WO2023100780A1 - Adsorbent material cartridge and liquid processing column using same - Google Patents

Adsorbent material cartridge and liquid processing column using same Download PDF

Info

Publication number
WO2023100780A1
WO2023100780A1 PCT/JP2022/043655 JP2022043655W WO2023100780A1 WO 2023100780 A1 WO2023100780 A1 WO 2023100780A1 JP 2022043655 W JP2022043655 W JP 2022043655W WO 2023100780 A1 WO2023100780 A1 WO 2023100780A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
adsorbent
liquid
adsorbent cartridge
treatment tower
Prior art date
Application number
PCT/JP2022/043655
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 加藤
隆男 大迫
紘成 菅原
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Publication of WO2023100780A1 publication Critical patent/WO2023100780A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation

Definitions

  • the present invention provides an adsorbent cartridge for adsorbing a target substance such as an organic substance or a metal contained in a liquid to be processed, and recovering the target substance contained in the liquid to be processed using the adsorbent cartridge. It relates to a liquid treatment tower for a target substance such as an organic substance or a metal contained in a liquid to be processed, and recovering the target substance contained in the liquid to be processed using the adsorbent cartridge. It relates to a liquid treatment tower for
  • porous particles such as activated carbon and inorganic compounds
  • resin particles, porous ceramic particles, etc. are used to remove organic substances and metals such as platinum.
  • Organic substances and metals are recovered by adsorption on their surface or inside.
  • the liquid to be treated is passed through a device filled with particles, resulting in a large resistance. It becomes difficult to pass the liquid efficiently. That is, it becomes difficult to raise the passage speed of the liquid to be treated and increase the treatment speed, resulting in a decrease in productivity.
  • the particle size of the porous ceramic particles to a large particle size of, for example, 0.5 mm or more.
  • the liquid in the treatment tank is caused to flow by the inflowing liquid, and the particles in the liquid are stirred and migrated along with it, so that the target substances such as organic substances and metals are adsorbed only on the particle surface, and the internal diffusion effect of the target substance is obtained. is reduced, resulting in a significant drop in recovery efficiency.
  • the particles collide with each other due to stirring and are damaged by rubbing, resulting in a smaller particle size. Furthermore, when the height of the processing tank is very high, the particles packed in the lower side of the processing tank may be crushed by the mass of the particles on the upper side.
  • the desired recovery efficiency cannot be obtained due to the liquid flow and particle migration in the treatment tank, and the particle size (granularity) of the particles filled in the treatment tank also decreases with the progress of the liquid treatment.
  • the particle size distribution is far from the particle size distribution before the liquid passing treatment, resulting in a decrease in recovery speed and recovery efficiency.
  • An object of the present invention is to provide an adsorbent cartridge capable of obtaining efficiency and a liquid treatment tower using the same.
  • the present invention was invented to solve the problems in the prior art as described above, and the adsorbent cartridge and the liquid treatment tower using the same of the present invention are constructed as follows. include.
  • An adsorbent cartridge for adsorbing a target substance contained in a liquid a case having a top surface, a bottom surface and side surfaces; an adsorbent made of porous particles housed in the housing portion of the case, Having liquid flow holes in the upper surface and the lower surface of the case,
  • the case is made of a rigid material
  • the liquid treatment tower according to [10] is configured so that the liquid does not leak out of the channel from between the inner surface of the channel and the side surface of the case of the adsorbent cartridge.
  • the porous particles collide with each other and rub against each other when the liquid to be treated is passed through by filling 95% or more of the capacity of the adsorbent made of the porous particles in the rigid case. It is possible to prevent it from being lost.
  • the porous particles on the lower side of the case are crushed by the mass of the porous particles on the upper side of the case and the mass of the solution in the container. can be prevented.
  • the porous particles collide with each other and rub against each other. In other words, it is possible to prevent the porous particles from collapsing due to the mass of the porous particles.
  • FIG. 1 is a schematic diagram for explaining the configuration of the adsorbent cartridge in this embodiment.
  • 2 is a central cross-sectional view of the adsorbent cartridge of FIG. 1;
  • FIG. FIG. 3 is a schematic diagram for explaining the configuration of the liquid treatment tower in this embodiment.
  • FIG. 4 is a schematic diagram showing one embodiment of a recovery treatment system using the liquid treatment tower shown in FIG.
  • FIG. 5 is a schematic diagram showing another embodiment of the recovery treatment system using the liquid treatment tower shown in FIG.
  • FIG. 6 is a schematic diagram showing the configuration of an experimental apparatus for confirming the adsorption efficiency of a target substance when using the liquid treatment tower in this embodiment.
  • FIG. 7 is a graph showing the removal rate of palladium (Pd) with respect to the elapsed time of the treatment liquid circulation treatment.
  • FIG. 8 is a graph showing the removal rate of platinum (Pt) and rhodium (Rh) with respect to the elapsed time of circulation treatment of the treatment liquid.
  • FIG. 1 is a schematic diagram for explaining the configuration of an adsorbent cartridge in this embodiment
  • FIG. 2 is a central sectional view of the adsorbent cartridge of FIG.
  • the adsorbent cartridge 10 of this embodiment has a case 20 and an adsorbent 30 made of porous particles.
  • the case 20 has an upper surface 22 , a lower surface 24 and side surfaces 26 .
  • the upper surface 22 and the lower surface 24 are provided with a plurality of liquid circulation holes 22 a and 24 a for allowing the liquid to be treated (hereinafter also simply referred to as “treatment liquid”) to flow into and out of the case 20 .
  • the inner diameters of the liquid circulation holes 22a, 24a should be smaller than the minimum diameter of the adsorption material 30. is preferred.
  • the shape of the case 20 is not particularly limited as long as it can be inserted into the flow path of the liquid treatment tower as described later, but from the viewpoint of ease of handling and ease of design.
  • at least one of the upper surface 22 and the lower surface 24 preferably has a circular, elliptical or polygonal columnar shape. From the viewpoint of ease of manufacture, it is more preferable that both the upper surface 22 and the lower surface 24 are circular or similar or congruent polygons.
  • the diameter of the upper surface 22 and the lower surface 24 is circular, the diameter is preferably 10 mm ⁇ or more and 10000 mm ⁇ or less, more preferably 30 mm ⁇ or more and 5000 mm ⁇ or less, and further preferably 45 mm ⁇ or more and 2000 mm ⁇ or less.
  • the diameter of the circumscribed circle is preferably 10 mm ⁇ or more and 10000 mm ⁇ or less, more preferably 30 mm ⁇ or more and 5000 mm ⁇ or less, and furthermore 45 mm ⁇ or more and 2000 mm ⁇ or less. preferable.
  • the upper surface 22 of the case 20 is provided with a replacement port 23 for replacing the adsorbent 30 in the case 20 .
  • a detachable top lid portion 22b is provided on the top surface 22 of the case 20, and the top lid portion 22b is removed when the adsorbent 30 is to be replaced.
  • a cover member having a plurality of liquid flow holes 22a may be provided on the upper surface 22 of the case 20. A directly attached structure is also possible.
  • the replacement port 23 is provided on the upper surface 22 of the case 20, but the replacement port 23 may be provided on the lower surface 24 of the case 20, or may be provided on the side surface 26 of the case 20. good too.
  • the case 20 can have a more rigid structure.
  • the case 20 is made of a rigid material such as metal or resin.
  • the rigidity of such a material is preferably M55 or more in terms of Rockwell hardness. Although there is no particular upper limit for the rigidity of the material, for example, when a resin is used, M135 or less is common.
  • such a case 20 is preferably made of a material having chemical resistance, and for example, a material that does not corrode even when in contact with dilute hydrochloric acid is preferred.
  • the case 20 is preferably made of a heat-resistant material, and preferably does not deform even after repeated use at 90° C., which is the maximum temperature of the treatment liquid.
  • the Rockwell hardness adopted in the present invention is the Rockwell hardness (hardness symbol: HRM) measured in accordance with JIS Z2245:2005 "Rockwell hardness test - test method".
  • the scale used for the measurement is "M”
  • the indenter is steel ball type 6.350
  • the test load is 980.7N.
  • Such materials include, but are not limited to, metals such as titanium, aluminum, stainless steel (e.g., SUS304, SUS316, etc.), nickel alloys (e.g., Hastelloy), ceramics, glass, or Polyvinyl chloride (PVC), polystyrene (PS), polybutylene succinate (PBS), polyethylene (PE), polypropylene (PP), polyamide (Pa), (meth)acrylic resin (PMMA), polytetrafluoroethylene (PTFE) ), resins such as polyurethane (PU), etc., when immersed in a processing liquid, do not collapse due to their own weight, for example, do not erode by processing liquids containing acids such as hydrochloric acid, nitric acid, and aqua regia. It can be a highly flexible material. In particular, it is preferable not to be corroded by hydrochloric acid having a concentration of 3 mol/L.
  • the accommodating portion 21 in which the adsorbent 30 is accommodated has a length (height H) in the axial direction vertically penetrating the upper surface 22 and the lower surface 24, as shown in FIG. It is preferably 100 mm or more and 2500 mm or less, and further preferably 150 mm or more and 2000 mm or less. If the height H exceeds 3500 mm, handling of the adsorbent cartridge becomes difficult, for example, insertion into a liquid treatment tower becomes difficult. In addition, there is an increased possibility that part of the adsorbent filled inside will be damaged by its own weight or the like, so fine powder will be generated, pressure loss will increase, and adsorption efficiency will decrease. On the other hand, if the height H is less than 50 mm, the number of adsorbent cartridges required to obtain the desired adsorption performance becomes extremely large, or the processing liquid circulation processing time becomes too long. This results in the problem of
  • the filling rate of the adsorbent 30 with respect to the value of the height H can be determined by the ratio A/H of the height H to the height A from the lower surface 24 to the upper part of the adsorbent 30.
  • the height A of the adsorbent 30 is measured after the case 20 is filled with the adsorbent 30 and tapped on a table.
  • the ratio A/H is preferably 95% or more, more preferably 98% or more, and particularly preferably 99% or more. Note that the ratio A/H is generally 99.9% or less.
  • the space from the top of the adsorbent 30 filled in the containing portion 21 to the upper surface 22 of the containing portion 21 is preferably 20 mm or less, more preferably 15 mm or less, and even more preferably 10 mm or less.
  • the adsorbent 30 is not particularly limited as long as it can adsorb target substances such as organic substances, metals such as platinum, especially noble metals, contained in the treatment liquid.
  • the shape of the adsorbent is not particularly limited as long as it is commonly used, but it can be rod-shaped, pellet-shaped, cylindrical, disk-shaped, spherical, polyhedral, and the like. In particular, pellets or spheres are preferable in terms of filling properties.
  • the minimum diameter of the adsorbent 30 is preferably 0.2 mm or more, more preferably 0.5 mm or more, and particularly preferably 2 mm or more. Although the maximum diameter of the adsorbent 30 is not particularly limited, it is generally 50 mm or less. In addition, the diameter of the adsorbent 30 is obtained by calculating the average value of the diameter of the circumscribed circle for each of the ten adsorbents in the three fields of view when observed with a 50x stereoscopic microscope, and calculating the average value of the diameter of the adsorbent 30. diameter.
  • the adsorbent 30 is preferably porous, and particularly preferably has through holes. From this point of view, the adsorbent 30 is preferably a porous resin, a porous ceramic molded body, or the like.
  • a porous ceramic molded body for example, ceramics containing silica or an aluminosilicate such as zeolite can be used.
  • a silica monolith which is a silica porous body having a co-continuous structure of a silica skeleton and macropores. An apparatus and method for producing this silica monolith are described, for example, in Japanese Patent No. 6924338 by the present applicant.
  • a silica porous body (silica monolith) has a co-continuous structure of a skeleton composed of silica and macropores.
  • the silica porous material may have mesopores formed in the silica skeleton.
  • the silica skeleton and the macropores each have a continuous three-dimensional network structure and are entangled with each other, thereby forming a co-continuous structure of the silica skeleton and the macropores.
  • Whether the porous silica has a co-continuous structure of silica skeleton and macropores can be confirmed by observing the surface or cross section of the porous silica with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the mode diameter of the macropores is preferably 80 nm or more and 7000 nm or less, more preferably 80 nm or more and 5000 nm or less.
  • the mode diameter of mesopores is preferably 2 nm or more and 50 nm or less, more preferably 5 nm or more and 30 nm or less.
  • the specific surface area of the porous silica body is preferably 100 m 2 /g or more and 1000 m 2 /g or less, and more preferably 100 m 2 /g or more and 800 m 2 /g, from the viewpoint of improving the performance of the silica porous body as an adsorbent or catalyst.
  • the following are more preferable.
  • a columnar body having a co-continuous structure of a ceramic skeleton with mesopores and macropores is preferred.
  • the average diameter of the columnar body is 1.5 mm or more and 20 mm or less, and the mode pore diameter of macropores measured in a pore diameter range of 50 nm to 500 ⁇ m by mercury porosimetry is 0.20 ⁇ m or more and 3.0 ⁇ m or less.
  • Measurement of the specific surface area and the most frequent pore diameter of mesopores is performed using, for example, a specific surface area and pore distribution measuring device "BELSORP-miniX" manufactured by Microtrack Bell.
  • BELSORP-miniX a specific surface area and pore distribution measuring device manufactured by Microtrack Bell.
  • the amount of nitrogen adsorption and desorption at a temperature of 77 K using liquid nitrogen is measured by a multipoint method to obtain an adsorption and desorption isotherm.
  • the specific surface area and the mode diameter of the mesopores are calculated.
  • the specific surface area is calculated by the BET method, and the mode diameter of mesopores is calculated by the BJH method.
  • Measurement of the most frequent pore diameter of macropores is performed by mercury porosimetry using, for example, a mercury porosimeter ("AutoPore IV 9520" manufactured by Micromeritics).
  • a mercury porosimeter AutoPore IV 9520 manufactured by Micromeritics.
  • pressure is applied to the pores of the adsorbent 30 to infiltrate mercury, the pore volume and specific surface area are obtained from the pressure and the amount of injected mercury, and the pore volume when the pores are assumed to be cylindrical. and the specific surface area to calculate the pore diameter.
  • the apparent height when the adsorption material 30 as described above is filled is 95 times the height of the housing portion 21 of the case 20. % or more, the adsorbent 30 is filled.
  • the filling of the adsorbent 30 is not particularly limited, and the case 20 may be filled at random. 30 may be filled in parallel in the long axis direction, or may be filled so as to cross obliquely.
  • ⁇ Adsorbent filling rate test> Inside a cylindrical polyvinyl chloride case 20 having an upper surface, a lower surface and a side surface, the diameter of the upper surface and the lower surface are both 50 mm, and the length of the axial direction vertically penetrating the upper surface and the lower surface is 180 mm.
  • a columnar silica monolith with a diameter of 4.6 mm and a length of 7.4 mm is filled up to 130 mm (filling rate 72%) as the adsorbent 30, and the flow rate is changed from the bottom of the polyvinyl chloride case 20. Water was fed for 300 minutes.
  • the silica monolith was recovered from the case 20, and the fine powder was recovered using a sieve mesh with an opening of 2.36 mm.
  • the amount of fine powder generated was calculated by dividing the weight of the collected fine powder by the weight of the silica monolith before liquid transfer. Table 1 shows the amount (% by weight) of fine powder generated in this case.
  • a cylindrical polyvinyl chloride case 20 having an upper surface, a lower surface and a side surface, the diameter of both the upper surface and the lower surface being 50 mm, and the length of the axial line penetrating vertically through the upper surface and the lower surface being 180 mm.
  • a case 20 made of polyvinyl chloride is filled with a cylindrical silica monolith having a diameter of 4.6 mm and a length of 7.4 mm as an adsorbent 30 so that the filling rate is 72.2% to 100%. Water was fed from the bottom of the tube at a flow rate of 2.5 L/min for 300 minutes. After that, the amount of fine powder generated was calculated in the same manner as in Tests 1-3. Table 2 shows the amount (% by weight) of fine powder generated in this case.
  • a polyvinyl chloride case 20 having an upper surface, a lower surface and a side surface, the diameter of both the upper surface and the lower surface being 50 mm, and the length of the axial line vertically penetrating the upper surface and the lower surface being 2000 mm.
  • a columnar silica monolith with a diameter of 4.6 mm and a length of 7.4 mm is filled (filling rate 97.25%)
  • the amount of fine powder generated was calculated in the same manner as in Tests 1-3.
  • the adsorbent 30 hardly migrated in the case 20, and the amount of fine powder generated remained at 0.50% by weight.
  • FIG. 3 is a schematic diagram for explaining the configuration of the liquid treatment tower in this embodiment.
  • the liquid treatment tower 50 of this embodiment has a channel 52 through which the liquid to be treated flows, and the adsorbent cartridge 10 is provided in this channel 52 .
  • the adsorbent cartridge 10 is provided in this channel 52 .
  • two adsorbent cartridges 10 are provided in the flow path 52, but the number of adsorbent cartridges 10 to be installed depends on the height of the liquid treatment tower 50 and the height of the adsorbent cartridges 10. It can be changed as appropriate.
  • the upper surface 50 a and the lower surface 50 b of the liquid treatment tower 50 are provided with circulation ports 51 a and 51 b for passing the treatment liquid through the flow path 52 .
  • the upper surface 50a and the lower surface 50b of the liquid treatment tower 50 are lid members 56a and 56b that are detachable from the liquid treatment tower main body 54 having the flow path 52.
  • a sealing material 57 for preventing liquid leakage.
  • the lid member 56a or the lid member 56b is removed.
  • an O-ring made of, for example, fluororubber (for example, Viton (trade name of DuPont), etc.) or crude rubber is attached to the outer peripheral portion of the side surface 26 of the case 20 of the adsorbent cartridge 10.
  • a sealing member 58 can be provided to seal between the inner surface 52 a of the flow path 52 and the side surface 26 of the case 20 of the adsorbent cartridge 10 .
  • the sealing member 58 is preferably made of a material having chemical resistance and heat resistance in consideration of coming into contact with the treatment liquid.
  • the maximum value of the clearance between at least a portion of the inner surface 52a of the flow path 52 and the side surface 26 of the case 20 is set to 3 mm or less, preferably 1 mm or less, the inner surface 52a of the flow path 52 and the adsorbent It is also possible to prevent the processing liquid from leaking between the cartridge 10 and the side surface 26 of the case 20 .
  • such a liquid treatment tower 50 is used in a recovery treatment system 60 connected by a pipe 68 to a tank 62 in which the treatment liquid is stored, a liquid transfer pump 64, and a filter 66.
  • the processing liquid stored in the tank 62 is sent by the pump 64 so as to be pushed out from the lower side of the tank 62 to the liquid processing tower 50, and the target substance contained in the processing liquid is subjected to adsorption processing.
  • a valve (not shown) is provided in the piping of the recovery treatment system 60, or a vent (not shown) for air inflow is provided in the tank 62, and is operated during the adsorption treatment.
  • the direction of the liquid flow may be configured such that the processing liquid sucked from the upper side of the tank 62 is sent to the liquid processing tower 50, and a known configuration is applied as long as the object of the present invention can be achieved. be able to.
  • the filter 66 removes foreign matters other than the liquid when treating the waste liquid. That is, since the treatment liquid to be subjected to the adsorption treatment may contain unnecessary foreign matter, the case 20 is prevented from being damaged and the liquid communication holes 22a and 24a of the case 20 are prevented from being clogged.
  • a filter 66 is preferably provided at the end.
  • Reference numeral 74 denotes a valve for controlling the flow rate of the processing liquid and the direction of flow of the processing liquid.
  • the treated liquid that has passed through the liquid treatment tower 50 can be returned to the tank 62 via the circulation pipe 70 by operating the valve 74 .
  • the treated liquid passes through the liquid treatment tower 50 repeatedly, so that the target substance contained in the treated liquid can be reliably adsorbed. can be done.
  • the valve 74 When the treatment liquid is circulated and the adsorption treatment of the target substance contained in the treatment liquid is completed, after passing through the liquid treatment tower 50, the valve 74 is operated to allow the treatment liquid to flow through the drain pipe 72. can also be configured to drain the In addition, it is preferable to store the drained treatment liquid in a drain tank or the like.
  • the adsorbent cartridge 10 provided in the liquid treatment tower 50 is removed from the liquid treatment tower 50, and the target substance is desorbed from the adsorbent 30 in the adsorbent cartridge 10, thereby performing the treatment.
  • a target substance contained in a liquid can be recovered.
  • the method for desorbing the target substance from the adsorbent 30 is not particularly limited, it can be desorbed, for example, by contacting an acidic solution with the adsorbent 30 .
  • the adsorbent 30 may be extracted from the replacement port 23 of the adsorbent cartridge 10 while the adsorbent cartridge 10 is installed in the liquid treatment tower 50 without being removed from the liquid treatment tower 50 .
  • a plurality of liquid treatment towers 50 and tanks 62 may be provided and used while being switched in order. With this configuration, even during the replacement work of the adsorbent cartridge 10 of the liquid treatment tower 50, the adsorption treatment of the treatment liquid can be continued, and the stop time of the adsorption treatment can be minimized. , the recovery processing efficiency can be increased.
  • a processing liquid is sent from a tank 62 to a liquid processing tower 50 having two adsorbent cartridges 10 in a flow path 52 by using a liquid sending pump 64, whereby the processing liquid is circulated.
  • a cylindrical polyvinyl chloride adsorbent cartridge 10 having a circular upper surface, a circular lower surface, and a side surface, and having an axial length of 420 mm and an inner diameter of 135 mm vertically penetrating the upper surface and the lower surface was prepared.
  • One adsorbent cartridge 10 was filled with 1 kg of adsorbent 30 so that the filling ratio (A/H) was 95%.
  • a PGM (Platinum Group Metals) solution was used as the treatment liquid, and 20 L of the PGM solution was charged into the tank 62 .
  • the PGM solution was prepared to contain 10.5 ppm of palladium (Pd), 1.5 ppm of platinum (Pt), and 1.6 ppm of rhodium (Rh).
  • the liquid-sending pump 64 was set to send the processing liquid at a flow rate of 2 L/min and a space velocity of 18 h ⁇ 1 .
  • FIG. 7 is a graph showing the removal rate of palladium (Pd) with respect to the elapsed time (circulation time) of the treatment liquid circulation treatment.
  • FIG. 8 is a graph showing the removal rate of platinum (Pt) and rhodium (Rh) with respect to the elapsed time (circulation time) of the treatment liquid circulation treatment.
  • the target substance could be sufficiently recovered from the treatment liquid by performing the circulation treatment for about one hour. It was also confirmed that almost 100% of the target substance could be recovered from the treated solution by performing circulation treatment for about 5 hours for palladium and for about 1 hour for platinum.
  • adsorbent cartridge of the present invention by using the adsorbent cartridge of the present invention, it is possible to smoothly carry out circulation treatment without generating fine powder that hinders liquid flow, and to remove palladium (Pd) and platinum (Pt) in the solution in a short period of time. It was confirmed that most of rhodium (Rh) and rhodium (Rh) can be recovered efficiently.
  • Adsorbent cartridge 20 Case 21 Storage portion 22 Upper surface 22a Liquid circulation hole 22b Upper surface cover 23 Exchange port 24 Lower surface 24a Liquid circulation hole 26 Side surface 30 Adsorbent 50 Liquid treatment tower 50a Upper surface 50b Lower surface 51a Distribution port 51b Distribution port 52 Flow path 52a inner surface 54 liquid treatment tower main body 56a lid member 56b lid member 57 seal member 58 seal member 60 recovery treatment system 62 tank 64 liquid transfer pump 66 filter 68 pipe 70 circulation pipe 72 drainage pipe 74 valve

Abstract

[Problem] To provide: an adsorbent material cartridge that can suppress the migration of particles within a processing tank and, regardless of the height of the processing tank, can prevent pressure breakage due to the mass of the particles; and a liquid processing column using the adsorbent material cartridge. [Solution] An adsorbent material cartridge for adsorbing a target substance included in a liquid, the cartridge comprising: a case that has an upper surface, a lower surface and a side surface; and an adsorbent material that comprises porous particles accommodated in an accommodation section of the case. The upper surface and the lower surface of the case have liquid flow holes; at least the upper surface, the lower surface, or the side surface of the case has exchange holes for the adsorbent material; the case is formed from a rigid material; and the case is filled with the adsorbent material so that the apparent height thereof is at least 95% of the height of the accommodation section of the case.

Description

吸着材カートリッジ及びこれを用いた液体処理塔Adsorbent cartridge and liquid treatment tower using the same
 本発明は、処理対象の液体に含まれる、例えば、有機物や金属などの対象物質を吸着するための吸着材カートリッジ及びこの吸着材カートリッジを用いて、処理対象の液体に含まれる対象物質を回収するための液体処理塔に関する。 The present invention provides an adsorbent cartridge for adsorbing a target substance such as an organic substance or a metal contained in a liquid to be processed, and recovering the target substance contained in the liquid to be processed using the adsorbent cartridge. It relates to a liquid treatment tower for
 従来、活性炭や無機化合物などの多孔質粒子を用いた吸着プロセスとして、例えば、特許文献1に開示されるように、樹脂粒子や多孔質セラミックス粒子などを用い、有機物や、白金などの金属を、その表面又は内部で吸着することにより、有機物や金属の回収を行っている。 Conventionally, as an adsorption process using porous particles such as activated carbon and inorganic compounds, for example, as disclosed in Patent Document 1, resin particles, porous ceramic particles, etc. are used to remove organic substances and metals such as platinum. Organic substances and metals are recovered by adsorption on their surface or inside.
 このような多孔質セラミックス粒子を用いた有機物や金属などの回収方法においては、シリカ粒子の粒径が小さすぎると、処理対象の液体を粒子が充填された装置に通液した際の抵抗が大きくなってしまい、効率良く通液することが困難となる。すなわち、処理対象の液体の通過速度を高め、処理速度を上昇させることが困難となり、生産性が低下する。 In the method of recovering organic substances and metals using such porous ceramic particles, if the particle size of the silica particles is too small, the liquid to be treated is passed through a device filled with particles, resulting in a large resistance. It becomes difficult to pass the liquid efficiently. That is, it becomes difficult to raise the passage speed of the liquid to be treated and increase the treatment speed, resulting in a decrease in productivity.
 このため、処理対象の液体を通液した際の抵抗を下げるためには、多孔質セラミックス粒子の粒径を、例えば0.5mm以上の大粒径とすることが好適であることが知られている。このような大粒径の多孔質セラミックス粒子を充填した処理槽に、処理対象の液体を通液することにより、迅速で効率よく、有機物や金属などの対象物質を回収することができる。 Therefore, it is known that in order to reduce the resistance when the liquid to be treated is passed through, it is preferable to set the particle size of the porous ceramic particles to a large particle size of, for example, 0.5 mm or more. there is By passing the liquid to be treated through the treatment tank filled with such large-sized porous ceramic particles, it is possible to quickly and efficiently recover target substances such as organic substances and metals.
特許第6501282号公報Japanese Patent No. 6501282 特開平6-254542号公報JP-A-6-254542
 上述するように、このような吸着プロセスにおいては、処理対象の液体に対する粒子の抵抗が問題となってくる。例えば、特許文献2では、活性炭を用いた活性炭濾過装置において、逆洗などによる粒子の泳動によって、活性炭の摩耗が激しくなり、活性炭の充填密度が上昇して、活性炭の圧力損失が高くなることが指摘されている。 As mentioned above, in such an adsorption process, the resistance of particles to the liquid to be treated becomes a problem. For example, in Patent Document 2, in an activated carbon filtration device using activated carbon, the activated carbon is abraded severely due to migration of particles due to backwashing, etc., the packed density of the activated carbon increases, and the pressure loss of the activated carbon increases. pointed out.
 すなわち、流入する液体により処理槽内の液体が流動し、それとともに液中の粒子も攪拌され泳動することで、有機物や金属などの対象物質は粒子表面のみに吸着され、対象物質の内部拡散効果が減少し、その結果、回収効率が大きく低下してしまう。 In other words, the liquid in the treatment tank is caused to flow by the inflowing liquid, and the particles in the liquid are stirred and migrated along with it, so that the target substances such as organic substances and metals are adsorbed only on the particle surface, and the internal diffusion effect of the target substance is obtained. is reduced, resulting in a significant drop in recovery efficiency.
 また、攪拌により粒子が互いに衝突し擦れることにより破損してしまい、粒径が小さくなってしまう。さらには、処理槽の高さが非常に高い場合には、処理槽の下部側に充填された粒子が、上部側の粒子の質量により圧壊してしまうこともある。 In addition, the particles collide with each other due to stirring and are damaged by rubbing, resulting in a smaller particle size. Furthermore, when the height of the processing tank is very high, the particles packed in the lower side of the processing tank may be crushed by the mass of the particles on the upper side.
 このように、処理槽内の液体流動や粒子泳動によって、所望の回収効率が得られず、また、処理槽内に充填された粒子の粒径(粒度)も、液体処理の進行に伴って、通液処理前の粒度分布とはかけ離れたものとなってしまい、回収速度や回収効率の低下を招いてしまっていた。 As described above, the desired recovery efficiency cannot be obtained due to the liquid flow and particle migration in the treatment tank, and the particle size (granularity) of the particles filled in the treatment tank also decreases with the progress of the liquid treatment. The particle size distribution is far from the particle size distribution before the liquid passing treatment, resulting in a decrease in recovery speed and recovery efficiency.
 本発明では、このような現状に鑑み、処理槽内の粒子泳動を抑制し、併せて処理槽の高さによらず、粒子の質量による圧壊を防止することができ、対象物質について所望の回収効率を得ることができる吸着材カートリッジ及びこれを用いた液体処理塔を提供することを目的とする。 In view of such a situation, the present invention suppresses migration of particles in the treatment tank and prevents crushing due to the mass of the particles regardless of the height of the treatment tank. An object of the present invention is to provide an adsorbent cartridge capable of obtaining efficiency and a liquid treatment tower using the same.
 本発明は、上述するような従来技術における課題を解決するために発明されたものであって、本発明の吸着材カートリッジ及びこれを用いた液体処理塔は、以下のように構成されたものを含む。 The present invention was invented to solve the problems in the prior art as described above, and the adsorbent cartridge and the liquid treatment tower using the same of the present invention are constructed as follows. include.
 [1] 液体に含まれる対象物質を吸着するための吸着材カートリッジであって、
 上面、下面及び側面を有するケースと、
 前記ケースの収容部内に収容された多孔質粒子からなる吸着材と、を備え、
 前記ケースの前記上面及び前記下面に液流通孔を有し、
 前記ケースは、剛性を有する材料により形成され、
 前記吸着材を前記ケース内に充填したときの前記ケース内の吸着材の見かけ高さが、前記ケースの収容部の高さの95%以上である、吸着材カートリッジ。
[1] An adsorbent cartridge for adsorbing a target substance contained in a liquid,
a case having a top surface, a bottom surface and side surfaces;
an adsorbent made of porous particles housed in the housing portion of the case,
Having liquid flow holes in the upper surface and the lower surface of the case,
The case is made of a rigid material,
An adsorbent cartridge, wherein the apparent height of the adsorbent in the case when the adsorbent is filled in the case is 95% or more of the height of the accommodating portion of the case.
 [2] 前記ケースの剛性が、ロックウェル硬さでM55以上である、[1]に記載の吸着材カートリッジ。 [2] The adsorbent cartridge according to [1], wherein the rigidity of the case is M55 or more in terms of Rockwell hardness.
 [3] 前記ケースにおいて、前記吸着材が収容される収容部の、前記上面及び前記下面を鉛直に貫通する軸線方向の長さが、50mm以上3500mm以下である、[1]または[2]に記載の吸着材カートリッジ。 [3] In [1] or [2], wherein, in the case, the length of the accommodating portion in which the adsorbent is accommodated in the axial direction that vertically penetrates the upper surface and the lower surface is 50 mm or more and 3500 mm or less; A sorbent cartridge as described.
 [4] 前記ケースが、耐薬品性を有する材料により形成される、[1]から[3]のいずれかに記載の吸着材カートリッジ。 [4] The adsorbent cartridge according to any one of [1] to [3], wherein the case is made of a material having chemical resistance.
 [5] 前記ケースが、耐熱性を有する材料により形成される、[1]から[4]のいずれかに記載の吸着材カートリッジ。 [5] The adsorbent cartridge according to any one of [1] to [4], wherein the case is made of heat-resistant material.
 [6] 前記液流通孔の内径が、前記吸着材の最小径よりも小さい、[1]から[5]のいずれかに記載の吸着材カートリッジ。 [6] The adsorbent cartridge according to any one of [1] to [5], wherein the inner diameter of the liquid circulation hole is smaller than the minimum diameter of the adsorbent.
 [7] 前記吸着材が、セラミックスを含む、[1]から[6]のいずれかに記載の吸着材カートリッジ。 [7] The adsorbent cartridge according to any one of [1] to [6], wherein the adsorbent contains ceramics.
 [8] 前記吸着材が、シリカを含む、[7]に記載の吸着材カートリッジ。 [8] The adsorbent cartridge according to [7], wherein the adsorbent contains silica.
 [9] 前記ケースが、前記上面前記下面のうち少なくとも一方が、円形、楕円形または多角形の柱状である、[1]から[8]のいずれかに記載の吸着材カートリッジ。 [9] The adsorbent cartridge according to any one of [1] to [8], wherein at least one of the upper surface and the lower surface of the case has a circular, elliptical or polygonal columnar shape.
 [10] 液体に含まれる対象物質を回収するための液体処理塔であって、
 前記液体を流通させる流路を有し、
 [1]から[9]のいずれかに記載の吸着材カートリッジが、前記流路に1つ以上設けられる、液体処理塔。
[10] A liquid treatment tower for recovering target substances contained in liquid,
Having a channel for circulating the liquid,
A liquid treatment tower, wherein one or more adsorbent cartridges according to any one of [1] to [9] are provided in the flow path.
 [11] 前記流路の内面と前記吸着材カートリッジのケースの側面との間から、前記液体が前記流路の外に漏れないように構成される、[10]に記載の液体処理塔。 [11] The liquid treatment tower according to [10] is configured so that the liquid does not leak out of the channel from between the inner surface of the channel and the side surface of the case of the adsorbent cartridge.
 [12] 前記ケースの側面外周部にシール材を有する、[11]に記載の液体処理塔。 [12] The liquid treatment tower according to [11], which has a sealing material on the outer periphery of the side surface of the case.
 [13] 前記流路の内面と、前記ケースの側面との間のクリアランスが3mm以下である、[11]に記載の液体処理塔。 [13] The liquid treatment tower according to [11], wherein the clearance between the inner surface of the flow path and the side surface of the case is 3 mm or less.
 本発明によれば、多孔質粒子からなる吸着材を、剛性を有するケースにその容量の95%以上充填することにより、処理対象の液体を通液した際に、多孔質粒子が互いに衝突し擦れてしまうということを防止することができる。 According to the present invention, the porous particles collide with each other and rub against each other when the liquid to be treated is passed through by filling 95% or more of the capacity of the adsorbent made of the porous particles in the rigid case. It is possible to prevent it from being lost.
 また、このようなケースの収容部の高さを制限することにより、ケースの下部側の多孔質粒子が、ケースの上部側の多孔質粒子の質量や容器内の溶液の質量により圧壊してしまうということを防止することができる。 In addition, by limiting the height of the storage portion of the case, the porous particles on the lower side of the case are crushed by the mass of the porous particles on the upper side of the case and the mass of the solution in the container. can be prevented.
 このため、多孔質粒子が互いに衝突し擦れることにより粒径が小さくなってしまったり、多孔質粒子の質量により圧壊して粒径が小さくなってしまったりすることを抑制できるため、液体処理が進行しても、流速や吸着効率が低下してしまうようなことを抑制できる。 For this reason, it is possible to prevent the porous particles from colliding and rubbing against each other to reduce the particle size, or crushing the porous particles by the mass of the porous particles to reduce the particle size. However, it is possible to prevent the flow velocity and the adsorption efficiency from being lowered.
 また、このような吸着材カートリッジを、液体処理塔の流路に1つ以上設けることによって、例えば、高さが非常に高い液体処理塔であっても、多孔質粒子が互いに衝突し擦れてしまうということや、多孔質粒子の質量により圧壊してしまうということを防止することができ、液体処理が進行しても、回収速度や回収効率が低下することが少ない。 In addition, by providing one or more such adsorbent cartridges in the flow path of the liquid treatment tower, for example, even in a liquid treatment tower with a very high height, the porous particles collide with each other and rub against each other. In other words, it is possible to prevent the porous particles from collapsing due to the mass of the porous particles.
図1は、本実施形態における吸着材カートリッジの構成を説明するための模式図である。FIG. 1 is a schematic diagram for explaining the configuration of the adsorbent cartridge in this embodiment. 図2は、図1の吸着材カートリッジの中央断面図である。2 is a central cross-sectional view of the adsorbent cartridge of FIG. 1; FIG. 図3は、本実施形態における液体処理塔の構成を説明するための模式図である。FIG. 3 is a schematic diagram for explaining the configuration of the liquid treatment tower in this embodiment. 図4は、図3に示す液体処理塔を用いた回収処理システムの一実施形態を示す模式図である。FIG. 4 is a schematic diagram showing one embodiment of a recovery treatment system using the liquid treatment tower shown in FIG. 図5は、図3に示す液体処理塔を用いた回収処理システムの別の実施形態を示す模式図である。FIG. 5 is a schematic diagram showing another embodiment of the recovery treatment system using the liquid treatment tower shown in FIG. 図6は、本実施形態における液体処理塔を用いた場合の、対象物質の吸着効率を確認するための実験装置の構成を示す模式図である。FIG. 6 is a schematic diagram showing the configuration of an experimental apparatus for confirming the adsorption efficiency of a target substance when using the liquid treatment tower in this embodiment. 図7は、処理液の循環処理の経過時間に対するパラジウム(Pd)の除去率を示すグラフである。FIG. 7 is a graph showing the removal rate of palladium (Pd) with respect to the elapsed time of the treatment liquid circulation treatment. 図8は、処理液の循環処理の経過時間に対する白金(Pt)及びロジウム(Rh)の除去率を示すグラフである。FIG. 8 is a graph showing the removal rate of platinum (Pt) and rhodium (Rh) with respect to the elapsed time of circulation treatment of the treatment liquid.
 以下、本発明の実施の形態(実施例)を図面に基づいて、より詳細に説明する。
 図1は、本実施形態における吸着材カートリッジの構成を説明するための模式図、図2は、図1の吸着材カートリッジの中央断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments (examples) of the present invention will be described in more detail with reference to the drawings.
FIG. 1 is a schematic diagram for explaining the configuration of an adsorbent cartridge in this embodiment, and FIG. 2 is a central sectional view of the adsorbent cartridge of FIG.
 図1,2に示すように、本実施形態の吸着材カートリッジ10は、ケース20と、多孔質粒子からなる吸着材30と、を有する。 As shown in FIGS. 1 and 2, the adsorbent cartridge 10 of this embodiment has a case 20 and an adsorbent 30 made of porous particles.
 ケース20は、上面22と、下面24と、側面26とを有する。上面22及び下面24には、処理対象の液体(以下、単に「処理液」とも言う。)をケース20内に流入・流出させるための複数の液流通孔22a,24aを備える。 The case 20 has an upper surface 22 , a lower surface 24 and side surfaces 26 . The upper surface 22 and the lower surface 24 are provided with a plurality of liquid circulation holes 22 a and 24 a for allowing the liquid to be treated (hereinafter also simply referred to as “treatment liquid”) to flow into and out of the case 20 .
 液流通孔22a,24aから、ケース20内部に充填された吸着材30が漏出してしまうことを避けるために、液流通孔22a,24aの内径は、吸着材30の最小径よりも小さくすることが好ましい。 In order to prevent the adsorbent 30 filled inside the case 20 from leaking through the liquid circulation holes 22a, 24a, the inner diameters of the liquid circulation holes 22a, 24a should be smaller than the minimum diameter of the adsorption material 30. is preferred.
 また、ケース20の形状は、後述するような、液体処理塔の流路に挿嵌可能な形状であれば、特に限定されるものではないが、扱いの簡便さ、設計の容易さの観点から、例えば、上面22、下面24のうち少なくとも一方が、円形、楕円形または多角形の柱状とすることが好ましい。製造容易性の観点からは、上面22と下面24がともに、円形、あるいは互いに相似又は合同な多角形となっていることがより好ましい。 The shape of the case 20 is not particularly limited as long as it can be inserted into the flow path of the liquid treatment tower as described later, but from the viewpoint of ease of handling and ease of design. For example, at least one of the upper surface 22 and the lower surface 24 preferably has a circular, elliptical or polygonal columnar shape. From the viewpoint of ease of manufacture, it is more preferable that both the upper surface 22 and the lower surface 24 are circular or similar or congruent polygons.
 上面22、下面24の大きさは、円形の場合にはその直径が、10mmφ以上10000mmφ以下であること好ましく、30mmφ以上5000mmφ以下がより好ましく、45mmφ以上2000mmφ以下がさらに好ましい。また、上面22、下面24が多角形や、その他の形状の場合には、その外接円の直径が、10mmφ以上10000mmφ以下であること好ましく、30mmφ以上5000mmφ以下がより好ましく、45mmφ以上2000mmφ以下がさらに好ましい。このような大きさとすることにより、吸着効率の向上を図れるとともに、後述する液体処理塔への吸着材カートリッジ10の設置作業をスムーズに行うことができる。 When the size of the upper surface 22 and the lower surface 24 is circular, the diameter is preferably 10 mmφ or more and 10000 mmφ or less, more preferably 30 mmφ or more and 5000 mmφ or less, and further preferably 45 mmφ or more and 2000 mmφ or less. In addition, when the upper surface 22 and the lower surface 24 are polygonal or other shapes, the diameter of the circumscribed circle is preferably 10 mmφ or more and 10000 mmφ or less, more preferably 30 mmφ or more and 5000 mmφ or less, and furthermore 45 mmφ or more and 2000 mmφ or less. preferable. By using such a size, it is possible to improve the adsorption efficiency and to smoothly perform the work of installing the adsorbent cartridge 10 in the liquid treatment tower, which will be described later.
 また、本実施形態においては、ケース20の上面22に、ケース20内の吸着材30を交換するための交換口23が設けられている。なお、本実施形態においては、ケース20の上面22に、脱着可能な上面蓋部22bが設けられており、吸着材30の交換を行う場合には、この上面蓋部22bを取り外して行う。なお、使用方法によっては、この交換口23を設けずに、例えば、ケース20内に吸着材30を装入したのちに、ケース20の上面22に、複数の液流通孔22aを有する蓋部材を直接固着した構造とすることもできる。 Further, in this embodiment, the upper surface 22 of the case 20 is provided with a replacement port 23 for replacing the adsorbent 30 in the case 20 . In the present embodiment, a detachable top lid portion 22b is provided on the top surface 22 of the case 20, and the top lid portion 22b is removed when the adsorbent 30 is to be replaced. Depending on the method of use, for example, after inserting the adsorbent 30 into the case 20 without providing the replacement port 23, a cover member having a plurality of liquid flow holes 22a may be provided on the upper surface 22 of the case 20. A directly attached structure is also possible.
 なお、本実施形態においては、交換口23をケース20の上面22に設けているが、交換口23は、ケース20の下面24に設けてもよいし、また、ケース20の側面26に設けてもよい。この交換口23は、上面22または下面24に設けることにより、ケース20をより剛性の高い構造とすることができる。 In this embodiment, the replacement port 23 is provided on the upper surface 22 of the case 20, but the replacement port 23 may be provided on the lower surface 24 of the case 20, or may be provided on the side surface 26 of the case 20. good too. By providing the replacement port 23 on the upper surface 22 or the lower surface 24, the case 20 can have a more rigid structure.
 また、ケース20は、例えば、金属や樹脂などの剛性を有する材料により形成される。このような材料の剛性としては、ロックウェル硬さでM55以上であることが好ましい。なお、材料の剛性として、上限値は特にないが、例えば、樹脂を用いた場合、M135以下が一般的である。また、このようなケース20は、耐薬品性を有する材料により形成することが好ましく、例えば、希塩酸などに接しても腐食されないものがよい。さらには、ケース20は、耐熱性を有する材料により形成することが好ましく、処理液の最高温度である90℃で繰り返し使用しても、変形が生じないものが好ましい。 Further, the case 20 is made of a rigid material such as metal or resin. The rigidity of such a material is preferably M55 or more in terms of Rockwell hardness. Although there is no particular upper limit for the rigidity of the material, for example, when a resin is used, M135 or less is common. Moreover, such a case 20 is preferably made of a material having chemical resistance, and for example, a material that does not corrode even when in contact with dilute hydrochloric acid is preferred. Furthermore, the case 20 is preferably made of a heat-resistant material, and preferably does not deform even after repeated use at 90° C., which is the maximum temperature of the treatment liquid.
 なお、本発明で採用したロックウェル硬さとは、JIS Z2245:2005の「ロックウェル硬さ試験-試験方法」に準拠して測定されたロックウェル硬さ(硬さ記号:HRM)であり、その測定に使用したスケールは"M"、圧子は鋼球形6.350、試験荷重は980.7Nである。 The Rockwell hardness adopted in the present invention is the Rockwell hardness (hardness symbol: HRM) measured in accordance with JIS Z2245:2005 "Rockwell hardness test - test method". The scale used for the measurement is "M", the indenter is steel ball type 6.350, and the test load is 980.7N.
 このような材料としては、特に限定されるものではないが、例えば、チタン、アルミニウム、ステンレス(例えば、SUS304、SUS316など)、ニッケル合金(例えば、ハステロイ)などの金属や、セラミックス、ガラス、もしくは、ポリ塩化ビニル(PVC)、ポリスチレン(PS)、ポリブチレンサクシネート(PBS)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアミド(Pa)、(メタ)アクリル樹脂(PMMA)、ポリテトラフルオロエチレン(PTFE)、ポリウレタン(PU)などの樹脂など、処理液に浸した際に、自重により崩壊したり、例えば、塩酸や硝酸、王水などの酸を含む処理液によって浸食されたりせず、また、成形性に富んだ材料とすることができる。特に、濃度3mol/Lの塩酸に対して、腐食されないことが好ましい。 Examples of such materials include, but are not limited to, metals such as titanium, aluminum, stainless steel (e.g., SUS304, SUS316, etc.), nickel alloys (e.g., Hastelloy), ceramics, glass, or Polyvinyl chloride (PVC), polystyrene (PS), polybutylene succinate (PBS), polyethylene (PE), polypropylene (PP), polyamide (Pa), (meth)acrylic resin (PMMA), polytetrafluoroethylene (PTFE) ), resins such as polyurethane (PU), etc., when immersed in a processing liquid, do not collapse due to their own weight, for example, do not erode by processing liquids containing acids such as hydrochloric acid, nitric acid, and aqua regia. It can be a highly flexible material. In particular, it is preferable not to be corroded by hydrochloric acid having a concentration of 3 mol/L.
 また、ケース20において、吸着材30が収容される収容部21は、図2に示すように、上面22及び下面24を鉛直に貫通する軸線方向の長さ(高さH)を、50mm以上3500mm以下とすることが好ましく、100mm以上2500mm以下とすることがより好ましく、150mm以上2000mm以下とすることがさらに好ましい。高さHが3500mmを超えると、吸着材カートリッジの取り扱いが難しくなり、例えば、液体処理塔への挿入が困難になる。また、内部に充填した吸着材の一部が自重などによって破損する可能性が高まり、従って、微粉が発生して圧力損失が高くなり、吸着効率が低下することがある。一方で、高さHが50mmよりも小さいと、所望の吸着性能を得るために必要となる吸着材カートリッジの数が極端に多くなったり、あるいは、処理液の循環処理の時間が長くなりすぎるなどの問題が生じる結果となる。 In the case 20, the accommodating portion 21 in which the adsorbent 30 is accommodated has a length (height H) in the axial direction vertically penetrating the upper surface 22 and the lower surface 24, as shown in FIG. It is preferably 100 mm or more and 2500 mm or less, and further preferably 150 mm or more and 2000 mm or less. If the height H exceeds 3500 mm, handling of the adsorbent cartridge becomes difficult, for example, insertion into a liquid treatment tower becomes difficult. In addition, there is an increased possibility that part of the adsorbent filled inside will be damaged by its own weight or the like, so fine powder will be generated, pressure loss will increase, and adsorption efficiency will decrease. On the other hand, if the height H is less than 50 mm, the number of adsorbent cartridges required to obtain the desired adsorption performance becomes extremely large, or the processing liquid circulation processing time becomes too long. This results in the problem of
 高さHの値に対する吸着材30の充填率は、下面24から吸着材30の上部までの高さAに対する高さHの比率A/Hにより定めることができる。吸着材30の高さAは、ケース20に吸着材30を充填し、台上にてタッピングした後に測定する。 The filling rate of the adsorbent 30 with respect to the value of the height H can be determined by the ratio A/H of the height H to the height A from the lower surface 24 to the upper part of the adsorbent 30. The height A of the adsorbent 30 is measured after the case 20 is filled with the adsorbent 30 and tapped on a table.
 比率A/Hは、95%以上が好ましく、98%以上がより好ましく、99%以上が特に好ましい。なお、比率A/Hは一般的に、99.9%以下となる。
 また、収容部21に充填された吸着材30の上部から収容部21の上面22までの空間は、好ましくは20mm以下、より好ましくは15mm以下、さらに好ましくは10mm以下である。
The ratio A/H is preferably 95% or more, more preferably 98% or more, and particularly preferably 99% or more. Note that the ratio A/H is generally 99.9% or less.
The space from the top of the adsorbent 30 filled in the containing portion 21 to the upper surface 22 of the containing portion 21 is preferably 20 mm or less, more preferably 15 mm or less, and even more preferably 10 mm or less.
 また、吸着材30は、処理液に含まれる、例えば、有機物や、白金などの金属、特に貴金属などの対象物質を吸着可能なものであれば、特に限定されるものではない。 In addition, the adsorbent 30 is not particularly limited as long as it can adsorb target substances such as organic substances, metals such as platinum, especially noble metals, contained in the treatment liquid.
 吸着材の形状は、一般的に使用されるものであれば特に制限されないが、ロッド状、ペレット状、円筒状、ディスク状、球状、多面体状などとすることができる。特に、充填性などの点で、ペレット状または球状が好ましい。 The shape of the adsorbent is not particularly limited as long as it is commonly used, but it can be rod-shaped, pellet-shaped, cylindrical, disk-shaped, spherical, polyhedral, and the like. In particular, pellets or spheres are preferable in terms of filling properties.
 吸着材30の最小径は、0.2mm以上とすることが好ましく、0.5mm以上とすることがより好ましく、2mm以上が特に好ましい。吸着材30の最大径は、特に制限されるわけではないが、50mm以下が一般的である。なお、吸着材30の径は、50倍の実体顕微鏡で観察した際に、3視野中の10個の吸着材それぞれについて、外接円の直径について平均値を算出し、この平均値を吸着材30の径とした。 The minimum diameter of the adsorbent 30 is preferably 0.2 mm or more, more preferably 0.5 mm or more, and particularly preferably 2 mm or more. Although the maximum diameter of the adsorbent 30 is not particularly limited, it is generally 50 mm or less. In addition, the diameter of the adsorbent 30 is obtained by calculating the average value of the diameter of the circumscribed circle for each of the ten adsorbents in the three fields of view when observed with a 50x stereoscopic microscope, and calculating the average value of the diameter of the adsorbent 30. diameter.
 吸着材30は、多孔質であることが好ましく、特に貫通孔を有するものが好ましい。このような観点からは、吸着材30は、多孔質樹脂や、多孔質セラミックスの成形体などが好ましい。多孔質セラミックスの成形体を用いる場合は、例えばシリカを含むセラミックスや、ゼオライトなどのアルミノケイ酸塩を用いることができる。特に、シリカ骨格とマクロ孔との共連続構造を有するシリカ多孔体であるシリカモノリスとすることが好ましい。このシリカモノリスを製造する装置及び方法は、例えば、本出願人による特許第6924338号公報に記載されている。 The adsorbent 30 is preferably porous, and particularly preferably has through holes. From this point of view, the adsorbent 30 is preferably a porous resin, a porous ceramic molded body, or the like. When a porous ceramic molded body is used, for example, ceramics containing silica or an aluminosilicate such as zeolite can be used. In particular, it is preferable to use a silica monolith which is a silica porous body having a co-continuous structure of a silica skeleton and macropores. An apparatus and method for producing this silica monolith are described, for example, in Japanese Patent No. 6924338 by the present applicant.
 シリカ多孔体(シリカモノリス)は、シリカで構成される骨格と、マクロ孔との共連続構造を有する。シリカ多孔体は、シリカ骨格に形成されたメソ孔を有していてもよい。 A silica porous body (silica monolith) has a co-continuous structure of a skeleton composed of silica and macropores. The silica porous material may have mesopores formed in the silica skeleton.
 シリカ多孔体において、シリカ骨格及びマクロ孔は、それぞれ、連続した三次元網目構造を有するとともに、互いに絡み合っており、これにより、シリカ骨格とマクロ孔との共連続構造が形成されている。シリカ多孔体がシリカ骨格とマクロ孔との共連続構造を有することは、シリカ多孔体の表面又は断面を走査型電子顕微鏡(SEM)観察することにより確認することができる。 In the porous silica material, the silica skeleton and the macropores each have a continuous three-dimensional network structure and are entangled with each other, thereby forming a co-continuous structure of the silica skeleton and the macropores. Whether the porous silica has a co-continuous structure of silica skeleton and macropores can be confirmed by observing the surface or cross section of the porous silica with a scanning electron microscope (SEM).
 マクロ孔の最頻細孔径は、共連続構造体の強度を維持する観点から、80nm以上7000nm以下であることが好ましく、80nm以上5000nm以下であることがより好ましい。 From the viewpoint of maintaining the strength of the co-continuous structure, the mode diameter of the macropores is preferably 80 nm or more and 7000 nm or less, more preferably 80 nm or more and 5000 nm or less.
 メソ孔の最頻細孔径は、比表面積を向上させる観点から、2nm以上50nm以下であることが好ましく、5nm以上30nm以下であることがより好ましい。 From the viewpoint of improving the specific surface area, the mode diameter of mesopores is preferably 2 nm or more and 50 nm or less, more preferably 5 nm or more and 30 nm or less.
 シリカ多孔体の比表面積は、シリカ多孔体の吸着体又は触媒としての性能を向上させる観点から、100m2/g以上1000m2/g以下であることが好ましく、100m2/g以上800m2/g以下であることがより好ましい。 The specific surface area of the porous silica body is preferably 100 m 2 /g or more and 1000 m 2 /g or less, and more preferably 100 m 2 /g or more and 800 m 2 /g, from the viewpoint of improving the performance of the silica porous body as an adsorbent or catalyst. The following are more preferable.
 典型的には、メソ孔が形成されたセラミックス骨格とマクロ孔との共連続構造を有する柱状体が好ましい。この柱状体の平均径は、1.5mm以上20mm以下であり、水銀圧入法により細孔径50nm~500μmの範囲にて測定されたマクロ孔の最頻細孔径が、0.20μm以上3.0μm以下であり、窒素吸脱着等温線からBJH法(Barrett-Joyner-Halenda法)により測定されたメソ孔の最頻細孔径が、2.0nm以上50nm以下である、柱状体が好ましい。 Typically, a columnar body having a co-continuous structure of a ceramic skeleton with mesopores and macropores is preferred. The average diameter of the columnar body is 1.5 mm or more and 20 mm or less, and the mode pore diameter of macropores measured in a pore diameter range of 50 nm to 500 μm by mercury porosimetry is 0.20 μm or more and 3.0 μm or less. and a columnar body having a modal pore diameter of mesopores of 2.0 nm or more and 50 nm or less as measured by the BJH method (Barrett-Joyner-Halenda method) from the nitrogen adsorption-desorption isotherm.
 比表面積及びメソ孔の最頻細孔径の測定は、例えば、マイクロトラック・ベル社製の比表面積・細孔分布測定装置「BELSORP-miniX」を用いて行う。400℃で3時間、減圧脱気した吸着材30に対して、液体窒素を使用して77Kの温度での窒素吸脱着量を多点法で測定し、吸脱着等温線を求め、吸脱着等温線に基づいて、比表面積及びメソ孔の最頻細孔径を算出する。比表面積は、BET法により算出し、メソ孔の最頻細孔径は、BJH法により算出する。マクロ孔の最頻細孔径の測定は、例えば、水銀ポロシメーター(Micromeritics社製「AutoPore IV 9520」)を用いて、水銀圧入法により行う。水銀圧入法では、吸着材30の細孔に圧力を加えて水銀を浸入させ、圧力と圧入された水銀量から細孔容積と比表面積を求め、細孔を円筒と仮定したときの細孔容積と比表面積の関係から細孔直径を算出する。 Measurement of the specific surface area and the most frequent pore diameter of mesopores is performed using, for example, a specific surface area and pore distribution measuring device "BELSORP-miniX" manufactured by Microtrack Bell. For the adsorbent 30 degassed under reduced pressure at 400 ° C. for 3 hours, the amount of nitrogen adsorption and desorption at a temperature of 77 K using liquid nitrogen is measured by a multipoint method to obtain an adsorption and desorption isotherm. Based on the line, the specific surface area and the mode diameter of the mesopores are calculated. The specific surface area is calculated by the BET method, and the mode diameter of mesopores is calculated by the BJH method. Measurement of the most frequent pore diameter of macropores is performed by mercury porosimetry using, for example, a mercury porosimeter ("AutoPore IV 9520" manufactured by Micromeritics). In the mercury intrusion method, pressure is applied to the pores of the adsorbent 30 to infiltrate mercury, the pore volume and specific surface area are obtained from the pressure and the amount of injected mercury, and the pore volume when the pores are assumed to be cylindrical. and the specific surface area to calculate the pore diameter.
 ケース20内に処理液を通液した際に、吸着材30が泳動しないように、上述するような吸着材30を充填したときの見かけ高さが、ケース20の収容部21の高さの95%以上となるように、吸着材30が充填されている。なお、吸着材30の充填は、特に制限されず、ケース20内にランダムに充填されていてもよく、また、吸着材30の形状が柱状体の場合、処理液の通液方向に、吸着材30の長軸方向を並べて充填されていても、さらに斜交するように充填されていてもよい。 In order to prevent the adsorption material 30 from migrating when the processing liquid is passed through the case 20, the apparent height when the adsorption material 30 as described above is filled is 95 times the height of the housing portion 21 of the case 20. % or more, the adsorbent 30 is filled. The filling of the adsorbent 30 is not particularly limited, and the case 20 may be filled at random. 30 may be filled in parallel in the long axis direction, or may be filled so as to cross obliquely.
 <吸着材充填率試験>
 上面、下面及び側面を有し、上面及び下面の直径がともに50mm、上面及び下面を鉛直に貫通する軸線方向の長さが180mmの円筒形状のポリ塩化ビニル製のケース20の内部に、高さ130mmまで吸着材30として、直径4.6mm、長さ7.4mmの円柱状のシリカモノリスを充填(充填率72%)した状態で、ポリ塩化ビニル製のケース20の下部から流速を変動させて300分間、水を送液した。送液後、ケース20からシリカモノリスを回収し、目開きが2.36mmのふるいメッシュを用いて微粉を回収した。回収した微粉の重量を、送液前のシリカモノリスの重量で割ることで微粉発生量を算出した。この場合の微粉の発生量(重量%)を表1に示す。
<Adsorbent filling rate test>
Inside a cylindrical polyvinyl chloride case 20 having an upper surface, a lower surface and a side surface, the diameter of the upper surface and the lower surface are both 50 mm, and the length of the axial direction vertically penetrating the upper surface and the lower surface is 180 mm. A columnar silica monolith with a diameter of 4.6 mm and a length of 7.4 mm is filled up to 130 mm (filling rate 72%) as the adsorbent 30, and the flow rate is changed from the bottom of the polyvinyl chloride case 20. Water was fed for 300 minutes. After the liquid was sent, the silica monolith was recovered from the case 20, and the fine powder was recovered using a sieve mesh with an opening of 2.36 mm. The amount of fine powder generated was calculated by dividing the weight of the collected fine powder by the weight of the silica monolith before liquid transfer. Table 1 shows the amount (% by weight) of fine powder generated in this case.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この結果から、充填率を一定とした場合、流速を上げると、ケース20内での吸着材30の泳動による微粉の発生量が増大し、吸着材30がより破壊される傾向にあることが確認できた。 From this result, it is confirmed that when the filling rate is constant and the flow velocity is increased, the amount of fine powder generated due to migration of the adsorbent 30 in the case 20 increases, and the adsorbent 30 tends to be destroyed more. did it.
 一方で、上面、下面及び側面を有し、上面及び下面の直径がともに50mm、上面及び下面を鉛直に貫通する軸線方向の長さが180mmの円筒形状のポリ塩化ビニル製のケース20の内部に、充填率を72.2%~100%となるように、吸着材30として、直径4.6mm、長さ7.4mmの円柱状のシリカモノリスを充填した状態で、ポリ塩化ビニル製のケース20の下部から2.5L/分の流速で300分間、水を送液した。その後、試験1~3と同様の方法で微粉発生量を算出した。この場合の微粉の発生量(重量%)を表2に示す。 On the other hand, inside a cylindrical polyvinyl chloride case 20 having an upper surface, a lower surface and a side surface, the diameter of both the upper surface and the lower surface being 50 mm, and the length of the axial line penetrating vertically through the upper surface and the lower surface being 180 mm. A case 20 made of polyvinyl chloride is filled with a cylindrical silica monolith having a diameter of 4.6 mm and a length of 7.4 mm as an adsorbent 30 so that the filling rate is 72.2% to 100%. Water was fed from the bottom of the tube at a flow rate of 2.5 L/min for 300 minutes. After that, the amount of fine powder generated was calculated in the same manner as in Tests 1-3. Table 2 shows the amount (% by weight) of fine powder generated in this case.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この結果から、流速を一定とした場合、吸着材30の充填率が低いと、ケース20内で吸着材30が泳動し、吸着材30が破壊される傾向が強まり、充填率が上昇するにつれて、吸着材30の破壊が抑制されることが確認できた。 From this result, when the flow velocity is constant, if the filling rate of the adsorbent 30 is low, the adsorbent 30 migrates within the case 20, and the tendency to destroy the adsorbent 30 increases. It was confirmed that destruction of the adsorbent 30 was suppressed.
 さらに、上面、下面及び側面を有し、上面及び下面の直径がともに50mm、上面及び下面を鉛直に貫通する軸線方向の長さが2000mmのポリ塩化ビニル製のケース20の内部に、高さ1945mmまで、吸着材30として、直径4.6mm、長さ7.4mmの円柱状のシリカモノリスを充填(充填率97.25%)した状態で、ケース20の下部から2.5L/分の流量で300分間、水を送液した。その後、試験1~3と同様の方法で微粉発生量を算出した。この場合、ケース20内で吸着材30はほとんど泳動することなく、微粉発生量は0.50重量%に留まった。 Further, a polyvinyl chloride case 20 having an upper surface, a lower surface and a side surface, the diameter of both the upper surface and the lower surface being 50 mm, and the length of the axial line vertically penetrating the upper surface and the lower surface being 2000 mm. Until, as the adsorbent 30, a columnar silica monolith with a diameter of 4.6 mm and a length of 7.4 mm is filled (filling rate 97.25%), from the bottom of the case 20 at a flow rate of 2.5 L / min Water was fed for 300 minutes. After that, the amount of fine powder generated was calculated in the same manner as in Tests 1-3. In this case, the adsorbent 30 hardly migrated in the case 20, and the amount of fine powder generated remained at 0.50% by weight.
 このように構成される本実施形態の吸着材カートリッジ10は、処理液に含まれる対象物質を回収するため液体処理塔の流路に設置されて用いられる。
 図3は、本実施形態における液体処理塔の構成を説明するための模式図である。
The adsorbent cartridge 10 of this embodiment having such a structure is used by being installed in the flow path of the liquid treatment tower to recover the target substance contained in the treatment liquid.
FIG. 3 is a schematic diagram for explaining the configuration of the liquid treatment tower in this embodiment.
 図3に示すように、本実施形態の液体処理塔50は処理液を流通させる流路52を有し、この流路52に吸着材カートリッジ10が設けられる。
 なお、本実施形態においては、流路52に、2つの吸着材カートリッジ10を設けているが、設置する吸着材カートリッジ10の数は、液体処理塔50の高さや吸着材カートリッジ10の高さに応じて適宜変更することができる。
As shown in FIG. 3, the liquid treatment tower 50 of this embodiment has a channel 52 through which the liquid to be treated flows, and the adsorbent cartridge 10 is provided in this channel 52 .
In this embodiment, two adsorbent cartridges 10 are provided in the flow path 52, but the number of adsorbent cartridges 10 to be installed depends on the height of the liquid treatment tower 50 and the height of the adsorbent cartridges 10. It can be changed as appropriate.
 液体処理塔50の上面50a及び下面50bには、流路52に処理液を通液させるための流通口51a,51bを備えている。 The upper surface 50 a and the lower surface 50 b of the liquid treatment tower 50 are provided with circulation ports 51 a and 51 b for passing the treatment liquid through the flow path 52 .
 また、本実施形態において、液体処理塔50の上面50a及び下面50bは、流路52を有する液体処理塔本体54と脱着可能な蓋部材56a,56bとなっており、液体処理塔本体54に蓋部材56a,56bを装着する際には、液漏れを防止するためのシール材57を介することが好ましい。 Further, in this embodiment, the upper surface 50a and the lower surface 50b of the liquid treatment tower 50 are lid members 56a and 56b that are detachable from the liquid treatment tower main body 54 having the flow path 52. When attaching the members 56a and 56b, it is preferable to interpose a sealing material 57 for preventing liquid leakage.
 液体処理塔50の流路52へ吸着材カートリッジ10を設置したり、流路52から吸着材カートリッジ10を取り出したりする際には、蓋部材56a又は蓋部材56bを取り外した状態で行われる。 When installing the adsorbent cartridge 10 in the channel 52 of the liquid treatment tower 50 or removing the adsorbent cartridge 10 from the channel 52, the lid member 56a or the lid member 56b is removed.
 また、液体処理塔50に流通される処理液が、吸着材カートリッジ10のケース20内を通液するように、流路52の内面52aと、吸着材カートリッジ10のケース20の側面26との間を、処理液が通らないように構成されている。 In addition, between the inner surface 52 a of the flow path 52 and the side surface 26 of the case 20 of the adsorbent cartridge 10 , so that the treated liquid circulating in the liquid treatment tower 50 flows through the case 20 of the adsorbent cartridge 10 . is configured so that the processing liquid does not pass through.
 具体的には、図3に示すように、吸着材カートリッジ10のケース20の側面26外周部に、例えば、フッ素ゴム(例えば、バイトン(デュポン社商品名)など)製や生ゴム製のOリングなどのシール部材58を設け、流路52の内面52aと、吸着材カートリッジ10のケース20の側面26との間をシールすることができる。 Specifically, as shown in FIG. 3, an O-ring made of, for example, fluororubber (for example, Viton (trade name of DuPont), etc.) or crude rubber is attached to the outer peripheral portion of the side surface 26 of the case 20 of the adsorbent cartridge 10. A sealing member 58 can be provided to seal between the inner surface 52 a of the flow path 52 and the side surface 26 of the case 20 of the adsorbent cartridge 10 .
 この場合、シール部材58としては、処理液と触れることを考慮して、耐薬品性及び耐熱性を有する材質であることが好ましい。 In this case, the sealing member 58 is preferably made of a material having chemical resistance and heat resistance in consideration of coming into contact with the treatment liquid.
 また、流路52の内面52aと、ケース20の側面26との間の少なくとも一部のクリアランスの最大値を3mm以下、好ましくは1mm以下とすることにより、流路52の内面52aと、吸着材カートリッジ10のケース20の側面26との間を、処理液が漏れないようにすることもできる。換言すれば、流路52の内面52aと、ケース20の側面26との間のクリアランスを3mmよりも大きくした場合、吸着材30がない流路52の内面52aと、吸着材カートリッジ10のケース20の側面26との間を通る処理液の量が増加し、処理液の吸着処理の処理効率が低下することになる。 In addition, by setting the maximum value of the clearance between at least a portion of the inner surface 52a of the flow path 52 and the side surface 26 of the case 20 to 3 mm or less, preferably 1 mm or less, the inner surface 52a of the flow path 52 and the adsorbent It is also possible to prevent the processing liquid from leaking between the cartridge 10 and the side surface 26 of the case 20 . In other words, when the clearance between the inner surface 52a of the flow path 52 and the side surface 26 of the case 20 is made larger than 3 mm, the inner surface 52a of the flow path 52 without the adsorbent 30 and the case 20 of the adsorbent cartridge 10 As a result, the amount of the processing liquid passing through the side surface 26 of the processing liquid increases, and the processing efficiency of the adsorption processing of the processing liquid decreases.
