WO2023100908A1 - アンテナ装置及び車両用アンテナ装置 - Google Patents

アンテナ装置及び車両用アンテナ装置 Download PDF

Info

Publication number
WO2023100908A1
WO2023100908A1 PCT/JP2022/044074 JP2022044074W WO2023100908A1 WO 2023100908 A1 WO2023100908 A1 WO 2023100908A1 JP 2022044074 W JP2022044074 W JP 2022044074W WO 2023100908 A1 WO2023100908 A1 WO 2023100908A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna device
antenna
straight line
radiation plate
plate
Prior art date
Application number
PCT/JP2022/044074
Other languages
English (en)
French (fr)
Inventor
稔貴 佐山
英明 東海林
友祐 加藤
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023100908A1 publication Critical patent/WO2023100908A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface

Definitions

  • the present disclosure relates to an antenna device and a vehicle antenna device.
  • V2X Vehicle to Everything
  • a vehicle equipped with a V2X communication system can acquire various safety-related information outside the vehicle using, for example, narrowband radio waves in the 5.8 GHz band or the 5.9 GHz band. Therefore, there is a demand for a V2X antenna capable of transmitting and receiving vertically polarized radio waves in a frequency band that satisfies the V2X communication standard with desired gain and directivity.
  • a V2X antenna for example, is required to have a directivity that achieves a desired gain within a range of ⁇ 90° (180°) centered on the traveling direction of the vehicle on the horizontal plane.
  • Such a V2X antenna is not limited to a place where it is placed in a vehicle, as long as desired gain and directivity can be achieved.
  • Japanese Patent Laying-Open No. 2019-75644 and International Publication No. 2019/163521 disclose a configuration in which an antenna device in which a windshield or rear glass and a radiation surface inside the vehicle face each other is used as an in-vehicle antenna for V2X communication.
  • power is supplied from one end of a transmission line such as a coaxial cable to a radiation plate (radiating conductor), and an ECU (Electrical Control Unit) connected to the other end of the transmission line controls the antenna device. perform signal control in a transmission line such as a coaxial cable to a radiation plate (radiating conductor), and an ECU (Electrical Control Unit) connected to the other end of the transmission line controls the antenna device. perform signal control in
  • the antenna device described in JP-A-2019-75644 is provided with a board coaxial connector on the side of the ground plane opposite to the radiation surface.
  • a board coaxial connector on the side of the ground plane opposite to the radiation surface.
  • one end of a coaxial cable for feeding is connected to this board coaxial connector extending in the normal direction of the radiation surface.
  • the antenna device of International Publication No. 2019/163521 is provided with a substrate coaxial connector on the side of the base plate located opposite to the radiation surface.
  • a coaxial cable for power supply is connected to this coaxial connector for board. Since one end of this coaxial cable is L-shaped, the coaxial cable extends in the vehicle width direction orthogonal to the normal direction of the radiation surface.
  • the coaxial cable connected to the board coaxial connector extends in the depth direction orthogonal to the radiation surface, so that it is difficult to reach the front and back of the limited vehicle interior space. There is a problem that it becomes difficult to save space in the direction.
  • the coaxial cable connected to the substrate coaxial connector extends in the vehicle width direction, so it is possible to achieve space saving in the vehicle interior space in the front-rear direction.
  • an antenna device for transmitting and receiving vertically polarized waves to obtain directivity with a desired gain within the above range.
  • the present disclosure is an antenna device that can save the space occupied by the transmission line for feeding and can realize an antenna gain with desired directivity, especially an antenna device that can be used as a V2X antenna.
  • a vehicle antenna device is provided.
  • An antenna device includes an antenna that transmits and receives radio waves in a predetermined frequency band, and a transmission line that feeds a conductor plate that is a part of the antenna, and the conductor plate radiates radio waves.
  • a radiating plate having a surface and a feeding point, which is a portion to which power is supplied from the transmission line, and when the radiating plate is viewed along the horizontal direction, the feeding point is positioned from the center of gravity of the radiating plate.
  • the center of gravity overlaps with the conductor plate when viewed, when viewed along the thickness direction of the radiation plate, the end connected to the feeding point of the transmission line and the peripheral edge of the conductor plate A portion between the intersecting intersections overlaps the specific region between the third straight line and the fourth straight line in the thickness direction of the radiation plate.
  • the antenna device and the vehicle antenna device it is possible to save the space occupied by the transmission line for power feeding, and achieve an antenna gain with desired directivity.
  • FIG. 1 is a plan view seen from a vertical direction of a vehicle to which a vehicle antenna device according to a first embodiment of the present disclosure is applied;
  • FIG. FIG. 2 is a schematic cross-sectional view of the front portion of the vehicle and the rear portion of the vehicle; 1 is a front view of a vehicle antenna device and a roof; FIG. It is a rear view of a vehicle antenna device.
  • FIG. 4 is a cross-sectional view of the vehicle antenna device taken along line 5-5 in FIG. 3; It is a front view of the vehicle antenna device of a comparative example. 7 is a cross-sectional view of the vehicle antenna device of the comparative example taken along arrow 7-7 in FIG. 6;
  • FIG. 10 is a diagram showing a directivity measurement result of the vehicle antenna device of Example 2, which is a comparative example; It is a rear view of a vehicle antenna device according to a second embodiment of the present disclosure.
  • FIG. 11 is a rear view of a vehicle antenna device according to a third embodiment of the present disclosure;
  • FIG. 11 is a rear view of a vehicle antenna device according to a fourth embodiment of the present disclosure;
  • It is a front view of a vehicle antenna device according to a fifth embodiment of the present disclosure.
  • a vehicle antenna device 40A according to the first embodiment of the present disclosure will be described below with reference to the accompanying drawings.
  • the vehicle antenna device 40A of the present embodiment is provided in the vehicle 10.
  • the X-axis shown in each drawing is parallel to the width direction of the vehicle 10
  • the Y-axis is parallel to the front-rear direction of the vehicle
  • the Z-axis is parallel to the vertical direction of the vehicle, and is also referred to as the "vertical direction”.
  • Arrow FR indicates the front in the vehicle longitudinal direction
  • arrow UP indicates the upper side in the vehicle vertical direction
  • arrow LF indicates the left side in the vehicle width direction.
  • the XY plane is a plane passing through the X axis and the Y axis and is also called a "horizontal plane". That is, in the following description, the vehicle 10 is positioned on a horizontal plane, the vertical direction of the vehicle is aligned with the vertical direction, the XY plane is aligned with the horizontal plane, and the vertical direction corresponds to the normal direction to the horizontal plane. Furthermore, the XZ plane is a plane passing through the X axis and the Z axis, and the YZ plane is a plane passing through the Y axis and the Z axis.
  • a vehicle 10 shown in FIG. 1 has a vehicle body 12 including a metal body.
  • This metal body includes, for example, a roof portion 14 , an A pillar (front pillar) 16 and a C pillar (rear pillar) 20 .
  • a substantially rectangular front opening 22 is formed in the front part of the vehicle body 12 .
  • the upper edge of the front opening 22 is adjacent to the front edge 14A of the roof portion 14, and the left and right side edges of the front opening 22 are adjacent to the left and right A-pillars 16, respectively.
  • a windshield (vehicle window glass) 28 is fitted in the front opening 22, and the peripheral edge of the windshield 28 is fixed to the peripheral edge of the front opening 22 with an adhesive such as urethane resin.
  • the windshield 28 is inclined at an angle ⁇ 1 with respect to the XZ plane 100 corresponding to the horizontal plane so that the lower end is located forward of the upper end when viewed from the side (from the X-axis direction). do.
  • a substantially rectangular rear opening 24 is formed in the rear portion of the vehicle body 12 .
  • the upper edge of the rear opening portion 24 is adjacent to the rear edge portion 14B of the roof portion 14, and the left and right side edge portions of the rear opening portion 24 are adjacent to the left and right C-pillars 20, respectively.
  • a rear glass (vehicle window glass) 34 is fitted in the rear opening 24, and the peripheral edge of the rear glass 34 is fixed to the peripheral edge of the rear opening 24 with an adhesive such as urethane resin.
  • the rear glass 34 is inclined at an angle ⁇ 2 with respect to the XY plane 100 corresponding to the horizontal plane so that the lower end is located behind the upper end in a side view (from the X-axis direction).
  • the communication antenna 50 is arranged so that the normal line Dnf facing forward with respect to the radiation surface 56C of the radiation plate 56 passes through the windshield 28.
  • FIG. 1 the normal line Dnf facing forward with respect to the radiation surface 56C of the radiation plate 56
  • a communication antenna 50 is attached to the upper portion of the main surface of the windshield 28 in the vertical direction of the vehicle via a bracket (not shown).
  • the windshield 28, the communication antenna 50, and a coaxial cable 70A, which will be described later, are components of the vehicle antenna device 40A.
  • the communication antenna 50 and the coaxial cable 70A are components of the antenna device 43A.
  • the coaxial cable 70 is a type of transmission line for transmitting high-frequency signals, and examples of the transmission line include a microstrip line, a strip line, a coplanar waveguide, a GCPW (coplanar waveguide with ground plane), and a coplanar strip. , slot lines, waveguides, and the like.
  • the transmission line is described as the coaxial cable 70A unless otherwise specified.
  • the communication antenna 50 of the present embodiment is a vertically polarized antenna that has a higher antenna gain for transmitting and receiving vertically polarized waves than for horizontally polarized waves.
  • the V2X antenna described below is an antenna capable of transmitting and receiving with vertically polarized waves, and in particular, can use radio waves in the 5.8 GHz band or radio waves in the 5.9 GHz band.
  • the communication antenna 50 (hereinafter simply referred to as "antenna 50") of the vehicle antenna device 40A according to this embodiment will be described.
  • the antenna 50 of this embodiment includes a dielectric substrate 52, a ground conductor plate 54, a radiating plate (radiating conductor) 56, a feeding portion 60, a connecting conductor 62, Prepare.
  • the ground conductor plate 54 and the radiation plate 56 correspond to conductor plates.
  • the antenna 50 may include at least one of the first element 66 and the second element 68, which are parasitic conductive plates, or both.
  • the first element 66 and the second element 68 are independent conductor plates that are not connected to the core wire (signal wire) 71 of the coaxial cable 70A or the ground conductor wire 75 (earth wire).
  • the antenna 50 according to this embodiment is a patch antenna (microstrip antenna).
  • the antenna 50 according to the present embodiment can be used as a V2X antenna, but may be configured to transmit and receive linearly polarized waves in a band different from these.
  • the main surface 52B of the dielectric substrate 52 is provided with a radiation plate 56 having a smaller area than the ground conductor plate 54.
  • the material forming the radiation plate 56 include silver and copper, but other conductive materials may be used.
  • the illustrated radiation plate 56 has a square front shape, it is not limited to this shape.
  • silver and copper for example, can be cited as the material forming the first element 66 and the second element 68, other conductive materials may be used.
  • the illustrated first element 66 and second element 68 are rectangular when viewed from the front, they may have shapes other than rectangular.
  • the antenna gain in the X-axis direction can be increased, and stable directivity can be obtained. easier to secure.
  • the dielectric substrate 52 is a plate-like or film-like, typically rectangular parallelepiped dielectric layer.
  • the term "plate-like or film-like" as used herein may include, for example, convex, concave, and wavy portions.
  • the ground conductor plate 54, the radiating plate 56, the first element 66 and the second element 68 are similar, but they are typically thinner than the thickness of the dielectric layer and preferably planar. If these are planar shapes, the antenna gain characteristics of the antenna 50 can be easily predicted.
  • the front shape of the dielectric substrate 52 shown in FIGS. 3 and 4 is a rectangle whose dimension in the Z-axis direction is shorter than that in the X-axis direction (vehicle width direction). It may be a square, a polygonal shape other than a rectangular shape, a circular shape, a shape with a curved outer edge, or any other shape.
  • the dielectric substrate 52 has one main surface 52A in the thickness direction and a main surface 52B parallel to the main surface 52A.
  • a glass epoxy substrate, a ceramics substrate, a fluorine substrate, or the like can be used. If the front shape of the dielectric substrate 52 is a rectangle (long in the vehicle width direction), the first element 66 and the second element 68 are arranged on at least one of the principal surfaces 52A and 52B. Area can be secured.
  • a ground conductor plate 54 serving as the ground of the antenna 50 is provided on the main surface 52A of the dielectric substrate 52 .
  • Examples of the material forming the ground conductor plate 54 include silver and copper, but other conductive materials may be used.
  • the ground conductor plate 54 has a square front shape, but is not limited to this shape.
  • the dielectric substrate 52 may also be square of the same size. In that case, the antenna 50 is shorter in the (vehicle) width direction compared to a rectangular antenna, thereby saving space. becomes.
  • the power feeding portion 60 is a portion to which power is supplied in a contact or non-contact manner, and is connected to one end portion 71A of a signal line (core line) 71 of a coaxial cable 70A, which will be described later.
  • connection conductor 62 included in the antenna 50 is a conductor pin provided inside a through hole penetrating the dielectric substrate 52 in the plate thickness direction. One end of the connection conductor 62 is connected to the feeding portion 60 , and the other end is connected to a connection point (feeding point) 56 A of the radiation plate 56 . One end of the connection conductor 62 does not contact the ground conductor plate 54 . As shown in FIG. 3, the connection point 56A is separated from the center of gravity 56B of the radiation plate 56 by a distance D1 when viewed from the front. In this specification, "front view” means viewing the antennas 50 and 80 along the Y direction.
  • the Z-axis direction dimension of the radiation plate 56 in front view is assumed to be D2.
  • the positional relationship of the connection point 56A should satisfy 0.05 ⁇ D1/D2 ⁇ 0.45.
  • D1/D2 is preferably approximately 1/6.
  • the center of gravity 56B of the radiation plate 56 and the center of gravity 54A of the ground conductor plate 54 are positioned on a straight line PL passing through the radiation surface 56C in the normal direction.
  • the core wire of the coaxial cable 70A may be connected to the feeding point 56A without the connecting conductor 62 interposed therebetween.
  • the antenna 50 may include at least one of the first element 66 and the second element 68, which are parasitic conductive plates. As shown in FIGS. 3 and 4, the first element 66 and the second element 68 are arranged apart from each other in the vehicle width direction (horizontal direction). It is provided on the main surface 52B of the body substrate 52 . In addition, the dielectric substrate 52 , the first element 66 and the second element 68 are positioned on both sides of the radiation plate 56 when the antenna 50 is viewed from the front.
  • the radiation plate 56, the first element 66, and the second element 68 are positioned on the same plane when the antenna 50 is viewed along the Z-axis direction.
  • at least one of the first element 66 and the second element 68 may be arranged on the side opposite to the ground conductor plate 54 with respect to the main surface 52B of the dielectric substrate 52, and the radiation plate with respect to the main surface 52A. It may be arranged on the opposite side of 56, or may be arranged on main surface 52A (at a position not in contact with ground conductor plate 54).
  • At least one of the first element 66 and the second element 68 may overlap a part or the whole of the ground conductor plate 54, except for the center of gravity 56B of the radiation plate 56. May overlap with part.
  • a coaxial cable (transmission line) 70A shown in FIGS. 3 to 5 has at least a signal line 71 and a shield jacket (outer conductor) 73.
  • a portion of the coaxial cable (transmission line) 70A excluding both ends of the signal line 71 is hereinafter referred to as a body portion 70AB.
  • both ends of the signal line 71 are portions of the signal line 71 protruding outward from both ends of the shield outer cover 73 .
  • the coaxial cable 70A has flexibility as a whole.
  • the tip of one end 71A of the signal line 71 is connected to the connection conductor 62, and is connected to the power supply section 60 via the connection conductor 62.
  • a part of the shield outer cover 73 is connected to the ground conductor plate 54 as a ground conductor wire 75 (ground wire).
  • the main body portion 70AB of the coaxial cable 70A is positioned behind (on the opposite side of) the ground conductor plate 54 with respect to the dielectric substrate 52 .
  • the main body portion 70AB is preferably placed close to or in contact with the ground conductor plate 54 .
  • An antenna device 43A shown in FIGS. 3 and 4 has a linear portion 70A1 parallel to the X-axis, which is part of the coaxial cable 70A including the end portion on the side of the end portion 71A of the body portion 70AB.
  • the relative positions of the antenna 50 and the linear portion 70A1 are held in the states shown in FIGS. 3 to 5 by fixing means (not shown).
  • the fixing means may include a housing (not shown) that houses the antenna 50, and a connector dedicated to the coaxial cable 70A that is fixed to the rear surface of the housing (opposite to the radial direction).
  • the connector may have a structure that does not cause misalignment of the end portion of the coaxial cable 70A on the side of the power feeding portion 60 .
  • a part of the linear portion 70A1 and positioned outside the (left) side edge 54L of the ground conductor plate 54 in FIG. 4 is defined as a non-overlapping portion 70A2. Furthermore, the remainder of the linear portion 70A1, which overlaps with the side edge portion 54L of the ground conductor plate 54 in front view and the portion located closer to the central portion of the antenna 50 (dielectric substrate 52) than the side edge portion 54L, It is defined as an overlapping portion 70A3. As shown in FIGS. 3 and 4, the total length along the X-axis direction of the straight portion 70A1 and the end portion 71A is LE .
  • This L E is the sum of the length L of the non-overlapping portion 70A2, which will be described later, continuing along the X-axis direction, and the length L C of the portion of the overlapping portion 70A3 and the end portion 71A overlapping the second straight line L2.
  • the coaxial cable 70A may have an intermediate portion 70Am located outside the straight portion 70A1 with respect to the center of gravity and inclined with respect to the straight portion 70A1 in a front view.
  • the antenna 50 is configured to include one or both of the first element 66 and the second element 68, it is preferable that the above length L is satisfied.
  • L preferably satisfies L ⁇ 0.15 ⁇ k, and more preferably satisfies L ⁇ 0.20 ⁇ k.
  • L E preferably satisfies L E ⁇ 0.20 ⁇ k, preferably L E ⁇ 0.30 ⁇ k, and more preferably L E ⁇ 0.40 ⁇ k. preferable.
  • the coaxial cable 70A may be provided with bending portions 71B and 71C at two locations on the end portion 71A of the signal line 71.
  • FIG. the portion positioned between the tip of the linear portion 70A1 and the bent portion 71B is the first portion 71A1 parallel to the linear portion 70A1.
  • a portion between the bent portion 71B and the bent portion 71C of the end portion 71A is a second portion 71A2 substantially orthogonal to the first portion 71A1 and parallel to the first straight line L1.
  • a portion between the tip of the end portion 71A and the bent portion 71C is a third portion 71A3 substantially perpendicular to the second portion 71A2 and parallel to the Y-axis.
  • a tip of the third portion 71A3 is connected to the power supply portion 60 via a connection conductor 62 .
  • the bent portion 71 B may overlap the center of gravity 56 B of the radiation plate 56 and the center of gravity 54 A of the ground conductor plate 54 .
  • a transmission line such as a coaxial cable that overlaps the center of gravity means that a portion of the transmission line overlaps the center of gravity.
  • the bent portion 71C and the third portion 71A3 overlap with the connection point 56A of the radiation plate 56 .
  • the end portion 71A of the signal line 71 may have bending portions 71B and 71C in an exposed state and overlap the center of gravity 56B.
  • the connection conductor 62 and may be connected to the power supply section 60 via the connection conductor 62 .
  • the coaxial cable 70A is preferably arranged within the specific area SA.
  • the shield outer cover 73 is connected to the ground conductor plate 54, and its potential becomes the ground potential. Further, the end portion of the signal line 71 opposite to the end portion 71A should be connected to a control device for controlling the antenna 50, and the end portion of the shield outer cover 73 opposite to the end portion 71A should be grounded.
  • a first straight line L1 passing through the connection point 56A of the antenna 50 attached to the top of the main surface of the windshield 28 on the inside of the vehicle via a bracket (not shown) is parallel to the Z axis. be. That is, when viewed from the front, the first straight line L1 is parallel to the vibration direction Vd (vertical direction) of the vertically polarized wave that can be transmitted and received by the antenna 50 .
  • a straight line parallel to the X-axis that passes through the center of gravity 56B in front view is defined as a second straight line L2.
  • a straight line parallel to the second straight line L2 and passing through the connection point 56A is defined as a third straight line L3.
  • a distance A is defined as an interval between the second straight line L2 and the third straight line L3.
  • a straight line parallel to the second straight line L2 and separated by a distance A from the second straight line L2 to the opposite side of the third straight line L3 is defined as a fourth straight line L4. That is, the positional relationship between the third straight line L3 and the fourth straight line L4 is symmetrical with respect to the second straight line L2.
  • the area between the third straight line L3 and the fourth straight line L4 in the antenna 50 is defined as a specific area SA.
  • a portion of the coaxial cable 70A that overlaps the side edge portion 54L, which is a part of the peripheral edge portion of the ground conductor plate 54, as viewed from the front is defined as an intersection portion 70A4.
  • the portion between the tip of the end portion 71A and the intersection portion 70A4 should be positioned within the specific area SA when viewed from the front.
  • the overlapping portion 70A3 and the first portion 71A1 may overlap the second straight line L2, and the second portion 71A2 and the third portion 71A3 may overlap the first straight line L1 in front view.
  • (at least part of) the non-overlapping portion 70A2 and the overlapping portion 70A3 of the coaxial cable 70A may be positioned between the third straight line L3 and the fourth straight line L4.
  • the transmission line is the coaxial cable 70A
  • "the transmission line is positioned on the second straight line L2” means that the second straight line L2 overlaps the shield outer cover 73 of the coaxial cable 70A or the signal line 71 when viewed from the front. It refers to an arrangement, and may be an arrangement that overlaps with the signal line 71 .
  • the transmission line is a stripline, microstripline or coplanar feeder line
  • the ratio of the length LC may be 30% or more when "L53/2" is 100%. % or more is preferable, and 70% or more is more preferable.
  • the ratio of the length L C is 100%.
  • the elevation angle and depression angle of the antenna 50 will be explained.
  • the antenna 50 is installed as follows. Also, as indicated by the solid line in FIG. 2, when the radiation surface 56C is located behind the vertical direction 101, the value of the inclination angle ⁇ becomes + (plus). On the other hand, as indicated by the dashed line in FIG. 2, when the radiation surface 56C is positioned forward of the vertical direction 101, the value of the inclination angle ⁇ becomes - (minus). In other words, when the tilt angle ⁇ exceeds 0°, the elevation angle between the normal direction of the radiation surface 56C of the radiation plate 56 and the horizontal plane is greater than 0° and less than or equal to +15°.
  • the inclination angle ⁇ is less than 0°, the depression angle between the normal direction of the radiation surface 56C of the radiation plate 56 and the horizontal plane is less than 0° and -15° or more.
  • the magnitude of the elevation angle is + (plus) and the magnitude of the depression angle is - (minus).
  • the tilt angle ⁇ is within the range of ⁇ 15°, the antenna gain in the horizontal plane direction of the antenna 50 is less likely to decrease.
  • the inclination angle ⁇ is preferably in the range of ⁇ 10°, more preferably in the range of ⁇ 5°, further preferably in the range of ⁇ 3°, particularly preferably in the range of ⁇ 1°, and most preferably in the range of 0°.
  • the antenna device 43AX of Example 2 shown in FIGS. 6 and 7 is a comparative example and has an antenna 50 and a coaxial cable 70X.
  • the coaxial cable 70X has the same structure as the coaxial cable 70A. However, when viewed from the front, the coaxial cable 70X has a non-overlapping portion 70X2 and an overlapping portion 70X3 on the third straight line L3 passing through the connection point 56A located below the center of gravity 56B of the antenna 50 in the X-axis direction.
  • the non-overlapping portion 70X2, the overlapping portion 70X3 and the crossing portion 70X4 of the coaxial cable 70X correspond to the non-overlapping portion 70A2, the overlapping portion 70A3 and the crossing portion 70A4 of the coaxial cable 70A in the antenna device 43A, respectively.
  • a bent portion 71E is provided at one location on the end portion 71A of the coaxial cable 70X.
  • a portion of the end portion 71A located between the end portion of the linear portion 70X1 and the bent portion 71E is a first portion 71A4 parallel to the linear portion 70X1.
  • a portion between the tip of the end portion 71A and the bent portion 71E is a second portion 71A5 substantially orthogonal to the first portion 71A4 and parallel to the Y-axis.
  • the tip of the second portion 71A5 is connected to the connection conductor 62 and is connected to the power feeding portion 60 via the connection conductor 62 . That is, the end portion 71A of the coaxial cable 70X is L-shaped.
  • the bent portion 71E overlaps the connection point 56A of the radiation plate 56 . That is, in the comparative example, since the axis of the coaxial cable 70X does not overlap the straight line L2, the ratio of the length LC is 0% when "L53/2" is 100%.
  • Example 2 The antenna device 43A of Example 1 shown in FIGS. 3 and 4 is an embodiment, in which the coaxial cable 70A is arranged along the straight line L2, and the end 71A of the coaxial cable 70A is bent to The tip is connected to the power feeding section 60 via the connection conductor 62 .
  • FIG. 8 shows the directivity of the antenna device 43A of Example 1
  • FIG. 9 shows the directivity of the antenna device 43AX of Example 2.
  • FIG. 8 and 9 show simulation results of antenna gain in the 5.9 GHz band in each direction in the XY plane 100, ie, the horizontal plane. 0° indicates the front side in the vehicle longitudinal direction, 90° indicates the right side in the vehicle width direction, 180° indicates the rear side in the vehicle longitudinal direction, and 270° indicates the left side in the vehicle width direction.
  • each part of the vehicle antenna device 40A and the vehicle antenna device 40AX of Examples 1 and 2 represented by symbols L20, L21, L50, L51, L53, L55, L60, L61, and L62 in FIGS. They are as follows.
  • the unit of each numerical value below is mm.
  • the directivity of FIGS. 8 and 9 is the result when each part is designed with these numerical values.
  • L55 is the distance in the Y-axis direction between the first element 66 and second element 68 and the radiation surface 56C.
  • the directivity of the antenna device 43A of Example 1 in the range of 0° to +90° and the range of 0° to 270° (-90°) is the same as that of the antenna device 43AX of Example 2.
  • the antenna device 43A can achieve balanced antenna gain and directivity in the range of 270° ( ⁇ 90°) to +90° including the 0° direction.
  • the antenna gain of the antenna device 43AX of Example 2 in the range of 0° to 270° (-90°) is significantly lower than the antenna gain of the antenna device 43A of Example 1 in the same range.
  • the transmission line (coaxial cable 70A) is arranged within the specific area SA when the ground conductor plate 54 is viewed from the front. That is, at least a portion of the overlapping portion 70A3 of the coaxial cable 70A overlaps the second straight line L2 passing through the center of gravity 56B of the antenna 50 in the X-axis direction. Furthermore, at least a portion of the non-overlapping portion 70A2 of the coaxial cable 70A overlaps the second straight line L2. Therefore, in Example 1, there is almost no disturbance in the directivity due to the wiring of the coaxial cable 40A with respect to the vertically polarized waves transmitted and received by the antenna device 43A, and stable antenna gain, Directivity can be realized.
  • example 2 comparative example
  • a portion of the overlapping portion 70X3 of the coaxial cable 70AX is not arranged within the specific area SA, but is arranged protruding from the specific area.
  • the arrangement of the coaxial cable 70AX greatly deviates from the straight line L2 that serves as the reference of the line symmetry of the antenna 50 . Therefore, the antenna device 43AX cannot achieve a desired antenna gain in a predetermined range (-90° to +90°) on the horizontal plane, resulting in disturbance of directivity.
  • the antenna device 43AX not only the disturbance of radio waves in the area in front of the radiation plate 56 of the antenna 50 caused by the coaxial cable 70X, but also the disturbance of radio waves in the outer area of the antenna 50 can affect the antenna gain of the antenna 50. It has been confirmed that this can cause deterioration and, in turn, disturbance of directivity.
  • the non-overlapping portion 70A2 is positioned on the second straight line L2 in a front view, and the length L of the non-overlapping portion 70A2 in the X-axis direction is the above It is preferable to satisfy L ⁇ 0.10 ⁇ k as follows. Furthermore, it is preferable that the length L E satisfies L E ⁇ 0.20 ⁇ k as described above. If the above is satisfied, particularly when the antenna device 43A includes parasitic conductive plates such as the first element 66 and the second element 68, the directivity of the antenna 50 is likely to be significantly improved.
  • the non-overlapping portion 70A2 located within the specific area SA, particularly on the second straight line L2 has a predetermined length when viewed from the front, the coaxial cable 70A and the antenna 50 Disturbance in directivity of radio waves to be transmitted and received tends to be small. Therefore, even though the non-overlapping portion 70A2 of the coaxial cable 70A is located in the outer peripheral area of the antenna 50, the directivity of the antenna 50 of Example 1 is stable.
  • the size of the antenna device 43A in the Y-axis direction (thickness direction) can be reduced. It can be made smaller, making it easier to save space.
  • the antenna device 43B of the second embodiment can transmit and receive linearly polarized waves, and includes an antenna 50 and a coaxial cable (transmission line) 70A. Further, the vehicle antenna device 40B includes a windshield 28 (not shown in FIG. 10) and an antenna device 43B, and is capable of transmitting and receiving vertically polarized waves.
  • One end portion 71A of the signal line 71 of the coaxial cable 70A has the same structure as the end portion 71A of the coaxial cable 70X of the vehicle antenna device 40AX. That is, one end portion 71A of the signal line 71 of the coaxial cable 70A is L-shaped, and the tip of the second portion 71A5 is connected to the feeding portion 60. As shown in FIG. When the ground conductor plate 54 is viewed from the front, the bent portion 71E of the antenna device 43B overlaps the connection point 56A of the radiation plate 56 .
  • the body portion 70AB has a non-overlapping portion 70A2, an overlapping portion 70A3, and an intersection portion 70A4.
  • the non-overlapping portion 70A2 is positioned on the second straight line L2.
  • a linear portion between the intermediate portion 70A3m of the overlapping portion 70A3 and the intersection portion 70A4 is positioned on the second straight line L2 in a front view.
  • the length in the X-axis direction of the linear portion between the intermediate portion 70A3m of the overlapping portion 70A3 and the intersection portion 70A4 is LC .
