conditions and results of Example 3 and Comparative Example 2 are summarized in Tables 5 and 6 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 〔実施例4〕
(1)ガス分離
 図7のシステムを用いた以外、実施例3と同様に行った。
(2)再生
 空気の導入量としては、第2ガス分離膜ユニット12への供給流量が実施例3と同様となるように設定した。第2ガス分離膜ユニット12から第1ガス分離膜ユニット11に還流した量(S4)は0Nm3/h、第3ガス分離膜ユニット13から第1ガス分離膜ユニット11に還流した量(S5)は0Nm3/hであった。再生処理は3時間行った。図1と同様の再生効果を得るために必要な電気ヒーターの所要熱量は71kWであった。
(3)再運転
 供給ガスライン6に原料空気の供給流量94Nm3/hで供給したところ、第2ガス分離膜ユニット12の不透過ガス中のメタン濃度は97.4%まで回復した。
[Example 4]
(1) Gas Separation The procedure was carried out in the same manner as in Example 3, except that the system shown in FIG. 7 was used.
(2) Regeneration The introduction amount of air was set so that the supply flow rate to the second gas separation membrane unit 12 was the same as in the third embodiment. The amount returned from the second gas separation membrane unit 12 to the first gas separation membrane unit 11 (S4) was 0 Nm 3 /h, and the amount returned from the third gas separation membrane unit 13 to the first gas separation membrane unit 11 (S5). was 0 Nm 3 /h. The regeneration treatment was carried out for 3 hours. The required heat quantity of the electric heater required to obtain the same regeneration effect as in FIG. 1 was 71 kW.
(3) Reoperation When the feed air was supplied to the supply gas line 6 at a supply flow rate of 94 Nm 3 /h, the methane concentration in the impermeable gas of the second gas separation membrane unit 12 recovered to 97.4%.
 以上の実施例4の運転条件及び再生条件を表7及び表8にまとめる。図7のシステムを用いた実施例4では、再生時のリサイクルガスが無いので、第1ガス分離膜ユニット11へ供給される空気の酸素濃度が上がらず、図6のシステムを用いた実施例3に比べて、第1ガス分離膜ユニット11での透過ガスの割合を抑えられる。これにより実施例3と同等の再生効果を得ながら、第1ガス分離膜ユニット11へ供給する空気量を図1の形態に比べて、2%減少でき、ヒーターの熱量を3%減少させることができた。 The operating conditions and regeneration conditions of Example 4 are summarized in Tables 7 and 8. In Example 4 using the system of FIG. 7, since there is no recycled gas during regeneration, the oxygen concentration of the air supplied to the first gas separation membrane unit 11 does not increase, and Example 3 using the system of FIG. Compared to , the ratio of the permeating gas in the first gas separation membrane unit 11 can be suppressed. As a result, the amount of air supplied to the first gas separation membrane unit 11 can be reduced by 2% compared to the configuration of FIG. did it.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以上の通り、本発明のガス分離膜システムにより、3段のガス分離膜ユニットを組み合わせた状態からガス分離膜モジュールを取り外さずにガス分離膜の透過性を効率よく、簡便に再生することができる。
 
As described above, with the gas separation membrane system of the present invention, the permeability of the gas separation membranes can be efficiently and easily regenerated without removing the gas separation membrane module from the state in which three gas separation membrane units are combined. .

