WO2023098740A1 - 一种有机室温电致磷光材料、制备方法及其有机电致发光二极管 - Google Patents

一种有机室温电致磷光材料、制备方法及其有机电致发光二极管 Download PDF

Info

Publication number
WO2023098740A1
WO2023098740A1 PCT/CN2022/135530 CN2022135530W WO2023098740A1 WO 2023098740 A1 WO2023098740 A1 WO 2023098740A1 CN 2022135530 W CN2022135530 W CN 2022135530W WO 2023098740 A1 WO2023098740 A1 WO 2023098740A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
substituted
unsubstituted
temperature
reaction
Prior art date
Application number
PCT/CN2022/135530
Other languages
English (en)
French (fr)
Inventor
丁军桥
徐露琳
Original Assignee
云南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云南大学 filed Critical 云南大学
Publication of WO2023098740A1 publication Critical patent/WO2023098740A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/04Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • C07D219/06Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/341,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
    • C07D265/38[b, e]-condensed with two six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/18[b, e]-condensed with two six-membered rings
    • C07D279/22[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains three hetero rings
    • C07D513/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/22Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6578Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and sulfur atoms with or without oxygen atoms, as ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms

Definitions

  • the invention belongs to the technical field of photoelectric materials, and in particular relates to an organic room temperature electrophosphorescent material, a preparation method and an organic electroluminescence diode.
  • organic light-emitting display Compared with liquid crystal display (LCD), organic light-emitting display (OLED) has outstanding characteristics such as self-illumination, wide viewing angle, high response speed, ultra-thin, and low temperature resistance, and has become a new generation of display technology that is being developed internationally.
  • the existing organic electroluminescent materials can be divided into fluorescent materials, phosphorescent metal complexes and thermally activated delayed fluorescent materials.
  • fluorescent materials only 25% of the singlet excitons can be utilized, and 75% of the triplet excitons are lost by non-radiative attenuation, so the maximum theoretical quantum efficiency is limited to 25%.
  • thermally activated delayed fluorescent materials with low cost of fluorescent materials and high efficiency of phosphorescent metal complexes have been developed subsequently.
  • the triplet excitons in thermally activated delayed fluorescent materials can use the ambient heat to reverse intersystem crossing to the singlet state, and generate additional delayed fluorescence emission in addition to the instantaneous fluorescence, thereby achieving 100% theoretical internal quantum efficiency, but thermal activation delays Fluorescent materials have poor processability.
  • the present invention provides an organic room temperature electrophosphorescent material, a preparation method and an organic electroluminescent diode thereof.
  • the organic room temperature electrophosphorescent material provided by the present invention can obtain effective room temperature phosphorescence in an amorphous state.
  • the invention provides an organic room-temperature electrophosphorescent material, which has a structure shown in formula I:
  • the X is independently selected from O or S;
  • the D is a condensed aromatic amine electron donor with a structure shown in formula II-1 or II-2:
  • Ar 1 , Ar 2 and Ar 3 are the same or different, and are independently selected from any of the structures shown in formulas III-1 to III-9:
  • the Y and V are the same, or different, independently selected from C, Si, N, O or S;
  • the R 5 or R 6 is a substituted or unsubstituted C1-C20 linear alkyl group, a substituted or unsubstituted C1-C20 linear alkoxy group, a substituted or unsubstituted C1-C20 linear alkoxy group, a substituted or unsubstituted Any one of substituted C3-C20 branched-chain alkyl, substituted or unsubstituted C3-C20 branched-chain alkoxy, phenyl and hydrogen;
  • the R 5 or R 6 is a substituted or unsubstituted C1-C20 straight-chain alkyl group, a substituted or unsubstituted C1-C20 straight-chain alkoxy group, a substituted or unsubstituted C3 Any one of ⁇ C20 branched chain alkyl, substituted or unsubstituted C3 ⁇ C20 branched alkoxy and phenyl;
  • Said 1 is a five-membered ring or a six-membered ring;
  • said Z 1 is independently a single bond
  • said Z1 is independently C, Si, N, O or S;
  • the 2 or 3 are independently acyclic, five-membered or six-membered rings;
  • said Z 2 or Z 3 are independently single bonds
  • said Z 2 or Z 3 are independently C, Si, N, O or S;
  • the R 1 to R 4 are independently substituted or unsubstituted C1-C20 straight-chain alkyl, substituted or unsubstituted C1-C20 straight-chain alkoxy, substituted or unsubstituted C3-C20 branched-chain alkyl, Substituted or unsubstituted C3-C20 branched alkoxy or hydrogen;
  • n 1 to n 3 are integers of 1 to 5 independently.
  • the D is one of the structures shown in formula IV-1 to formula IV-52:
  • said A is one of the structures shown in formulas V-1 to V-34:
  • the present invention provides a method for preparing an organic room-temperature electrophosphorescent material described in the above-mentioned technical scheme.
  • the intermediate D-XH, the intermediate F-A, an organic solvent, a dehydrating agent and a basic catalyst are subjected to a nucleophilic substitution reaction. , to obtain the organic room temperature electrophosphorescent material having the structure of formula I.
  • the nucleophilic substitution reaction comprises the following steps:
  • the intermediate D-XH, polar organic solvent, dehydrating agent and basic catalyst are subjected to a pre-dehydration reaction to obtain an intermediate reaction liquid;
  • the pre-dehydration reaction temperature is 130-160°C, and the reaction time is 1 ⁇ After 3 hours;
  • the intermediate reaction solution and intermediate F-A to carry out nucleophilic substitution reaction to obtain the organic room temperature electrophosphorescent material;
  • the temperature of the nucleophilic substitution reaction is 140-220°C, and the reaction time of the nucleophilic substitution reaction is 8 ⁇ 20h, the molar ratio of the intermediate D-XH to the intermediate F-A is (1 ⁇ 1.3):1.
  • the present invention provides an organic electroluminescent diode, wherein the light-emitting layer includes at least one organic room-temperature electroluminescent material described in the above technical solution.
  • the organic room temperature electrophosphorescent material described in the above technical solution is used as a light-emitting layer itself or as a guest doped in a host material to form a light-emitting layer.
  • the organic room-temperature electrophosphorescent material described in the above technical solution is used as a host, and conventional fluorescent materials, phosphorescent metal complexes, and heat-activated delayed fluorescent materials are doped as guests to form a light-emitting layer.
  • the organic room-temperature electrophosphorescent material provided by the present invention has the characteristic structures of a condensed aromatic amine electron donor D and an electron acceptor A, wherein the fused aromatic amine electron donor D has the structure described in formula II-1 or II-2, and the fused aromatic amine electron donor D has the structure described in formula II-1 or II-2, and
  • the arylamine electron donor provides molecular rigidity and inhibits the non-radiative decay of triplet excitons; X regulates intramolecular charge transfer and enhances the spin-orbit coupling effect, and A acts as an electron acceptor to receive electrons provided by D, and finally in the amorphous state efficient room temperature phosphorescence.
  • Fig. 1 is the absorption spectrum of molecule I-26 in the methylene chloride solution of the embodiment 1 of the present invention, non-doped thin film steady-state photoluminescence spectrum and non-doped thin film room temperature phosphorescence spectrum;
  • Fig. 2 is the molecule I-26 non-doped thin film steady-state photoluminescence temperature dependence spectrum of embodiment 1 of the present invention
  • Fig. 3 is the molecular I-26 non-doped thin film transient photoluminescence temperature dependence spectrum of embodiment 1 of the present invention
  • Fig. 4 is the external quantum efficiency-brightness curve of the OLED device prepared by Example 8 of the present invention and Comparative Example 2;
  • Fig. 5 is the electroluminescence spectrum of the OLED device prepared by Example 8 of the present invention and Comparative Example 2;
  • Fig. 6 is a comparison chart of external quantum efficiency-brightness curves of organic light-emitting diode devices prepared in Example 9 of the present invention and Comparative Example 3;
  • FIG. 7 is the electroluminescent spectrum of the organic light emitting diode devices prepared in device example 9 and comparative example 3 of the present invention.
  • the invention provides an organic room-temperature electrophosphorescent material, which has a structure shown in formula I:
  • the X is independently selected from O or S;
  • the D is a condensed aromatic amine electron donor with a structure shown in formula II-1 or II-2:
  • Ar 1 , Ar 2 and Ar 3 may be the same or different, and are independently selected from any of the structures shown in formulas III-1 to III-9:
  • the Y and V can be the same or different, independently selected from C, Si, N, O or S;
  • the R 5 or R 6 is a substituted or unsubstituted C1-C20 linear alkyl group, a substituted or unsubstituted C1-C20 linear alkoxy group, a substituted or unsubstituted C1-C20 linear alkoxy group, a substituted or unsubstituted Any one of substituted C3-C20 branched-chain alkyl, substituted or unsubstituted C3-C20 branched-chain alkoxy, and phenyl;
  • the R 5 or R 6 is a substituted or unsubstituted C1-C20 straight-chain alkyl group, a substituted or unsubstituted C1-C20 straight-chain alkoxy group, a substituted or unsubstituted C3 Any one of ⁇ C20 branched alkyl, substituted or unsubstituted C3 ⁇ C20 branched alkoxy, phenyl;
  • Said 1 is a five-membered ring or a six-membered ring;
  • said Z 1 is independently a single bond
  • said Z1 is independently C, Si, N, O or S;
  • the 2 or 3 are independently acyclic, five-membered or six-membered rings;
  • said Z 2 or Z 3 are independently single bonds
  • said Z 2 or Z 3 are independently C, Si, N, O or S;
  • the R 1 to R 4 are independently substituted or unsubstituted C1-C20 straight-chain alkyl, substituted or unsubstituted C1-C20 straight-chain alkoxy, substituted or unsubstituted C3-C20 branched-chain alkyl, Substituted or unsubstituted C3-C20 branched alkoxy or hydrogen;
  • n 1 to n 3 are integers of 1 to 5 independently.
  • said C or Si is connected with 1 or 2 substituents other than H .
  • said C or Si is connected with 1 or 2 Hs.
  • said N is connected with a substituent other than H.
  • said N is connected with one H.
  • the D is used as an electron donor, and the D is preferably one of the structures shown in formula II-1 or II-2.
  • the D is preferably any one of the structures shown in formulas IV-1 to IV-52:
  • the X is O or S, and the X regulates intramolecular charge transfer while enhancing the spin-orbit coupling effect.
  • the A acts as an electron acceptor to receive electrons provided by D.
  • said A is preferably one of the structures shown in formulas V-1 to V-34:
  • the organic room temperature electrophosphorescent material preferably has any one of the structures shown in formulas I-1 to I-208:
  • the present invention provides a method for preparing an organic room temperature electrophosphorescent material described in the above technical solution, comprising the following steps:
  • the intermediate D-XH, the intermediate F-A, an organic solvent, a dehydrating agent and a basic catalyst are subjected to a nucleophilic substitution reaction to obtain the organic room-temperature electrophosphorescent material having the structure of formula I.
  • -XH is connected to the benzene ring in the D structure.
  • the D-XH is specifically the intermediate D-OH or the intermediate D-SH.
  • the present invention has no special requirements on the source of the intermediate D-XH, and commercially available or self-made products can be used.
  • the intermediate D-OH or the intermediate D-SH is preferably a self-made product
  • the present invention has no special requirements for the preparation method of the intermediate D-OH or the intermediate D-SH. Preparation methods known to those skilled in the art can be used.
  • the preparation method of the M1 is specifically:
  • 9,9-dihydroacridine bromide (19g, 65mmol), fresh sodium methoxide (40.7g, 750mmol), cuprous iodide (37g, 195mmol) and DMF were mixed at 85°C for methylation reaction to obtain formazan Oxy-9,9-dihydroacridine;
  • Methoxy 9,9-dihydroacridine (8g, 33.4mmol), bromobenzene (6.3g, 40.1mmol), tridibenzylideneacetone dipalladium (Pd 2 (dba) 3 ) (1.23g, 1.336 mmol), sodium tert-butyl alkoxide (t-BuONa) (8g, 83.5mmol), tri-n-butylphosphonium tetrafluoroborate ([Hp(t-Bu) 3 ]BF 4 ) (1.93g, 6.68mmol) in toluene Mix in medium and carry out Buchwald-hlartwig coupling reaction at 120°C to obtain 9,9-dihydroacridine substituted with benzene ring;
  • the synthetic route of M1 is:
  • the preparation method of the M3 is specifically:
  • Methyl substitution of methoxy 9,9-dihydroacridine (5 g, 20.1 mmol), ICH3 (3.6 g, 25.36 mmol), NaH (0.8 g, 34.12 mmol) and tetrahydrofuran (THF) at room temperature gave Methyl substituted methoxy 9,9-dihydroacridine;
  • Methyl-substituted methoxy 9,9-acridine (5 g, 19.75 mmol), BBr 3 (9.9 g, 39.50 mmol) and dichloromethane were mixed at 0° C. to obtain M3.
  • the synthetic route of the M3 is:
  • the preparation method of the M4 is specifically:
  • Carbazole bromide (18g, 73mmol), sodium methoxide (40.7g, 750mmol), cuprous iodide (41.7g, 219mmol) and DMF were mixed at 85°C for methylation reaction to obtain methoxycarbazole;
  • Methoxycarbazole (9.6g, 48.7mmol), bromobenzene (9.2g, 58.44mmol), tridibenzylideneacetone dipalladium (Pd 2 (dba) 3 ) (1.78g, 1.948mmol), tert-butyl Sodium butyl alcoholate (t-BuONa) (11.7g, 121.75mmol), tri-n-butylphosphonium tetrafluoroborate ([Hp(t-Bu) 3 ]BF 4 ) (2.83g, 9.74mmol) and toluene were mixed at 120°C Carry out Buchwald-hlartwig coupling reaction to obtain phenyl ring substituted methoxycarbazole;
  • the synthetic route of the M4 is:
  • the preparation method of the M5 is specifically:
  • Methoxyphenoxazine (6.4g, 30mmol), bromobenzene (5.5g, 58.44mmol), tridibenzylideneacetone dipalladium (Pd 2 (dba) 3 ) (1.09g, 1.2mmol), tert-butyl Sodium butyl alcoholate (t-BuONa) (7.2g, 75mmol), tri-n-butylphosphonium tetrafluoroborate ([Hp(t-Bu) 3 ]BF 4 ) (2.74g, 9.74mmol) and toluene were mixed at 120°C Buchwald-hlartwig coupling reaction to obtain phenyl ring substituted methoxyphenoxazine;
  • the synthetic route of the M5 is:
  • the preparation method of the M6 is specifically:
  • the synthetic route of the M6 is:
  • the present invention has no special requirements on the source of the intermediate F-A, and commercially available products can be used.
  • -F is connected to the benzene ring in the structure of A.
  • said F-A is specifically M2 or M7
  • the molar ratio of the intermediate D-XH to the intermediate F-A is preferably (1-1.3):1, more preferably (1.15-1.28):1.
  • the polar organic solvent is preferably N-methylpyrrolidone and/or N,N-dimethylformamide.
  • the volume ratio of the amount of the intermediate D-XH to the polar organic solvent is preferably (0.25-0.5) mmol: 1 mL.
  • the dehydrating agent is preferably toluene and/or benzene, more preferably toluene.
  • the volume ratio of the polar organic solvent and the dehydrating agent is preferably 1:1.
  • the basic catalyst preferably includes alkali metal carbonate, more preferably potassium carbonate and/or cesium carbonate.
  • the molar ratio of the intermediate D-XH to the basic catalyst is preferably 1:(1.15 ⁇ 1.2).
  • the nucleophilic substitution reaction comprises the following steps:
  • the intermediate D-XH, a polar organic solvent, a dehydrating agent and a basic catalyst are subjected to a dehydration reaction to obtain an intermediate reaction liquid;
  • the reaction temperature is 130-160° C., and the reaction time is 1 to 3 hours;
  • the intermediate reaction solution and intermediate F-A to carry out nucleophilic substitution reaction to obtain the organic room temperature electrophosphorescent material;
  • the temperature of the nucleophilic substitution reaction is 140-220°C, and the reaction time of the nucleophilic substitution reaction is 8-20h, the molar ratio of the intermediate D-XH to the intermediate F-A is (1-1.3):1. .
  • the temperature of the dehydration reaction is 130-160°C, more preferably 140-155°C.
  • the time of the dehydration reaction is preferably 1-3h, more preferably 2h.
  • the dehydration reaction is preferably carried out in a protective atmosphere, and the protective atmosphere is preferably nitrogen or an inert gas, more preferably an inert gas.
  • the specific implementation of the dehydration reaction is preferably heating to reflux, and in the present invention, the heating to reflux is preferably carried out with a condensation tube connected to a water separator.
  • the moisture in the first mixed liquid is preferably removed by heating to reflux.
  • the order of feeding during the dehydration reaction is preferably to mix the intermediate D-XH with the basic catalyst, then mix it with the polar organic solvent in a protective atmosphere, and finally mix it with the dehydrating agent Mix and heat to reflux for dehydration reaction to obtain an intermediate reaction liquid.
  • the present invention performs a nucleophilic substitution reaction on the intermediate reaction solution and the intermediate F-A to obtain the organic room temperature electrophosphorescent material; the temperature of the nucleophilic substitution reaction is 140-220°C, The reaction time of the nucleophilic substitution reaction is 8-20 hours, and the molar ratio of the intermediate D-XH to the intermediate F-A is (1-1.3):1.
  • the intermediate F-A is preferably used in the form of an intermediate F-A solution.
  • the solvent in the intermediate F-A solution is preferably N-methylpyrrolidone and/or N,N-dimethyl base formamide.
  • the present invention has no special requirements on the molar concentration of the intermediate F-A solution, as long as the intermediate F-A can be completely dissolved.
  • the temperature of the nucleophilic substitution reaction is preferably 140-220°C, more preferably 190-210°C.
  • the time for the nucleophilic substitution reaction is preferably 8-20 hours, more preferably 8.5-18 hours.
  • the present invention preferably monitors the reaction progress of said nucleophilic substitution reaction by thin film chromatography.
  • the present invention preferably performs post-treatment on the nucleophilic substitution reaction solution obtained from the nucleophilic substitution reaction to obtain the organic room temperature electrophosphorescent material.
  • the post-treatment preferably includes: sequentially washing with water, extracting with an organic solvent, drying the organic phase, concentrating, silica gel column chromatography, and drying the eluent.
  • the water washing is preferably mixing the nucleophilic substitution reaction solution with water, the water is preferably deionized water, and the number of times of the water washing is preferably 1 to 3 times, and each time the water washing, the The volume of nucleophilic substitution reaction solution and water is preferably 2:1.
  • the water washing is preferably performed at room temperature. The invention provides water washing to remove the high boiling point solvent in the reaction solution.
  • the present invention preferably carries out organic solvent extraction to the reaction liquid after described water washing, and the organic solvent of described organic solvent extraction is preferably dichloromethane, and the volume ratio of the reaction liquid after described water washing and described organic solvent is preferably 2:1 .
  • the number of organic solvent extraction is preferably 1 time.
  • the organic phase and the raffinate phase are obtained after the organic solvent extraction.
  • the organic phase is preferably dried, and in the present invention, the desiccant for drying is preferably anhydrous sodium sulfate.
  • the present invention has no special requirements on the volume of the organic phase and the mass ratio of the desiccant.
  • the dried organic phase is preferably concentrated, the concentration is preferably heating concentration, and the volume of the concentrated organic phase is preferably 0.3-0.5 of the volume of the organic phase before concentration.
  • the present invention preferably carries out silica gel column chromatography to the concentrated organic phase
  • the elution solvent of described silica gel column chromatography is preferably the mixed solvent of sherwood oil and methylene chloride, and the volume ratio of described sherwood oil and methylene chloride is preferably 5:1.
  • the solvent used to dissolve the sample during elution is preferably the same as the elution solvent.
  • the product obtained by silica gel column chromatography is preferably dried to obtain a white solid, which is the organic room-temperature electrophosphorescent material represented by formula I.
  • the present invention has no special requirements on the specific implementation process of the drying.
  • the present invention provides an organic electroluminescent diode, the light-emitting layer includes at least one organic room-temperature electroluminescent material as claimed in claim 1.
  • the organic room temperature electrophosphorescent material described in the above technical solution is used as the light emitting layer itself or preferably as a guest doped in the host material to form the light emitting layer.
  • the organic room-temperature electrophosphorescent material described in the above technical solution is preferably used as a host, and one or more of traditional fluorescent materials, phosphorescent metal complexes and thermally activated delayed fluorescent materials are doped as a guest to form a light-emitting layer. .
  • the organic room temperature electrophosphorescent material when the organic room temperature electrophosphorescent material is preferably mixed with one or more of traditional fluorescent materials, phosphorescent metal complexes or thermally activated delayed fluorescent materials as a light emitting material, the The mass percentage of the organic room-temperature electrophosphorescent material in the luminescent material is preferably 90-95%.
  • the organic light emitting diode comprises a substrate and an anode layer, a hole injection layer (HAT-CN), a first hole transport layer (NPB), Second hole transport layer (TCTA), light emitting layer, insertion layer (TmPyPB), electron transport layer (ETL) and cathode.
  • HAT-CN hole injection layer
  • NPB first hole transport layer
  • TCTA Second hole transport layer
  • TmPyPB light emitting layer
  • ETL electron transport layer
  • cathode cathode.
  • the anode layer is preferably indium tin oxide (ITO), and the present invention has no special requirement on the thickness of the anode layer.
  • the hole injection layer is preferably 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene, the The thickness of the hole injection layer is preferably 3 nm.
  • the first hole transport layer is preferably N,N'-diphenyl-N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-bis Amine, the thickness of the first hole transport layer is preferably 40nm.
  • the second hole transport layer is preferably 4,4',4'-tris(carbazol-9-yl)triphenylamine, and the thickness of the second hole transport layer is preferably 10 nm.
  • the light-emitting layer preferably includes the organic room temperature electrophosphorescent material described in the above technical solution or the organic room temperature electrophosphorescent material prepared by the preparation method described in the above technical solution.
  • the light-emitting layer preferably includes one or more mixed light-emitting materials of the organic room-temperature electrophosphorescent material and conventional fluorescent materials, phosphorescent metal complexes or thermally activated delayed fluorescent materials.
  • the mass percentage of the organic room-temperature electrophosphorescent material in the mixed luminescent material is preferably 90-95%.
  • the thickness of the light-emitting layer is preferably 15 nm.
  • the insertion layer is preferably 1,3,5-tris[(3-pyridyl)-3-phenyl]benzene, and the thickness of the insertion layer is preferably 50 nm.
  • the electron transport layer is preferably 8-hydroxyquinoline-lithium, and the thickness of the electron transport layer is preferably 1 nm.
  • the cathode is preferably aluminum, and the thickness of the cathode is preferably 100 nm.
  • the present invention has no special requirements on the preparation method of the organic light-emitting diode. It can be carried out by a numerical method of those skilled in the art, such as chemical deposition method.
  • Fig. 1 shows the absorption spectrum, steady-state photoluminescence spectrum and room temperature phosphorescence spectrum of the non-doped thin film of molecule I-26 of Example 1 of the present invention in dichloromethane solution. It can be seen from Figure 1 that the absorption peaks of molecule I-26 in Example 1 are located at 280nm and 298nm; the steady-state photoluminescence peak of the non-doped film is located at 497nm, and the room temperature phosphorescence peak of the non-doped film is located at 502nm.
  • Fig. 2 is the temperature dependence spectrum of the steady-state photoluminescence of the non-doped film of molecule I-26 in Example 1. It can be seen from Figure 2 that as the temperature rises, the steady-state photoluminescence intensity of the non-doped thin film decreases.
  • Fig. 3 is the temperature dependence spectrum of the transient photoluminescence of the non-doped thin film of molecule I-26 in Example 1. It can be seen from Figure 3 that the lifetime of the non-doped thin film becomes shorter as the temperature rises.
  • Diphenylamine (08.45g, 50mmol), 4-methoxyiodobenzene (11.7g, 50mmol), tridibenzylideneacetone dipalladium (Pd 2 (dba) 3 ) (1.84g, 2mmol), tert-butyl Sodium alkoxide (t-BuONa) (2.96g, 10mmol), tri-n-butylphosphonium tetrafluoroborate ([Hp(t-Bu) 3 ]BF 4 ) (12.g, 125mmol) and toluene were mixed at 120°C for Buchwald -hlartwig coupling reaction to obtain methoxytriphenylamine; mix methoxytriphenylamine, BBr 3 and dichloromethane at 0°C to obtain M9.
  • the NMR data of M9 are: 1 HNMR (500MHz, CDCl 3 , ⁇ ppm): 7.21(s, 4H), 7.01(s, 7H), 6.76(s, 3H).
  • the synthetic route of M9 is:
  • ITO transparent conductive glass is ultrasonically treated in a cleaning agent, baked in a clean environment until the water is completely removed, cleaned with ultraviolet light and ozone, and bombarded with low-energy cations; according to the organic light-emitting diode device structure: indium tin oxide (ITO)/ 2,3,6,7,10,11-Hexacyano-1,4,5,8,9,12-hexaazatriphenylene (HAT-CN) (3nm)/N,N'-diphenyl N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine (NPB) (40nm)/4,4',4'-tri(carbazole-9 -yl) triphenylamine (TCTA) (10nm)/molecule I-26 (15nm)/1,3,5-tris[(3-pyridyl)-3-phenyl]benzene (TmPyPB) prepared in Example 1 (50nm
  • ITO transparent conductive glass is ultrasonically treated in a cleaning agent, baked in a clean environment until the water is completely removed, cleaned with ultraviolet light and ozone, and bombarded with low-energy cations; according to the organic light-emitting diode device structure: indium tin oxide (ITO)/ 2,3,6,7,10,11-Hexacyano-1,4,5,8,9,12-hexaazatriphenylene (HAT-CN) (3nm)/N,N'-diphenyl N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine (NPB) (40nm)/4,4',4'-tri(carbazole-9 -yl) triphenylamine (TCTA) (10nm)/comparative example 1 product (15nm)/1,3,5-tris[(3-pyridyl)-3-phenyl]benzene (TmPyPB) (50nm)/8
  • ITO transparent conductive glass is ultrasonically treated in a cleaning agent, baked in a clean environment until the water is completely removed, cleaned with ultraviolet light and ozone, and bombarded with low-energy cations; according to the organic light-emitting diode device structure: indium tin oxide (ITO)/ 2,3,6,7,10,11-Hexacyano-1,4,5,8,9,12-hexaazatriphenylene (HAT-CN) (3nm)/N,N'-diphenyl N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine (NPB) (40nm)/4,4',4'-tri(carbazole-9 - base) triphenylamine (TCTA) (10nm)/molecule I-26 prepared in Example 1 as the main body, the phosphorescent material PO-01 as the guest, and the doping amount is 8%, (15nm)/1,3,5- Tris[(3-pyr
  • ITO transparent conductive glass is ultrasonically treated in a cleaning agent, baked in a clean environment until the water is completely removed, cleaned with ultraviolet light and ozone, and bombarded with low-energy cations; according to the organic light-emitting diode device structure: indium tin oxide (ITO)/ 2,3,6,7,10,11-Hexacyano-1,4,5,8,9,12-hexaazatriphenylene (HAT-CN) (3nm)/N,N'-diphenyl N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine (NPB) (40nm)/4,4',4'-tri(carbazole-9 -yl) triphenylamine (TCTA) (10nm)/with mCP as host, phosphorescent material PO-01 as guest, doping amount is 8%, (15nm)/1,3,5-tris[(3-pyridyl) -3-phen
  • FIG. 4 is the external quantum efficiency-brightness curves of OLED devices prepared in Example 8 and Comparative Example 2 of the present invention. It can be concluded from FIG. 4 that the maximum external quantum efficiencies of the OLED devices of Example 8 and Comparative Example 2 are 12.5% and 7.1%, respectively.
  • FIG. 5 is the electroluminescence spectra of the OLED devices of Example 8 and Comparative Example 2 of the present invention. The electroluminescence peaks of Example 8 of the present invention and Comparative Example 2 are 518nm and 505nm respectively. The comparison shows that when the condensed aromatic amine is used as the electron donor D, the molecular rigidity increases, which inhibits the non-radiative decay process of the triplet excitons, and finally improves the external quantum efficiency of the device.
  • FIG. 6 is the comparison chart of the external quantum efficiency-brightness curve of the OLED device prepared in embodiment 9 and comparative example 3, as can be seen from Fig. 6, the maximum external quantum efficiency of the OLED device prepared in embodiment 9 and comparative example 3 is respectively 22.1% and 19.2% %.
  • FIG. 7 is the electroluminescent spectrum of the OLED devices prepared in Example 9 and Comparative Example 3. FIG. It can be seen from FIG. 7 that the point value luminescence peak position and peak shape of the OLED devices prepared in Example 9 and Comparative Example 3 do not change. It can be seen from the comparison that when the organic room-temperature electrophosphorescent material described in claim 1 is used as the host instead of the traditional host mCP, the driving voltage of the device is reduced, and the power efficiency and external quantum efficiency are increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明属于光电材料技术领域,尤其涉及一种有机室温电致磷光材料、制备方法及其有机电致发光二极管。本发明提供的有机室温电致磷光材料具有稠并芳胺电子给体D和电子受体A特征结构,其中稠并芳胺电子给体D具有式II-1或II-2所述结构,稠并芳胺电子给体提供分子刚性,抑制三线态激子非辐射衰减;X调控分子内电荷转移,同时增强自旋轨道耦合效应,A作为电子受体接收D提供的电子,最终在无定型状态下获得有效的室温磷光。

Description

一种有机室温电致磷光材料、制备方法及其有机电致发光二极管
本申请要求于2021年11月30日提交中国专利局、申请号为CN202111441164.4、发明名称为“一种有机室温电致磷光材料、制备方法及其有机电致发光二极管”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于光电材料技术领域,尤其涉及一种有机室温电致磷光材料、制备方法及其有机电致发光二极管。
背景技术
有机发光显示(OLED)和液晶显示(LCD)相比,具有自发光、宽视角、高响应速度、超薄、耐低温等突出特点,已经成为国际竞相发展的新一代显示技术。根据发光机理,现有的有机电致发光材料可以分为荧光材料、磷光金属配合物和热活化延迟荧光材料。对于荧光材料,只能利用25%的单线态激子,75%的三线态激子发生非辐射衰减损失,因此最大理论内量子效率限制在25%。对于磷光金属配合物,由于贵重金属导致的自旋轨道耦合效应,能够同时利用单线态和三线态激子,理论内量子效率可以达到100%。但是,贵重金属的使用,存在地球储量有限、价格昂贵等问题。针对这一问题,兼具荧光材料低成本和磷光金属配合物高效率的热活化延迟荧光材料随后被开发出来。热活化延迟荧光材料中三线态激子能够利用环境热,反向系间窜越到单线态,在瞬时荧光之外产生额外的延迟荧光发射,从而实现100%理论内量子效率,但热活化延迟荧光材料加工性能差。
近年来引起了人们的广泛关注为纯有机室温磷光材料,纯有机室温磷光材料中三线态激子可以直接辐射跃迁到基态,达到提高激子利用率的目的。这类纯有机室温磷光材料具有成本低、功能可调、细胞毒性低、加工性好等特点。
但是,由于三线态激子的非辐射衰减和/或周围环境淬灭,这类纯有机室温磷光材料在无定型状态下不发光,而仅在晶体状态下才能观察到强的室温磷光,严重制约了其在OLED器件中的应用。
发明内容
有鉴于此,本发明提供了一种有机室温电致磷光材料、制备方法及其有机电致发光二极管,本发明提供的有机室温电致磷光材料能够在无定形态下获得有效的室温磷光。
本发明提供了一种有机室温电致磷光材料,具有式I所示结构:
D-X-A  式I;
其中,所述X独立地选自O或S;
所述A为电子受体,独立地选自含有N、P、B、-C=O、-P=O、-P=S、-CN、-CHO、-S(=O) 2中的一种或多种的C6~C30的芳基、含有N、P、B、-C=O、-P=O、-P=S、-CN、-CHO或-S(=O) 2中的一种或多种的C5~C30的芳杂基、或含有N、P、B、-C=O、-P=O、-P=S、-CN、-CHO或-S(=O) 2中的一种或多种的C6~C30的芳基和含有N、P、B、-P=O、-P=S、-C=O、-CN、-CHO或-S(=O) 2中的一种或多种的C5~C30的芳杂基的任意组合;
所述D为稠并芳胺类电子给体,具有式II-1或II-2所示的结构:
Figure PCTCN2022135530-appb-000001
其中,所述Ar 1、Ar 2和Ar 3相同,或不同,独立地选自式III-1~III-9所示结构中的任意一种:
Figure PCTCN2022135530-appb-000002
Figure PCTCN2022135530-appb-000003
所述Y和V相同,或不同,独立地选自C、Si、N、O或S;
当所述Y或V为C或Si时,所述R 5或R 6为取代或未取代C1~C20的直链烷基、取代或未取代C1~C20的直链烷氧基、取代或未取代C3~C20的支链烷基、取代或未取代C3~C20的支链烷氧基、苯基和氢中的任意一种;
当所述Y或V为N时,所述R 5或R 6为取代或未取代C1~C20的直链烷基、取代或未取代C1~C20的直链烷氧基、取代或未取代C3~C20的支链烷基、取代或未取代C3~C20的支链烷氧基和苯基中的任意一种;
当所述Y或V为O或S时,所述R 5或R 6为无;
所述①为五元环或六元环;
当所述①为五元环时,所述Z 1独立地为单键;
当所述①为六元环时,所述Z 1独立地为C、Si、N、O或S;
所述②或③独立地为不成环、五元环或六元环;
当所述②或③为不成环时,所述Z 2或Z 3为无;
当所述②或③独立地为五元环时,所述Z 2或Z 3独立地为单键;
当所述②或③独立地为六元环时,所述Z 2或Z 3独立地为C、Si、N、O或S;
所述R 1~R 4独立地为取代或未取代C1~C20的直链烷基、取代或未取代C1~C20的直链烷氧基、取代或未取代C3~C20的支链烷基、取代或未取代C3~C20的支链烷氧基或氢;
所述n 1~n 3独立地为为1~5的整数。
优选的,所述D为式Ⅳ-1~式Ⅳ-52所示结构中的一种:
Figure PCTCN2022135530-appb-000004
Figure PCTCN2022135530-appb-000005
Figure PCTCN2022135530-appb-000006
优选的,所述A为式V-1~V-34所示结构中的一种:
Figure PCTCN2022135530-appb-000007
本发明提供了上述技术方案所述的有机室温电致磷光材料的制备方法,在保护气氛中,将中间体D-XH、中间体F-A、有机溶剂、脱水剂和碱性催化剂进行亲核取代反应,得到具有式I结构的所述有机室温电致磷光材料。
优选的,所述亲核取代反应包括以下步骤:
在保护气氛中,将中间体D-XH、极性有机溶剂、脱水剂和碱性催化剂进行预脱水反应,得到中间反应液;所述预脱水反应温度为130-160℃,反应时间为1~3h后;
将中间反应液和中间体F-A混合进行亲核取代反应,得到所述有机室温电致磷光材料;所述亲核取代反应的温度为140~220℃,所述亲核取代反应的反应时间为8~20h,所述中间体D-XH和所述中间体F-A的摩尔比为(1~1.3):1。
本发明提高了一种有机电致发光二极管,发光层中包括至少一种上述技术方案所述的有机室温电致磷光材料。
优选的,上述技术方案所述的有机室温电致磷光材料本身作为发光层或作为客体掺杂在主体材料中构成发光层。
优选的,上述技术方案所述的有机室温电致磷光材料作为主体,掺杂传统荧光材料、磷光金属配合物、热活化延迟荧光材料作为客体,构成发光层。
本发明提供的有机室温电致磷光材料具有稠并芳胺电子给体D和A电子受体特征结构,其中稠并芳胺电子给体D具有式II-1或II-2所述结构,稠并芳胺电子给体提供分子刚性,抑制三线态激子非辐射衰减;X调控分子内电 荷转移,同时增强自旋轨道耦合效应,A作为电子受体接收D提供的电子,最终在无定型状态下获得有效的室温磷光。
说明书附图
图1为本发明实施例1的分子I-26在二氯甲烷溶液中的吸收光谱、非掺杂薄膜稳态光致发光光谱和非掺杂薄膜室温磷光光谱;
图2为本发明实施例1的分子I-26非掺杂薄膜稳态光致发光温度依赖性光谱;
图3为本发明实施例1的分子I-26非掺杂薄膜瞬态光致发光温度依赖性光谱;
图4为本发明实施例8和对比例2制备的OLED器件外量子效率-亮度曲线;
图5为本发明实施例8和对比例2制备的OLED器件电致发光光谱;
图6为本发明实施例9和对比例3制备的有机发光二极管器件的外量子效率-亮度曲线对比图;
图7为本发明器件实施例9和对比例3制备的有机发光二极管器件的电致发光光谱。
具体实施方式
本发明提供了一种有机室温电致磷光材料,具有式I所示结构:
D-X-A  式I;
其中,所述X独立地选自O或S;
所述A为电子受体,独立地选自含有N、P、B、-C=O、-P=O、-P=S、-CN、-CHO、-S(=O) 2中的一种或多种的C6~C30的芳基、含有N、P、B、-C=O、-P=O、-P=S、-CN、-CHO或-S(=O) 2中的一种或多种的C5~C30的芳杂基、或含有N、P、B、-C=O、-P=O、-P=S、-CN、-CHO或-S(=O) 2中的一种或多种的C6~C30的芳基和含有N、P、B、-P=O、-P=S、-C=O、-CN、-CHO或-S(=O) 2中的一种或多种的C5~C30的芳杂基的任意组合;
所述D为稠并芳胺类电子给体,具有式II-1或II-2所示的结构:
Figure PCTCN2022135530-appb-000008
其中,所述Ar 1、Ar 2和Ar 3可以相同,也可以不同,独立地选自式III-1~III-9所示结构中的任意一种:
Figure PCTCN2022135530-appb-000009
所述Y和V可以相同,也可以不同,独立地选自C、Si、N、O或S;
当所述Y或V为C或Si时,所述R 5或R 6为取代或未取代C1~C20的直链烷基、取代或未取代C1~C20的直链烷氧基、取代或未取代C3~C20的支链烷基、取代或未取代C3~C20的支链烷氧基、苯基中的任意一种;
当所述Y或V为N时,所述R 5或R 6为取代或未取代C1~C20的直链烷基、取代或未取代C1~C20的直链烷氧基、取代或未取代C3~C20的支链烷基、取代或未取代C3~C20的支链烷氧基、苯基中的任意一种;
当所述Y或V为O或S时,所述R 5或R 6为无;
所述①为五元环或六元环;
当所述①为五元环时,所述Z 1独立地为单键;
当所述①为六元环时,所述Z 1独立地为C、Si、N、O或S;
所述②或③独立地为不成环、五元环或六元环;
当所述②或③为不成环时,所述Z 2或Z 3为无;
当所述②或③独立地为五元环时,所述Z 2或Z 3独立地为单键;
当所述②或③独立地为六元环时,所述Z 2或Z 3独立地为C、Si、N、O或S;
所述R 1~R 4独立地为取代或未取代C1~C20的直链烷基、取代或未取代C1~C20的直链烷氧基、取代或未取代C3~C20的支链烷基、取代或未取代C3~C20的支链烷氧基或氢;
所述n 1~n 3独立地为为1~5的整数。
作为本发明的一个或多个具体实施例,当所述①为六元环时,所述Z 1为C或Si时,所述C或Si上连接1个或2个不为H的取代基。
作为本发明的一个或多个具体实施例,当所述①为六元环时,所述Z 1为C或Si时,所述C或Si上连接1个或2个H。
作为本发明的一个或多个具体实施例,当所述①为六元环时,所述Z 1为N时,所述N上连接1个不为H的取代基。
作为本发明的一个或多个具体实施例,当所述①为六元环时,所述Z 1为N时,所述N上连接1个H。
本发明提供的有机室温电致磷光材料的式I所述结构中,所述D作为电子给体,所述D优选为式II-1或II-2所示结构中的一种。
在本发明中,所述D优选为式Ⅳ-1~Ⅳ-52所示结构中的任一种:
Figure PCTCN2022135530-appb-000010
Figure PCTCN2022135530-appb-000011
本发明提供的有机室温电致磷光材料的式I所述结构中,所述X为O或S,所述X调控分子内电荷转移,同时 增强自旋轨道耦合效应。
本发明提供的有机室温电致磷光材料的式I所述结构中,所述A作为电子受体接收D提供的电子。在本发明中,所述A优选为含有N、P、-C=O、-P=O、-P=S、或-S(=O) 2中的一种或多种的C6~C30的芳基、含有N、P、-C=O、-P=O、-P=S或-S(=O) 2中的一种或多种的C5~C30的芳杂基、或含有N、P、-C=O、-P=O、-P=S或-S(=O) 2中的一种或多种的C6~C30的芳基和含有N、P、-C=O、-P=O、-P=S或-S(=O) 2中的一种或多种的C5~C30的芳杂基的任意组合。
在本发明中,所述A优选为式V-1~V-34所示结构中的一种:
Figure PCTCN2022135530-appb-000012
Figure PCTCN2022135530-appb-000013
在本发明中,所述有机室温电致磷光材料优选具有式I-1~I-208所示结构中的任意一种:
Figure PCTCN2022135530-appb-000014
Figure PCTCN2022135530-appb-000015
Figure PCTCN2022135530-appb-000016
Figure PCTCN2022135530-appb-000017
Figure PCTCN2022135530-appb-000018
Figure PCTCN2022135530-appb-000019
Figure PCTCN2022135530-appb-000020
本发明提供了上述技术方案所述的有机室温电致磷光材料的制备方法,包括以下步骤:
在保护气氛中,将中间体D-XH、中间体F-A、有机溶剂、脱水剂和碱性催化剂进行亲核取代反应,得到具有式I结构的所述有机室温电致磷光材料。
在本发明中,-XH与所述D结构中的苯环相连。
在本本发明中,所述D-XH具体为中间体D-OH或中间体D-SH。
本发明对所述中间体D-XH的来源没有特殊要求,采用市售产品或自制产品均可。在本发明中,当所述中间体D-OH或中间体D-SH优选为自制产品时,本发明对所述中间体D-OH或中间体D-SH的制备方法没有特殊要求,采用本领域技术人员熟知的制备方法即可。
在本发明的具体实施例中,当所述中间体D-OH的结构式具体为M1时,所述M1的制备方法具体为:
Figure PCTCN2022135530-appb-000021
将9,9-二氢吖啶(21g,100mmol)、N-溴代琥珀酰亚胺(NBS)(19g,105mmol)在N,N-二甲基甲酰胺(DMF)中混合在0℃进行溴化反应,得到溴化9,9-二氢吖啶;
将溴化9,9-二氢吖啶(19g,65mmol)、新制甲醇钠(40.7g,750mmol)、碘化亚铜(37g,195mmol)和DMF混合在85℃进行甲基化反应,得到甲氧基9,9-二氢吖啶;
将甲氧基9,9-二氢吖啶(8g,33.4mmol)、溴苯(6.3g,40.1mmol)、三二亚苄基丙酮二钯(Pd 2(dba) 3)(1.23g,1.336mmol)、叔丁基醇钠(t-BuONa)(8g,83.5mmol)、四氟硼酸三正丁基磷([Hp(t-Bu) 3]BF 4)(1.93g,6.68mmol)在甲苯中混合在120℃进行Buchwald-hlartwig偶联反应,得到苯环取代甲氧基9,9-二氢吖啶;
将苯环取代甲氧基9,9-二氢吖啶(10.1g,32mmol)、BBr 3(16.1g,64mmol)和二氯甲烷混合在0℃进行脱甲氧基得到M1(9.04g)。
本发明实施例中,M1的核磁数据为: 1H NMR(500MHz,DMSO-d 6,δppm):7.67(t,J=7.7Hz,2H),7.54(t,J=7.4Hz,1H),7.43(d,J=7.7Hz,1H),7.32(d,J=7.7Hz,2H),6.93(t,J=7.4Hz,1H),6.89(d,J=2.6Hz,1H),6.84(t,J=7.4Hz,1H),6.42(dd,J=2.5,8.8Hz,1H),6.10(d,J=8.1Hz,1H),5.98(d,J=8.8Hz,1H),1.58(s,6H)。
在本发明的具体实施例中,所述M1的合成路线为:
Figure PCTCN2022135530-appb-000022
在本发明的具体实施例中,当所述中间体D-OH的结构式具体为M3时,所述M3的制备方法具体为:
Figure PCTCN2022135530-appb-000023
将9,9-二氢吖啶(21g,100mmol)、N-溴代琥珀酰亚胺(NBS)(19g,105mmol)在N,N-二甲基甲酰胺(DMF)中混合在0℃进行溴化反应,得到溴化9,9-二氢吖啶;
将溴化9,9-二氢吖啶(19g,65mmol)、甲醇钠(40.7g,750mmol)、碘化亚铜(37g,195mmol)和DMF混合在85℃进行甲基化反应,得到甲氧基9,9-二氢吖啶;
将甲氧基9,9-二氢吖啶(5g,20.1mmol)、ICH 3(3.6g,25.36mmol)、NaH(0.8g,34.12mmol)和四氢呋喃(THF)在室温进行甲基取代,得到甲基取代甲氧基9,9-二氢吖啶;
将甲基取代甲氧基9,9-二氢吖啶(5g,19.75mmol)、BBr 3(9.9g,39.50mmol)和二氯甲烷混合在0℃进行脱甲氧基得到M3。
本发明实施例中,M3的核磁数据为: 1H NMR(500MHz,DMSO-d 6,δppm):7.36(dd,J=7.6,1.6Hz,1H),7.19(td,J=7.6,1.4Hz,1H),6.91-6.99(m,4H),6.80(dd,J=8.8,2.8Hz,1H),3.73(s,3H),3.34(s,3H),1.44(s,6H)。
在本发明的具体实施例中,所述M3的合成路线为:
Figure PCTCN2022135530-appb-000024
在本发明的具体实施例中,当所述中间体D-OH的结构式具体为M4时,所述M4的制备方法具体为:
Figure PCTCN2022135530-appb-000025
将咔唑(16.7g,100mmol)、N-溴代琥珀酰亚胺(NBS)(19g,105mmol)和N,N-二甲基甲酰胺(DMF)混合在0℃进行溴化反应,得到溴化咔唑;
将溴化咔唑(18g,73mmol)、甲醇钠(40.7g,750mmol)、碘化亚铜(41.7g,219mmol)和DMF混合在85℃进行甲基化反应,得到甲氧基咔唑;
将甲氧基咔唑(9.6g,48.7mmol)、溴苯(9.2g,58.44mmol)、三二亚苄基丙酮二钯(Pd 2(dba) 3)(1.78g,1.948mmol)、叔丁基醇钠(t-BuONa)(11.7g,121.75mmol)、四氟硼酸三正丁基磷([Hp(t-Bu) 3]BF 4)(2.83g,9.74mmol)和甲苯混合在120℃进行Buchwald-hlartwig偶联反应,得到苯环取代甲氧基咔唑;
将苯环取代甲氧基咔唑(12.3g,45mmol)、BBr 3(22.5g,90mmol)和二氯甲烷混合在0℃进行脱甲氧基得到M4。
在本发明的实施例中,M4的核磁数据为: 1H NMR(500MHz,DMSO-d 6,δppm):9.18(s,1H),8.13(d,J=7.7Hz,1H),7.66(m,2H),7.60(m,2H),7.55(d,J=2.34Hz,1H),7.50(td,J=7.7,1.34Hz,1H),7.37(m,2H),7.21(m,2H),6.93(dd,J=8.9,2.3Hz,1H)。
在本发明的具体实施例中,所述M4的合成路线为:
Figure PCTCN2022135530-appb-000026
在本发明的具体实施例中,当所述中间体D-OH的结构式具体为M5时,所述M5的制备方法具体为:
Figure PCTCN2022135530-appb-000027
将吩噁嗪(12.8g,75mmol)、N-溴代琥珀酰亚胺(NBS)(14.5g,80mmol)和N,N-二甲基甲酰胺(DMF)混合在0℃进行溴化反应,得到溴化吩噁嗪;
将溴化吩噁嗪(13.05g,50mmol)、甲醇钠(32.6g,750mmol)、碘化亚铜(38.1g,219mmol)和DMF混合在85℃进行甲基化反应,得到甲氧基吩噁嗪;
将甲氧基吩噁嗪(6.4g,30mmol)、溴苯(5.5g,58.44mmol)、三二亚苄基丙酮二钯(Pd 2(dba) 3)(1.09g,1.2mmol)、叔丁基醇钠(t-BuONa)(7.2g,75mmol)、四氟硼酸三正丁基磷([Hp(t-Bu) 3]BF 4)(2.74g,9.74mmol)和甲苯混合在120℃进行Buchwald-hlartwig偶联反应,得到苯环取代甲氧基吩噁嗪;
将苯环取代甲氧基吩噁嗪(7.5g,26mmol)、BBr 3(13g,52mmol)和二氯甲烷混合在0℃进行脱甲氧基得到M5。
本发明实施例中,M5的核磁数据为: 1HNMR(500MHz,DMSO-d 6,δppm):9.89(s,1H),7.76(d,J=7.8Hz,2H),7.36(d,J=7.8Hz,2H),7.23(d,J=8.3Hz,1H),7.01(m,3H),6.94(m,1H),6.54(m,2H)。
在本发明的具体实施例中,所述M5的合成路线为:
Figure PCTCN2022135530-appb-000028
在本发明的具体实施例中,当所述中间体D-OH的结构式具体为M6时,所述M6的制备方法具体为:
Figure PCTCN2022135530-appb-000029
将4,4,8,8,12,12-六甲基-8,12-二氢-4H-苯并[9,1]喹喔啉[3,4,5,6,7-DEFG]吖啶(18.3g,50mmol)、N-溴代琥珀酰亚胺(NBS)(10g,55mmol)和N,N-二甲基甲酰胺(DMF)混合在0℃进行溴化反应,得到溴化4,4,8,8,12,12-六甲基-8,12-二氢-4H-苯并[9,1]喹喔啉[3,4,5,6,7-DEFG]吖啶;
将溴化4,4,8,8,12,12-六甲基-8,12-二氢-4H-苯并[9,1]喹喔啉[3,4,5,6,7-DEFG]吖啶(19.05g,43mmol)、甲醇钠(21.7g,500mmol)、碘化亚铜(26.1g,150mmol)混合在85℃进行甲基化反应,得到甲氧基4,4,8,8,12,12-六甲基-8,12-二氢-4H-苯并[9,1]喹喔啉[3,4,5,6,7-DEFG]吖啶;
将甲氧基4,4,8,8,12,12-六甲基-8,12-二氢-4H-苯并[9,1]喹喔啉[3,4,5,6,7-DEFG]吖啶(11.1g,28mmol)、BBr 3(14g,56mmol)和二氯甲烷混合在0℃进行脱甲氧基得到M6。
本发明实施例中,M6的核磁数据为: 1H NMR(500MHz,DMSO-d 6,δppm):7.77(t,J=7.7Hz,2H),7.64(t,J=7.4Hz,1H),7.45(d,J=7.7Hz,1H),7.32(d,J=7.7Hz,2H),6.93(t,J=7.4Hz,1H),6.89(d,J=2.6Hz,1H),6.84(t,J=7.4Hz,1H),6.42(dd,J=2.5,8.8Hz,1H),6.10(d,J=8.1Hz,1H),5.98(d,J=8.8Hz,1H),1.60(s,18H)。
在本发明的具体实施例中,所述M6的合成路线为:
Figure PCTCN2022135530-appb-000030
本发明对所述中间体F-A的来源没有特殊要求,采用市售产品即可。
在本发明中,-F与所述A的结构中的苯环相连。
在本发明的具体实施例中,所述F-A具体为M2或M7
Figure PCTCN2022135530-appb-000031
在本发明中,所述中间体D-XH和所述中间体F-A的摩尔比优选为(1~1.3):1,更优选为(1.15~1.28):1。
在本发明中,所述极性有机溶剂优选为N-甲基吡咯烷酮和/或N,N-二甲基甲酰胺。
在本发明中,所述中间体D-XH的物质的量和所述极性有机溶剂的体积比优选为(0.25~0.5)mmol:1mL。
在本发明中,所述脱水剂优选为甲苯和/或苯,更优选为甲苯。
在本发明中,所述极性有机溶剂和脱水剂的体积比优选为1:1。
在本发明中,所述碱性催化剂优选包括碱金属碳酸盐,更优选包括碳酸钾和/或碳酸铯。
在本发明中,所述中间体D-XH和所述碱性催化剂的摩尔比优选为1:(1.15~1.2)。
在本发明中,所述亲核取代反应包括以下步骤:
在保护气氛中,将中间体D-XH、极性有机溶剂、脱水剂和碱性催化剂进行脱水反应,得到中间反应液;所述反应温度为130-160℃,反应时间为1~3h;
将所述中间反应液和中间体F-A混合进行亲核取代反应,得到所述有机室温电致磷光材料;所述亲核取代反应的温度为140~220℃,所述亲核取代反应的反应时间为8~20h,所述中间体D-XH和所述中间体F-A的摩尔比为(1~1.3):1。。
在本发明中,所述脱水反应的温度为130~160℃,更优选为140~155℃,在本发明中,所述脱水反应的时间优选为1~3h,更优选为2h。
在本发明中,所述脱水反应优选在保护气氛中进行,所述保护气氛优选为氮气或惰性气体,更优选为惰性气体。
在本发明中,所述脱水反应的具体实施方式优选为加热回流,在本发明中,所述加热回流优选用连接有分水器 的冷凝管进行。本发明优选通过加热回流去除所述第一混合液中的水分。在本发明中,所述脱水反应时加料的的顺序优选为将所述中间体D-XH和碱性催化剂混合,然后在保护气氛中与所述极性有机溶剂混合,最后与所述脱水剂混合加热回流进行脱水反应,得到中间反应液。
得到中间反应液后,本发明将所述中间反应液和所述中间体F-A进行亲核取代反应,得到所述有机室温电致磷光材料;所述亲核取代反应的温度为140~220℃,所述亲核取代反应的反应时间为8~20h,所述中间体D-XH和所述中间体F-A的摩尔比为(1~1.3):1。
在本发明中,所述中间体F-A优选以中间体F-A溶液的形式使用,在本发明中,所述中间体F-A溶液中的溶剂优选为N-甲基吡咯烷酮和/或N,N-二甲基甲酰胺。本发明对所述中间体F-A溶液的摩尔浓度没有特殊要求,能够将所述中间体F-A完全溶解即可。
在本发明中,所述亲核取代反应的温度优选为140~220℃,更优选为190~210℃。在本发明中,所述亲核取代反应的时间优选为8~20h,更优选为8.5~18h。本发明优选通过薄膜色谱监测所述亲核取代反应的反应进程。
所述亲核取代反应后,本发明优选对所述亲核取代反应得到的亲核取代反应液进行后处理,得到所述有机室温电致磷光材料。在本发明中,所述后处理优选包括:依次进行水洗、有机溶剂萃取、有机相干燥、浓缩、硅胶柱层析、洗脱液干燥。
在本发明中,所述水洗优选为将所述亲核取代反应液和水混合,所述水优选为去离子水,所述水洗的次数优选为1~3次,每次水洗时,所述亲核取代反应液和水的体积优选为2:1。在本发明中,所述水洗优选在室温进行进行。本发明提供过水洗除去反应液中的高沸点溶剂。
本发明优选对所述水洗后的反应液进行有机溶剂萃取,所述有机溶剂萃取用有机溶剂优选为二氯甲烷,所述水洗后的反应液和所述有机溶剂的体积比优选为2:1。在本发明中,所述有机溶剂萃取的次数优选为1次。在本发明中,所述有机溶剂萃取后得到有机相和萃余相。
本发明优选对所述有机相干燥,在本发明中,所述干燥用干燥剂优选为无水硫酸钠。本发明对所述有机相的体积和干燥剂的质量比没有特殊要求。
本发明优选对所述干燥后的有机相进行浓缩,所述浓缩优选为加热浓缩,所述浓缩后有机相的体积优选为浓缩前有机相体积的0.3~0.5。
本发明优选对浓缩后的有机相进行硅胶柱层析,所述硅胶柱层析的洗脱溶剂优选为石油醚和二氯甲烷的混合溶剂,所述石油醚和二氯甲烷的体积比优选为5:1。在本发明的具体实施例中,所述洗脱时溶解样品的溶剂优选与洗脱溶剂相同。
本发明优选对所述硅胶柱层析得到的产品干燥得到白色固体即为式I所示有机室温电致磷光材料。本发明对所述干燥的具体实施过程没有特殊要求。
本发明提供了一种有机电致发光二极管,发光层中包括至少一种如权利要求1所述的有机室温电致磷光材料。
在本发明中,上述技术方案所述的有机室温电致磷光材料本身作为发光层或优选作为客体掺杂在主体材料中构成发光层。
在本发明中,上述技术方案所述的有机室温电致磷光材料优选作为主体,掺杂传统荧光材料、磷光金属配合物和热活化延迟荧光材料中的一种或多种作为客体,构成发光层。
在本发明中的具体实施例中,当所述有机室温电致磷光材料优选与传统荧光材料、磷光金属配合物或热活化延迟荧光材料的中一种或多种混合作为发光材料时,所述发光材料中有机室温电致磷光材料的质量百分比优选为90~95%。
在本发明的具体实施例中,所述有机发光二极管包括衬底和依次设置于所述衬底表面的阳极层、空穴注入层(HAT-CN)、第一空穴传输层(NPB)、第二空穴传输层(TCTA)、发光层、插入层(TmPyPB)、电子传输层(ETL)和阴极。本发明对所述衬底的材质没有特殊要求。在本发明中,所述阳极层优选为氧化铟锡(ITO),本发明对所述阳极层的厚度没有特殊要求。在本发明中,所述空穴注入层优选为2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲,所述空穴注入层的厚度优选为3nm。在本发明中,所述第一空穴传输层优选为N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺,所述第一空穴传输层的厚度优选为40nm。在本发明中,所述第二空穴传输层优选为4,4',4'-三(咔唑-9-基)三苯胺,所述第二空穴传输层的厚度优选为10nm。
在本发明中,所述发光层优选包括上述技术方案所述的有机室温电致磷光材料或上述技术方案所述制备方法制备的有机室温电致磷光材料。
在本发明中,所述发光层优选包括所述有机室温电致磷光材料与传统荧光材料、磷光金属配合物或热活化延迟荧光材料的中一种或多种混合发光材料。所述混合发光材料中有机室温电致磷光材料的质量百分比优选为90~95%。
在本发明中,所述发光层的厚度优选为15nm。
在本发明中,所述插入层优选为1,3,5-三[(3-吡啶基)-3-苯基]苯,所述插入层的厚度优选为50nm。在本发明中,所述电子传输层优选为8-羟基喹啉-锂,所述电子传输层的厚度优选为1nm。在本发明中,所述阴极优选为铝,所述阴极的厚度优选为100nm。
本发明对所述有机发光二级管的制备方法没有特殊要求。采用本领域技术人员数值的方法进行即可,例如化学沉积法。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前 提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
将M1(1g,3.32mmol)、碳酸钾(0.55g,3.98mmol)加入三口反应瓶中,氩气保护下,加入5mLN-甲基吡咯烷酮,5mL甲苯。140℃进行,用连有分水器的冷凝管回流。2h后,将反应冷却至室温。加入5mLN-甲基吡咯烷酮溶解的M2(0.86g,2.59mmol),升温至190℃进行亲和取代反应18h,薄层色谱检测反应。反应结束后,去离子水洗涤3次,二氯甲烷萃取有机相,无水硫酸钠干燥,浓缩。硅胶柱层析,石油醚:二氯甲烷体积比5:1的混合溶剂洗脱,干燥得到白色固体有机室温电致磷光材料,结构式为I-26,1.554g,产率60%。产品的核磁图谱 1H NMR(500MHz,DMSO-d 6,δppm):8.71(d,J=8.3Hz,6H),7.70(m,4H),7.64(t,J=7.8Hz,4H),7.59(t,J=7.5Hz,1H),7.49(dd,J=7.6,1.6Hz,1H),7.42(d,J=7.4Hz,2H),7.35(d,J=2.8Hz,1H),7.13(d,J=8.9Hz,2H),6.99(td,J=7.5,1.5Hz,1H),6.91(td,J=7.5,1.2Hz,1H),6.86(dd,J=8.9,2.7Hz,1H),6.23(d,J=8.9Hz,1H),6.17(dd,J=8.3,1.2Hz,1H),1.64(s,6H)。分子式C 42H 32N 4O;m/z=609.3理论值:m/z:608.26(100.0%),609.26(45.4%),610.26(10.1%),609.25(1.5%)。元素分析:C,82.58;H,5.24;N,8.96。结构为式I-26有机室温电致磷光材料的的合成路线为:
Figure PCTCN2022135530-appb-000032
图1为本发明实施例1的分子I-26在二氯甲烷溶液中的吸收光谱、非掺杂薄膜稳态光致发光光谱和非掺杂薄膜室温磷光光谱。由图1可知,实施例1的分子I-26的吸收峰位于280nm、298nm;非掺杂薄膜稳态光致发光峰位于497nm,非掺杂薄膜室温磷光峰位于502nm。
图2为实施例1的分子I-26非掺杂薄膜稳态光致发光温度依赖性光谱。由图2可知,随着温度上升,非掺杂薄膜稳态光致发光强度减弱。
图3为实施例1的分子I-26非掺杂薄膜瞬态光致发光温度依赖性光谱。由图3可知,非掺杂薄膜随着温度升高,寿命变短。
实施例2
将M3(0.36g,1.53mmol)、碳酸钾(0.25g,1.83mmol)加入三口反应瓶中,氩气保护下,加入5mLN-甲基吡咯烷酮,5mL甲苯。140℃进行,用连有分水器的冷凝管回流。2h后,将反应冷却至室温。加入5mLN-甲基吡咯烷酮溶解的M2(0.396g,1.19mmol),升温至190℃,薄层色谱检测反应。反应结束后,去离子水洗滤液,二氯甲烷萃取有机相,无水硫酸钠干燥,浓缩。硅胶柱层析,石油醚:二氯甲烷8:1的混合溶剂洗脱,得到白色固体有机室温电致磷光材料,结构式为I-25,0.5g,产率76.9%。 1H NMR(500MHz,CDCl 3,δppm):8.75(m,6H),7.59(m,6H),7.43(dd,J=7.6,1.5Hz,1H),7.29(m,1H),7.24(d,J=2.6Hz,1H),7.10(m,2H),6.97-7.05(m,4H),3.50(s,3H),1.56(s,6H)。分子式C 37H 30N 4O;m/z=546.2理论值:m/z:546.24(100.0%),547.25(40.0%),548.25(7.8%),547.24(1.5%)。元素分析:C,81.58;H,5.23;N,10.25。结构为式I-25有机室温电致磷光材料的的合成路线为:
Figure PCTCN2022135530-appb-000033
对实施例2制备的材料进行光学性能检测,与实施例1制备的产品性能相似。
实施例3
将M4(1.20g,4.6mmol)、碳酸钾(0.83g,6mmol)加入三口反应瓶中,氩气保护下,加入15mLN-甲基吡咯烷酮,15mL甲苯。140℃进行,用连有分水器的冷凝管回流。2h后,将反应冷却至室温。加入15mLN-甲基吡咯烷酮溶解的M2(1.31g,4mmol),升温至190℃,薄层色谱检测反应。反应结束后,去离子水洗滤液,二氯甲烷萃取有机相,无水硫酸钠干燥,浓缩。硅胶柱层析,石油醚:二氯甲烷10:1的混合溶剂洗脱,得到白色固体有机室温电致磷光材料,结构式为I-24,1.6g,产率70%。 1H NMR(500MHz,CDCl 3,δppm):8.77(m,6H),8.10(td,J=7.8,1.0Hz,1H),7.92(d,J=2.4,1H),7.61(m,10H),7.51(m,1H),7.45(m,3H),7.30(m,1H),7.24(dd,J=8.7,2.4Hz,1H),7.18(m,2H).分子式C 39H 26N 4O;m/z=566.2理论值:m/z:566.21(100.0%),567.21(42.2%),568.22(8.7%),567.21(1.5%)。元素分析:C,82.68;H,4.53;N,9.89。结构为式I-24有机室温电致磷光材料的的合成路线为:
Figure PCTCN2022135530-appb-000034
对实施例3制备的材料进行光学性能检测,与实施例1制备的产品性能相似。
实施例4
将M5(0.58g,2.1mmol)、碳酸钾(0.34g,2.51mmol)加入三口反应瓶中,氩气保护下,加入5mLN-甲基吡咯烷酮,5mL甲苯。140℃下,用连有分水器的冷凝管回流。2h后,将反应冷却至室温。加入5mLN-甲基吡咯烷酮溶解的M-5(0.55g,1.64mmol),升温至190℃,薄层色谱检测反应。反应结束后,去离子水洗滤液,二氯甲烷萃取有机相,无水硫酸钠干燥,浓缩。硅胶柱层析,石油醚:二氯甲烷12:1的混合溶剂洗脱,得到白色固体有机室温电致磷光材料,结构式为I-27,0.70g,产率73.2%。 1H NMR(500MHz,CDCl 3,δppm):8.47(m,4H),8.31(d,J=8.3Hz,2H),7.65(m,6H),7.24(m,3H),7.13(m,3H),7.05(m,3H),6.98(m,3H),6.88(m,2H)分子式C 39H 26N 4O 2;m/z=582.2理论值:m/z:582.21(100.0%),583.21(42.2%),584.21(8.7%),583.20(1.5%)。元素分析:C,80.41;H,4.70;N,9.59。结构为式I-27有机室温电致磷光材料的的合成路线为:
Figure PCTCN2022135530-appb-000035
对实施例4制备的材料进行光学性能检测,与实施例1制备的产品性能相似。
实施例5
将M6(1.46g,3.8mmol)、碳酸钾(0.63g,4.58mmol)加入三口反应瓶中,氩气保护下,加入15mLN-甲基吡咯烷酮,15mL甲苯。140℃进行下,用连有分水器的冷凝管回流。2h后,将反应冷却至室温。加入15mLN-甲基吡咯烷酮溶解的M2(0.99g,2.98mmol),升温至190℃,薄层色谱检测反应。反应结束后,去离子水洗滤液,二氯甲烷萃取有机相,无水硫酸钠干燥,浓缩。硅胶柱层析,石油醚:二氯甲烷15:1的混合溶剂洗脱,得到白色固体有机室温电致磷光材料,结构式为I-129,1.54g,产率75.1%。 1H NMR(500MHz,DMSO-d 6,δppm):8.71(m,6H),7.70(m,6H),7.32(dd,J=8.4,2.5Hz,2H),7.24(d,J=7.6Hz,4H),6.98(d,J=7.3Hz,2H),6.87(s,2H),1.66(s,18H)。分子式C 48H 40N 4O;m/z=688.3理论值:m/z:688.32(100.0%),689.32(51.9%),690.33(13.2%),689.32(1.5%),691.33(1.4%)。元素分析:C,83.81;H,5.85;N,8.16。结构为式I-129有机室温电致磷光材料的的合成路线为:
Figure PCTCN2022135530-appb-000036
对实施例5制备的材料进行光学性能检测,与实施例1制备的产品性能相似。
实施例6
将M1(0.72g,3.12mmol)、碳酸钾(0.5g,3.66mmol)加入三口反应瓶中,氩气保护下,加入10mLN-甲基吡咯烷酮,10mL甲苯。140℃进行,用连有分水器的冷凝管回流。2h后,将反应冷却至室温。加入10mLN-甲基吡咯烷酮溶解的M7(0.49g,2.44mmol),升温至190℃,薄层色谱检测反应。反应结束后,去离子水洗滤液,二氯甲烷萃取有机相,无水硫酸钠干燥,浓缩。硅胶柱层析,石油醚:二氯甲烷3:1的混合溶剂洗脱,得到白色固体有机室温电致磷光材料,结构式为I-46,0.94g,产率80.5%。 1H NMR(500MHz,CDCl 3,δppm):7.75(dd,J=7.8,1.8Hz,6H),7.19(d,J=8.1Hz,4H),7.28(s,1H),7.19(s,2H),6.96(d,J=8.1Hz,4H),6.72(d,J=7.8Hz,2H),6.33(m,2H),1.64(s,6H)。分子式C 34H 27NO 2;m/z=481.2理论值:m/z:481.20(100.0%),482.21(36.8%),483.21(3.9%),483.21(2.7%)。元素分析:C,85.01;H,5.85;N,2.91。结构为式I-46有机室温电致磷光材料的的合成路线为:
Figure PCTCN2022135530-appb-000037
对实施例6制备的材料进行光学性能检测,与实施例1制备的产品性能相似。
实施例7
将M1(1.08g,4.59mmol)、碳酸钾(0.75g,5.49mmol)加入三口反应瓶中,氩气保护下,加入5mLN-甲基吡咯烷酮,5mL甲苯。140℃进行,用连有分水器的冷凝管回流。2h后,将反应冷却至室温。加入5mLN-甲基吡咯烷酮溶解的M8(0.43g,3.57mmol),升温至190℃,薄层色谱检测反应。反应结束后,去离子水洗滤液,二氯甲烷萃取有机相,无水硫酸钠干燥,浓缩。硅胶柱层析,石油醚:二氯甲烷5:1的混合溶剂洗脱,得到白色固体有机室温电致磷光材料,结构式为I-2,0.86g,产率60%。 1H NMR(500MHz,CDCl 3,δppm):7.95(d,J=7.5Hz,2H),7.24(dd,J=7.5,1.5Hz,2H)7.17(m,6H),7.08(d,J=7.6Hz,2H),6.99(dd,J=7.5,1.5Hz,2H),6.95(d,J=7.5Hz,1H),6.87(s,1H),1.65(s,6H)。分子式C 28H 22N 2O;m/z=407.2理论值:m/z:m/z:402.17(100.0%),403.18(30.3%),404.18(2.7%),404.18(1.7%)。元素分析:C,83.01;H,5.56;N,7.01。结构为式I-2有机室温电致磷光材料的的合成路线为:
Figure PCTCN2022135530-appb-000038
对实施例7制备的材料进行光学性能检测,与实施例1制备的产品性能相似。
对比例1
将二苯胺(08.45g,50mmol)、4-甲氧基碘苯(11.7g,50mmol)、三二亚苄基丙酮二钯(Pd 2(dba) 3)(1.84g,2mmol)、叔丁基醇钠(t-BuONa)(2.96g,10mmol)、四氟硼酸三正丁基磷([Hp(t-Bu) 3]BF 4)(12.g,125mmol)和甲苯混合在120℃进行Buchwald-hlartwig偶联反应,得到甲氧基三苯胺;将甲氧基三苯胺、BBr 3和二氯甲烷混合在0℃进行脱甲氧基得到M9。
M9的核磁数据为: 1HNMR(500MHz,CDCl 3,δppm):7.21(s,4H),7.01(s,7H),6.76(s,3H)。M9的合成路线为:
Figure PCTCN2022135530-appb-000039
将M9(0.9g,3.45mmol)、碳酸钾(0.32g,4.5mmol)加入三口反应瓶中,氩气保护下,加入5mLN-甲基吡咯烷酮,5mL甲苯。140℃下,用连有分水器的冷凝管回流。2h后,将反应冷却至室温。加入5mLN-甲基吡咯烷酮溶解的M2(0.98g,3mmol),升温至190℃,薄层色谱检测反应。反应结束后,去离子水洗滤液,二氯甲烷萃取有机相,无水硫酸钠干燥,浓缩。硅胶柱层析,石油醚:二氯甲烷10:1的混合溶剂洗脱,得到白色固体0.5g,产率76.9%。 1H NMR(500MHz,CDCl 3,δppm):8.78(m,6H),7.60(m,6H),7.29(m,4H),7.12-7.19(m,8H),7.04(m,4H)。分子式C 39H 28N 4O;m/z=568.2理论值:m/z:m/z:568.23(100.0%),569.23(42.2%),570.23(8.7%),569.22(1.5%)。元素分析:C,82.01;H,5.05;N,9.75。对比例1的产物的合成路线为:
Figure PCTCN2022135530-appb-000040
实施例8
将ITO透明导电玻璃在清洗剂中超声处理,在洁净的环境下烘烤至完全除去水分,用紫外光和臭氧清洗,并用低能阳离子轰击;按照有机发光二极管器件结构:氧化铟锡(ITO)/2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HAT-CN)(3nm)/N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺(NPB)(40nm)/4,4',4'-三(咔唑-9-基)三苯胺(TCTA)(10nm)/实施例1制备得到的分子I-26(15nm)/1,3,5-三[(3-吡啶基)-3-苯基]苯(TmPyPB)(50nm)/8-羟基喹啉-锂(Liq)(1nm)/铝(Al)(100nm)制备发光二极管,其中,发光层采用电子蒸镀法制备,其它层采用化学沉积法。
对比例2
将ITO透明导电玻璃在清洗剂中超声处理,在洁净的环境下烘烤至完全除去水分,用紫外光和臭氧清洗,并用低能阳离子轰击;按照有机发光二极管器件结构:氧化铟锡(ITO)/2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HAT-CN)(3nm)/N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺(NPB)(40nm)/4,4',4'-三(咔唑-9-基)三苯胺(TCTA)(10nm)/对比例1产品(15nm)/1,3,5-三[(3-吡啶基)-3-苯基]苯(TmPyPB)(50nm)/8-羟基喹啉-锂(Liq)(1nm)/铝(Al)(100nm)制备发光二极管,其中,发光层采用电子蒸镀法制备,其它层采用化学沉积法。
实施例9
将ITO透明导电玻璃在清洗剂中超声处理,在洁净的环境下烘烤至完全除去水分,用紫外光和臭氧清洗,并用低能阳离子轰击;按照有机发光二极管器件结构:氧化铟锡(ITO)/2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HAT-CN)(3nm)/N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺(NPB)(40nm)/4,4',4'-三(咔唑-9-基)三苯胺(TCTA)(10nm)/以实施例1制备的分子I-26为主体,磷光材料PO-01作为客体,掺杂量为8%,(15nm)/1,3,5-三[(3-吡啶基)-3-苯基]苯(TmPyPB)(50nm)/8-羟基喹啉-锂(Liq)(1nm)/铝(Al)(100nm)制备发光二极管,其中,发光层采用电子蒸镀法制备,其它层采用化学沉积法。
对比例3
将ITO透明导电玻璃在清洗剂中超声处理,在洁净的环境下烘烤至完全除去水分,用紫外光和臭氧清洗,并用低能阳离子轰击;按照有机发光二极管器件结构:氧化铟锡(ITO)/2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HAT-CN)(3nm)/N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺(NPB)(40nm)/4,4',4'-三(咔唑-9-基)三苯胺(TCTA)(10nm)/以mCP为主体,磷光材料PO-01作为客体,掺杂量为8%,(15nm)/1,3,5-三[(3-吡啶基)-3-苯基]苯(TmPyPB)(50nm)/8-羟基喹啉-锂(Liq)(1nm)/铝(Al)(100nm)制备发光二极管,其中,发光层采用电子蒸镀法制备,其它层采用化学沉积法。
测试例
对实施例8与对比例2和实施例9与对比例3制备的OLED器件进行发光性能测试。其中,实施例8和对比例2得到的器件的发光性能测试如表1所示。图4为本发明实施例8和对比例2制备的的OLED器件外量子效率-亮度曲线。由图4可以得出,实施例8和对比例2的OLED器件的外量子效率最大值分别为12.5%和7.1%。图5为本发明实施例8和对比例2的OLED器件电致发光光谱。本发明实施例8和对比例2的电致发光峰位分别为518nm和505nm。对比可知,当稠并芳胺作为电子给体D时,分子刚性增加,抑制了三线态激子的非辐射衰减过程,最终提升器件外量子效率。
表1.实施例8和对比例2制备的OLED器件发光性能测试结果
Figure PCTCN2022135530-appb-000041
实施例9和对比例3得到的器件的发光性能测试如表2所示。图6为实施例9和对比例3制备的OLED器件的外量子效率-亮度曲线对比图,由图6可知,实施例9和对比例3制备的OLED器件最大外量子效率分别为22.1%和19.2%。图7为实施例9和对比例3制备的OLED器件的电致发光光谱。由图7可知,实施例9和对比例3制备的OLED器件的点值发光峰位和峰形均不发生改变。对比可知,当采用权利要求1所述的有机室温电致磷光材料作为主体来代替传统主体mCP时,器件驱动电压降低,功率效率和外量子效率增加。
表2.实施例9和对比例3制备的OLED器件发光性能测试结果
Figure PCTCN2022135530-appb-000042
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

  1. 一种有机室温电致磷光材料,具有式I所示结构:
    D-X-A  式I;
    其中,所述X独立地选自O或S;
    所述A为电子受体,独立地选自含有N、P、B、-C=O、-P=O、-P=S、-CN、-CHO、-S(=O) 2中的一种或多种的C6~C30的芳基、含有N、P、B、-C=O、-P=O、-P=S、-CN、-CHO或-S(=O) 2中的一种或多种的C5~C30的芳杂基、或含有N、P、B、-C=O、-P=O、-P=S、-CN、-CHO或-S(=O) 2中的一种或多种的C6~C30的芳基和含有N、P、B、-P=O、-P=S、-C=O、-CN、-CHO或-S(=O) 2中的一种或多种的C5~C30的芳杂基的任意组合;
    所述D为稠并芳胺类电子给体,具有式II-1或II-2所示的结构:
    Figure PCTCN2022135530-appb-100001
    其中,所述Ar 1、Ar 2和Ar 3相同,或不同,独立地选自式III-1~III-9所示结构中的任意一种:
    Figure PCTCN2022135530-appb-100002
    所述Y和V相同,或不同,独立地选自C、Si、N、O或S;
    当所述Y或V为C或Si时,所述R 5或R 6为取代或未取代C1~C20的直链烷基、取代或未取代C1~C20的直链烷氧基、取代或未取代C3~C20的支链烷基、取代或未取代C3~C20的支链烷氧基、苯基和氢中的任意一种;
    当所述Y或V为N时,所述R 5或R 6为取代或未取代C1~C20的直链烷基、取代或未取代C1~C20的直链烷氧基、取代或未取代C3~C20的支链烷基、取代或未取代C3~C20的支链烷氧基和苯基中的任意一种;
    当所述Y或V为O或S时,所述R 5或R 6为无;
    所述①为五元环或六元环;
    当所述①为五元环时,所述Z 1为单键;
    当所述①为六元环时,所述Z 1为C、Si、N、O或S;
    所述②或③独立地为不成环、五元环或六元环;
    当所述②或③为不成环时,所述Z 2或Z 3为无;
    当所述②或③独立地为五元环时,所述Z 2或Z 3独立地为单键;
    当所述②或③独立地为六元环时,所述Z 2或Z 3独立地为C、Si、N、O或S;
    所述R 1~R 4独立地为取代或未取代C1~C20的直链烷基、取代或未取代C1~C20的直链烷氧基、取代或未取代C3~C20的支链烷基、取代或未取代C3~C20的支链烷氧基或氢;
    所述n 1~n 3独立地为为1~5的整数。
  2. 根据权利要求1所述的有机室温电致磷光材料,其特征在于,所述D为式Ⅳ-1~式Ⅳ-52所示结构中的一种:
    Figure PCTCN2022135530-appb-100003
    Figure PCTCN2022135530-appb-100004
  3. 根据权利要求1所述的有机室温电致磷光材料,其特征在于,所述A为式V-1~V-34所示结构中的一种:
    Figure PCTCN2022135530-appb-100005
    Figure PCTCN2022135530-appb-100006
  4. 根据权利要求1所述的有机室温电致磷光材料,其特征在于,具有式I-1~I-208所示结构中的任意一种:
    Figure PCTCN2022135530-appb-100007
    Figure PCTCN2022135530-appb-100008
    Figure PCTCN2022135530-appb-100009
    Figure PCTCN2022135530-appb-100010
    Figure PCTCN2022135530-appb-100011
    Figure PCTCN2022135530-appb-100012
    Figure PCTCN2022135530-appb-100013
  5. 根据权利要求1所述的有机室温电致磷光材料的制备方法,其特征在于,在保护气氛中,将中间体D-XH、中间体F-A、有机溶剂、脱水剂和碱性催化剂进行亲核取代反应,得到具有式I结构的所述有机室温电致磷光材料。
  6. 根据权利要求5所述的制备方法,其特征在于,所述亲核取代反应包括以下步骤:
    在保护气氛中,将中间体D-XH、极性有机溶剂、脱水剂和碱性催化剂进行预脱水反应,得到中间反应液;所述预脱水反应的温度为130-160℃,反应时间为1~3h;
    将所述中间反应液和中间体F-A混合进行亲核取代反应,得到所述有机室温电致磷光材料;所述亲核取代反应的温度为140~220℃,所述亲核取代反应的反应时间为8~20h,所述中间体D-XH和所述中间体F-A的摩尔比为(1~1.3):1。
  7. 一种有机电致发光二极管,其特征在于,发光层中包括至少一种如权利要求1所述的有机室温电致磷光材料。
  8. 根据权利要求7所述的有机电致发光二极管,特征在于,权利要求1所述的有机室温电致磷光材料本身作为发光层或作为客体掺杂在主体材料中构成发光层。
  9. 根据权利要求7所述的有机电致发光二极管,特征在于,权利要求1所述的有机室温电致磷光材料作为主体,掺杂传统荧光材料、磷光金属配合物和热活化延迟荧光材料中的一种或多种作为客体,构成发光层。
PCT/CN2022/135530 2021-11-30 2022-11-30 一种有机室温电致磷光材料、制备方法及其有机电致发光二极管 WO2023098740A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111441164.4 2021-11-30
CN202111441164.4A CN114149368A (zh) 2021-11-30 2021-11-30 一种有机室温电致磷光材料、制备方法及其有机电致发光二极管

Publications (1)

Publication Number Publication Date
WO2023098740A1 true WO2023098740A1 (zh) 2023-06-08

Family

ID=80455223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135530 WO2023098740A1 (zh) 2021-11-30 2022-11-30 一种有机室温电致磷光材料、制备方法及其有机电致发光二极管

Country Status (2)

Country Link
CN (1) CN114149368A (zh)
WO (1) WO2023098740A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114149368A (zh) * 2021-11-30 2022-03-08 云南大学 一种有机室温电致磷光材料、制备方法及其有机电致发光二极管
CN114805390B (zh) * 2022-05-11 2024-01-05 武汉天马微电子有限公司 一种有机化合物及其电致发光的应用
CN117069741B (zh) * 2023-08-31 2023-12-26 东华大学 一种多态发光型热激活延迟荧光分子及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105294658A (zh) * 2014-06-03 2016-02-03 环球展览公司 有机电致发光材料、装置和调配物
DE102016113277A1 (de) * 2016-07-19 2018-01-25 Cynora Gmbh Organische Moleküle zur Verwendung in optoelektronischen Bauelementen
CN108358905A (zh) * 2018-03-28 2018-08-03 上海天马有机发光显示技术有限公司 一种化合物、发光材料及器件、显示装置
CN110615782A (zh) * 2018-06-20 2019-12-27 北京鼎材科技有限公司 有机化合物及含有其的有机电致发光器件
CN113387818A (zh) * 2021-06-11 2021-09-14 北京八亿时空液晶科技股份有限公司 化合物和包含该化合物的有机电致发光装置和电子设备
CN113493564A (zh) * 2020-04-07 2021-10-12 中国科学院长春应用化学研究所 一种具有D-σ-A结构的有机聚合物发光材料及其制备方法和应用
CN114149368A (zh) * 2021-11-30 2022-03-08 云南大学 一种有机室温电致磷光材料、制备方法及其有机电致发光二极管

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0430881A3 (en) * 1989-11-29 1991-10-23 Ciba-Geigy Ag Photochromic compounds, process for their preparation and their use
CN110386905A (zh) * 2019-08-08 2019-10-29 吉林大学 一种室温磷光化合物、组合物及其应用
CN110724088A (zh) * 2019-10-31 2020-01-24 北京大学深圳研究生院 一种有机室温磷光材料与电致光电器件
CN112851565B (zh) * 2019-11-27 2023-02-10 杭州师范大学 一种室温磷光性能的有机发光材料及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105294658A (zh) * 2014-06-03 2016-02-03 环球展览公司 有机电致发光材料、装置和调配物
DE102016113277A1 (de) * 2016-07-19 2018-01-25 Cynora Gmbh Organische Moleküle zur Verwendung in optoelektronischen Bauelementen
CN108358905A (zh) * 2018-03-28 2018-08-03 上海天马有机发光显示技术有限公司 一种化合物、发光材料及器件、显示装置
CN110615782A (zh) * 2018-06-20 2019-12-27 北京鼎材科技有限公司 有机化合物及含有其的有机电致发光器件
CN113493564A (zh) * 2020-04-07 2021-10-12 中国科学院长春应用化学研究所 一种具有D-σ-A结构的有机聚合物发光材料及其制备方法和应用
CN113387818A (zh) * 2021-06-11 2021-09-14 北京八亿时空液晶科技股份有限公司 化合物和包含该化合物的有机电致发光装置和电子设备
CN114149368A (zh) * 2021-11-30 2022-03-08 云南大学 一种有机室温电致磷光材料、制备方法及其有机电致发光二极管

Also Published As

Publication number Publication date
CN114149368A (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
CN110862381B (zh) 一种有机电致发光化合物及其制备方法和应用
WO2023098740A1 (zh) 一种有机室温电致磷光材料、制备方法及其有机电致发光二极管
CN112645968B (zh) 一种含有两个硼原子和两个氧族原子的稠环化合物及有机电致发光器件
WO2015053459A1 (ko) 유기광전자소자용 유기합화물, 유기 광전자 소자 및 표시 장치
CN113004290A (zh) 一种有机化合物、有机电致发光材料及其应用
CN112321521B (zh) 一种电子传输材料、有机电致发光器件和显示装置
CN110452239B (zh) 含氮杂环化合物及其应用和有机电致发光器件
CN110818675A (zh) 一类有机化合物及其应用
CN110615782A (zh) 有机化合物及含有其的有机电致发光器件
CN110305107B (zh) 具有菲并咪唑结构的热致延迟荧光材料及其制备方法和应用
CN112409276A (zh) 一种化合物及其应用
CN111662190A (zh) 一种含芘或氮杂芘的有机化合物及其应用
WO2022242521A1 (zh) 一种稠合氮杂环化合物及其应用以及包含该化合物的有机电致发光器件
KR101599965B1 (ko) 화합물, 이를 포함하는 유기 광전자 소자 및 표시장치
WO2022063107A1 (zh) 一种作为oled掺杂材料的含硼有机化合物及其应用
CN112125892B (zh) 一种化合物、电子传输材料和有机电致发光器件
CN113264871A (zh) 一种化合物、电子传输材料和有机电致发光器件
CN110642732A (zh) 一种含螺芴蒽酮结构的有机化合物及其应用
Li et al. Novel thieno-[3, 4-b]-pyrazine derivatives for non-doped red organic light-emitting diodes
CN112125813A (zh) 一种化合物、空穴传输材料和有机电致发光器件
CN113321649B (zh) 一种化合物、电子传输材料和有机电致发光器件
CN113429397B (zh) 化合物、显示面板及显示装置
CN111362955A (zh) 一种有机化合物及其在oled器件上的应用
CN115991699A (zh) 一种萘桥联双吸电片段化合物
CN114933591B (zh) 吡啶衍生物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900544

Country of ref document: EP

Kind code of ref document: A1