KR20200125851A - Method for producing nitrogen-enriched air using flue gas - Google Patents

Method for producing nitrogen-enriched air using flue gas Download PDF

Info

Publication number
KR20200125851A
KR20200125851A KR1020190048932A KR20190048932A KR20200125851A KR 20200125851 A KR20200125851 A KR 20200125851A KR 1020190048932 A KR1020190048932 A KR 1020190048932A KR 20190048932 A KR20190048932 A KR 20190048932A KR 20200125851 A KR20200125851 A KR 20200125851A
Authority
KR
South Korea
Prior art keywords
poly
nitrogen
exhaust gas
methyl
combustion exhaust
Prior art date
Application number
KR1020190048932A
Other languages
Korean (ko)
Other versions
KR102235015B1 (en
Inventor
하성용
이충섭
한상훈
김세종
Original Assignee
(주)에어레인
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에어레인 filed Critical (주)에어레인
Priority to PCT/KR2019/005090 priority Critical patent/WO2020218653A1/en
Priority to KR1020190048932A priority patent/KR102235015B1/en
Publication of KR20200125851A publication Critical patent/KR20200125851A/en
Application granted granted Critical
Publication of KR102235015B1 publication Critical patent/KR102235015B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/0438Physical processing only by making use of membranes
    • C01B21/0444Physical processing only by making use of membranes characterised by the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/266Drying gases or vapours by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/18Mixed esters, e.g. cellulose acetate-butyrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • B01D71/421Polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/50Polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/643Polyether-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids

Abstract

The present invention relates to a method for producing nitrogen-enriched air by using exhaust flue gas, the method comprising: (I) a step of supplying exhaust flue gas to an air compressor; (II) a pretreatment step of separating and drying moisture generated in the process of compressing the exhaust flue gas, and then removing the residual moisture and contaminants; and (III) a step of enriching nitrogen from the pretreated exhaust flue gas. By using exhaust flue gas, instead of external air, as the supply gas, nitrogen-enriched air can be produced at a higher flow rate with significantly increased efficiency even when a compressor having the same capacity as in the conventional method is used.

Description

연소배가스를 이용한 질소농축공기의 제조방법{Method for producing nitrogen-enriched air using flue gas}Method for producing nitrogen-enriched air using flue gas}

본 발명은 연소배가스를 이용한 질소농축공기의 제조방법에 관한 것으로, 보다 상세하게는 외부공기 대신 발전소나 보일러 등에서 배출되는 연소배가스를 압축하여 고효율의 질소농축공기를 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing nitrogen-enriched air using combustion exhaust gas, and more particularly, to a method of producing high-efficiency nitrogen-enriched air by compressing combustion exhaust gas discharged from a power plant or boiler instead of external air.

일반적으로 질소부화공기를 제조하기 위해서는 외부의 공기를 압축하는 공기압축기, 공기압축기에서 압축된 공기 내의 수분 및 이물질 등을 제거하는 드라이어, 드라이어에서 건조 내지 여과된 공기를 산소와 질소로 분리하여 질소를 배출하는 흡착탑, 흡착탑에서 배출되는 질소를 저장하는 질소저장탱크 등으로 이루어지는 일련의 질소발생장치를 이용하고 있다.In general, in order to manufacture nitrogen-enriched air, an air compressor that compresses external air, a dryer that removes moisture and foreign substances in the air compressed by the air compressor, and the air dried or filtered by the dryer is separated into oxygen and nitrogen to separate nitrogen. A series of nitrogen generators are used, including an adsorption tower to discharge and a nitrogen storage tank to store nitrogen discharged from the adsorption tower.

이때, 상기 흡착탑은 보통 한 쌍으로 구성되어 일측의 흡착탑 내에서 산소의 흡착 내지 질소의 분리공정이 진행되면, 타측의 흡착탑에서는 산소를 탈착하여 재생할 수 있도록 하는 소위 압력스윙흡착(PSA, pressure swing adsorption) 공정을 채택하고 있다.At this time, the adsorption tower is usually composed of a pair, and when the process of adsorption of oxygen or separation of nitrogen proceeds in one of the adsorption towers, the so-called pressure swing adsorption (PSA) allows oxygen to be desorbed and regenerated in the other adsorption tower. ) Process is adopted.

한편, 최근에는 공기를 산소와 질소로 분리하는 과정에서 압력스윙흡착 공정 대신에 분리막 공정이 많이 적용되고 있는바, 이러한 분리막 공정은 분리막을 사용하여 특정 성분을 선택적으로 투과하여 기체를 분리하는 방법이다. 공기로부터 질소와 산소를 분리하는 것처럼 분리막을 이용한 기체분리는 용해 및 확산 과정을 거쳐 기체를 분리하며 상변화를 동반하지 않아 에너지 소모가 적고, 설치면적이 작아 유지 보수가 용이하다는 장점이 있어 근래에 기체분리 및 정제기술로 주목받고 있다. 따라서 상술한 질소발생장치에서 흡착탑을 분리막으로 대체한 분리막 공정에 의해서도 질소가스를 생산하고 있다.On the other hand, recently, in the process of separating air into oxygen and nitrogen, a separation membrane process has been widely applied instead of a pressure swing adsorption process.This separation membrane process is a method of separating gases by selectively permeating specific components using a separation membrane. . Like separating nitrogen and oxygen from air, gas separation using a separation membrane separates the gas through the process of dissolution and diffusion, and does not accompany a phase change, so energy consumption is low, and the installation area is small and maintenance is easy. It is attracting attention as a gas separation and purification technology. Therefore, nitrogen gas is also produced by the separation membrane process in which the adsorption tower is replaced with a separation membrane in the above-described nitrogen generator.