Claims (14)

  1.  ガス分離性能を有する第1ガス分離膜ユニット及び第2ガス分離膜ユニットを少なくとも備えたガス分離膜システムであって、
     各ガス分離膜ユニットは、ガス入口、透過ガス排出口及び不透過ガス排出口を少なくとも備え、
     第1ガス分離膜ユニットのガス入口に、供給ガスラインを連結するとともに、該供給ガスラインの途中に圧縮手段及び加熱手段を介在配置し、
     第1ガス分離膜ユニットの不透過ガス排出口と、第2ガス分離膜ユニットのガス入口とを第1不透過ガス排出ラインによって連結し、
     第2ガス分離膜ユニットの透過ガス排出口と、前記供給ガスラインにおける圧縮手段の吸込側の位置とを、第2透過ガス帰還ラインによって連結し、
     第2ガス分離膜ユニットの不透過ガス排出口に第2不透過ガス排出ラインを連結し、
     第1ガス分離膜ユニットの透過ガス排出口に第1透過ガス排出ラインを連結し、
     前記供給ガスラインに導入されたガス分離膜再生用のガスを、前記加熱手段を用い、ガス分離のための運転時より10℃以上80℃以下高い温度に加熱した後、第1ガス分離膜ユニット及び第2ガス分離膜ユニットに流通させるようになされている、ガス分離膜システム。
    A gas separation membrane system comprising at least a first gas separation membrane unit and a second gas separation membrane unit having gas separation performance,
    each gas separation membrane unit comprises at least a gas inlet, a permeable gas outlet and an impermeable gas outlet;
    A supply gas line is connected to the gas inlet of the first gas separation membrane unit, and compression means and heating means are interposed in the middle of the supply gas line,
    connecting the impermeable gas outlet of the first gas separation membrane unit and the gas inlet of the second gas separation membrane unit by a first impermeable gas outlet line;
    connecting the permeated gas outlet of the second gas separation membrane unit and a position on the suction side of the compression means in the supply gas line by a second permeated gas return line;
    connecting a second impermeable gas discharge line to the impermeable gas discharge port of the second gas separation membrane unit;
    connecting the first permeated gas discharge line to the permeated gas discharge port of the first gas separation membrane unit;
    After heating the gas for regeneration of the gas separation membrane introduced into the supply gas line to a temperature higher by 10° C. or more and 80° C. or less than during operation for gas separation using the heating means, the first gas separation membrane unit and a gas separation membrane system in communication with the second gas separation membrane unit.
  2.  前記第2透過ガス帰還ラインから分岐する第2透過ガス排出ラインを設け、第2ガス分離膜ユニットに前記再生用のガスが導入される際、第2ガス分離膜ユニットの透過ガスが供給ガスラインに帰還せずに前記第2透過ガス排出ラインを通じて排出されるようになされている、請求項1に記載のガス分離膜システム。 A second permeated gas discharge line branched from the second permeated gas return line is provided, and when the regeneration gas is introduced into the second gas separation membrane unit, the permeated gas of the second gas separation membrane unit is supplied to the supply gas line. 2. The gas separation membrane system of claim 1, adapted to be discharged through said second permeate gas discharge line without returning to.
  3.  供給ガスラインにおける加熱手段の第1ガス分離膜ユニット側の位置と、第2不透過ガス排出ラインとを連結する第1バイパスラインと、供給ガスラインにおける加熱手段の第1ガス分離膜ユニット側の位置において当該供給ガスラインから分岐する第1入口ガス排出ラインとを設け、
     加熱手段により加熱された再生用ガスは、前記第1バイパスラインを通じて第2ガス分離膜ユニットにその不透過ガス排出口から導入されるとともに、第1ガス分離膜ユニットのガス入口から排出された再生用ガスが前記第1入口ガス排出ラインを通じてシステム外に排出されるようになされている、請求項1又は2に記載のガス分離膜システム。
    A first bypass line that connects the position of the heating means in the supply gas line on the first gas separation membrane unit side and the second impermeable gas discharge line, and the position of the heating means in the supply gas line on the first gas separation membrane unit side. a first inlet gas discharge line branching from the supply gas line at a position;
    The regeneration gas heated by the heating means is introduced into the second gas separation membrane unit from the impermeable gas outlet through the first bypass line, and the regeneration exhausted from the gas inlet of the first gas separation membrane unit. 3. The gas separation membrane system according to claim 1 or 2, wherein the gas is discharged out of the system through the first inlet gas discharge line.
