WO2023098734A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2023098734A1
WO2023098734A1 PCT/CN2022/135504 CN2022135504W WO2023098734A1 WO 2023098734 A1 WO2023098734 A1 WO 2023098734A1 CN 2022135504 W CN2022135504 W CN 2022135504W WO 2023098734 A1 WO2023098734 A1 WO 2023098734A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic
heating
deoxygenation
storage space
oxygen removal
Prior art date
Application number
PCT/CN2022/135504
Other languages
English (en)
French (fr)
Inventor
王睿龙
刘浩泉
苗建林
姬立胜
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023098734A1 publication Critical patent/WO2023098734A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/102Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/12Insulation with respect to heat using an insulating packing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/06Controlling according to a predetermined profile
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to fresh-keeping equipment, in particular to a refrigerator.
  • refrigerators Electrical equipment with low-temperature storage functions are collectively referred to as refrigerators, including not only refrigerators in the narrow sense, but also freezers, storage cabinets, and other refrigeration and freezing devices.
  • an electrolytic deoxygenation device can be installed on the refrigerator, so that the electrolytic deoxygenation device can perform electrochemical reactions under the action of electrolytic voltage.
  • the inventors have realized that the temperature of the storage space in the refrigerator is low, which will cause the electro-deoxygenation device to fail to perform electrochemical reactions normally, causing failure problems.
  • An object of the present invention is to overcome at least one technical defect in the prior art and provide a refrigerator.
  • a further object of the present invention is to solve the problem of failure of the electro-deoxygenation device of the refrigerator caused by low temperature.
  • a further object of the present invention is to prolong the service life of the electrolytic deoxidizer and reduce the frequency of maintenance and replacement.
  • Another further object of the present invention is to ensure the oxygen removal efficiency of the electrolytic oxygen removal device.
  • a still further object of the present invention is to ensure the heating efficiency of the heating device.
  • a further object of the present invention is to reduce or avoid the deterioration of the preservation effect caused by the heat generated by the heating device and the electrolytic deoxidation device spreading to the storage space.
  • the present invention provides a refrigerator, comprising: a box body, which forms a storage space inside; an electrolytic deoxygenation device, which is in airflow communication with the storage space, and is configured to consume the storage space through an electrochemical reaction under the action of an electrolysis voltage Oxygen in the space; and a heating device thermally connected to the electrolytic deoxygenation device and configured to heat the electrolytic deoxygenation device.
  • the heating device is an electric heating element configured to generate heat in a energized state, thereby heating the electrolytic deoxygenation device.
  • the electric heating element is an electric heating wire or an electric heating sheet, which is wound or embedded in the electrolytic oxygen removal device, or placed in close contact with the electrolytic oxygen removal device to realize thermal connection.
  • the electrolytic deoxygenation device includes: a housing, which is provided with a communication port for airflow communication with the storage space;
  • the liquid storage chamber is used to consume oxygen in the storage space through an electrochemical reaction under the action of the electrolytic voltage; and the anode plate is arranged in the liquid storage chamber and is used to provide reactants to the cathode plate through an electrochemical reaction; and the electrothermal
  • the element is wound on the outer surface of the housing, or embedded in the shell wall of the housing through injection molding, or arranged in the liquid storage chamber.
  • the refrigerator further includes: a thermal insulation device wrapped around the heating device and the electrolytic oxygen removal device to prevent leakage of heat generated by the heating device and the electrolytic oxygen removal device.
  • the interior of the thermal insulation device defines a cavity to accommodate the heating device and the electrolytic deoxidizer; and the thermal insulation device includes from the inside to the outside: a first thermal insulation layer, which is made of composite glass material; a second thermal insulation layer , which is made of rubber-plastic insulation material or vacuum insulation material; and the third insulation layer, which is made of rubber-plastic material.
  • the heat preservation device is provided with an opening communicating with the cavity, so as to allow the electrolytic deoxygenation device located in the cavity to communicate with the storage space through the opening.
  • the refrigerator further includes: a control device, which is in data connection with the heating device; and the control device is configured to send a heating start signal to the heating device before starting the electrolytic Send a heating start signal to the heating device at a set period, so that the heating device is periodically energized and generate heat, or configured to send a heating start signal to the heating device when the temperature of the electrolytic oxygen removal device is lower than the preset first temperature threshold, so that The heating unit is energized and generates heat.
  • a control device which is in data connection with the heating device; and the control device is configured to send a heating start signal to the heating device before starting the electrolytic Send a heating start signal to the heating device at a set period, so that the heating device is periodically energized and generate heat, or configured to send a heating start signal to the heating device when the temperature of the electrolytic oxygen removal device is lower than the preset first temperature threshold, so that The heating unit is energized and generates heat.
  • the refrigerator further includes: a state monitoring device, which is arranged on the power supply circuit where the electrolytic deoxygenation device is located, and is used to detect the working current after the electrolytic deoxygenation device is started; and the control device is also configured to A heating start signal is sent to the heating device when the current is lower than a preset current threshold.
  • a state monitoring device which is arranged on the power supply circuit where the electrolytic deoxygenation device is located, and is used to detect the working current after the electrolytic deoxygenation device is started
  • the control device is also configured to A heating start signal is sent to the heating device when the current is lower than a preset current threshold.
  • the storage space is a freezer space.
  • the refrigerator of the present invention can solve the failure problem of the electrolytic deoxygenation device caused by low temperature by thermally connecting the electrolytic deoxygenation device with the heating device and using the heating device to heat the electrolytic deoxygenation device. Even if the temperature of the storage space in the refrigerator is low, the heat generated by the heating device can keep the electrolytic deoxidizer at a relatively high temperature, thereby ensuring that the electrolytic deoxygenator can normally perform electrochemical reactions.
  • the solution of the present invention is especially suitable for the application scenario where the electrolytic deoxygenation device is installed in a refrigerated space and deoxygenates the refrigerated space.
  • the refrigerator of the present invention detects the working current of the electrolytic deoxygenation device by using the state monitoring device, and starts the heating device when the working current of the electrolytic deoxygenation device is lower than the preset current threshold, so that the electrolytic deoxygenation device can The electrochemical reaction rate of the device is accelerated, so as to ensure that the electrolytic oxygen removal device always maintains a relatively high oxygen removal efficiency.
  • the refrigerator of the present invention utilizes a heating device thermally connected to the electrolytic oxygen removal device to heat the electrolytic oxygen removal device, which can prevent the electrolytic oxygen removal device from being "frozen” due to low temperature, and is conducive to keeping the electrolytic oxygen removal device in good condition. Structural stability prolongs the service life of the electrolytic deoxidizer and reduces the frequency of maintenance and replacement.
  • the heating device can be selectively wrapped around the outer surface of the casing, injection molded and embedded in the casing wall of the casing, or placed in the liquid storage chamber, etc. These thermal connection methods can ensure the heat transfer effect between the heating device and the electrolytic oxygen removal device, therefore, the heating device of the present invention has better heating efficiency.
  • the heat preservation device since the heat preservation device is wrapped on the outside of the heating device and the electrolytic oxygen removal device, it can prevent the leakage of heat generated by the heating device and the electrolytic oxygen removal device. Therefore, the solution of the present invention, It can reduce or avoid the problem of poor fresh-keeping effect caused by the heat generated by the heating device and the electrolytic deoxidation device diffusing to the storage space.
  • Fig. 1 is a schematic structural diagram of a refrigerator according to an embodiment of the present invention
  • Fig. 2 is a schematic block diagram of a refrigerator according to an embodiment of the present invention.
  • Fig. 3 is a schematic connection structure diagram of a heating device of a refrigerator and an electrolytic deoxygenation device according to an embodiment of the present invention
  • Fig. 4 is a schematic structural diagram of the heating device of the refrigerator shown in Fig. 3;
  • Fig. 5 is a schematic connection structure diagram of a heating device and an electrolytic deoxidizer of a refrigerator according to another embodiment of the present invention
  • Fig. 6 is a schematic structural diagram of the heating device of the refrigerator shown in Fig. 5;
  • Fig. 7 is a schematic structural diagram of a heating device of a refrigerator according to another embodiment of the present invention.
