WO2023099193A1 - Procédé et dispositif de commande longitudinale d'un véhicule - Google Patents

Procédé et dispositif de commande longitudinale d'un véhicule Download PDF

Info

Publication number
WO2023099193A1
WO2023099193A1 PCT/EP2022/081896 EP2022081896W WO2023099193A1 WO 2023099193 A1 WO2023099193 A1 WO 2023099193A1 EP 2022081896 W EP2022081896 W EP 2022081896W WO 2023099193 A1 WO2023099193 A1 WO 2023099193A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
vehicle
trajectory
target
controller
Prior art date
Application number
PCT/EP2022/081896
Other languages
German (de)
English (en)
Inventor
Goran Huskic
Atta Oveisi
Alexander Fürsich
Thomas Rothermel
Klaus-Peter Kuhn
Peter Boesch
André Kempf
Original Assignee
Mercedes-Benz Group AG
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mercedes-Benz Group AG, Robert Bosch Gmbh filed Critical Mercedes-Benz Group AG
Publication of WO2023099193A1 publication Critical patent/WO2023099193A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0008Feedback, closed loop systems or details of feedback error signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • B60W2710/182Brake pressure, e.g. of fluid or between pad and disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration

Definitions

  • the invention relates to a method for longitudinal control of a vehicle.
  • the invention also relates to a device for longitudinal control of a vehicle.
  • DE 102017 010 180 B3 discloses a device and a method for controlling a longitudinal position of a vehicle using a longitudinal position controller, which generates a longitudinal acceleration control signal for a subordinate acceleration control unit from a longitudinal dynamic pilot control setpoint variable and from longitudinal dynamic control error variables.
  • a current rule reference point corresponding to a current point in time and an upcoming rule reference point corresponding to a prescribable forecast point in time are determined as rule-relevant points in time.
  • Current or predicted actual-target deviations of a longitudinal position, a driving speed and an acceleration are determined for each of the control reference points and form the basis for the formation of the longitudinal-dynamic control error variables.
  • setpoint values for the acceleration are determined for each of the control reference points and are used as a basis for forming the longitudinal dynamic precontrol setpoint variable.
  • the longitudinal dynamic pilot control target variable is formed by adding the weighted target values of the acceleration determined for the control reference points to one another.
  • the invention is based on the object of specifying a new type of method and a new type of device for longitudinal control of a vehicle.
  • a controller actuating acceleration for trajectory control is based on an actual state of the vehicle, by means of which the vehicle according to specifications the desired trajectory is to be accelerated is determined.
  • a curvature of the setpoint trajectory at a current position of the vehicle is determined from a local course of the setpoint trajectory, with the curvature being used to determine an acceleration offset that decreases as the curvature increases.
  • a longitudinal acceleration resulting from the setpoint trajectory is determined as the current trajectory acceleration while the setpoint trajectory is departing from the current position of the vehicle.
  • the controller setting acceleration is limited to a value which at most corresponds to a sum of the current trajectory acceleration and acceleration offset, and the vehicle is accelerated according to the limited controller setting acceleration.
  • a trajectory control of an automated, in particular highly automated or autonomously driving vehicle is a basic prerequisite for the realization of the automated driving function. Based on data from an environment survey, a decision is made as to which actions the vehicle should carry out in the future. The result of this decision is a trajectory which, for example, depicts a position of the vehicle on a roadway over time and serves as a movement reference in a known vehicle environment.
  • the trajectory control is provided so that the trajectory is followed as precisely as possible. If a larger longitudinal position control error has built up for some reason, a trajectory specification at the setpoint position does not correspond to a trajectory specification at an actual position on the roadway where the vehicle is currently located. This means that a "target time" continues to run. There is a risk that the vehicle is in a tight curve, for example, and accelerates automatically because a temporal reference point, i.e. the target position, is already further ahead in the trajectory, for example on a straight line following the curve.
  • a discrepancy between the local reference point, ie the actual position of the vehicle, and the temporal reference point, ie the desired position of the vehicle in the trajectory, is taken into account when longitudinally controlling the vehicle taken into account.
  • a setpoint acceleration specification is limited by means of the method if this is too high at the actual position.
  • the method enables safe trajectory control with the aim of reaching a planned position at a specific point in time, with the acceleration at the actual position being limited to below the value of the acceleration specification at the target position by means of a curvature-dependent acceleration limit .
  • the actual state of the vehicle is formed at least from an actual speed of the vehicle, an actual acceleration of the vehicle and/or an actual position of the vehicle.
  • the actual state can be mapped well using these variables, so that the controller actuating acceleration can be reliably determined.
  • an actual position or a next target position from the series of target positions is used as the current position of the vehicle. This enables the current position of the vehicle to be determined easily and with sufficient accuracy to determine the curvature.
  • the longitudinal acceleration resulting from the setpoint trajectory is determined from a change over time in distances between successive setpoint positions of the setpoint trajectory. This makes it easy to determine the current trajectory acceleration.
  • the setpoint trajectory is supplied to a trajectory controller, by means of which the vehicle is to be accelerated according to the specifications of the setpoint trajectory based on the controller setting acceleration.
  • the limited controller setting acceleration is supplied to an acceleration control unit which is subordinate to the trajectory controller and which controls and/or regulates a real acceleration of the vehicle.
  • the setpoint trajectory is recalculated.
  • a deviation of the setpoint trajectory from an actual trajectory and, as a result, also a deviation of the controller setting acceleration from the corrected controller setting acceleration can thus be minimized
  • the device for longitudinal control of a vehicle as a function of a setpoint trajectory, which specifies a series of setpoint positions to be assumed by the vehicle over time, includes a trajectory controller which, based on an actual state of the vehicle, uses a setpoint trajectory supplied to it to calculate a controller actuating acceleration Trajectory control, by means of which the vehicle is to be accelerated according to specifications of the target trajectory determined.
  • the device also includes a pre-processing unit, which determines a curvature of the setpoint trajectory at a current position of the vehicle from a local course of the setpoint trajectory while the vehicle is traveling along the setpoint trajectory.
  • the pre-processing unit uses the curvature to determine an acceleration offset that decreases as the curvature increases, and during departure of the target trajectory at the current position of the vehicle, a longitudinal acceleration resulting from the target trajectory as the current trajectory acceleration.
  • the device includes a limitation unit which limits the controller setting acceleration to a value which corresponds at most to a sum of the current trajectory acceleration and acceleration offset, and an acceleration control unit which is subordinate to the trajectory controller and which accelerates the vehicle in accordance with the limited controller setting acceleration.
  • a discrepancy between the local reference point, ie the actual position of the vehicle, and the temporal reference point, ie the target position of the vehicle in the trajectory can be taken into account when longitudinally controlling the vehicle.
  • the device limits a target acceleration specification if this is too high at the actual position. With such a curvature-dependent acceleration limitation at the actual position, dangerous situations resulting from excessive acceleration can be prevented, for example excessive acceleration in a tight curve.
  • the device enables reliable trajectory control with the aim of reaching a planned position at an associated point in time, with acceleration at the actual position being, if necessary, by a curvature-dependent Acceleration limit is limited below the value of the acceleration specification at the target position.
  • the acceleration control unit is a vehicle brake system. Using this, the limited controller actuating acceleration can be set easily and reliably.
  • the latter comprises a control error monitoring unit which recalculates the setpoint trajectory if a predefined difference between the predefined controller setting acceleration and the limited controller setting acceleration is exceeded. A deviation of the setpoint trajectory from an actual trajectory and, as a result, a deviation of the controller setting acceleration from the corrected controller setting acceleration can thus be minimized.
  • FIG. 1 shows a schematic plan view of a traffic situation with a vehicle in an actual position and a target position
  • Fig. 2 shows diagrammatically time curves of an acceleration and a speed of a vehicle
  • FIG. 3 shows a schematic block diagram of a device for longitudinal control of a vehicle
  • FIG. 4 shows a diagram of a setpoint trajectory of a vehicle.
  • FIG. 1 shows a plan view of a traffic situation with a vehicle 1 in an actual position Pactual and a target position Pk and a target trajectory T SO n with several trajectory sections T SO III to T SO ii3.
  • Figure 2 are curves of a Acceleration a and a speed v of vehicle 1 according to FIG. 1 as a function of time t.
  • the vehicle 1 is designed for automated, in particular highly automated or autonomous ferry operation.
  • a trajectory control is a basic prerequisite for the realization of such an automated driving function.
  • the target trajectory T S0 n which depicts, for example, a position of the vehicle 1 on a roadway over time t and serves as a movement reference in a known vehicle environment.
  • the trajectory control is provided so that the trajectory is followed as precisely as possible. If a larger longitudinal position control error has built up for some reason, a trajectory specification at the target position Pk does not correspond to a trajectory specification at the actual position P actual on the roadway on which the vehicle 1 is currently located. This means that a "target time" continues to run.
  • the illustration shows that the actual position Pactual of the automated vehicle 1 is behind the target position Pk.
  • the actual position P is t is in the roundabout, while the target position Pk is already outside the roundabout after leaving the same.
  • FIG. 2 shows, according to the speed profile assigned to the target trajectory T S0 u and the acceleration profile, it is provided that the vehicle 1 should drive within the roundabout on the trajectory section T so ii2 at a low constant speed v and on the trajectory section T so ii3 after the roundabout until a higher speed v is reached.
  • the acceleration profile provided for the trajectory section T so ii3 is not suitable for use for a road geometry in the trajectory section T so ii2.
  • Such errors can also occur if a so-called control error monitoring module is present in the system for the automated operation of the vehicle 1, which replans the setpoint trajectory T S0 u when a control error becomes larger. This is the case, for example, when the control error is relatively large, but is below a specified threshold for re-determining the target trajectory T SO H .
  • FIG. 3 shows a block diagram of a device 2 for longitudinal control of a vehicle 1.
  • the device 2 includes a first computing unit 3 with a trajectory planning module 3.1, which plans the setpoint trajectory T SO H using data UD recorded by means of an environment detection sensor system 4.
  • the target trajectory T S0 is assigned to a further computing unit 5 with a preprocessing module 5.1, a trajectory controller 5.2, a characteristic curve 5.3, a maximum value detector 5.4 and a limiting unit 5.5.
  • the preprocessing module 5.1 derives a curvature K of the target trajectory T S0 n at a current position of the vehicle 1 from a local course of the target trajectory T S0 H while the vehicle 1 is driving along the target trajectory T S0 n .
  • the preprocessing module 5.1 determines an acceleration offset a O ff Se t that decreases as the curvature K increases, as a function of the curvature K and in particular using predicted future information.
  • This acceleration offset a O ff Se t can also be formed as a function of a coefficient of friction of a road surface and forms a permitted acceleration deviation.
  • a longitudinal acceleration resulting from the target trajectory T S0 u is determined as the current trajectory acceleration a re fptorth by means of the pre-processing module 5.1 during departure of the target trajectory T S0 u at a current position of the vehicle 1, for example the actual position Pist, and the limitation unit 5.5 fed.
  • This trajectory acceleration a re fptorth forms a reference acceleration in a trajectory point closest to the current position of vehicle 1.
  • Deviating from the actual position P is t of the vehicle 1, the current position of the vehicle 1 can also be a next target position Pk from a series of target positions Pk- n to Pk+ m of the target trajectory T s0 u shown in more detail in FIG .
  • the longitudinal acceleration resulting from the target trajectory T S0 n can be determined from a change over time in distances between successive target positions Pk- n to Pk+ m of the target trajectory T S0 u shown in more detail in FIG.
  • the acceleration offset a offset and the trajectory acceleration a re fptorth are added, with a sum formed also being fed to the limiting unit 5.5.
  • a controller actuating acceleration a c tri for trajectory control is determined by means of the trajectory controller 5.2 using the setpoint trajectory T S0 u supplied to it based on an actual state Z of the vehicle 1, by means of which the vehicle 1 is to be accelerated according to specifications of the setpoint trajectory T S0 n .
  • the actual state Z of the vehicle 1 is characterized, for example, by an actual speed VjS t , an actual acceleration aactual and the actual position P actualt of the vehicle 1 .
  • a limited controller actuating acceleration a c tri_iim is obtained from the minimum of the sum of the acceleration offset a offset and the trajectory acceleration a re fptorth and the actuating acceleration a c tri certainly.
  • trajectory accelerations a re fptorth are taken into account which are greater than a positive parameter Par, since otherwise vehicle 1 would come to a standstill in a deceleration phase.
  • a negative trajectory acceleration a re fptorth is always smaller than a positive controller actuating acceleration actri in a subsequent acceleration phase.
  • the limited controller setting acceleration ac tri_iim is fed to an acceleration control unit 6 subordinate to the trajectory controller 5.2, which accelerates the vehicle 1 according to the limited controller setting acceleration ac tri_iim.
  • the acceleration control unit 6 is, for example, a vehicle brake system. In this way the control system output is never greater than the local trajectory acceleration a re fptorth offset upwards by an allowed curvature dependent deviation.
  • the vehicle 1 in the situation shown in FIG. 1 at the actual position P actual would not accelerate to an undesirably high degree.
  • the vehicle 1 can accelerate sufficiently and compensate for a control error.
  • FIG. 4 shows a course of a possible target trajectory T S0 u of a vehicle 1.
  • the target trajectory T S0 u specifies a series of target positions Pk-n to Pk+ to be assumed by the vehicle 1 over time t at respective points in time tk - n to tk+ m m before.
  • Acceleration control unit a Acceleration actrl Controller positioning acceleration actrl lim Limited controller positioning acceleration aactual actual acceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

L'invention concerne un procédé de commande longitudinale d'un véhicule (1) en fonction d'une trajectoire cible (Tsoll), qui spécifie une série de positions cibles (Pk-n à Pk+m) devant être adoptées par le véhicule (1) dans le temps (t) ; sur la base d'un état actuel (Z) du véhicule (1), une accélération de commande de dispositif de commande (actrl)) pour la commande de trajectoire étant déterminée, avec laquelle le véhicule (1) doit être accéléré en fonction de spécifications de la trajectoire cible (Tsoll). Pendant que le véhicule (1) se déplace sur la trajectoire cible (Tsoll), une courbure (K) de la trajectoire cible (Tsoll) dans une position actuelle du véhicule est déterminée à partir d'une courbe locale de la trajectoire cible (Tsoll), sur la base de la courbure (K), un décalage d'accélération déclinant (aoffset) ayant une courbure croissante (K) étant déterminé. De plus, pendant que la trajectoire cible (Tsoll) est parcourue, dans la position actuelle du véhicule (1), une accélération longitudinale obtenue de la trajectoire cible (Tsoll) est déterminée en tant qu'accélération de trajectoire actuelle (arefPtOrth) et l'accélération de commande de dispositif de commande (actrl) est limitée à une valeur correspondant à la somme de l'accélération de trajectoire actuelle (arefPtOrth) et d'un décalage d'accélération (aoffset) en tant que maximum. Le véhicule (1) est accéléré en fonction de l'accélération de commande de dispositif de commande limitée (actrl_lim). L'invention concerne également un dispositif (2) pour la commande longitudinale d'un véhicule (1).
PCT/EP2022/081896 2021-11-30 2022-11-15 Procédé et dispositif de commande longitudinale d'un véhicule WO2023099193A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021213486.6 2021-11-30
DE102021213486.6A DE102021213486B4 (de) 2021-11-30 2021-11-30 Verfahren und Vorrichtung zur Längsregelung eines Fahrzeugs

Publications (1)

Publication Number Publication Date
WO2023099193A1 true WO2023099193A1 (fr) 2023-06-08

Family

ID=84389012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/081896 WO2023099193A1 (fr) 2021-11-30 2022-11-15 Procédé et dispositif de commande longitudinale d'un véhicule

Country Status (2)

Country Link
DE (1) DE102021213486B4 (fr)
WO (1) WO2023099193A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1008482A2 (fr) * 1998-12-07 2000-06-14 Ford Global Technologies, Inc. Régulateur de vitesse adaptif pour régler la distance entre deux véhicules, et procédé correspondant
DE102017010180B3 (de) 2017-10-30 2019-04-04 Daimler Ag Verfahren und Vorrichtung zur Regelung einer Längsposition eines Fahrzeugs
DE102018125250A1 (de) * 2018-10-12 2020-04-16 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Steuereinheit zur Führung eines Fahrzeugs
US20210078573A1 (en) * 2018-01-19 2021-03-18 Hitachi Automotive Systems, Ltd. Driver Assistance Device, Driver Assistance Method, and Driver Assistance System

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6642334B2 (ja) 2016-08-25 2020-02-05 トヨタ自動車株式会社 車両制御装置
DE102018210648A1 (de) 2018-06-28 2020-01-02 Bayerische Motoren Werke Aktiengesellschaft Längsführendes Fahrerassistenzsystem in einem Kraftfahrzeug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1008482A2 (fr) * 1998-12-07 2000-06-14 Ford Global Technologies, Inc. Régulateur de vitesse adaptif pour régler la distance entre deux véhicules, et procédé correspondant
DE102017010180B3 (de) 2017-10-30 2019-04-04 Daimler Ag Verfahren und Vorrichtung zur Regelung einer Längsposition eines Fahrzeugs
US20210078573A1 (en) * 2018-01-19 2021-03-18 Hitachi Automotive Systems, Ltd. Driver Assistance Device, Driver Assistance Method, and Driver Assistance System
DE102018125250A1 (de) * 2018-10-12 2020-04-16 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Steuereinheit zur Führung eines Fahrzeugs

Also Published As

Publication number Publication date
DE102021213486B4 (de) 2023-09-21
DE102021213486A1 (de) 2023-06-01

Similar Documents

Publication Publication Date Title
EP3523168B1 (fr) Procédé et dispositif de régulation de la dynamique de conduite pour un véhicule automobile
EP0813987B1 (fr) Procédé de commande de distance entre un véhicule et d'autres objets
EP1945494B1 (fr) Systeme de maintien sur voie lks dote d'une caracteristique modifiee de regulation dans les virages
EP2152565B1 (fr) Procédé et dispositif pour la commande d'un système d'aide à la conduite
DE102017125729A1 (de) Fahrerassistenzsystem für ein zumindest teilweise automatisch fahrendes Kraftfahrzeug, Kraftfahrzeug und Verfahren zum Regeln einer Fahrdynamik
EP3105092B1 (fr) Procédé d'utilisation d'un système de véhicule conçu pour la conduite au moins partiellement automatique d'un véhicule et véhicule automobile
DE102004040532A1 (de) Fahrzeugobjekterfassungssystem, Nachfolgesteuersystem und Fahrzeugsteuersystem
DE102005049071B4 (de) LKS-System mit I-Regler
DE102015221626A1 (de) Verfahren zur Ermittlung einer Fahrzeug-Trajektorie entlang einer Referenzkurve
DE102012017118A1 (de) Verfahren und System zum Optimieren des Fahrverhaltens eines Kraftfahrzeuges während der Fahrt
EP3771952B1 (fr) Procédé de déplacement automatique d'un appareil de travail ainsi qu'appareil de travail
DE19502954B4 (de) Verfahren zur Geschwindigkeitsregelung eines Kraftfahrzeuges
WO2019063343A1 (fr) Commande avec spécification d'un profil de vitesse
DE102019123899B3 (de) Verfahren für autonomes Fahren eines Fahrzeugs
WO2023099193A1 (fr) Procédé et dispositif de commande longitudinale d'un véhicule
DE3042723A1 (de) "verfahren und vorrichtung zur spurfuehrung eines fahrzeugs"
DE102019119350A1 (de) Seitliche Fahrsteuerung eines Fahrzeugs
DE102018207807A1 (de) Fahrstrategie bei automatischer Längsführung für Kurven auf Basis einer digitalen Karte
WO2022214451A1 (fr) Procédé de création de trajectoire de guidage pour un premier véhicule à moteur, procédé de commande d'un véhicule à moteur et procédé de fonctionnement d'un véhicule à moteur
DE102017220486A1 (de) Verfahren zur Adaption einer vorbestimmten Referenzlinie für ein Kraftfahrzeug und Vorrichtung
WO2020001879A1 (fr) Procédé pour fournir des rayons d'une portion de courbe d'un itinéraire au moyen de données de navigation géométriques d'une carte de navigation numérique d'un véhicule, support lisible par ordinateur, système et véhicule comprenant le système
WO2023099260A1 (fr) Procédé et dispositif de commande longitudinale d'un véhicule
DE102005002192B4 (de) Verfahren zum Betrieb einer Krananlage, insbesondere eines Containerkrans, sowie Krananlage, insbesondere Containerkran
EP3887911B1 (fr) Procédé de commande d'un processus d'automatisation en temps réel
DE102016202950A1 (de) Verfahren für einen Geschwindigkeitsregler und Geschwindigkeitsregler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22817943

Country of ref document: EP

Kind code of ref document: A1