  4.  第1バイパスラインと第1不透過ガス排出ラインとを結ぶ第2バイパスラインを備え、且つ、
     第1不透過ガス排出ラインから分岐する第2入口ガス排出ラインを備え、
     加熱手段により加熱された再生用のガスは第2バイパスラインを通じて第1ガス分離膜ユニットにその不透過ガス排出口から導入されるとともに、第2ガス分離膜ユニットのガス入口から排出された再生用のガスが第2入口ガス排出ラインを通じてシステム外に排出されるようになされている、請求項3に記載のガス分離膜システム。
    a second bypass line connecting the first bypass line and the first impermeable gas discharge line; and
    comprising a second inlet gas discharge line branching from the first impermeable gas discharge line;
    The regeneration gas heated by the heating means is introduced into the first gas separation membrane unit through the non-permeable gas outlet through the second bypass line, and the regeneration gas discharged from the gas inlet of the second gas separation membrane unit. of gas is discharged out of the system through the second inlet gas discharge line.
  5.  ガス分離性能を有する第3ガス分離膜ユニットを更に備え、
     前記第3ガス分離膜ユニットは、ガス入口、透過ガス排出口及び不透過ガス排出口を少なくとも備え、
     第3ガス分離膜ユニットの不透過ガス排出口と、前記供給ガスラインにおける圧縮手段の吸込側の位置とを、第3不透過ガス帰還ラインによって連結し、
     第1ガス分離膜ユニットの透過ガス排出口と、第3ガス分離膜ユニットのガス入口とを前記第1透過ガス排出ラインによって連結し、
     第3ガス分離膜ユニットの透過ガス排出口に第3透過ガス排出ラインを連結する、請求項1に記載のガス分離膜システム。
    Further comprising a third gas separation membrane unit having gas separation performance,
    the third gas separation membrane unit comprises at least a gas inlet, a permeable gas outlet and an impermeable gas outlet;
    connecting the impermeable gas outlet of the third gas separation membrane unit and a position on the suction side of the compression means in the supply gas line by a third impermeable gas return line;
    connecting the permeated gas discharge port of the first gas separation membrane unit and the gas inlet of the third gas separation membrane unit by the first permeated gas discharge line;
    2. The gas separation membrane system of claim 1, wherein a third permeate gas outlet line is connected to the permeate gas outlet of the third gas separation membrane unit.
  6.  第2透過ガス帰還ラインから分岐する第2透過ガス排出ラインを設け、第2ガス分離膜ユニットに再生用のガスが導入される際、第2ガス分離膜ユニットの透過ガスが供給ガスラインに帰還せずに前記第2透過ガス排出ラインを通じて排出されるようになされ、
    且つ、第3不透過ガス帰還ラインから分岐する第3不透過ガス排出ラインを設け、
     前記再生用のガスを第3ガス分離膜ユニットにも導入されるようになされており、再生用のガスが導入された第3ガス分離膜ユニットの不透過ガスが供給ガスラインに帰還せずに前記第3不透過ガス排出ラインを通じて排出されるようになされている、請求項5に記載のガス分離膜システム。
    A second permeated gas discharge line branched from the second permeated gas return line is provided, and when the regeneration gas is introduced into the second gas separation membrane unit, the permeated gas of the second gas separation membrane unit is returned to the supply gas line. is discharged through the second permeated gas discharge line without
    and providing a third impermeable gas discharge line branched from the third impermeable gas return line,
    The regeneration gas is also introduced into the third gas separation membrane unit, and the impermeable gas of the third gas separation membrane unit into which the regeneration gas is introduced does not return to the supply gas line. 6. The gas separation membrane system of claim 5, adapted to be discharged through said third non-permeable gas discharge line.