그런데 공기로부터 질소와 산소를 분리하여 질소가스를 농축, 제조하는 방법으로서 상술한 압력스윙흡착 공정에서든, 분리막 공정에서든 원료물질이라 할 수 있는 공급가스로서 통상 외부공기를 사용하고 있는 실정이다. 한편, 발전소나 보일러 등에서 배출되는 연소배가스로부터 이산화탄소를 포집하는 방법은 알려져 있으나, 이러한 연소배가스로부터 질소를 농축하는 방법은 공지된바 없다. 또한, 압력스윙흡착 공정을 적용하여 질소를 제조하는 방법이 공개되기는 하였으나, 이것도 역시 공급가스로서 연소배가스가 아닌 석유화학 플랜트의 오프-가스를 이용하고 있는바, 아직까지 연소배가스로부터 질소가스의 농축, 제조방법에 대해서는 구체적으로 보고된바 없다.However, as a method of concentrating and producing nitrogen gas by separating nitrogen and oxygen from air, external air is usually used as a feed gas, which can be referred to as a raw material, either in the pressure swing adsorption process described above or in the separation membrane process. Meanwhile, a method of collecting carbon dioxide from combustion exhaust gas discharged from a power plant or a boiler is known, but a method of concentrating nitrogen from such combustion exhaust gas is not known. In addition, although a method of producing nitrogen by applying a pressure swing adsorption process has been disclosed, this also uses off-gas from a petrochemical plant instead of combustion exhaust gas as a supply gas. , There has been no specific report on the manufacturing method.

그러므로 본 발명자 등은 상술한 압력스윙흡착 공정 및 분리막 공정을 적용하여 질소가스의 농축, 제조에 관한 연구를 거듭한 결과, 종래 공급가스로서 일반적인 외부공기를 압축하여 질소농축공기(NEA, nitrogen enriched air)를 제조하는 방법 대신에, 공급가스로서 발전소나 보일러 등에서 배출되는 연소배가스를 압축하여 질소농축공기를 제조하면 같은 용량의 압축기를 이용하여도 현저하게 향상된 효율로 더 많은 유량의 질소농축공기를 제조할 수 있음을 발견하고 본 발명을 완성하기에 이르렀다.Therefore, the present inventors have repeatedly studied the concentration and manufacture of nitrogen gas by applying the pressure swing adsorption process and the separation membrane process described above, and as a result of compressing general external air as a conventional supply gas, nitrogen enriched air (NEA) ), instead of producing nitrogen-enriched air by compressing the combustion exhaust gas discharged from power plants or boilers as a supply gas, a higher flow rate of nitrogen-enriched air is produced with remarkably improved efficiency even when using a compressor of the same capacity. It was found that it was possible and came to complete the present invention.

특허문헌 1. 미국등록특허 제4,988,490호Patent Document 1. U.S. Patent No. 4,988,490 특허문헌 2. 한국등록특허 제10-1391282호Patent Document 2. Korean Patent Registration No. 10-1391282 특허문헌 3. 한국등록특허 제10-1380707호Patent Document 3. Korean Patent Registration No. 10-1380707

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 공급가스로서 외부공기 대신 연소배가스를 사용함으로써, 같은 용량의 압축기를 이용하여도 현저하게 향상된 효율로 더 많은 유량의 질소농축공기를 생산할 수 있는 연소배가스를 이용한 질소가스의 제조방법을 제공하고자 하는 것이다.The present invention was conceived in consideration of the above problems, and an object of the present invention is to use combustion exhaust gas instead of external air as a supply gas, thereby concentrating nitrogen at a higher flow rate with remarkably improved efficiency even when using a compressor of the same capacity. It is intended to provide a method for producing nitrogen gas using combustion exhaust gas capable of producing air.

상기한 바와 같은 목적을 달성하기 위한 본 발명은, (I) 연소배가스를 공기압축기로 공급하는 단계; (II) 상기 연소배가스의 압축과정에서 발생하는 수분을 분리 및 건조한 후, 잔여 수분 및 오염물질을 제거하는 전처리 단계; 및 (III) 상기 전처리된 연소배가스로부터 질소를 농축하는 단계;를 포함하는 연소배가스를 이용한 질소농축공기의 제조방법을 제공한다.The present invention for achieving the object as described above, (I) supplying the combustion exhaust gas to the air compressor; (II) a pretreatment step of separating and drying moisture generated in the compression process of the combustion exhaust gas, and then removing residual moisture and pollutants; And (III) concentrating nitrogen from the pre-treated combustion exhaust gas. It provides a method for producing nitrogen-enriched air using combustion exhaust gas.

상기 (III) 단계의 질소농축은 분리막 공정, 압력스윙흡착(PSA) 공정 또는 이들의 병합 공정에 의하여 수행되는 것을 특징으로 한다.The nitrogen concentration in step (III) is characterized in that it is performed by a separation membrane process, a pressure swing adsorption (PSA) process, or a combination process thereof.

상기 분리막의 소재는 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리에테르이미드, 폴리아미드, 폴리카보네이트, 폴리아크릴로니트릴 및 셀룰로오즈아세테이트로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The material of the separation membrane is characterized by any one selected from the group consisting of polysulfone, polyethersulfone, polyimide, polyetherimide, polyamide, polycarbonate, polyacrylonitrile, and cellulose acetate.

상기 분리막은 평막, 나권형막 또는 중공사막인 것을 특징으로 한다.The separation membrane is characterized in that it is a flat membrane, a spiral wound membrane or a hollow fiber membrane.

상기 나권형막 또는 중공사막은 표면이 폴리디메틸실록산 또는 폴리리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체로 코팅된 것을 특징으로 한다.The spiral wound membrane or the hollow fiber membrane is characterized in that the surface is coated with an organopolysiloxane copolymer grafted with repeating units including polydimethylsiloxane or polyethylene glycol or polyethylene/propylene glycol.

상기 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체는 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 메틸 에테르, 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌/프로필렌 글리콜) 메틸 에테르, 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜), 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌/프로필렌 글리콜), 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 3-아미노프로필 에테르 또는 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) [3-(트리메틸암모니오)프로필 클로라이드로 이루어진 군으로부터 선택된 어느 하나 또는 이들의 혼합물인 것을 특징으로 한다.The organic polysiloxane copolymer grafted with a repeating unit containing polyethylene glycol or polyethylene/propylene glycol is poly[dimethylsiloxane-co-methyl(3-hydroxypropyl)siloxane]-graft-poly(ethylene glycol) methyl ether , Poly[dimethylsiloxane-co-methyl(3-hydroxypropyl)siloxane]-graft-poly(ethylene/propylene glycol) methyl ether, poly[dimethylsiloxane-co-methyl(3-hydroxypropyl)siloxane]- Graft-poly(ethylene glycol), poly[dimethylsiloxane-co-methyl(3-hydroxypropyl)siloxane]-graft-poly(ethylene/propylene glycol), poly[dimethylsiloxane-co-methyl(3-hydroxyl) Roxypropyl)siloxane]-graft-poly(ethylene glycol) 3-aminopropyl ether or poly[dimethylsiloxane-co-methyl(3-hydroxypropyl)siloxane]-graft-poly(ethylene glycol) [3-( It is characterized in that any one selected from the group consisting of trimethylammonio)propyl chloride, or a mixture thereof.

본 발명의 연소배가스를 이용한 질소농축공기의 제조방법에 따르면, 공급가스로서 외부공기 대신 연소배가스를 사용함으로써, 같은 용량의 압축기를 이용하여도 현저하게 향상된 효율로 더 많은 유량의 질소농축공기를 생산할 수 있다.According to the method for producing nitrogen-enriched air using combustion exhaust gas of the present invention, by using combustion exhaust gas instead of external air as a supply gas, it is possible to produce nitrogen-enriched air of a higher flow rate with remarkably improved efficiency even when using a compressor of the same capacity. I can.

도 1은 종래 공급가스로서 외부공기를 압축하고 분리막 공정을 적용한 질소농축공기의 제조 공정도.
도 2은 본 발명의 일 실시예에 따라 공급가스로서 연소배가스를 압축하고 분리막 공정을 적용한 질소농축공기의 제조 공정도.
1 is a manufacturing process diagram of nitrogen-enriched air by compressing external air as a conventional supply gas and applying a separation membrane process.
2 is a manufacturing process diagram of nitrogen-enriched air by compressing combustion exhaust gas as a supply gas and applying a separation membrane process according to an embodiment of the present invention.

이하에서는 본 발명에 따른 연소배가스를 이용한 질소농축공기의 제조방법에 관하여 첨부된 도면과 함께 상세히 설명하기로 한다.Hereinafter, a method of manufacturing nitrogen-enriched air using combustion exhaust gas according to the present invention will be described in detail together with the accompanying drawings.

먼저, 도 1에는 종래 공급가스로서 외부공기를 압축하고 분리막 공정을 적용한 질소가스의 제조 공정도를 나타내었다. 도 1에서 보는 것처럼 종래 질소발생장치는 대기 중의 외부공기를 압축하는 공기압축기(1), 압력증가에 따라 자연 응축되는 수분을 제거하는 수분 분리기(2), 압축공기의 수분 노점(dew point)을 -40℃ 이하로 떨어뜨리는 흡착식 내지 냉각식 드라이어(3), 압축공기 중의 잔여 수분, 분진 및 오염물질을 제거하는 필터(4, 5), 상기 전처리된 압축공기로부터 질소를 농축하는 분리막 모듈(6) 등으로 구성된다.First, FIG. 1 shows a manufacturing process diagram of nitrogen gas in which external air is compressed as a conventional supply gas and a separation membrane process is applied. As shown in Fig. 1, the conventional nitrogen generating device includes an air compressor (1) that compresses external air in the atmosphere, a water separator (2) that removes moisture naturally condensed according to an increase in pressure, and a moisture dew point of the compressed air. Adsorption type or cooling type dryer (3) that drops below -40°C, filters (4, 5) to remove residual moisture, dust and contaminants in compressed air, and membrane module (6) for concentrating nitrogen from the pretreated compressed air ), etc.

이때, 상기 분리막 모듈(6)의 투과부(permeate)로 산소가 농축되며, 배제부(retentate)로 질소농축공기(NEA)가 발생하는 것인바, 구동 압력 및 온도에 따라 투과부와 배제부의 유량이 변하고, 그에 따른 질소농축공기의 농도가 변하며, 전체 외부공기 공급량 대비 질소농축공기의 유량 비율을 효율로 계산하는 것이다.At this time, oxygen is concentrated to the permeate of the separation membrane module 6, and nitrogen-enriched air (NEA) is generated as a retentate, and the flow rate of the permeable part and the exclusion part changes according to the driving pressure and temperature. , The concentration of nitrogen-enriched air changes accordingly, and the ratio of the flow rate of nitrogen-enriched air to the total external air supply is calculated as an efficiency.

그러나 본 발명은 종래 공급가스로서 일반적인 외부공기를 압축하여 질소농축공기를 제조하는 방법 대신에, 공급가스로서 발전소나 보일러 등에서 배출되는 연소배가스를 압축하여 질소농축공기를 제조하는 것을 기술적 특징으로 한다.However, the present invention is a technical feature of producing nitrogen-enriched air by compressing combustion exhaust gas discharged from a power plant or boiler as a supply gas, instead of a method of producing nitrogen-enriched air by compressing general external air as a conventional supply gas.

따라서 본 발명에서는, (I) 연소배가스를 공기압축기로 공급하는 단계; (II) 상기 연소배가스의 압축과정에서 발생하는 수분을 분리 및 건조한 후, 잔여 수분 및 오염물질을 제거하는 전처리 단계; 및 (III) 상기 전처리된 연소배가스로부터 질소를 농축하는 단계;를 포함하는 연소배가스를 이용한 질소농축공기의 제조방법을 제공한다.Therefore, in the present invention, (I) supplying the combustion exhaust gas to the air compressor; (II) a pretreatment step of separating and drying moisture generated in the compression process of the combustion exhaust gas, and then removing residual moisture and pollutants; And (III) concentrating nitrogen from the pre-treated combustion exhaust gas. It provides a method for producing nitrogen-enriched air using combustion exhaust gas.

도 2에는 본 발명의 일 실시예에 따라 공급가스로서 연소배가스를 압축하고 분리막 공정을 적용한 질소농축공기의 제조 공정도를 나타내었다. 도 2에서 보는 것처럼 공급가스로서 산소 21% 및 질소 79%로 이루어진 외부공기 대신에, 발전소나 보일러 등의 굴뚝에서 나오는 연소배가스를 배관으로 연결하여 통상의 공기압축기에 연결한 후(연소배가스로부터 공기압축기로 연결하는 과정에서 수분제거 필터를 통한 수분제거 및 활성탄 필터를 통한 이물질 제거를 수행한다), 종래와 동일한 공정 즉, 압축과정에서 발생하는 수분을 분리 및 건조한 후, 잔여 수분 및 오염물질을 제거하는 전처리 과정을 거친 다음, 상기 전처리된 연소배가스로부터 분리막 모듈을 이용하여 질소를 농축한다.2 shows a manufacturing process diagram of nitrogen-enriched air by compressing combustion exhaust gas as a supply gas and applying a separation membrane process according to an embodiment of the present invention. As shown in Figure 2, instead of external air consisting of 21% oxygen and 79% nitrogen as supply gas, the combustion exhaust gas from the chimney of a power plant or boiler is connected with a pipe and connected to a conventional air compressor (air from combustion exhaust gas In the process of connecting to the compressor, moisture removal through a moisture removal filter and foreign matter removal through an activated carbon filter are performed), the same process as before, that is, after separating and drying moisture generated in the compression process, and then removing residual moisture and contaminants After undergoing the pre-treatment process, nitrogen is concentrated from the pre-treated combustion exhaust gas using a separation membrane module.

이때, 연소배가스에 포함된 이산화탄소의 투과 속도가 빠르기 때문에 이산화탄소/질소의 분리 효율이 산소/질소의 분리효율보다 우수하여 공급가스로서 종래 대기 중의 외부공기를 사용하는 질소발생장치에서보다 같은 운전조건(압력, 온도)에서 동일한 농도의 질소농축공기를 제조하는 효율 및 유량을 확보할 수 있다.At this time, since the permeation rate of carbon dioxide contained in the combustion exhaust gas is high, the separation efficiency of carbon dioxide/nitrogen is superior to the separation efficiency of oxygen/nitrogen, and the operating conditions are the same as in the conventional nitrogen generator using external air in the atmosphere as a supply gas ( It is possible to secure the efficiency and flow rate of producing nitrogen-enriched air of the same concentration under pressure and temperature).

또한, 상기 (III) 단계의 질소농축 공정과 관련하여 도 2에 나타낸 일 실시예에 따른 분리막 공정을 이용하는 것 이외에, 압력스윙흡착(PSA) 공정, 또는 분리막 공정과 압력스윙흡착 공정을 병합한 공정을 수행할 수도 있다.In addition, in relation to the nitrogen concentration process of step (III), in addition to using the separation membrane process according to the embodiment shown in FIG. 2, a pressure swing adsorption (PSA) process, or a process in which the separation membrane process and the pressure swing adsorption process are combined You can also do

상기 분리막 공정을 적용하는 경우, 분리막 모듈에 사용되는 분리막의 소재로서는 유리상 고분자를 사용하는바, 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리에테르이미드, 폴리아미드, 폴리카보네이트, 폴리아크릴로니트릴 및 셀룰로오즈아세테이트로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있고, 폴리술폰 또는 폴리에테르이미드가 더욱 바람직하다. 일반적으로 기체를 분리하는 경우에는 투과도는 낮지만 상대적으로 높은 선택도를 기대할 수 있다는 점에서 고분자 사슬간의 인력이 높은 유리상의 고분자를 기재로 이용한다.In the case of applying the separation membrane process, a glassy polymer is used as the material of the separation membrane used in the separation membrane module, and polysulfone, polyethersulfone, polyimide, polyetherimide, polyamide, polycarbonate, polyacrylonitrile, and cellulose Any one selected from the group consisting of acetate can be used, and polysulfone or polyetherimide is more preferred. In general, in the case of separating gases, a glassy polymer having a high attraction between polymer chains is used as a substrate in that the permeability is low, but relatively high selectivity can be expected.

또한, 상기 분리막은 그 형태에 제한이 없는데, 평막일 수도 있고, 나권형막일 수도 있으며, 중공사막일 수도 있는바, 중공사막이 더욱 바람직하다.In addition, the separation membrane is not limited in its shape, but may be a flat membrane, a spiral wound membrane, or a hollow fiber membrane, and a hollow fiber membrane is more preferred.

상기 나권형막 또는 중공사막을 사용하는 경우에는 막의 표면이 폴리디메틸실록산 또는 폴리리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체로 코팅된 것일 수 있다.When the spiral wound membrane or the hollow fiber membrane is used, the surface of the membrane may be coated with an organopolysiloxane copolymer grafted with repeating units including polydimethylsiloxane or polyethylene glycol or polyethylene/propylene glycol.

이때, 상기 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체로서는 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 메틸 에테르, 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌/프로필렌 글리콜) 메틸 에테르, 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜), 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌/프로필렌 글리콜), 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 3-아미노프로필 에테르 또는 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) [3-(트리메틸암모니오)프로필 클로라이드로 이루어진 군으로부터 선택된 어느 하나 또는 이들의 혼합물을 사용한다.In this case, as the organic polysiloxane copolymer grafted with the repeating unit including polyethylene glycol or polyethylene/propylene glycol, poly[dimethylsiloxane-co-methyl(3-hydroxypropyl)siloxane]-graft-poly(ethylene glycol) Methyl ether, poly[dimethylsiloxane-co-methyl(3-hydroxypropyl)siloxane]-graft-poly(ethylene/propylene glycol) methyl ether, poly[dimethylsiloxane-co-methyl(3-hydroxypropyl)siloxane ]-Graft-poly(ethylene glycol), poly[dimethylsiloxane-co-methyl(3-hydroxypropyl)siloxane]-graft-poly(ethylene/propylene glycol), poly[dimethylsiloxane-co-methyl(3 -Hydroxypropyl)siloxane]-graft-poly(ethylene glycol) 3-aminopropyl ether or poly[dimethylsiloxane-co-methyl(3-hydroxypropyl)siloxane]-graft-poly(ethylene glycol) [3 Any one selected from the group consisting of -(trimethylammonio)propyl chloride or a mixture thereof is used.

또한, 상기 중공사막이 집적된 중공사막 모듈은, 막 모듈의 하우징 내에 1,000~300,000 가닥의 중공사 다발이 삽입되고, 막 모듈의 양 말단은 포팅제에 의해 차단된다. 상기 막 모듈의 하우징은 알루미늄, 탄소강, 스테인레스 또는 내열성 플라스틱 소재로 제작한다.In addition, in the hollow fiber membrane module in which the hollow fiber membrane is integrated, a bundle of 1,000 to 300,000 strands of hollow fiber is inserted into the housing of the membrane module, and both ends of the membrane module are blocked by a potting agent. The housing of the membrane module is made of aluminum, carbon steel, stainless steel, or heat-resistant plastic material.

(실시예 1 내지 3)(Examples 1 to 3)

공급가스로서 보일러의 연소배가스를 사용하고, 질소농축을 위해 폴리술폰 중공사막 모듈을 이용한 분리막 공정(실시예 1), 압력스윙흡착 공정(실시예 2), 분리막 공정과 압력스윙흡착 공정의 병합 공정(실시예 3)을 각각 수행하되, 전처리 공정은 상술한 바와 같이 도 2에 나타낸 것처럼 모두 동일하게 하여 질소농축공기를 제조하였다.A separation membrane process using a boiler combustion exhaust gas as a supply gas and using a polysulfone hollow fiber membrane module for nitrogen concentration (Example 1), a pressure swing adsorption process (Example 2), a combined process of a separation membrane process and a pressure swing adsorption process (Example 3) was carried out respectively, but the pretreatment process was all the same as shown in FIG. 2 as described above to prepare nitrogen-enriched air.

(비교예 1 내지 3)(Comparative Examples 1 to 3)

공급가스로서 대기 중의 외부공기를 사용한 것을 제외하고는 각각 실시예 1 내지 3과 동일한 공정으로 질소농축공기를 제조하였다.Nitrogen-enriched air was prepared in the same process as in Examples 1 to 3, respectively, except that external air in the atmosphere was used as the supply gas.

아래 표 1, 2에는 각각 실시예 1 및 비교예 1, 표 3, 4에는 각각 실시예 2 및 비교예 2, 표 5, 6에는 각각 실시예 3 및 비교예 3에 의한 압력조건에 따른 질소농축공기(NEA)의 유량 및 효율을 나타내었다.In Tables 1 and 2 below, in Example 1 and Comparative Example 1, in Tables 3 and 4, respectively, in Example 2 and Comparative Example 2, in Tables 5 and 6, nitrogen concentration according to the pressure conditions according to Example 3 and Comparative Example 3, respectively. The flow rate and efficiency of air (NEA) are shown.

압력pressure 질소생산 유량 및 공급가스 유량(NL/min)Nitrogen production flow rate and supply gas flow rate (NL/min) 산소밀도(%)Oxygen density (%) 1.01.0 5.05.0 0.6Mpa0.6Mpa 질소농축공기(NEA) Nitrogen enriched air (NEA) 54.254.2 178.1178.1 공기(Air)Air 163.2163.2 302.5302.5 효율(Efficiency)Efficiency 33.3%33.3% 58.8%58.8% 0.7Mpa0.7Mpa 질소농축공기(NEA)Nitrogen enriched air (NEA) 68.668.6 202.5202.5 공기(Air)Air 194.5194.5 342.6342.6 효율(Efficiency)Efficiency 35.2%35.2% 59.1%59.1%

압력pressure 질소생산 유량 및 공급가스 유량(NL/min)Nitrogen production flow rate and supply gas flow rate (NL/min) 산소밀도(%)Oxygen density (%) 1.01.0 5.05.0 0.6Mpa0.6Mpa 질소농축공기(NEA) Nitrogen enriched air (NEA) 47.847.8 125.9125.9 공기(Air)Air 164.0164.0 254.7254.7 효율(Efficiency)Efficiency 29.2%29.2% 49.4%49.4% 0.7Mpa0.7Mpa 질소농축공기(NEA)Nitrogen enriched air (NEA) 59.959.9 158.1158.1 공기(Air)Air 198.4198.4 311.1311.1 효율(Efficiency)Efficiency 30.2%30.2% 50.8%50.8%

압력pressure 질소생산 유량 및 공급가스 유량(NL/min)Nitrogen production flow rate and supply gas flow rate (NL/min) 산소밀도(%)Oxygen density (%) 0.10.1 1.01.0 0.5Mpa0.5Mpa 질소농축공기(NEA) Nitrogen enriched air (NEA) 89.289.2 133133 공기(Air)Air 287287 317317 효율(Efficiency)Efficiency 31.1%31.1% 41.9%41.9%

압력pressure 질소생산 유량 및 공급가스 유량(NL/min)Nitrogen production flow rate and supply gas flow rate (NL/min) 산소밀도(%)Oxygen density (%) 0.10.1 1.01.0 0.5Mpa0.5Mpa 질소농축공기(NEA) Nitrogen enriched air (NEA) 83.483.4 116.5116.5 공기(Air)Air 291291 309309 효율(Efficiency)Efficiency 28.7%28.7% 37.7%37.7%

압력pressure 질소생산 유량 및 공급가스 유량(NL/min)Nitrogen production flow rate and supply gas flow rate (NL/min) 산소밀도(%)Oxygen density (%) 0.10.1 1.01.0 0.5Mpa0.5Mpa 질소농축공기(NEA) Nitrogen enriched air (NEA) 97.297.2 152152 공기(Air)Air 298298 350350 효율(Efficiency)Efficiency 32.6%32.6% 43.4%43.4%

압력pressure 질소생산 유량 및 공급가스 유량(NL/min)Nitrogen production flow rate and supply gas flow rate (NL/min) 산소밀도(%)Oxygen density (%) 0.10.1 1.01.0 0.5Mpa0.5Mpa 질소농축공기(NEA) Nitrogen enriched air (NEA) 87.287.2 128128 공기(Air)Air 299299 328328 효율(Efficiency)Efficiency 29.2%29.2% 39.0%39.0%

상기 표 1 내지 6에서 알 수 있는 바와 같이, 실시예 1 내지 3으로부터 질소가스를 제조하는 방법의 경우에는 각각 비교예 1 내지 3과 대비하여 동일한 압력조건 하에서 현저하게 향상된 효율로 더 많은 유량의 질소농축공기를 생산할 수 있음을 확인할 수 있다.As can be seen in Tables 1 to 6, in the case of the method of producing nitrogen gas from Examples 1 to 3, respectively, compared to Comparative Examples 1 to 3, nitrogen at a higher flow rate with remarkably improved efficiency under the same pressure condition It can be seen that it can produce concentrated air.