 このような液体処理塔50は、図4に示すように、処理液が貯留されるタンク62、送液ポンプ64、フィルター66と、パイプ68により接続された回収処理システム60において用いられ、送液ポンプ64によって、タンク62に貯留されている処理液が、タンク62の下側から液体処理塔50へ処理液が押し出されるように送液され、処理液に含まれる対象物質の吸着処理が行われる。この送液が円滑に行われるように、回収処理システム60の配管にバルブ(図示せず)、あるいはタンク62に空気流入用のベント(図示せず)を設けて、吸着処理の際に操作してもよい。また、液流れの方向は、タンク62上側から吸引された処理液が、液体処理塔50に送液されるような構成としてもよく、本発明の目的が達成できる範囲で公知の構成を適用することができる。 As shown in FIG. 4, such a liquid treatment tower 50 is used in a recovery treatment system 60 connected by a pipe 68 to a tank 62 in which the treatment liquid is stored, a liquid transfer pump 64, and a filter 66. The processing liquid stored in the tank 62 is sent by the pump 64 so as to be pushed out from the lower side of the tank 62 to the liquid processing tower 50, and the target substance contained in the processing liquid is subjected to adsorption processing. . In order to facilitate this liquid transfer, a valve (not shown) is provided in the piping of the recovery treatment system 60, or a vent (not shown) for air inflow is provided in the tank 62, and is operated during the adsorption treatment. may Further, the direction of the liquid flow may be configured such that the processing liquid sucked from the upper side of the tank 62 is sent to the liquid processing tower 50, and a known configuration is applied as long as the object of the present invention can be achieved. be able to.
 なお、フィルター66は、廃液を処理する際に、液以外の異物を除去するものである。すなわち、吸着処理を施す対象である処理液には、不要な異物が含まれていることがあるので、ケース20の損壊を防いだり、ケース20の液流通孔22a,24aの詰まりを抑制するために、フィルター66を設けることが好ましい。
 また、符号74は、処理液の流量や、処理液の流れの方向を制御するバルブである。
The filter 66 removes foreign matters other than the liquid when treating the waste liquid. That is, since the treatment liquid to be subjected to the adsorption treatment may contain unnecessary foreign matter, the case 20 is prevented from being damaged and the liquid communication holes 22a and 24a of the case 20 are prevented from being clogged. A filter 66 is preferably provided at the end.
Reference numeral 74 denotes a valve for controlling the flow rate of the processing liquid and the direction of flow of the processing liquid.
 液体処理塔50を通過した処理液は、バルブ74の操作により、循環パイプ70を経由して、タンク62に戻すことができる。このように処理液を、タンク62と液体処理塔50とを循環させることにより、処理液が液体処理塔50を繰り返し通過することとなるため、処理液に含まれる対象物質を確実に吸着することができる。 The treated liquid that has passed through the liquid treatment tower 50 can be returned to the tank 62 via the circulation pipe 70 by operating the valve 74 . By circulating the treated liquid through the tank 62 and the liquid treatment tower 50 in this manner, the treated liquid passes through the liquid treatment tower 50 repeatedly, so that the target substance contained in the treated liquid can be reliably adsorbed. can be done.
 なお、処理液を循環処理し、処理液に含まれる対象物質の吸着処理が完了した場合には、液体処理塔50を通過した後、バルブ74の操作により、排水パイプ72を経由し、処理液を排水するように構成することもできる。なお、排水された処理液は、排水タンクなどに貯留することが好ましい。 When the treatment liquid is circulated and the adsorption treatment of the target substance contained in the treatment liquid is completed, after passing through the liquid treatment tower 50, the valve 74 is operated to allow the treatment liquid to flow through the drain pipe 72. can also be configured to drain the In addition, it is preferable to store the drained treatment liquid in a drain tank or the like.
 処理液の吸着処理が完了した場合、液体処理塔50に設けられた吸着材カートリッジ10を液体処理塔50から取り外し、吸着材カートリッジ10内の吸着材30から対象物質を脱離することによって、処理液に含まれる対象物質の回収を行うことができる。吸着材30から対象物質を脱離する方法は、特に限定されるものではないが、例えば、酸性溶液と吸着材30とを接触させることにより脱離することができる。 When the adsorption treatment of the liquid to be treated is completed, the adsorbent cartridge 10 provided in the liquid treatment tower 50 is removed from the liquid treatment tower 50, and the target substance is desorbed from the adsorbent 30 in the adsorbent cartridge 10, thereby performing the treatment. A target substance contained in a liquid can be recovered. Although the method for desorbing the target substance from the adsorbent 30 is not particularly limited, it can be desorbed, for example, by contacting an acidic solution with the adsorbent 30 .
 なお、吸着材カートリッジ10を液体処理塔50から取り外さずに、液体処理塔50に設置したまま、吸着材カートリッジ10の交換口23から、吸着材30を抜き出すようにしてもよい。 Note that the adsorbent 30 may be extracted from the replacement port 23 of the adsorbent cartridge 10 while the adsorbent cartridge 10 is installed in the liquid treatment tower 50 without being removed from the liquid treatment tower 50 .
 また、回収処理システム60としては、図5に示すように、液体処理塔50及びタンク62をそれぞれ複数設け、順番に切り替えながら用いるようにすることもできる。このように構成することにより、液体処理塔50の吸着材カートリッジ10の交換作業時においても、処理液の吸着処理を継続することができ、吸着処理の停止時間を最小限にすることができるため、回収処理効率を高くすることができる。 Also, as the recovery treatment system 60, as shown in FIG. 5, a plurality of liquid treatment towers 50 and tanks 62 may be provided and used while being switched in order. With this configuration, even during the replacement work of the adsorbent cartridge 10 of the liquid treatment tower 50, the adsorption treatment of the treatment liquid can be continued, and the stop time of the adsorption treatment can be minimized. , the recovery processing efficiency can be increased.
 <対象物質の吸着効率について>
 図6に示すように、流路52に吸着材カートリッジ10を2つ設けた液体処理塔50に、タンク62から送液ポンプ64を用いて処理液を送液することで、処理液の循環処理を行った。
<About the adsorption efficiency of the target substance>
As shown in FIG. 6, a processing liquid is sent from a tank 62 to a liquid processing tower 50 having two adsorbent cartridges 10 in a flow path 52 by using a liquid sending pump 64, whereby the processing liquid is circulated. did
 <吸着試験例>
 円形の上面、円形の下面、及び側面を有し、上面及び下面を鉛直に貫通する軸線方向の長さが420mm、内径が135mmの円筒形状のポリ塩化ビニル製の吸着材カートリッジ10を準備した。1つの吸着材カートリッジ10には、充填率(A/H)が95%となるように、1kgの吸着材30を充填した。なお、吸着材30としては、直径4.6mm、長さ7.4mmの円柱状のシリカモノリスを用いた。
<Example of adsorption test>
A cylindrical polyvinyl chloride adsorbent cartridge 10 having a circular upper surface, a circular lower surface, and a side surface, and having an axial length of 420 mm and an inner diameter of 135 mm vertically penetrating the upper surface and the lower surface was prepared. One adsorbent cartridge 10 was filled with 1 kg of adsorbent 30 so that the filling ratio (A/H) was 95%. As the adsorbent 30, a cylindrical silica monolith having a diameter of 4.6 mm and a length of 7.4 mm was used.
 処理液としては、PGM(Platinum Group Metals)溶液を用い、タンク62にはPGM溶液を20L装入した。なお、PGM溶液は、パラジウム(Pd)が10.5ppm、白金(Pt)が1.5ppm、ロジウム(Rh)が1.6ppm、含まれるように調製した。また、送液ポンプ64は、2L/分の流量、18h-1の空間速度で処理液を送液するように設定した。 A PGM (Platinum Group Metals) solution was used as the treatment liquid, and 20 L of the PGM solution was charged into the tank 62 . The PGM solution was prepared to contain 10.5 ppm of palladium (Pd), 1.5 ppm of platinum (Pt), and 1.6 ppm of rhodium (Rh). The liquid-sending pump 64 was set to send the processing liquid at a flow rate of 2 L/min and a space velocity of 18 h −1 .
 吸着処理を開始してから、適宜、循環パイプ70より処理液をサンプリングして、ICP(誘導結合プラズマ)分析によって、処理液に含まれるPGMの除去率を確認した。
 図7は、処理液の循環処理の経過時間(流通時間)に対するパラジウム(Pd)の除去率を示すグラフである。また、図8は、処理液の循環処理の経過時間(流通時間)に対する白金(Pt)及びロジウム(Rh)の除去率を示すグラフである。
After starting the adsorption treatment, the treatment liquid was appropriately sampled from the circulation pipe 70, and the removal rate of PGM contained in the treatment liquid was confirmed by ICP (inductively coupled plasma) analysis.
FIG. 7 is a graph showing the removal rate of palladium (Pd) with respect to the elapsed time (circulation time) of the treatment liquid circulation treatment. FIG. 8 is a graph showing the removal rate of platinum (Pt) and rhodium (Rh) with respect to the elapsed time (circulation time) of the treatment liquid circulation treatment.
 図7,8に示すように、循環処理を1時間程度行うことによって、処理液から十分に対象物質を回収できることが確認できた。また、パラジウムは5時間程度、白金は1時間程度、循環処理を行うことによって、処理液からほぼ100%の対象物質を回収できることが確認できた。 As shown in Figures 7 and 8, it was confirmed that the target substance could be sufficiently recovered from the treatment liquid by performing the circulation treatment for about one hour. It was also confirmed that almost 100% of the target substance could be recovered from the treated solution by performing circulation treatment for about 5 hours for palladium and for about 1 hour for platinum.
 すなわち、本発明の吸着材カートリッジを用いることで、液流動を阻害する微粉が発生することなく、循環処理を円滑に行うことができ、短時間で溶液中のパラジウム(Pd)、白金(Pt)及びロジウム(Rh)の大部分の回収が、効率よく行えることが確認できた。 That is, by using the adsorbent cartridge of the present invention, it is possible to smoothly carry out circulation treatment without generating fine powder that hinders liquid flow, and to remove palladium (Pd) and platinum (Pt) in the solution in a short period of time. It was confirmed that most of rhodium (Rh) and rhodium (Rh) can be recovered efficiently.
 以上、本発明の好ましい実施形態について説明したが、本発明はこれに限定されることはなく、本発明の目的を逸脱しない範囲で種々の変更が可能である。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to this, and various modifications are possible without departing from the scope of the present invention.
10   吸着材カートリッジ
20   ケース
21   収容部
22   上面
22a  液流通孔
22b  上面蓋部
23   交換口
24   下面
24a  液流通孔
26   側面
30   吸着材
50   液体処理塔
50a  上面
50b  下面
51a  流通口
51b  流通口
52   流路
52a  内面
54   液体処理塔本体
56a  蓋部材
56b  蓋部材
57   シール材
58   シール部材
60   回収処理システム
62   タンク
64   送液ポンプ
66   フィルター
68   パイプ
70   循環パイプ
72   排水パイプ
74   バルブ
10 Adsorbent cartridge 20 Case 21 Storage portion 22 Upper surface 22a Liquid circulation hole 22b Upper surface cover 23 Exchange port 24 Lower surface 24a Liquid circulation hole 26 Side surface 30 Adsorbent 50 Liquid treatment tower 50a Upper surface 50b Lower surface 51a Distribution port 51b Distribution port 52 Flow path 52a inner surface 54 liquid treatment tower main body 56a lid member 56b lid member 57 seal member 58 seal member 60 recovery treatment system 62 tank 64 liquid transfer pump 66 filter 68 pipe 70 circulation pipe 72 drainage pipe 74 valve

Claims (13)

  1.  液体に含まれる対象物質を吸着するための吸着材カートリッジであって、
     上面、下面及び側面を有するケースと、
     前記ケースの収容部内に収容された多孔質粒子からなる吸着材と、を備え、
     前記ケースの前記上面及び前記下面に液流通孔を有し、
     前記ケースは、剛性を有する材料により形成され、
     前記吸着材を前記ケース内に充填したときの前記ケース内の吸着材の見かけ高さが、前記ケースの収容部の高さの95%以上である、吸着材カートリッジ。
    An adsorbent cartridge for adsorbing a target substance contained in a liquid,
    a case having a top surface, a bottom surface and side surfaces;
    an adsorbent made of porous particles housed in the housing portion of the case,
    Having liquid flow holes in the upper surface and the lower surface of the case,
    The case is made of a rigid material,
    An adsorbent cartridge, wherein the apparent height of the adsorbent in the case when the adsorbent is filled in the case is 95% or more of the height of the accommodating portion of the case.
  2.  前記ケースの剛性が、ロックウェル硬さでM55以上である、請求項1に記載の吸着材カートリッジ。 The adsorbent cartridge according to claim 1, wherein the rigidity of the case is M55 or more in terms of Rockwell hardness.
  3.  前記ケースにおいて、前記吸着材が収容される収容部の、前記上面及び前記下面を鉛直に貫通する軸線方向の長さが、50mm以上3500mm以下である、請求項1に記載の吸着材カートリッジ。 2. The adsorbent cartridge according to claim 1, wherein, in said case, the length of the accommodating portion in which said adsorbent is accommodated in the axial direction that vertically penetrates said upper surface and said lower surface is 50 mm or more and 3500 mm or less.
  4.  前記ケースが、耐薬品性を有する材料により形成される、請求項1に記載の吸着材カートリッジ。 The adsorbent cartridge according to claim 1, wherein the case is made of a material having chemical resistance.
  5.  前記ケースが、耐熱性を有する材料により形成される、請求項1に記載の吸着材カートリッジ。 The adsorbent cartridge according to claim 1, wherein the case is made of a heat-resistant material.
  6.  前記液流通孔の内径が、前記吸着材の最小径よりも小さい、請求項1に記載の吸着材カートリッジ。 The adsorbent cartridge according to claim 1, wherein the inner diameter of said liquid circulation hole is smaller than the minimum diameter of said adsorbent.
  7.  前記吸着材が、セラミックスを含む、請求項1に記載の吸着材カートリッジ。 The adsorbent cartridge according to claim 1, wherein the adsorbent contains ceramics.
  8.  前記吸着材が、シリカを含む、請求項7に記載の吸着材カートリッジ。 The adsorbent cartridge according to claim 7, wherein the adsorbent contains silica.
  9.  前記ケースが、前記上面、前記下面のうち少なくとも一方が、円形、楕円形または多角形の柱状である、請求項1に記載の吸着材カートリッジ。 The adsorbent cartridge according to claim 1, wherein at least one of the upper surface and the lower surface of the case has a circular, elliptical or polygonal columnar shape.
  10.  液体に含まれる対象物質を回収するための液体処理塔であって、
     前記液体を流通させる流路を有し、
     請求項1から9のいずれか一項に記載の吸着材カートリッジが、前記流路に1つ以上設けられる、液体処理塔。
    A liquid treatment tower for recovering a target substance contained in a liquid,
    Having a channel for circulating the liquid,
    A liquid treatment tower, wherein one or more adsorbent cartridges according to any one of claims 1 to 9 are provided in the flow path.
  11.  前記流路の内面と前記吸着材カートリッジのケースの側面との間から、前記液体が前記流路の外に漏れないように構成される、請求項10に記載の液体処理塔。 11. The liquid treatment tower according to claim 10, configured so that the liquid does not leak out of the channel from between the inner surface of the channel and the side surface of the case of the adsorbent cartridge.
  12.  前記ケースの側面外周部にシール材を有する、請求項11に記載の液体処理塔。 12. The liquid treatment tower according to claim 11, which has a sealing member on the outer peripheral portion of the side surface of the case.
  13.  前記流路の内面と、前記ケースの側面との間のクリアランスが3mm以下である、請求項11に記載の液体処理塔。 12. The liquid treatment tower according to claim 11, wherein the clearance between the inner surface of said flow path and the side surface of said case is 3 mm or less.
PCT/JP2022/043655 2021-11-30 2022-11-28 Adsorbent material cartridge and liquid processing column using same WO2023100780A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021194114 2021-11-30
JP2021-194114 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023100780A1 true WO2023100780A1 (en) 2023-06-08

Family

ID=86612184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043655 WO2023100780A1 (en) 2021-11-30 2022-11-28 Adsorbent material cartridge and liquid processing column using same

Country Status (1)

Country Link
WO (1) WO2023100780A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327406A (en) * 1996-06-10 1997-12-22 Mitsubishi Materials Corp Bathtub water circulation purification unit
JPH11276839A (en) * 1998-03-31 1999-10-12 Kawai Musical Instr Mfg Co Ltd Cleaning filter, its manufacture and case therefor
JP2002066312A (en) * 2000-08-31 2002-03-05 Mitsubishi Rayon Co Ltd Adsorbent for waste purifying device and water purifying device using the same
JP2003509185A (en) * 1999-09-13 2003-03-11 バイオタージ インコーポレイテッド Purification apparatus and purification method
JP2003260461A (en) * 2002-03-12 2003-09-16 Bayer Ag Manufacturing method of highly reactive reagent for water purification
JP2017051917A (en) * 2015-09-10 2017-03-16 三菱レイヨン株式会社 Water treatment cartridge and shower head

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327406A (en) * 1996-06-10 1997-12-22 Mitsubishi Materials Corp Bathtub water circulation purification unit
JPH11276839A (en) * 1998-03-31 1999-10-12 Kawai Musical Instr Mfg Co Ltd Cleaning filter, its manufacture and case therefor
JP2003509185A (en) * 1999-09-13 2003-03-11 バイオタージ インコーポレイテッド Purification apparatus and purification method
JP2002066312A (en) * 2000-08-31 2002-03-05 Mitsubishi Rayon Co Ltd Adsorbent for waste purifying device and water purifying device using the same
JP2003260461A (en) * 2002-03-12 2003-09-16 Bayer Ag Manufacturing method of highly reactive reagent for water purification
JP2017051917A (en) * 2015-09-10 2017-03-16 三菱レイヨン株式会社 Water treatment cartridge and shower head

Similar Documents

Publication Publication Date Title
DeSilva Activated carbon filtration
Panda et al. Removal of hexavalent chromium by biosorption process in rotating packed bed
US20170121186A1 (en) Adsorptive filter unit having extended useful cycle times and/or an extended service life
US5597489A (en) Method for removing contaminants from water
WO2001081250A1 (en) Filter for purifying domestic drinking water
JP5260972B2 (en) Wastewater treatment equipment
WO2023100780A1 (en) Adsorbent material cartridge and liquid processing column using same
US20110233153A1 (en) Radial flow column
CN101060900A (en) Systems having nanostructured adsorption material and methods for purification of fluid
JP2020109369A (en) Adsorbent of iodine ion and iodate ion and removing method thereof
CN105884068A (en) Electroplating solution purifying system
JP2007245005A (en) Ion exchange resin unit
JP6087692B2 (en) Groundwater purification equipment
Khashij et al. Modeling of the adsorption breakthrough behaviors of 4-chlorophenol in a fixed bed of nano graphene oxide adsorbent
Oke et al. Purification of a dilute platinum group metals process stream using waste yeast biomass immobilized on plaster of Paris
JP7152998B2 (en) Cartridge for multi-stage loading
CN207361920U (en) A kind of water process active carbon filter
JP2020157242A (en) Activated carbon and purified water cartridge
CN216155669U (en) Reclaimed water replenishing port residual chlorine content monitoring and filtering device
Holdich et al. Boron mass transfer during seeded microfiltration
CN214990698U (en) Nuclear track membrane filter core for water filtration
CN205603256U (en) Active carbon filter
CN214360845U (en) Waste water treatment equipment for municipal works
JP2012232270A (en) Purification tank and purification system
CN215102722U (en) Water treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901213

Country of ref document: EP

Kind code of ref document: A1