  7.  供給ガスラインにおける加熱手段の第1ガス分離膜ユニット側の位置と、第2不透過ガス排出ラインとを連結する第1バイパスラインと、供給ガスラインにおける加熱手段の第1ガス分離膜ユニット側の位置で該供給ガスラインから分岐する第1入口ガス排出ラインとを設け、加熱手段により加熱された前記再生用のガスは、第1バイパスラインを通じて第2ガス分離膜ユニットにその不透過ガス排出口から導入されるとともに、第1ガス分離膜ユニットのガス入口から排出された前記再生用のガスが前記第1入口ガス排出ラインを通じてシステム外に排出されるようになされている、請求項5又は6に記載のガス分離膜システム。 A first bypass line that connects the position of the heating means in the supply gas line on the first gas separation membrane unit side and the second impermeable gas discharge line, and the position of the heating means in the supply gas line on the first gas separation membrane unit side. a first inlet gas discharge line branched from the supply gas line at a position, and the regeneration gas heated by the heating means is passed through the first bypass line to the second gas separation membrane unit through the impermeable gas discharge port. and the regeneration gas discharged from the gas inlet of the first gas separation membrane unit is discharged out of the system through the first inlet gas discharge line. The gas separation membrane system according to .
  8.  第1バイパスラインと第1不透過ガス排出ラインとを結ぶ第2バイパスラインと、第1不透過ガス排出ラインから分岐する第2入口ガス排出ラインをそれぞれ備え、加熱手段で加熱された再生用のガスは前記第2バイパスラインを通じて第1ガス分離膜ユニット内にその不透過ガス排出口から導入されるとともに、第2ガス分離膜ユニットのガス入口から排出された再生用のガスが第2入口ガス排出ラインを通じてシステム外に排出されるようになされている、請求項7に記載のガス分離膜システム。 A second bypass line connecting the first bypass line and the first impermeable gas discharge line, and a second inlet gas discharge line branching from the first impermeable gas discharge line are provided, respectively, and are heated by the heating means for regeneration. The gas is introduced into the first gas separation membrane unit through the second bypass line through the impermeable gas outlet thereof, and the regeneration gas discharged from the gas inlet of the second gas separation membrane unit is the second inlet gas. 8. The gas separation membrane system according to claim 7, which is adapted to be discharged outside the system through a discharge line.
  9.  第1透過ガス排出ラインから分岐する第3ユニット回避ラインを設け、再生時、第1ガス分離膜ユニットから排出された透過ガスを第3ガス分離膜ユニットを介さずにシステム外に排出することを可能にした、請求項5~8の何れか1項に記載のガス分離膜システム。 A third unit avoidance line branched from the first permeated gas discharge line is provided, and the permeated gas discharged from the first gas separation membrane unit during regeneration is discharged outside the system without passing through the third gas separation membrane unit. The gas separation membrane system according to any one of claims 5 to 8, enabled.
  10.  第1バイパスラインと第3不透過ガス帰還ラインを結ぶ第3バイパスラインと、第1透過ガス排出ラインから分岐する第3入口ガス排出ラインをそれぞれ備え、加熱手段により加熱された再生用ガスは、前記第3バイパスラインを通じて第3ガス分離膜ユニットにその不透過ガス排出口から導入されるとともに、第3ガス分離膜ユニットのガス入口から排出された再生用ガスが第3入口ガス排出ラインを通じてシステム外に排出されるようになされている、請求項9に記載のガス分離膜システム。 A third bypass line connecting the first bypass line and the third impermeable gas return line and a third inlet gas discharge line branching from the first permeated gas discharge line are provided, respectively, and the regeneration gas heated by the heating means is The regeneration gas discharged from the gas inlet of the third gas separation membrane unit is introduced through the third bypass line into the third gas separation membrane unit from its impermeable gas discharge port, and the regeneration gas discharged from the gas inlet of the third gas separation membrane unit passes through the third inlet gas discharge line. 10. The gas separation membrane system of claim 9, adapted to be vented to the outside.
  11.  再生用のガスが、窒素、空気、又は通常運転時の原料混合ガスである、請求項1~10の何れか1項に記載のガス分離膜システム。 The gas separation membrane system according to any one of claims 1 to 10, wherein the regeneration gas is nitrogen, air, or a raw material mixed gas during normal operation.