1 : 공기압축기(air compressor)
2 : 수분 분리기(liquid separator)
3 : 건조기(dryer)
4 : 필터(Coalescing filter)
5 : 활성탄 상/필터(activated carbon bed/filter)
6 : 막 모듈(membrane module)
1: air compressor
2: liquid separator
3: dryer
4: Coalescing filter
5: activated carbon bed/filter
6: membrane module

Claims (6)

(I) 연소배가스를 공기압축기로 공급하는 단계;
(II) 상기 연소배가스의 압축과정에서 발생하는 수분을 분리 및 건조한 후, 잔여 수분 및 오염물질을 제거하는 전처리 단계; 및
(III) 상기 전처리된 연소배가스로부터 질소를 농축하는 단계;를 포함하는 연소배가스를 이용한 질소농축공기의 제조방법.
(I) supplying combustion exhaust gas to an air compressor;
(II) a pretreatment step of separating and drying moisture generated in the compression process of the combustion exhaust gas, and then removing residual moisture and pollutants; And
(III) Concentrating nitrogen from the pre-treated combustion exhaust gas; Method for producing nitrogen-enriched air using combustion exhaust gas comprising.
제1항에 있어서, 상기 (III) 단계의 질소농축은 분리막 공정, 압력스윙흡착(PSA) 공정 또는 이들의 병합 공정에 의하여 수행되는 것을 특징으로 하는 연소배가스를 이용한 질소농축공기의 제조방법.The method of claim 1, wherein the concentration of nitrogen in step (III) is carried out by a separation membrane process, a pressure swing adsorption (PSA) process, or a combination process thereof. 제2항에 있어서, 상기 분리막의 소재는 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리에테르이미드, 폴리아미드, 폴리카보네이트, 폴리아크릴로니트릴 및 셀룰로오즈아세테이트로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 연소배가스를 이용한 질소농축공기의 제조방법.The method of claim 2, wherein the material of the separator is any one selected from the group consisting of polysulfone, polyethersulfone, polyimide, polyetherimide, polyamide, polycarbonate, polyacrylonitrile, and cellulose acetate. Method for producing nitrogen enriched air using combustion exhaust gas. 제3항에 있어서, 상기 분리막은 평막, 나권형막 또는 중공사막인 것을 특징으로 하는 연소배가스를 이용한 질소농축공기의 제조방법.The method of claim 3, wherein the separation membrane is a flat membrane, a spiral wound membrane, or a hollow fiber membrane. 제4항에 있어서, 상기 나권형막 또는 중공사막은 표면이 폴리디메틸실록산 또는 폴리리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체로 코팅된 것을 특징으로 하는 연소배가스를 이용한 질소농축공기의 제조방법.The combustion vessel according to claim 4, wherein the spiral wound membrane or the hollow fiber membrane has a surface coated with an organopolysiloxane copolymer grafted with repeating units including polydimethylsiloxane or polyethylene glycol or polyethylene/propylene glycol. Method for producing nitrogen-enriched air using gas. 제5항에 있어서, 상기 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체는 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 메틸 에테르, 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌/프로필렌 글리콜) 메틸 에테르, 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜), 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌/프로필렌 글리콜), 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 3-아미노프로필 에테르 또는 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) [3-(트리메틸암모니오)프로필 클로라이드로 이루어진 군으로부터 선택된 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 연소배가스를 이용한 질소농축공기의 제조방법.The method of claim 5, wherein the repeating unit-grafted organopolysiloxane copolymer comprising polyethylene glycol or polyethylene/propylene glycol is poly[dimethylsiloxane-co-methyl(3-hydroxypropyl)siloxane]-graft-poly (Ethylene glycol) methyl ether, poly[dimethylsiloxane-co-methyl(3-hydroxypropyl)siloxane]-graft-poly(ethylene/propylene glycol) methyl ether, poly[dimethylsiloxane-co-methyl(3-hydroxyl) Roxypropyl)siloxane]-graft-poly(ethylene glycol), poly[dimethylsiloxane-co-methyl(3-hydroxypropyl)siloxane]-graft-poly(ethylene/propylene glycol), poly[dimethylsiloxane-co -Methyl(3-hydroxypropyl)siloxane]-graft-poly(ethylene glycol) 3-aminopropyl ether or poly[dimethylsiloxane-co-methyl(3-hydroxypropyl)siloxane]-graft-poly(ethylene Glycol) [3-(trimethylammonio)propyl chloride] A method for producing nitrogen-enriched air using combustion exhaust gas, characterized in that it is any one selected from the group consisting of or a mixture thereof.
KR1020190048932A 2019-04-26 2019-04-26 Method for producing nitrogen-enriched air using flue gas KR102235015B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2019/005090 WO2020218653A1 (en) 2019-04-26 2019-04-26 Method for producing nitrogen-enriched air by using exhaust flue gas
KR1020190048932A KR102235015B1 (en) 2019-04-26 2019-04-26 Method for producing nitrogen-enriched air using flue gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190048932A KR102235015B1 (en) 2019-04-26 2019-04-26 Method for producing nitrogen-enriched air using flue gas

Publications (2)

Publication Number Publication Date
KR20200125851A true KR20200125851A (en) 2020-11-05
KR102235015B1 KR102235015B1 (en) 2021-04-02

Family

ID=72941710

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190048932A KR102235015B1 (en) 2019-04-26 2019-04-26 Method for producing nitrogen-enriched air using flue gas

Country Status (2)

