WO2023098704A1 - 设备到设备通信方法、装置、设备、介质及程序产品 - Google Patents

设备到设备通信方法、装置、设备、介质及程序产品 Download PDF

Info

Publication number
WO2023098704A1
WO2023098704A1 PCT/CN2022/135307 CN2022135307W WO2023098704A1 WO 2023098704 A1 WO2023098704 A1 WO 2023098704A1 CN 2022135307 W CN2022135307 W CN 2022135307W WO 2023098704 A1 WO2023098704 A1 WO 2023098704A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay terminal
slice
information
terminal
network
Prior art date
Application number
PCT/CN2022/135307
Other languages
English (en)
French (fr)
Inventor
张婷
李宝荣
卢燕青
许森
信金灿
宋谱
吴海波
赵静
安小静
高锦
戴国华
Original Assignee
中国电信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电信股份有限公司 filed Critical 中国电信股份有限公司
Publication of WO2023098704A1 publication Critical patent/WO2023098704A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the technical field of communication, and in particular to a device-to-device communication method, device, device, medium and program product.
  • the fifth-generation mobile communication technology (5th-generation, 5G) network introduces the concept of network slicing.
  • the network forms different slices by dividing hardware resources to provide services for different services.
  • the inventors have found that in the 5G network, there is currently no solution for implementing device-to-device (Device To Device, D2D) relay communication. Therefore, in the D2D relay communication mode, how to help the remote terminal select a relay terminal corresponding to a slice and access the corresponding slice becomes an urgent problem to be solved.
  • D2D Device To Device
  • the present disclosure provides a device-to-device communication method, device, device, medium, and program product.
  • a remote terminal discovers slice attributes in a signal through the device, and can select a suitable relay terminal to access the corresponding slice.
  • a device-to-device communication method which is applied to a relay terminal, and the method includes:
  • the method also includes:
  • a device discovery signal is sent to the remote terminal, and the device discovery signal carries a slice attribute, so that the remote terminal establishes a communication connection with the relay terminal when the slice attribute meets a preset requirement.
  • the first information includes at least one of the following information:
  • the displacement speed information of the relay terminal The displacement speed information of the relay terminal, the location information of the relay terminal in the network coverage, the load information of the relay terminal, and the power information of the terminal.
  • the method before sending the slice request to the network side device, the method further includes:
  • the wireless communication capability information includes at least one of the following information:
  • Ultra-reliable and ultra-low-latency communication URLLC information Ultra-reliable and ultra-low-latency communication URLLC information, enhanced mobile broadband eMMB information, and bandwidth information supported by relay terminals;
  • the slice attribute is generated by the network side device based on the first information and the wireless communication capability information.
  • obtaining slice attributes includes:
  • the method before sending the capability information of the relay terminal to the network side device, the method further includes:
  • D2D service configuration is performed.
  • the network side equipment includes:
  • a base station configured to receive capability information and send the capability information to the core network device and the slice control unit;
  • a core network device configured to receive capability information from a base station
  • the slice control unit is configured to receive the capability information and the slice request, and generate slice attributes of the relay terminal based on the capability information and the first information of the relay terminal carried in the slice request.
  • the method also includes:
  • a device-to-device communication method which is applied to a remote terminal, and the method includes:
  • the device discovery signal carries a slice attribute of the relay terminal, and the slice attribute is generated by the network side device based on the first information carried in the relay terminal slice request;
  • the slice attribute is generated by the network side device based on the first information and wireless communication capability information
  • the wireless communication capability information comes from the relay terminal, and the wireless communication capability information includes at least one of the following information:
  • Ultra-high reliability and ultra-low latency communication URLLC information Ultra-high reliability and ultra-low latency communication URLLC information, enhanced mobile broadband eMMB information, and bandwidth information supported by relay terminals.
  • a device-to-device communication apparatus which is applied to a relay terminal, and the apparatus includes:
  • the first sending module is configured to send a slicing request to the network-side device, so that the network-side device generates a slicing attribute of the relay terminal based on the first information of the relay terminal carried in the slicing request, and the slicing attribute is used to represent the The slicing service provided by the terminal.
  • the apparatus for device-to-device communication further includes:
  • Get module configured to get slice attributes
  • the second sending module is configured to send a device discovery signal to the remote terminal.
  • the device discovery signal carries a slice attribute, so that the remote terminal establishes a communication connection with the relay terminal when the slice attribute meets preset requirements.
  • a device-to-device communication device which is applied to a remote terminal, and the device includes:
  • the first receiving module is configured to receive the device discovery signal sent by the relay terminal, the device discovery signal carries the slice attribute of the relay terminal, and the slice attribute is generated by the network side device based on the first information carried in the relay terminal slice request of;
  • the communication module is configured to establish a communication connection with the relay terminal when the slice attribute meets the preset requirements.
  • an electronic device including: a processor; and a memory for storing executable instructions of the processor; wherein the processor is configured to execute the executable instructions to Execute the above-mentioned device-to-device communication method.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the above-mentioned device-to-device communication method is implemented.
  • a computer program product including a computer program, and when the computer program is executed by a processor, any one of the above-mentioned device-to-device communication methods is implemented.
  • the relay terminal sends a slicing request to the network-side device; the network-side device generates the slicing attribute of the relay terminal based on the first information of the relay terminal carried in the slicing request,
  • the slice attribute is used to indicate the slice service provided by the relay terminal; the relay terminal carries the slice attribute in the device discovery signal sent to the remote terminal; the remote terminal can communicate with the central
  • the relay terminal establishes a communication connection, and accesses the slice corresponding to the relay terminal. In this way, when the remote terminal selects the relay terminal to access the slice, it can know the slice service that the relay terminal can provide according to the device discovery signal, and then can select a relay terminal that can meet its service requirements.
  • FIG. 1 shows a schematic diagram of a 5G core network architecture in an embodiment of the present disclosure
  • FIG. 2 shows a schematic diagram of a device-to-device communication scenario in an embodiment of the present disclosure
  • FIG. 3 shows one of the schematic flowcharts of a device-to-device communication method in an embodiment of the present disclosure
  • FIG. 4 shows the second schematic flow diagram of a device-to-device communication method in an embodiment of the present disclosure
  • FIG. 5 shows the third schematic flow diagram of a device-to-device communication method in an embodiment of the present disclosure
  • FIG. 6 shows one of schematic diagrams of a device-to-device communication apparatus in an embodiment of the present disclosure
  • FIG. 7 shows a second schematic diagram of a device-to-device communication apparatus in an embodiment of the present disclosure
  • Fig. 8 shows a structural block diagram of a computer device in an embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in many forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concept of example embodiments to those skilled in the art.
  • the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
  • the 5G network introduces the concept of network slicing.
  • the network forms different slices by dividing hardware resources to provide services for different services.
  • the relay terminal is also a part of the slice. How to help the terminal select a relay terminal corresponding to the slice and access the corresponding cellular slice is an urgent problem to be solved.
  • the present disclosure provides a device-to-device communication method.
  • the relay terminal sends a slice request to the network side device; the network side device generates a relay terminal based on the first information of the relay terminal carried in the slice request.
  • the slice attribute of the terminal is used to represent the slice service provided by the relay terminal; the relay terminal carries the slice attribute in the device discovery signal sent to the remote terminal; the remote terminal can In this case, a communication connection is established with the relay terminal, and a slice corresponding to the relay terminal is accessed. In this way, when the remote terminal selects the relay terminal to access the slice, it can know the slice service that the relay terminal can provide according to the device discovery signal, and then can select a relay terminal that can meet its service requirements.
  • FIG. 1 is a schematic diagram of an architecture of a 5G core network in an embodiment of the present disclosure.
  • the AMF communicates with the RAN, and the AMF can be used to manage procedures related to UE mobility.
  • the session management entity (Session Management Function, SMF) communicates with the RAN, and the SMF can be used to manage the processes related to the UE session.
  • SMF Session Management Function
  • the user plane functional entity communicates with the RAN, and the UPF is responsible for transmitting data packets, that is, first receiving the data packets sent by the UE through the RAN, and then transmitting the data packets to the data network (Data Network, DN), or from The DN receives the data packet, and then transmits the data packet to the RAN, and the RAN transmits it to the UE.
  • Data Network Data Network
  • the 5G core network introduces a Network Slice (NS) structure, and each NS can provide specific services for specific users. If an NS is implemented in the network deployment, it is NSI. Among them, one NS can implement multiple NSIs. A UE can use multiple NSIs at the same time, and these NSIs can share RAN and AMF, while SMF and UPF are NSI-specific network elements.
  • NS Network Slice
  • NS can be understood as a set of logical network functions that support the communication service requirements of specific usage scenarios or business models. It is the realization of services based on physical infrastructure.
  • These logical network functions can be regarded as evolved from the core packet network (Evolved Packet A series of sub-functions decomposed from the network function under Core, EPC). It can be seen that network slicing is an end-to-end solution, and this end-to-end solution can be applied not only to the core network, but also to the RAN.
  • EPC evolved Packet A series of sub-functions decomposed from the network function under Core
  • the service layer describes the system architecture from a logical level and consists of network functions and the connections between functions. These network functions are usually defined in the form of software packages, which provide templates for defining deployment and operation requirements.
  • the infrastructure layer describes the network elements and resources required to maintain a network slice from the physical level, including computing resources (such as servers in the data center) and network resources (such as aggregation switches, edge routers, cables, etc.).
  • Network slicing essentially divides an operator's physical network into multiple virtual networks. Each virtual network is divided according to different service requirements, such as delay, bandwidth, security, and reliability, so as to flexibly respond to different Network application scenarios.
  • the device-to-device communication method provided in the present disclosure may be applied to the communication system shown in FIG. 2 , where the communication system includes a first terminal 202 , a network device 204 and a second terminal 206 .
  • the first terminal 202 and the second terminal 206 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, Internet of Things devices or other processing devices connected to wireless modems, as well as various forms of user Equipment, mobile station (Mobile Station, MS), terminal (terminal device) and so on.
  • terminals For convenience of description, the devices mentioned above are collectively referred to as terminals.
  • the network device 204 may be a base station, and the base station may be a device deployed in an access network to provide a wireless communication function for a terminal.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points and so on.
  • the names of devices with base station functions may be different. For example, in LTE systems, they are called eNodeB or eNB; in 5G NR-U systems, they are called gNodeB or gNB. .
  • a "base station” may also be called a "cell". As communications technology evolves, the description "base station" may change.
  • the foregoing devices that provide wireless communication functions for terminals are collectively referred to as network devices.
  • the first terminal 202 and the network device 204, and the second terminal 206 and the network device 204 communicate with each other through some air interface technology, such as a Uu interface.
  • the first terminal 202 and the second terminal 206 communicate with each other through some communication technology.
  • the first terminal 202 and the second terminal 206 may communicate through Bluetooth or WiFi technology.
  • the first terminal 202 and the second terminal 206 support device-to-device (Device to Device, D2D) communication, and sidelink (sidelink) communication can be performed between the first terminal 202 and the second terminal 206 through the PC-5 interface .
  • D2D Device to Device
  • sidelink (sidelink) communication can be performed between the first terminal 202 and the second terminal 206 through the PC-5 interface .
  • the sidelink communication implements addressing through the source identifier and destination identifier of the MAC layer, that is, no connection needs to be established before the communication.
  • the service data from the first terminal 202 to the second terminal 206 will first be transmitted to the base station (Base Station) of the cell where the first terminal 202 is located through the air interface.
  • Base Station or called eNB, or evolved (evolved eNB)
  • the base station transmits the user data to the base station in the cell where the second terminal 206 is located through the core network, and the base station transmits the above service data to the second terminal 206 through the air interface .
  • the service data transmission from the second terminal 206 to the first terminal 202 adopts a similar processing flow.
  • a D2D communication mode is provided in a service transmission scenario between users in a short distance.
  • the D2D communication solution may be adopted between the first terminal 202 and the second terminal 206 above.
  • D2D In the D2D communication solution, service data is directly transmitted from the source user equipment to the target user equipment through the air interface without being forwarded by the base station, which can also be called Proximity Service (ProSe).
  • ProSe Proximity Service
  • This communication mode is different from that of traditional cellular systems.
  • D2D not only saves wireless spectrum resources, but also reduces the data transmission pressure of the core network.
  • D2D communication based on cellular network is a technology that directly communicates between multiple terminal devices that support D2D functions under the control of the system. It can reduce system resource occupation, increase the spectrum efficiency of cellular communication systems, and reduce terminal transmission power Consumption, and to a large extent save network operating costs.
  • the first terminal 202 may be located outside the network coverage
  • the second terminal 206 may be located within the network coverage
  • D2D communication may be used between the first terminal 202 and the second terminal 206 .
  • the first terminal 202 is a remote terminal (remote UE)
  • the second terminal 206 is a relay terminal (relay UE).
  • the second terminal 206 provides a relay service, and relays control and data between the base station and the first terminal 202 .
  • the Uu interface of the LTE cellular network is between the second terminal 206 and the base station, which essentially assumes the role of a wireless backhaul link (backhaul); For communication, they are sidelinks.
  • the second terminal 206 as a relay terminal, actually achieves the function of expanding the coverage of the cellular network, and through the Sidelink transmission between the second terminal 206 and the first terminal 202, the connection between the network side and the out-of-coverage users is realized communicate.
  • the first terminal 202 may also be located within coverage.
  • the second terminal 206 acts as a relay terminal to provide services for the first terminal 202 within the coverage.
  • An embodiment of the present disclosure provides a device-to-device communication method, which can be applied to the communication system shown in FIG. 2 .
  • FIG. 3 shows a flowchart of a device-to-device communication method in an embodiment of the present disclosure.
  • the device-to-device communication method provided in the embodiment of the present disclosure includes the following steps:
  • the relay terminal sends a slicing request to the network side device, where the slicing request carries the first information of the relay terminal;
  • the network side device generates a slice attribute of the relay terminal based on the first information of the relay terminal, where the slice attribute is used to represent the slice service provided by the relay terminal;
  • the network side device sends the slice attribute to the relay terminal
  • the relay terminal sends a device discovery signal to the remote terminal, and the device discovery signal carries slice attributes;
  • the remote terminal selects a suitable relay terminal to establish a D2D connection according to the slice attribute in the device discovery signal.
  • S310 may specifically include: among the multiple received device discovery signals, according to the slice service corresponding to the slice attribute in the device discovery signal, select a relay terminal that satisfies the preset service condition, and communicate with the relay terminal that satisfies the preset service condition The terminal establishes a communication connection.
  • the device discovery signal also includes information included in the normal device discovery signal, such as PLMN, service information, and the like.
  • the slice configuration delivered by the network side device in S306 above is sent to the relay terminal, and the relay terminal can obtain slice attributes from the slice configuration.
  • the remote terminal when the remote terminal selects a relay terminal to access a slice, it can learn the slice service that the relay terminal can provide according to the device discovery signal, and then can select a slice service that can meet its service requirements. Relay terminal. At the same time, the program requires less changes to the system and is easy to implement.
  • the first information in S302 above may include at least one of the following information:
  • the displacement speed information of the relay terminal The displacement speed information of the relay terminal, the location information of the relay terminal in the network coverage, the load information of the relay terminal, and the power information of the terminal.
  • the relaying of the displacement speed information of the terminal may be the mobility state of the terminal, that is, the current moving speed of the terminal, such as high-speed movement or low-speed movement.
  • the location information of the relay terminal in the network coverage may specifically be at the edge of the network or in a strong coverage area of the network.
  • the load information of the relay terminal may be the data load that the terminal can bear as a relay.
  • the method may further include:
  • the relay terminal sends the wireless communication capability information of the relay terminal to the network side device;
  • the wireless communication capability information may include at least one of the following information:
  • Ultra-high reliability and ultra-low latency communication URLLC information Ultra-high reliability and ultra-low latency communication URLLC information, enhanced mobile broadband eMMB information, and bandwidth information supported by relay terminals.
  • wireless communication capability information may also include other information, which is not limited in the present disclosure.
  • the wireless communication capability information reported by the relay terminal may also include the D2D relay communication capability and other terminal capabilities on the wireless side.
  • the network side device may generate slice attributes based on the first information and the wireless communication capability information.
  • the relay terminal may also send a registration request to the network-side device, and after the network-side device authenticates the relay terminal for the D2D relay service based on the registration request , sending D2D configuration information to the relay terminal; after obtaining the D2D configuration information, the relay terminal can configure the D2D service based on the D2D configuration information.
  • the D2D configuration information may include configuration information used by the terminal for service discovery, configuration information used for establishing a D2D connection, PLMN information allowing the terminal to perform relay service, identification information of the relay service, terminal ID, and the like.
  • the network side device may include a base station, a core network device, and a slice control unit.
  • the core network equipment may specifically include the AMF, PCF, SMF, and UPF described above.
  • the relay terminal may also send a registration request to the network-side device, and the network-side device performs D2D relay service authentication on the relay terminal based on the registration request.
  • the relay terminal may send a registration request to the AMF , after the PCF performs D2D relay service authentication on the relay terminal, it sends D2D configuration information to the relay terminal.
  • the relay terminal can send an update request to the network side device, so that the network side device resets the slice attribute of the relay terminal; then, the relay terminal can obtain the network side device Reset slice properties.
  • the relay terminal sending the capability information of the relay terminal to the network side device may specifically be that the relay terminal sends the capability information to the base station, and then the base station forwards the capability information to the AMF.
  • the relay terminal sends a slice request to the network side device.
  • the relay terminal may send the slice request to the slice control unit, and then the slice control unit based on the first information and capability information of the relay terminal, and the current terminal access
  • the resources entering the network determine the slicing services that the relay terminal can provide, and then determine the slicing attributes of the relay terminal.
  • the slice control unit can obtain capability information from the base station, and can also communicate with the AMF.
  • an embodiment of the present disclosure provides a device-to-device communication method, which can be applied to a relay terminal, and the relay terminal can be the terminal described above, that is, the terminal can be Not limited to the mobile phone, tablet computer, wearable device, etc. in the above introduction, can be configured as at least one of the electronic devices that execute the device-to-device communication method provided by the embodiments of the present disclosure, or, the execution subject of the method, also Can be the client itself that is able to execute the method.
  • FIG. 4 shows a flow chart of a device-to-device communication method in an embodiment of the present disclosure.
  • the device-to-device communication method provided in the embodiment of the present disclosure includes the following steps:
  • S402. Send a slicing request to the network-side device, so that the network-side device generates a slicing attribute of the relay terminal based on the first information of the relay terminal carried in the slicing request, where the slicing attribute is used to represent a slicing service provided by the relay terminal.
  • the method may also include the following steps:
  • the relay terminal sends a slicing request to the network-side device; the network-side device generates the slicing attribute of the relay terminal based on the first information of the relay terminal carried in the slicing request, and the slicing attribute It is used to indicate the slice service provided by the relay terminal; the relay terminal carries the slice attribute in the device discovery signal sent to the remote terminal; the remote terminal can communicate with the relay terminal when the slice attribute meets the preset requirements. A communication connection is established, and a slice corresponding to the relay terminal is accessed. In this way, when the remote terminal selects the relay terminal to access the slice, it can know the slice service that the relay terminal can provide according to the device discovery signal, and then can select a relay terminal that can meet its service requirements.
  • the first information may include at least one of the following information:
  • the displacement speed information of the relay terminal The displacement speed information of the relay terminal, the location information of the relay terminal in the network coverage, the load information of the relay terminal, and the power information of the relay terminal.
  • the method before sending the slice request to the network side device, the method may further include:
  • the capability information includes at least one of the following information:
  • Ultra-high reliability and ultra-low latency communication URLLC information Ultra-high reliability and ultra-low latency communication URLLC information, enhanced mobile broadband eMMB information, and bandwidth information supported by relay terminals;
  • the slice attribute may be generated by the network side device based on the first information and capability information.
  • the method before sending the capability information of the relay terminal to the network side device, the method may further include:
  • D2D service configuration is performed.
  • the network side device may include a base station, a core network device and a slice control unit.
  • the base station can be used to receive the capability information and send the capability information to the core network device and the slice control unit;
  • a core network device that can be used to receive capability information from a base station
  • the slice control unit may be configured to receive the capability information and the slice request, and generate slice attributes of the relay terminal based on the capability information and the first information of the relay terminal carried in the slice request. That is to say, the slice control unit may be a functional network element, which is used to receive capability information and a slice request, and generate a slice of the relay terminal based on the capability information and the first information of the relay terminal carried in the slice request Attributes.
  • an embodiment of the present disclosure provides a device-to-device communication method, which can be applied to a remote terminal, and the remote terminal can be the terminal described above, that is, the terminal can be Not limited to the mobile phone, tablet computer, wearable device, etc. in the above introduction, can be configured as at least one of the electronic devices that execute the device-to-device communication method provided by the embodiments of the present disclosure, or, the execution subject of the method, also Can be the client itself capable of executing the method
  • FIG. 5 shows a flowchart of a device-to-device communication method in an embodiment of the present disclosure.
  • the device-to-device communication method provided in an embodiment of the present disclosure includes the following steps:
  • the slice attribute may be generated by the network side device based on the first information and capability information.
  • the capability information comes from the relay terminal, and the capability information may include at least one of the following information:
  • Ultra-high reliability and ultra-low latency communication URLLC information Ultra-high reliability and ultra-low latency communication URLLC information, enhanced mobile broadband eMMB information, and bandwidth information supported by relay terminals.
  • the capability information reported by the relay terminal may also include the D2D relay communication capability and other terminal capabilities on the wireless side.
  • embodiments of the present disclosure also provide a device-to-device communication apparatus, such as the following embodiments. Since the problem-solving principle of this device embodiment is similar to that of the above-mentioned method embodiment, the implementation of this device embodiment can refer to the implementation of the above-mentioned method embodiment, and repeated descriptions will not be repeated.
  • FIG. 6 shows a schematic diagram of a device-to-device communication device in an embodiment of the present disclosure, which is applied to a relay terminal.
  • the device-to-device communication device 600 includes:
  • the first sending module 602 is configured to send a slice request to the network side device, so that the network side device generates a slice attribute of the relay terminal based on the first information of the relay terminal carried in the slice request, and the slice attribute is used to represent Following the slicing service provided by the terminal.
  • the device-to-device communication apparatus 600 may further include:
  • Get module configured to get slice attributes
  • the second sending module is configured to send a device discovery signal to the remote terminal.
  • the device discovery signal carries a slice attribute, so that the remote terminal establishes a communication connection with the relay terminal when the slice attribute meets preset requirements.
  • the first information may include at least one of the following information:
  • the displacement speed information of the relay terminal The displacement speed information of the relay terminal, the location information of the relay terminal in the network coverage, the load information of the relay terminal, and the power information of the relay terminal.
  • the device-to-device communication apparatus 600 may further include:
  • the third sending module may be configured to send capability information of the relay terminal to the network side device before sending the slicing request to the network side device;
  • the capability information includes at least one of the following information:
  • Ultra-reliable and ultra-low-latency communication URLLC information Ultra-reliable and ultra-low-latency communication URLLC information, enhanced mobile broadband eMMB information, and bandwidth information supported by relay terminals;
  • the slice attribute may be generated by the network side device based on the first information and capability information.
  • the device-to-device communication apparatus 600 may further include:
  • the fourth sending module may be configured to send a registration request to the network side device before sending the capability information of the relay terminal to the network side device, so that the network side device performs D2D relay service authentication on the relay terminal based on the registration request , sending D2D configuration information to the relay terminal;
  • An information acquisition module that can be configured to acquire D2D configuration information
  • the configuration module can be used to configure D2D services based on D2D configuration information.
  • the network side equipment may include a base station, a core network equipment, and a slice control unit;
  • the base station can be used to receive the wireless communication capability information and send the wireless communication capability information to the core network device and the slice control unit;
  • a core network device that can be used to receive capability information from a base station
  • the slice control unit may be configured to receive the capability information and the slice request, and generate slice attributes of the relay terminal based on the wireless communication capability information and the first information of the relay terminal carried in the slice request.
  • the device-to-device communication apparatus provided in the embodiments of the present disclosure can be used to implement the device-to-device communication methods provided in the above method embodiments.
  • the implementation principles and technical effects are similar, and for the sake of brief introduction, details are not repeated here.
  • an embodiment of the present disclosure also provides a device-to-device communication device, which is applied to a remote terminal.
  • the device-to-device communication device 700 includes:
  • the first receiving module 702 is configured to receive the device discovery signal sent by the relay terminal, the device discovery signal carries the slice attribute of the relay terminal, and the slice attribute is the first information carried by the network side device based on the slice request of the relay terminal Generated;
  • the communication module 704 is configured to establish a communication connection with the relay terminal when the slice attribute meets the preset requirements.
  • the slice attribute may be generated by the network side device based on the first information and wireless communication capability information
  • the wireless communication capability information comes from the relay terminal, and the wireless communication capability information may include at least one of the following information:
  • Ultra-high reliability and ultra-low latency communication URLLC information Ultra-high reliability and ultra-low latency communication URLLC information, enhanced mobile broadband eMMB information, and bandwidth information supported by relay terminals.
  • the device-to-device communication apparatus provided in the embodiments of the present disclosure can be used to implement the device-to-device communication methods provided in the above method embodiments.
  • the implementation principles and technical effects are similar, and for the sake of brief introduction, details are not repeated here.
  • FIG. 8 An electronic device 800 according to this embodiment of the present disclosure is described below with reference to FIG. 8 .
  • the electronic device 800 shown in FIG. 8 is only an example, and should not limit the functions and application scope of the embodiments of the present disclosure.
  • electronic device 800 takes the form of a general-purpose computing device.
  • Components of the electronic device 800 may include but not limited to: at least one processing unit 810 , at least one storage unit 820 , and a bus 830 connecting different system components (including the storage unit 820 and the processing unit 810 ).
  • the storage unit stores program codes, and the program codes can be executed by the processing unit 810, so that the processing unit 810 executes various exemplary methods according to the present disclosure described in the "Exemplary Methods" section of this specification. Implementation steps.
  • the storage unit 820 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit (RAM) 8201 and/or a cache storage unit 8202 , and may further include a read-only storage unit (ROM) 8203 .
  • RAM random access storage unit
  • ROM read-only storage unit
  • Storage unit 820 may also include programs/utilities 8204 having a set (at least one) of program modules 8205, such program modules 8205 including but not limited to: an operating system, one or more application programs, other program modules, and program data, Implementations of networked environments may be included in each or some combination of these examples.
  • Bus 830 may represent one or more of several types of bus structures, including a memory cell bus or memory cell controller, a peripheral bus, an accelerated graphics port, a processing unit, or a local area using any of a variety of bus structures. bus.
  • the electronic device 800 can also communicate with one or more external devices 840 (such as keyboards, pointing devices, Bluetooth devices, etc.), and can also communicate with one or more devices that enable the user to interact with the electronic device 800, and/or communicate with Any device (eg, router, modem, etc.) that enables the electronic device 800 to communicate with one or more other computing devices. Such communication may occur through input/output (I/O) interface 850 .
  • the electronic device 800 can also communicate with one or more networks (such as a local area network (LAN), a wide area network (WAN) and/or a public network such as the Internet) through the network adapter 860 . As shown, the network adapter 860 communicates with other modules of the electronic device 800 through the bus 830 .
  • other hardware and/or software modules may be used in conjunction with electronic device 800, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives And data backup storage system, etc.
  • the technical solutions according to the embodiments of the present disclosure can be embodied in the form of software products, and the software products can also be called computer program products, and the computer program products include: computer programs, when the computer programs are executed by a processor, the above-mentioned device-to-device communication method.
  • This software product can be stored in a non-volatile storage medium (could be CD-ROM, U disk, mobile hard disk, etc.) device, or network equipment, etc.) execute the method according to the embodiments of the present disclosure.
  • a computer-readable storage medium is also provided, and the computer-readable storage medium may be a readable signal medium or a readable storage medium.
  • a program product capable of realizing the above-mentioned methods of the present disclosure is stored thereon.
  • various aspects of the present disclosure may also be implemented in the form of a program product, which includes program code, and when the program product is run on a terminal device, the program code is used to make the The terminal device executes the steps according to various exemplary embodiments of the present disclosure described in the "Exemplary Method" section above in this specification.
  • Computer-readable storage media in this disclosure may include, but are not limited to: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory Erasable programmable read-only memory
  • CD-ROM portable compact disk read-only memory
  • magnetic storage device or any suitable combination of the above.
  • a computer-readable storage medium may include a data signal carrying readable program code in baseband or as part of a carrier wave traveling as a data signal. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a readable signal medium may also be any readable medium other than a readable storage medium that can transmit, propagate, or transport a program for use by or in conjunction with an instruction execution system, apparatus, or device.
  • program code contained on a computer-readable storage medium may be transmitted using any appropriate medium, including but not limited to wireless, cable, optical cable, RF, etc., or any suitable combination of the above.
  • the program code for performing the operations of the present disclosure may be written in any combination of one or more programming languages, and the programming language includes an object-oriented programming language—such as Java, C++, etc., or Includes conventional procedural programming languages - such as the "C" language or similar programming languages.
  • the program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server to execute.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (for example, using an Internet service provider). business to connect via the Internet).
  • LAN local area network
  • WAN wide area network
  • Internet service provider for example, using an Internet service provider
  • steps of the methods of the present disclosure are depicted in the drawings in a particular order, there is no requirement or implication that the steps must be performed in that particular order, or that all illustrated steps must be performed to achieve the desired result. Additionally or alternatively, certain steps may be omitted, multiple steps may be combined into one step for execution, and/or one step may be decomposed into multiple steps for execution, etc.
  • the example embodiments described here can be implemented by software, or by combining software with necessary hardware. Therefore, the technical solutions according to the embodiments of the present disclosure can be embodied in the form of software products, and the software products can be stored in a non-volatile storage medium (which can be CD-ROM, U disk, mobile hard disk, etc.) or on the network , including several instructions to make a computing device (which may be a personal computer, a server, a mobile terminal, or a network device, etc.) execute the method according to the embodiments of the present disclosure.
  • a non-volatile storage medium which can be CD-ROM, U disk, mobile hard disk, etc.
  • a computing device which may be a personal computer, a server, a mobile terminal, or a network device, etc.

Abstract

本公开提供了一种设备到设备通信方法、装置、设备及存储介质,涉及通信技术领域。该方法包括:向网络侧设备发送切片请求,以使网络侧设备基于切片请求中携带的中继终端的第一信息,生成中继终端的切片属性,切片属性用于表示中继终端提供的切片服务。

Description

设备到设备通信方法、装置、设备、介质及程序产品
相关申请的交叉引用
本公开要求于2021年12月01日提交的申请号为202111453204.7、名称为“设备到设备通信方法、装置、设备及存储介质”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及通信技术领域,尤其涉及一种设备到设备通信方法、装置、设备、介质及程序产品。
背景技术
第五代移动通信技术(5th-generation,5G)网络引入了网络切片的概念,网络通过对硬件资源进行划分形成不同的切片,为不同的业务提供服务。
发明人发现,在5G网络中,目前没有实现设备到设备(Device To Device,D2D)中继通信的方案。因此,在D2D中继通信模式下,如何帮助远端终端选择到一个对应切片的中继终端并接入相应的切片成为一个亟待解决的问题。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开提供一种设备到设备通信方法、装置、设备、介质及程序产品,远端终端通过设备发现信号中的切片属性,可以选择适合的中继终端接入相应的切片。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
根据本公开的一个方面,提供一种设备到设备通信方法,应用于中继终端,方法包括:
向网络侧设备发送切片请求,以使网络侧设备基于切片请求中携带的中继终端的第一信息,生成中继终端的切片属性,切片属性用于表示中继终端提供的切片服务。
在本公开的一个实施例中,该方法还包括:
获取切片属性;
向远端终端发送设备发现信号,设备发现信号中携带有切片属性,以使远端终端在切片属性符合预设要求的情况下,与中继终端建立通信连接。
在本公开的一个实施例中,第一信息包括如下信息中的至少一项:
中继终端的位移速度信息、中继终端在网络覆盖中的位置信息、中继终端的负载信息、终端的电量信息。
在本公开的一个实施例中,向网络侧设备发送切片请求之前,方法还包括:
向网络侧设备发送中继终端的无线通信能力信息;无线通信能力信息包括如下信息中的至少一种:
超高可靠超低时延通信URLLC信息、增强移动宽带eMMB信息、中继终端支持的带宽信息;
切片属性为网络侧设备基于第一信息和无线通信能力信息生成的。
在本公开的一个实施例中,获取切片属性,包括:
接收网络侧设备下发的切片配置;
从网络侧设备下发的切片配置中,获取切片属性。
在本公开的一个实施例中,向网络侧设备发送中继终端的能力信息之前,方法还包括:
向网络侧设备发送注册请求,以使网络侧设备基于注册请求对中继终端进行D2D中继服务鉴权后,向中继终端发送D2D配置信息;
获取D2D配置信息;
基于D2D配置信息,进行D2D服务配置。
在本公开的一个实施例中,网络侧设备包括:
基站,用于接收能力信息,以及将能力信息发送至核心网设备和切片控制单元;
核心网设备,用于接收来自基站的能力信息;
切片控制单元,用于接收能力信息和切片请求,以及基于能力信息和切片请求中携带的中继终端的第一信息,生成中继终端的切片属性。
该方法还包括:
在中继终端状态改变后,向网络侧设备发送更新请求,以使网络侧设备重新设置中继终端的切片属性;
获取网络侧设备重新设置的切片属性。
根据本公开的另一个方面,提供一种设备到设备通信方法,应用于远端终端,方法包括:
获取中继终端发送的设备发现信号,设备发现信号中携带有中继终端的切片属性,切片属性为网络侧设备基于中继终端切片请求中携带的第一信息生成的;
在切片属性满足预设要求的情况下,与中继终端建立通信连接。
在本公开的一个实施例中,切片属性为网络侧设备基于第一信息和无线通信能力信息生成的;
无线通信能力信息来自中继终端,无线通信能力信息包括如下信息中的至少一种:
超高可靠超低时延通信URLLC信息、增强移动宽带eMMB信息、中继终端支持的带宽信息。
根据本公开的另一个方面,提供一种设备到设备通信装置,应用于中继终端,装置包括:
第一发送模块,被配置为向网络侧设备发送切片请求,以使网络侧设备基于切片请求中携带的中继终端的第一信息,生成中继终端的切片属性,切片属性用于表示中继终端提供的切片服务。
在本公开的一个实施例中,该设备到设备通信装置,还包括:
获取模块,被配置为获取切片属性;
第二发送模块,被配置为向远端终端发送设备发现信号,设备发现信号中携带有切片属性,以使远端终端在切片属性满足预设要求的情况下,与中继终端建立通信连接。
根据本公开的另一个方面,提供一种设备到设备通信装置,应用于 远端终端,装置包括:
第一接收模块,被配置为接收中继终端发送的设备发现信号,设备发现信号中携带有中继终端的切片属性,切片属性为网络侧设备基于中继终端切片请求中携带的第一信息生成的;
通信模块,被配置为在切片属性满足预设要求的情况下,与中继终端建立通信连接。
根据本公开的再一个方面,提供一种电子设备,包括:处理器;以及存储器,用于存储所述处理器的可执行指令;其中,所述处理器配置为经由执行所述可执行指令来执行上述的设备到设备通信方法。
根据本公开的又一个方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述的设备到设备通信方法。
根据本公开的另一个方面,还提供了一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现上述任意一项的设备到设备通信方法。
本公开的实施例所提供的设备到设备通信方法,中继终端向网络侧设备发送切片请求;网络侧设备基于切片请求中携带的中继终端的第一信息,生成中继终端的切片属性,切片属性用于表示中继终端提供的切片服务;中继终端在向远端终端发送的设备发现信号中携带该切片属性;远端终端便可以在切片属性满足预设要求的情况下,与中继终端建立通信连接,接入该中继终端对应的切片。如此,远端终端在选择中继终端接入切片时,便可以根据设备发现信号获知中继终端可以提供的切片服务,进而可以选择一个能满足其服务需求的中继终端。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人 员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出本公开实施例中一种5G核心网架构示意图;
图2示出本公开实施例中一种设备到设备通信场景示意图;
图3示出本公开实施例中一种设备到设备通信方法流程示意图之一;
图4示出本公开实施例中一种设备到设备通信方法流程示意图之二;
图5示出本公开实施例中一种设备到设备通信方法流程示意图之三;
图6示出本公开实施例中一种设备到设备通信装置示意图之一;
图7示出本公开实施例中一种设备到设备通信装置示意图之二;
图8示出本公开实施例中一种计算机设备的结构框图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
基于背景技术部分可知,相关技术中还没有在5G网络中,实现设备到设备(Device To Device,D2D)中继通信的方案。
具体地,发明人发现,覆盖边缘或者无覆盖的终端通过D2D将本地 的数据卸载至相邻传输速率更高的终端传输可以增强网络的覆盖以及边缘终端的上行速率。终端在进行数据卸载时需要合理地选择邻近终端以保障业务的QoS。5G网络引入了网络切片的概念,网络通过对硬件资源进行划分形成不同的切片,为不同的业务提供服务。在D2D中继的网络下,中继终端也是切片的一个部分,如何帮助终端选择到一个对应切片的中继终端并接入相应的蜂窝切片是一个亟待解决的问题。
基于发明人的上述发现,本公开提供了一种设备到设备通信方法,中继终端向网络侧设备发送切片请求;网络侧设备基于切片请求中携带的中继终端的第一信息,生成中继终端的切片属性,切片属性用于表示中继终端提供的切片服务;中继终端在向远端终端发送的设备发现信号中携带该切片属性;远端终端便可以在切片属性满足预设条件的情况下,与中继终端建立通信连接,接入该中继终端对应的切片。如此,远端终端在选择中继终端接入切片时,便可以根据设备发现信号获知中继终端可以提供的切片服务,进而可以选择一个能满足其服务需求的中继终端。
为了便于理解,下面首先对本公开涉及到的相关技术及名词解释如下:
请参阅图1,图1为本公开实施例中5G核心网的一个架构示意图,如图1所示,终端设备UE与RAN(Radio Access Network,无线接入网)通信连接,RAN负责UE的无线接入。AMF与RAN通信连接,AMF可用于管理与UE移动相关的流程。会话管理实体(Session Management Function,SMF)与RAN通信连接,SMF可用于管理与UE会话相关的流程。用户面功能实体(User Plane Function,UPF)与RAN通信连接,UPF负责传输数据包,即先通过RAN接收UE发送的数据包,再将数据包传输至数据网络(Data Network,DN),或者从DN接收数据包,再将数据包传输至RAN,由RAN传输至UE。
5G核心网引入网络切片(Network Slice,NS)的结构,每个NS可以针对特定的用户提供特定的服务。若一个NS在网络部署中得以实现,则为NSI。其中,一个NS可以实现出多个NSI。一个UE可以同时使用多个NSI,这些NSI可以共用RAN和AMF,而SMF和UPF则为NSI特有的网元。
NS可以理解为支持特定使用场景或商业模式的通信服务要求的一组 逻辑网络功能的集合,是基于物理基础设施对服务的实现,这些逻辑网络功能可以看作是由核心分组网演进(Evolved Packet Core,EPC)下的网络功能分解而来的一系列子功能。可以看出网络切片是一种端到端的解决方案,这种端到端的解决方案不仅可以应用于核心网,还可以应用于RAN。
NS从服务层和基础设施层的角度来考虑问题。服务层从逻辑层面来描述系统架构,由网络功能和功能间的联系组成,这些网络功能通常以软件包的方式被定义,其中会提供定义部署和操作要求的模板。基础设施层从物理层面描述维持一个网络切片运行所需要的网络元素和资源,其中包括计算资源(例如数据中心中的服务器)和网络资源(例如聚合交换机、边缘路由器、电缆等)。
网络切片,本质上就是将运营商的物理网络划分为多个虚拟网络,每一个虚拟网络根据不同的服务需求,比如时延、带宽、安全性和可靠性等来划分,以灵活的应对不同的网络应用场景。
本公开提供的设备到设备通信方法,可以应用于如图2所示的通信系统中,该通信系统包括第一终端202、网络设备204和第二终端206。
第一终端202和第二终端206可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备、物联网设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端(terminal device)等等。为方便描述,上面提到的设备统称为终端。
网络设备204可以是基站,该基站可以是一种部署在接入网中用以为终端提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE系统中,称为eNodeB或者eNB;在5G NR-U系统中,称为gNodeB或者gNB。在一些场景中,“基站”也可以称为“小区”。随着通信技术的演进,“基站”这一描述可能会变化。为方便本公开实施例中,上述为终端提供无线通信功能的装置统称为网络设备。
本公开实施例中,第一终端202与网络设备204之间,第二终端206与网络设备204之间通过某种空口技术互相通信,例如Uu接口。
在一些实施例中,第一终端202与第二终端206之间通过某种通信技术互相通信。可选的,第一终端202与第二终端206之间可以通过蓝牙或WiFi技术进行通信。或者,第一终端202和第二终端206支持设备到设备(Device to Device,D2D)通信,第一终端202与第二终端206之间可以通过PC-5接口进行侧行链路(sidelink)通信。其中,侧行链路通信通过MAC层的源标识和目的标识来实现寻址,即在通信之前无需建立连接。
蜂窝系统中当第一终端202与第二终端206之间有业务需要传输时,第一终端202到第二终端206的业务数据,会首先通过空口传输给第一终端202所在小区的基站(Base Station,或者称为eNB,或演进(evolved eNB)),该基站通过核心网将该用户数据传输给第二终端206所在小区的基站,该基站再将上述业务数据通过空口传输给第二终端206。第二终端206到第一终端202的业务数据传输采用类似的处理流程。
当第一终端202和第二终端206位于同一个蜂窝小区时,虽然两个终端由同一个基站的小区覆盖,但是一次数据传输仍然会消耗两份无线频谱资源。
发明人发现,如果第一终端202和第二终端206位于同一小区并且相距较近,那么上述的蜂窝通信方法显然不是最优的通信方式。并且,随着移动通信业务的多样化,例如,社交网络、电子支付等在无线通信系统中的应用越来越广泛,使得近距离用户之间的业务传输需求日益增长。
基于上述需求,本公开实施例中,在近距离用户之间的业务传输场景中提供了一种D2D的通信模式。例如,上文中的第一终端202和第二终端206之间便可以采用D2D通信方案。
在D2D通信方案中,业务数据不经过基站进行转发,直接由源用户设备通过空口传输给目标用户设备,也可称之为邻近服务(Proximity Service,ProSe)。这种通信模式区别于传统蜂窝系统的通信模式。对于近距离通信的用户来说,D2D不但节省了无线频谱资源,而且降低了核心网的数据传输压力。
基于蜂窝网的D2D通信是一种在系统的控制下,在多个支持D2D功能的终端设备之间直接进行通信的技术,它能够减少系统资源占用,增加蜂窝通信系统频谱效率,降低终端发射功耗,并在很大程度上节省网络运 营成本。
请继续参考图2,第一终端202可以位于网络覆盖外,第二终端206位于网络覆盖内,第一终端202和第二终端206之间可以采用D2D通信。也就是说,第一终端202为远端终端(remote UE),第二终端206为中继终端(relay UE)。第二终端206提供中继服务,在基站与第一终端202之间进行控制及数据的中继转发。
其中,第二终端206与基站之间是LTE蜂窝网络的Uu接口,它实质上承担了无线回程链路(backhaul)的作用;第二终端206与第一终端202以D2D方式在系统上行资源上进行通信,它们之间为边链路(Sidelink)。此时,第二终端206作为中继终端,实际上达到了扩展蜂窝网络覆盖范围的作用,通过第二终端206与第一终端202之间的Sidelink传输,实现了网络侧与覆盖外用户的连接沟通。
在一些实施例中第一终端202也可以位于覆盖内。第二终端206充当中继终端为覆盖内第一终端202提供服务。
下面结合附图及实施例对本示例实施方式进行详细说明。
本公开实施例中提供了一种设备到设备通信方法,该方法可应用于图2所示的通信系统。
图3示出本公开实施例中一种设备到设备通信方法流程图,如图3所示,本公开实施例中提供的设备到设备通信方法包括如下步骤:
S302,中继终端向网络侧设备发送切片请求,切片请求中携带有中继终端的第一信息;
S304,网络侧设备基于中继终端的第一信息,生成中继终端的切片属性,切片属性用于表示中继终端提供的切片服务;
S306,网络侧设备将切片属性发送至中继终端;
S308,中继终端向远端终端发送设备发现信号,设备发现信号中携带有切片属性;
S310,远端终端根据设备发现信号中的切片属性,选择合适的中继终端建立D2D连接。
S310可以具体包括:在接收到的多个设备发现信号中,根据设备发现信号中切片属性对应的切片服务,来选择满足预设服务条件的中继终端, 并与满足预设服务条件的中继终端建立通信连接。
这里设备发现信号中还包括正常设备发现信号所包含的信息,例如PLMN、服务信息等。
在S310之后,便可以根据相关技术中的步骤继续建立AS连接,以及建立会话。
上述S306中网络侧设备下发的切片配置到中继终端,中继终端可以从切片配置中获取切片属性。
本实施例所提供的设备到设备通信方法,远端终端在选择中继终端接入切片时,可以根据设备发现信号获知中继终端可以提供的切片服务,进而可以选择一个能满足其服务需求的中继终端。同时,该方案对系统的改动较少,便于实施。
下面对上述步骤进行详细说明,具体如下所示:
在一些实施例中,上述S302中的第一信息可以包括如下信息中的至少一项:
中继终端的位移速度信息、中继终端在网络覆盖中的位置信息、中继终端的负载信息、终端的电量信息。
这里,中继终端的位移速度信息,可以终端的移动性状态,也就是目前终端的移动速度,如高速移动或低速移动等。
中继终端在网络覆盖中的位置信息,具体可以是在网络的边缘或网络的强覆盖区域。
中继终端的负载信息,可以是终端作为中继可以承受的数据负载。
在一些实施例中,在S302向网络侧设备发送切片请求之前,该方法还可以包括:
中继终端向网络侧设备发送中继终端的无线通信能力信息;无线通信能力信息可以包括如下信息中的至少一种:
超高可靠超低时延通信URLLC信息、增强移动宽带eMMB信息、中继终端支持的带宽信息。
需要说明的是,无线通信能力信息还可以包括其它信息,本公开对此不做限定。
中继终端上报的无线通信能力信息还可以包括D2D中继通信能力以 及其它无线侧的终端能力。
相应地,上述S304,网络侧设备便可以基于第一信息和无线通信能力信息生成切片属性。
在一些实施例中,向网络侧设备发送中继终端的能力信息之前,中继终端还可以向网络侧设备发送注册请求,网络侧设备基于注册请求对中继终端进行D2D中继服务鉴权后,向中继终端发送D2D配置信息;中继终端获取D2D配置信息后,可以基于D2D配置信息,进行D2D服务配置。
这里D2D配置信息,可以包括终端用于服务发现的配置信息,用于建立D2D连接的配置信息,允许终端进行中继服务PLMN信息,中继服务的标识信息,终端标识ID等。
在一些实施例中,网络侧设备可以包括基站、核心网设备、切片控制单元。其中,核心网设备可以具体包括前文介绍中的AMF、PCF、SMF和UPF。
基于此,上述实施例中,中继终端还可以向网络侧设备发送注册请求,网络侧设备基于注册请求对中继终端进行D2D中继服务鉴权,具体可以是中继终端向AMF发送注册请求,PCF对中继终端进行D2D中继服务鉴权后,向中继终端发送D2D配置信息。
在一些实施例中,在中继终端状态改变后,中继终端可以向网络侧设备发送更新请求,以使网络侧设备重新设置中继终端的切片属性;然后,中继终端可以获取网络侧设备重新设置的切片属性。
上述实施例中,中继终端向网络侧设备发送中继终端的能力信息具体可以是中继终端向基站发送能力信息,进而基站向AMF转发能力信息。
上述实施例中,中继终端向网络侧设备发送切片请求,具体可以是中继终端向切片控制单元发送切片请求,进而切片控制单元根据中继终端的第一信息和能力信息,以及当前终端接入网络的资源决定中继终端可以提供的切片服务,进而确定该中继终端的切片属性。在确定切片属性的过程中,切片控制单元可以从基站获取能力信息,还可以与AMF进行通信。
基于同一发明构思,本公开实施例中提供了一种设备到设备通信方法,该方法可应用于中继终端,该中继终端可以为上文介绍中的终端,也就是说,该终端可以但不限于上文介绍中的手机、平板电脑、可穿戴设备等能 够被配置为执行本公开实施例提供的设备到设备通信方法的电子设备中的至少一种,或者,该方法的执行主体,还可以是能够执行该方法的客户端本身。
图4示出本公开实施例中一种设备到设备通信方法流程图,如图4所示,本公开实施例中提供的设备到设备通信方法包括如下步骤:
S402,向网络侧设备发送切片请求,以使网络侧设备基于切片请求中携带的中继终端的第一信息,生成中继终端的切片属性,切片属性用于表示中继终端提供的切片服务。
在一些实施例中,该方法还可以包括如下步骤:
S404,获取切片属性;
S406,向远端终端发送设备发现信号,设备发现信号中携带有切片属性,以使远端终端在切片属性满足预设要求的情况下,与中继终端建立通信连接。
本实施例所提供的设备到设备通信方法,中继终端向网络侧设备发送切片请求;网络侧设备基于切片请求中携带的中继终端的第一信息,生成中继终端的切片属性,切片属性用于表示中继终端提供的切片服务;中继终端在向远端终端发送的设备发现信号中携带该切片属性;远端终端便可以在切片属性满足预设要求的情况下,与中继终端建立通信连接,接入该中继终端对应的切片。如此,远端终端在选择中继终端接入切片时,便可以根据设备发现信号获知中继终端可以提供的切片服务,进而可以选择一个能满足其服务需求的中继终端。
下面对上述步骤进行详细说明,具体如下所示:
在一些实施例中,第一信息可以包括如下信息中的至少一项:
中继终端的位移速度信息、中继终端在网络覆盖中的位置信息、中继终端的负载信息、中继终端的电量信息。
在一些实施例中,向网络侧设备发送切片请求之前,该方法还可以包括:
向网络侧设备发送中继终端的能力信息;能力信息包括如下信息中的至少一种:
超高可靠超低时延通信URLLC信息、增强移动宽带eMMB信息、中 继终端支持的带宽信息;
相应地,切片属性可以为网络侧设备基于第一信息和能力信息生成的。
在一些实施例中,向网络侧设备发送中继终端的能力信息之前,该方法还可以包括:
向网络侧设备发送注册请求,以使网络侧设备基于注册请求对中继终端进行D2D中继服务鉴权后,向中继终端发送D2D配置信息;
获取D2D配置信息;
基于D2D配置信息,进行D2D服务配置。
在一些实施例中,网络侧设备可以包括基站、核心网设备和切片控制单元。
基站,可以用于接收能力信息,以及将能力信息发送至核心网设备和切片控制单元;
核心网设备,可以用于接收来自基站的能力信息;
切片控制单元,可以用于接收能力信息和切片请求,以及基于能力信息和切片请求中携带的中继终端的第一信息,生成中继终端的切片属性。也就是说,切片控制单元可以是一个功能网元,该网元用于接收能力信息和切片请求,以及基于能力信息和切片请求中携带的中继终端的第一信息,生成中继终端的切片属性。
基于同一发明构思,本公开实施例中提供了一种设备到设备通信方法,该方法可应用于远端终端,该远端终端可以为上文介绍中的终端,也就是说,该终端可以但不限于上文介绍中的手机、平板电脑、可穿戴设备等能够被配置为执行本公开实施例提供的设备到设备通信方法的电子设备中的至少一种,或者,该方法的执行主体,还可以是能够执行该方法的客户端本身
图5示出本公开实施例中一种设备到设备通信方法流程图,如图5所示,本公开实施例中提供的设备到设备通信方法包括如下步骤:
S502,接收中继终端发送的设备发现信号,设备发现信号中携带有中继终端的切片属性,切片属性为网络侧设备基于中继终端切片请求中携带的第一信息生成的;
S504,在切片属性满足预设条件的情况下,与中继终端建立通信连接。
在一些实施例中,切片属性可以是网络侧设备基于第一信息和能力信息生成的。
能力信息来自中继终端,能力信息可以包括如下信息中的至少一种:
超高可靠超低时延通信URLLC信息、增强移动宽带eMMB信息、中继终端支持的带宽信息。
中继终端上报的能力信息还可以包括D2D中继通信能力以及其它无线侧的终端能力。
基于同一发明构思,本公开实施例中还提供了一种设备到设备通信装置,如下面的实施例。由于该装置实施例解决问题的原理与上述方法实施例相似,因此该装置实施例的实施可以参见上述方法实施例的实施,重复之处不再赘述。
图6示出本公开实施例中一种设备到设备通信装置示意图,应用于中继终端,如图6所示,该设备到设备通信装置600包括:
第一发送模块602,被配置为向网络侧设备发送切片请求,以使网络侧设备基于切片请求中携带的中继终端的第一信息,生成中继终端的切片属性,切片属性用于表示中继终端提供的切片服务。
在一些实施例中,该设备到设备通信装置600,还可以包括:
获取模块,被配置为获取切片属性;
第二发送模块,被配置为向远端终端发送设备发现信号,设备发现信号中携带有切片属性,以使远端终端在切片属性满足预设要求的情况下,与中继终端建立通信连接。
在一些实施例中,第一信息可以包括如下信息中的至少一项:
中继终端的位移速度信息、中继终端在网络覆盖中的位置信息、中继终端的负载信息、中继终端的电量信息。
在一些实施例中,该设备到设备通信装置600还可以包括:
第三发送模块,可以被配置为向网络侧设备发送切片请求之前,向网络侧设备发送中继终端的能力信息;能力信息包括如下信息中的至少一种:
超高可靠超低时延通信URLLC信息、增强移动宽带eMMB信息、中继终端支持的带宽信息;
相应地,切片属性可以为网络侧设备基于第一信息和能力信息生成的。
在一些实施例中,该设备到设备通信装置600还可以包括:
第四发送模块,可以被配置为向网络侧设备发送中继终端的能力信息之前,向网络侧设备发送注册请求,以使网络侧设备基于注册请求对中继终端进行D2D中继服务鉴权后,向中继终端发送D2D配置信息;
信息获取模块,可以被配置为获取D2D配置信息;
配置模块,可以用于基于D2D配置信息,进行D2D服务配置。
在一些实施例中,网络侧设备可以包括基站、核心网设备和切片控制单元;
基站,可以用于接收无线通信能力信息,以及将无线通信能力信息发送至核心网设备和切片控制单元;
核心网设备,可以用于接收来自基站的能力信息;
切片控制单元,可以用于接收能力信息和切片请求,以及基于无线通信能力信息和切片请求中携带的中继终端的第一信息,生成中继终端的切片属性。
本公开实施例提供的设备到设备通信装置,可以用于执行上述各方法实施例提供的设备到设备通信方法,其实现原理和技术效果类似,为简介起见,在此不再赘述。
基于同一发明构思,本公开实施例中还提供了一种设备到设备通信装置,应用于远端终端,如图7所示,该设备到设备通信装置700包括:
第一接收模块702,被配置为接收中继终端发送的设备发现信号,设备发现信号中携带有中继终端的切片属性,切片属性为网络侧设备基于中继终端切片请求中携带的第一信息生成的;
通信模块704,被配置为在切片属性满足预设要求的情况下,与中继终端建立通信连接。
在一些实施例中,切片属性可以为网络侧设备基于第一信息和无线通信能力信息生成的;
无线通信能力信息来自中继终端,无线通信能力信息可以包括如下信息中的至少一种:
超高可靠超低时延通信URLLC信息、增强移动宽带eMMB信息、中继终端支持的带宽信息。
本公开实施例提供的设备到设备通信装置,可以用于执行上述各方法实施例提供的设备到设备通信方法,其实现原理和技术效果类似,为简介起见,在此不再赘述。
所属技术领域的技术人员能够理解,本公开的各个方面可以实现为系统、方法或程序产品。因此,本公开的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。
下面参照图8来描述根据本公开的这种实施方式的电子设备800。图8显示的电子设备800仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图8所示,电子设备800以通用计算设备的形式表现。电子设备800的组件可以包括但不限于:上述至少一个处理单元810、上述至少一个存储单元820、连接不同系统组件(包括存储单元820和处理单元810)的总线830。
其中,所述存储单元存储有程序代码,所述程序代码可以被所述处理单元810执行,使得所述处理单元810执行本说明书上述“示例性方法”部分中描述的根据本公开各种示例性实施方式的步骤。
存储单元820可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)8201和/或高速缓存存储单元8202,还可以进一步包括只读存储单元(ROM)8203。
存储单元820还可以包括具有一组(至少一个)程序模块8205的程序/实用工具8204,这样的程序模块8205包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线830可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
电子设备800也可以与一个或多个外部设备840(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该电子设备 800交互的设备通信,和/或与使得该电子设备800能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口850进行。并且,电子设备800还可以通过网络适配器860与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器860通过总线830与电子设备800的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备800使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品也可以称为计算机程序产品,该计算机程序产品包括:计算机程序,所述计算机程序被处理器执行时实现上述的设备到设备通信方法。该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、终端装置、或者网络设备等)执行根据本公开实施方式的方法。
在本公开的示例性实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质可以是可读信号介质或者可读存储介质。其上存储有能够实现本公开上述方法的程序产品。在一些可能的实施方式中,本公开的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行本说明书上述“示例性方法”部分中描述的根据本公开各种示例性实施方式的步骤。
本公开中的计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
在本公开中,计算机可读存储介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
可选地,计算机可读存储介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。
在具体实施时,可以以一种或多种程序设计语言的任意组合来编写用于执行本公开操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
此外,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
通过以上实施方式的描述,本领域的技术人员易于理解,这里描述 的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、移动终端、或者网络设备等)执行根据本公开实施方式的方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (16)

  1. 一种设备到设备通信方法,应用于中继终端,所述方法包括:
    向网络侧设备发送切片请求,以使所述网络侧设备基于所述切片请求中携带的中继终端的第一信息,生成所述中继终端的切片属性,所述切片属性用于表示所述中继终端提供的切片服务。
  2. 根据权利要求1所述的方法,所述方法还包括:
    获取所述切片属性;
    向远端终端发送设备发现信号,所述设备发现信号中携带有所述切片属性,以使所述远端终端在所述切片属性符合预设要求的情况下,与所述中继终端建立通信连接。
  3. 根据权利要求2所述的方法,其中,所述获取所述切片属性,包括:
    获取网络侧设备下发的切片属性。
  4. 根据权利要求1所述的方法,其中,所述第一信息包括如下信息中的至少一项:
    所述中继终端的位移速度信息、所述中继终端在网络覆盖中的位置信息、所述中继终端的负载信息、所述终端的电量信息。
  5. 根据权利要求1所述的方法,其中,所述向网络侧设备发送切片请求之前,所述方法还包括:
    向网络侧设备发送中继终端的无线通信能力信息;所述无线通信能力信息包括如下信息中的至少一种:
    超高可靠超低时延通信URLLC信息、增强移动宽带eMMB信息、所述中继终端支持的带宽信息;
    所述切片属性为网络侧设备基于所述第一信息和所述无线通信能力信息生成的。
  6. 根据权利要求5所述的方法,其中,所述向网络侧设备发送中继终端的能力信息之前,所述方法还包括:
    向网络侧设备发送注册请求,以使所述网络侧设备基于所述注册请求对所述中继终端进行D2D中继服务鉴权后,向所述中继终端发送D2D配 置信息;
    获取所述D2D配置信息;
    基于所述D2D配置信息,进行D2D服务配置。
  7. 根据权利要求5所述的方法,其中,所述网络侧设备包括:
    基站,用于接收所述能力信息,以及将所述能力信息发送至核心网设备和切片控制单元;
    所述核心网设备,用于接收来自基站的所述能力信息;
    所述切片控制单元,用于接收所述能力信息和所述切片请求,以及基于所述能力信息和所述切片请求中携带的中继终端的第一信息,生成中继终端的切片属性。
  8. 根据权利要求1-7任一所述的方法,所述方法还包括:
    在中继终端状态改变后,向网络侧设备发送更新请求,以使所述网络侧设备重新设置所述中继终端的切片属性;
    获取所述网络侧设备重新设置的切片属性。
  9. 一种设备到设备通信方法,应用于远端终端,所述方法包括:
    获取中继终端发送的设备发现信号,所述设备发现信号中携带有所述中继终端的切片属性,所述切片属性为网络侧设备基于中继终端切片请求中携带的第一信息生成的;
    在所述切片属性符合预设要求的情况下,与所述中继终端建立通信连接。
  10. 根据权利要求9所述的方法,其中,所述切片属性为网络侧设备基于所述第一信息和无线通信能力信息生成的;
    所述无线通信能力信息来自所述中继终端,所述无线通信能力信息包括如下信息中的至少一种:
    超高可靠超低时延通信URLLC信息、增强移动宽带eMMB信息、所述中继终端支持的带宽信息。
  11. 一种设备到设备通信装置,应用于中继终端,所述装置包括:
    第一发送模块,用于向网络侧设备发送切片请求,以使所述网络侧设备基于所述切片请求中携带的中继终端的第一信息,生成所述中继终端的切片属性,所述切片属性用于表示所述中继终端提供的切片服务。
  12. 根据权利要求11所述的装置,其中,所述装置还包括:
    获取模块,用于获取切片属性;
    第二发送模块,用于向远端终端发送设备发现信号,设备发现信号中携带有切片属性,以使远端终端在切片属性满足预设要求的情况下,与中继终端建立通信连接。
  13. 一种设备到设备通信装置,应用于远端终端,所述装置包括:
    第一接收模块,用于接收中继终端发送的设备发现信号,所述设备发现信号中携带有所述中继终端的切片属性,所述切片属性为网络侧设备基于中继终端切片请求中携带的第一信息生成的;
    通信模块,用于在所述切片属性符合预设要求的情况下,与所述中继终端建立通信连接。
  14. 一种电子设备,包括:
    处理器;以及
    存储器,用于存储所述处理器的可执行指令;
    其中,所述处理器配置为经由执行所述可执行指令来执行权利要求1-10中任意一项所述的设备到设备通信方法。
  15. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-10中任意一项所述的设备到设备通信方法。
  16. 一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现权利要求1-10中任意一项所述的设备到设备通信方法。
PCT/CN2022/135307 2021-12-01 2022-11-30 设备到设备通信方法、装置、设备、介质及程序产品 WO2023098704A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111453204.7A CN116209090A (zh) 2021-12-01 2021-12-01 设备到设备通信方法、装置、设备及存储介质
CN202111453204.7 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023098704A1 true WO2023098704A1 (zh) 2023-06-08

Family

ID=86511764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135307 WO2023098704A1 (zh) 2021-12-01 2022-11-30 设备到设备通信方法、装置、设备、介质及程序产品

Country Status (2)

Country Link
CN (1) CN116209090A (zh)
WO (1) WO2023098704A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110213066A (zh) * 2018-02-28 2019-09-06 华为技术有限公司 一种切片信息的获取方法和中继装置
EP3761751A1 (en) * 2019-07-03 2021-01-06 Koninklijke Philips N.V. Relay selection in cellular sliced networks
WO2021056573A1 (zh) * 2019-09-29 2021-04-01 Oppo广东移动通信有限公司 建立会话的方法和终端设备
WO2021087996A1 (zh) * 2019-11-08 2021-05-14 华为技术有限公司 通信方法和通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110213066A (zh) * 2018-02-28 2019-09-06 华为技术有限公司 一种切片信息的获取方法和中继装置
EP3761751A1 (en) * 2019-07-03 2021-01-06 Koninklijke Philips N.V. Relay selection in cellular sliced networks
WO2021056573A1 (zh) * 2019-09-29 2021-04-01 Oppo广东移动通信有限公司 建立会话的方法和终端设备
WO2021087996A1 (zh) * 2019-11-08 2021-05-14 华为技术有限公司 通信方法和通信装置

Also Published As

Publication number Publication date
CN116209090A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
CN104205933B (zh) 蜂窝电话从蜂窝通信到Wi-Fi通信的无缝转变
US20200329514A1 (en) Session establishment method and system, and device
KR20120012974A (ko) 이종 무선 기기간에 연동을 위한 장치, 방법 및 제조 물품
WO2022002221A1 (zh) 多链路建立方法及通信装置
CN113207191B (zh) 基于网络切片的会话建立方法、装置、设备及存储介质
CN112584545B (zh) 数据传输方法及装置
JP7118173B2 (ja) サービス品質監視方法、及びシステム、並びに装置
WO2016167885A1 (en) Reduction of channel access delay in wireless systems
EP4258710A1 (en) Method for transmitting data in near field, device and system
CN113766534A (zh) 网络切片映射方法及相关装置
WO2021097858A1 (zh) 一种通信方法及装置
US20230189054A1 (en) Relay communication method, and communication apparatus
CN102056245B (zh) 一种无线设备共享带宽的方法及无线设备
WO2022095048A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2021036910A1 (zh) 数据传输方法及装置
US20170163737A1 (en) Wireless station and method for managing a multi-band session in wi-fi direct services
US20230099586A1 (en) Communication method and related apparatus
US20230018378A1 (en) Parameter configuration method, apparatus and system, device and storage medium
JP2020061732A (ja) ハンドオーバーでのアップリンクベアラーバインディング
WO2023098704A1 (zh) 设备到设备通信方法、装置、设备、介质及程序产品
CN115175117A (zh) 多接入下的数据冗余传输方法及其相关设备
CN111050368A (zh) 网络传输控制方法、装置、终端设备以及存储介质
TWI823362B (zh) 一種通訊方法及裝置、儲存介質和晶片系統
WO2023082668A1 (zh) Snpn的紧急通信方法、装置、设备及存储介质
KR102216884B1 (ko) 무선 근거리 네트워크 기반의 비대칭 통신을 지원하는 터널 서버 및 그의 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900508

Country of ref document: EP

Kind code of ref document: A1