  12.  前記通常運転時の原料混合ガスが、バイオガス又はランドフィルガスである、請求項11に記載のガス分離膜システム。 The gas separation membrane system according to claim 11, wherein the raw material mixed gas during normal operation is biogas or landfill gas.
  13.  ガス分離性能を有する第1ガス分離膜ユニット及び第2ガス分離膜ユニットを少なくとも備えたガス分離膜システムにおけるガス分離膜の再生方法であって、
     各ガス分離膜ユニットは、ガス入口、透過ガス排出口及び不透過ガス排出口を少なくとも備え、
     第1ガス分離膜ユニットのガス入口に、供給ガスラインを連結するとともに、該供給ガスラインの途中に圧縮手段及び加熱手段を介在配置し、
     第1ガス分離膜ユニットの不透過ガス排出口と、第2ガス分離膜ユニットのガス入口とを第1不透過ガス排出ラインによって連結し、
     第2ガス分離膜ユニットの透過ガス排出口と、前記供給ガスラインにおける圧縮手段の吸込側の位置とを、第2透過ガス帰還ラインによって連結し、
     第2ガス分離膜ユニットの不透過ガス排出口に第2不透過ガス排出ラインを連結し、
     第1ガス分離膜ユニットの透過ガス排出口に第1透過ガス排出ラインを連結し、
     前記供給ガスラインに導入されたガス分離膜再生用のガスを、前記加熱手段を用い、ガス分離のための運転時より10℃以上80℃以下高い温度に加熱した後、第1ガス分離膜ユニット及び第2ガス分離膜ユニットに流通させる、ガス分離膜の再生方法。
    A method for regenerating a gas separation membrane in a gas separation membrane system comprising at least a first gas separation membrane unit and a second gas separation membrane unit having gas separation performance, comprising:
    each gas separation membrane unit comprises at least a gas inlet, a permeable gas outlet and an impermeable gas outlet;
    A supply gas line is connected to the gas inlet of the first gas separation membrane unit, and compression means and heating means are interposed in the middle of the supply gas line,
    connecting the impermeable gas outlet of the first gas separation membrane unit and the gas inlet of the second gas separation membrane unit by a first impermeable gas outlet line;
    connecting the permeated gas outlet of the second gas separation membrane unit and a position on the suction side of the compression means in the supply gas line by a second permeated gas return line;
    connecting a second impermeable gas discharge line to the impermeable gas discharge port of the second gas separation membrane unit;
    connecting the first permeated gas discharge line to the permeated gas discharge port of the first gas separation membrane unit;
    After heating the gas for regeneration of the gas separation membrane introduced into the supply gas line to a temperature higher by 10° C. or more and 80° C. or less than during operation for gas separation using the heating means, the first gas separation membrane unit and a method for regenerating a gas separation membrane, which circulates through the second gas separation membrane unit.
  14.  前記ガス分離膜システムはガス分離性能を有する第3ガス分離膜ユニットを更に備え、
     前記第3ガス分離膜ユニットは、ガス入口、透過ガス排出口及び不透過ガス排出口を少なくとも備え、
     第3ガス分離膜ユニットの不透過ガス排出口と、前記供給ガスラインにおける圧縮手段の吸込側の位置とを、第3不透過ガス帰還ラインによって連結し、
     第1ガス分離膜ユニットの透過ガス排出口と、第3ガス分離膜ユニットのガス入口とを前記第1透過ガス排出ラインによって連結し、
     第3ガス分離膜ユニットの透過ガス排出口に第3透過ガス排出ラインを連結する、請求項13に記載の再生方法。
    The gas separation membrane system further comprises a third gas separation membrane unit having gas separation performance,
    the third gas separation membrane unit comprises at least a gas inlet, a permeable gas outlet and an impermeable gas outlet;
    connecting the impermeable gas outlet of the third gas separation membrane unit and a position on the suction side of the compression means in the supply gas line by a third impermeable gas return line;
    connecting the permeated gas discharge port of the first gas separation membrane unit and the gas inlet of the third gas separation membrane unit by the first permeated gas discharge line;
    14. The regeneration method according to claim 13, wherein a third permeate gas discharge line is connected to the permeate gas discharge port of the third gas separation membrane unit.