  • the length L of the non-overlapping portion 70A2 in the X-axis direction preferably satisfies L ⁇ 0.10 ⁇ k based on the definitions of ⁇ and k described above. Furthermore, it is preferable that the length L E satisfies L E ⁇ 0.20 ⁇ k as described above.
  • the overlapping portion 70A3 of the coaxial cable 70A is arranged within the specific area SA when viewed from the front. Further, when viewed from the front, the end portion 71A overlaps the first straight line L1 and the ground conductor plate 54 in the thickness direction. Furthermore, the coaxial cable 70A is arranged such that the overlapping portion 70A3 includes a substantially arcuate portion in a front view. Also in the antenna device 43B of the present embodiment, when "L53/2" is 100%, the ratio of the length LC may be 30% or more, preferably 50% or more, and more preferably 70% or more. preferable. The length LC here corresponds to the distance from the intersecting portion 70A4 where the axis of the coaxial cable 70A and the straight line L2 overlap in the overlapping portion 70A3 to the intermediate portion 70A3m.
  • the overlapping portion 70A3 of the coaxial cable 70A of the vehicle antenna device 40B is arranged within the specific area SA when viewed from the front. Further, in a front view, the non-overlapping portion 70A2 overlaps the second straight line L2 and the ground conductor plate 54 in the thickness direction. Therefore, similarly to the vehicle antenna device 40A of the first embodiment, the non-overlapping portion 70A2 and the overlapping portion 70A3 of the vehicle antenna device 40B of the second embodiment are 0° to 270° (-90°) of the antenna 50. can be suppressed, and a predetermined directivity in the horizontal plane can be achieved.
  • the antenna gain of the antenna device 43B of the second embodiment is better than the antenna gain of the antenna device 43AX of Example 2 (comparative example), and a predetermined directivity in the horizontal plane can be realized.
  • the antenna gain in the range of 0° to 270° (-90°) of the antenna 50 of the second embodiment is greater than the antenna gain in the range of 0° to 270° (-90°) of the antenna device 43AX of Example 2.
  • the directivity is improved in a range of 180° on the horizontal plane centering on the normal direction of the radiation surface 56C.
  • a vehicle antenna device 40C according to a third embodiment of the present disclosure will be described with reference to FIG.
  • the same reference numerals are assigned to the same configurations as those of the first embodiment or the second embodiment, and detailed description thereof will be omitted.
  • the antenna device 43C of the third embodiment can transmit and receive linearly polarized waves, and includes an antenna 50 and a coaxial cable (transmission line) 70A. Further, the vehicle antenna device 40C includes a windshield (not shown in FIG. 11) 28 and an antenna device 43C, and is capable of transmitting and receiving vertically polarized waves.
  • One end portion 71A of the signal line 71 of the coaxial cable 70A has the same structure as the end portion 71A of the coaxial cable 70X of the vehicle antenna device 40AX.
  • a tip of the second portion 71A5 is connected to the power supply portion 60 .
  • the bent portion 71E of the antenna device 43C overlaps with the connection point 56A of the radiation plate 56 .
  • the linear portion 70A1 has a non-overlapping portion 70A2, an overlapping portion 70A3, and an intersection portion 70A4.
  • the non-overlapping portion 70A2, the overlapping portion 70A3, and the end portion 71A form a substantially linear shape.
  • the overlapping portion 70A3 is positioned within the specific area SA.
  • the overlapping portion 70A3 is arranged within the specific area SA when viewed from the front. Therefore, the overlapping portion 70A3 of the third embodiment can suppress the decrease in antenna gain in the range of 0° to 270° (-90°) of the antenna 50, and can realize a predetermined directivity in the horizontal plane. Therefore, the antenna gain of the antenna device 43C of the third embodiment is better than the antenna gain of the antenna device 40AX of example 2 (comparative example), and a predetermined directivity in the horizontal plane can be realized.
  • the antenna gain in the range of 0° to 270° (-90°) of the antenna device 43C of the third embodiment is greater than the antenna gain in the range of 0° to 270° (-90°) of the antenna 50 of Example 2.
  • the directivity is improved in a range of 180° on the horizontal plane centering on the normal direction of the radiation surface 56C.
  • a vehicle antenna device 40D according to a fourth embodiment of the present disclosure will be described with reference to FIG.
  • the same reference numerals are given to the same configurations as those of the first to third embodiments, and detailed description thereof will be omitted.
  • An antenna device 43D of the fourth embodiment includes an antenna 50 and a coaxial cable (first transmission line) 70A. Further, the vehicle antenna device 40D of the fourth embodiment is a vertically polarized antenna, and includes a windshield (not shown in FIG. 12) 28 and an antenna device 43D.
  • the linear portion 70A1 has a non-overlapping portion 70A2, an overlapping portion 70A3, and an intersection portion 70A4.
  • the non-overlapping portion 70A2, the overlapping portion 70A3, and the end portion 71A form a linear shape and are positioned on the second straight line L2.
  • the length of the portion of the overlapping portion 70A3 and the end portion 71A that overlaps with the second straight line L2 is LC .
  • the length L of the non-overlapping portion 70A2 in the X-axis direction preferably satisfies L ⁇ 0.10 ⁇ k based on the definitions of ⁇ and k described above.
  • LE in FIG. 12 is the sum of length L and length LC .
  • the length L E satisfies L E ⁇ 0.20 ⁇ k as described above.
  • the ratio of the length LC is 100% when "L53/2" is 100%.
  • An opening 54X having a substantially rectangular shape when viewed from the front is formed in the central portion of the ground conductor plate 54 .
  • a coplanar feed line (second transmission line) 55 having a substantially rectangular outer edge is formed inside the outer edge of the opening 54X.
  • a portion of the coplanar feed line 55 includes a (feed) point 55A that overlaps the center of gravity 56B in front view.
  • a feeder 55B is formed that overlaps with the connection point 56A in a front view.
  • the power feeding portion 55B is connected to the connection conductor 62 .
  • the tip of the second portion 71A5 is connected to the (feeding) point 55A of the coplanar feeding line 55.
  • the bent portion 71E and the second portion 71A5 are arranged so as to overlap the feeding point 55A and the center of gravity 56B of the radiation plate 56 .
  • the material forming the coplanar power supply line 55 includes, for example, silver and copper, but other conductive materials may be used.
  • the coaxial cable 70A of the antenna device 43D is arranged within the specific area SA when viewed from the front. Further, when viewed from the front, the non-overlapping portion 70A2 and the overlapping portion 70A3 overlap the second straight line L2. Therefore, similarly to the antenna device 43A of the first embodiment, the non-overlapping portion 70A2 and the overlapping portion 70A3 of the antenna device 43D of the fourth embodiment are the antennas in the range of 0° to 270° (-90°) of the antenna 50. A decrease in gain can be suppressed, and a predetermined directivity in the horizontal plane can be achieved.
  • the antenna gain of the antenna device 43D of the fourth embodiment is better than the antenna gain of the antenna device 40AX of example 2 (comparative example), and a predetermined directivity in the horizontal plane can be achieved.
  • the antenna gain in the range of 0° to 270° (-90°) of the antenna device 43D of the fourth embodiment is the antenna gain in the range of 0° to 270° (-90°) of the antenna device 40AX of Example 2.
  • the directivity is improved in a range of 180° on the horizontal plane centering on the normal direction of the radiation surface 56C.
  • the (feeding) point 55A of the coplanar feeding line 55 which is a part of the transmission line, is set so as to overlap the center of gravity 56B in a front view, and the end of the L-shaped end portion 71A is set at this (feeding) point 55A. are connected.
  • the degree of freedom in arranging the transmission lines connected to the feeding section 60 is increased.
  • the relative positions of the antenna 50 and the coaxial cable 70A can be easily fixed by the fixing means so that the end of the end portion 71A is connected to the (feeding) point 55A.
  • the transmission line may be configured to connect three or more types.
  • the vehicle antenna device 40E of the fifth embodiment is capable of transmitting and receiving linearly polarized waves, includes a windshield (not shown in FIG. 13) 28 and an antenna device 43E, and is capable of transmitting and receiving vertically polarized waves.
  • the antenna device 43E includes a communication antenna 80 (hereinafter referred to as antenna 80) and a coaxial cable (transmission line) 70A.
  • the antenna 80 has a radiating plate (radiating conductor) 81 .
  • Radiation plate 81 corresponds to a conductor plate.
  • a front surface of the radiation plate 81 in the vehicle front-rear direction constitutes a radiation surface 81A.
  • the radiation surface 81A radiates a vertically polarized wave Q of 5.8 GHz band or 5.9 GHz band used in vehicle-to-vehicle communication, road-to-vehicle communication, and the like.
  • the radiation plate 81 has a slot 84 formed as an opening that divides the radiation surface 81A into a surface portion 82 and a surface portion 83 .
  • the slot 84 extends in the extending direction of the second straight line L2.
  • Surface portion 82 is a conductive portion located above slot 84 .
  • Surface portion 83 is a conductive portion located below slot 84 .
  • Surface portion 82 has a feed point 85 and surface portion 83 has a feed point 86 .
  • the feeding point 85 is electrically connected to the shield jacket 73 (not shown in FIG. 13) of the coaxial cable 70A.
  • the feeding point 86 is electrically connected to the end portion 71A of the signal line 71 of the coaxial cable 70A. Note that the feeding point 85 may be electrically connected to the end portion 71A of the coaxial cable 70A, in which case the feeding point 86 is electrically connected to the shield jacket 73 of the coaxial cable 70A.
  • Antenna 80 is attached to the top of the main surface of windshield 28 via a bracket (not shown).
  • a first straight line L1 shown in FIG. 13 passes through the center of gravity 81G of the radiation plate 81 in the Z-axis direction when viewed from the front.
  • the second straight line L2 passes through the center of gravity 81G in the X-axis direction when viewed from the front.
  • a straight line separated by a distance A downward from the second straight line L2 and passing through the feeding point 86 in a direction parallel to the second straight line L2 is defined as a third straight line L3.
  • a straight line separated by a distance A from the second straight line L2 and parallel to the second straight line L2 is defined as a fourth straight line L4.
  • the area between the third straight line L3 and the fourth straight line L4 on the radiation surface 81A is called a specific area SA.
  • a portion of the main body portion 70AB constitutes a linear portion 70A1.
  • a non-overlapping portion 70A2 is defined as a part of the linear portion 70A1 and positioned to the left of the side edge portion 84L of the radiation plate 81 in front view.
  • a portion of the linear portion 70A1 that overlaps with the side edge portion 84L which is a part of the peripheral edge portion of the radiation plate 81 in front view, and a portion that is located closer to the central portion of the radiation plate 81 than the side edge portion 84L.
  • overlap portion 70A3 is defined as a part of the linear portion 70A1 and positioned to the left of the side edge portion 84L of the radiation plate 81 in front view.
  • a portion of the coaxial cable 70A that overlaps the side edge portion 84L and the radiation plate 81 in the thickness direction when viewed from the front is defined as an intersection portion 70A4.
  • a linear portion between the intermediate portion 70A3m of the overlapping portion 70A3 and the intersection portion 70A4 is positioned on the second straight line L2 in a front view.
  • the length in the X-axis direction of the linear portion between the intermediate portion 70A3m of the overlapping portion 70A3 and the intersection portion 70A4 is LC .
  • LE in FIG. 13 is the sum of length L and length LC .
  • the length L of the non-overlapping portion 70A2 in the X-axis direction preferably satisfies L ⁇ 0.10 ⁇ k based on the definitions of ⁇ and k described above. Furthermore, it is preferable that the length L E satisfies L E ⁇ 0.20 ⁇ k as described above.
  • the ratio of the length LC may be 30% or more, and 50% or more is sufficient. Preferably, 70% or more is more preferable.
  • the antenna 80 can be attached to the windshield 28 via the bracket so that the inclination angle of the front portion 93 with respect to the vertical direction 101 (see FIG. 2) is ⁇ .
  • the overlapping portion 70A3 of the coaxial cable 70A overlaps the specific area SA and the radiation plate 81 in the thickness direction when viewed from the front. Furthermore, when viewed from the front, the overlapping portion 70A3 overlaps the second straight line L2 and the radiation plate 81 in the thickness direction. Furthermore, at least a portion of the non-overlapping portion 70A2 of the coaxial cable 70A overlaps the second straight line L2. Therefore, the antenna device 43E of the fifth embodiment can realize stable antenna gain and directivity in a predetermined range (-90° to +90°) on the horizontal plane.
  • antenna 50 and a coaxial cable 70A are provided above the vehicle interior main surface (front surface) of the rear glass 34 via a bracket (not shown).
  • An antenna device 43A may be attached.
  • the rear glass 34 and the antenna device 43A are components of the vehicle antenna device 40A.
  • the radiation surface 56C of the radiation plate 56 of the antenna 50 faces the rear glass 34.
  • antenna 50 is preferably arranged such that normal Dnr directed rearward to radiation surface 56 ⁇ /b>C of radiation plate 56 passes through rear glass 34 .
  • the normal Dnr in FIG. 2 is the normal when the inclination angle ⁇ is 0°.
  • the antenna devices 43B, 43C, 43D, and 43E may be attached to the upper portion of the main surface of the rear glass 34 on the interior side of the vehicle via brackets.
  • the antenna device 43B and the rear glass 34 are components of the vehicle antenna device 40B
  • the antenna device 43C and the rear glass 34 are components of the vehicle antenna device 40C
  • the antenna device 43D and the rear glass 34 are components of the vehicle antenna device.
  • 40D, and the antenna device 43E and the rear glass 34 are components of the vehicle antenna device 40E.
  • the radiation surface 56C of the antenna devices 43B, 43C, and 43D and the radiation plate 81 of the antenna device 43E face the rear glass 34.
  • the inclination angle ⁇ of the surface 56C or the radiation plate 81 with respect to the vertical direction 102 is preferably ⁇ 15° or less.
  • the windshield 28 may or may not be provided with the antenna device 43A, 43B, 43C, 43D or 43E.
  • the windshield 28 is provided with the antenna device 43A, 43B, 43C, 43D or 43E and the rear glass 34 is provided with the antenna device 43A, 43B, 43C, 43D or 43E in the manner shown in FIG. , 43B, 43C, 43D or 43E and the rear antenna device 43A, 43B, 43C, 43D or 43E, the desired antenna gain can be achieved in the range of 0° to 360° in the horizontal plane.
  • the antenna devices 43A, 43B, 43C, 43D, and 43E may be horizontally polarized antennas with a higher antenna gain for transmitting and receiving horizontally polarized waves than for vertically polarized waves. In this case, it is preferable to attach the antenna devices 43A, 43B, 43C, 43D, and 43E to the vehicle 10 so that the first straight line L1 is parallel to the X-axis direction when viewed from the front.
  • the antenna devices 43A, 43B, 43C, 43D, and 43E are vertically polarized antennas
  • the antenna devices 43A, 43B, and 43C are arranged so that the angle between the straight line L1 and the vertical direction is 15° or less when viewed from the front.
  • 43D and 43E may be provided on the vehicle 10.
  • the antenna devices 43A, 43B, 43C, 43D, and 43E are horizontally polarized antennas
  • the antenna devices 43A, 43B, 43C, 43D and 43E may be provided in the vehicle 10.
  • a plurality of antenna devices 43A, 43B, 43C, 43D and 43E may be attached to the windshield 28. Also, a plurality of antenna devices 43A, 43B, 43C, 43D, and 43E may be attached to the rear glass 34. FIG.
  • the antenna device 43E of the fifth embodiment may include a ground conductor plate aligned with the radiation plate 81 in the Y-axis direction. Furthermore, the antenna device 43E may include a parasitic conductor plate. This parasitic conductor plate may be located on the radiation plate 81 side of the ground conductor plate in the Y-axis direction.
  • a back door (not shown) that opens and closes an opening provided at the rear of the vehicle 10 may be provided with the rear glass 34 .

Landscapes

  • Details Of Aerials (AREA)

Abstract

【課題】給電用の伝送線路によって放射面に直交する方向に大型化することなく、且つ、所望のアンテナ利得を得やすいようにする。 【解決手段】アンテナ50は、電波を放射する放射面及び伝送線路70Aから電力が供給される部位である給電点56Aを備える放射板56を有し、放射板を水平方向に沿って見たときに、給電点は、放射板の重心56Bから距離Aだけ離れた位置に設けられ、放射板の厚さ方向に沿って見たときに、伝送線路の給電点に接続される端部と導体板の周縁部と交差する交差部70A4との間の部位が、第3直線L3と第4直線L4との間の特定領域SAと放射板の厚さ方向に重なる。

Description

アンテナ装置及び車両用アンテナ装置
 本開示は、アンテナ装置及び車両用アンテナ装置に関する。
 近年、自動運転レベルの引き上げにともない、車両に車車間通信および路車間通信等のV2X(Vehicle to Everything)を実現する通信システムが搭載される傾向にある。V2X通信システムを搭載した車両は、例えば、5.8GHz帯又は5.9GHz帯の狭帯域の電波を利用して、安全性に関わる様々な車外情報の取得ができる。そのため、V2Xの通信規格を満足する周波数帯の垂直偏波の電波を所望の利得、指向性をともなって送受信できるV2Xアンテナが求められている。
 V2Xアンテナは、例えば、水平面において、車両の進行方向を中心とする±90°(180°)の範囲で所望の利得を実現する指向性が求められる。このようなV2Xアンテナは、所望の利得や指向性が実現できれば、車両に配置される場所は限定されない。
 特開2019-75644号公報及び国際公開2019/163521号公報は、ウィンドシールド又はリアガラスと車内側にある放射面とが対向するアンテナ装置をV2X通信用の車載アンテナとして用いた構成を開示している。これらのアンテナ装置では、同軸ケーブルなどの伝送線路の一方の端部から放射板(放射導体)への給電を行い、伝送線路の他方の端部に接続されたECU(Electrical Control Unit)がアンテナ装置における信号制御を行う。
 特開2019-75644号公報に記載のアンテナ装置は、放射面と反対側に位置する地板側には、基板用同軸コネクタが設けられている。特開2019-75644号公報において、給電用の同軸ケーブルの一端は、放射面の法線方向に延びるこの基板用同軸コネクタに接続される。
 国際公開2019/163521号公報のアンテナ装置は、放射面と反対側に位置する地板側には、基板用同軸コネクタが設けられている。国際公開2019/163521号公報において、給電用の同軸ケーブルの一端は、この基板用同軸コネクタに接続される。この同軸ケーブルの一方の端部はL字形であるため、同軸ケーブルは放射面の法線方向と直交する車幅方向に延びている。
 しかしながら、特開2019-75644号公報に記載の車載用アンテナ装置は、基板用同軸コネクタに接続される同軸ケーブルが、放射面に対して直交する奥行き方向に延びるため、限られた車内空間の前後方向の省スペース化が難しくなる、という問題があった。
 また、国際公開2019/163521号公報に記載の車載用アンテナ装置は、基板用同軸コネクタに接続される同軸ケーブルが、車幅方向に延びるので、車内空間の前後方向の省スペース化を実現できる一方、垂直偏波を送受信するアンテナ装置が上記範囲で所望の利得をともなう指向性が得難くなる、という問題があった。
 本開示は上記事実を考慮し、給電用の伝送線路を含む占有空間を省スペース化でき、且つ、所望の指向性をともなうアンテナ利得が実現できるアンテナ装置、とりわけV2Xアンテナとして利用可能なアンテナ装置及び車両用アンテナ装置を提供する。
 本開示に係るアンテナ装置は、所定の周波数帯の電波を送受信するアンテナと、前記アンテナの一部である導体板に給電する伝送線路と、を有し、前記導体板は、電波を放射する放射面及び前記伝送線路から電力が供給される部位である給電点を備える放射板、を有し、前記放射板を水平方向に沿って見たときに、前記給電点は、前記放射板の重心から距離Aだけ離れた位置に設けられ、前記重心及び前記給電点を通る第1直線と、前記第1直線と直交し、前記重心を通る第2直線と、前記給電点を通り且つ前記第2直線と平行な第3直線と、前記第2直線と平行であり、前記第2直線に関して前記第3直線と対称である第4直線と、を与え、且つ、前記放射板の厚さ方向に沿って見たときに前記重心が前記導体板と重なるとき、前記放射板の厚さ方向に沿って見たときに、前記伝送線路の前記給電点に接続される端部と前記導体板の周縁部と交差する交差部との間の部位が、前記第3直線と前記第4直線との間の特定領域と前記放射板の厚さ方向に重なる。
 本開示に係るアンテナ装置及び車両用アンテナ装置によれば、給電用の伝送線路を含む占有空間を省スペース化でき、且つ、所望の指向性をともなうアンテナ利得を実現できる。
本開示の第1実施形態に係る車両用アンテナ装置が適用された車両の鉛直方向から見た平面図である。 車両の前部及び車両の後部の模式的な断面図である。 車両用アンテナ装置及びルーフ部の正面図である。 車両用アンテナ装置の背面図である。 図3の5-5矢線に沿う車両用アンテナ装置の断面図である。 比較例の車両用アンテナ装置の正面図である。 図6の7-7矢線に沿う比較例の車両用アンテナ装置の断面図である。 第1実施形態である例1の車両用アンテナ装置の指向性の測定結果を示す図である。 比較例である例2の車両用アンテナ装置の指向性の測定結果を示す図である。 本開示の第2実施形態に係る車両用アンテナ装置の背面図である。 本開示の第3実施形態に係る車両用アンテナ装置の背面図である。 本開示の第4実施形態に係る車両用アンテナ装置の背面図である。 本開示の第5実施形態に係る車両用アンテナ装置の正面図である。
 <第1実施形態>
 以下、添付図面を用いて本開示の第1実施形態に係る車両用アンテナ装置40Aについて説明する。後述するように、本実施形態の車両用アンテナ装置40Aは車両10に設けられる。各図中に適宜示されるX軸は車両10の車幅方向と平行であり、Y軸は車両前後方向と平行であり、Z軸は車両上下方向と平行であって「鉛直方向」ともいう。さらに矢印FRは車両前後方向の前方を示し、矢印UPは車両上下方向の上方を示し、矢印LFは車幅方向の左方を示す。また、XY平面とはX軸及びY軸を通る平面であり「水平面」ともいう。即ち、以下の説明では、車両10が水平面上に位置しており、車両上下方向と鉛直方向とが一致し且つXY平面と水平面とが一致し、鉛直方向は水平面に対する法線方向に相当する。さらに、XZ平面とはX軸及びZ軸を通る平面であり、YZ平面とはY軸及びZ軸を通る平面である。
 図1に示される車両10は、金属ボディを含む車体12を有する。この金属ボディには、例えば、ルーフ部14、Aピラー(フロントピラー)16、及びCピラー(リアピラー)20が含まれる。
 車体12の前部には、略四角形状の前方開口部22が形成されている。前方開口部22の上縁部はルーフ部14の前縁部14Aに隣接し、前方開口部22の左右両側縁部は左右のAピラー16に隣接している。前方開口部22には、ウィンドシールド(車両用窓ガラス)28が嵌められ、ウィンドシールド28の周縁部が前方開口部22の周縁部にウレタン樹脂等の接着剤で固定されている。図2に示されるように、ウィンドシールド28は(X軸方向からの)側面視において、下端部が上端部より前方に位置するように、水平面に相当するXZ平面100に対して角度θ1で傾斜する。
 車体12の後部には、略四角形状の後方開口部24が形成されている。後方開口部24の上縁部はルーフ部14の後縁部14Bに隣接し、後方開口部24の左右両側縁部は左右のCピラー20に隣接している。後方開口部24には、リアガラス(車両用窓ガラス)34が嵌められ、リアガラス34の周縁部が後方開口部24の周縁部にウレタン樹脂等の接着剤で固定されている。図2に示されるように、リアガラス34は(X軸方向からの)側面視において、下端部が上端部より後方に位置するように、水平面に相当するXY平面100に対して角度θ2で傾斜する。また、図2に示されるように、通信アンテナ50は、放射板56の放射面56Cに対して前方に向く法線Dnfが、ウィンドシールド28を通り抜けるように配置される。
 さらに図1及び図2に示されるように、ウィンドシールド28の主面の車両上下方向の上部には、図示を省略したブラケットを介して、通信アンテナ50が取り付けられている。ウィンドシールド28、通信アンテナ50及び後述する同軸ケーブル70Aが、車両用アンテナ装置40Aの構成要素である。さらに通信アンテナ50及び同軸ケーブル70Aが、アンテナ装置43Aの構成要素である。なお、同軸ケーブル70は、高周波信号を伝送する伝送線路の一種であり、伝送線路の別例としては、マイクロストリップライン、ストリップライン、コプレーナウェーブガイド、GCPW(グランドプレーン付きコプレーナウェーブガイド)、コプレーナストリップ、スロットライン、導波管等が挙げられる。本明細書において、伝送線路は、とくにことわりがない場合、同軸ケーブル70Aとして説明する。本実施形態の通信アンテナ50は、水平偏波と比べて垂直偏波を送受信する方が、アンテナ利得が高い垂直偏波用アンテナである。以下、説明するV2Xアンテナは、垂直偏波によって送受信が可能なアンテナであり、とくに、5.8GHz帯域の電波、又は、5.9GHz帯域の電波を利用できる。
 次に、本実施形態に係る車両用アンテナ装置40Aの通信アンテナ50(以下、単に「アンテナ50」という。)について説明する。図3~図5に示されるように、本実施形態のアンテナ50は、誘電体基板52と、接地導体板54と、放射板(放射導体)56と、給電部60と、接続導体62と、を備える。接地導体板54及び放射板56は導体板に相当する。第2~第4実施形態でも同様である。なお、後述するように、アンテナ50は、無給電導体板である、第1エレメント66及び第2エレメント68の少なくとも一方を備えてもよく、両方を備えてもよい。
 第1エレメント66及び第2エレメント68は、同軸ケーブル70Aの芯線(信号線)71や接地導体線75(アース線)にも接続されない独立した導体板である。また、本実施形態に係るアンテナ50はパッチアンテナ(マイクロストリップアンテナ)である。本実施形態に係るアンテナ50は、V2Xアンテナとして利用可能であるが、これらとは異なる帯域の直線偏波を送受信可能な構成でもよい。
 図3~図5に示されるように、誘電体基板52の主面52Bには、接地導体板54より小面積の放射板56が設けられている。放射板56を構成する材料としては、例えば、銀、銅が挙げられるが、これ以外の導電材料でもよい。図示の放射板56の正面形状は正方形であるが、該形状に限らない。また、第1エレメント66及び第2エレメント68を構成する材料としても、例えば、銀、銅が挙げられるが、これ以外の導電材料でもよい。さらに、図示の第1エレメント66及び第2エレメント68は正面視で長方形であるが、長方形以外の形状でもよい。ただし、第1エレメント66及び第2エレメント68の正面視の形状が、Z軸方向に延伸する形状であれば、X軸方向(車幅方向)のアンテナ利得を高められて、安定した指向性が確保しやすくなる。
 誘電体基板52は、板状又は膜状であって、典型的には直方体状の誘電体層である。但し、ここでいう「板状又は膜状」とは、例えば、凸状、凹状、波状の部分を含んでもよい。接地導体板54、放射板56、第1エレメント66及び第2エレメント68についても同様であるが、これらは、典型的には誘電体層の厚さよりも薄く平面状で形成されるとよい。これらが平面形状の場合は、アンテナ50のアンテナ利得の特性を予測し易くなる。
 また、図3及び図4に示された誘電体基板52の正面形状は、X軸方向(車幅方向)よりもZ軸方向の寸法が短い長方形であるが、誘電体基板52の正面形状は正方形でもよく、矩形状以外の多角形状、円形状、外縁が曲線を含む形状など任意の形状でもよい。誘電体基板52は、厚さ方向の一方の主面52Aと、主面52Aと平行な主面52Bとを有する。誘電体基板52としては、例えば、ガラスエポキシ基板、セラミックス基板、フッ素基板等を使用できる。なお、誘電体基板52の正面形状が(車幅方向に長い)長方形であれば、第1エレメント66及び第2エレメント68は、主面52Aおよび主面52Bの少なくとも一方の主面上に配置する領域を確保できる。
 誘電体基板52の主面52Aには、アンテナ50のグランドとなる接地導体板54が設けられている。接地導体板54を構成する材料としては、例えば、銀、銅が挙げられるが、これ以外の導電材料でもよい。図4に示されるように、接地導体板54の正面形状は、正方形状であるが、該形状に限らない。なお、接地導体板54が正方形の場合、誘電体基板52も同寸法の正方形でもよく、その場合、アンテナ50は、長方形と比べて(車)幅方向の寸法が短くなるので省スペース化が可能となる。
 給電部60は、接触又は非接触で給電される部位であり、後述する同軸ケーブル70Aの信号線(芯線)71の一方の端部71Aが接続される。
 アンテナ50に含まれる接続導体62は、誘電体基板52の板厚方向に貫通するスルーホールの内部に設けられる導体ピンである。接続導体62の一端は給電部60に接続され、他端は放射板56の接続点(給電点)56Aに接続される。接続導体62の一端は、接地導体板54に接触しない。図3に示されるように、正面視において接続点56Aは放射板56の重心56Bから、距離D1だけ離れている。なお、本明細書における「正面視」とは、アンテナ50、80をY方向に沿ってみることである。言い換えると、「正面視」は、放射面56Cの法線方向からみることに相当し、以降「正面視」という記載を用いる。ここで、正面視における放射板56のZ軸方向寸法をD2とする。この場合、接続点56Aの位置関係は、0.05<D1/D2<0.45を満たすとよい。さらに、D1/D2は、略1/6が好ましい。図5に示されるように、放射面56Cの法線方向に通り抜ける直線PL上に、放射板56の重心56B及び接地導体板54の重心54Aが位置する。なお、同軸ケーブル70Aは、その芯線が、接続導体62を介さずに給電点56Aに接続してもよい。
 上述のように、アンテナ50は、無給電導体板である第1エレメント66及び第2エレメント68の少なくとも一方を備えてもよい。図3及び図4に示されるように、第1エレメント66及び第2エレメント68は、車幅方向(水平方向)に互いに離れて配置され、とくに、アンテナ50において、これら無給電導体板は、誘電体基板52の主面52Bに設けられている。また、アンテナ50の正面視において、放射板56の両側に、誘電体基板52、第1エレメント66及び第2エレメント68が位置する。
 さらに、図示は省略されているが、アンテナ50をZ軸方向に沿ってみたとき、放射板56、第1エレメント66、及び第2エレメント68は、同一平面上に位置する。ただし、第1エレメント66及び第2エレメント68の少なくとも一方は、誘電体基板52の主面52Bに対して接地導体板54とは反対側に配置されてもよく、主面52Aに対して放射板56とは反対側に配置されてもよく、主面52A上に(接地導体板54と接触しない位置に)配置されてもよい。この場合、誘電体基板52の正面視において、第1エレメント66及び第2エレメント68の少なくとも一方は、接地導体板54の一部又は全部と重なってもよく、放射板56のうち重心56Bを除く一部と重なってもよい。
 図3~図5に示された同軸ケーブル(伝送線路)70Aは、少なくとも信号線71及びシールド外皮(外部導体)73を有する。以下、同軸ケーブル(伝送線路)70Aにおける信号線71の両端部を除く部位を、本体部70ABと称する。ここで、信号線71の両端部とは、信号線71におけるシールド外皮73の両端から外側に突出した部位のことである。同軸ケーブル70Aは全体として可撓性を有する。図5に示されたように、信号線71の一方の端部71Aの先端は、接続導体62と接続し、接続導体62を介して給電部60に接続されている。また、シールド外皮73の一部は、接地導体線75(アース線)となって、接地導体板54に接続されている。
 同軸ケーブル70Aの本体部70ABは、誘電体基板52に対して接地導体板54より後方(反対側)に位置する。車両用アンテナ装置40AのY軸方向の幅(奥行き)を狭くするため、本体部70ABは、接地導体板54と近接または接触する配置が好ましい。図3及び図4に示すアンテナ装置43Aは、同軸ケーブル70Aの本体部70ABの端部71A側の端部を含む一部が、X軸と平行な直線状部70A1である。アンテナ50と直線状部70A1の相対位置は、不図示の固定手段によって、図3~図5に示される状態に保持されている。なお、固定手段は、アンテナ50を収納する不図示の筐体と、該筐体の(放射方向とは反対側の)背面に固定される、同軸ケーブル70A専用のコネクタと、を備えてもよい。該コネクタは、同軸ケーブル70Aの、給電部60側の端部の位置ずれを生じさせない構造を有してもよい。
 また、直線状部70A1の一部であり、図4において接地導体板54の(左)側縁部54Lより外側に位置する部位を、非重複部70A2と定義する。さらに、直線状部70A1の残部であり、正面視において接地導体板54の側縁部54Lと重なる部位及び側縁部54Lよりアンテナ50(誘電体基板52)の中央部側に位置する部位を、重複部70A3と定義する。図3及び図4に示されたように、直線状部70A1及び端部71AのX軸方向に沿う全長はLである。このLは、後述する非重複部70A2のX軸方向に沿って連続する長さLと、重複部70A3及び端部71Aの第2直線L2と重なる部位の長さLと、の和である。さらに、同軸ケーブル70Aは、直線状部70A1より、重心に対して外側に位置し、且つ、正面視において直線状部70A1に対して傾斜する中間部70Amを有してもよい。
 側縁部54Lを起点として非重複部70A2のX軸方向に沿って連続する長さLは、アンテナ50が送受信する電波の空気中の波長をλ、周辺媒質の波長短縮率をk(空気:k=1)、としたときに、L≧0.10×λ×kを満足するとよい。とくに、アンテナ50が、第1エレメント66および第2エレメント68の一方または両方を備える構成であれば、上記Lの長さを満足すると好ましい。また、Lは、L≧0.15×λ×kを満足すると好ましく、L≧0.20×λ×kを満足するとより好ましい。また、Lは、L≧0.20×λ×kを満足するとよく、L≧0.30×λ×kを満足すると好ましく、L≧0.40×λ×kを満足するとより好ましい。
 図3~図5に例示するように、同軸ケーブル70Aには、信号線71の端部71Aの2か所に屈曲部71B、71Cが設けられてもよい。本例では、直線状部70A1の先端と屈曲部71Bとの間に位置する部位は、直線状部70A1と平行な第1部71A1である。端部71Aの屈曲部71Bと屈曲部71Cとの間の部位は、第1部71A1に対して略直交し且つ第1直線L1と平行な第2部71A2である。端部71Aの先端と屈曲部71Cとの間の部位は、第2部71A2に対して略直交し且つY軸と平行な第3部71A3である。第3部71A3の先端は、接続導体62を介して給電部60に接続されている。接地導体板54の正面視において、屈曲部71Bは放射板56の重心56B及び接地導体板54の重心54Aと重なってもよい。
 なお、本明細書において、接地導体板54の正面視において、同軸ケーブル等の伝送線路が重心と重なるとは、伝送線路の一部が重心と重なることを意味する。さらに接地導体板54の正面視において、屈曲部71C及び第3部71A3は、放射板56の接続点56Aと重なる。なお、信号線71の端部71Aは、例えば、むき出された状態で屈曲部71B、71Cを有して重心56Bと重なってもよいが、機械的損傷を低減させるため曲線状に折れ曲がるように、接続導体62と接続し、接続導体62を介して給電部60に接続してもよい。さらに、後述するように、同軸ケーブル70Aは、特定領域SA内に配置されるとよい。
 また、図5に示すように、シールド外皮73は、接地導体板54に接続され、その電位はアース電位となる。さらに信号線71の端部71Aと反対側の端部はアンテナ50を制御する制御装置に接続され、シールド外皮73の端部71Aと反対側の端部は、接地されていればよい。
 図3に示すように、(不図示の)ブラケットを介してウィンドシールド28の車内側の主面の上部に取り付けられたアンテナ50の接続点56Aを通る第1直線L1は、Z軸と平行である。即ち、正面視において、第1直線L1はアンテナ50が送受信可能な垂直偏波の振動方向Vd(鉛直方向)と平行である。
 ここで、図3に示すように、正面視において重心56Bを通る、X軸と平行な直線を第2直線L2と定義する。さらに、第2直線L2と平行であり、接続点56Aを通る直線を第3直線L3と定義する。そして、第2直線L2と第3直線L3との間隔を、距離Aと定義する。さらに、第2直線L2と平行であり、第2直線L2から第3直線L3とは反対側に距離Aだけ離れた直線を第4直線L4と定義する。即ち、第2直線L2に関して、第3直線L3と第4直線L4は対称となる位置関係である。ここで、アンテナ50における第3直線L3と第4直線L4との間の領域を特定領域SAと定義する。さらに、正面視において接地導体板54の周縁部の一部である側縁部54Lと重なる同軸ケーブル70Aの部位を、交差部70A4と定義する。
 この場合、端部71Aの先端と交差部70A4との間の部位が、正面視において特定領域SA内に位置するとよい。さらに、正面視において重複部70A3及び第1部71A1が第2直線L2と重なってもよく、第2部71A2及び第3部71A3が第1直線L1と重なってもよい。さらに正面視において、同軸ケーブル70Aの非重複部70A2(の少なくとも一部)及び重複部70A3が第3直線L3と第4直線L4との間に位置するとよい。より詳細には、正面視において、同軸ケーブル70Aの非重複部70A2(の少なくとも一部)及び重複部70A3が第2直線L2上に位置すると好ましい。なお、伝送線路が同軸ケーブル70Aである場合、「伝送線路が第2直線L2上に位置する」とは、第2直線L2が、正面視において同軸ケーブル70Aのシールド外皮73又は信号線71と重なる配置を指し、信号線71と重なる配置としてもよい。さらに、伝送線路が、ストリップライン、マイクロストリップライン又はコプレーナ給電線路である場合、「伝送線路が第2直線L2上に位置する」とは、第2直線L2が、ストリップライン、マイクロストリップライン又はコプレーナ給電線路と重なる配置を指す。
 ここで、接地導体板54のX軸(車幅)方向の長さL53の半分の長さに対する、重複部70A3(の軸)及び端部71Aの第2直線L2と重なる部位の長さ(L)の割合が大きいほど、アンテナ50が所望の指向性を得やすくなる。つまり、正面視において同軸ケーブル70Aの重複部70A3が特定領域SAと重なる場合、「L53/2」を100%としたとき、上記長さLの割合は、30%以上であればよく、50%以上が好ましく、70%以上がより好ましい。本実施形態のアンテナ装置43Aでは、上記長さLの割合は、100%である。
 次に、アンテナ50の仰角および俯角について説明する。図2に示されるように、車両10の前部を(X軸方向から)側面視したときに、放射板56の放射面56Cの、鉛直方向101に対する傾斜角度αが±15°の範囲となるように、アンテナ50が設置されると好適である。また、図2に実線で示されたように、放射面56Cが鉛直方向101より後方に位置するとき傾斜角度αの値は+(プラス)になる。一方、図2に鎖線で示されたように、放射面56Cが鉛直方向101より前方に位置するとき傾斜角度αの値は-(マイナス)になる。言い換えると、傾斜角度αが0°超である場合、放射板56の放射面56Cの法線方向と水平面とがなす仰角が、0°より大きく且つ+15°以下になる。
 さらに、傾斜角度αが0°未満である場合、放射板56の放射面56Cの法線方向と水平面とがなす俯角が、0°より小さく且つ-15°以上になる。なお、本明細書では仰角の大きさは+(プラス)であり、俯角の大きさは-(マイナス)である。傾斜角度αが±15°の範囲の場合は、アンテナ50の水平面方向のアンテナ利得が低下し難い。なお、傾斜角度αは、±10°の範囲が好ましく、±5°の範囲がより好ましく、±3°の範囲がさらに好ましく、±1°の範囲がとくに好ましく、0°が最も好ましい。
 続いて、上記実施形態の実施例(例1)について、比較例(例2)と対比しながら説明する。
 (比較例)
 図6及び図7に示された例2のアンテナ装置43AXは、比較例であって、アンテナ50及び同軸ケーブル70Xを有する。同軸ケーブル70Xは、同軸ケーブル70Aと同じ構造である。但し、正面視において、同軸ケーブル70Xは、アンテナ50の重心56Bより下方に位置する接続点56AをX軸方向に通る第3直線L3上に、非重複部70X2及び重複部70X3が配置される。なお、同軸ケーブル70Xの非重複部70X2、重複部70X3及び交差部70X4は、アンテナ装置43Aにおける、同軸ケーブル70Aの非重複部70A2、重複部70A3及び交差部70A4にそれぞれ対応する。
 さらに、同軸ケーブル70Xの端部71Aの1か所に屈曲部71Eが設けられている。端部71Aにおける直線状部70X1の端部と屈曲部71Eとの間に位置する部位は、直線状部70X1と平行な第1部71A4である。端部71Aの先端と屈曲部71Eとの間の部位は、第1部71A4に対して略直交し且つY軸と平行な第2部71A5である。第2部71A5の先端が、接続導体62と接続し、接続導体62を介して給電部60に接続されている。即ち、同軸ケーブル70Xの端部71AはL字形である。そして、アンテナ50の正面視において、屈曲部71Eは放射板56の接続点56Aと重なる。つまり、比較例では、同軸ケーブル70Xの軸が、直線L2と重ならないので「L53/2」を100%としたときの、上記長さLの割合は、0%である。
 (実施例)
 図3及び図4に示された例1のアンテナ装置43Aは、実施例であって、同軸ケーブル70Aは、直線L2上に沿って配置され、同軸ケーブル70Aの端部71Aが屈曲して、その先端が接続導体62を介して給電部60に接続される。
 図8は、例1のアンテナ装置43Aの指向性を示し、図9は、例2のアンテナ装置43AXの指向性を示す。図8及び図9は、XY平面100、即ち、水平面における各方向での、5.9GHz帯におけるアンテナ利得のシミュレーション結果を示す。0°は車両前後方向の前側、90°は車幅方向の右側、180°は車両前後方向の後側、270°は車幅方向の左側を表す。
 図3~図5において符号L20、L21、L50、L51、L53、L55、L60、L61、L62で表された、例1、例2の車両用アンテナ装置40A、車両用アンテナ装置40AXの各部寸法は以下の通りである。以下の各数値の単位はmmである。図8及び図9の指向性は、これらの数値で各部が設計されたときの結果である。なお、L55は、第1エレメント66及び第2エレメント68と放射面56Cとの間のY軸方向の距離である。
L20:14
L21:14
L50:17
L51:1.5
L53:20
L55:0
L60:20
L61:29
L62:0.75
L:20
:10
:30
D1:4
A:4
70A2(長さL):20
なお、α=0°であり、θ1=22.5°を想定した。
 図8及び図9から明らかなように、例1のアンテナ装置43Aの0°~+90°の範囲及び0°~270°(-90°)の範囲の指向性は、例2のアンテナ装置43AXの0°~+90°の範囲及び0°~270°(-90°)の範囲の指向性より良好である。つまり、アンテナ装置43Aは、0°方向を含む、270°(-90°)~+90°の範囲において、バランスの取れたアンテナ利得、指向性を実現できる。とくに、例2のアンテナ装置43AXの0°~270°(-90°)の範囲のアンテナ利得は、例1のアンテナ装置43Aの同範囲のアンテナ利得に比べて大きく低下した。
 以上説明したように第1実施形態では、接地導体板54の正面視において、伝送線路(同軸ケーブル70A)が、特定領域SA内に配置される。つまり、同軸ケーブル70Aの重複部70A3の少なくとも一部は、アンテナ50の重心56BをX軸方向に通る第2直線L2と重なる。さらに、同軸ケーブル70Aの非重複部70A2の少なくとも一部は、第2直線L2と重なる。そのため例1では、アンテナ装置43Aが送受信する垂直偏波に対して、同軸ケーブル40Aの配線による指向性の乱れが殆どなく、水平面における所定範囲(-90°~+90°)において安定したアンテナ利得、指向性を実現できる。
 一方、例2(比較例)では、同軸ケーブル70AXの重複部70X3の一部は、特定領域SA内に配置されず、特定領域からはみ出て配置される。とくに、例2のアンテナ装置43AXは、同軸ケーブル70AXの配置が、アンテナ50の線対称の基準となる直線L2から大きくずれる。そのため、アンテナ装置43AXは、水平面における所定範囲(-90°~+90°)において所望のアンテナ利得を実現できず、指向性の乱れが生じる結果となった。
 さらに、アンテナ装置43AXでは、同軸ケーブル70Xに起因して発生するアンテナ50の放射板56の前方領域における電波の乱れだけでなく、アンテナ50の外周領域における電波の乱れも、アンテナ50のアンテナ利得の低下、ひいては、指向性の乱れの原因となり得ることが確認された。
 第1実施形態にかかる(例1の)アンテナ装置43Aでは、正面視において非重複部70A2が第2直線L2上に位置し、且つ、非重複部70A2のX軸方向の長さLが、上記のように、L≧0.10×λ×kを満たすと好ましい。さらに、長さLが上記のように、L≧0.20×λ×k以上を満たすと好ましい。上記を満足すると、とくに、アンテナ装置43Aが、第1エレメント66、及び第2エレメント68のような無給電導体板を備える場合、アンテナ50の指向性における顕著な効果を発揮しやすい。このように、正面視において特定領域SA内、とくに第2直線L2上に位置する非重複部70A2が、所定の長さを有する場合は、アンテナ50の外周領域において同軸ケーブル70Aが、アンテナ50が送受信する電波の指向性の乱れは小さくなりやすい。従って、同軸ケーブル70Aの非重複部70A2がアンテナ50の外周領域に位置するにも拘わらず、例1のアンテナ50の指向性は安定する。
 さらに非重複部70A2及び重複部70A3が、Y軸(奥行き)方向ではなくX軸(主面52Bと平行)方向に延びているので、アンテナ装置43AのY軸方向(厚さ方向)のサイズを小さくでき、省スペース化しやすくなる。
 <第2実施形態>
 続いて、本開示の第2実施形態に係る車両用アンテナ装置40Bについて、図10を参照しながら説明する。なお、第1実施形態と同じ構成には同じ符号を付すにとどめて、その詳細な説明は省略する。
 第2実施形態のアンテナ装置43Bは直線偏波を送受信可能であり、アンテナ50と同軸ケーブル(伝送線路)70Aを備える。さらに車両用アンテナ装置40Bは、ウィンドシールド28(図10では図示省略)とアンテナ装置43Bとを備え、垂直偏波を送受信可能である。同軸ケーブル70Aの信号線71の一方の端部71Aは、車両用アンテナ装置40AXの同軸ケーブル70Xの端部71Aと同じ構造である。即ち、同軸ケーブル70Aの信号線71の一方の端部71AはL字形であり、第2部71A5の先端が給電部60に接続されている。接地導体板54の正面視において、アンテナ装置43Bの屈曲部71Eが放射板56の接続点56Aと重なる。
 アンテナ50と同軸ケーブル70Aの相対位置は、上述のコネクタ等のような不図示の固定手段によって、図10に示される状態に保持されている。さらに本体部70ABは、非重複部70A2と、重複部70A3と、交差部70A4と、を有する。正面視において、非重複部70A2は第2直線L2上に位置する。重複部70A3の中間部70A3mと交差部70A4との間の直線状の部位が、正面視において第2直線L2上に位置する。重複部70A3の中間部70A3mと交差部70A4との間の直線状の部位のX軸方向の長さはLである。図10中のLは、長さLと、長さLと、の和である。また、非重複部70A2のX軸方向の長さLは、上述のλ、kの定義に基づき、L≧0.10×λ×k、を満たすと好ましい。さらに、長さLが上記のように、L≧0.20×λ×k以上を満たすと好ましい。
 本実施形態では、正面視において、同軸ケーブル70Aの重複部70A3が、特定領域SA内に配置される。さらに正面視において、端部71Aが、第1直線L1と接地導体板54の厚さ方向に重なる。さらに、同軸ケーブル70Aは、重複部70A3が、正面視において略円弧形状の部位を含むように配置される。本実施形態のアンテナ装置43Bにおいても、「L53/2」を100%としたときの、長さLの割合は、30%以上であればよく、50%以上が好ましく、70%以上がより好ましい。ここでの長さLは、重複部70A3のうち、同軸ケーブル70Aの軸と直線L2とが重なる、交差部70A4から中間部70A3mまでの距離に相当する。
 以上説明した第2実施形態では、正面視において、車両用アンテナ装置40Bの同軸ケーブル70Aの重複部70A3が特定領域SA内に配置される。さらに、正面視において、非重複部70A2が第2直線L2と接地導体板54の厚さ方向に重なる。そのため、第1実施形態の車両用アンテナ装置40Aと同様に、第2実施形態の車両用アンテナ装置40Bの非重複部70A2及び重複部70A3が、アンテナ50の0°~270°(-90°)の範囲のアンテナ利得の低下を抑制でき、水平面における所定の指向性を実現できる。そのため、第2実施形態のアンテナ装置43Bのアンテナ利得は、例2(比較例)のアンテナ装置43AXのアンテナ利得より良好で水平面における所定の指向性を実現できる。特に、第2実施形態のアンテナ50の0°~270°(-90°)の範囲のアンテナ利得は、例2のアンテナ装置43AXの0°~270°(-90°)の範囲のアンテナ利得より良好であり、放射面56Cの法線方向を中心に水平面で180°の範囲における指向性が向上する。
 <第3実施形態>
 続いて、本開示の第3実施形態に係る車両用アンテナ装置40Cについて、図11を参照しながら説明する。なお、第1実施形態又は第2実施形態と同じ構成には同じ符号を付すにとどめて、その詳細な説明は省略する。
 第3実施形態のアンテナ装置43Cは直線偏波を送受信可能であり、アンテナ50と同軸ケーブル(伝送線路)70Aを備える。さらに車両用アンテナ装置40Cは、ウィンドシールド(図11では図示省略)28とアンテナ装置43Cとを備え、垂直偏波を送受信可能である。同軸ケーブル70Aの信号線71の一方の端部71Aは、車両用アンテナ装置40AXの同軸ケーブル70Xの端部71Aと同じ構造である。第2部71A5の先端が給電部60に接続されている。接地導体板54の正面視において、アンテナ装置43Cの屈曲部71Eは放射板56の接続点56Aと重なる。
 アンテナ50と直線状部70A1の相対位置は、上述のコネクタ等のような不図示の固定手段によって、図11に示される状態に保持されている。さらに直線状部70A1は、非重複部70A2と、重複部70A3と、交差部70A4と、を有する。正面視において、非重複部70A2、重複部70A3、及び端部71Aは、略直線形状をなす。さらに正面視において、重複部70A3が、特定領域SA内に位置する。
 以上説明した第3実施形態では、正面視において重複部70A3が、特定領域SA内に配置される。そのため、第3実施形態の重複部70A3が、アンテナ50の0°~270°(-90°)の範囲のアンテナ利得の低下を抑制でき、水平面における所定の指向性を実現できる。そのため、第3実施形態のアンテナ装置43Cのアンテナ利得は、例2(比較例)のアンテナ装置40AXのアンテナ利得より良好で水平面における所定の指向性を実現できる。特に、第3実施形態のアンテナ装置43Cの0°~270°(-90°)の範囲のアンテナ利得は、例2のアンテナ50の0°~270°(-90°)の範囲のアンテナ利得より良好であり、放射面56Cの法線方向を中心に水平面で180°の範囲における指向性が向上する。
 <第4実施形態>
 続いて、本開示の第4実施形態に係る車両用アンテナ装置40Dについて、図12を参照しながら説明する。なお、第1~第3実施形態と同じ構成には同じ符号を付すにとどめて、その詳細な説明は省略する。
 第4実施形態のアンテナ装置43Dは、アンテナ50と同軸ケーブル(第1伝送線路)70Aを備える。さらに第4実施形態の車両用アンテナ装置40Dは垂直偏波用アンテナであり、ウィンドシールド(図12では図示省略)28とアンテナ装置43Dとを備える。
 アンテナ50と同軸ケーブル70Aの相対位置は、上述のコネクタ等のような不図示の固定手段によって、図12に示される状態に保持されている。さらに直線状部70A1は、非重複部70A2と、重複部70A3と、交差部70A4と、を有する。正面視において、非重複部70A2、重複部70A3、及び端部71Aは直線形状をなし且つ第2直線L2上に位置する。重複部70A3及び端部71Aの第2直線L2と重なる部位の長さがLである。非重複部70A2のX軸方向の長さLは、上述のλ、kの定義に基づき、L≧0.10×λ×kを満たすと好ましい。図12中のLは、長さLと、長さLと、の和である。さらに、長さLが上記のように、L≧0.20×λ×k以上を満たすと好ましい。なお、本実施形態のアンテナ装置43Dにおいて「L53/2」を100%としたときの、上記長さLの割合は、100%である。
 接地導体板54の中央部には、正面視において略長方形をなす開口部54Xが形成されている。さらに、誘電体基板52の表面52Bには、開口部54Xの外縁より内側に略長方形状の外縁を有するコプレーナ給電線路(第2伝送線路)55が、形成されている。コプレーナ給電線路55の一部は、正面視において重心56Bと重なる(給電)点55Aを含む。さらにコプレーナ給電線路55の(給電)点55Aから下方に離れた部位には、正面視において接続点56Aと重なる給電部55Bが形成されている。そして、給電部55Bは、接続導体62と接続されている。さらに第2部71A5の先端が、コプレーナ給電線路55の(給電)点55Aに接続されている。アンテナ装置43Dの正面視において、屈曲部71E及び第2部71A5は、給電点55A及び放射板56の重心56Bと重なるように配置される。なお、コプレーナ給電線路55を構成する材料としても、例えば、銀、銅が挙げられるが、これ以外の導電材料でもよい。
 以上説明した第4実施形態では、正面視において、アンテナ装置43Dの同軸ケーブル70Aが特定領域SA内に配置される。さらに正面視において、非重複部70A2及び重複部70A3が、第2直線L2と重なる。そのため、第1実施形態のアンテナ装置43Aと同様に、第4実施形態のアンテナ装置43Dの非重複部70A2及び重複部70A3が、アンテナ50の0°~270°(-90°)の範囲のアンテナ利得の低下を抑制でき、水平面における所定の指向性を実現できる。そのため、第4実施形態のアンテナ装置43Dのアンテナ利得は、例2(比較例)のアンテナ装置40AXのアンテナ利得より良好で水平面における所定の指向性を実現できる。特に、第4実施形態のアンテナ装置43Dの0°~270°(-90°)の範囲のアンテナ利得は、例2のアンテナ装置40AXの0°~270°(-90°)の範囲のアンテナ利得より良好であり、放射面56Cの法線方向を中心に水平面で180°の範囲における指向性が向上する。
 さらに、伝送線路の一部であるコプレーナ給電線路55の(給電)点55Aを、正面視において重心56Bと重なるように設定し、この(給電)点55AにL字形である端部71Aの端部を接続している。つまり、第1伝送線路と第2伝送線路を含む、複数の伝送線路を使用しているため、給電部60に接続する伝送線路の配置自由度が高くなる。さらに、本実施形態のアンテナ装置43Dは、(給電)点55Aに端部71Aの端部が接続するように、上記固定手段による、アンテナ50と同軸ケーブル70Aの相対位置の固定も容易である。なお、伝送線路は、3種以上を繋ぎ合わせるように構成してもよい。
 <第5実施形態>
 続いて、本開示の第5実施形態に係る車両用アンテナ装置40Eについて、図13を参照しながら説明する。なお、第1~第4実施形態と同じ構成には同じ符号を付すにとどめて、その詳細な説明は省略する。第5実施形態の車両用アンテナ装置40Eは直線偏波を送受信可能であり、ウィンドシールド(図13では図示省略)28とアンテナ装置43Eとを備え、垂直偏波を送受信可能である。アンテナ装置43Eは、通信アンテナ80(以下、アンテナ80)及び同軸ケーブル(伝送線路)70Aを備える。
 アンテナ80は、放射板(放射導体)81を備えている。放射板81は導体板に相当する。放射板81の車両前後方向の前側の表面は、放射面81Aを構成する。放射面81Aは、車車間通信及び路車間通信等で使用される5.8GHz帯域又は5.9GHz帯域の垂直偏波Qを放射する。
 放射板81は、放射面81Aを、表面部82と表面部83とに分割する開口として形成されるスロット84を有する。正面視においてスロット84は、第二直線L2の延伸方向に延在する。表面部82は、スロット84より上側に位置する導電性の部位である。表面部83は、スロット84より下側に位置する導電性の部位である。表面部82は給電点85を有し、表面部83は給電点86を有する。
 給電点85は、同軸ケーブル70Aのシールド外皮73(図13では図示省略)に電気的に接続される。給電点86は、同軸ケーブル70Aの信号線71の端部71Aに電気的に接続される。なお、給電点85が同軸ケーブル70Aの端部71Aに電気的に接続されてもよく、この場合、給電点86は、同軸ケーブル70Aのシールド外皮73に電気的に接続される。アンテナ80は、ブラケット(図示略)を介して、ウィンドシールド28の主面の上部に取り付けられる。
 図13に示された第1直線L1は、正面視において放射板81の重心81GをZ軸方向に通る。第2直線L2は、正面視において重心81GをX軸方向に通る。さらに正面視において、第2直線L2から下方に距離Aだけ離れ且つ給電点86を第2直線L2と平行な方向に通り抜ける直線を、第3直線L3と定義する。さらに正面視において、第2直線L2から上方に距離Aだけ離れ且つ第2直線L2と平行な直線を、第4直線L4と定義する。さらに放射面81Aにおける第3直線L3と第4直線L4との間の領域を特定領域SAと称する。
 同軸ケーブル70Aとアンテナ80は、図示を省略した固定手段によって、図13に示される状態に保持されている。本体部70ABの一部は、直線状部70A1を構成する。直線状部70A1の一部であり、正面視において放射板81の側縁部84Lより左側に位置する部位を、非重複部70A2と定義する。さらに直線状部70A1の一部であり、正面視において放射板81の周縁部の一部である側縁部84Lと重なる部位及び側縁部84Lより放射板81の中央部側に位置する部位を、重複部70A3と定義する。正面視において側縁部84Lと放射板81の厚さ方向に重なる同軸ケーブル70Aの部位を、交差部70A4と定義する。重複部70A3の中間部70A3mと交差部70A4との間の直線状の部位が、正面視において第2直線L2上に位置する。重複部70A3の中間部70A3mと交差部70A4との間の直線状の部位のX軸方向の長さはLである。図13中のLは、長さLと、長さLと、の和である。また、非重複部70A2のX軸方向の長さLは、上述のλ、kの定義に基づき、L≧0.10×λ×kを満たすと好ましい。さらに、長さLが上記のように、L≧0.20×λ×k以上を満たすと好ましい。本実施形態のアンテナ装置43Eにおいては、放射板81の直線L2方向の半分の長さを100%としたときの、長さLの割合は、30%以上であればよく、50%以上が好ましく、70%以上がより好ましい。
 第5実施形態においても、正面部93の鉛直方向101(図2参照)に対する傾斜角度がαとなるように、上記ブラケットを介して、アンテナ80をウィンドシールド28に取り付け可能である。
 以上説明した第5実施形態では、正面視において、同軸ケーブル70Aの重複部70A3が特定領域SAと放射板81の厚さ方向に重なる。さらに正面視において、重複部70A3が、第2直線L2と放射板81の厚さ方向に重なる。さらに、同軸ケーブル70Aの非重複部70A2の少なくとも一部は、第2直線L2と重なる。そのため、第5実施形態のアンテナ装置43Eは、水平面における所定範囲(-90°~+90°)において安定したアンテナ利得、指向性を実現できる。
 以上、本開示の第1~第5実施形態について説明したが、本開示はこれらの実施形態に限定されない。
 例えば、図1及び図2に示されるように、リアガラス34の車室内側の主面(前面)の車両上下方向の上部に、図示を省略したブラケットを介して、アンテナ50及び同軸ケーブル70Aを有するアンテナ装置43Aが取り付けられてもよい。この場合、リアガラス34及びアンテナ装置43Aが、車両用アンテナ装置40Aの構成要素である。この場合、アンテナ50の放射板56の放射面56Cがリアガラス34と対向する。なお、図2に示されるように、アンテナ50は、放射板56の放射面56Cに対して後方に向く法線Dnrが、リアガラス34を通り抜けるように配置されるとよい。なお、図2の法線Dnrは、傾斜角度αが0°のときの法線である。
 また、リアガラス34の車室内側の主面の上部に、ブラケットを介して、アンテナ装置43B、43C、43D、43Eが取り付けられてもよい。この場合、アンテナ装置43B及びリアガラス34が車両用アンテナ装置40Bの構成要素であり、アンテナ装置43C及びリアガラス34が車両用アンテナ装置40Cの構成要素であり、アンテナ装置43D及びリアガラス34が車両用アンテナ装置40Dの構成要素であり、アンテナ装置43E及びリアガラス34が車両用アンテナ装置40Eの構成要素である。この場合、アンテナ装置43B、43C、43Dの放射面56C及びアンテナ装置43Eの放射板81が、リアガラス34と対向する。
 なお、リアガラス34に、アンテナ装置43A、43B、43C、43D、43Eが取り付けられる場合は、図2に示されるように車両10の後部を左側から見たときに、アンテナ50の放射板56の放射面56C又は放射板81の鉛直方向102に対する傾斜角度αは、±15°以下が好適である。
 車両10のリアガラス34にアンテナ装置43A、43B、43C、43D又は43Eを設ける場合に、ウィンドシールド28にアンテナ装置43A、43B、43C、43D又は43Eを設けてもよいし設けなくてもよい。図1に示される態様でウィンドシールド28にアンテナ装置43A、43B、43C、43D又は43Eを設け且つリアガラス34にアンテナ装置43A、43B、43C、43D又は43Eを設けた場合は、前方のアンテナ装置43A、43B、43C、43D又は43E及び後方のアンテナ装置43A、43B、43C、43D又は43Eのアンテナ利得の合成値によって、水平面における0°~360°の範囲で所望のアンテナ利得を実現できる。
 アンテナ装置43A、43B、43C、43D、43Eが、垂直偏波と比べて水平偏波を送受信する方が、アンテナ利得が高い水平偏波アンテナでもよい。この場合、正面視において、第1直線L1がX軸方向と平行をなすように、アンテナ装置43A、43B、43C、43D、43Eを車両10に取り付けるのが好ましい。
 アンテナ装置43A、43B、43C、43D、43Eが、垂直偏波用アンテナの場合は、正面視において直線L1と鉛直方向とのなす角度が15°以下となるように、アンテナ装置43A、43B、43C、43D、43Eを車両10に設けてもよい。また、アンテナ装置43A、43B、43C、43D、43Eが、水平偏波アンテナの場合は、正面視において直線L2と鉛直方向とのなす角度が15°以下となるように、アンテナ装置43A、43B、43C、43D、43Eを車両10に設けてもよい。
 ウィンドシールド28に複数のアンテナ装置43A、43B、43C、43D、43Eを取り付けてもよい。またリアガラス34に複数のアンテナ装置43A、43B、43C、43D、43Eを取り付けてもよい。
 第5実施形態のアンテナ装置43Eが、放射板81とY軸方向に並ぶ接地導体板を備えてもよい。さらにアンテナ装置43Eが、無給電導体板を備えてもよい。この無給電導体板は、Y軸方向の位置が、接地導体板より放射板81側でもよい。
 車両10の後部に設けられた開口部を開閉するバックドア(図示省略)にリアガラス34が設けられてもよい。
 2021年12月3日に出願された日本国特許出願2021-19703号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載されたすべての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
10 車両
28 ウィンドシールド(車両用窓ガラス)
34 リアガラス(車両用窓ガラス)
40A 40B 40C 40D 40E 40AX 車両用アンテナ装置
43A 43B 43C 43D 43E 43AX アンテナ装置
50 通信アンテナ(アンテナ)
52 誘電体基板
54 接地導体板
54A 重心
55 コプレーナ給電線(伝送線路)(第2伝送線路)
55A 給電点
56 放射板(放射導体)
56A 接続点(給電点)
56B 重心
56C 放射面
66 第1エレメント(無給電導体板)
68 第2エレメント(無給電導体板)
70A 70X 同軸ケーブル(伝送線路)(第1伝送線路)
70A4 交差部
71B 71C 71E 屈曲部
80 通信アンテナ(アンテナ)
81 外導体板(放射板)
L1 第1直線
L2 第2直線
L3 第3直線
L4 第4直線
SA 特定領域

Claims (23)

  1.  所定の周波数帯の電波を送受信するアンテナと、
     前記アンテナの一部である導体板に給電する伝送線路と、を有し、
     前記導体板は、電波を放射する放射面及び前記伝送線路から電力が供給される部位である給電点を備える放射板、を有し、
     前記放射板を水平方向に沿って見たときに、前記給電点は、前記放射板の重心から距離Aだけ離れた位置に設けられ、
     前記重心及び前記給電点を通る第1直線と、
     前記第1直線と直交し、前記重心を通る第2直線と、
     前記給電点を通り且つ前記第2直線と平行な第3直線と、
     前記第2直線と平行であり、前記第2直線に関して前記第3直線と対称である第4直線と、を与え、且つ、前記放射板の厚さ方向に沿って見たときに前記重心が前記導体板と重なるとき、
     前記放射板の厚さ方向に沿って見たときに、前記伝送線路の前記給電点に接続される端部と前記導体板の周縁部と交差する交差部との間の部位が、前記第3直線と前記第4直線との間の特定領域と前記放射板の厚さ方向に重なる、アンテナ装置。
  2.  前記伝送線路の前記交差部が、前記導体板の前記周縁部と前記第2直線との交点と、前記放射板の厚さ方向に重なる、請求項1に記載のアンテナ装置。
  3.  前記伝送線路が、前記重心と前記放射板の厚さ方向に重なる屈曲部を有する、請求項1又は2に記載のアンテナ装置。
  4.  前記放射板は、正面視における形状が矩形である、請求項1から3のいずれか1項に記載のアンテナ装置。
  5.  前記伝送線路のうち、前記特定領域と前記放射板の厚さ方向に重なる部位を含む、前記第2直線上に位置する部位の長さLは、前記電波の空気中の波長をλ、周辺媒質の波長短縮率をk、としたときに、
     L≧ 0.20×λ×k
    を満足する、請求項1から4のいずれか1項に記載のアンテナ装置。
  6.  前記アンテナは、前記放射板の前記第2直線と平行方向に延伸するスロットを備えるスロットアンテナである、請求項1から5のいずれか1項に記載のアンテナ装置。
  7.  前記伝送線路の前記放射板の周縁部より前記放射板の外周側に位置し且つ前記第2直線に沿って延びる部位の長さLは、前記電波の空気中の波長をλ、周辺媒質の波長短縮率をk、としたときに、
     L ≧ 0.10×λ×k
    を満足する、請求項6に記載のアンテナ装置。
  8.  前記放射板の前記第2直線上の長さの半分の長さを100%とし、且つ、前記伝送線路の一部であり前記厚さ方向に沿って見たときに前記放射板と重なる部位を重複部としたとき、前記重複部の前記第2直線と重なる部位の長さLの割合が30%以上である、請求項6又は7に記載のアンテナ装置。
  9.  前記アンテナは、前記放射板、前記導体板の一部である接地導体板、及び前記放射板と前記接地導体板とに挟まれた誘電体基板を備える、請求項1から5のいずれか1項に記載のアンテナ装置。
  10.  前記伝送線路の前記接地導体板の周縁部より前記接地導体板の外周側に位置し且つ前記第2直線に沿って延びる部位の長さLは、前記電波の空気中の波長をλ、周辺媒質の波長短縮率をk、としたときに、
     L ≧ 0.10×λ×k
    を満足する、請求項9に記載のアンテナ装置。
  11.  前記接地導体板の前記第2直線上の長さの半分の長さを100%とし、且つ、前記伝送線路の一部であり前記厚さ方向に沿って見たときに前記接地導体板と重なる部位を重複部としたとき、前記重複部の前記第2直線と重なる部位の長さLの割合が30%以上である、請求項9又は10に記載のアンテナ装置。
  12.  前記接地導体板の重心と前記放射板の前記重心が前記放射板の厚さ方向に重なり、前記接地導体板の周縁部が前記放射板の周縁部より外周側に位置する、請求項9から11のいずれか1項に記載のアンテナ装置。
  13.  前記アンテナは、前記放射板の厚さ方向において、前記放射板の前記重心と重ならない、少なくとも1つの無給電導体板を備える、請求項9から12のいずれか1項に記載のアンテナ装置。
  14.  前記アンテナが、前記放射板と前記放射板の厚さ方向に並ぶ前記接地導体板と、前記接地導体板より前記放射板側に位置する2つの前記無給電導体板を備え、
     前記放射板の厚さ方向において、2つの前記無給電導体板の間に前記放射板の前記重心が位置する、請求項13に記載のアンテナ装置。
  15.  前記伝送線路は、一種類の線路で構成されている、請求項1から14のいずれか1項に記載のアンテナ装置。
  16.  前記一種類の線路が同軸ケーブルである、請求項15に記載のアンテナ装置。
  17.  前記伝送線路が、第1伝送線路と、前記第1伝送線路とは異なる種類の第2伝送線路と、を含んで構成される、請求項1から14のいずれか1項に記載のアンテナ装置。
  18.  前記第1伝送線路は、前記アンテナにおける前記放射面と反対側の面と前記放射板の厚さ方向に対向し、前記第2伝送線路は、前記放射面側に位置する、請求項17に記載のアンテナ装置。
  19.  前記第1伝送線路は、前記第2直線に沿って前記重心と前記放射板の厚さ方向に重なる位置まで延伸し、前記第2伝送線路は、前記第1直線に沿って前記重心と前記厚さ方向に重なる位置から前記給電点まで延伸する、請求項17又は18に記載のアンテナ装置。
  20.  前記第1伝送線路は同軸ケーブルであり、前記第2伝送線路はコプレーナ給電線路である、請求項19に記載のアンテナ装置。
  21.  車両に設けられる車両用窓ガラスと、
     前記放射面が前記車両用窓ガラスと対向するように配置される請求項1から20のいずれか1項に記載のアンテナ装置と、
     を備え、
     前記放射板の厚さ方向において、前記第1直線又は前記第2直線と、前記車両の上下方向とがなす角度が15°以内となる、車両用アンテナ装置。
  22.  前記放射板の厚さ方向において、前記第1直線と、前記車両の上下方向とがなす角度が15°以内となり、
     前記周波数帯が、5.8GHz帯域又は5.9GHz帯域を含む、請求項21に記載の車両用アンテナ装置。
  23.  前記アンテナはV2Xアンテナである、請求項21又は22に記載の車両用アンテナ装置。
PCT/JP2022/044074 2021-12-03 2022-11-29 アンテナ装置及び車両用アンテナ装置 WO2023100908A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-197303 2021-12-03
JP2021197303 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023100908A1 true WO2023100908A1 (ja) 2023-06-08

Family

ID=86612399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044074 WO2023100908A1 (ja) 2021-12-03 2022-11-29 アンテナ装置及び車両用アンテナ装置

Country Status (1)

Country Link
WO (1) WO2023100908A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246852A (ja) * 1996-03-14 1997-09-19 Nec Corp パッチ型アレイアンテナ装置
JP2005167410A (ja) * 2003-11-28 2005-06-23 Harada Ind Co Ltd 円偏波信号用アンテナ
WO2022065489A1 (ja) * 2020-09-28 2022-03-31 株式会社ヨコオ パッチアンテナ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246852A (ja) * 1996-03-14 1997-09-19 Nec Corp パッチ型アレイアンテナ装置
JP2005167410A (ja) * 2003-11-28 2005-06-23 Harada Ind Co Ltd 円偏波信号用アンテナ
WO2022065489A1 (ja) * 2020-09-28 2022-03-31 株式会社ヨコオ パッチアンテナ

Similar Documents

Publication Publication Date Title
CN110785893B (zh) 天线模块和通信装置
CN112771719B (zh) 天线系统
WO2017213243A1 (ja) 車載用アンテナ装置
JP7298600B2 (ja) 車両用アンテナ、車両用アンテナ付き窓ガラス及びアンテナシステム
CN112868136B (zh) 车辆用天线系统
CN111987409B (zh) 天线玻璃及车辆
US11476565B2 (en) Patch antenna and antenna device for vehicle
WO2023100908A1 (ja) アンテナ装置及び車両用アンテナ装置
WO2022124297A1 (ja) アンテナ
US7088295B2 (en) Vehicle-mounted antenna
WO2023127765A1 (ja) アンテナ装置及び車両用アンテナ装置
US20070080876A1 (en) Planar antenna and window glass sheet for automobiles
WO2024010006A1 (ja) アンテナ及び車両用アンテナ装置
WO2023127685A1 (ja) Ebg構造体付ガラス板及び車両用アンテナ装置
CN111987425B (zh) 天线组件、天线玻璃及车辆
WO2022270314A1 (ja) 車両用無線装置
WO2021193454A1 (ja) 車両用アンテナシステム
US20230092857A1 (en) Antenna device
US20240014561A1 (en) Antenna device
WO2023112866A1 (ja) 取付部材付きアンテナ装置及びアンテナ装置の取付構造
WO2023047954A1 (ja) パッチアンテナ及びアンテナ装置
WO2024116430A1 (ja) アンテナ装置
WO2023191085A1 (ja) アンテナ装置
US20230420851A1 (en) Antenna device and communication device
KR20240020379A (ko) 글라스 안테나 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023565035

Country of ref document: JP

Kind code of ref document: A