  • Fig. 8 is a schematic structural diagram of a heat preservation device of a refrigerator according to an embodiment of the present invention.
  • Fig. 9 is a schematic exploded view of the electrolytic deoxidizer of the refrigerator shown in Fig. 3 .
  • FIG. 1 is a schematic structural diagram of a refrigerator 10 according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a refrigerator 10 according to one embodiment of the present invention.
  • the refrigerator 10 may generally include a box body 500 , an electrolytic deoxidizer 100 and a heating device 300 .
  • the inside of the box body 500 forms a storage space 510 for storing food, medicine or other items.
  • the number of storage spaces 510 can be set to one or more according to actual needs.
  • FIG. 1 only uses a refrigerator 10 with three storage spaces 510 as an example, but it should not be regarded as a limitation on the number of storage spaces 510 .
  • the electrolytic deoxygenation device 100 described below can be arranged in any storage space 510 according to actual needs, or communicate with any storage space 510 correspondingly in order to consume the oxygen in the storage space 510 .
  • the electrolytic deoxygenation device 100 is in airflow communication with the storage space 510 and configured to consume oxygen in the storage space 510 through an electrochemical reaction under the action of an electrolysis voltage.
  • the gas flow communication means that the gas in the storage space 510 can flow to the electrolytic deoxygenation device 100, so that the electrolytic deoxygenation device 100 can perform an electrochemical reaction with the oxygen in the storage space 510 as a reactant, thereby playing the role of oxygen removal. effect.
  • the type of electrochemical reaction of the electrolytic oxygen removal device 100 can be set according to actual needs, as long as the electrochemical reaction can consume oxygen.
  • the electrochemical reaction may be a reaction of electrolyzing water.
  • the heating device 300 is thermally connected with the electrolytic deoxygenation device 100 and configured to heat the electrolytic deoxygenation device 100 .
  • the thermal connection means that the heat generated by the heating device 300 can be transferred to the electrolytic oxygen removal device 100 .
  • the refrigerator 10 of the present invention can solve the failure problem of the electrolytic oxygen removal device 100 caused by low temperature by thermally connecting the electrolytic oxygen removal device 100 with the heating device 300 and using the heating device 300 to heat the electrolytic oxygen removal device 100 . Even if the temperature of the storage space 510 in the refrigerator 10 is low, the heat generated by the heating device 300 can keep the electrolytic deoxygenator 100 at a relatively high temperature, thereby ensuring that the electrolytic deoxygenator 100 can perform electrochemical reactions normally.
  • the solution of the present invention is especially suitable for the application scenario where the electrolytic deoxygenation device is installed in a refrigerated space and deoxygenates the refrigerated space.
  • the inventors have realized that, in addition to the failure problem, the low temperature environment may also cause damage or even rupture to the structure of the electrolytic deoxygenation device 100 .
  • the heating device 300 is thermally connected to the electrolytic deoxygenation device 100 to heat the electrolytic deoxygenation device 100, which can prevent the electrolytic deoxygenation device 100 from being "frozen” due to low temperature, and is conducive to maintaining a good structural stability of the electrolytic deoxygenation device 100 , prolong the service life of the electrolytic deoxidizer 100, and reduce the frequency of maintenance and replacement.
  • the thermal connection between the heating device 300 and the electrolytic deoxidizer 100 completely avoids the problems that the electrochemical reaction cannot be carried out normally due to the low temperature environment, and the structural damage of the electrolytic deoxidizer 100 is avoided. It has the advantages of compact structure and remarkable effect.
  • the heating device 300 can be set as any device capable of generating heat according to actual needs, such as an electric heating device 300, a high-frequency heating device 300, etc., as long as it can have a heating function.
  • the heating device 300 is an electric heating element configured to generate heat in an electrified state, so as to heat the electrolytic deoxygenation device 100 .
  • the electric heating element belongs to the electric heating device 300 .
  • the heating device 300 can be connected to the circuit board of the refrigerator 10 through wires, so as to be controlled.
  • the electric heating element is used as the heating device 300, as long as the electric heating element is in "contact” with the electrolytic deoxygenation device 100, the thermal connection can be realized, and at the same time, the heating can be achieved by supplying power to the electric heating element and making it generate heat in the energized state It has the advantages of simple structure, easy thermal connection, simple control process, and low manufacturing cost.
  • the electric heating element is an electric heating wire or an electric heating sheet, which is wound or embedded in the electrolytic deoxygenation device 100 , or placed in close contact with the electrolytic deoxygenation device 100 to realize thermal connection. That is, the thermal connection between the electric heating element and the electrolytic deoxygenation device 100 can be any one of various ways such as winding, embedding or sticking. The following will take the heating wire as an example to illustrate the connection structure between the heating element and the electrolytic oxygen removal device 100. Those skilled in the art should be easy to change and expand on the basis of understanding the following embodiments. These changes and expansion should be Fall into the protection scope of the present invention.
  • Fig. 3 is a schematic connection structure diagram of the heating device 300 of the refrigerator 10 and the electrolytic deoxidizer 100 according to an embodiment of the present invention
  • Fig. 4 is a schematic structural diagram of the heating device 300 of the refrigerator 10 shown in Fig. 3 .
  • the black dots in the figure show the wiring terminals of the heating device 300 , which are used to connect with wires to connect to the circuit board of the refrigerator 10 .
  • the heating device 300 is used as an example for an electric heating wire.
  • the electric heating element is an electric heating wire
  • the electric heating element can be wound and arranged on the outer wall of the shell 110 of the electrolytic deoxygenation device 100, or can be embedded in the inner space of the shell 110 of the electrolytic oxygen deoxidizer 100, or can also be embedded in the Inside the shell wall of the shell 110 of the electrolytic deoxygenation device 100 .
  • the electric heating element when the electric heating element is an electric heating sheet, the electric heating element can be placed against any outer wall of the housing 110 of the electrolytic oxygen removal device 100, or can be embedded in the inner space of the housing 110 of the electrolytic oxygen removal device 100 , or can also be embedded in any shell wall of the shell 110 of the electrolytic deoxygenation device 100 .
  • the thermal connection between the electric heating element and the electrolytic deoxygenation device 100 can be changed to any combination of winding, embedding or sticking, which is beneficial to improve the thermal connection. diversity, thereby improving the heating effect of the heating device 300.
  • the electrolytic deoxygenation device 100 includes a casing 110 , a cathode plate 120 and an anode plate 140 .
  • the electrolytic deoxygenation device 100 can be installed in the storage space 510 , or an installation opening can be opened on the wall of the storage space 510 , and the electrolytic deoxygenation device 100 can be clipped to the installation opening.
  • the casing 110 is provided with a communication port 114 for airflow communication with the storage space 510 .
  • the housing 110 is roughly in the shape of a flat cuboid, and the side wall of the housing 110 with the largest area can be opened to form a communication port 114, which is beneficial to improve the distance between the cathode plate 120 and the storage space 510 of the electrolytic deoxygenation device 100. Contact area.
  • the cathode plate 120 is disposed at the communication port 114 to define together with the casing 110 a liquid storage chamber for containing the electrolyte, and is used for consuming oxygen in the storage space 510 through an electrochemical reaction under the action of the electrolysis voltage.
  • the cathode plate 120 is disposed at the communication port 114, and the airflow communication between the cathode plate 120 and the storage space 510 can be ensured while the liquid storage cavity is closed.
  • oxygen in the air can undergo a reduction reaction at the cathode plate 120 , namely: O 2 +2H 2 O+4e ⁇ ⁇ 4OH ⁇ .
  • the electrolyte contained in the liquid storage chamber can be an acidic aqueous solution or an alkaline aqueous solution, for example, a 1-5 mol/L sodium hydroxide solution.
  • the anode plate 140 is disposed in the liquid storage chamber, and is used for providing reactants to the cathode plate 120 through an electrochemical reaction.
  • the anode plate 140 and the cathode plate 120 are arranged in the liquid storage cavity at intervals from each other. And in the case of electrification, the anode plate 140 is used to provide reactants (eg, electrons) to the cathode plate 120 through an electrochemical reaction and generate oxygen.
  • the OH ⁇ produced by the cathode plate 120 can undergo oxidation reaction at the anode plate 140 to generate oxygen, namely: 4OH ⁇ ⁇ O 2 +2H 2 O+4e ⁇ .
  • the casing 110 may also be provided with an exhaust port 112 through which oxygen may be exhausted.
  • the electric heating element is wound around the outer surface of the casing 110, or embedded in the casing wall of the casing 110 by injection molding, or arranged in the liquid storage chamber.
  • the electric heating element can be an electric heating wire or an electric heating sheet, or an electric heating element of any other shape.
  • Winding the heating element on the outer surface of the housing 110 can reduce the difficulty of maintenance of the heating element, and when the heating efficiency of the heating element decreases, the heating element can be replaced very easily.
  • Fig. 5 is a schematic structural diagram of the connection between the heating device 300 of the refrigerator 10 and the electrolysis device 100 according to another embodiment of the present invention
  • Fig. 6 is a schematic structural diagram of the heating device 300 of the refrigerator 10 shown in Fig. 5
  • the electric heating element is embedded in the shell wall of the shell 110 as an example for illustration.
  • the dotted line in Fig. 5 shows the embedding position of the electric heating element.
  • the electric heating element is embedded in the shell wall of the shell 110 by injection molding, which can improve the structural integrity of the electric heating element and the shell 110, and can also improve the heat transfer efficiency between the electric heating element and the shell 110, so as to enhance the heating effect .
  • Fig. 7 is a schematic structural diagram of a heating device 300 of a refrigerator 10 according to another embodiment of the present invention, in which an electric heating element that can be arranged in a liquid storage chamber is taken as an example for illustration.
  • the electric heating element is arranged in the liquid storage chamber, and the heat emitted by the electric heating element can be directly conducted to the electrolyte, which is beneficial to further improve the electrochemical reaction rate.
  • the heating device 300 can be selectively wound on the outer surface of the housing 110, embedded in the shell wall of the housing 110 by injection molding, or placed in the liquid storage chamber, etc., the thermal connection with the electrolytic oxygen deoxidizer 100 can be realized , and these thermal connection methods can ensure the heat transfer effect between the heating device 300 and the electrolytic oxygen removal device 100, therefore, the heating device 300 of this embodiment has better heating efficiency.
  • Fig. 8 is a schematic structural diagram of a heat preservation device 700 of a refrigerator 10 according to an embodiment of the present invention.
  • the refrigerator 10 further includes a heat preservation device 700 wrapped around the outside of the heating device 300 and the electrolytic deoxygenation device 100 to prevent leakage of heat generated by the heating device 300 and the electrolytic deoxygenation device 100 .
  • the heat preservation device 700 Since the heat preservation device 700 is wrapped on the outside of the heating device 300 and the electrolytic oxygen removal device 100, it can prevent the leakage of heat generated by the heating device 300 and the electrolytic oxygen removal device 100. Therefore, the solution of this embodiment can reduce or This avoids the problem of deterioration of the preservation effect caused by the heat generated by the heating device 300 and the electrolytic deoxidizer 100 spreading to the storage space 510 .
  • the interior of the heat preservation device 700 defines a cavity 750 for accommodating the heating device 300 and the electrolytic deoxygenation device 100 .
  • the thermal insulation device 700 includes a first thermal insulation layer 710 , a second thermal insulation layer 720 and a third thermal insulation layer 730 from inside to outside. That is, the thermal insulation device 700 is made of multiple layers of materials, and the multiple layers of materials are stacked from the inside to the outside, thereby defining the cavity 750 .
  • the first thermal insulation layer 710 is made of composite glass material, such as composite glass fiber cloth.
  • the second thermal insulation layer 720 is made of rubber-plastic thermal insulation material or vacuum thermal insulation material, wherein the fire resistance rating of the rubber-plastic thermal insulation material is Class A, and the vacuum thermal insulation material can be a vacuum thermal insulation board.
  • the third insulation layer 730 is made of rubber and plastic material, such as rubber and plastic tape.
  • the first thermal insulation layer 710, the second thermal insulation layer 720 and the third thermal insulation layer 730 are stacked layer by layer from the inside to the outside to form the thermal insulation device 700, which can prevent heat leakage and improve the electrolytic deoxidizer 100 to the heating device 300.
  • the utilization efficiency of the provided heat is multiplied at one stroke.
  • the heat preservation device 700 and the heating device 300 can be integrally formed to form an electric heat tracing and heat preservation system.
  • the heating device 300 is used as the electric heating cable of the electric heat tracing and heat preservation system, and is placed close to the side of the first heat preservation layer 710 facing away from the second heat preservation layer 720 , that is, located at the innermost side of the multilayer structure.
  • the electric heating element can also be embedded in the first thermal insulation layer 710 (the embedding position of the electric heating element is shown by the dotted line in FIG. 8 ).
  • Using the integrated electric heat tracing and heat preservation system to heat the electrolytic deoxidizer 100 and realize the heat preservation function can further improve the structural integrity of the heating module and the heat preservation module, and reduce the difficulty of assembling the refrigerator 10 .
  • the refrigerator 10 may also include a temperature sensor (not shown), which is arranged in the cavity 750 of the heat preservation device 700, and is used to detect the temperature in the cavity 750, and the temperature in the cavity 750 is It can be regarded as the temperature of the electrolytic deoxygenation device 100 .
  • the heating device 300 may be configured to be activated in a controlled manner when the temperature detected by the temperature sensor is lower than a preset first temperature threshold, thereby switching to a power-on state and generating heat.
  • Such setting can keep the temperature in the cavity 750 basically constant, so as to prevent the temperature of the electrolytic deoxidizer 100 from fluctuating significantly, and prevent the electrochemical reaction of the electrolytic deoxidizer 100 from being unable to proceed or produce structural defects due to a significant drop in temperature. question.
  • the heat preservation device 700 is provided with an opening communicating with the cavity 750 , so as to allow the electrolytic deoxygenation device 100 located in the cavity 750 to communicate with the storage space 510 through the opening.
  • the shape of the heat preservation device 700 is roughly a hollow cuboid, and the opening may be located on a side wall of the heat preservation device 700 and opposite to the communication port 114 of the casing 110 .
  • the refrigerator 10 further includes a control device 900 connected with the heating device 300 in data.
  • the control device 900 is used for sending a heating start signal to the heating device 300 to start the heating device 300 .
  • the control device 900 may be configured to send a heating start signal to the heating device 300 according to a preset period, so that the heating device 300 is periodically energized and generates heat, so that the temperature of the electrolytic deoxygenation device 100 is basically kept constant.
  • the control means in this embodiment may be applicable to the case where the storage space 510 is a refrigerated space or a frozen space, and is especially applicable to an application scenario where the storage space 510 is a frozen space.
  • control device 900 may be connected to the temperature sensor mentioned in the above embodiments, and when the temperature of the electrolytic deoxygenation device 100 (that is, the temperature detected by the temperature sensor) is lower than the preset first temperature threshold A heating start signal is sent to the heating device 300, so that the heating device is energized and generates heat, so as to ensure that the temperature of the electrolytic oxygen removal device 100 is always above the preset first temperature threshold.
  • the control means in this embodiment can be applied not only when the storage space 510 is a refrigerated space, but also when the storage space 510 is a frozen space, and is especially suitable for the application scenario where the storage space 510 is a frozen space.