Country Link
KR (1) KR102235015B1 (en)
WO (1) WO2020218653A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102525458B1 (en) 2021-06-28 2023-04-26 (주)에어레인 Process for capturing carbon dioxide from flue gas inked with drying stage by membrane dryer
CN113998677B (en) * 2021-10-19 2023-10-24 碳和科技(北京)有限公司 CO recovery from chemical process 2 System and method for preparing nitrogen from waste gas of (a) a reactor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988490A (en) 1988-09-14 1991-01-29 Air Products And Chemicals, Inc. Adsorptive process for recovering nitrogen from flue gas
JP2766692B2 (en) * 1988-12-27 1998-06-18 パーミー,インコーポレーテッド Method for producing nitrogen from air using gas separation membrane
JPH10509093A (en) * 1994-11-17 1998-09-08 エナーフェックス インコーポレイテッド Ultra-high purity nitrogen by membrane separation
KR101380707B1 (en) 2007-06-19 2014-04-07 (주)에어레인 Preparation method of complex membrane for gas seperation and complex membrane for gas seperation prepared therefrom
KR101391282B1 (en) 2012-04-13 2014-05-02 한국에너지기술연구원 A exhaust gas treatment system with moisture capture device using membrane
JP2017109914A (en) * 2015-12-17 2017-06-22 有限会社ジャパンガスセパレーション Membrane-type nitrogen producing facility, and nitrogen producing method
KR20170123726A (en) * 2016-04-07 2017-11-09 (주)에어레인 Method for purification of biogas using adsorption-membrane combined process
KR101872893B1 (en) * 2016-12-29 2018-06-29 주식회사 에체 Incineration System using high purity oxygen and its method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101881090B1 (en) * 2015-12-18 2018-08-24 (주)에어레인 Method for multi-stage purification of biogas using composite hollow fiber membrane modules

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988490A (en) 1988-09-14 1991-01-29 Air Products And Chemicals, Inc. Adsorptive process for recovering nitrogen from flue gas
JP2766692B2 (en) * 1988-12-27 1998-06-18 パーミー,インコーポレーテッド Method for producing nitrogen from air using gas separation membrane
JPH10509093A (en) * 1994-11-17 1998-09-08 エナーフェックス インコーポレイテッド Ultra-high purity nitrogen by membrane separation
KR101380707B1 (en) 2007-06-19 2014-04-07 (주)에어레인 Preparation method of complex membrane for gas seperation and complex membrane for gas seperation prepared therefrom
KR101391282B1 (en) 2012-04-13 2014-05-02 한국에너지기술연구원 A exhaust gas treatment system with moisture capture device using membrane
JP2017109914A (en) * 2015-12-17 2017-06-22 有限会社ジャパンガスセパレーション Membrane-type nitrogen producing facility, and nitrogen producing method
KR20170123726A (en) * 2016-04-07 2017-11-09 (주)에어레인 Method for purification of biogas using adsorption-membrane combined process
KR101872893B1 (en) * 2016-12-29 2018-06-29 주식회사 에체 Incineration System using high purity oxygen and its method

Also Published As

Publication number Publication date
WO2020218653A1 (en) 2020-10-29
KR102235015B1 (en) 2021-04-02

Similar Documents

Publication Publication Date Title
EP0411254B1 (en) Production of dry, high purity nitrogen
US8728201B2 (en) Apparatus and method for removing carbon dioxide (CO2) from the flue gas of a furnace after the energy conversion
CN107708840B (en) Separation of CO from a gas stream 2 Method (2)
EP0460636B1 (en) Improved membrane nitrogen process and system
JP2006507385A (en) Membrane separation process
JP2013534863A (en) Gas separation method
Seong et al. Optimization of pilot-scale 3-stage membrane process using asymmetric polysulfone hollow fiber membranes for production of high-purity CH4 and CO2 from crude biogas
KR20180007519A (en) Multi-stage membrane system with improved methane recovery rate from bio-gas
KR102235015B1 (en) Method for producing nitrogen-enriched air using flue gas
KR101529130B1 (en) A multi-stage membrane process and an upgrading apparatus for the production of high purity methane gas using low operation pressure and temperature conditions
CN114904372A (en) Energy-saving carbon dioxide capture system and method thereof
Liu et al. Status and future trends of hollow fiber biogas separation membrane fabrication and modification techniques
CN104418303B (en) The process of carbon dioxide in a kind of membrance separation removing conversion gas
Fajrina et al. A crucial review on the challenges and recent gas membrane development for biogas upgrading
Okoro et al. Advances in the use of nanocomposite membranes for carbon capture operations
KR101986776B1 (en) Method for purification of biogas using adsorption-membrane combined process
KR20170073049A (en) Method for multi-stage purification of biogas using composite hollow fiber membrane modules
KR101861646B1 (en) Separation membrane system for recovering the carbon dioxide in the combustion gas
WO2022051493A1 (en) Membrane process for h2 recovery from sulfur recovery tail gas stream of sulfur recovery units and process for environmentally greener sales gas
KR102525458B1 (en) Process for capturing carbon dioxide from flue gas inked with drying stage by membrane dryer
KR101531605B1 (en) A second-stage membrane process and an apparatus for the production of high purity methane gas using low operation pressure and temperature conditions
CN210150733U (en) Combined recovery device for carbon dioxide, nitrogen and oxygen in flue gas
Ho et al. Methods for the separation of CO 2 from a gas stream
CN210133891U (en) Combined recovery device for carbon dioxide, nitrogen and oxygen in flue gas
JP2022176139A (en) gas separation process

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right