PCT/JP2022/044193 2021-12-01 2022-11-30 Gas separation membrane system and gas separation membrane regeneration method WO2023100932A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021195781 2021-12-01
JP2021195776 2021-12-01
JP2021-195776 2021-12-01
JP2021-195781 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023100932A1 true WO2023100932A1 (en) 2023-06-08

Family

ID=86612313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044193 WO2023100932A1 (en) 2021-12-01 2022-11-30 Gas separation membrane system and gas separation membrane regeneration method

Country Status (1)

Country Link
WO (1) WO2023100932A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534863A (en) * 2010-07-01 2013-09-09 エボニック ファイバース ゲゼルシャフト ミット ベシュレンクテル ハフツング Gas separation method
JP2017177089A (en) * 2016-03-31 2017-10-05 宇部興産株式会社 Gas separation membrane device capable of supplying inert gas, and method for manufacturing enriched gas
JP2018171596A (en) * 2017-03-31 2018-11-08 宇部興産株式会社 Biogas concentration system and biogas concentration method
JP2020163250A (en) * 2019-03-28 2020-10-08 宇部興産株式会社 Gas separation membrane system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534863A (en) * 2010-07-01 2013-09-09 エボニック ファイバース ゲゼルシャフト ミット ベシュレンクテル ハフツング Gas separation method
JP2017177089A (en) * 2016-03-31 2017-10-05 宇部興産株式会社 Gas separation membrane device capable of supplying inert gas, and method for manufacturing enriched gas
JP2018171596A (en) * 2017-03-31 2018-11-08 宇部興産株式会社 Biogas concentration system and biogas concentration method
JP2020163250A (en) * 2019-03-28 2020-10-08 宇部興産株式会社 Gas separation membrane system

Similar Documents

Publication Publication Date Title
US10569217B2 (en) Production of biomethane using a high recovery module
US7575624B2 (en) Molecular sieve and membrane system to purify natural gas
CA2530277C (en) Selective separation of fluid compounds utilizing a membrane separation process
US5769927A (en) Monomer recovery process
KR101529129B1 (en) A multi-stage membrane process and an upgrading apparatus for the production of high purity methane gas
AU2003247716B2 (en) Processes and apparatus using solid perm-selective membranes in multiple groups for simultaneous recovery of specified products from a fluid mixture
JPS6142319A (en) Recovery of organic vapor from air
JP5325418B2 (en) Dehydration system and method
JPH04227815A (en) Improved membrane nitrdgen method and its system
JP6953764B2 (en) Biogas Concentration System and Biogas Concentration Method
WO2016027713A1 (en) Separation device and regeneration method
US11938442B2 (en) Gas separation system
JP2018183756A (en) Regeneration method of separation membrane module
JP2020163282A (en) Gas separation membrane system
WO2023100932A1 (en) Gas separation membrane system and gas separation membrane regeneration method
KR20200125851A (en) Method for producing nitrogen-enriched air using flue gas
JP2013034969A (en) Dehydration system and dehydration method
JP5982876B2 (en) Gas separation system
JP2013240795A (en) Dewatering system and method for dewatering
US20120210870A1 (en) Method and device for separating gaseous mixtures by means of permeation
JP7524466B2 (en) Membrane process for hydrogen recovery from sulfur recovery tail gas stream of a sulfur recovery unit and process for environmentally friendly sales gas
CN115960643A (en) Biogas purification equipment and process
JP2020146601A (en) Regeneration method for separation membrane module
JP7468822B1 (en) Gas separation system and method for producing methane-enriched gas
BR112016012491B1 (en) METHOD TO SEPARATE AND PURIFY A FERMENTATION PRODUCT FROM A RESIDUAL FERMENTER GAS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE