WO2023098475A1 - 晶圆清洗设备中清洗液温度的控制装置及晶圆清洗设备 - Google Patents

晶圆清洗设备中清洗液温度的控制装置及晶圆清洗设备 Download PDF

Info

Publication number
WO2023098475A1
WO2023098475A1 PCT/CN2022/132194 CN2022132194W WO2023098475A1 WO 2023098475 A1 WO2023098475 A1 WO 2023098475A1 CN 2022132194 W CN2022132194 W CN 2022132194W WO 2023098475 A1 WO2023098475 A1 WO 2023098475A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
temperature
semiconductor
polarity
peltier
Prior art date
Application number
PCT/CN2022/132194
Other languages
English (en)
French (fr)
Inventor
陈海祥
张明
南建辉
杨斌
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2023098475A1 publication Critical patent/WO2023098475A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B11/00Cleaning flexible or delicate articles by methods or apparatus specially adapted thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2203/00Details of cleaning machines or methods involving the use or presence of liquid or steam
    • B08B2203/007Heating the liquid

Definitions

  • the present application relates to the technical field of semiconductors, in particular to a device for controlling the temperature of cleaning liquid in wafer cleaning equipment and wafer cleaning equipment.
  • Wafer cleaning equipment is mainly divided into single-chip semiconductor cleaning equipment and trough-type semiconductor cleaning equipment for batch cleaning.
  • trough-type semiconductor cleaning equipment is widely used due to its high pass rate and large production capacity.
  • different chemicals need to be configured in the cleaning tank.
  • the concentration of the chemicals and the temperature of the chemicals often also need to be adjusted according to the requirements of the process. control.
  • the purpose of the embodiment of the present application is to provide a device for controlling the temperature of the cleaning liquid in the wafer cleaning equipment and the wafer cleaning equipment, so as to solve the problem of inflexible temperature control when controlling the temperature of the cleaning liquid in the wafer cleaning equipment in the prior art. Accurate, and it is easy to cause the problem that the protective shell outside the cleaning tank is heated and deformed due to the high heating temperature of the cleaning liquid.
  • an embodiment of the present application provides a device for controlling the temperature of cleaning liquid in wafer cleaning equipment
  • the control device includes: at least one cooling chip module, a control module, and a first temperature measuring device; wherein at least one of the The refrigerating sheet modules are attached to the outer wall of the cleaning tank of the wafer cleaning equipment, each of the refrigerating sheet modules includes at least two semiconductor refrigerating sheets that are sequentially connected by heat conduction, each of the semiconductor refrigerating sheets It includes a first sheet and a second sheet; the first sheet and the second sheet are respectively connected to the control module; the first temperature measuring device is used to measure the temperature of the cleaning liquid in the cleaning tank the current temperature, and transmit the current temperature to the control module; the control module is configured to control the first temperature applied to the semiconductor refrigeration chip according to the current temperature and the target temperature of the cleaning liquid The first polarity of the sheet, the second polarity applied to the second sheet in the semiconductor refrigeration sheet, and the polarity applied between the first sheet and the second sheet power size.
  • an embodiment of the present application provides a wafer cleaning device, the wafer cleaning device comprising: a cleaning tank and the device for controlling the temperature of the cleaning liquid in the wafer cleaning device as described in the first aspect.
  • Adopting the technical solution of the embodiment of the present application by setting the cooling module on the outer wall of the cleaning tank, and then controlling the first piece applied to the semiconductor cooling chip through the control module based on the target temperature of the current temperature of the cleaning liquid in the cleaning tank and the electrode polarity of the second sheet, as well as the power applied between the first sheet and the second sheet, to achieve flexible control of the temperature of the cleaning liquid in the cleaning tank, so that not only can the cleaning liquid
  • the heating effect of heating can also reduce the cleaning liquid from high temperature to low temperature, so as to achieve the flexible switching of heating and cooling functions, which can make the temperature control more accurate; and because the semiconductor refrigeration chip is in the working state , there will be a certain temperature difference between the first sheet and the second sheet, which can have the effect of cooling the protective shell of the cleaning tank, so as to prevent the heating temperature of the cleaning liquid in the cleaning tank from being too high.
  • FIG. 1 is a schematic diagram of a first specific structure of a cleaning liquid temperature control device in a wafer cleaning device according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a second specific structure of a device for controlling the temperature of a cleaning solution in a wafer cleaning device according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a third specific structure of a device for controlling the temperature of a cleaning solution in a wafer cleaning device according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a fourth specific structure of a device for controlling the temperature of cleaning liquid in wafer cleaning equipment according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a fifth specific structure of a device for controlling the temperature of cleaning liquid in wafer cleaning equipment according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a sixth specific structure of a device for controlling the temperature of cleaning liquid in wafer cleaning equipment according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a wafer cleaning device according to an embodiment of the present application.
  • the embodiment of the present application provides a device for controlling the temperature of the cleaning liquid in the wafer cleaning equipment and the wafer cleaning equipment, which are used to solve the problem of inflexible and accurate temperature control when controlling the temperature of the cleaning liquid in the wafer cleaning equipment in the prior art, and It is easy to cause the problem that the protective shell outside the cleaning tank is heated and deformed due to the high heating temperature of the cleaning liquid.
  • FIG. 1 is a schematic structural diagram of a control device for cleaning liquid temperature in a wafer cleaning device according to an embodiment of the present application.
  • the control device includes: at least one cooling chip module 101 and a control module 102 and the first temperature measuring device 103; wherein, at least one refrigerating sheet module 101 is attached to the outer wall of the cleaning tank 20 of the wafer cleaning equipment, and each refrigerating sheet module 101 includes at least two semiconductor refrigeration units connected in sequence by heat conduction
  • Each semiconductor cooling chip includes a first sheet and a second sheet; the first sheet and the second sheet are connected to the control module 102; wherein, in order to simplify the specific structure of the cooling sheet module 101, in Figure 1
  • the figure only illustrates the situation that the cooling sheet module 101 includes two semiconductor cooling chips (namely, the first semiconductor cooling chip and the second semiconductor cooling chip), and does not constitute a restriction on the specific structure of the cooling chip module 101.
  • the cooling chip In the case that the module 101 includes three peltiers, it is sufficient to arrange the third peltiers
  • the above-mentioned first temperature measuring device 103 is used to measure the current temperature of the cleaning liquid in the cleaning tank 20 and transmit the current temperature to the control module 102 .
  • the above-mentioned control module 102 is used to control the first polarity applied to the first piece of the peltier cooler and the polarity applied to the second piece of the peltier cooler according to the current temperature and the target temperature of the cleaning liquid in the wafer cleaning equipment.
  • each of the above-mentioned semiconductor refrigerating sheets can be a thermocouple pair formed by connecting two different semiconductors, wherein one piece of semiconductor (i.e. the first sheet or the second sheet) is the positive pole of the semiconductor refrigerating sheet, and the other sheet of semiconductor ( That is, the second piece or the first piece) is the negative pole of the semiconductor refrigeration chip.
  • one piece of semiconductor i.e. the first sheet or the second sheet
  • the other sheet of semiconductor That is, the second piece or the first piece
  • the negative pole of the semiconductor refrigeration chip is the negative pole of the semiconductor refrigeration chip.
  • the semiconductor corresponding to the positive pole is a semiconductor
  • the hot side of the refrigerating sheet that is, applying a positive voltage to the positive pole of the semiconductor refrigerating sheet will cause the semiconductor corresponding to the positive electrode to generate heat.
  • Applying a negative voltage to the negative pole of the semiconductor refrigeration sheet will make the corresponding semiconductor refrigeration of the negative pole); when the voltage applied to the positive electrode of the semiconductor refrigeration sheet changes from positive voltage to negative voltage, the semiconductor corresponding to the positive electrode will change from a hot surface to a cold surface.
  • the semiconductor corresponding to the negative electrode when the voltage applied to the negative electrode of the semiconductor refrigeration sheet changes from negative voltage to positive voltage, the semiconductor corresponding to the negative electrode will change from a cold surface to a hot surface (that is, the negative electrode corresponds to The semi-conductor changes from cooling to heating), that is, when the polarity of the voltage applied between the two semiconductors in the semiconductor cooling sheet is switched, the hot surface of the semiconductor cooling sheet will become a cold surface, and the cold surface of the semiconductor cooling sheet will become a hot surface .
  • each semiconductor refrigeration sheet the two different semiconductors contained in each semiconductor refrigeration sheet are the first sheet and the second sheet respectively, wherein the first sheet corresponds to the positive electrode of the semiconductor refrigeration sheet, and the second sheet corresponds to the semiconductor refrigeration sheet.
  • the negative electrode of the refrigerating sheet when a positive voltage is applied to the first sheet of the semiconductor refrigerating sheet, the first sheet can be turned into a hot surface to generate heat; when a negative voltage is applied to the second sheet of the semiconductor refrigerating sheet, the second sheet can be made
  • the two sheets become cold surface cooling; further, the polarity of the power applied between the first sheet and the second sheet in the semiconductor refrigeration sheet can be switched through the control module 102, that is, the control module 102 controls the polarity of the power applied to the semiconductor refrigeration sheet.
  • the first polarity of the first sheet in the sheet and the second polarity applied to the second sheet of the semiconductor refrigeration sheet when applied between the first sheet and the second sheet of the semiconductor refrigeration sheet
  • the first polarity applied to the first sheet in the semiconductor refrigeration sheet from positive voltage to negative voltage (that is, the voltage applied to the first sheet of the semiconductor refrigeration sheet changes from positive voltage to Negative voltage)
  • the first piece can be changed from a hot surface to a cold surface, thereby realizing the effect of cooling the cleaning liquid in the cleaning tank 20, and controlling the second pole applied to the second piece in the semiconductor refrigeration piece.
  • the second body of the semiconductive refrigeration chip When the voltage changes from negative voltage to positive voltage (that is, the voltage applied to the second body of the semiconductive refrigeration chip changes from negative voltage to positive voltage), the second body can be changed from a cold surface to a hot surface, thereby realizing the opposite
  • the cleaning solution in the cleaning tank 20 has the effect of heating up.
  • Adopting the technical scheme of the embodiment of the present application by setting the cooling module 101 on the outer wall of the cleaning tank 20, and then controlling the temperature applied to the semiconductor cooling chip through the control module 102 based on the target temperature of the current temperature of the cleaning liquid in the cleaning tank 20
  • the polarity of the electrodes of the first sheet and the second sheet, and the applied power size between the first sheet and the second sheet realize the flexible control of the temperature of the cleaning solution in the cleaning tank 20, so that not only It can achieve the effect of heating and heating the cleaning liquid, and can also reduce the cleaning liquid from high temperature to low temperature, so as to achieve the flexible switching of heating and cooling functions, which can make the temperature control more accurate; and because the semiconductor refrigeration chip is in the In the working state, there will be a certain temperature difference between the first sheet and the second sheet, which can play a role in cooling the protective shell of the cleaning tank, so as to prevent the heating of the cleaning liquid in the cleaning tank.
  • each cooling module 101 it may be necessary to arrange a plurality of cooling modules 101 on the outer wall of the cleaning tank 20 , so as to cover the entire outer wall of the cleaning tank 20 , based on this, a plurality of cooling chip modules 101 are arranged in an array on the outer wall of the cleaning tank 20 of the wafer cleaning equipment.
  • each refrigeration sheet module 101 is arranged on different outer wall areas of the cleaning tank 20; wherein, each first semiconductor refrigeration sheet in the plurality of refrigeration sheet modules 101 is connected in parallel with The control module 102 is connected, and each second semiconductor cooling chip in the plurality of cooling chip modules 101 is connected in parallel to the control module 102 .
  • each refrigerating sheet module 101 can be regarded as a whole, still taking the refrigerating sheet module 101 including two semiconductor cooling sheets as an example, for example, the first semiconductor cooling sheet and the second semiconductor cooling sheet together form a cooling Chip module 101, wherein, the first semiconductor cooling chip and the second semiconductor cooling chip can be semiconductor cooling chips of the same power or different power semiconductor cooling chips, which can be flexibly set according to actual needs; further, they can be cleaned
  • the outer wall of the tank 20 is covered with a plurality of cooling chip modules 101 in an array distribution mode, wherein, the first chip and the second chip of each semiconductor cooling chip in the cooling chip module 101 are connected in series and then connected in parallel in their respective control panels.
  • each refrigerating sheet module 101 has two semiconductor cooling sheets, as shown in Figure 2, in the first cooling sheet module 101, the first semiconductor cooling sheet, The first semiconductor cooling chip in the second cooling chip module 101 and the first semiconductor cooling chip in the third cooling chip module 101 are connected in parallel to the control module 102, and the first chip in each first semiconductor cooling chip The body and the second sheet are connected in series; and the second semiconductor refrigeration sheet in the first refrigeration sheet module 101, the second semiconductor refrigeration sheet in the second refrigeration sheet module 101, and the second semiconductor refrigeration sheet in the third refrigeration sheet module 101 After the slices are connected in parallel, they are connected to the control module 102 together, and the first slice and the second slice in each second semiconductor refrigeration slice are connected in series.
  • each refrigerating sheet module 101 all comprises two semiconductor cooling sheets (namely the first semiconductor cooling sheet and the second semiconductor cooling sheet) , does not constitute a restriction on the specific structure of the cooling sheet module 101.
  • each cooling sheet module 101 includes at least three semiconductor cooling sheets, refer to the above-mentioned Fig. 2 where each cooling sheet module 101 includes two The specific structure of the semiconductor cooling chip, each third semiconductor cooling chip in the plurality of cooling chip modules 101 is connected in parallel to the control module 102, and so on, and will not be repeated here.
  • the heating and cleaning can be calculated according to the preset heating rate, the power required when the cleaning solution in the cleaning tank 20 is warmed up to the preset maximum temperature (ie, the maximum value of the target temperature), and the power loss estimated by the experiment.
  • the number of semiconductor cooling chips that need to be activated can diversify the usage scenarios of the cleaning liquid temperature control device, so that the temperature of the cleaning liquid can be heated to a higher target temperature by increasing the number of semiconductor cooling chips that can be activated later. need.
  • a second temperature-measuring device is added between the semiconductor refrigerating sheets, so that the control module 102 determines how to control the electrodes applied to the first sheet and the second sheet of the semiconductor refrigerating sheet based on the actual temperature measured by the second temperature-measuring device Polarity, and the magnitude of the power applied between the first sheet and the second sheet, so that not only can the temperature of the cleaning liquid be controlled more accurately, but also can avoid the
  • the electrode polarity switching of the two pieces causes the temperature of the second piece close to the protective shell 104 semiconductor refrigeration chip to be too high, thereby causing the problem that the protective shell of the cleaning tank is heated and deformed.
  • the above cleaning A protective casing 104 is provided outside the tank 20, and a second temperature measuring device 105 is provided between at least two peltiers.
  • the above-mentioned second temperature measuring device 105 is used to measure the actual temperature of the first body of the peltier cooler close to the protective casing 104 , and transmit the measured actual temperature to the control module 102 .
  • the above-mentioned control module 102 is also used to judge whether to switch the first polarity applied to the first sheet in the peltier cooler and the first polarity applied to the peltier cooler based on the above-mentioned actual temperature and the maximum heat-resistant temperature of the protective shell 104.
  • the second polarity of the two pieces and in the case of the judgment result is yes, switch the first polarity of the first piece and the second polarity of the second piece, or in the case of the judgment result is no , to adjust the power applied between the first sheet and the second sheet.
  • the above-mentioned second temperature measuring device 105 can be arranged between any two adjacent semiconductor refrigerating sheets, and the actual temperature of the first sheet or the second sheet in the semiconductor refrigerating sheet is detected by the second temperature measuring device 105, so that the control module 102 can accurately control the polarity of the electrodes applied to the first and second sheets in the peltier and the power applied between the first and second sheets based on the actual temperature size.
  • the second temperature measuring device 105 can be arranged between two adjacent semiconductor refrigeration chips adjacent to the protective shell 104. For example, if the refrigeration module includes two semiconductor refrigeration chips, then the first semiconductor refrigeration A second temperature-measuring device 105 is arranged between the chip and the second semiconductor cooling chip.
  • the cooling chip module includes three semiconductor cooling chips, and the first semiconductor cooling chip connected in sequence from the outer wall of the cleaning tank to the protective shell 104 is provided with , the second semiconductor cooling chip and the third semiconductor cooling chip, then at least a second temperature measuring device 105 needs to be arranged between the third semiconductor cooling chip and the second semiconductor cooling chip; specifically, the second temperature measuring device 105 is arranged at Adjacent to the situation between two adjacent peltiers of the protective shell 104, since the junction temperature difference of each peltier is known, therefore, based on the actual temperature measured by the second temperature measuring device 105 and the adjacent protective shell The junction temperature difference of the peltier cooler at 104 can determine whether the temperature of the second piece in the peltier cooler adjacent to the protective shell 104 exceeds the maximum heat-resistant temperature of the protective shell 104, so that the protective shell 104 can be better protected.
  • the temperature of the protective shell 104 may be too high, therefore, it can be First, the effect of cooling is achieved by adjusting the power of at least one semiconductor refrigeration chip, and when the temperature of the first piece of the semiconductor refrigeration sheet adjacent to the protective shell 104 drops to a certain temperature, then switch the application to at least one semiconductor refrigeration sheet The electrode polarity of the first sheet and the second sheet, so as to ensure that the protective shell 104 is within the allowable temperature range, that is, to ensure that the maximum heat-resistant temperature of the protective shell 104 is not exceeded.
  • the above-mentioned control module 102 is also specifically It is used to adjust the power applied between the first sheet and the second sheet based on the actual temperature when the actual temperature measured by the second temperature measuring device 105 is greater than or equal to the first preset value until the actual temperature is less than the above-mentioned first preset value, and when the actual temperature is lower than the first preset value, it is determined to switch the first polarity and the second polarity, that is, the actual temperature measured by the second temperature measuring device 105 is lower than the first preset value.
  • the first polarity applied to the first sheet in the semiconductor refrigeration sheet and the second polarity applied to the second sheet can be switched at this time;
  • the above-mentioned first preset value is set according to the difference between the maximum heat-resistant temperature and the junction temperature difference of the peltier cooler close to the protective shell 104, that is, the sum of the above-mentioned first preset value and the maximum heat-resistant temperature of the protective shell 104 It is related to the difference between the junction temperature difference of the peltiers close to the protective shell 104 .
  • the junction temperature difference of the semiconductor cooler may be related to the power applied to the semiconductor cooler, therefore, the junction temperature difference of the semiconductor cooler may be determined based on the power currently applied to the semiconductor cooler, that is, the first preset
  • the set value can be changed dynamically; in addition, considering that in the actual use process, only some peltier coolers may be activated, therefore, the junction temperature difference of the peltier coolers that determine the first preset value are all peltier coolers in working state the junction temperature difference.
  • the control device for the temperature of the cleaning liquid in the wafer cleaning equipment provided by the embodiment of the present application is carried out.
  • the control device for the temperature of the cleaning liquid in the wafer cleaning equipment provided by the embodiment of the present application.
  • the first polarity of the first sheet in the first semiconductor refrigeration sheet is controlled to be positive by the control module 102, and the second polarity of the second sheet in the first semiconductor refrigeration sheet is controlled to be negative;
  • the first polarity of the first piece of the refrigerated piece is positive, and the second polarity of the second piece of the second peltier refrigerated piece is controlled to be negative, and the power applied to the first peltier refrigerated piece is adjusted by the control module 102 size and the power applied to the second semiconductor refrigerated piece, wherein, if the temperature of the first piece in the second peltier refrigerated piece is higher than the temperature of the second piece in the first peltier refrigerated piece, then it can be through the way of heat transfer, Raise the temperature of the second piece in the first semiconductor refrigerating plate, and then make the temperature of the first piece in the first peltier refrigerating plate higher through the junction temperature difference of the first peltier cooling plate, and then make the heating temperature of the cleaning liquid higher
  • the target temperature is less than the sum of the room temperature and the junction temperature difference of the first semiconductor cooler, only the first semiconductor cooler can be started; for another example, if the target temperature is greater than The sum of the room temperature and the junction temperature difference of the first semiconductor cooler can start the first semiconductor cooler and the second semiconductor cooler at the same time.
  • the first semiconductor cooling chip or the second semiconductor cooling chip can be switched.
  • the electrode polarity of one body and the second body uses the temperature of the cold surface of the semiconductor cooling chip after switching to quickly cool down the cleaning liquid.
  • the first semiconductor cooling chip can be controlled through the control module 102 according to the actual situation.
  • the module 102 adjusts the power applied to the first semiconductor cooler and the second semiconductor cooler, thereby achieving the effect of cooling the first semiconductor cooler and the second semiconductor cooler, so that the second body of the first semiconductor cooler
  • the temperature between the first body of the second semiconductor refrigerating sheet that is, the actual temperature measured by the second temperature measuring device 105
  • the temperature applied to the first semiconductor refrigerating sheet or the second semiconductor refrigerating sheet can be controlled.
  • the electrode polarity of the refrigerating sheet is switched, that is, the power applied between the first sheet and the second sheet is adjusted based on the actual temperature measured by the second temperature measuring device 105 until the actual temperature is lower than the first preset value , the polarity of the electrode applied to the first peltier or the second peltier can be switched.
  • the cooling module 101 includes three semiconductor cooling chips, and from the outer wall of the cleaning tank to the protective shell 104, a first semiconductor cooling chip, a second semiconductor cooling chip and a third semiconductor cooling chip are sequentially connected by heat conduction. , and a second temperature-measuring device 105 is set between the third peltier and the second peltier; assuming that the first preset value is the difference between the maximum heat-resistant temperature and the junction temperature difference of the third peltier, if the second The actual temperature measured by the temperature measuring device 105 (i.e. the actual temperature between the second body of the second semiconductor cooler and the first body of the third semiconductor cooler) is greater than or equal to the maximum heat-resistant temperature and the temperature of the third semiconductor cooler.
  • the size of the sheet is adjusted, when the actual temperature between the second sheet body of the second semiconductor cooling sheet and the first sheet body of the third semiconductor cooling sheet is less than the difference between the maximum heat-resistant temperature and the junction temperature difference of the third semiconductor cooling sheet ( That is, the first preset value), the polarity of the first peltier or the second peltier or the third peltier can be switched.
  • the first preset value is the difference between the maximum heat-resistant temperature and the junction temperature difference of the second peltier cooler
  • the second temperature measuring device 105 measures The actual temperature (that is, the actual temperature between the second body of the first semiconductor cooler and the first body of the second semiconductor cooler) is greater than or equal to the difference between the maximum heat-resistant temperature and the junction temperature difference of the second semiconductor cooler , and the target temperature is less than the difference between the maximum heat-resistant temperature and the junction temperature difference of the second semiconductor cooler, then it is necessary to adjust the power applied to the first semiconductor cooler and the second semiconductor cooler, when the first semiconductor cooler When the actual temperature between the second sheet and the first sheet of the second semiconductor cooler is less than the difference between the maximum heat-resistant temperature and the junction temperature difference (i.e. the first preset value) of the second semiconductor cooler, the first preset value can be adjusted.
  • the polarity of a semiconductor cooling chip or a second cooling chip is switched.
  • the polarity applied to the first peltier or the polarity of the second peltier can be directly switched, for example, if cooling In the sheet module, the polarity of the first piece of the first semiconductor refrigeration piece is positive, the polarity of the second piece is negative, and the polarity of the first piece of the second semiconductor refrigeration piece is negative, and the polarity of the second piece is negative.
  • the polarity of the body is positive, then directly switch the polarity of the second semiconductor refrigeration sheet, so that the polarity of the first sheet of the second semiconductor refrigeration sheet changes from negative to positive (that is, the cold surface becomes the hot surface) , and then by adjusting the power applied to the second semiconductor refrigeration chip, the temperature of the first sheet in the second semiconductor refrigeration sheet is increased, and then the temperature of the second sheet in the first semiconductor refrigeration sheet is increased by means of heat transfer, and then Through the junction temperature difference of the first semiconductor refrigerating sheet, the temperature of the first sheet body in the first semiconductor refrigerating sheet is increased, thereby heating the cleaning liquid in the cleaning tank.
  • the cooling chip module includes at least three semiconductor cooling chips, reference may be made to the above specific control process, which will not be repeated here.
  • the cooling chip module 101 including two semiconductor cooling chips as an example, of course cooling
  • the chip module 101 may also include at least three semiconductor cooling chips. For the application scenario where the target temperature of the cleaning liquid is less than a certain value, only two semiconductor cooling chips can be activated, that is, the two semiconductor cooling chips are controlled to be in the working state.
  • the at least two semiconductor cooling chips in the cooling chip module 101 include: a first semiconductor cooling chip and a second semiconductor cooling chip.
  • the first sheet body in the first semiconductor refrigerating sheet is arranged on the outer wall of the cleaning tank 20, the second sheet body in the first semiconductor refrigerating sheet is connected to the first sheet body in the first semiconductor refrigerating sheet by heat conduction, and the second sheet body in the first semiconductor refrigerating sheet is connected by heat conduction.
  • the first sheet in the semiconductor refrigerating sheet is thermally connected to the second sheet in the first semiconductor refrigerating sheet, and the second sheet in the second semiconductor refrigerating sheet is connected to the first sheet in the second semiconductor refrigerating sheet in thermal conduction. Close to the protective housing 104 .
  • a positive temperature can be applied to the first piece of the first semiconductor refrigeration piece.
  • Voltage apply a negative voltage on the second piece in the first semiconductor refrigerating piece, so that the junction temperature difference between the first piece and the second piece in the first semiconductor refrigerating piece will make the first semiconductor refrigerating piece
  • the first sheet of the second semiconductor refrigeration sheet becomes a hot surface to generate heat, thereby heating the cleaning liquid in the cleaning tank 20, and at the same time, a positive voltage can be applied to the first sheet of the second semiconductor refrigeration sheet, and a positive voltage can be applied to the second semiconductor refrigeration sheet.
  • a negative voltage is applied to the sheet to make the first sheet of the second semiconductor cooler turn into a hot surface to generate heat through the junction temperature difference between the first sheet and the second sheet in the second semiconductor cooler.
  • the second piece in the first peltier is thermally connected to the first piece in the second peltier, so the heat of the first piece in the second peltier can be transferred by way of heat transfer
  • Give the second sheet in the first semiconductor refrigerating sheet to increase the temperature of the second sheet in the first semiconductor refrigerating sheet that is, the temperature of the first sheet in the second semiconductor refrigerating sheet is raised to the first semiconductor refrigerating sheet the second sheet in the sheet is heated
  • the first semiconductor refrigeration sheet that is arranged on the outer wall of the cleaning tank 20
  • the first sheet can reach a higher temperature, and then the cleaning liquid in the cleaning tank 20 can reach a higher temperature, and at this time, the temperature of the first sheet of the first semiconductor refrigeration sheet is the first temperature of the second semiconductor refrigeration sheet
  • the temperature of the second sheet body of the second semiconductor refrigeration sheet near the protective shell 104 is much lower than that of the first sheet body of the first semiconductor refrigeration sheet.
  • temperature, and the temperature difference between the first body of the first semiconductor cooler and the second body of the second semiconductor cooler is the sum of the junction temperature difference of the first semiconductor cooler and the junction temperature difference of the second semiconductor cooler.
  • the junction temperature difference of the first semiconductor cooler is 70°
  • the junction temperature difference of the second semiconductor cooler is 60°
  • the first semiconductor cooler The temperature of the second sheet body of the sheet is 70°.
  • the temperature of the first sheet body in the second semiconductor refrigeration sheet needs to be controlled at about 70°C.
  • the temperature of the first sheet body in the second semiconductor refrigeration sheet is controlled at At 70°C, since the junction temperature difference of the second semiconductor refrigeration sheet is 60°, the temperature of the second body of the second semiconductor refrigeration sheet will be maintained at about 10°C, so even if the cleaning liquid in the cleaning tank 20 needs to be heated to a relatively High temperature (that is, the temperature of the first body of the first semiconductor refrigerating piece is higher), also can make the protective shell 104 of cleaning tank 20 maintain at a lower temperature by utilizing the sum of the junction temperature difference of the two semiconductor refrigerating pieces (That is, the temperature of the second body of the second peltier cooler is relatively low).
  • the cleaning in the cleaning tank 20 can also be performed.
  • the liquid is cooled (that is, the current temperature measured by the first temperature measuring device 103 is greater than the target temperature), that is, the temperature of the heated cleaning liquid is controlled.
  • the control module 102 can be used to control the power applied between the first sheet and the second sheet in the first semiconductor cooler, and to control the power applied between the first sheet and the second sheet in the second semiconductor cooler.
  • the magnitude of the power applied between the sheets thereby reducing the temperature of the first sheet in the first semiconductor refrigeration sheet and the temperature of the first sheet in the second semiconductor refrigeration sheet, and then by switching the first sheet of the second semiconductor refrigeration sheet
  • the polarity of the power supply between one piece and the second piece makes the voltage applied to the first piece of the second semiconductor refrigeration piece change from a positive voltage to a negative voltage, that is, the first piece of the second semiconductor refrigeration piece From the hot surface to the cold surface, the heat of the second sheet in the first semiconductor cooling sheet is transferred to the first sheet of the second semiconductor cooling sheet by means of heat transfer, that is, through the first sheet of the second semiconductor cooling sheet
  • One piece cools down the second piece in the first semiconductor refrigeration piece, and then pulls down the temperature of the first piece in the first semiconductor refrigeration piece through the junction temperature difference of the first semiconductor refrigeration piece, and then realizes cleaning tank 20
  • the effect of cooling the cleaning liquid in which, because the heat transfer method is used to control the temperature, there is no need to completely rely on power to control the temperature, so the purpose
  • the cleaning liquid in the cleaning tank 20 can be directly heated, but considering the specific heat capacity of the cleaning liquid during the heating process Changes will occur, and the influence of factors such as environmental changes will cause the temperature of the first sheet in the first semiconductor refrigeration sheet to often not be directly equal to the temperature of the cleaning liquid in the cleaning tank 20. Therefore, in order to ensure the accuracy of temperature control
  • the first temperature measuring device 103 can be used to measure the current temperature of the cleaning liquid in the cleaning tank 20 in real time, and transmit the current temperature to the control module 102, so that the control module 102 can control the temperature applied to the cleaning liquid according to the current temperature and the target temperature of the cleaning liquid.
  • the first polarity of the first piece in the peltier, the second polarity applied to the second piece of the peltier, and the power applied between the first piece and the second piece thereby realizing precise control of the temperature of the cleaning solution in the cleaning tank 20 .
  • junction temperature difference and the heat transfer principle of the second semi-conductor cooler can be used to cool down the second body of the first semi-conductor cooler to achieve the purpose of reducing power consumption.
  • the temperature of the sheet is too high, if the electrode polarity of the first sheet and the second sheet in the second semiconductor refrigeration sheet is directly switched, it may cause the problem that the protective shell 104 is subjected to an excessively high temperature and deforms.
  • control module 102 is also specifically used in the case where the actual temperature measured by the second temperature measuring device 105 is greater than or equal to the difference between the maximum heat-resistant temperature of the protective shell 104 and the junction temperature difference of the second semiconductor refrigeration chip , based on the actual temperature measured by the second temperature measuring device 105, the power applied to the first peltier and the power applied to the second peltier are adjusted.
  • the second temperature-measuring device 105 When the actual temperature measured by the second temperature-measuring device 105 is less than the difference between the maximum heat-resistant temperature of the protective shell 104 and the junction temperature difference of the second semiconductor refrigeration sheet, switch the first temperature applied to the second semiconductor refrigeration sheet.
  • the first polarity of the fins and the second polarity applied to the second fins such that the first fins of the second peltiers lower the second fins of the first peltiers by heat transfer temperature.
  • each cooling chip module 101 includes two semiconductor cooling chips, that is, the cooling chip module 101 includes a first semiconductor cooling chip and a second semiconductor cooling chip
  • the above-mentioned first preset value is a protection The difference between the maximum heat-resistant temperature of the shell 104 and the junction temperature difference of the second peltier; wherein, in a specific implementation, the refrigerating module 101 may only include the first peltier and the second peltier, It may also be that the refrigerating sheet module 101 includes not only the first peltier cooler and the second peltier cooler, but also the third peltier cooler, etc., but only two peltier coolers need to be activated according to actual needs; specifically, if the first The actual temperature between the first semiconductor refrigeration piece and the second semiconductor refrigeration piece measured by the second temperature measuring device 105 is greater than or equal to the difference between the maximum heat-resistant temperature of the protective shell 104 and the junction temperature difference of the second semiconductor refrigeration piece, Then it is necessary to adjust the power applied to the first pel
  • the second sheet in the second peltier shown in Figure 1 above changes from a cold surface to a hot surface
  • the second peltier The first piece in the refrigerated body changes from the hot surface to the cold surface, so that the temperature of the first piece in the second semiconductor refrigerated piece decreases, thereby reducing the temperature of the second piece in the first peltier refrigerated piece through heat transfer, and then
  • the temperature difference of the junction temperature of the first semiconductor refrigerating plate is used to lower the temperature of the first body in the first peltier refrigerating plate, so that the current temperature of the cleaning liquid reaches a second preset value, wherein the second preset value may not be fixed
  • the second preset value may be the current temperature value of the cleaning liquid after the time elapsed from the moment when the polarity of the electrode of the second semiconductor refrigeration sheet is switched reaches the preset time period, and at this time, the power can be adjusted;
  • the second preset value is greater than the target temperature, it is necessary to reduce the power applied between the first sheet and the second sheet in the first peltier, so that the current temperature of the cleaning liquid reaches the target temperature ; If the second preset value is less than the target temperature, it is necessary to increase the power applied between the first sheet and the second sheet in the first semiconductor refrigeration sheet, so that the current temperature of the cleaning liquid reaches the target temperature, that is, at If the current temperature of the cleaning liquid does not reach the target temperature after the heat transfer, the current temperature of the cleaning liquid can reach target temperature.
  • the temperature of the cleaning liquid can also be raised on the basis of the cooling.
  • the power applied between the first sheet and the second sheet of the second semiconductor refrigeration sheet can be adjusted to improve the second
  • the temperature of the first piece in the semiconductor refrigerating sheet is made higher than the temperature of the second sheet in the first peltier refrigerating sheet, so that the temperature of the second sheet in the first peltier cooling sheet can be increased by means of heat transfer, and then Through the junction temperature difference of the first semiconducting refrigerating sheet, the temperature of the first sheet in the first semiconducting refrigerating sheet is higher, thereby increasing the temperature of the cleaning liquid, wherein the temperature of the cleaning liquid in the cleaning tank 20 is increased by means of heat transfer, This can reduce the overall power consumption of the control device.
  • the temperature between the first semiconductor cooler and the second semiconductor cooler is lowered to allow switching of the second semiconductor cooler by adjusting the power applied to the first semiconductor cooler and the second semiconductor cooler.
  • the electrode polarity applied to the second semiconductive refrigeration sheet is switched, which can lower the temperature of the first piece in the first semiconductive refrigeration sheet by means of heat transfer, and then Realize the cooling of the cleaning liquid, and make the temperature of the protective shell 104 within the allowable temperature range.
  • the power applied between the first piece and the second piece of the first semiconductor refrigeration piece is adjusted, so that the current temperature of the cleaning liquid reaches the target temperature, that is, the electrode applied to the semiconductor refrigeration piece can be switched during heating
  • the polarity produces a cooling effect at the same time, and the cooling rate can be precisely controlled by adjusting the voltage (power regulation circuit), so that the temperature control accuracy is higher, and the heat transfer is used to improve energy efficiency.
  • the above-mentioned cooling chip module 101 may include two semiconductor cooling chips, or may include a plurality of semiconductor cooling chips.
  • Actual process requirements that is, combined with the maximum value of the target temperature of the cleaning liquid and the maximum heat-resistant temperature of the protective shell 104
  • the junction temperature difference of the refrigerating sheet reduces the temperature of the second piece in the semiconductor refrigerating sheet close to the protective shell 104, thereby ensuring that when the current temperature of the cleaning liquid reaches the maximum value of the target temperature, the protective shell 104 can still not exceed the maximum heat-resistant temperature ), wherein, the quantity (i.e.
  • the target quantity of the semiconductor refrigeration chips that need to be started is positively correlated with the maximum value of the target temperature, and negatively correlated with the maximum heat-resistant temperature of the protective shell 104, which can make the use scenario of the control device of the cleaning liquid temperature Diversification;
  • the above-mentioned control module 102 is specifically used to determine the target number of semiconductor refrigeration chips that need to be started based on the maximum value of the target temperature of the cleaning liquid and the maximum heat-resistant temperature of the protective shell 104, and will be close to the outer wall of the cleaning tank 20
  • the target number of semiconductor refrigerating sheets is determined as the target semiconductor refrigerating sheet (for example, the semiconductor refrigerating sheet 1, the semiconductor refrigerating sheet 2, and the semiconductor refrigerating sheet 3 in the refrigerating sheet module 101 are arranged successively from the outer wall of the cleaning tank 20 to the protective shell 104, If it is determined that the target quantity is 2, then control the semiconductor cooler 1 and the semiconductor cooler 2 to be in working condition), and then control the first temperature applied to the target semiconductor
  • the first sheet in the first semiconductor cooling sheet and the first sheet in the second semiconductor cooling sheet need to transfer heat through heat transfer, and when the heat transfer tends to be stable, the first The second sheet body in the peltier cooler needs to be kept at the same temperature as the first sheet body in the second peltier cooler so that the temperature control of the peltier cooler is more precise.
  • the second piece of the first peltier is bonded to the first piece of the second peltier with a heat-conducting adhesive with good thermal conductivity, so that the effect of heat transfer is better. , so that the temperature control of the semiconductor refrigeration chip is more accurate.
  • the temperature of the cleaning liquid in the cleaning tank 20 can be flexibly controlled by switching the polarity of the electrode applied to the semiconductor cooling chip and adjusting the power applied to the semiconductor cooling chip, so as to achieve the temperature rise of the cleaning liquid
  • the control module 102 includes : At least two power supply polarity switching circuits, at least two power regulating circuits and a central control circuit.
  • the first body of each semiconductor cooling chip is connected to the power supply through a power supply polarity switching circuit and a power adjustment circuit; the second body of each semiconductor cooling chip is connected to the power supply through another power polarity switching circuit and another power regulating circuit is connected with the power supply.
  • the above-mentioned central control circuit is respectively connected with the first temperature measuring device 103, at least two power supply polarity switching circuits and at least two power regulation circuits.
  • the above-mentioned central control circuit is used to control the first polarity applied to the first sheet and the second polarity applied to the second sheet through the power supply polarity switching circuit according to the current temperature and the target temperature of the cleaning liquid, and to The power regulating circuit controls the magnitude of power applied between the first sheet and the second sheet.
  • the refrigerating sheet module 101 includes a first peltier cooling chip and a second peltier cooling chip, correspondingly, the first peltier cooling chip and the second peltier cooling chip in the cooling chip module
  • the power supply polarity switching circuit is connected with different power regulation circuits. Specifically, as shown in FIG.
  • the above-mentioned central control circuit 1045 may be a circuit with functions of temperature detection, polarity switching control, and power regulation control.
  • the above-mentioned central control circuit 1045 is used to receive the current temperature of the cleaning solution measured by the first temperature measuring device 103 , and based on the difference between the current temperature of the cleaning liquid and the target temperature, the first power supply polarity switching circuit 1021 is controlled to switch between the first polarity applied to the first piece of the first semiconductor refrigeration piece and the first polarity applied to the second piece The second polarity of the body, and calculate the power size that the first power regulation circuit 1023 needs to adjust, and then adjust the power size applied to the first semiconductor cooling chip; and control the second power supply polarity switching circuit 1022 to switch to the first power supply The first polarity of the first sheet in the second semiconductor refrigeration sheet and the second polarity applied to the second sheet, and calculate the power required to be adjusted by the second power regulation circuit 1024, and then adjust the power applied to the second semiconductor refrigeration sheet.
  • the first semiconductor cooling chip, the first semiconductor cooling chip in the second cooling chip module 101, and the first semiconductor cooling chip in the third cooling chip module 101 are connected in parallel and connected to the first power supply polarity switching circuit 1021 and the first semiconductor cooling chip together.
  • Power regulation circuit 1023, and the first sheet and the second sheet in each first refrigerating sheet are connected in series; and the second refrigerating sheet in the first refrigerating sheet module 101 and the first
  • the two semiconductor refrigerating sheets and the second semiconductor refrigerating sheet in the third refrigerating sheet module 101 are connected in parallel to the second power supply polarity switching circuit 1022 and the second power regulating circuit 1024, and each of the second semiconductor refrigerating sheets
  • the first sheet and the second sheet are connected in series, and further, the second sheet in the first peltier in each refrigerating sheet module 101 is connected with the first sheet of the second peltier in each module.
  • the body is bonded together with a thermally conductive adhesive with good thermal conductivity.
  • each cooling chip module 101 a separate power supply polarity switching circuit and power regulation circuit are designed for each semiconductor cooling chip in the cooling chip module 101, which can be realized by the central controller.
  • the separate control of multiple semiconductor refrigeration chips in the cooling chip module 101 can flexibly control the temperature of the cleaning liquid in the cleaning tank 20, and can realize the flexible switching of heating and cooling functions, thereby making the temperature control more efficient. accurate.
  • the above-mentioned control module 102 also includes: a rectification and voltage stabilization circuit, and the rectification and stabilization circuit is arranged between the above-mentioned power regulation circuit and the power supply 107 .
  • the rectification and voltage stabilization circuit described above is used to convert the AC power provided by the power supply 107 to obtain the required DC power, and transmit the DC power to the power regulation circuit.
  • the above-mentioned power regulating circuit is used to adjust the magnitude of the direct current voltage output to the semiconductor refrigeration sheet, so as to adjust the magnitude of the power applied between the first sheet body and the second sheet body.
  • the above-mentioned rectification and voltage stabilization circuit may include: a transformer, a rectification circuit, and a voltage stabilization circuit;
  • the above-mentioned power supply 107 may be an AC power supply circuit; specifically, the above-mentioned rectification and voltage stabilization circuit converts the AC power provided by the power supply 107 into heating Clean the direct current required by the cleaning liquid in the tank 20 (i.e. the direct current required by the semiconductor refrigerating sheet), and transmit the direct current to the power regulating circuit, so that the power regulating circuit can adjust the power to the semiconductor refrigerating sheet under the control of the central control circuit 1045. The size of the output DC voltage, and then adjust the power applied between the first sheet and the second sheet in the semiconductor refrigeration sheet.
  • the AC power provided by the power supply 107 can be converted into the DC power required by the semiconductor refrigeration chip, and the power regulation circuit can regulate The magnitude of the direct current is used to adjust the power applied between the first sheet and the second sheet in the semiconductive refrigerating sheet, thereby realizing precise control of the temperature of the semiconducting refrigerating sheet.
  • the second temperature measuring device can be directly connected to the central control circuit 1045 in the control device, in order to further improve the first temperature measuring device 103 and the second temperature measuring device.
  • the central control circuit 1045 may include: a first control circuit 10451, and a second control circuit 10452, wherein the first temperature measuring device 103 is connected to the first control circuit 10451, and the first semiconductor cooling chip is connected to the first power supply polarity switching circuit 1021 and the first power regulation circuit 1023.
  • a control circuit 10451 is connected; the second temperature measuring device 105 is connected to the second control circuit 10452, and the second semiconductor refrigeration chip is connected to the second control circuit 10452 through the second power supply polarity switching circuit 1022 and the second power regulation circuit 1024 Connection; one end of the rectifying and stabilizing circuit 106 is connected with the first power regulating circuit 1023 and the second power regulating circuit 1024 , and the other end is connected with the power supply 107 .
  • the above-mentioned first control circuit 10451 is used to receive the current temperature of the cleaning liquid measured by the first temperature measuring device 103, and control the first power supply polarity switching circuit based on the difference between the current temperature of the cleaning liquid and the target temperature 1021 switches the first polarity applied to the first sheet in the first semiconductor refrigeration sheet and the second polarity applied to the second sheet, and calculates the power required to be adjusted by the first power adjustment circuit 1023, and then adjusts The magnitude of the power applied to the first peltier; correspondingly, the above-mentioned second control circuit 10452 is used to receive the actual temperature between the first peltier and the second peltier measured by the second temperature measuring device 105, and based on The actual temperature and the maximum heat-resistant temperature of the protective shell control the second power supply polarity switching circuit 1022 to switch the first polarity applied to the first piece in the second semiconductor refrigeration piece and the second pole applied to the second piece characteristics, and calculate the power required to be adjusted by the second power regulation circuit 1024, and then
  • the polarity of the electrodes applied to the first semiconductor refrigeration sheet can be switched to change the first body of the first semiconductor refrigeration sheet from a hot surface to a cold surface, and then The temperature of the cleaning liquid is directly lowered.
  • the second body of the first semiconductor refrigeration chip changes from a cold surface to a hot surface, if the temperature of the first body of the first semiconductor refrigeration sheet is relatively high before the polarity is switched, the After the polarity is switched, the temperature of the second body of the first semiconductor cooler will also be higher, and then the temperature of the first body in the second semiconductor cooler will be raised by means of heat transfer, thereby raising the temperature of the second semiconductor cooler.
  • the temperature of the second chip in the second peltier cooler will cause the problem that the temperature of the protective shell 104 is too high. Therefore, after the polarity is switched, the temperature of the second chip in the second semiconductor refrigeration chip cannot be higher than the maximum heat resistance of the protective shell 104. temperature.
  • the polarity applied to the peltier Before switching the polarity, it can be judged whether to switch the polarity applied to the peltier based on the difference between the above-mentioned actual temperature and the maximum heat-resistant temperature of the protective shell 104 and the junction temperature difference of the peltier close to the peltier.
  • the first polarity of the first sheet and the second polarity applied to the second sheet are aimed at switching the polarities of the electrodes of the first sheet and the second sheet in the first semiconductor refrigeration sheet to cool down the cleaning liquid.
  • the actual temperature between the first peltier and the second peltier is smaller than the difference between the maximum heat-resistant temperature of the protective shell 104 and the junction temperature difference of the peltier close to the protective shell difference between.
  • the cooling process of the cleaning liquid in the cleaning tank 20 it is also possible to switch the polarity of the electrodes applied to the second semiconductor refrigeration sheet, so that the first piece of the second semiconductor refrigeration sheet becomes a cold surface, and through the heat
  • the transfer method reduces the temperature of the second piece in the first semiconductor refrigerating piece, so as to lower the temperature of the first piece in the first semiconductor refrigerating piece through the junction temperature difference of the first semiconductor refrigerating piece, and then cool down the cleaning liquid.
  • the temperature of the first sheet in the second semiconductor refrigerating sheet i.e. the actual temperature measured by the second temperature measuring device 105) is at least less than the maximum heat-resistant temperature of the protective shell 104 and the junction temperature difference of the peltier cooling sheet close to the protective shell. difference between.
  • the control device can The actual temperature measured by the temperature device 105 judges whether to switch the first polarity applied to the first sheet in the semiconductive cooling sheet and the second polarity applied to the second sheet, so that when the polarity is switched by switching the polarity When the cleaning liquid cools down, it will not affect the protective shell 104 of the cleaning tank 20 due to the temperature rise of the semiconductor refrigeration chip close to the protective shell 104, and can also make the temperature control more accurate.
  • Adopting the technical solution of the embodiment of the present application by setting the cooling module on the outer wall of the cleaning tank, and then controlling the first piece applied to the semiconductor cooling chip through the control module based on the target temperature of the current temperature of the cleaning liquid in the cleaning tank and the electrode polarity of the second sheet, as well as the power applied between the first sheet and the second sheet, to achieve flexible control of the temperature of the cleaning liquid in the cleaning tank, so that not only can the cleaning liquid
  • the heating effect of heating can also reduce the cleaning liquid from high temperature to low temperature, so as to achieve the flexible switching of heating and cooling functions, which can make the temperature control more accurate; and because the semiconductor refrigeration chip is in the working state , there will be a certain temperature difference between the first sheet and the second sheet, which can have the effect of cooling the protective shell of the cleaning tank, so as to prevent the heating temperature of the cleaning liquid in the cleaning tank from being too high.
  • the embodiment of the present application also provides a wafer cleaning equipment.
  • the above-mentioned wafer cleaning equipment includes: a cleaning tank 20 and a control device 10 for the temperature of the cleaning liquid in the above-mentioned wafer cleaning equipment.
  • the cooling chip module 101 in the control device 102 is arranged on the outer wall of the cleaning tank 20, at least two semiconductor cooling chips are sequentially arranged between the outer wall of the cleaning tank 20 and the protective shell 104, and the first temperature measuring device 103 is arranged on the outer wall of the cleaning tank 20.
  • Cleaning tank 20 is arranged on the outer wall of the cleaning tank 20.
  • a cooling chip module is set on the outer wall of the cleaning tank, and the control module controls the first chip applied to the semiconductor cooling chip based on the target temperature of the current temperature of the cleaning liquid in the cleaning tank.
  • the heating effect of the liquid can also reduce the cleaning liquid from high temperature to low temperature, so as to achieve the flexible switching of heating and cooling functions, which can make the temperature control more accurate; and because the semiconductor refrigeration chip is in the working state
  • there will be a certain temperature difference between the first sheet and the second sheet which can play a role in cooling the protective shell of the cleaning tank, so as to prevent the cleaning liquid from being damaged due to the excessive heating temperature of the cleaning liquid in the cleaning tank. Problems that cause thermal deformation of the protective enclosure.
  • control device 10 of the temperature of the cleaning liquid in the wafer cleaning equipment is based on the control device shown in Figures 1 to 6 above, so the specific implementation of this embodiment can refer to the control of the temperature of the cleaning liquid in the aforementioned wafer cleaning equipment The specific implementation of the device will not be described repeatedly.
  • connection can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本申请实施例公开了一种晶圆清洗设备中清洗液温度的控制装置及晶圆清洗设备,用以解决现有技术中控制清洗液温度时温度控制不够灵活、精确,且容易因清洗液的加热温度过高而导致防护外壳受热形变的问题。该装置包括:制冷片模组、控制模块和第一测温器件;制冷片模组设置在清洗槽的外壁上,通过控制模块基于清洗槽内清洗液的当前温度和目标温度,灵活地控制制冷片模组,从而实现升温加热和降温冷却功能的灵活切换,进而灵活地控制清洗液的温度,并且由于制冷片模组中的半导体制冷片处于工作状态时,第一片体与第二片体之间会产生一定温差,能够避免因清洗液的加热温度过高而导致清洗槽的防护外壳受热变形,起到对防护外壳进行降温保护的效果。

Description

晶圆清洗设备中清洗液温度的控制装置及晶圆清洗设备 技术领域
本申请涉及半导体技术领域,尤其涉及一种晶圆清洗设备中清洗液温度的控制装置及晶圆清洗设备。
背景技术
晶圆清洗设备主要分为单片半导体清洗设备和用于批量清洗的槽式半导体清洗设备,其中,槽式半导体清洗设备由于通过率高,产能大而得以广泛应用,槽式半导体清洗设备在清洗晶圆的过程中,根据所需去除的表面残留物质的不同,需要在清洗槽内配置不同的化学药剂,为了达到最佳的清洗效果,往往药剂浓度以及药剂的温度也需要根据工艺的需求进行控制。
相关技术中,在对清洗槽内化学药剂的温度进行控制时,需要在清洗槽外表面粘贴加热体或附带辐射加热功能的加热体而构成带有加热功能的清洗槽;但是,该方案不好把控加热体的温度,且容易因加热体温度过高,而导致清洗液的加热温度过高,进而导致清洗槽外侧的防护外壳受热形变的问题。
发明内容
本申请实施例的目的是提供一种晶圆清洗设备中清洗液温度的控制装置及晶圆清洗设备,用以解决现有技术中控制晶圆清洗设备中的清洗液温度时温度控制不够灵活、精确,且容易因清洗液的加热温度过高而导致清洗槽外侧的防护外壳受热形变的问题。
为解决上述技术问题,本申请实施例是这样实现的:
第一方面,本申请实施例提供一种晶圆清洗设备中清洗液温度的控制装 置,所述控制装置包括:至少一个制冷片模组、控制模块和第一测温器件;其中,至少一个所述制冷片模组贴设在所述晶圆清洗设备的清洗槽的外壁上,每个所述制冷片模组均包括至少两个依次导热连接的半导体制冷片,每个所述半导体制冷片均包括第一片体和第二片体;所述第一片体与所述第二片体分别与所述控制模块连接;所述第一测温器件,用于测量清洗槽内的清洗液的当前温度,并将所述当前温度传输至所述控制模块;所述控制模块,用于根据所述当前温度和所述清洗液的目标温度,控制施加至所述半导体制冷片中的所述第一片体的第一极性、施加至所述半导体制冷片中的所述第二片体的第二极性、以及在所述第一片体与所述第二片体之间所施加的功率大小。
第二方面,本申请实施例提供一种晶圆清洗设备,所述晶圆清洗设备包括:清洗槽和如第一方面所述的晶圆清洗设备中清洗液温度的控制装置。
采用本申请实施例的技术方案,通过在清洗槽的外壁上设置制冷片模组,进而通过控制模块基于清洗槽内清洗液的当前温度的目标温度,控制施加至半导体制冷片的第一片体和第二片体的电极极性、以及在第一片体和第二片体之间所施加的功率大小,来实现灵活地控制清洗槽内的清洗液的温度,这样不仅能够达到针对清洗液的升温加热的效果,还能够使得清洗液由高温降低至低温的效果,从而达到升温加热和降温冷却功能的灵活切换,可以使温度控制更加精确;并且由于在半导体制冷片处于工作状态的情况下,第一片体与第二片体之间会产生一定温差,这样能够起到对清洗槽的防护外壳进行降温保护的效果,从而达到防止因清洗槽内的清洗液的加热温度过高而导致防护外壳受热形变的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员 来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本申请一实施例的晶圆清洗设备中清洗液温度的控制装置的第一种具体结构示意图。
图2是根据本申请一实施例的晶圆清洗设备中清洗液温度的控制装置的第二种具体结构示意图。
图3是根据本申请一实施例的晶圆清洗设备中清洗液温度的控制装置的第三种具体结构示意图。
图4是根据本申请一实施例的晶圆清洗设备中清洗液温度的控制装置的第四种具体结构示意图。
图5是根据本申请一实施例的晶圆清洗设备中清洗液温度的控制装置的第五种具体结构示意图。
图6是根据本申请一实施例的晶圆清洗设备中清洗液温度的控制装置的第六种具体结构示意图。
图7是根据本申请一实施例的一种晶圆清洗设备的结构示意图。
具体实施方式
本申请实施例提供一种晶圆清洗设备中清洗液温度的控制装置及晶圆清洗设备,用以解决现有技术中控制晶圆清洗设备中的清洗液温度时温度控制不够灵活、精确,且容易因清洗液的加热温度过高而导致清洗槽外侧的防护外壳受热形变的问题。
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
图1是根据本申请一实施例的一种晶圆清洗设备中清洗液温度的控制装置的具体结构示意图,如图1所示,该控制装置包括:至少一个制冷片模组101、控制模块102和第一测温器件103;其中,至少一个制冷片模组101贴设在晶圆清洗设备的清洗槽20的外壁上,每个制冷片模组101均包括至少两个依次导热连接的半导体制冷片,每个半导体制冷片均包括第一片体和第二片体;第一片体与第二片体与控制模块102连接;其中,为了简化制冷片模组101的具体结构,在图1中仅示意了制冷片模组101包括两个半导体制冷片(即第一半导体制冷片和第二半导体制冷片)的情况,并不构成对制冷片模组101的具体结构的限制,针对制冷片模组101包括三个半导体制冷片的情况,依次在第二半导体制冷片中第二片体的外侧设置第三半导体制冷片即可,依次类推,在此不再赘述。
上述第一测温器件103,用于测量清洗槽20内的清洗液的当前温度,并将当前温度传输至控制模块102。
上述控制模块102,用于根据晶圆清洗设备中清洗液的当前温度和目标温度,控制施加至半导体制冷片中的第一片体的第一极性、施加至半导体制冷片中的第二片体的第二极性、以及在第一片体与第二片体之间所施加的功率大小。
其中,上述每个半导体制冷片均可以是由两片不同的半导体联结成的热电偶对,其中一片半导体(即第一片体或第二片体)为半导体制冷片的正极,另一片半导体(即第二片体或第一片体)为半导体制冷片的负极,在半导体制冷片的正极和负极之间施加电压时,会在两片半导体之间会产生一定结温差,一般来说,该结温差可以是60℃到70℃左右,进而使其中一片半导体变为热面,另一片半导体变为冷面,通常情况下,在半导体制冷片的正极施加正电压时,正极对应的半导体为半导体制冷片的热面(即在半导体制冷片的正极施加正电压,会使正极对应的半导体发热),在半导体制冷片的负极施 加负电压时,负极对应的半导体为半导体制冷片的冷面(即在半导体制冷片的负极施加负电压,会使负极对应的半导体制冷);当在半导体制冷片的正极施加的电压由正电压变为负电压时,会使正极对应的半导体由热面变为冷面(即使正极对应的半导体由发热变为制冷),当在半导体制冷片的负极施加的电压由负电压变为正电压时,会使负极对应的半导体由冷面变为热面(即负极对应的半导体由制冷变为发热),即当施加在半导体制冷片中两片半导体之间的电压极性切换时,半导体制冷片的热面会变为冷面,半导体制冷片的冷面会变为热面。
在具体实施时,假设每个半导体制冷片中包含的两片不同的半导体分别为第一片体和第二片体,其中,第一片体对应半导体制冷片的正极,第二片体对应半导体制冷片的负极;在半导体制冷片的第一片体上施加正电压时,可以使第一片体变为热面发热,在半导体制冷片的第二片体上施加负电压时,可以使第二片体变为冷面制冷;进一步的,可以通过控制模块102切换施加在半导体制冷片中第一片体与第二片体之间的电源极性,即通过控制模块102控制施加至半导体制冷片中的第一片体的第一极性、以及施加至半导体制冷片中的第二片体的第二极性,当施加在半导体制冷片的第一片体与第二片体之间的电源极性切换时,控制施加至半导体制冷片中的第一片体的第一极性由正电压变为负电压(即在半导体制冷片的第一片体上施加的电压由正电压变为负电压)时,可以使第一片体由热面变为冷面,从而实现对清洗槽20中的清洗液进行降温的效果,控制施加至半导体制冷片中的第二片体的第二极性由负电压变为正电压(即在半导体制冷片的第二片体上施加的电压由负电压变为正电压)时,可以使第二片体由冷面变为热面,从而实现对清洗槽20中的清洗液进行升温的效果。
采用本申请实施例的技术方案,通过在清洗槽20的外壁上设置制冷片模组101,进而通过控制模块102基于清洗槽20内清洗液的当前温度的目标 温度,控制施加至半导体制冷片的第一片体和第二片体的电极极性、以及在第一片体和第二片体之间所施加的功率大小,来实现灵活地控制清洗槽20内的清洗液的温度,这样不仅能够达到针对清洗液的升温加热的效果,还能够使得清洗液由高温降低至低温的效果,从而达到升温加热和降温冷却功能的灵活切换,可以使温度控制更加精确;并且由于在半导体制冷片处于工作状态的情况下,第一片体与第二片体之间会产生一定温差,这样能够起到对清洗槽的防护外壳进行降温保护的效果,从而达到防止因清洗槽内的清洗液的加热温度过高而导致防护外壳受热形变的问题。
进一步的,考虑到晶圆清洗设备的清洗槽20的外壁面积可能比较大,而受到每个制冷片模组101的尺寸限制,可能需要在清洗槽20的外壁上设置多个制冷片模组101,以布满清洗槽20的整个外壁,基于此,多个制冷片模组101呈阵列状设置于晶圆清洗设备的清洗槽20的外壁上。
具体的,制冷片模组101的数量为多个;各制冷片模组101设置于清洗槽20的不同外壁区域;其中,多个制冷片模组101中的各第一半导体制冷片并联后与控制模块102连接,多个制冷片模组101中的各第二半导体制冷片并联后与控制模块102连接。
具体的,每个制冷片模组101均可以视为一个整体,仍以制冷片模组101包括两个半导体制冷片为例,例如,第一半导体制冷片和第二半导体制冷片共同构成一个制冷片模组101,其中,第一半导体制冷片和第二半导体制冷片可以是相同功率的半导体制冷片,也可以是不同功率的半导体制冷片,可以根据实际需求灵活设置;进一步的,可以在清洗槽20的外壁上以阵列分布的方式布满多个制冷片模组101,其中,制冷片模组101中各半导体制冷片中的第一片体和第二片体串联后并联在各自的控制模块102中,例如,假设有三个制冷片模组101,每个制冷片模组101中有两个半导体制冷片,如图2所示,第一制冷片模组101中第一半导体制冷片、第二制冷片模组101中第 一半导体制冷片、以及第三制冷片模组101中第一半导体制冷片并联后一同接入控制模块102,且每个第一半导体制冷片中的第一片体和第二片体串联;且第一制冷片模组101中第二半导体制冷片、第二制冷片模组101中第二半导体制冷片、以及第三制冷片模组101中第二半导体制冷片并联后一同接入控制模块102,且每个第二半导体制冷片中的第一片体和第二片体串联,进一步的,每个制冷片模组101中的第一半导体制冷片中的第二片体均与各自模组中的第二半导体制冷片的第一片体用导热性良好的导热粘接剂粘接在一起。其中,为了简化制冷片模组101的具体结构,在图2中仅示意了每个制冷片模组101均包括两个半导体制冷片(即第一半导体制冷片和第二半导体制冷片)的情况,并不构成对制冷片模组101的具体结构的限制,针对每个制冷片模组101均包括至少三个半导体制冷片的情况,参照上述图2中每个制冷片模组101包括两个半导体制冷片的具体结构,多个制冷片模组101中的各第三半导体制冷片并联后与控制模块102连接,依次类推,在此不再赘述。
在具体实施时,可以根据预设升温速率、清洗槽20内的清洗液升温至预设最高温度(即目标温度的最大值)时所需的功率,以及实验预估功率损失,计算得到加热清洗槽20内的清洗液所需的总功率,并按照该总功率,设计一定数量及规格(例如,制冷片模组101的封装尺寸,制冷片模组101的功率、以及制冷片模组101的电压)的制冷片模组101;也可以设置制冷片模组101中的半导体制冷片的实际数量大于理论上所需的半导体制冷片的目标数量,这样后续能够根据实际工艺需求,灵活地控制当前需要启动的半导体制冷片的数量,从而能够使得清洗液温度的控制装置的使用场景多样化,以便后续能够通过增加启动半导体制冷片的数量,来满足将清洗液的温度加热到更高地目标温度的需求。
本申请提供的实施例中,通过在清洗槽20的外壁上呈阵列状设置多个 制冷片模组101,可以实现在清洗槽20的外壁上更大区域部署制冷片模组101,进而增加清洗槽20的外壁上的加热区域的面积,并且将多个制冷片模组101中同位置的半导体制冷片并联后接入控制模块102,以使控制模块102可以对多个制冷片模组101单独控制,从而实现对多个制冷片模组101进行更加灵活地控制,可以根据实际需求决定控制清洗槽20的外壁上哪些区域的制冷片模组101的开启或关闭,从而提高清洗槽20的外壁上的加热区域的控制灵活度。
进一步的,考虑到为了准确地检测制冷片模组101中相邻的两个半导体制冷片之间的实际温度,例如,检测第一半导体制冷片中第二片体与第二半导体制冷片中第一片体之间的实际温度,从而达到对施加至半导体制冷片的功率大小、以及施加至半导体制冷片中第一片体和第二片体的电极极性的精准控制,因此,可以在两个半导体制冷片之间增设第二测温器件,以使控制模块102基于第二测温器件所测得的实际温度确定如何控制施加至半导体制冷片中第一片体和第二片体的电极极性、以及在第一片体与第二片体之间所施加的功率大小,这样不仅能够达到更精确地控制清洗液的温度,还能够避免因半导体制冷片中的第一片体和第二片体的电极极性切换,导致靠近防护外壳104半导体制冷片的第二片体的温度过高,从而导致清洗槽的防护外壳受热变形的问题,基于此,如图3所示,上述清洗槽20外侧还设置有防护外壳104,至少两个半导体制冷片之间还设置有第二测温器件105。
上述第二测温器件105,用于测量靠近防护外壳104的半导体制冷片的第一片体的实际温度,并将测量得到的实际温度传输至控制模块102。
上述控制模块102,还用于基于上述实际温度和防护外壳104的最大耐热温度,判断是否切换施加至半导体制冷片中的第一片体的第一极性和施加至半导体制冷片中的第二片体的第二极性,并在判断结果为是的情况下,切换该第一片体的第一极性和第二片体的第二极性,或者在判断结果为否的情 况下,调节在第一片体与第二片体之间所施加的功率大小。
具体的,上述第二测温器件105可以设置于任意相邻的两个半导体制冷片之间,通过第二测温器件105检测半导体制冷片中第一片体或第二片体的实际温度,以使控制模块102基于该实际温度,精准地控制施加至半导体制冷片中第一片体和第二片体的电极极性、以及在第一片体与第二片体之间所施加的功率大小。在具体实施时,可以在临近防护外壳104的相邻的两个半导体制冷片之间设置第二测温器件105,例如,若制冷片模组包括两个半导体制冷片,则在第一半导体制冷片和第二半导体制冷片之间设置第二测温器件105,若制冷片模组包括三个半导体制冷片,且自清洗槽的外壁到防护外壳104设置有依次导热连接的第一半导体制冷片、第二半导体制冷片和第三半导体制冷片,则至少需要在第三半导体制冷片和第二半导体制冷片之间设置第二测温器件105;具体的,针对第二测温器件105设置于临近防护外壳104的相邻的两个半导体制冷片之间的情况,由于每个半导体制冷片的结温差是已知的,因此,基于第二测温器件105测得的实际温度和临近防护外壳104的半导体制冷片的结温差,可以确定临近防护外壳104的半导体制冷片中的第二片体的温度是否超过防护外壳104的最大耐热温度,从而使得防护外壳104能够得到更好地保护。
进一步的,考虑到在半导体制冷片的温度过高时,如果直接切换半导体制冷片中第一片体和第二片体的电极极性,则可能导致防护外壳104的温度过高,因此,可以先通过调节至少一个半导体制冷片的功率大小来达到降温的效果,在临近防护外壳104的半导体制冷片中第一片体的温度降到一定温度的情况下,再切换施加至至少一个半导体制冷片中第一片体和第二片体的电极极性,从而确保防护外壳104在允许温度范围之内,即确保不超过防护外壳104的最大耐热温度,基于此,上述控制模块102,还具体用于在第二测温器件105测量得到的实际温度大于或等于第一预设值时,基于该实际温 度调节第一片体与第二片体之间所施加的功率大小,直到该实际温度小于上述第一预设值,并在该实际温度小于第一预设值时,确定切换第一极性和第二极性,即在第二测温器件105测量得到的实际温度小于第一预设值时,此时可以切换施加至半导体制冷片中的第一片体的第一极性和施加至第二片体的第二极性;
其中,上述第一预设值依据最大耐热温度与靠近防护外壳104的半导体制冷片的结温差之间的差值设置,即,上述第一预设值与防护外壳104的最大耐热温度和靠近防护外壳104的半导体制冷片的结温差之间的差值有关。其中,半导体制冷片的结温差可能与施加至半导体制冷片的功率大小有关,因此,半导体制冷片的结温差可以是基于当前施加至半导体制冷片的功率大小确定的,也就是说,第一预设值可以是动态变化的;另外,考虑到在实际使用过程中,可能仅启动部分半导体制冷片,因此,决定第一预设值的半导体制冷片的结温差均为处于工作状态的半导体制冷片的结温差。
具体的,以上述图1中示意出的一个制冷片模组101包括第一半导体制冷片和第二半导体制冷片为例,对本申请实施例提供的晶圆清洗设备中清洗液温度的控制装置进行说明,首先,针对第一测温器件103测得的当前温度为室温的情况,需要对清洗槽20内的清洗液进行加热,即当前温度小于目标温度,且加热状态为初始加热状态,在具体实施时,通过控制模块102控制第一半导体制冷片中第一片体的第一极性为正,以及控制第一半导体制冷片中第二片体的第二极性为负;控制第二半导体制冷片中第一片体的第一极性为正,以及控制第二半导体制冷片中第二片体的第二极性为负,以及通过控制模块102调节施加在第一半导体制冷片上的功率大小和施加在第二半导体制冷片上的功率大小,其中,若第二半导体制冷片中第一片体的温度大于第一半导体制冷片中第二片体的温度,则可以通过热传递的方式,提升第一半导体制冷片中第二片体的温度,进而通过第一半导体制冷片的结温差使第一 半导体制冷片中第一片体的温度更高,进而使清洗液的加热温度更高。
在具体实施时,可以根据实际情况决定启动哪个半导体制冷片,例如,若目标温度小于室温与第一半导体制冷片结温差之和,可以只启动第一半导体制冷片;又如,若目标温度大于室温与第一半导体制冷片结温差之和,可以同时启动第一半导体制冷片和第二半导体制冷片。
进一步的,针对需要对加热后的清洗液的温度进行降温的情况,即第一测温器件103测得的当前温度大于目标温度,可以通过切换第一半导体制冷片或第二半导体制冷片中第一片体和第二片体的电极极性,利用切换后的半导体制冷片的冷面温度,对清洗液进行快速降温,具体的,可以根据实际情况,通过控制模块102控制第一半导体制冷片中第一片体和第二片体的电极极性的切换,或通过控制模块102控制第二半导体制冷片中第一片体和第二片体的电极极性的切换;同时,考虑到在清洗液的当前温度过高时,会使第一半导体制冷片和第二半导体制冷片之间的温度(即第二测温器件105测得的实际温度)也过高,因此,需要先通过控制模块102调节施加至第一半导体制冷片和第二半导体制冷片的功率大小,进而达到对第一半导体制冷片和第二半导体制冷片进行降温的效果,使第一半导体制冷片的第二片体与第二半导体制冷片的第一片体之间的温度(即第二测温器件105测得的实际温度)小于第一预设值时,才能对施加至第一半导体制冷片或第二半导体制冷片的电极极性进行切换,即基于第二测温器件105测得的实际温度调节第一片体与第二片体之间所施加的功率大小,直到实际温度小于第一预设值时,才能对施加至第一半导体制冷片或第二半导体制冷片的电极极性进行切换。
例如,针对制冷片模组101包括三个半导体制冷片的情况,且自清洗槽的外壁到防护外壳104设置有依次导热连接的第一半导体制冷片、第二半导体制冷片和第三半导体制冷片,且在第三半导体制冷片和第二半导体制冷片之间设置第二测温器件105;假设第一预设值为最大耐热温度和第三半导体 制冷片的结温差之差,若第二测温器件105测得的实际温度(即第二半导体制冷片的第二片体和第三半导体制冷片的第一片体之间的实际温度)大于或等于最大耐热温度和第三半导体制冷片的结温差之差,且目标温度小于最大耐热温度和第三半导体制冷片的结温差之差,则需要对施加至第一半导体制冷片、第二半导体制冷片的功率和第三半导体制冷片的大小进行调节,当第二半导体制冷片的第二片体和第三半导体制冷片的第一片体之间的实际温度小于最大耐热温度和第三半导体制冷片的结温差之差(即第一预设值)时,才可以对第一半导体制冷片或第二半导体制冷片或第三制冷片的极性进行切换。
又如,针对制冷片模组101包括两个半导体制冷片的情况,假设第一预设值为最大耐热温度和第二半导体制冷片的结温差之差,若第二测温器件105测得的实际温度(即第一半导体制冷片的第二片体和第二半导体制冷片的第一片体之间的实际温度)大于或等于最大耐热温度和第二半导体制冷片的结温差之差,且目标温度小于最大耐热温度和第二半导体制冷片的结温差之差,则需要对施加至第一半导体制冷片和第二半导体制冷片的功率大小进行调节,当第一半导体制冷片的第二片体和第二半导体制冷片的第一片体之间的实际温度小于最大耐热温度和第二半导体制冷片的结温差之差(即第一预设值)时,才可以对第一半导体制冷片或第二制冷片的极性进行切换。
进一步的,针对需要对降温后的清洗液的温度再次进行加热的情况,可以直接对施加至第一半导体制冷片的极性或第二半导体制冷片的极性进行切换,例如,若此时制冷片模组中第一半导体制冷片的第一片体的极性为正、第二片体的极性为负,且第二半导体制冷片的第一片体的极性为负、第二片体的极性为正,则直接对第二半导体制冷片的极性进行切换,以使第二半导体制冷片的第一片体的极性由负变为正(即冷面变为热面),进而通过调节施加至第二半导体制冷片的功率大小,提升第二半导体制冷片中第一片体的 温度,进而通过热传递的方式提升第一半导体制冷片中第二片体的温度,进而通过第一半导体制冷片的结温差,提升第一半导体制冷片中第一片体的温度,进而加热清洗槽内的清洗液。
需要说明的是,针对制冷片模组包括至少三个半导体制冷片的情况,可以参照上述具体控制过程,在此不再赘述。
其中,考虑到控制清洗槽20内的清洗液温度时主要是对晶圆的清洗液进行升温或者降温的控制,且在对清洗液加热时,需要确保清洗槽20的防护外壳104不会因为加热温度太高而导致软化变形,通常情况下,启动两个半导体制冷片即可满足晶圆的清洗液的温度调节需求,因此,以制冷片模组101包括两个半导体制冷片为例,当然制冷片模组101中也可以包括至少三个半导体制冷片,针对清洗液的目标温度小于一定数值的应用场景,可以仅启动两个半导体制冷片,即控制两个半导体制冷片处于工作状态,具体的,上述制冷片模组101中至少两个半导体制冷片包括:第一半导体制冷片和第二半导体制冷片。
其中,第一半导体制冷片中的第一片体设置于清洗槽20的外壁上,第一半导体制冷片中的第二片体与第一半导体制冷片中的第一片体导热连接,第二半导体制冷片中的第一片体与第一半导体制冷片中的第二片体导热连接,第二半导体制冷片中的第二片体与第二半导体制冷片中的第一片体导热连接且靠近防护外壳104。
具体的,在对清洗槽20内的清洗液进行加热控制(即第一测温器件103测得的当前温度小于目标温度)时,可以在第一半导体制冷片中的第一片体上施加正电压、在第一半导体制冷片中的第二片体上施加负电压,以通过第一半导体制冷片中第一片体与第二片体之间产生的结温差,使第一半导体制冷片中的第一片体变为热面发热,从而加热清洗槽20内的清洗液,同时可以在第二半导体制冷片中的第一片体上施加正电压、在第二半导体制冷片中的 第二片体上施加负电压,以通过第二半导体制冷片中第一片体与第二片体之间产生的结温差,使第二半导体制冷片中的第一片体变为热面发热,由于第一半导体制冷片中的第二片体与第二半导体制冷片中的第一片体是导热连接的,因此,第二半导体制冷片中的第一片体的热量可以通过热传递的方式传递给第一半导体制冷片中的第二片体,以提升第一半导体制冷片中的第二片体的温度(即通过提升第二半导体制冷片中的第一片体的温度对第一半导体制冷片中的第二片体进行加热),进而通过第一半导体制冷片的第一片体与第二片体之间产生的结温差,使设置于清洗槽20的外壁上第一半导体制冷片的第一片体可以达到更高的温度,进而使清洗槽20内的清洗液达到更高的温度,且此时第一半导体制冷片的第一片体的温度为第二半导体制冷片的第一片体的温度和第一半导体制冷片结温差之和,且第一半导体制冷片的第一片体的温度最高可达到第二半导体制冷片中第二片体的温度与第一半导体制冷片的最大结温差之和。
同时,由于此时第二半导体制冷片的第二片体为冷面,因此靠近防护外壳104的第二半导体制冷片的第二片体的温度远小于第一半导体制冷片的第一片体的温度,且第一半导体制冷片的第一片体与第二半导体制冷片的第二片体之间的温度差值为第一半导体制冷片的结温差和第二半导体制冷片的结温差之和,例如,假设第一半导体制冷片的结温差为70°,第二半导体制冷片的结温差为60°,当第一半导体制冷片的第一片体的温度达到140℃时,第一半导体制冷片的第二片体的温度为70°,此时需要将第二半导体制冷片中第一片体的温度控制在70℃左右,当第二半导体制冷片中第一片体的温度被控制在70℃时,由于第二半导体制冷片的结温差为60°,因此第二半导体制冷片的第二片体的温度将维持在10℃左右,所以即使清洗槽20内的清洗液需要加热到较高的温度(即第一半导体制冷片的第一片体的温度较高),也可以通过利用两个半导体制冷片的结温差之和,使清洗槽20的防护外壳104 维持在较低的温度(即第二半导体制冷片的第二片体的温度较低)。
具体的,通过控制模块102控制施加至制冷片模组101中半导体制冷片的电极极性和功率大小,除了可以对清洗槽20内的清洗液进行加热控制,还可以对清洗槽20内的清洗液进行冷却控制(即第一测温器件103测得的当前温度大于目标温度),即对加热后的清洗液进行降温控制。在具体实施时,可以先通过控制模块102控制第一半导体制冷片中第一片体与第二片体之间所施加的功率大小、以及控制第二半导体制冷片中第一片体与第二片体之间所施加的功率大小,进而降低第一半导体制冷片中第一片体的温度和第二半导体制冷片中第一片体的温度,然后通过切换施加在第二半导体制冷片的第一片体与第二片体之间的电源极性,使施加在第二半导体制冷片的第一片体上的电压由正电压变为负电压,即第二半导体制冷片的第一片体由热面变为冷面,进而使第一半导体制冷片中的第二片体的热量通过热传递的方式传递给第二半导体制冷片的第一片体,即通过第二半导体制冷片的第一片体对第一半导体制冷片中的第二片体进行降温,进而通过第一半导体制冷片的结温差拉低第一半导体制冷片中第一片体的温度,进而实现对清洗槽20内的清洗液进行冷却的效果,其中,由于利用了热传递的方式实现对温度的控制,无需完全依靠功率控制温度,因此可以达到减少功耗的目的,并且由于同时利用热传递和功率的方式,可以实现可控的温度控制,进而使温度控制更加精确。
在具体实施时,虽然第一半导体制冷片中的第一片体设置于清洗槽20的外壁上,可以直接对清洗槽20内的清洗液进行加热,但是考虑到在加热过程中清洗液的比热容会发生变化、以及环境变化等因素的影响,导致第一半导体制冷片中的第一片体的温度往往不会直接等同于清洗槽20内清洗液的温度,因此,为了确保温度控制的精确性,可以利用第一测温器件103实时测量清洗槽20内的清洗液的当前温度,并将当前温度传输至控制模块102, 以使控制模块102根据当前温度和清洗液的目标温度,控制施加至半导体制冷片中的第一片体的第一极性、施加至半导体制冷片中的第二片体的第二极性、以及在第一片体与第二片体之间所施加的功率大小,进而实现对清洗槽20内清洗液温度的精准控制。
进一步的,考虑到可以利用第二半导体制冷片的结温差和热传递原理,对第一半导体制冷片中的第二片体进行降温,来达到减少功率功耗的目的,同时考虑到在半导体制冷片的温度过高时,如果直接切换第二半导体制冷片中第一片体和第二片体的电极极性,则可能导致防护外壳104所接受的温度过高而产生变形的问题,基于此,上述控制模块102,还具体用于在第二测温器件105测得的实际温度大于或等于防护外壳104的最大耐热温度与第二半导体制冷片的结温差之间的差值的情况下,基于第二测温器件105测得的实际温度调节施加至第一半导体制冷片的功率大小和施加至第二半导体制冷片的功率大小。
在第二测温器件105测得的实际温度小于防护外壳104的最大耐热温度与第二半导体制冷片的结温差之间的差值的情况下,切换施加至第二半导体制冷片中第一片体的第一极性和施加至第二片体的第二极性,以使第二半导体制冷片中的第一片体通过热传递的方式降低第一半导体制冷片中的第二片体的温度。
在清洗液的当前温度达到第二预设值的情况下,调节第一半导体制冷片中第一片体与第二片体之间所施加的功率大小,以使清洗液的当前温度达到目标温度。
具体的,针对每个制冷片模组101包括两个半导体制冷片的情况,即制冷片模组101包括第一半导体制冷片和第二半导体制冷片,对应的,上述第一预设值为防护外壳104的最大耐热温度与第二半导体制冷片的结温差之间的差值;其中,在具体实施时,可以是制冷片模组101只包括第一半导体制 冷片和第二半导体制冷片,也可以是制冷片模组101不仅包括第一半导体制冷片和第二半导体制冷片,还包括第三半导体制冷片等等,但根据实际需求仅需要启动两个半导体制冷片;具体的,若第二测温器件105测得的第一半导体制冷片与第二半导体制冷片之间的实际温度大于或等于防护外壳104的最大耐热温度与第二半导体制冷片的结温差之间的差值,则需要先调节施加至第一半导体制冷片的功率大小、以及施加至第二半导体制冷片的功率大小,以使第一半导体制冷片和第二半导体制冷片之间的温度达到允许温度范围,即第二测温器件105测得的实际温度小于防护外壳104的最大耐热温度与第二半导体制冷片的结温差之间的差值,才能对施加至第二半导体制冷片的电极极性进行切换,即在允许切换第二半导体制冷片极性的范围内的情况下,切换施加至第二半导体制冷片中第一片体的第一极性和第二片体的第二极性,以使第二半导体制冷片中的第一片体由热面变为冷面,并通过热传递的方式降低第一半导体制冷片中的第二片体的温度,可以达到减少功耗的效果。
具体的,在切换施加至第二半导体制冷片的电极极性之后,上述图1中所示的第二半导体制冷片中的第二片体由冷面变为热面,且第二半导体制冷片中的第一片体由热面变为冷面,使得第二半导体制冷片中的第一片体温度降低,从而通过热传递的方式降低第一半导体制冷片中第二片体的温度,进而通过第一半导体制冷片的结温差拉低第一半导体制冷片中第一片体的温度,以使清洗液的当前温度达到第二预设值,其中,该第二预设值可以是不固定的,例如,该第二预设值可以是自切换第二半导体制冷片的电极极性的时刻起经过的时长达到预设时间段后清洗液的当前温度值,此时可以开始调节功率大小;或者,该数值也可以是固定的,例如,预先设置一个温度阈值(即,上述第二预设值),将当前温度与该温度阈值进行比较,判断当前温度是否达到第二预设值,若达到,则可以开始调节功率大小。进一步的,若第二预设值大于目标温度,则需要减小第一半导体制冷片中第一片体与第二 片体之间所施加的功率大小,以使清洗液的当前温度达到目标温度;若第二预设值小于目标温度,则需要增加第一半导体制冷片中第一片体与第二片体之间所施加的功率大小,以使清洗液的当前温度达到目标温度,即在热传递后若清洗液的当前温度未达到目标温度,则还可以通过调节第一半导体制冷片中第一片体与第二片体之间所施加的功率大小,以使清洗液的当前温度达到目标温度。
进一步的,在对清洗槽20中的清洗液进行降温之后,还可以在降温的基础上对清洗液进行升温,具体的,通过控制模块102切换施加至第二半导体制冷片中第一片体的第一极性和施加至第二片体的第二极性,以使第二半导体制冷片中的第一片体通过热传递的方式升高第一半导体制冷片中的第二片体的温度(即第二半导体制冷片中第一片体由冷面变为热面),进而可以通过调节第二半导体制冷片第一片体与第二片体之间所施加的功率大小,提升第二半导体制冷片中第一片体的温度,使其高于第一半导体制冷片中第二片体的温度,即可通过热传递的方式提升第一半导体制冷片中第二片体的温度,进而通过第一半导体制冷片的结温差使第一半导体制冷片中第一片体的温度更高,进而升高清洗液的温度,其中,通过热传递的方式提升清洗槽20中清洗液的温度,这样能够减少控制装置的整体功耗。
本申请提供的实施例中,先通过调节施加在第一半导体制冷片和第二半导体制冷片上的功率,以使第一半导体制冷片与第二半导体制冷片之间的温度降低至允许切换第二半导体制冷片的电极极性的范围内,再对施加至第二半导体制冷片的电极极性进行切换,既能够通过热传递的方式拉低第一半导体制冷片中第一片体的温度,进而实现对清洗液的降温,又能够使防护外壳104的温度在允许的温度范围内,若通过热传递的方式对清洗液进行加热或者降温之后,清洗液的温度还未达到目标温度,则继续对第一半导体制冷片中第一片体与第二片体之间所施加的功率大小进行调整,进而使清洗液的当 前温度达到目标温度,即在加热时可通过切换施加至半导体制冷片的电极极性的同时产生冷却效果,并且降温速率可通过调节电压(功率调节电路)进行精确控制,从而使控温精度更高、同时利用了热传递提高了能效。
需要说明的是,上述制冷片模组101中可以包括两个半导体制冷片,也可以包括多个半导体制冷片,在具体实施时,可以设置制冷片模组101包括多个半导体制冷片,然后根据实际工艺需求(即结合清洗液的目标温度的最大值和防护外壳104的最大耐热温度),决定启动两个半导体制冷片或者启动至少三个半导体制冷片(即利用两个或至少三个半导体制冷片的结温差,降低靠近防护外壳104的半导体制冷片中第二片体的温度,从而确保在清洗液的当前温度达到目标温度的最大值时,防护外壳104仍能够不超过最大耐热温度),其中,需要启动的半导体制冷片的数量(即目标数量)与目标温度的最大值正相关,与防护外壳104的最大耐热温度负相关,这样能够使得清洗液温度的控制装置的使用场景多样化;具体的,上述控制模块102具体用于基于清洗液的目标温度的最大值和防护外壳104的最大耐热温度,确定需要启动的半导体制冷片的目标数量,将靠近清洗槽20的外壁的目标数量个半导体制冷片确定为目标半导体制冷片(例如,自清洗槽20的外壁至防护外壳104依次设置制冷片模组101中的半导体制冷片1、半导体制冷片2、半导体制冷片3,若确定出目标数量为2,则控制半导体制冷片1和半导体制冷片2处于工作状态),再根据晶圆清洗设备中清洗液的当前温度和目标温度,控制施加至目标半导体制冷片中的第一片体的第一极性、施加至目标半导体制冷片中的第二片体的第二极性、以及在第一片体与第二片体之间所施加的功率大小;其中,针对控制施加至至少三个半导体制冷片中第一片体和第二片体的电极极性和功率大小的具体实现过程可以参照针对两个半导体制冷片的具体控制过程,在此不再赘述。
进一步的,考虑到第一半导体制冷片中的第二片体与第二半导体制冷片 中的第一片体之间需要通过热传递的方式传递热量,并在热传递趋于稳定时,第一半导体制冷片中的第二片体与第二半导体制冷片中的第一片体需要保持在相同的温度,以使半导体制冷片的温度控制更加精确,因此,为了提高每个半导体制冷片中导热连接的第一片体和第二片体的热传导效果,以及提高导热连接的相邻两个半导体制冷片中一个半导体制冷片的第一片体与另一个半导体制冷片的第二片体之间的热传导效果,每个半导体制冷片中的第一片体和第二片体通过导热粘接剂粘接,第一半导体制冷片和第二半导体制冷片通过导热粘接剂粘接,即第一半导体制冷片中的第二片体与第二半导体制冷片中的第一片体通过导热粘接剂粘接。
本实施例中,通过导热性良好的导热粘接剂将第一半导体制冷片中的第二片体与第二半导体制冷片中的第一片体进行粘接,以使热传递的效果更好,进而使半导体制冷片的温度控制更加精确。
进一步的,考虑到可以通过对施加至半导体制冷片的电极极性进行切换、以及调节施加至半导体制冷片上的功率,进而灵活地控制清洗槽20内清洗液的温度,从而达到对清洗液的升温加热或者降温冷却的效果,为了进一步提高施加至多个半导体制冷片的电极极性的切换灵活度、以及进一步提高施加至多个半导体制冷片的功率大小的调整灵活度,基于此,上述控制模块102包括:至少两个电源极性切换电路、至少两个功率调节电路和中心控制电路。
其中,每个半导体制冷片的第一片体均通过一个电源极性切换电路和一个功率调节电路与供电电源相连接;每个半导体制冷片的第二片体均通过另一个电源极性切换电路和另一个功率调节电路与供电电源相连接。
上述中心控制电路分别与第一测温器件103、至少两个电源极性切换电路和至少两个功率调节电路相连接。
上述中心控制电路,用于根据清洗液的当前温度和目标温度,通过电源 极性切换电路控制施加至第一片体的第一极性和施加至第二片体的第二极性,以及通过功率调节电路控制在第一片体与第二片体之间所施加的功率大小。
具体的,仍以制冷片模组101包括第一半导体制冷片和第二半导体制冷片为例,对应的,制冷片模组101中的第一半导体制冷片和第二半导体制冷片分别与不同的电源极性切换电路和不同的功率调节电路相连接,具体的,如图4所示,上述控制模块102包括:第一电源极性切换电路1021、第二电源极性切换电路1022、第一功率调节电路1023、第二功率调节电路1024和中心控制电路1045;其中,制冷片模组101的第一半导体制冷片通过第一电源极性切换电路1021和第一功率调节电路1023与供电电源107相连接,制冷片模组101的第二半导体制冷片通过第二电源极性切换电路1022和第二功率调节电路1024与供电电源107相连接;以及中心控制电路1045分别与第一测温器件103、第一电源极性切换电路1021、第二电源极性切换电路1022、第一功率调节电路1023和第二功率调节电路1024相连接。
具体的,上述中心控制电路1045可以是具有温度检测、极性切换控制和功率调节控制功能的电路,对应的,上述中心控制电路1045用于接收第一测温器件103测量的清洗液的当前温度,并基于清洗液的当前温度与目标温度之间的差值,控制第一电源极性切换电路1021切换施加至第一半导体制冷片中第一片体的第一极性和施加至第二片体的第二极性,以及计算出第一功率调节电路1023所需调节的功率大小,进而调节施加在第一半导体制冷片上的功率大小;以及控制第二电源极性切换电路1022切换施加至第二半导体制冷片中第一片体的第一极性和施加至第二片体的第二极性,以及计算出第二功率调节电路1024所需调节的功率大小,进而调节施加在第二半导体制冷片上的功率大小。
进一步的,若制冷片模组101的数量为多个,如图5所示,以三个制冷 片模组101为例,对控制装置的具体电路结构进行说明,第一制冷片模组101中第一半导体制冷片、第二制冷片模组101中第一半导体制冷片、以及第三制冷片模组101中第一半导体制冷片并联后一同接入第一电源极性切换电路1021和第一功率调节电路1023,且每个第一半导体制冷片中的第一片体和第二片体串联;且第一制冷片模组101中第二半导体制冷片、第二制冷片模组101中第二半导体制冷片、以及第三制冷片模组101中第二半导体制冷片并联后一同接入第二电源极性切换电路1022和第二功率调节电路1024,且每个第二半导体制冷片中的第一片体和第二片体串联,进一步的,每个制冷片模组101中的第一半导体制冷片中的第二片体均与各自模组中的第二半导体制冷片的第一片体用导热性良好的导热粘接剂粘接在一起。
本申请提供的实施例中,针对每个制冷片模组101,为该制冷片模组101中的各半导体制冷片分别设计单独的电源极性切换电路和功率调节电路,可以通过中心控制器实现对制冷片模组101中的多个半导体制冷片的单独控制,进而可以灵活地控制清洗槽20内的清洗液的温度,并可以实现升温加热和降温冷却功能的灵活切换,进而使温度控制更加精确。
进一步的,考虑到控制清洗槽20内清洗液的温度时,需要通过调节施加在半导体制冷片中第一片体与第二片体之间的电压大小,以调节向半导体制冷片所输出的直流电压的大小,进而调节在第一片体与第二片体之间所施加的功率大小,又考虑到通常情况下供电电源为交流供电电源,因此为了提高通过控制功率调节回路施加至半导体制冷片的功率的稳定性,基于此,在上述供电电源107为交流供电电源的前提下,上述控制模块102还包括:整流稳压电路,整流稳压电路设置于上述功率调节电路和供电电源107之间。
上述整流稳压电路,用于对供电电源107所提供的交流电进行转换处理,得到所需的直流电,并将直流电传输至功率调节电路。
上述功率调节电路,用于调节向半导体制冷片所输出的直流电压的大 小,以调节在第一片体与第二片体之间所施加的功率大小。
其中,上述整流稳压电路可以包括:变压器、整流电路及稳压电路;上述供电电源107可以为交流电源供电电路;具体的,上述整流稳压电路将供电电源107所提供的交流电转换处理为加热清洗槽20内清洗液所需的直流电(即半导体制冷片所需的直流电),并将该直流电传输至功率调节电路,以使功率调节电路在中心控制电路1045的控制下调节向半导体制冷片所输出的直流电压的大小,进而调节在半导体制冷片中第一片体与第二片体之间所施加的功率大小。
本申请提供的实施例中,通过在功率调节电路和供电电源107之间设置整流稳压电路,可以将供电电源107所提供的交流电转换为半导体制冷片所需的直流电,并通过功率调节电路调节该直流电的大小,以调节半导体制冷片中第一片体与第二片体之间所施加的功率大小,进而实现对半导体制冷片温度的精确控制。
在一个具体的实施例中,在增设第二测温器件后,可以直接将第二测温器件与控制装置中的中心控制电路1045相连接,为了进一步提高第一测温器件103和第二测温器件104的温度测量准确度,以及提高中心控制电路1045对多个电源极性切换电路和多个功率调节电路的控制灵活性,如图6所示,中心控制电路1045可以包括:第一控制电路10451、以及第二控制电路10452,其中,第一测温器件103与第一控制电路10451相连接,第一半导体制冷片通过第一电源极性切换电路1021和第一功率调节电路1023与第一控制电路10451相连接;第二测温器件105与第二控制电路10452相连接,第二半导体制冷片通过第二电源极性切换电路1022和第二功率调节电路1024与第二控制电路10452相连接;整流稳压电路106的一端与第一功率调节电路1023、第二功率调节电路1024相连接,另一端与供电电源107相连接。
具体的,考虑到切换半导体制冷片的极性之后可能会存在对防护外壳 104造成温度过高的情况,因此需要先基于第二测温器件105所测得的实际温度,判断是否允许切换施加至半导体制冷片中的第一片体的第一极性和施加至第二片体的第二极性,其中,针对半导体制冷片的电极极性切换和功率调节的具体实施过程参照上述内容,在此不再赘述。
具体的,上述第一控制电路10451用于接收第一测温器件103测量的清洗液的当前温度,并基于清洗液的当前温度与目标温度之间的差值,控制第一电源极性切换电路1021切换施加至第一半导体制冷片中第一片体的第一极性和施加至第二片体的第二极性,以及计算出第一功率调节电路1023所需调节的功率大小,进而调节施加在第一半导体制冷片上的功率大小;对应的,上述第二控制电路10452用于接收第二测温器件105测量的第一半导体制冷片和第二半导体制冷片之间的实际温度,并基于该实际温度和防护外壳的最大耐热温度,控制第二电源极性切换电路1022切换施加至第二半导体制冷片中第一片体的第一极性和施加至第二片体的第二极性,以及计算出第二功率调节电路1024所需调节的功率大小,进而调节施加在第二半导体制冷片上的功率大小。
具体的,针对清洗槽20内的清洗液的降温过程,可以通过切换施加至第一半导体制冷片的电极极性,使第一半导体制冷片的第一片体由热面变为冷面,进而直接对清洗液进行降温,此时由于第一半导体制冷片的第二片体会由冷面变为热面,因此若切换极性之前第一半导体制冷片的第一片体的温度较高,在切换极性之后会使第一半导体制冷片的第二片体温度也较高,进而通过热传递的方式拉高第二半导体制冷片中第一片体的温度,进而拉高第二半导体制冷片中第二片体的温度,进而造成防护外壳104的温度过高的问题,因此,在切换极性之后,第二半导体制冷片中第二片体的温度不能高于防护外壳104的最大耐热温度。
具体的,在切换极性之前,可以基于上述实际温度和防护外壳104的最 大耐热温度与靠近防护外壳的半导体制冷片的结温差之间的差值,判断是否切换施加至半导体制冷片中的第一片体的第一极性、以及施加至第二片体的第二极性,针对切换第一半导体制冷片中第一片体和第二片体的电极极性对清洗液进行降温的情况,例如,在切换极性之前,若第一半导体制冷片与第二半导体制冷片之间的实际温度大于或等于防护外壳104的最大耐热温度与靠近防护外壳的半导体制冷片的结温差之间的差值,即第二测温器件105所测得的实际温度大于或等于防护外壳104的最大耐热温度与靠近防护外壳的半导体制冷片的结温差之间的差值,在切换极性之后,会使第一半导体制冷片中第二片体的温度的温度升高,进而导致第一半导体制冷片中第二片体的温度大于防护外壳104的最大耐热温度,进而会对防护外壳104造成影响,因此,在切换极性之前,第一半导体制冷片与第二半导体制冷片之间的实际温度要小于防护外壳104的最大耐热温度与靠近防护外壳的半导体制冷片的结温差之间的差值。
具体的,针对清洗槽20内的清洗液的降温过程,也可以通过切换施加至第二半导体制冷片的电极极性,使第二半导体制冷片的第一片体变为冷面,并通过热传递的方式降低第一半导体制冷片中第二片体的温度,以通过第一半导体制冷片的结温差拉低第一半导体制冷片中第一片体的温度,进而对清洗液进行降温,此时第二半导体制冷片中第一片体的温度(即第二测温器件105测得的实际温度)至少要小于防护外壳104的最大耐热温度与靠近防护外壳的半导体制冷片的结温差之间的差值。
本申请提供的实施例中,通过在第一半导体制冷片的第二片体与第二半导体制冷片的第一片体之间增设第二测温器件105,以使控制装置可以基于第二测温器件105测得的实际温度判断是否对施加至半导体制冷片中的第一片体的第一极性、以及施加至第二片体的第二极性进行切换,从而在通过切换极性对清洗液进行降温时,不会因为靠近防护外壳104的半导体制冷片温 度升高而对清洗槽20的防护外壳104造成影响,还能够使温度控制更加精确。
采用本申请实施例的技术方案,通过在清洗槽的外壁上设置制冷片模组,进而通过控制模块基于清洗槽内清洗液的当前温度的目标温度,控制施加至半导体制冷片的第一片体和第二片体的电极极性、以及在第一片体和第二片体之间所施加的功率大小,来实现灵活地控制清洗槽内的清洗液的温度,这样不仅能够达到针对清洗液的升温加热的效果,还能够使得清洗液由高温降低至低温的效果,从而达到升温加热和降温冷却功能的灵活切换,可以使温度控制更加精确;并且由于在半导体制冷片处于工作状态的情况下,第一片体与第二片体之间会产生一定温差,这样能够起到对清洗槽的防护外壳进行降温保护的效果,从而达到防止因清洗槽内的清洗液的加热温度过高而导致防护外壳受热形变的问题。
综上,已经对本主题的特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作可以按照不同的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序,以实现期望的结果。在某些实施方式中,多任务处理和并行处理可以是有利的。
以上为本申请实施例提供的晶圆清洗设备中清洗液温度的控制装置,基于同样的思路,本申请实施例还提供一种晶圆清洗设备。
如图7所示,上述晶圆清洗设备包括:清洗槽20和上述晶圆清洗设备中清洗液温度的控制装置10。
其中,控制装置102中的制冷片模组101设置于清洗槽20的外壁上,至少两个半导体制冷片依次设置于清洗槽20的外壁和防护外壳104之间,第一测温器件103设置于清洗槽20内。
本申请实施例的晶圆清洗设备,通过在清洗槽的外壁上设置制冷片模组,进而通过控制模块基于清洗槽内清洗液的当前温度的目标温度,控制施 加至半导体制冷片的第一片体和第二片体的电极极性、以及在第一片体和第二片体之间所施加的功率大小,来实现灵活地控制清洗槽内的清洗液的温度,这样不仅能够达到针对清洗液的升温加热的效果,还能够使得清洗液由高温降低至低温的效果,从而达到升温加热和降温冷却功能的灵活切换,可以使温度控制更加精确;并且由于在半导体制冷片处于工作状态的情况下,第一片体与第二片体之间会产生一定温差,这样能够起到对清洗槽的防护外壳进行降温保护的效果,从而达到防止因清洗槽内的清洗液的加热温度过高而导致防护外壳受热形变的问题。
需要说明的是,晶圆清洗设备中清洗液温度的控制装置10基于上述图1至图6所示的控制装置,因此该实施例的具体实施可以参见前述晶圆清洗设备中清洗液温度的控制装置的具体实施,重复之处不再赘述。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请实施例的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请实施例的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件 内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。
最后应说明的是:上面结合附图对本申请实施例的实施例进行了描述,用以说明本申请实施例的技术方案,但是本申请实施例并不局限于上述的具体实施方式,本申请实施例的保护范围并不局限于此,上述的具体实施方式仅仅是示意性的,而不是限制性的,尽管参照前述实施例对本申请实施例进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本申请实施例技术方案的精神和范围。都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (11)

  1. 一种晶圆清洗设备中清洗液温度的控制装置,其特征在于,所述控制装置包括:至少一个制冷片模组、控制模块和第一测温器件;其中,
    至少一个所述制冷片模组贴设在所述晶圆清洗设备的清洗槽的外壁上,每个所述制冷片模组均包括至少两个依次导热连接的半导体制冷片,每个所述半导体制冷片均包括第一片体和第二片体;所述第一片体以及所述第二片体均与所述控制模块连接;
    所述第一测温器件,用于测量清洗槽内的清洗液的当前温度,并将所述当前温度传输至所述控制模块;
    所述控制模块,用于根据所述当前温度和所述清洗液的目标温度,控制施加至所述半导体制冷片中的所述第一片体的第一极性、施加至所述半导体制冷片中的所述第二片体的第二极性、以及在所述第一片体与所述第二片体之间所施加的功率大小。
  2. 根据权利要求1所述的控制装置,其特征在于,所述控制模块包括:至少两个电源极性切换电路、至少两个功率调节电路和中心控制电路;
    其中,每个所述半导体制冷片的所述第一片体均通过一个所述电源极性切换电路和一个所述功率调节电路与供电电源相连接;每个所述半导体制冷片的所述第二片体均通过另一个所述电源极性切换电路和另一个所述功率调节电路与所述供电电源相连接;
    所述第一测温器件、至少两个所述电源极性切换电路和至少两个所述功率调节电路均与所述中心控制电路相连接;
    所述中心控制电路,用于根据所述当前温度和所述目标温度,通过所述电源极性切换电路控制施加至所述第一片体的第一极性和施加至所述第二片体的第二极性,以及通过所述功率调节电路控制在所述第一片体与所述第二片体之间所施加的功率大小。
  3. 根据权利要求1所述的控制装置,其特征在于,所述清洗槽外侧还设置有防护外壳,至少两个所述半导体制冷片之间还设置有第二测温器件;
    所述第二测温器件,用于测量靠近所述防护外壳的所述半导体制冷片的第一片体的实际温度,并将所述实际温度传输至所述控制模块;
    所述控制模块,还用于基于所述实际温度和所述防护外壳的最大耐热温度,判断是否切换施加至所述半导体制冷片中的所述第一片体的第一极性和施加至所述第二片体的第二极性,并在判断结果为是的情况下,切换所述第一极性和所述第二极性,或者在判断结果为否的情况下,调节在所述第一片体与所述第二片体之间所施加的功率大小。
  4. 根据权利要求3所述的控制装置,其特征在于,所述控制模块,还用于在所述实际温度大于或等于第一预设值时,基于所述实际温度调节所述第一片体与所述第二片体之间所施加的功率大小,直到所述实际温度小于所述第一预设值;并在所述实际温度小于所述第一预设值时,确定切换所述第一极性和所述第二极性,所述第一预设值依据所述最大耐热温度与靠近所述防护外壳的所述半导体制冷片的结温差之间的差值设置。
  5. 根据权利要求3所述的控制装置,其特征在于,所述至少两个半导体制冷片包括:第一半导体制冷片和第二半导体制冷片;
    其中,所述第一半导体制冷片中的第一片体设置于所述清洗槽的外壁上,所述第一半导体制冷片中的第二片体与所述第一半导体制冷片中的第一片体导热连接,所述第二半导体制冷片中的第一片体与所述第一半导体制冷片中的第二片体导热连接,所述第二半导体制冷片中的第二片体与所述第二半导体制冷片中的第一片体导热连接且靠近所述防护外壳。
  6. 根据权利要求5所述的控制装置,其特征在于,所述控制模块,还 用于在所述实际温度大于或等于所述最大耐热温度与所述第二半导体制冷片的结温差之间的差值的情况下,基于所述实际温度调节施加至所述第一半导体制冷片的功率大小和施加至所述第二半导体制冷片的功率大小;
    在所述实际温度小于所述最大耐热温度与所述第二半导体制冷片的结温差之间的差值的情况下,切换施加至所述第二半导体制冷片中所述第一片体的第一极性和施加至所述第二片体的第二极性,以使所述第二半导体制冷片中的所述第一片体通过热传递的方式降低所述第一半导体制冷片中的所述第二片体的温度;
    在所述当前温度达到第二预设值的情况下,调节所述第一半导体制冷片中所述第一片体与所述第二片体之间所施加的功率大小,以使所述当前温度达到所述目标温度。
  7. 根据权利要求6所述的控制装置,其特征在于,所述第二预设值包括自切换时刻起经过的时长达到预设时间段后,所述第一测温器件测量的所述清洗槽内的清洗液的当前温度值;或者,所述第二预设值为预先设置的温度阈值。
  8. 根据权利要求1所述的控制装置,其特征在于,所述制冷片模组的数量为多个,且多个所述冷片模组呈阵列状设置于所述清洗槽的外壁上。
  9. 根据权利要求5所述的控制装置,其特征在于,所述第一片体与所述第二片体通过导热粘接剂粘接,所述第一半导体制冷片和所第二半导体制冷片通过所述导热粘接剂粘接。
  10. 根据权利要求2所述的控制装置,其特征在于,所述供电电源为交流供电电源,所述控制模块还包括:整流稳压电路,所述整流稳压电路设置于所述功率调节电路和所述供电电源之间;
    所述整流稳压电路,用于对所述供电电源所提供的交流电进行转换处理,得到所需的直流电,并将所述直流电传输至所述功率调节电路;
    所述功率调节电路,用于调节向所述半导体制冷片所输出的所述直流电压的大小,以调节在所述第一片体与所述第二片体之间所施加的功率大小。
  11. 一种晶圆清洗设备,其特征在于,所述晶圆清洗设备包括:清洗槽和如权利要求1至10任一项所述的清洗液温度的控制装置。
PCT/CN2022/132194 2021-11-30 2022-11-16 晶圆清洗设备中清洗液温度的控制装置及晶圆清洗设备 WO2023098475A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111445138.9A CN114171436A (zh) 2021-11-30 2021-11-30 晶圆清洗设备中清洗液温度的控制装置及晶圆清洗设备
CN202111445138.9 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023098475A1 true WO2023098475A1 (zh) 2023-06-08

Family

ID=80482146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132194 WO2023098475A1 (zh) 2021-11-30 2022-11-16 晶圆清洗设备中清洗液温度的控制装置及晶圆清洗设备

Country Status (3)

Country Link
CN (1) CN114171436A (zh)
TW (1) TWI830499B (zh)
WO (1) WO2023098475A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117367624A (zh) * 2023-12-05 2024-01-09 徐州威聚电子材料有限公司 半导体清洗液温度检测方法及检测装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171436A (zh) * 2021-11-30 2022-03-11 北京北方华创微电子装备有限公司 晶圆清洗设备中清洗液温度的控制装置及晶圆清洗设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105596A (ja) * 1995-10-04 1997-04-22 Orion Mach Co Ltd 耐薬品性熱交換器
CN108172533A (zh) * 2017-12-25 2018-06-15 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) 控制系统、方法及晶圆清洗装置
CN111503935A (zh) * 2020-04-29 2020-08-07 深圳彩果科技有限公司 半导体调温装置控制系统及方法
CN113628949A (zh) * 2020-05-09 2021-11-09 长鑫存储技术有限公司 控温装置及其控制方法、等离子设备
CN114171436A (zh) * 2021-11-30 2022-03-11 北京北方华创微电子装备有限公司 晶圆清洗设备中清洗液温度的控制装置及晶圆清洗设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204468004U (zh) * 2015-03-05 2015-07-15 佛山市顺德区美的洗涤电器制造有限公司 洗碗机干燥除湿结构及洗碗机
CN105135667B (zh) * 2015-09-17 2017-10-24 广州埃克森生物科技有限公司 一种获得生化仪高精度清洗水温的方法和装置
CN206787875U (zh) * 2017-03-30 2017-12-22 徐州医科大学 实验用自动降温超声仪
CN213728234U (zh) * 2020-09-28 2021-07-20 鲸控仪器设备(宁波)有限公司 一种具有温度平衡功能的超声波清洗机
CN214441391U (zh) * 2020-12-31 2021-10-22 寿光新泰精细化工有限公司 一种生产用冷水水洗装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105596A (ja) * 1995-10-04 1997-04-22 Orion Mach Co Ltd 耐薬品性熱交換器
CN108172533A (zh) * 2017-12-25 2018-06-15 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) 控制系统、方法及晶圆清洗装置
CN111503935A (zh) * 2020-04-29 2020-08-07 深圳彩果科技有限公司 半导体调温装置控制系统及方法
CN113628949A (zh) * 2020-05-09 2021-11-09 长鑫存储技术有限公司 控温装置及其控制方法、等离子设备
CN114171436A (zh) * 2021-11-30 2022-03-11 北京北方华创微电子装备有限公司 晶圆清洗设备中清洗液温度的控制装置及晶圆清洗设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117367624A (zh) * 2023-12-05 2024-01-09 徐州威聚电子材料有限公司 半导体清洗液温度检测方法及检测装置
CN117367624B (zh) * 2023-12-05 2024-02-23 徐州威聚电子材料有限公司 半导体清洗液温度检测方法及检测装置

Also Published As

Publication number Publication date
TW202324573A (zh) 2023-06-16
CN114171436A (zh) 2022-03-11
TWI830499B (zh) 2024-01-21

Similar Documents

Publication Publication Date Title
WO2023098475A1 (zh) 晶圆清洗设备中清洗液温度的控制装置及晶圆清洗设备
US10686232B2 (en) Thermoelectric-based thermal management of electrical devices
US9310111B2 (en) Systems and methods to mitigate heat leak back in a thermoelectric refrigeration system
US7313921B2 (en) Apparatus and method for thermo-electric cooling
WO2019184364A1 (zh) 一种动力电池包热管理总成
CN201152650Y (zh) 固体多点阵冷热转换设备
CN112595921B (zh) 一种电子元件的高低温测试装置及其测试方法
CN107579429B (zh) 半导体激光器及其温度控制方法
WO2022000765A1 (zh) 户用储能恒温电池系统
CN110517995B (zh) 一种适用于压接式igbt的控温装置及方法
US20110011100A1 (en) Unitary thermoelectric heating and cooling device
US20080314430A1 (en) Line-Voltage-Powered Thermoelectric Device
CN102495648B (zh) 温度调节装置及装有该温度调节装置的温度仪表校验装置
CN107332509B (zh) 一种太阳能系统的电池加热装置及方法
CN216528872U (zh) 功率装置、变频系统和空调设备
CN113064045B (zh) 冷热补偿的半导体耦合结构及其真空温控测试平台和方法
CN112327967B (zh) 一种功率器件的温度控制装置、方法和电器设备
Haryanti et al. Cooling system design based on thermoelectric using fan motor on-off control
WO2021070434A1 (ja) 身体装着型冷却装置
JP2012226927A (ja) 電池温調システムおよび温調方法
KR101681493B1 (ko) 서셉터 및 서셉터의 온도 가변 장치
CN208460920U (zh) 一种动力电池包热管理总成
KR20170075366A (ko) 열전소자 구동방법 및 열전소자 구동장치
RU2287208C2 (ru) Устройство для нагрева или охлаждения
TWI603172B (zh) Ic溫控裝置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900280

Country of ref document: EP

Kind code of ref document: A1