  • the control device 900 sends a shutdown signal to the heating device 300 so that the heating device 300 stops heating.
  • the second temperature threshold is higher than the first temperature threshold, for example, the first temperature threshold may be -5°C, and the second temperature threshold may be 0°C.
  • control device 900 can also be configured to send a heating start signal to the heating device 300 before starting the electrolytic oxygen removal device 100, so that the heating device 300 is powered on and generates heat.
  • Starting the heating device 300 before starting the electrolytic oxygen removal device 100 can raise the temperature of the electrolytic oxygen removal device 100 to a reasonable level, so as to ensure the normal progress of the electrochemical reaction.
  • an oxygen concentration sensor is provided in the storage space 510 of the refrigerator 10 , and the oxygen concentration sensor is data-connected with the control device 900 of the refrigerator 10 for detecting the oxygen concentration in the storage space 510 .
  • the oxygen concentration in the storage space 510 is higher than the preset concentration threshold, it is determined that the electrolytic oxygen removal device 100 needs to be started, and before starting the electrolytic oxygen removal device 100, the step of starting the heating device 300 is performed first, and the heating device 300 is operated After the time period is set, the step of starting the electrolytic deoxygenation device 100 is performed, which can reduce the power consumption of the heating device 300 to a certain extent.
  • control device 900 may be connected to the electrolytic deoxygenation device 100 in data, and configured to send a deoxygenation signal to the electrolytic deoxygenation device 100 after the detection value of the oxygen concentration sensor is higher than the preset concentration threshold and the heating device 300 runs for a set period of time.
  • the start signal makes the electrolysis oxygen removal device 100 energized and starts the oxygen removal.
  • the control means of this embodiment is applicable to the case where the storage space 510 is a refrigerated space, and the temperature of the refrigerated space is relatively high, and the electrolytic deoxygenation device 100 generally has no risk of freezing. When the electrolytic deoxygenation device 100 does not have the risk of freezing in the refrigerated space or does not cause structural damage due to freezing, the control means of this embodiment can also be applied to the case where the storage space 510 is a refrigerated space.
  • the refrigerator 10 further includes a state monitoring device 600 , which is arranged on the power supply circuit where the electrolytic deoxygenation device 100 is located, and is used to detect the working current of the electrolytic deoxygenation device 100 after it is started.
  • a power supply is provided in the refrigerator 10 as the power supply of the power supply circuit, and provides the electrolysis voltage required for the electrochemical reaction to the electrolytic deoxygenation device 100 .
  • the electrolytic deoxygenation device 100 is connected in series to the power supply circuit.
  • the power supply may be a battery, or may be a part of the circuit board of the complete refrigerator 10 .
  • the control device 900 is further configured to send a heating start signal to the heating device 300 when the operating current of the electrolytic oxygen removal device 100 is lower than a preset current threshold. That is to say, during the electrochemical reaction of the electrolytic deoxygenation device 100 , the heating device 300 can also be started in a controlled manner according to actual needs.
  • the electrolytic deoxygenation device 100 can The chemical reaction rate is accelerated, thereby ensuring that the electrolytic oxygen removal device 100 maintains a relatively high oxygen removal efficiency all the time.
  • the state monitoring device 600 may be a current detector, which is arranged in series with the electrolytic deoxygenation device 100 on the power supply circuit. After starting the heating device 300, when the current value detected by the state monitoring device 600 reaches the preset current threshold, the control device 900 can send a shutdown signal to the heating device 300, and the electrolytic oxygen removal device 100 generates the electrochemical reaction. Heat is able to maintain its own temperature to a certain extent.
  • the state monitoring device 600 can be transformed into a resistance detector for detecting the resistance value of the electrolytic oxygen removal device 100, and the control device 900 can be configured to send The heating device 300 sends a heating start signal.
  • the installation location of the temperature sensor can be changed, for example, it can be arranged in the storage space 510 . Since the electrolytic deoxygenation device 100 will be placed in the storage space 510 for a long time, the temperature of the storage space 510 is approximately equal to the temperature of the electrolytic deoxygenation device 100 . According to the temperature of the storage space 510, it can be judged whether the electrolytic deoxidizer 100 needs to be heated.
  • the method is convenient, and there is no need to arrange a temperature detection device in the cavity 750, which is beneficial to simplify the structure of the refrigerator 10, reduce the difficulty of assembly, and save the manufacturing of the whole machine cost.
  • FIG. 9 is a schematic exploded view of the electrolytic deoxygenation device 100 of the refrigerator 10 shown in FIG. 3 .
  • the structure of the electrolytic deoxygenation device 100 will be further exemplified below.
  • the casing 110 is provided with an exhaust port 112 for allowing the gas generated in the casing 110 to be discharged to the external space.
  • the anode plate 140 in this embodiment generates oxygen when performing an electrochemical reaction, and the exhaust port is used to allow the oxygen generated by the anode plate 140 to discharge.
  • the exhaust port 112 may be disposed near the top of the casing 110, which may reduce or avoid electrolyte leakage.
  • an exhaust pipe 160 may be connected to the exhaust port 112.
  • An anode power supply terminal 142 is formed on the anode plate 140 . to connect to the power supply.
  • the electrolytic deoxygenation device 100 may further include a partition 130 and a fixing component 150 .
  • the separator 130 is disposed in the liquid storage chamber and between the cathode plate 120 and the anode plate 140 for separating the cathode plate 120 and the anode plate 140 to prevent the electrolytic deoxidizer 100 from short circuiting.
  • a plurality of protrusions 132 are formed on the side of the separator 130 facing the anode plate 140, the protrusions 132 are in contact with the anode plate 140, and the cathode plate 120 is attached to a side of the separator 130 away from the protrusions 132. side, so as to form a preset gap between the cathode plate 120 and the anode plate 140 , thereby separating the cathode plate 120 from the anode plate 140 .
  • the fixing assembly 150 can be disposed on the outside of the cathode plate 120 and configured to fix the cathode plate 120 to the communication port 114 of the casing 110 .
  • the fixing assembly 150 may further include a metal frame 152 and a support 154 .
  • the metal frame 152 is attached to the outside of the cathode plate 120 .
  • the metal frame 152 is in direct contact with the cathode plate 120 and can play a role of pressing the cathode plate 120, and the cathode power supply terminal 152b of the cathode plate 120 can also be provided on the metal frame 152 to connect with an external power supply.
  • the supporting member 154 is formed with an insertion slot.
  • the metal frame 152 When the surrounding portion 152 a of the metal frame 152 enters the insertion slot of the support member 154 , the metal frame 152 can be fixed and positioned by the support member 154 , so that the metal frame 152 presses the cathode plate 120 .
  • the electric heating element When the electric heating element is disposed in the liquid storage cavity, the electric heating element may be located between the separator 130 and the anode plate 140 .
  • the refrigerator 10 of the present invention can solve the failure problem of the electrolytic oxygen removal device 100 caused by low temperature by thermally connecting the electrolytic oxygen removal device 100 with the heating device 300 and using the heating device 300 to heat the electrolytic oxygen removal device 100 . Even if the temperature of the storage space 510 in the refrigerator 10 is low, the heat generated by the heating device 300 can keep the electrolytic deoxygenator 100 at a relatively high temperature, thereby ensuring that the electrolytic deoxygenator 100 can perform electrochemical reactions normally.
  • the solution of the present invention is especially applicable to the application scene where the electrolytic deoxygenation device is installed in the refrigerated space and deoxygenates the refrigerated space, and creates favorable conditions for the electrolytic deoxygenation device to perform the deoxygenation work normally in the refrigerated space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种冰箱,包括:箱体,其内部形成储物空间;电解除氧装置,与储物空间气流连通,配置成在电解电压的作用下通过电化学反应消耗储物空间内的氧气;以及加热装置,与电解除氧装置热连接,配置成加热电解除氧装置。基于本发明的方案,可以解决因低温所导致的电解除氧装置失效问题。即使冰箱内的储物空间温度较低,利用加热装置所产生的热量也可使电解除氧装置保持相对较高温度,从而保证电解除氧装置能够正常地进行电化学反应。本发明的方案,尤其适用于电解除氧装置安装于冷冻空间并为冷冻空间除氧的应用场景,为使电解除氧装置在冷冻空间内正常地执行除氧工作创造了有利条件。

Description

冰箱 技术领域
本发明涉及保鲜设备,特别是涉及冰箱。
背景技术
具备低温存储功能的电器设备统称为冰箱,既包括狭义的冰箱,也包括冷柜、储藏柜以及其他冷藏冷冻装置。
为营造低温低氧的保鲜气氛,提升保鲜性能,冰箱上可以安装电解除氧装置,使电解除氧装置在电解电压的作用下进行电化学反应。
然而,发明人认识到,冰箱内的储物空间温度较低,这会导致电解除氧装置无法正常地进行电化学反应,引起失效问题。
本背景技术所公开的上述信息仅仅用于增加对本申请背景技术的理解,因此,其可能包括不构成本领域普通技术人员已知的现有技术。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种冰箱。
本发明的一个进一步的目的是要解决因低温所导致的冰箱的电解除氧装置失效问题。
本发明的又一个进一步的目的是要延长电解除氧装置的使用寿命,降低维修更换频率。
本发明的另一个进一步的目的是要保证电解除氧装置的除氧效率。
本发明的再一个进一步的目的是要保证加热装置的加热效率。
本发明的又一个进一步的目的是要减少或避免因加热装置和电解除氧装置所产生的热量扩散至储物空间所导致的保鲜效果变差问题。
特别地,本发明提供了一种冰箱,包括:箱体,其内部形成储物空间;电解除氧装置,与储物空间气流连通,配置成在电解电压的作用下通过电化学反应消耗储物空间内的氧气;以及加热装置,与电解除氧装置热连接,配置成加热电解除氧装置。
可选地,加热装置为电热元件,配置成在通电状态下产生热量,从而加热电解除氧装置。
可选地,电热元件为电热丝或电热片,缠绕或嵌设于电解除氧装置,或与电解除氧装置贴靠设置,以实现热连接。
可选地,电解除氧装置包括:壳体,其上开设有用于与储物空间气流连通的连通口;阴极板,设置于连通口处,以与壳体共同限定出用于盛装电解液的储液腔,并用于在电解电压的作用下通过电化学反应消耗储物空间内的氧气;以及阳极板,设置于储液腔内,并用于通过电化学反应向阴极板提供反应物;且电热元件缠绕于壳体的外表面,或者通过注塑成型嵌设于壳体的壳壁,或者设置于储液腔内。
可选地,冰箱还包括:保温装置,包裹在加热装置与电解除氧装置的外侧,以防加热装置和电解除氧装置所产生的热量泄漏。
可选地,保温装置的内部限定出空腔,以容置加热装置以及电解除氧装置;且保温装置由内至外地包括:第一保温层,其由复合玻璃材料制成;第二保温层,其由橡塑保温材料或者真空绝热材料制成;以及第三保温层,其由橡塑材料制成。
可选地,保温装置开设有连通空腔的开口,以允许位于空腔内的电解除氧装置通过开口与储物空间气流连通。
可选地,冰箱还包括:控制装置,与加热装置数据连接;且控制装置配置成在启动电解除氧装置之前向加热装置发送加热启动信号,使加热装置通电并产生热量,或者配置成按照预设的周期向加热装置发送加热启动信号,使加热装置周期性通电并产生热量,或者配置成在电解除氧装置的温度低于预设的第一温度阈值时向加热装置发送加热启动信号,使加热装置通电并产生热量。
可选地,冰箱还包括:状态监测装置,设置于电解除氧装置所在的供电回路上,用于检测电解除氧装置启动之后的工作电流;且控制装置还配置成在电解除氧装置的工作电流低于预设的电流阈值时向加热装置发送加热启动信号。
可选地,储物空间为冷冻空间。
本发明的冰箱,通过使电解除氧装置与加热装置热连接,并利用加热装置加热电解除氧装置,可以解决因低温所导致的电解除氧装置失效问题。即使冰箱内的储物空间温度较低,利用加热装置所产生的热量也可使电解除氧装置保持相对较高温度,从而保证电解除氧装置能够正常地进行电化学反 应。本发明的方案,尤其适用于电解除氧装置安装于冷冻空间并为冷冻空间除氧的应用场景。
进一步地,本发明的冰箱,通过利用状态监测装置检测电解除氧装置启动之后的工作电流,并在电解除氧装置的工作电流低于预设的电流阈值时启动加热装置,可使电解除氧装置的电化学反应速率加快,从而保证电解除氧装置始终维持相对较高的除氧效率。
进一步地,本发明的冰箱,利用加热装置与电解除氧装置热连接,以加热电解除氧装置,可以避免电解除氧装置因低温而“冻坏”,有利于使电解除氧装置保持良好的结构稳定性,延长电解除氧装置的使用寿命,降低维修更换频率。
进一步地,本发明的冰箱,由于加热装置可以选择性地通过缠绕于壳体的外表面、注塑成型嵌设于壳体的壳壁或者设置于储液腔内等方式实现与电解除氧装置之间的热连接,这些热连接方式均能保证加热装置与电解除氧装置之间的传热效果,因此,本发明的加热装置具有较优的加热效率。
更进一步地,本发明的冰箱,由于保温装置包裹在加热装置与电解除氧装置的外侧,可以起到防止加热装置和电解除氧装置所产生的热量泄漏的作用,因此,本发明的方案,能够减少或避免因加热装置和电解除氧装置所产生的热量扩散至储物空间所导致的保鲜效果变差问题。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意性结构图;
图2是根据本发明一个实施例的冰箱的示意性框图;
图3是根据本发明一个实施例的冰箱的加热装置与电解除氧装置的示意性连接结构图;
图4是图3所示的冰箱的加热装置的示意性结构图;
图5是根据本发明另一实施例的冰箱的加热装置与电解除氧装置的示意 性连接结构图;
图6是图5所示的冰箱的加热装置的示意性结构图;
图7是根据本发明又一实施例的冰箱的加热装置的示意性结构图;
图8是根据本发明一个实施例的冰箱的保温装置的示意性结构图;
图9是图3所示的冰箱的电解除氧装置的示意性分解图。
具体实施方式
图1是根据本发明一个实施例的冰箱10的示意性结构图。图2是根据本发明一个实施例的冰箱10的示意性框图。冰箱10一般性地可包括箱体500、电解除氧装置100和加热装置300。
箱体500的内部形成储物空间510,用于存放食材、药品或者其他物品。储物空间510的数量可以根据实际需要设置为一个或多个。图1仅以具有三个储物空间510的冰箱10进行示例,但不应视为对储物空间510数量的限定。下述电解除氧装置100可以根据实际需要布置于任一储物空间510,或与任一储物空间510对应地气流连通,以消耗该储物空间510的氧气。
电解除氧装置100,与储物空间510气流连通,配置成在电解电压的作用下通过电化学反应消耗储物空间510内的氧气。气流连通是指,储物空间510内的气体能够流动至电解除氧装置100,使得电解除氧装置100能以储物空间510内的氧气为反应物进行电化学反应,从而起到除氧的作用。
电解除氧装置100的电化学反应类型可以根据实际需要进行设置,只要电化学反应能够起到消耗氧气的作用均可。例如,电化学反应可以为电解水的反应。
加热装置300与电解除氧装置100热连接,配置成加热电解除氧装置100。热连接是指,加热装置300所产生的热量能够传递至电解除氧装置100。
本发明的冰箱10,通过使电解除氧装置100与加热装置300热连接,并利用加热装置300加热电解除氧装置100,可以解决因低温所导致的电解除氧装置100失效问题。即使冰箱10内的储物空间510温度较低,利用加热装置300所产生的热量也可使电解除氧装置100保持相对较高温度,从而保证电解除氧装置100能够正常地进行电化学反应。本发明的方案,尤其适用于电解除氧装置安装于冷冻空间并为冷冻空间除氧的应用场景。
发明人认识到,除了失效问题之外,低温环境可能还会导致电解除氧装置100的结构出现损伤甚至破裂。利用加热装置300与电解除氧装置100热 连接,以加热电解除氧装置100,可以避免电解除氧装置100因低温而“冻坏”,有利于使电解除氧装置100保持良好的结构稳定性,延长电解除氧装置100的使用寿命,降低维修更换频率。
利用加热装置300与电解除氧装置100热连接,彻底规避了因低温环境所导致的电化学反应无法正常进行、以及电解除氧装置100出现结构损伤等问题,具备结构精巧、效果显著的优点。
加热装置300可以根据实际需要设置为能够产生热量的任一装置,例如可以为电加热装置300、高频加热装置300等,只要能够具备发热功能均可。
在一些可选的实施例中,加热装置300为电热元件,配置成在通电状态下产生热量,从而加热电解除氧装置100。电热元件属于电加热装置300。加热装置300可以通过导线接入冰箱10整机的电路板,从而接受控制。
采用电热元件充当加热装置300,只要保证电热元件与电解除氧装置100“接触”,即可实现热连接,同时通过对电热元件供电,并使其在通电状态下产生热量,即可起到加热的目的,具备结构简单、易于实现热连接、控制过程简易、制造成本低等优点。
在一些进一步的实施例中,电热元件为电热丝或电热片,缠绕或嵌设于电解除氧装置100,或与电解除氧装置100贴靠设置,以实现热连接。即,电热元件与电解除氧装置100之间的热连接方式可以为缠绕、嵌设或者贴靠等多种方式中的任意一个。下面将以电热丝为例,针对电热元件与电解除氧装置100之间的连接结构进行示意,本领域技术人员在了解下述实施例的基础上应当易于变换和拓展,这些变换和拓展均应落入本发明的保护范围。
图3是根据本发明一个实施例的冰箱10的加热装置300与电解除氧装置100的示意性连接结构图,图4是图3所示的冰箱10的加热装置300的示意性结构图。图中的黑色圆点示出加热装置300的接线端子,用于与导线连接,以接入冰箱10整机的电路板。本实施例以加热装置300为电热丝进行示例。当电热元件为电热丝时,电热元件可以缠绕设置于电解除氧装置100的壳体110外壁上,或者可以嵌设于电解除氧装置100的壳体110的内部空间,或者还可以嵌设于电解除氧装置100的壳体110的壳壁内。
又如,当电热元件为电热片时,电热元件可以贴靠设置于电解除氧装置100的壳体110的任意壳壁外侧,或者可以嵌设于电解除氧装置100的壳体110的内部空间,或者还可以嵌设于电解除氧装置100的壳体110的任意壳 壁上。
在另一些可选的实施例中,电热元件与电解除氧装置100之间的热连接方式可以变换为缠绕、嵌设或者贴靠等多种方式的任意组合,这有利于提高热连接方式的多样性,从而提高加热装置300的加热效果。
在一些可选的实施例中,电解除氧装置100包括壳体110、阴极板120和阳极板140。电解除氧装置100可以设置于储物空间510内,或者可以在储物空间510的壁上开设安装口,并使电解除氧装置100卡接于安装口。
其中,壳体110上开设有用于与储物空间510气流连通的连通口114。壳体110大致呈扁平的长方体状,壳体110的面积最大的一个侧壁可以打开,以形成连通口114,这有利于提高电解除氧装置100的阴极板120与储物空间510之间的接触面积。
阴极板120设置于连通口114处,以与壳体110共同限定出用于盛装电解液的储液腔,并用于在电解电压的作用下通过电化学反应消耗储物空间510内的氧气。将阴极板120设置于连通口114处,在封闭储液腔的同时,可保证阴极板120与储物空间510气流连通。例如,空气中的氧气可以在阴极板120处发生还原反应,即:O 2+2H 2O+4e -→4OH -。储液腔缩盛装的电解液可以为酸性水溶液或者碱性水溶液,例如可以为1~5mol/L的氢氧化钠溶液。
阳极板140设置于储液腔内,并用于通过电化学反应向阴极板120提供反应物。阳极板140与阴极板120相互间隔地设置于储液腔内。且在通电情况下,阳极板140用于通过电化学反应向阴极板120提供反应物(例如,电子)且生成氧气。又如,阴极板120产生的OH -在阳极板140处可以发生氧化反应,并生成氧气,即:4OH -→O 2+2H 2O+4e -。壳体110上还可以开设有排气口112,氧气可以通过排气口112排出。
电热元件缠绕于壳体110的外表面,或者通过注塑成型嵌设于壳体110的壳壁,或者设置于储液腔内。电热元件可以为电热丝或电热片,或者任意其他形状的电热元件。
将电热元件缠绕于壳体110的外表面,可以降低电热元件的检修难度,当电热元件的加热效率下降时,可以十分简便地更换电热元件。
图5是根据本发明另一实施例的冰箱10的加热装置300与电解除氧装置100的示意性连接结构图,图6是图5所示的冰箱10的加热装置300的 示意性结构图,图中以电热元件嵌设于壳体110的壳壁为例进行示意。图5中的虚线示出电热元件的嵌设位置。将电热元件通过注塑成型嵌设于壳体110的壳壁,可以提高电热元件与壳体110的结构一体性,同时还能提高电热元件与壳体110之间的传热效率,以增强加热效果。
图7是根据本发明又一实施例的冰箱10的加热装置300的示意性结构图,图中以可设置于储液腔内的电热元件为例进行示意。将电热元件设置于储液腔内,电热元件所发出的热量可以直接地传导至电解液,从而有利于进一步提高电化学反应速率。
由于加热装置300可以选择性地通过缠绕于壳体110的外表面、注塑成型嵌设于壳体110的壳壁或者设置于储液腔内等方式实现与电解除氧装置100之间的热连接,而这些热连接方式均能保证加热装置300与电解除氧装置100之间的传热效果,因此,本实施例的加热装置300具有较优的加热效率。
图8是根据本发明一个实施例的冰箱10的保温装置700的示意性结构图。在一些可选的实施例中,冰箱10进一步地还包括保温装置700,包裹在加热装置300与电解除氧装置100的外侧,以防加热装置300和电解除氧装置100所产生的热量泄漏。
由于保温装置700包裹在加热装置300与电解除氧装置100的外侧,可以起到防止加热装置300和电解除氧装置100所产生的热量泄漏的作用,因此,本实施例的方案,能够减少或避免因加热装置300和电解除氧装置100所产生的热量扩散至储物空间510所导致的保鲜效果变差问题。
在一些进一步的实施例中,保温装置700的内部限定出空腔750,以容置加热装置300以及电解除氧装置100。且保温装置700由内至外地包括第一保温层710、第二保温层720以及第三保温层730。即,保温装置700由多层材料制成,多层材料由内至外地层层叠置,从而限定出空腔750。
其中,第一保温层710由复合玻璃材料制成,例如复合玻璃纤维布。第二保温层720由橡塑保温材料或者真空绝热材料制成,其中,橡塑保温材料的防火性能等级为A级,真空绝热材料可以采用真空绝热板。第三保温层730由橡塑材料制成,例如橡塑胶带。
将第一保温层710、第二保温层720以及第三保温层730由内至外地层层叠置,从而形成保温装置700,既可以防止热量泄漏,又可以提高电解除 氧装置100对加热装置300所提供热量的利用效率,一举多得。
在一些可选的实施例中,保温装置700与加热装置300可以一体成型,形成电伴热保温系统。其中,加热装置300作为电伴热保温系统的电伴热带,贴靠设置在第一保温层710背朝第二保温层720的一侧,即,位于多层结构的最内侧。在一些可选的实施例中,电热元件还可以嵌设于第一保温层710内(电热元件的嵌设位置如图8虚线所示)。
利用一体成型的电伴热保温系统加热电解除氧装置100,并实现保温功能,可以进一步地提高加热模块和保温模块的结构一体性,降低冰箱10的组装难度。
在一些可选的实施例中,冰箱10还可以包括温度传感器(未示出),设置于保温装置700的空腔750内,用于检测空腔750内的温度,空腔750内的温度即可视为电解除氧装置100的温度。加热装置300可以配置成在温度传感器所检测到的温度低于预设的第一温度阈值时受控地启动,从而切换至通电状态并产生热量。如此设置,可使空腔750内的温度基本保持恒定,以防电解除氧装置100的温度产生明显波动,避免电解除氧装置100因温度明显下降而产生电化学反应无法进行或者产生结构缺陷等问题。
在一些可选的实施例中,保温装置700开设有连通空腔750的开口,以允许位于空腔750内的电解除氧装置100通过开口与储物空间510气流连通。例如,保温装置700的外形大致呈中空的长方体状,开口可以位于保温装置700的侧壁上,且与壳体110的连通口114相对。
在一些可选的实施例中,冰箱10还包括控制装置900,与加热装置300数据连接。控制装置900用于向加热装置300发送加热启动信号,以启动加热装置300。例如,控制装置900可以配置成按照预设的周期向加热装置300发送加热启动信号,使得加热装置300周期性通电并产生热量,以使电解除氧装置100的温度基本保持恒定。本实施例的控制手段可以适用于储物空间510为冷藏空间或者冷冻空间的情况,尤其适用于储物空间510为冷冻空间的应用场景。
又如,控制装置900可以与以上实施例所提到的温度传感器数据连接,并在电解除氧装置100的温度(即,温度传感器所检测到的温度)低于预设的第一温度阈值时向加热装置300发送加热启动信号,使加热装置通电并产生热量,以保证电解除氧装置100的温度始终处于预设的第一温度阈值以上。 本实施例的控制手段既可以适用于储物空间510为冷藏空间的情况,也可以适用于储物空间510为冷冻空间的情况,尤其适用于储物空间510为冷冻空间的应用场景,,为使电解除氧装置100在冷冻空间内正常地执行除氧工作创造了有利条件。在温度传感器所检测到的温度高于预设的第二温度阈值时,控制装置900向加热装置300发送停机信号,以使加热装置300停止加热。第二温度阈值高于第一温度阈值,例如,第一温度阈值可以为-5℃,第二温度阈值可以为0℃。
在一些可选的实施例中,控制装置900还可以配置成在启动电解除氧装置100之前向加热装置300发送加热启动信号,使得加热装置300通电并产生热量。在启动电解除氧装置100之前启动加热装置300,可使电解除氧装置100的温度升高至合理水平,以保证电化学反应正常进行。
例如,冰箱10的储物空间510内设置有氧气浓度传感器,该氧气浓度传感器与冰箱10的控制装置900数据连接,用于检测储物空间510内的氧气浓度。在储物空间510的氧气浓度高于预设的浓度阈值时,确定需要启动电解除氧装置100,在启动电解除氧装置100之前,先执行启动加热装置300的步骤,并使加热装置300运行设定时长之后,再执行启动电解除氧装置100的步骤,这可以在一定程度上降低加热装置300的功耗。又如,控制装置900可与电解除氧装置100数据连接,配置成在氧气浓度传感器的检测值高于预设的浓度阈值且加热装置300运行设定时长之后向电解除氧装置100发送除氧启动信号,使得电解除氧装置100通电并启动除氧。本实施例的控制手段适用于储物空间510为冷藏空间的情况,冷藏空间的温度相对较高,电解除氧装置100一般不具有冻结风险。当电解除氧装置100在冷冻空间内不具备冻结风险或者不会因冻结而导致结构损伤时,本实施例的控制手段也可以适用于储物空间510为冷冻空间的情况。
在一些可选的实施例中,冰箱10还包括状态监测装置600,设置于电解除氧装置100所在的供电回路上,用于检测电解除氧装置100启动之后的工作电流。例如,冰箱10内设置有供电电源,作为供电回路的电源,并向电解除氧装置100提供进行电化学反应所需的电解电压。电解除氧装置100串接在供电回路上。在一些实施例中,供电电源可以为电池,或者可以为冰箱10整机的电路板的一部分。
如果电解液因低温而冻结或者部分冻结,当向电解除氧装置100供电之 后,会导致状态监测装置600检测不到电流或者电流很小。控制装置900还配置成在电解除氧装置100的工作电流低于预设的电流阈值时向加热装置300发送加热启动信号。也就是说,在电解除氧装置100进行电化学反应的过程中,加热装置300也可以根据实际需要而受控地启动。
通过利用状态监测装置600检测电解除氧装置100启动之后的工作电流,并在电解除氧装置100的工作电流低于预设的电流阈值时启动加热装置300,可使电解除氧装置100的电化学反应速率加快,从而保证电解除氧装置100始终维持相对较高的除氧效率。
状态监测装置600可以为电流检测器,与电解除氧装置100串联设置于供电回路上。在启动加热装置300之后,当状态监测装置600检测到的电流值达到预设的电流阈值时,控制装置900可以向加热装置300发送停机信号,电解除氧装置100进行电化学反应时所产生的热量能够在一定程度上维持自身的温度。
以上关于状态监测装置600和利用工作电流判定是否需要启动加热装置300的举例仅仅是示例性的,在了解以上举例的基础上,本领域技术人员应当易于拓展和变换,这些拓展和变换均应落入本发明的保护范围。例如,状态监测装置600可以变换为电阻检测器,用于检测电解除氧装置100的电阻值,控制装置900可以配置成在电解除氧装置100的电阻值高于预设的阻值阈值时向加热装置300发送加热启动信号。
在一些可选的实施例中,温度传感器的安装位置可以进行变换,例如可以设置于储物空间510内。由于电解除氧装置100会长时间地放置于储物空间510内,因此,储物空间510的温度大致等于电解除氧装置100的温度。根据储物空间510的温度即可判断是否需要加热电解除氧装置100,方法便捷,无需在空腔750内布置温度检测装置,有利于简化冰箱10的结构、降低组装难度,节约整机的制造成本。
图9是图3所示的冰箱10的电解除氧装置100的示意性分解图。下面将针对电解除氧装置100的结构进行进一步示例。
壳体110上开设有排气口112,用于允许壳体110内产生的气体排出至外部空间。本实施例的阳极板140在进行电化学反应时生成氧气,上述排气口用于允许阳极板140生成的氧气排出。排气口112可以靠近壳体110的顶部设置,这可以减少或避免电解液泄漏。在一些实施例中,排气口112处可 以连接有排气管160。
阳极板140上形成有阳极供电端子142。以与供电电源相连。
在一些实施例中,电解除氧装置100还可以进一步地包括分隔件130和固定组件150。其中,分隔件130设置于储液腔内,并位于阴极板120与阳极板140之间,用于分隔阴极板120与阳极板140,防止电解除氧装置100短路。具体地,分隔件130上朝向阳极板140的一侧形成有多个凸起部132,凸起部132抵触于阳极板140上,阴极板120贴靠于分隔件130背离凸起部132的一侧,以在阴极板120与阳极板140形成预设间隙,进而将阴极板120与阳极板140分隔开。
固定组件150可以设置于阴极板120的外侧,配置成将阴极板120固定于壳体110的连通口114处。具体地,该固定组件150还可以包括金属边框152和支撑件154。金属边框152贴靠于阴极板120的外侧。金属边框152与阴极板120直接接触,可以起到压紧阴极板120的作用,并且金属边框152上还可以设置有阴极板120的阴极供电端子152b,以与外部电源相连。支撑件154形成有插接槽。当金属边框152的围立部152a进支撑件154的插接槽时,金属边框152可以由支撑件154固定和定位,进而使得金属边框152压紧阴极板120。
当电热元件设置于储液腔内时,电热元件可以位于分隔件130与阳极板140之间。
以上仅是针对电解除氧装置100的结构进行举例,但不应视为电解除氧装置100的结构仅限于此。
本发明的冰箱10,通过使电解除氧装置100与加热装置300热连接,并利用加热装置300加热电解除氧装置100,可以解决因低温所导致的电解除氧装置100失效问题。即使冰箱10内的储物空间510温度较低,利用加热装置300所产生的热量也可使电解除氧装置100保持相对较高温度,从而保证电解除氧装置100能够正常地进行电化学反应。本发明的方案,尤其适用于电解除氧装置安装于冷冻空间并为冷冻空间除氧的应用场景,为使电解除氧装置在冷冻空间内正常地执行除氧工作创造了有利条件。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或 修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冰箱,包括:
    箱体,其内部形成储物空间;
    电解除氧装置,与所述储物空间气流连通,配置成在电解电压的作用下通过电化学反应消耗所述储物空间内的氧气;以及
    加热装置,与所述电解除氧装置热连接,配置成加热所述电解除氧装置。
  2. 根据权利要求1所述的冰箱,其中,
    所述加热装置为电热元件,配置成在通电状态下产生热量,从而加热所述电解除氧装置。
  3. 根据权利要求2所述的冰箱,其中,
    所述电热元件为电热丝或电热片,缠绕或嵌设于所述电解除氧装置,或与所述电解除氧装置贴靠设置,以实现热连接。
  4. 根据权利要求2所述的冰箱,其中,
    所述电解除氧装置包括:
    壳体,其上开设有用于与所述储物空间气流连通的连通口;
    阴极板,设置于所述连通口处,以与所述壳体共同限定出用于盛装电解液的储液腔,并用于在电解电压的作用下通过电化学反应消耗所述储物空间内的氧气;以及
    阳极板,设置于所述储液腔内,并用于通过电化学反应向所述阴极板提供反应物;且
    所述电热元件缠绕于所述壳体的外表面,或者通过注塑成型嵌设于所述壳体的壳壁,或者设置于所述储液腔内。
  5. 根据权利要求1所述的冰箱,还包括:
    保温装置,包裹在所述加热装置与所述电解除氧装置的外侧,以防所述加热装置和所述电解除氧装置所产生的热量泄漏。
  6. 根据权利要求5所述的冰箱,其中,
    所述保温装置的内部限定出空腔,以容置所述加热装置以及所述电解除氧装置;且所述保温装置由内至外地包括:
    第一保温层,其由复合玻璃材料制成;
    第二保温层,其由橡塑保温材料或者真空绝热材料制成;以及
    第三保温层,其由橡塑材料制成。
  7. 根据权利要求6所述的冰箱,其中,
    所述保温装置开设有连通所述空腔的开口,以允许位于所述空腔内的所述电解除氧装置通过所述开口与所述储物空间气流连通。
  8. 根据权利要求1所述的冰箱,还包括:
    控制装置,与所述加热装置数据连接;且
    所述控制装置配置成在启动所述电解除氧装置之前向所述加热装置发送加热启动信号,使所述加热装置通电并产生热量,或者配置成按照预设的周期向所述加热装置发送加热启动信号,使所述加热装置周期性通电并产生热量,或者配置成在所述电解除氧装置的温度低于预设的第一温度阈值时向所述加热装置发送加热启动信号,使所述加热装置通电并产生热量。
  9. 根据权利要求8所述的冰箱,还包括:
    状态监测装置,设置于所述电解除氧装置所在的供电回路上,用于检测所述电解除氧装置启动之后的工作电流;且
    所述控制装置还配置成在所述电解除氧装置的工作电流低于预设的电流阈值时向所述加热装置发送加热启动信号。
  10. 根据权利要求1所述的冰箱,其中,
    所述储物空间为冷冻空间。
PCT/CN2022/135504 2021-12-03 2022-11-30 冰箱 WO2023098734A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111467791.5A CN116222089A (zh) 2021-12-03 2021-12-03 冰箱
CN202111467791.5 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023098734A1 true WO2023098734A1 (zh) 2023-06-08

Family

ID=86589662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135504 WO2023098734A1 (zh) 2021-12-03 2022-11-30 冰箱

Country Status (2)

Country Link
CN (1) CN116222089A (zh)
WO (1) WO2023098734A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103727355A (zh) * 2013-04-22 2014-04-16 太仓派欧技术咨询服务有限公司 一种可变形复合保温板及其制作方法
CN109855378A (zh) * 2017-11-30 2019-06-07 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器
CN211944580U (zh) * 2019-12-09 2020-11-17 杭州鲁尔新材料科技有限公司 一种用于冷链运输的保温箱
CN112201817A (zh) * 2020-11-03 2021-01-08 中国科学技术大学 低温环境下启动的金属空气燃料电池系统及运行方法
CN213113532U (zh) * 2020-07-28 2021-05-04 苏州矽道高新材料科技有限公司 一种高效氢气发生装置
WO2021190006A1 (zh) * 2020-03-24 2021-09-30 合肥美的电冰箱有限公司 保鲜装置及冰箱
CN217654154U (zh) * 2021-12-03 2022-10-25 青岛海尔电冰箱有限公司 冰箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103727355A (zh) * 2013-04-22 2014-04-16 太仓派欧技术咨询服务有限公司 一种可变形复合保温板及其制作方法
CN109855378A (zh) * 2017-11-30 2019-06-07 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器
CN211944580U (zh) * 2019-12-09 2020-11-17 杭州鲁尔新材料科技有限公司 一种用于冷链运输的保温箱
WO2021190006A1 (zh) * 2020-03-24 2021-09-30 合肥美的电冰箱有限公司 保鲜装置及冰箱
CN213113532U (zh) * 2020-07-28 2021-05-04 苏州矽道高新材料科技有限公司 一种高效氢气发生装置
CN112201817A (zh) * 2020-11-03 2021-01-08 中国科学技术大学 低温环境下启动的金属空气燃料电池系统及运行方法
CN217654154U (zh) * 2021-12-03 2022-10-25 青岛海尔电冰箱有限公司 冰箱

Also Published As

Publication number Publication date
CN116222089A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
WO2019105427A1 (zh) 冷藏冷冻装置及其除氧控制方法
CN101567461B (zh) 氢浸没式燃料电池堆及相关操作
WO2019105306A1 (zh) 冷藏冷冻装置
JPH11214025A (ja) 燃料電池装置
CN109072459A (zh) 碱性水电解装置及其驱动方法
KR100700546B1 (ko) 연료전지의 동결 방지 장치
CN217654154U (zh) 冰箱
CN101292385B (zh) 燃料电池系统及其运行方法
WO2023098734A1 (zh) 冰箱
JP2013206857A (ja) 燃料電池システム、及び、燃料電池システムの緊急停止方法
KR100774472B1 (ko) 연료전지의 공기 예열 장치
CN215769988U (zh) 一种充电桩火灾监测及灭火装置
CN114171759A (zh) 一种燃料电池电堆的低温吹扫系统及其方法
WO2019105428A1 (zh) 冷藏冷冻装置及其除氧控制方法
JPH11273705A (ja) 燃料電池装置
WO2022242241A1 (zh) 冰箱及其电解除氧装置
JPH11283648A (ja) 燃料電池装置
CN216409401U (zh) 冰箱
JPH11283649A (ja) 燃料電池装置
JP4804379B2 (ja) 燃料電池システム
CN212392541U (zh) 配电箱
JP2002008737A (ja) エネルギー供給システム
JP2005069513A (ja) 調湿型保存庫
CN216118800U (zh) 一种扫码装置
CN116164463B (zh) 冰箱及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE