WO2023098431A1 - 一种信标发送、接收方法及装置 - Google Patents

一种信标发送、接收方法及装置 Download PDF

Info

Publication number
WO2023098431A1
WO2023098431A1 PCT/CN2022/130826 CN2022130826W WO2023098431A1 WO 2023098431 A1 WO2023098431 A1 WO 2023098431A1 CN 2022130826 W CN2022130826 W CN 2022130826W WO 2023098431 A1 WO2023098431 A1 WO 2023098431A1
Authority
WO
WIPO (PCT)
Prior art keywords
beacon
sending node
resource
node
beacon resource
Prior art date
Application number
PCT/CN2022/130826
Other languages
English (en)
French (fr)
Inventor
于天航
乔云飞
李榕
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023098431A1 publication Critical patent/WO2023098431A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15592Adapting at the relay station communication parameters for supporting cooperative relaying, i.e. transmission of the same data via direct - and relayed path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18558Arrangements for managing communications, i.e. for setting up, maintaining or releasing a call between stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a beacon sending and receiving method and device.
  • Non-terrestrial network has the advantages of wide coverage, long communication distance, high reliability, high flexibility, high throughput, and is not affected by geographical environment, climatic conditions and natural disasters, and has been widely used.
  • NTN Non-terrestrial network
  • 5G fifth generation
  • Introducing NTN into mobile communication systems, such as the fifth generation (5th generation, 5G) system can not only provide communication services for areas that are difficult to cover by ground networks, such as oceans, forests, deserts, mountains, etc., but also enhance communication capabilities.
  • Reliability such as providing more stable and high-quality communication services for users on trains, airplanes and these vehicles, and providing more data transmission resources, such as supporting a greater number of terminal device connections.
  • the measurement and control and communication equipment carried by satellites or high-altitude platforms in NTN are independent of each other.
  • the measurement and control equipment can be used to send and receive beacon signals between satellites or with ground stations, for antenna alignment, telemetry information transmission or remote control information.
  • Communication equipment can be used to provide data transmission (that is, data transmission) services for terminal equipment.
  • Terminal equipment (such as ground stations) also need to use separate beacon transceivers and communication transceivers to process beacon signals and data transmission signals respectively.
  • the deployment of multiple sets of hardware equipment such as measurement and control and communication not only increases the hardware cost of the satellite or high-altitude platform and terminal equipment, but also increases the weight of the satellite or high-altitude platform. Therefore, how to realize the integration of beacon communication and data transmission communication is worth considering. The problem.
  • Embodiments of the present application provide a method and device for transmitting and receiving beacons, which can reduce the hardware cost and weight of network equipment such as satellites or high-altitude platforms and terminal equipment such as ground stations.
  • the embodiment of the present application provides a beacon receiving method, the method includes: the first receiving node determines one or more subcarriers in the first frequency band, where the first frequency band is the first beacon of the first sending node One of the N frequency bands included in the resource, where N is an integer greater than or equal to 1; the first receiving node receives the beacon signal on one or more subcarriers; the first receiving node parses the beacon signal.
  • the above-mentioned communication method may be executed by the first receiving node, or may be executed by components of the first receiving node (such as a processor, a chip, or a chip system, etc.), or may be implemented by a logic module capable of realizing all or part of the functions of the first receiving node or software implementation.
  • the first receiving node may be a network device, such as a satellite or a high-altitude platform, or a terminal device, or a ground station.
  • the beacon signal and data transmission communication can adopt a unified standard, such as the new radio (NR) standard, in the digital transmission frequency band, configure the frequency band for the beacon, and the sending node of the beacon signal can be used as the beacon signal.
  • Beacon signals are sent on one or more subcarriers in the configured frequency band, and the corresponding receiving nodes receive beacon signals on one or more subcarriers in the frequency band, so that beacon communication and data communication can use the same set of transceiver equipment , can reduce the hardware overhead and weight of the sending node of the beacon signal and the receiving node of the beacon signal, for example, can reduce the hardware overhead and weight of network equipment such as satellites or high-altitude platforms, and terminal equipment such as ground stations.
  • network equipment such as satellites or high-altitude platforms
  • terminal equipment such as ground stations.
  • the beacon signal includes at least one of the following: a preset level signal, a preset modulation symbol, a reference signal for navigation and/or TT&C, or TT&C information.
  • the number of subcarriers receiving a preset level signal or a preset modulation symbol is less than or equal to a preset threshold.
  • the beacon signal can be one or more of a preset level signal, a preset modulation symbol, a reference signal for navigation and/or measurement and control, or measurement and control information, etc., and can also be used for measurement and control, Signals such as navigation adopt the same standard as the digital communication, which is beneficial to reduce the hardware overhead and weight of the sending node of the beacon signal and the receiving node of the beacon signal.
  • a preset level signal or a preset modulation symbol is received in a non-cyclic prefix (cyclic prefix, CP) mode.
  • the CP-free mode is used to send and receive preset level signals or preset modulation symbols that occupy a small number of subcarriers, which is conducive to ensuring the phase continuity of the signal on the subcarriers and reducing the number of transmission frequency bands. Intercarrier interference of data signals.
  • the method further includes: the first receiving node receives first signaling from the first sending node, where the first signaling is used to indicate to update the first beacon resource to the third beacon resource; The first receiving node updates the first beacon resource of the first sending node to the third beacon resource.
  • beacon resources can be flexibly configured among multiple sending nodes. Sending nodes that do not cover the same receiving node can reuse the same beacon resource, and multiple sending nodes covering the same receiving node can pass beacon The resource configuration is updated to avoid collision of beacon resources.
  • the method before the first receiving node receives the first signaling from the first sending node, the method further includes: the first receiving node determines that the first sending node and the second sending node cover the first receiving node , and the first beacon resource overlaps with the second beacon resource of the second sending node in the frequency domain; the first receiving node sends a second signaling to the first sending node, and the second signaling is used to indicate the first sending The beacon resources of the node and the second sending node overlap in the frequency domain.
  • the receiving node can determine whether there is coverage to the same receiving node between the sending nodes, and there is a collision of beacon resources, and when there is coverage between the sending nodes to the same receiving node, and there is a collision of beacon resources, request the sending node Updating the beacon resource configuration is beneficial to avoid beacon resource collisions between sending nodes that cover the same receiving node, and can improve communication reliability.
  • the method further includes: the first receiving node determines that the first sending node and the second sending node cover the first receiving node, and the first beacon resource and the second beacon of the second sending node Resources overlap in the frequency domain; the first receiving node sends third signaling to the first sending node, where the third signaling is used to instruct updating the first beacon resource to the third beacon resource.
  • the method further includes: the first receiving node updating the first beacon resource of the first sending node to the third beacon resource.
  • the receiving node when the receiving node determines that there is coverage to the same receiving node between the sending nodes, and there is a collision of beacon resources, it can instruct the sending node how to update the configuration of the beacon resource, which is beneficial to avoid coverage between the sending nodes of the same receiving node.
  • the collision of beacon resources can improve the reliability of communication.
  • the embodiment of the present application provides a beacon sending method, the method includes: the first sending node determines one or more subcarriers in the first frequency band, where the first frequency band is the first beacon of the first sending node One of the N frequency bands included in the resource, where N is an integer greater than or equal to 1; the first sending node sends a beacon signal on one or more subcarriers.
  • the above-mentioned communication method may be executed by the first sending node, or may be executed by components of the first sending node (such as a processor, a chip, or a chip system, etc.), or may be implemented by a logic module capable of realizing all or part of the functions of the first sending node or software implementation.
  • the first sending node may be a network device, such as a satellite, a high-altitude platform, etc., or may be a terminal device, or may be a ground station, etc.
  • the beacon signal and data transmission communication can adopt a unified standard, such as NR standard, and configure the frequency band for the beacon in the digital transmission frequency band, and the sending node can be on one or more subcarriers in the frequency band configured for the beacon Send beacon signals, so that beacon communication and digital communication can use the same set of transceiver equipment, which can reduce the hardware overhead and weight of the sending node of the beacon signal and the receiving node of the beacon signal, for example, it can reduce network equipment such as satellites or high-altitude platforms As well as the hardware overhead and weight of terminal equipment such as ground stations.
  • a unified standard such as NR standard
  • the beacon signal includes at least one of the following: a preset level signal, a preset modulation symbol, a reference signal for navigation and/or TT&C, or TT&C information.
  • the number of subcarriers for sending a preset level signal or a preset modulation symbol is less than or equal to a preset threshold.
  • the beacon signal can be one or more of a preset level signal, a preset modulation symbol, a reference signal for navigation and/or measurement and control, or measurement and control information, etc., and can also be used for measurement and control, Signals such as navigation adopt the same standard as the digital communication, which is beneficial to reduce the hardware overhead and weight of the sending node of the beacon signal and the receiving node of the beacon signal.
  • a preset level signal or a preset modulation symbol is sent in a cyclic prefix-free CP mode.
  • the CP-free mode is used to send and receive preset level signals or preset modulation symbols that occupy a small number of subcarriers, which is conducive to ensuring the phase continuity of the signal on the subcarriers and reducing the number of transmission frequency bands. Intercarrier interference of data signals.
  • the method further includes: the first sending node updates the first beacon resource to the second beacon resource according to the coverage of the first sending node, the coverage of the second sending node, and the second beacon resource.
  • the method further includes: the method further includes: the first sending node sends a first signaling to the first receiving node, where the first signaling is used to indicate to update the first beacon resource to the third beacon resource.
  • beacon resources can be flexibly configured among multiple sending nodes. Sending nodes that do not cover the same receiving node can reuse the same beacon resource, and multiple sending nodes covering the same receiving node can pass beacon The resource configuration is updated to avoid collision of beacon resources.
  • the method before updating the first beacon resource to the third beacon resource, the method further includes: the first sending node determines that the first sending node and the second sending node cover the first receiving node, and The first beacon resource and the second beacon resource overlap in the frequency domain.
  • the sending node can determine whether the sending nodes cover the same receiving node and the beacon resource collides, and when the sending nodes cover the same receiving node and the beacon resource collides, carry out Beacon resource configuration updates help avoid beacon resource collisions and improve communication reliability.
  • the method before updating the first beacon resource to the third beacon resource, the method further includes: the first sending node receives second signaling from the first receiving node, and the second signaling is used for It indicates that the beacon resources of the first sending node and the second sending node overlap in the frequency domain.
  • the receiving node can determine whether there is coverage to the same receiving node between the sending nodes, and there is a collision of beacon resources, and when there is coverage between the sending nodes to the same receiving node, and there is a collision of beacon resources, request the sending node Updating the beacon resource configuration is beneficial to avoid beacon resource collisions between sending nodes that cover the same receiving node, and can improve communication reliability.
  • the method further includes: the first sending node receives third signaling from the first receiving node, where the third signaling is used to indicate to update the first beacon resource to the third beacon resource; The first sending node updates the first beacon resource to the third beacon resource.
  • the receiving node when the receiving node determines that there is coverage to the same receiving node between the sending nodes, and there is a collision of beacon resources, it can instruct the sending node how to update the configuration of the beacon resource, which is beneficial to avoid coverage between the sending nodes of the same receiving node.
  • the collision of beacon resources can improve the reliability of communication.
  • the embodiment of the present application provides a communication device, which may include: an interface unit and a processing unit; the processing unit is configured to determine one or more subcarriers in the first frequency band, where the first frequency band is the first One of the N frequency bands included in the first beacon resource of the sending node, where N is an integer greater than or equal to 1; the interface unit is used to receive beacon signals on one or more subcarriers; the processing unit is also used to Parse beacon signals.
  • the beacon signal includes at least one of the following: a preset level signal, a preset modulation symbol, a reference signal for navigation and/or measurement and control, or measurement and control information.
  • the number of subcarriers receiving a preset level signal or a preset modulation symbol is less than or equal to a preset threshold.
  • a cyclic prefix-free CP mode is used to receive a preset level signal or a preset modulation symbol.
  • the interface unit is further configured to receive first signaling from the first sending node, where the first signaling is used to indicate to update the first beacon resource to the third beacon resource; the processing unit, It is also used to update the first beacon resource of the first sending node to the third beacon resource.
  • the processing unit is further configured to determine that the communication device is covered by the first sending node and the second sending node, and that the first beacon resource and the second beacon resource of the second sending node are in the frequency domain There is overlap; the interface unit is further configured to send second signaling to the first sending node, where the second signaling is used to indicate that beacon resources of the first sending node and the second sending node overlap in the frequency domain.
  • the processing unit is further configured to determine that the communication device is covered by the first sending node and the second sending node, and that the first beacon resource and the second beacon resource of the second sending node are in the frequency domain There is overlap; the interface unit is further configured to send third signaling to the first sending node, where the third signaling is used to instruct updating the first beacon resource to a third beacon resource.
  • the processing unit is further configured to update the first beacon resource of the first sending node to the third beacon resource.
  • an embodiment of the present application provides a communication device, which may include: an interface unit and a processing unit; a processing unit configured to determine one or more subcarriers in a first frequency band, where the first frequency band is a communication device One of the N frequency bands included in the first beacon resource, where N is an integer greater than or equal to 1; an interface unit configured to send beacon signals on one or more subcarriers.
  • the beacon signal includes at least one of the following: a preset level signal, a preset modulation symbol, a reference signal for navigation and/or measurement and control, or measurement and control information.
  • the number of subcarriers for sending a preset level signal or a preset modulation symbol is less than or equal to a preset threshold.
  • a preset level signal or a preset modulation symbol is sent in a cyclic prefix-free CP mode.
  • the processing unit is further configured to update the first beacon resource to the third beacon resource according to the coverage of the communication device, the coverage of the second sending node, and the second beacon resource.
  • the processing unit before the processing unit updates the first beacon resource to the third beacon resource, it is further configured to determine that the communication device and the second sending node cover the first receiving node, and that the first beacon resource and The second beacon resources overlap in the frequency domain.
  • the interface unit is further configured to receive a second signaling from the first receiving node before the processing unit updates the first beacon resource to the third beacon resource, and the second signaling is used to Indicating that the beacon resources of the communication device and the second sending node overlap in the frequency domain.
  • the interface unit is further configured to send first signaling to the first receiving node, where the first signaling is used to indicate to update the first beacon resource to the third beacon resource.
  • the interface unit is further configured to receive a third signaling from the first receiving node, where the third signaling is used to indicate to update the first beacon resource to a third beacon resource; the processing unit, It is also used to update the first beacon resource to the third beacon resource.
  • the embodiment of the present application provides a communication device, where the communication device includes an interface circuit and a processor, and the processor and the interface circuit are coupled to each other.
  • the processor implements the above-mentioned first aspect or the method in any possible design of the first aspect through a logic circuit or executing code instructions.
  • the interface circuit is used for receiving signals from other communication devices other than the communication device and transmitting to the processor or sending signals from the processor to other communication devices other than the communication device. It can be understood that the interface circuit may be a transceiver or a transceiver or a transceiver or an input-output interface.
  • the communication device may further include a memory for storing instructions executed by the processor, or storing input data required by the processor to execute the instructions, or storing data generated after the processor executes the instructions.
  • the memory may be a physically independent unit, or may be coupled with the processor, or the processor may include the memory.
  • the embodiment of the present application provides a communication device, where the communication device includes an interface circuit and a processor, and the processor and the interface circuit are coupled to each other.
  • the processor implements the above-mentioned second aspect or the method in any possible design of the second aspect through a logic circuit or executing code instructions.
  • the interface circuit is used for receiving signals from other communication devices other than the communication device and transmitting to the processor or sending signals from the processor to other communication devices other than the communication device. It can be understood that the interface circuit may be a transceiver or a transceiver or a transceiver or an input-output interface.
  • the communication device may further include a memory for storing instructions executed by the processor, or storing input data required by the processor to execute the instructions, or storing data generated after the processor executes the instructions.
  • the memory may be a physically independent unit, or may be coupled with the processor, or the processor may include the memory.
  • the embodiment of the present application provides a communication system, the communication system includes a first receiving node and a first sending node, and the first receiving node can implement the above-mentioned first aspect or any possible design of the first aspect
  • the first sending node may implement the method in the above second aspect or any possible design of the second aspect.
  • the embodiments of the present application provide a computer-readable storage medium, in which computer programs or instructions are stored, and when the computer programs or instructions are executed, any one of the above-mentioned first aspect or the first aspect can be realized.
  • the embodiment of the present application also provides a computer program product, including computer programs or instructions, when the computer programs or instructions are executed, it can realize the above-mentioned first aspect or any possible design of the first aspect.
  • a method, or a method in implementing the second aspect or any possible design of the second aspect can realize the above-mentioned first aspect or any possible design of the first aspect.
  • the embodiment of the present application also provides a chip, the chip is coupled with the memory, and is used to read and execute the programs or instructions stored in the memory, so as to realize the above-mentioned first aspect or any possible design of the first aspect
  • the method in the method, or the method in the second aspect or any possible design of the second aspect is also provided.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of bandwidth and resources of a beacon mode 1 provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of bandwidth and resources of a beacon mode 3 provided by an embodiment of the present application.
  • FIG. 5 is one of the schematic diagrams of the coverage of the sending node provided by the embodiment of the present application.
  • FIG. 6 is the second schematic diagram of the coverage of the sending node provided by the embodiment of the present application.
  • FIG. 7 is one of the schematic diagrams of the beacon resource update process provided by the embodiment of the present application.
  • FIG. 8 is the second schematic diagram of the beacon resource update process provided by the embodiment of the present application.
  • FIG. 9 is the third schematic diagram of the beacon resource update process provided by the embodiment of the present application.
  • FIG. 10 is one of the schematic diagrams of the communication device provided by the embodiment of the present application.
  • FIG. 11 is the second schematic diagram of the communication device provided by the embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: 5G system, NTN system, global system of mobile communications (GSM) system, enhanced data rate GSM evolution (enhanced data rate for GSM evolution, EDGE) system, wideband code division multiple access (WCDMA) system, code division multiple access (CDMA) 2000 system, time division-synchronization code division Multiple access, TD-SCDMA) system, long term evolution (long term evolution, LTE) system, narrow band internet of things (NB-IoT) system, satellite communication system, etc., can also be applied to future communication systems, Such as the sixth generation (6th generation, 6G) communication system, etc.
  • GSM global system of mobile communications
  • WCDMA wideband code division multiple access
  • CDMA code division multiple access
  • TD-SCDMA time division-synchronization code division Multiple access
  • LTE long term evolution
  • NB-IoT narrow band internet of things
  • the 5G system can be applied to the enhanced mobile broadband (eMBB) system, the ultra-reliable & low-latency communication (URLLC) system, the massive machine type communication (massive machine type of communication, eMTC) system, etc.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable & low-latency communication
  • eMTC massive machine type of communication
  • FIG. 1 is a schematic structural diagram of a communication system applied in an embodiment of the present application.
  • the communication system includes at least one network device, such as 110a, 110b, and 110c in FIG. 1 , and may also include at least one terminal device, such as 120a-120d in FIG. 1 .
  • 110a is an aerial base station, such as a high-altitude platform, a high-altitude aircraft, or a satellite, etc.
  • 110b and 110c are ground base stations.
  • FIG. 1 is only a schematic diagram, and the communication system may include a greater or lesser number of network devices or terminal devices, and may also include other devices, such as wireless relay devices and wireless backhaul devices, Not shown in Figure 1.
  • the above-mentioned network equipment can also be called access network (access network, AN) equipment, or radio access network (radio access network, RAN) equipment, which can be deployed in the radio access network to provide wireless communication for terminal equipment.
  • functional device or equipment the network device may be a base station (base station, BS), a node B (Node B), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), a satellite, a high-altitude platform, or a high-altitude platform Station (high-attitude platform station, HAPS), next generation base station (next generation NodeB, gNB) in 5G system, base station in 6G system, base station in other future mobile communication systems, etc.; it can also complete some functions of the base station Modules or units, for example, can be centralized units (central unit, CU) or distributed units (distributed unit, DU).
  • the CU here completes the functions of the radio resource control protocol and the packet data convergence protocol (PDCP) of the base station, and also completes the function of the service data adaptation protocol (SDAP); the DU completes the functions of the base station
  • the functions of the radio link control layer and the medium access control (medium access control, MAC) layer can also complete the functions of part of the physical layer or all of the physical layer.
  • 3GPP third generation partnership project
  • the network device may be a macro base station, a micro base station or an indoor station, or a relay station (or relay node), a donor node or an access point, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device. It can be understood that all or part of the functions of the network device in this application can also be realized by software functions running on hardware, or by virtualization functions instantiated on a platform (such as a cloud platform).
  • the network equipment may include a baseband unit (base band unit, BBU) and a remote radio unit (remote radio unit, RRU).
  • BBU base band unit
  • RRU remote radio unit
  • the RRU and the BBU are respectively responsible for the radio frequency processing part and the baseband processing part of the network equipment.
  • Optical fiber transmission can be used to realize remote RRU.
  • RRU can be placed in areas with high traffic volume, and BBU can be placed in the central computer room.
  • the BBU and RRU can also be placed in the same computer room or as different components under one rack.
  • a terminal device may also be called a terminal (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal, etc., and is a device or device with a wireless communication function.
  • Terminal devices can be widely used in various scenarios, such as MTC, Internet of Things (IoT), virtual reality, augmented reality, industrial control, automatic driving, telemedicine, smart grid, smart furniture, smart office, smart wear , intelligent transportation, smart city, etc.
  • MTC Internet of Things
  • IoT Internet of Things
  • virtual reality virtual reality
  • augmented reality industrial control
  • automatic driving telemedicine
  • smart grid smart furniture
  • smart office smart office
  • smart wear intelligent transportation
  • smart city etc.
  • the terminal equipment can be a subscriber unit (subscriber unit), cellular phone (cellular phone), smart phone (smart phone), wireless data card, personal digital assistant (personal digital assistant, PDA) computer, tablet computer, wireless modem (modem), Handsets, laptop computers, wearables, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, MTC devices, ground stations, etc.
  • subscriber unit subscriber unit
  • cellular phone cellular phone
  • smart phone smart phone
  • wireless data card personal digital assistant (personal digital assistant, PDA) computer
  • tablet computer tablet computer
  • wireless modem modem
  • Handsets laptop computers, wearables, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, MTC devices, ground stations, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • Network equipment and terminal equipment can be fixed or mobile.
  • Network equipment and terminal equipment can be deployed on land, including indoors or outdoors, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and artificial satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the network device and the terminal device.
  • Communication between network devices and terminal devices, between network devices and network devices, between terminal devices and terminal devices can be performed through licensed spectrum, or through license-free spectrum, or through licensed spectrum and license-free spectrum at the same time
  • Communication can be performed through a frequency spectrum below 6 gigahertz (GHz), or can be performed through a frequency spectrum above 6 GHz, and can also be performed using a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz at the same time.
  • GHz gigahertz
  • the embodiments of the present application do not limit the frequency spectrum resources used for wireless communication.
  • the functions of the network device may also be performed by modules (such as chips) in the network device, or may be performed by a control subsystem including the functions of the network device.
  • the control subsystem here including network equipment functions can be the control center in the above application scenarios such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal equipment may also be performed by a module (such as a chip or a modem) in the terminal equipment, or may be performed by a device including the functions of the terminal equipment.
  • the network device sends downlink signals or downlink information to the terminal device, and the downlink information is carried on the downlink channel; the terminal device sends uplink signals or uplink information to the network device, and the uplink information is carried on the uplink channel.
  • the time-domain symbol can be an Orthogonal Frequency Division Multiplexing (OFDM) symbol, or a Discrete Fourier Transform-spread OFDM (Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM) symbol, or Other types of waveform signals.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DFT-s-OFDM Discrete Fourier Transform-spread-OFDM
  • Other types of waveform signals Unless otherwise specified, the symbols in the embodiments of the present application refer to time-domain symbols.
  • a beacon signal which may also be simply referred to as a beacon, generally refers to a continuous or periodic radio signal with limited information content (such as its identity or location) transmitted on its designated frequency by a transceiver at a known location.
  • the beacon resources for satellites or high-altitude platforms to send beacon signals need to apply to the International Amateur Radio Union (IARU), which is a dedicated fixed frequency. Once the satellite or high-altitude platform is launched, the beacon Resources can no longer be replaced. With the rapid increase in the number of satellites or high-altitude platforms, for large-scale low-orbit satellite systems, the inter-satellite topology changes dynamically. If specific beacon resources are applied for each satellite or high-altitude platform, the beacon resources will be tight.
  • beacon signals cannot be compatible with data transmission (data transmission) communications, such as new air interfaces (new radio, NR) system compatibility
  • network equipment such as satellites or high-altitude platforms
  • terminal equipment such as ground stations need to deploy multiple sets of hardware equipment such as measurement and control, communication, etc., which not only increases the hardware of network equipment such as satellites or high-altitude platforms, and terminal equipment such as ground stations cost, and adds weight to network equipment such as satellites or high-altitude platforms.
  • this application aims to provide a beacon sending and receiving scheme, in order to realize the integration of beacon communication and data transmission communication, and reduce the hardware overhead and weight of network equipment such as satellites or high-altitude platforms and terminal equipment such as ground stations.
  • the sending node may be a network device (such as a satellite, a high-altitude platform, etc.), and the receiving node may be a terminal device (such as a ground station, etc.); or the sending node may be a terminal device, and the receiving node may be a network device.
  • the above-mentioned network device may also refer to a device or component having a network device function, or a chip (such as a processor, or a chip system, etc.) applied to a network device.
  • the above-mentioned terminal equipment may also refer to a device or component having a terminal equipment function, or a chip (such as a processor, or a chip system, etc.) applied in a terminal equipment.
  • first and second are used to distinguish multiple objects, and are not used to limit the size, content, order, timing, etc. of multiple objects. priority or importance etc.
  • first threshold and the second threshold can be the same threshold or different thresholds, and this name does not mean the values, corresponding parameters, priority or importance of these two thresholds, etc. s difference.
  • nouns for the number of nouns, unless otherwise specified, it means “singular noun or plural noun", that is, “one or more". “At least one” means one or more, and “plurality” means two or more. "And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural. The character “/" generally indicates that the contextual objects are an "or” relationship. For example, A/B means: A or B. “At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • Fig. 2 is a schematic diagram of a communication method provided by an embodiment of the present application, the method includes:
  • the first sending node determines one or more subcarriers in the first frequency band.
  • the first frequency band is one of N frequency bands included in the first beacon resource of the first sending node, and N is an integer greater than or equal to 1.
  • the first sending node sends a beacon signal on one or more subcarriers, and correspondingly, the first receiving node receives the beacon signal on one or more subcarriers.
  • S203 The first receiving node parses the beacon signal.
  • multiple beacon modes can be set to realize the sending and receiving of different types of beacon signals.
  • unmodulated single-carrier beacon mode (beacon mode 1)
  • modulated single-carrier beacon mode (beacon mode 2)
  • modulated multi-carrier beacon mode (beacon mode 3)
  • other beacon modes can be set for Transmission and reception of unmodulated single-carrier type beacon signals, modulated single-carrier type beacon signals, modulated multi-carrier type beacon signals, and the like.
  • different beacon modes may correspond to different bandwidth and frequency domain resource configurations, and different beacon signal transmission modes may also be used. The following three beacon modes will be described in detail from the aspects of bandwidth and frequency resource configuration for sending beacon signals, and a sending mode of beacon signals.
  • Beacon mode 1 can define a beacon frequency band, such as beacon frequency band 1 (BW_beacon1), in BW_beacon1, one or more subcarriers configured at intervals can be used to carry beacon signals, and the remaining subcarriers It is the beacon guard band; or BW_beacon1 can also be a group of frequency domain resources including multiple sub-bands (ie, sub-bands), one sub-carrier in each sub-band can be used to carry beacon signals, and the remaining sub-carriers are beacon guard bands .
  • BW_beacon1 can define a beacon frequency band, such as beacon frequency band 1 (BW_beacon1), in BW_beacon1, one or more subcarriers configured at intervals can be used to carry beacon signals, and the remaining subcarriers It is the beacon guard band; or BW_beacon1 can also be a group of frequency domain resources including multiple sub-bands (ie, sub-bands), one sub-carrier in each sub-band can be used
  • Beacon mode 1 can define the use of CP-free mode to send beacon signals, for example, add CP with CP length of 0 as the CP-free mode, beacon mode 1 uses CP with CP length of 0, That is, no CP sends a beacon signal.
  • Beacon signals and NR data signals can use the same baseband module.
  • FIG. 3 it is a schematic diagram of a frequency band of a beacon mode 1 provided by the embodiment of the present application, such as frequency band A, which can occupy a section of frequency domain resources in the digital transmission frequency domain resources, and the bandwidth of frequency band A is The bandwidth of a section of frequency domain resources occupied by frequency band A.
  • One subcarrier in frequency band A is used to carry beacon signals, and the remaining subcarriers are beacon protection bands, which do not carry beacon signals and are used to prevent beacon signals from communicating with data transmission. Interference between data signals carried by frequency bands.
  • beacon signals such as preset level signals or preset modulation symbols
  • the preset level signal can be a level signal that is always 1, etc.
  • the preset modulation symbol can be +1 or -1 in binary phase shift keying (binary phase shift keying, BPSK) modulation, a+ in quadrature phase shift keying (quadrature phase shift keying, QPSK) modulation aj, a-aj, -a+aj, or -a-aj, etc.
  • the level signal which is always 1 may be a sine wave signal with constant amplitude, which may be understood as carrying no information.
  • sending signals can be used for antenna alignment, etc.
  • the beacon signal carried by the sub-carrier in the frequency band of beacon mode 1 can be sent in the non-CP mode, and the OFDM symbol carrying the beacon signal has no CP splicing, which can ensure the phase continuity of the beacon signal on the carrier, and the phase continuity
  • the beacon signal has its own circular convolution feature, and the CP-free beacon signal has no inter-carrier interference to the data signal.
  • Beacon mode 2 can define a beacon frequency band, such as beacon frequency band 2 (BW_beacon2).
  • BW_beacon2 is similar to BW_beacon1.
  • one or more subcarriers configured at intervals can be used to carry beacons signal, and the rest of the subcarriers are beacon guard bands; or
  • BW_beacon2 can also be a group of frequency domain resources containing multiple subbands (ie, subbands), one subcarrier in each subband can be used to carry beacon signals, and the rest of the subcarriers Protective belt for the beacon.
  • Beacon mode 2 can define a normal (normal) CP or an extended (extended) CP defined by the NR standard. Beacon signals and NR data signals can use the same baseband module.
  • the subcarriers in the frequency band of the beacon mode 2 can be used to carry reference signals for navigation and/or TT&C, or TT&C information.
  • Sending beacon signals using beacon mode 2 can be used for antenna alignment or for transmitting a small amount or part of measurement and control information.
  • different sending nodes can send different reference signals (or reference sequences) to the receiving node on subcarriers of different beacon modes 2, so that the receiving node can perform antenna calibration and sending node identification for multiple sending nodes.
  • beacon mode 3 can define a beacon frequency band, such as beacon frequency band 3 (BW_beacon3), in BW_beacon3 there are multiple consecutive subcarriers that can be used to carry beacon signals.
  • BW_beacon3 beacon frequency band 3
  • Beacon mode 3 can define a common CP or an extended CP defined by the NR standard. Beacon signals and NR data signals can use the same baseband module.
  • FIG 4 it is a schematic diagram of a frequency band of a beacon mode 3 provided by the embodiment of the present application, such as frequency band C, which can occupy a section of frequency domain resources in the digital transmission frequency domain resources, and the bandwidth of frequency band C is The bandwidth of a frequency domain resource occupied by the frequency band C, and multiple consecutive subcarriers in the frequency band C can be used to carry beacon signals.
  • frequency band C which can occupy a section of frequency domain resources in the digital transmission frequency domain resources
  • the bandwidth of frequency band C is The bandwidth of a frequency domain resource occupied by the frequency band C, and multiple consecutive subcarriers in the frequency band C can be used to carry beacon signals.
  • Multiple consecutive subcarriers in the frequency band of beacon mode 3 can be used to carry measurement and control information.
  • the amount of measurement and control information carried by multiple consecutive subcarriers in the frequency band of beacon mode 3 can be larger, for example, the data volume of measurement and control information is less than or equal to
  • the frequency band of beacon mode 2 can be used for transmission, and when the data volume of the measurement and control information is greater than the first threshold, the frequency band of beacon mode 3 can be used for transmission.
  • a corresponding beacon resource may be configured (or applied for) for each sending node, and the beacon resource may include one or more frequency bands of a beacon mode.
  • the first beacon resource configured for the first sending node contains three frequency bands, namely frequency band A1, frequency band B1 and frequency band C1, where frequency band A1 is the frequency band of beacon mode 1, and frequency band B1 is the beacon
  • the frequency band of Mode 2 and the frequency band C1 are the frequency bands of Beacon Mode 3.
  • more or less frequency bands in beacon mode may be configured for the sending node according to service requirements of the sending node.
  • the beacon resource configured for the sending node may only include the frequency band of beacon mode 1 and the frequency band of beacon mode 2.
  • the first sending node can send the specific type of beacon signal according to the need , select a corresponding frequency band, and determine one or more subcarriers for sending beacon signals in the selected frequency band.
  • the first sending node can send the specific type of beacon signal according to the need , select a corresponding frequency band, and determine one or more subcarriers for sending beacon signals in the selected frequency band.
  • it can be configured when configuring the first beacon resource for the first sending node, or can be defined in advance for each frequency band of the beacon mode.
  • the carrier selection rule, the first sending node and the corresponding receiving node may also determine one or more subcarriers in the frequency band that can be used to send the beacon signal according to the rule.
  • the beacon signal is a preset level signal
  • the first transmitting node may select frequency band A1 as the frequency band for transmitting the beacon signal among frequency band A1, frequency band B1, and frequency band C1, and determine that the frequency band A1 can be used to transmit the signal.
  • one or more subcarriers of the beacon signal and transmit the beacon signal on the determined one or more subcarriers.
  • the corresponding first receiving node receives the beacon signal on one or more subcarriers, and can analyze the received beacon signal, such as continuously rotating the direction of the receiving antenna to maximize the power of the received signal on the corresponding frequency point (or subcarrier) , so as to align with the first sending node.
  • the beacon signal is measurement and control information, such as pictures taken by satellites, data monitored by satellites, etc.
  • the data volume of measurement and control information is greater than the first threshold
  • the first sending node can choose between frequency band A1, frequency band B1 and frequency band C1
  • the frequency band C1 is used as a frequency band for sending beacon signals, multiple subcarriers available for sending beacon signals in the frequency band C1 are determined, and beacon signals are sent on the determined multiple subcarriers.
  • the corresponding first receiving node receives beacon signals on multiple subcarriers, and can analyze the beacon signals to obtain measurement and control information, such as obtaining pictures taken by satellites, data monitored by satellites, and the like.
  • the first receiving node determines one or more subcarriers in the frequency band that can be used to send beacon signals in a manner similar to that of the first sending node, for example: according to the configuration in the first beacon resource of the first sending node
  • Each frequency band may be determined according to the configuration information of one or more subcarriers that can be used to send beacon signals, or may be determined according to a pre-defined subcarrier selection rule for the frequency band of each beacon mode.
  • the number of subcarriers for sending a preset level signal or a preset modulation symbol may be less than or equal to a preset threshold, for example, less than or equal to 2.
  • the number of subcarriers that can be used to send beacon signals in the frequency band of beacon mode 1 can be configured to be less than or equal to the preset threshold value, thereby limiting the transmission of preset level signals or preset modulation symbols The number of subcarriers.
  • the beacon resource of the sending node can be configured (Beacon_config), and the beacon resource can be multiplexed among multiple sending nodes, that is, one beacon resource can be used simultaneously Used by one or more sending nodes.
  • Beacon resource A, beacon resource B, ..., beacon resource E, beacon resource F a total of 6 beacon resources can be used in sending node 1, sending node 2, sending node 3, ..., sending node 15.
  • the sending node 16 is multiplexed among a total of 16 sending nodes.
  • beacon resource A is used by sending node 1, sending node 3, sending node 7, and sending node 9
  • beacon resource B is used by sending node 2, sending node 4, sending node 8, and sending node 10.
  • Beacon resource C is used by sending node 5, sending node 11, sending node 13, and sending node 15.
  • Beacon resource D is used by sending node 6, sending node 12, sending node 14, and sending node 16.
  • Beacon resource E and the beacon resource F are temporarily idle and are not used by the sending node.
  • any two different beacon resources may not overlap in the frequency domain, or may be in the There is partial overlap in the frequency domain.
  • the default configuration (beacon_default) can be adopted.
  • a beacon resource is selected for the sending node from multiple beacon resources in the constellation where the sending node is located (such as Choose a default beacon resource) as the initial beacon resource.
  • any two different beacon resources do not overlap in the frequency domain as an example Be explained.
  • the areas covered by multiple sending nodes may overlap at a certain moment or in a certain period of time, and the same beacon resources are reused. Resources overlap and collide in the frequency domain.
  • the information of sending nodes can be updated actively by sending nodes or instructed by receiving nodes.
  • the configuration of beacon resources is dynamically updated to avoid collision of beacon resources between sending nodes.
  • the update of the first beacon resource of the first sending node is taken as an example below for description.
  • Manner 1 The first sending node updates the first beacon resource to the third beacon resource according to the coverage of the first sending node, the coverage of the second sending node, and the second beacon resource.
  • the number of the second sending node may be one or more, and the second sending node may refer to any sending node in the constellation where the first sending node is located except the first sending node, or any sending node in the constellation where the first sending node is located.
  • the first sending node covers the sending node with the closest distance, or all sending nodes in the constellation where the first sending node is located except the first sending node.
  • the first sending node can interact with other sending nodes in the constellation where the first sending node is located to obtain the constellation The coverage of other sending nodes in the constellation and the information of the used beacon resources, and can be selected from other sending nodes in the constellation according to the coverage of other sending nodes in the constellation and the coverage of the first sending node itself A sending node whose coverage area has the smallest distance from its own coverage area serves as the second sending node.
  • the first sending node can update its own first beacon resource to the third beacon resource according to the coverage of the second sending node and the used second beacon resource. For example, the first sending node may select one of multiple beacon resources in the constellation where the first sending node is located as the third beacon resource, and update the first beacon resource used by itself to the third beacon resource.
  • the updated third beacon resource of the first sending node is different from the first beacon resource; if there is no overlap between the coverage of the first sending node and the coverage of the second sending node, or the first beacon resource and the second beacon resource.
  • the two beacon resources do not overlap in the frequency domain, and the third beacon resource after the update of the first sending node can be the same as the first beacon resource, that is, the first beacon resource before the update of the first sending node is the same as the updated
  • the subsequent third beacon resource may be the same beacon resource.
  • both the first sending node and the second sending node cover the first receiving node, and the first beacon resource of the first sending node and the beacon resource of the second sending node are in frequency There is overlap in the domain, and the third beacon resource updated by the first sending node is a beacon resource that is different from the first beacon resource and does not overlap with the second beacon resource in the frequency domain.
  • a beacon resource update cycle can be set, and the first sending node can follow the beacon resource update cycle according to the coverage of the first sending node, and the second The coverage of the node and the second beacon resource are sent, and the first beacon resource is updated to the third beacon resource.
  • the first sending node determines that the first sending node and the second sending node cover the first receiving node, and that the first beacon resource and the second beacon resource overlap in the frequency domain; the first sending node according to the first The coverage of the sending node, as well as the coverage of the second sending node and the second beacon resource, update the first beacon resource to the third beacon resource.
  • the first sending node can interact with other sending nodes in the constellation where the first sending node is located, obtain the coverage of other sending nodes in the constellation and the information of the used beacon resources, and determine whether to communicate with Other sending nodes cover the same receiving node, and beacon resources overlap in the frequency domain. If the first sending node determines that both the first sending node and the second sending node in the constellation cover the first receiving node, and the first beacon resource of the first sending node and the second beacon resource of the second sending node are in frequency If there is an overlap in the frequency domain, the first sending node updates the first beacon resource to a third beacon resource that does not overlap with the second beacon resource in the frequency domain. Specifically, the first sending node may select a beacon resource that does not overlap with the second beacon resource in the frequency domain from among multiple beacon resources in the constellation where it is located, as the third beacon resource.
  • the first The sending node may also send first signaling (such as beacon resource configuration indication signaling), where the first signaling is used to instruct to update the first beacon resource to the third beacon resource.
  • first signaling such as beacon resource configuration indication signaling
  • the identifier of the first sending node and the identifier of the third beacon resource may be carried in the first signaling to indicate that the first beacon resource currently used by the first sending node is updated to the third beacon resource.
  • the first sending node may send the first signaling to the first receiving node within the coverage of the first sending node, in the first signaling
  • the identifier of the first sending node and the identifier of the third beacon resource may be carried to indicate that the first beacon resource currently used by the first sending node is updated to the third beacon resource.
  • the first receiving node updates the saved first beacon resource of the first sending node to a third beacon resource, so as to receive a beacon from the first sending node according to the third beacon resource Signal.
  • Mode 3 The first sending node receives the second signaling from the first receiving node, and the second signaling is used to indicate that the beacon resources of the first sending node and the second sending node overlap in the frequency domain; the first sending node The first beacon resource is updated to the third beacon resource according to the second beacon resource of the second sending node.
  • the first receiving node determines the first sending node and the second sending node through the ephemeris of the first sending node and the second sending node, and the information of the beacon resource issued by the first sending node and the second sending node.
  • Two sending nodes cover the first receiving node, and the first beacon resource of the first sending node overlaps with the second beacon resource of the second sending node in the frequency domain, the first receiving node may send The second signaling (such as beacon resource configuration update request signaling), the second signaling may carry the identifier of the second sending node, and is used to indicate that the beacon resources of the first sending node and the second sending node are in the frequency domain There is overlap.
  • the second signaling such as beacon resource configuration update request signaling
  • the first sending node After the first sending node receives the second signaling from the first receiving node, it can update its own first beacon resource to be in the frequency domain with the second beacon resource according to the second beacon resource of the second sending node. There is no overlapping third beacon resource on .
  • the first The sending node may also send a first signaling (such as beacon resource configuration indication signaling) to a receiving node within the coverage of the first sending node, such as the first receiving node, and the first signaling may be used to indicate that the first beacon resource Updated to third beacon resource.
  • a first signaling such as beacon resource configuration indication signaling
  • the first receiving node updates the saved first beacon resource of the first sending node to a third beacon resource, so as to receive a beacon from the first sending node according to the third beacon resource Signal.
  • Mode 4 The first sending node receives the third signaling from the first receiving node, and the third signaling is used to instruct to update the first beacon resource to the third beacon resource; the first sending node updates the first beacon resource update to the third beacon resource.
  • the first receiving node can determine the relationship between the first sending node and the After the second sending node covers the first receiving node, and the first beacon resource of the first sending node overlaps with the second beacon resource of the second sending node in the frequency domain, the first receiving node may send The node determines a third beacon resource that does not overlap with the second beacon resource in the frequency domain, and sends a third signal for instructing to update the first beacon resource to the third beacon resource to the first sending node. signaling (such as beacon resource configuration update indication signaling).
  • the first receiving node may also update the saved first beacon resource of the first sending node to a third beacon resource, so as to receive a beacon signal from the first sending node according to the third beacon resource.
  • the first sending node After receiving the third signaling, the first sending node can update the first beacon resource to the third beacon resource according to the third signaling, and use the third beacon resource to send the beacon signal.
  • the identifier of the third beacon resource may be carried in the third signaling, so as to realize the indication of updating the first beacon resource to the third beacon resource.
  • the first receiving node and the first sending node include corresponding hardware structures and/or software modules for performing respective functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with reference to the units and method steps of the examples described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware or computer software drives the hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG. 10 and FIG. 11 are schematic structural diagrams of possible communication devices provided by the embodiments of the present application. These communication devices can be used to implement the functions of the first receiving node or the first sending node in the above method embodiments, and therefore can also realize the beneficial effects of the above method embodiments.
  • the communication device may be a network device as shown in Figure 1, or a terminal device as shown in Figure 1, or a module (such as a chip) applied to a network device or a terminal device .
  • the communication device 1000 includes a processing unit 1010 and an interface unit 1020 , where the interface unit 1020 may also be a transceiver unit or an input-output interface.
  • the communication device 1000 may be used to realize the function of the first receiving node or the first sending node in the method embodiment shown in FIG. 2 , or FIG. 7 , or FIG. 8 , or FIG. 9 above.
  • a processing unit 1010 configured to determine one or more subcarriers in a first frequency band, where the first frequency band is one of N frequency bands included in the first beacon resource of the first sending node, where N is greater than or equal to 1 integer;
  • an interface unit 1020 configured to receive beacon signals on one or more subcarriers
  • the processing unit 1010 is further configured to analyze the beacon signal.
  • the beacon signal includes at least one of the following: a preset level signal, a preset modulation symbol, a reference signal for navigation and/or measurement and control, or measurement and control information.
  • the number of subcarriers receiving a preset level signal or a preset modulation symbol is less than or equal to a preset threshold.
  • a preset level signal or a preset modulation symbol is received in a CP mode.
  • the interface unit 1020 is further configured to receive a first signaling from the first sending node, where the first signaling is used to indicate to update the first beacon resource to the third beacon resource; the processing unit 1010. Further, update the first beacon resource of the first sending node to the third beacon resource.
  • the processing unit 1010 is further configured to determine that the communication device is covered by the first sending node and the second sending node, and that the first beacon resource and the second beacon resource of the second sending node are in the frequency domain There is an overlap; the interface unit 1020 is further configured to send second signaling to the first sending node, where the second signaling is used to indicate that the beacon resources of the first sending node and the second sending node overlap in the frequency domain.
  • the processing unit 1010 is further configured to determine that the communication device is covered by the first sending node and the second sending node, and that the first beacon resource and the second beacon resource of the second sending node are in the frequency domain overlap exists; the interface unit 1020 is further configured to send third signaling to the first sending node, where the third signaling is used to instruct to update the first beacon resource to the third beacon resource.
  • the processing unit 1010 is further configured to update the first beacon resource of the first sending node to the third beacon resource.
  • a processing unit 1010 configured to determine one or more subcarriers in a first frequency band, where the first frequency band is one of N frequency bands included in the first beacon resource of the communication device, where N is an integer greater than or equal to 1;
  • the interface unit 1020 is configured to send beacon signals on one or more subcarriers.
  • the beacon signal includes at least one of the following: a preset level signal, a preset modulation symbol, a reference signal for navigation and/or measurement and control, or measurement and control information.
  • the number of subcarriers for sending a preset level signal or a preset modulation symbol is less than or equal to a preset threshold.
  • a preset level signal or a preset modulation symbol is sent in a CP mode.
  • the processing unit 1010 is further configured to update the first beacon resource to the third beacon resource according to the coverage of the communication device, the coverage of the second sending node, and the second beacon resource .
  • the processing unit 1010 before the processing unit 1010 updates the first beacon resource to the third beacon resource, it is further configured to determine that the communication device and the second sending node cover the first receiving node, and that the first beacon resource There is an overlap with the second beacon resource in the frequency domain.
  • the interface unit 1020 is further configured to receive a second signaling from the first receiving node before the processing unit 1010 updates the first beacon resource to the third beacon resource, and the second signaling Beacon resources used to indicate the communication device and the second sending node overlap in frequency domain.
  • the interface unit 1020 is further configured to send a first signaling to the first receiving node, where the first signaling is used to indicate to update the first beacon resource to the third beacon resource.
  • the interface unit 1020 is further configured to receive a third signaling from the first receiving node, where the third signaling is used to indicate to update the first beacon resource to the third beacon resource; the processing unit 1010, further updating the first beacon resource to the third beacon resource.
  • a communication device 1100 includes a processor 1110 and an interface circuit 1120 .
  • the processor 1110 and the interface circuit 1120 are coupled to each other.
  • the interface circuit 1120 may be a transceiver or an input-output interface.
  • the communication device 1100 may further include a memory 1130 for storing instructions executed by the processor 1110 or storing input data required by the processor 1110 to execute the instructions or storing data generated by the processor 1110 after executing the instructions.
  • the memory 1130 may also be integrated with the processor 1110 .
  • the first receiving node chip implements the function of the first receiving node in the above method embodiment.
  • the first receiving node chip receives information from other modules (such as radio frequency modules or antennas) in the first receiving node, and the information is sent to the first receiving node by the first sending node or other sending nodes; or, the first receiving node
  • the node chip sends information to other modules (such as radio frequency modules or antennas) in the first receiving node, and the information is sent by the first receiving node to the first sending node or other sending nodes.
  • the first sending node chip implements the function of the first sending node in the above method embodiment.
  • the first sending node chip receives information from other modules (such as radio frequency modules or antennas) in the first sending node, and the information is sent to the first receiving node by the first receiving node or other receiving nodes or other sending nodes; or,
  • the first sending node chip sends information to other modules (such as radio frequency modules or antennas) in the first sending node, and the information is sent by the first sending node to the first receiving node or other receiving nodes or other sending nodes.
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device. Certainly, the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; or it may be a semiconductor medium, such as a solid state disk.
  • the computer readable storage medium may be a volatile or a nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
  • information, signal (signal), message (message), and channel (channel) can sometimes be used interchangeably.
  • signal signal
  • message messages
  • channel channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信领域,公开了一种信标发送、接收方法及装置,能够减少卫星或高空平台等网络设备以及地面站等终端设备的硬件开销和重量。该方法包括:第一发送节点确定第一频带中的一个或多个子载波,其中第一频带为第一发送节点的第一信标资源中包括的N个频带中的一个,N为大于或等于1的整数;第一发送节点在一个或多个子载波上发送信标信号,相应的,第一接收节点在一个或多个子载波上接收信标信号;第一接收节点解析信标信号。

Description

一种信标发送、接收方法及装置
相关申请的交叉引用
本申请要求在2021年12月02日提交中国专利局、申请号为202111463385.1、申请名称为“一种信标发送、接收方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种信标发送、接收方法及装置。
背景技术
非地面网络(non-terrestrial network,NTN)具有覆盖范围广、通信距离远、可靠性高、灵活性大、吞吐高,以及不受地理环境、气候条件和自然灾害影响等优点,已经被广泛应用于航空通信、海事通信、军事通信等领域。将NTN引入移动通信系统中,如引入第五代(5th generation,5G)系统中,不仅可以为地面网络难以覆盖的区域,如海洋、森林、沙漠、高山等提供通信服务,还可以增强通信的可靠性,如为火车、飞机以及这些交通工具上的用户提供更稳定更优质的通信服务,以及提供更多的数据传输资源,如支持更多数量的终端设备连接。
然而,目前NTN中的卫星或高空平台搭载的测控、通信等设备相互独立,测控设备可用于星间或与地面站进行信标信号的发送和接收,用于天线对准、遥测信息传输或遥控信息传输等,通信设备则可用于为终端设备提供数传(即数据传输)服务。终端设备(如地面站)也需要采用分离的信标收发机和通信收发机,分别处理信标信号和数传信号。测控、通信等多套硬件设备的部署不仅增加了卫星或高空平台以及终端设备的硬件成本,还增加了卫星或高空平台的重量,因此如何实现信标通信和数传通信一体化,是值得考虑的问题。
发明内容
本申请实施例提供一种信标发送、接收方法及装置,能够减少卫星或高空平台等网络设备以及地面站等终端设备的硬件开销和重量。
第一方面,本申请实施例提供一种信标接收方法,该方法包括:第一接收节点确定第一频带中的一个或多个子载波,其中第一频带为第一发送节点的第一信标资源中包括的N个频带中的一个,N为大于或等于1的整数;第一接收节点在一个或多个子载波上接收信标信号;第一接收节点解析信标信号。
上述通信方法可以由第一接收节点执行,也可以由第一接收节点的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分第一接收节点功能的逻辑模块或软件实现。其中,第一接收节点可以为网络设备,如卫星或高空平台等,也可以为终端设备,还可以是地面站等。
采用上述方法,信标信号可以与数传通信采用统一的制式,如新空口(new radio,NR) 制式,在数传频段中为信标配置频带,信标信号的发送节点可以在为信标配置的频带中的一个或多个子载波上发送信标信号,相应的接收节点在该频带中的一个或多个子载波上接收信标信号,使得信标通信和数传通信可以采用同一套收发设备,能够减少信标信号的发送节点和信标信号的接收节点的硬件开销和重量,例如能够减少卫星或高空平台等网络设备以及地面站等终端设备的硬件开销和重量。
在一种可能的设计中,信标信号包括以下中的至少一项:预设的电平信号、预设的调制符号、用于导航和/或测控的参考信号、或测控信息等。可选的,接收预设的电平信号或预设的调制符号的子载波个数小于或等于预设的阈值。
上述设计中,信标信号可以为预设的电平信号、预设的调制符号、用于导航和/或测控的参考信号、或测控信息等中的一项或多项,还可以对测控、导航等信号均采用与数传通信统一的制式,有利于减少信标信号的发送节点和信标信号的接收节点的硬件开销和重量。
在一种可能的设计中,采用无循环前缀(cyclic prefix,CP)模式接收预设的电平信号或预设的调制符号。
上述设计中,对占用子载波数量较少的预设的电平信号或预设的调制符号采用无CP模式发送和接收,有利于保障子载波上信号的相位连续性,减少对数传频带的数据信号的载波间干扰。
在一种可能的设计中,该方法还包括:第一接收节点接收来自第一发送节点的第一信令,第一信令用于指示将第一信标资源更新为第三信标资源;第一接收节点将第一发送节点的第一信标资源更新为第三信标资源。
上述设计中,信标资源可以在多个发送节点间灵活配置,没有覆盖到相同接收节点的发送节点可以复用相同的信标资源,覆盖到相同接收节点的多个发送节点,可以通过信标资源配置更新,避免信标资源发生碰撞。
在一种可能的设计中,第一接收节点接收来自第一发送节点的第一信令之前,该方法还包括:第一接收节点确定第一发送节点与第二发送节点覆盖到第一接收节点、且第一信标资源与第二发送节点的第二信标资源在频域上存在重叠;第一接收节点向第一发送节点发送第二信令,第二信令用于指示第一发送节点与第二发送节点的信标资源在频域上存在重叠。
上述设计中,可以由接收节点确定发送节点间是否存在覆盖到相同接收节点,且信标资源存在碰撞,并在发送节点间存在覆盖到相同接收节点,且信标资源存在碰撞时,请求发送节点进行信标资源配置更新,有利于避免覆盖到相同接收节点的发送节点间信标资源发生碰撞,能够提高通信的可靠性。
在一种可能的设计中,该方法还包括:第一接收节点确定第一发送节点与第二发送节点覆盖到第一接收节点、且第一信标资源与第二发送节点的第二信标资源在频域上存在重叠;第一接收节点向第一发送节点发送第三信令,第三信令用于指示将第一信标资源更新为第三信标资源。可选的,该方法还包括:第一接收节点将第一发送节点的第一信标资源更新为第三信标资源。
上述设计中,在接收节点确定发送节点间存在覆盖到相同接收节点,且信标资源存在碰撞时,可以指示发送节点如何进行信标资源配置更新,有利于避免覆盖到相同接收节点的发送节点间信标资源发生碰撞,能够提高通信的可靠性。
第二方面,本申请实施例提供一种信标发送方法,该方法包括:第一发送节点确定第 一频带中的一个或多个子载波,其中第一频带为第一发送节点的第一信标资源中包括的N个频带中的一个,N为大于或等于1的整数;第一发送节点在一个或多个子载波上发送信标信号。
上述通信方法可以由第一发送节点执行,也可以由第一发送节点的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分第一发送节点功能的逻辑模块或软件实现。其中,第一发送节点可以为网络设备,例如卫星、高空平台等,也可以为终端设备,还可以是地面站等。
采用上述方法,信标信号可以与数传通信采用统一的制式,如NR制式,在数传频段中为信标配置频带,发送节点可以在为信标配置的频带中的一个或多个子载波上发送信标信号,使得信标通信和数传通信可以采用同一套收发设备,能够减少信标信号的发送节点和信标信号的接收节点的硬件开销和重量,例如能够减少卫星或高空平台等网络设备以及地面站等终端设备的硬件开销和重量。
在一种可能的设计中,信标信号包括以下中的至少一项:预设的电平信号、预设的调制符号、用于导航和/或测控的参考信号、或测控信息等。可选的,发送预设的电平信号或预设的调制符号的子载波个数小于或等于预设的阈值。
上述设计中,信标信号可以为预设的电平信号、预设的调制符号、用于导航和/或测控的参考信号、或测控信息等中的一项或多项,还可以对测控、导航等信号均采用与数传通信统一的制式,有利于减少信标信号的发送节点和信标信号的接收节点的硬件开销和重量。
在一种可能的设计中,采用无循环前缀CP模式发送预设的电平信号或预设的调制符号。
上述设计中,对占用子载波数量较少的预设的电平信号或预设的调制符号采用无CP模式发送和接收,有利于保障子载波上信号的相位连续性,减少对数传频带的数据信号的载波间干扰。
在一种可能的设计中,该方法还包括:第一发送节点根据第一发送节点的覆盖范围,以及第二发送节点的覆盖范围和第二信标资源,将第一信标资源更新为第三信标资源。可选的,该方法还包括:该方法还包括:第一发送节点向第一接收节点发送第一信令,第一信令用于指示将第一信标资源更新为第三信标资源。
上述设计中,信标资源可以在多个发送节点间灵活配置,没有覆盖到相同接收节点的发送节点可以复用相同的信标资源,覆盖到相同接收节点的多个发送节点,可以通过信标资源配置更新,避免信标资源发生碰撞。
在一种可能的设计中,将第一信标资源更新为第三信标资源之前,该方法还包括:第一发送节点确定第一发送节点和第二发送节点覆盖到第一接收节点、且第一信标资源与第二信标资源在频域上存在重叠。
上述设计中,可以由发送节点确定发送节点间是否存在覆盖到相同接收节点,且信标资源存在碰撞的情况,并在发送节点间存在覆盖到相同接收节点,且信标资源存在碰撞时,进行信标资源配置更新,有利于避免信标资源发生碰撞,提高通信的可靠性。
在一种可能的设计中,将第一信标资源更新为第三信标资源之前,该方法还包括:第一发送节点接收来自第一接收节点的第二信令,第二信令用于指示第一发送节点与第二发送节点的信标资源在频域上存在重叠。
上述设计中,可以由接收节点确定发送节点间是否存在覆盖到相同接收节点,且信标 资源存在碰撞,并在发送节点间存在覆盖到相同接收节点,且信标资源存在碰撞时,请求发送节点进行信标资源配置更新,有利于避免覆盖到相同接收节点的发送节点间信标资源发生碰撞,能够提高通信的可靠性。
在一种可能的设计中,该方法还包括:第一发送节点接收来自第一接收节点的第三信令,第三信令用于指示将第一信标资源更新为第三信标资源;第一发送节点将第一信标资源更新为第三信标资源。
上述设计中,在接收节点确定发送节点间存在覆盖到相同接收节点,且信标资源存在碰撞时,可以指示发送节点如何进行信标资源配置更新,有利于避免覆盖到相同接收节点的发送节点间信标资源发生碰撞,能够提高通信的可靠性。
第三方面,本申请实施例提供一种通信装置,该通信装置可以包括:接口单元和处理单元;处理单元,用于确定第一频带中的一个或多个子载波,其中第一频带为第一发送节点的第一信标资源中包括的N个频带中的一个,N为大于或等于1的整数;接口单元,用于在一个或多个子载波上接收信标信号;处理单元,还用于解析信标信号。
在一种可能的设计中,信标信号包括以下中的至少一项:预设的电平信号、预设的调制符号、用于导航和/或测控的参考信号、或测控信息。
在一种可能的设计中,接收预设的电平信号或预设的调制符号的子载波个数小于或等于预设的阈值。
在一种可能的设计中,采用无循环前缀CP模式接收预设的电平信号或预设的调制符号。
在一种可能的设计中,接口单元,还用于接收来自第一发送节点的第一信令,第一信令用于指示将第一信标资源更新为第三信标资源;处理单元,还用于将第一发送节点的第一信标资源更新为第三信标资源。
在一种可能的设计中,处理单元,还用于确定第一发送节点与第二发送节点覆盖到通信装置、且第一信标资源与第二发送节点的第二信标资源在频域上存在重叠;接口单元,还用于向第一发送节点发送第二信令,第二信令用于指示第一发送节点与第二发送节点的信标资源在频域上存在重叠。
在一种可能的设计中,处理单元,还用于确定第一发送节点与第二发送节点覆盖到通信装置、且第一信标资源与第二发送节点的第二信标资源在频域上存在重叠;接口单元,还用于向第一发送节点发送第三信令,第三信令用于指示将第一信标资源更新为第三信标资源。
在一种可能的设计中,处理单元,还用于将第一发送节点的第一信标资源更新为第三信标资源。
第四方面,本申请实施例提供一种通信装置,该通信装置可以包括:接口单元和处理单元;处理单元,用于确定第一频带中的一个或多个子载波,其中第一频带为通信装置的第一信标资源中包括的N个频带中的一个,N为大于或等于1的整数;接口单元,用于在一个或多个子载波上发送信标信号。
在一种可能的设计中,信标信号包括以下中的至少一项:预设的电平信号、预设的调制符号、用于导航和/或测控的参考信号、或测控信息。
在一种可能的设计中,发送预设的电平信号或预设的调制符号的子载波个数小于或等于预设的阈值。
在一种可能的设计中,采用无循环前缀CP模式发送预设的电平信号或预设的调制符号。
在一种可能的设计中,处理单元,还用于根据通信装置的覆盖范围,以及第二发送节点的覆盖范围和第二信标资源,将第一信标资源更新为第三信标资源。
在一种可能的设计中,处理单元将第一信标资源更新为第三信标资源之前,还用于确定通信装置和第二发送节点覆盖到第一接收节点、且第一信标资源与第二信标资源在频域上存在重叠。
在一种可能的设计中,接口单元,还用于在处理单元将第一信标资源更新为第三信标资源之前,接收来自第一接收节点的第二信令,第二信令用于指示通信装置与第二发送节点的信标资源在频域上存在重叠。
在一种可能的设计中,接口单元,还用于向第一接收节点发送第一信令,第一信令用于指示将第一信标资源更新为第三信标资源。
在一种可能的设计中,接口单元,还用于接收来自第一接收节点的第三信令,第三信令用于指示将第一信标资源更新为第三信标资源;处理单元,还用于将第一信标资源更新为第三信标资源。
第五方面,本申请实施例提供一种通信装置,该通信装置包括接口电路和处理器,处理器和接口电路之间相互耦合。处理器通过逻辑电路或执行代码指令用于实现上述第一方面或者第一方面的任一种可能的设计中的方法。接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给该通信装置之外的其它通信装置。可以理解的是,接口电路可以为收发器或收发机或收发信机或输入输出接口。
可选的,通信装置还可以包括存储器,用于存储处理器执行的指令或存储处理器运行指令所需要的输入数据或存储处理器运行指令后产生的数据。存储器可以是物理上独立的单元,也可以与处理器耦合,或者处理器包括该存储器。
第六方面,本申请实施例提供一种通信装置,该通信装置包括接口电路和处理器,处理器和接口电路之间相互耦合。处理器通过逻辑电路或执行代码指令用于实现上述第二方面或者第二方面的任一种可能的设计中的方法。接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给该通信装置之外的其它通信装置。可以理解的是,接口电路可以为收发器或收发机或收发信机或输入输出接口。
可选的,通信装置还可以包括存储器,用于存储处理器执行的指令或存储处理器运行指令所需要的输入数据或存储处理器运行指令后产生的数据。存储器可以是物理上独立的单元,也可以与处理器耦合,或者处理器包括该存储器。
第七方面,本申请实施例提供一种通信系统,该通信系统包括第一接收节点和第一发送节点,第一接收节点可以实现上述第一方面或者第一方面的任一种可能的设计中的方法,第一发送节点可以实现上述第二方面或者第二方面的任一种可能的设计中的方法。
第八方面,本申请实施例提供一种计算机可读存储介质,在存储介质中存储有计算机程序或指令,当计算机程序或指令被执行时,可以实现上述第一方面或者第一方面的任一种可能的设计中的方法,或实现上述第二方面或者第二方面的任一种可能的设计中的方法。
第九方面,本申请实施例还提供一种计算机程序产品,包括计算机程序或指令,当计算机程序或指令被执行时,可以实现上述第一方面或者第一方面的任一种可能的设计中的方法,或实现上述第二方面或者第二方面的任一种可能的设计中的方法。
第十方面,本申请实施例还提供一种芯片,该芯片与存储器耦合,用于读取并执行存储器中存储的程序或指令,实现上述第一方面或者第一方面的任一种可能的设计中的方法,或实现上述第二方面或者第二方面的任一种可能的设计中的方法。
上述第三方面至第十方面所能达到的技术效果请参照上述第一方面或第二方面所能达到的技术效果,这里不再重复赘述。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种通信方法示意图;
图3为本申请实施例提供的一种信标模式一的带宽和资源示意图;
图4为本申请实施例提供的一种信标模式三的带宽和资源示意图;
图5为本申请实施例提供的发送节点覆盖范围示意图之一;
图6为本申请实施例提供的发送节点覆盖范围示意图之二;
图7为本申请实施例提供的信标资源更新过程示意图之一;
图8为本申请实施例提供的信标资源更新过程示意图之二;
图9为本申请实施例提供的信标资源更新过程示意图之三;
图10为本申请实施例提供的通信装置示意图之一;
图11为本申请实施例提供的通信装置示意图之二。
具体实施方式
本申请实施例的技术方案,可以应用于各种通信系统,例如:5G系统、NTN系统、全球移动通讯(global system of mobile communications,GSM)系统、增强型数据速率GSM演进(enhanced data rate for GSM evolution,EDGE)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、码分多址(code division multiple access,CDMA)2000系统、时分同步码分多址(time division-synchronization code division multiple access,TD-SCDMA)系统、长期演进(long term evolution,LTE)系统、窄带物联网(narrow band internet of things,NB-IoT)系统、卫星通信系统等,还可以应用于未来的通信系统,如第六代(6th generation,6G)通信系统等。具体的,对于5G系统,可以适用于5G系统中的增强移动宽带(enhanced mobile broadband,eMBB)系统、低时延高可靠通信(ultra-reliable&low-latency communication,URLLC)系统、海量机器类通信(massive machine type of communication,eMTC)系统等。
图1为本申请的实施例应用的一种通信系统的架构示意图。如图1所示,该通信系统包括至少一个网络设备,如图1中的110a、110b和110c,还可以包括至少一个终端设备,如图1中的120a-120d。其中,110a为空中基站,如高空平台、高空飞行器、或卫星等,110b和110c为地面基站。需要理解的是,图1只是示意图,该通信系统中可以包括更多数量或更少数量的网络设备或终端设备,还可以包括其它设备,例如还可以包括无线中继设备和无线回传设备,在图1中未画出。
上述的网络设备也可以称为接入网(access network,AN)设备,或无线接入网(radio access network,RAN)设备,是一种可以部署在无线接入网中为终端设备提供无线通信功 能的装置或设备。示例的,网络设备可以是基站(base station,BS)、节点B(Node B)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、卫星、高空平台或高空平台站(high-attitude platform station,HAPS)、5G系统中的下一代基站(next generation NodeB,gNB)、6G系统中的基站、其他未来移动通信系统中的基站等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。网络设备可以是宏基站,也可以是微基站或室内站,还可以是中继站(或中继节点)、施主节点或接入点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。可以理解,本申请中的网络设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
另外,在网络设备中可以包括基带单元(base band unit,BBU)和远端射频单元(remote radio unit,RRU),RRU与BBU分别承担网络设备的射频处理部分和基带处理部分,BBU与RRU之间可以采用光纤传输,实现RRU拉远,例如RRU可以放置于高话务量的区域,BBU可以放置于中心机房。当然BBU和RRU也可以放置在同一机房或为一个机架下的不同部件。
终端设备也可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端等,是一种具有无线通信功能的装置或设备。终端设备可以广泛应用于各种场景,例如,MTC、物联网(internet of things,IoT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端设备可以是用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能手机(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备、MTC设备、地面站等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
网络设备和终端设备可以是固定位置的,也可以是可移动的。网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间、网络设备和网络设备之间、终端设备和终端设备之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,网络设备的功能也可以由网络设备中的模块(如芯片)来执行,也可以由包含有网络设备功能的控制子系统来执行。这里的包含有网络设备功能的控制子 系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端设备的功能也可以由终端设备中的模块(如芯片或调制解调器)来执行,也可以由包含有终端设备功能的装置来执行。
在本申请中,网络设备向终端设备发送下行信号或下行信息,下行信息承载在下行信道上;终端设备向网络设备发送上行信号或上行信息,上行信息承载在上行信道上。时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是离散傅里叶变换扩频OFDM(Discrete Fourier Transform-spread-OFDM,DFT-s-OFDM)符号,或者其他类型的波形信号。如果没有特别说明,本申请实施例中的符号均指时域符号。
信标信号,也可以简称为信标,通常是指在已知位置处的收发机,在其指定的频率上发送的具有有限信息内容(例如其标识或位置)的连续或周期性无线电信号。目前,卫星或高空平台发送信标信号的信标资源需要向国际业务无线电联合会(international amateur radio union,IARU)申请,是一个专用的固定频率,卫星或高空平台一旦发射升空,则信标资源不能再更换。随着卫星或高空平台数量的飞速增加,对于大规模低轨卫星系统,星间拓扑动态变化,如果为每个卫星或高空平台申请特定的信标资源,则信标资源紧张。并且,在预先划分的信标频谱资源中为卫星或高空平台申请一个专用的固定频率,用于发送信标信号的制式,并不能被数传(数据传输)通信兼容,如不能被新空口(new radio,NR)系统兼容,卫星或高空平台等网络设备以及地面站等终端设备需要部署测控、通信等多套硬件设备,不仅增加了卫星或高空平台等网络设备以及地面站等终端设备的硬件成本,还增加了卫星或高空平台等网络设备的重量。
因此,本申请旨在提供一种信标的发送、接收方案,以期实现信标通信和数传通信一体化,减少卫星或高空平台等网络设备和地面站等终端设备的硬件开销和重量。
下面将结合附图,对本申请实施例进行详细描述。在本申请实施例中,发送节点可以为网络设备(如卫星、高空平台等),接收节点可以为终端设备(如地面站等);或者发送节点为终端设备,接收节点为网络设备。其中上述网络设备还可以是指具备网络设备功能的器件或部件,或应用于网络设备中的芯片(例如处理器、或芯片系统等)。上述终端设备还可以是指具备终端设备功能的器件或部件,或应用于终端设备中的芯片(例如处理器、或芯片系统等)。
另外,需要理解的是,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一阈值和第二阈值,可以是同一个阈值,也可以是不同的阈值,且,这种名称也并不是表示这两个阈值的取值、对应的参数、优先级或者重要程度等的不同。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
图2为本申请实施例提供的一种通信方法示意图,该方法包括:
S201:第一发送节点确定第一频带中的一个或多个子载波。
其中,第一频带为第一发送节点的第一信标资源中包括的N个频带中的一个,N为大于或等于1的整数。
S202:第一发送节点在一个或多个子载波上发送信标信号,相应的,第一接收节点在一个或多个子载波上接收信标信号。
S203:第一接收节点解析信标信号。
在本申请实施例中,可以设置多种信标模式,实现不同类型的信标信号的发送和接收。例如:可以设置未调制单载波信标模式(信标模式一)、调制单载波信标模式(信标模式二)、调制多载波信标模式(信标模式三)等信标模式,用于未调制单载波类型的信标信号、调制单载波类型的信标信号以及调制多载波类型的信标信号等的发送和接收。其中,不同的信标模式可以对应不同的带宽和频域资源配置,也可以采用不同的信标信号发送模式。下面从发送信标信号的带宽和频率资源配置,以及信标信号的发送模式等方面详细介绍上述三种信标模式。
信标模式一:
带宽和频率资源配置:信标模式一可以定义一种信标频带,如信标频带1(BW_beacon1),在BW_beacon1中有一个或多个间隔配置的子载波可用于承载信标信号,其余子载波为信标保护带;或者BW_beacon1也可以为一组包含多个子带(即子频带)的频域资源,每个子频带中有一个子载波可用于承载信标信号,其余子载波为信标保护带。
循环前缀(cyclic prefix,CP)长度:信标模式一可以定义采用无CP模式发送信标信号,例如增加CP长度为0的CP作为无CP模式,信标模式一采用CP长度为0的CP,也即无CP发送信标信号。信标信号与NR数据信号可以采用相同的基带模块。
如图3所示,为本申请实施例提供的一种信标模式一的频带示意图,如频带A,该频带A可以在数传频域资源中占用一段频域资源,频带A的带宽即为频带A所占用的一段频域资源的带宽,频带A中的一个子载波用于承载信标信号,其余子载波为信标保护带,不承载信标信号,用于防止信标信号与数传频带承载的数据信号之间的干扰。
对于信标模式一的频带中的子载波,可用于承载预设的电平信号、或预设的调制符号等信标信号,其中预设的电平信号可以为恒为1的电平信号等,预设的调制符号可以为二进制相移键控(binary phase shift keying,BPSK)调制中的+1、或-1,正交相移键控(quadrature phase shift keying,QPSK)调制中的a+aj、a-aj、-a+aj、或-a-aj等,a等于
Figure PCTCN2022130826-appb-000001
j为虚数单位,j*j=-1。其中恒为1的电平信号,可以为幅值恒定的正弦波信号,可以理解为未承载信息。采用信标模式一发送信号可以用于天线对准等。
信标模式一的频带中的子载波所承载的信标信号可以采用无CP模式发送,承载信标信号的OFDM符号无CP拼接,可以保证在载波上信标信号的相位连续性,而且相位连续的信标信号自带循环卷积特性,无CP信标信号对数据信号无载波间干扰。
信标模式二:
带宽和频率资源配置:信标模式二可以定义一种信标频带,如信标频带2(BW_beacon2),BW_beacon2与BW_beacon1类似,在BW_beacon2中有一个或多个间隔配置的子载波可用于承载信标信号,其余子载波为信标保护带;或者BW_beacon2也可以为一组包含多个子带(即子频带)的频域资源,每个子频带中有一个子载波可用于承载 信标信号,其余子载波为信标保护带。
CP长度:信标模式二可以定义采用NR标准定义的普通(normal)CP或扩展(extended)CP。信标信号与NR数据信号可以采用相同的基带模块。
对于信标模式二的频带中的子载波,可用于承载用于导航和/或测控的参考信号、或测控信息等。采用信标模式二发送信标信号可以用于天线对准或用于传输少量或部分测控信息等。例如:不同的发送节点可以在不同信标模式二的子载波上向接收节点发送不同参考信号(或参考序列),达到接收节点对多个发送节点进行天线校准和发送节点识别的目的。
信标模式三:
带宽和频率资源配置:信标模式三可以定义一种信标频带,如信标频带3(BW_beacon3),在BW_beacon3中有连续的多个子载波可用于承载信标信号。
CP长度:信标模式三可以定义采用NR标准定义的普通CP或扩展CP。信标信号与NR数据信号可以采用相同的基带模块。
如图4所示,为本申请实施例提供的一种信标模式三的频带示意图,如频带C,该频带C可以在数传频域资源中占用一段频域资源,频带C的带宽即为频带C所占用的一段频域资源的带宽,频带C中的连续的多个子载波可用于承载信标信号。
对于信标模式三的频带中的多个连续的子载波可用于承载测控信息。相对于信标模式二的频带中子载波承载的测控信息,信标模式三的频带中的多个连续的子载波所承载的测控信息的数量可以更大,例如测控信息的数据量小于或等于第一阈值时,可以采用信标模式二的频带发送,测控信息的数据量大于第一阈值时,可以采用信标模式三的频带发送。
在本申请实施例中,可以为每个发送节点配置(或申请)相应的信标资源,在信标资源中可以包含一种或多个信标模式的频带。
作为一种示例,为第一发送节点配置的第一信标资源里包含3个频带,分别为频带A1、频带B1和频带C1,其中频带A1为信标模式一的频带、频带B1为信标模式二的频带、频带C1为信标模式三的频带。另外,需要理解的是,在本申请实施例中,可以根据发送节点的业务需求为发送节点配置更多或更少信标模式的频带。例如:对于无测控信息传输需求的发送节点,在为该发送节点配置的信标资源中可以仅包含信标模式一的频带和信标模式二的频带。
仍以为第一发送节点配置的信标资源包含上述频带A1、频带B1和频带C1为例,在终端设备有信标信号需要发送时,第一发送节点可以根据需要发送的信标信号的具体类型,选择相应的频带,并在选择的频带中确定发送信标信号的一个或多个子载波。其中,对于每个频带中可用于发送信标信号的一个或多个子载波,可以在为第一发送节点配置第一信标资源时进行配置,也可以预先为每种信标模式的频带定义子载波选取规则,第一发送节点和相应的接收节点也可以按照该规则确定频带中可用于发送信标信号的一个或多个子载波。
作为一种示例,信标信号为预设的电平信号,第一发送节点可以在频带A1、频带B1和频带C1中选择频带A1作为发送信标信号的频带,确定频带A1中可用于发送信标信号的一个或多个子载波,并在确定的一个或多个子载波上发送信标信号。相应的第一接收节点在一个或多个子载波上接收信标信号,并且可以解析接收的信标信号,如不断旋转接收天线的指向,使相应频点(或子载波)上接收信号的功率最大,从而对准第一发送节点。
作为一种示例,信标信号为测控信息,如卫星拍摄的图片、卫星监测的数据等,测控 信息的数据量大于第一阈值,第一发送节点可以在频带A1、频带B1和频带C1中选择频带C1作为发送信标信号的频带,确定频带C1中可用于发送信标信号的多个子载波,并在确定的多个子载波上发送信标信号。相应的第一接收节点在多个子载波上接收信标信号,并且可以解析信标信号,获取测控信息,如获取卫星拍摄的图片、卫星监测的数据等。
需要理解的是,第一接收节点确定频带中可用于发送信标信号的一个或多个子载波的方式与第一发送节点类似,例如:可以根据第一发送节点的第一信标资源中配置的每个频带可用于发送信标信号的一个或多个子载波的配置信息确定,也可以根据预先为每种信标模式的频带定义的子载波选取规则确定。
需要理解的是,在本申请实施例中,发送预设的电平信号或预设的调制符号的子载波个数可以小于或等于预设的阈值,如小于或等于2。作为一种示例:可以配置信标模式一的频带中可用于发送信标信号的子载波的数量小于或等于该预设的阈值,从而限制发送预设的电平信号或预设的调制符号的子载波个数。
对于由多个发送节点构成的星座,如果为星座中的每个一个发送节点均申请(或配置)信标资源,信标资源开销巨大。为了节约信标资源,在本申请实施例中,可以令发送节点的信标资源可配置(Beacon_config),信标资源在多个发送节点间可被复用,也即一个信标资源可以同时被一个或多个发送节点所使用。
作为一种示例:信标资源A、信标资源B、…、信标资源E、信标资源F共6个信标资源可以在发送节点1、发送节点2、发送节点3、…、发送节点15、发送节点16共16个发送节点间复用。在某一时刻信标资源A被发送节点1、发送节点3、发送节点7、发送节点9所使用,信标资源B被发送节点2、发送节点4、发送节点8、发送节点10所使用,信标资源C被发送节点5、发送节点11、发送节点13、发送节点15所使用,信标资源D被发送节点6、发送节点12、发送节点14、发送节点16所使用,信标资源E和信标资源F暂时处于空闲状态,没有被发送节点所使用。
需要理解的是,在本申请实施例中,为多个发送节点构成的星座配置或申请的多个信标资源中,任意两个不同信标资源可以在频域上不存在重叠,也可以在频域上存在部分重叠。对于发送节点初始应用的信标资源可以采用默认配置(beacon_default)等方式,在发送节点初始入网或入网前,为发送节点在发送节点所在星座的多个信标资源中选择一个信标资源(如选择一个默认信标资源)作为初始信标资源。另外,为便于说明,在本申请实施例的后续描述中以为多个发送节点构成的星座配置或申请的多个信标资源中,任意两个不同信标资源在频域上不存在重叠为例进行说明。
另外,由于多个发送节点构成的星座的拓扑存在动态变换的情况,可能会出现在某一时刻或某一时间段多个发送节点覆盖的区域发生重叠,且复用同一信标资源,信标资源在频域上存在重叠,发生碰撞的情况。在本申请实施例中,为了避免发送节点间的信标资源发生碰撞,影响接收节点对信标信号的接收和解析,可以采用发送节点主动更新或接收节点指示更新等方式,对发送节点的信标资源配置进行动态更新,以避免发送节点间的信标资源发生碰撞,下面以对第一发送节点的第一信标资源进行更新为例进行说明。
方式一:第一发送节点根据第一发送节点的覆盖范围,以及第二发送节点的覆盖范围和第二信标资源,将第一信标资源更新为第三信标资源。
具体的,第二发送节点的数量可以为一个或多个,第二发送节点可以是指第一发送节 点所在星座中除第一发送节点外任一发送节点,或第一发送节点所在星座中与第一发送节点覆盖范围距离最近的发送节点,或第一发送节点所在星座中除第一发送节点外所有的发送节点。
以第二发送节点为第一发送节点所在星座中与第一发送节点覆盖范围距离最近的发送节点为例,第一发送节点可以与第一发送节点所在星座中的其它发送节点进行交互,获取星座中的其它发送节点的覆盖范围和所使用的信标资源的信息,并可以根据星座中的其它发送节点的覆盖范围,以及第一发送节点自身的覆盖范围,在星座中的其它发送节点中选择一个覆盖范围与自身的覆盖范围距离最小的发送节点,作为第二发送节点。确定第二发送节点后,第一发送节点即可根据第二发送节点的覆盖范围和所使用的第二信标资源,将自身的第一信标资源更新为第三信标资源。例如:第一发送节点可以在第一发送节点所在星座的多个信标资源中选择一个作为第三信标资源,将自身所使用的第一信标资源更新为第三信标资源。
需要理解的是,如果第一发送节点的覆盖范围和第二发送节点的覆盖范围存在重叠,如均覆盖到某一接收节点、且第一信标资源和第二信标资源在频域上存在重叠,第一发送节点更新后的第三信标资源与第一信标资源不同;如果第一发送节点的覆盖范围和第二发送节点的覆盖范围不存在重叠,或第一信标资源和第二信标资源在频域上不存在重叠,则第一发送节点更新后的第三信标资源可以与第一信标资源相同,也即第一发送节点更新前的第一信标资源与更新后的第三信标资源可以为同一信标资源。
作为一种示例,如图5所示,第一发送节点和第二发送节点均覆盖到第一接收节点,且第一发送节点的第一信标资源和第二发送节点的信标资源在频域上存在重叠,第一发送节点更新后的第三信标资源是与第一信标资源不同,且与第二信标资源在频域上不存在重叠的信标资源。如图6所示,第一发送节点和第二发送节点覆盖范围不存在重叠,即使第一发送节点的第一信标资源和第二发送节点的信标资源在频域上存在重叠,如第一信标资源和第二信标资源相同,第一发送节点更新后的第三信标资源,也可以仍沿用之前的第一信标资源。
另外,为了避免第一发送节点频繁更新所使用的第一信标资源,可以设置信标资源更新周期,第一发送节点可以按照信标资源更新周期根据第一发送节点的覆盖范围,以及第二发送节点的覆盖范围和第二信标资源,将第一信标资源更新为第三信标资源。
方式二:第一发送节点确定第一发送节点和第二发送节点覆盖到第一接收节点、且第一信标资源与第二信标资源在频域上存在重叠;第一发送节点根据第一发送节点的覆盖范围,以及第二发送节点的覆盖范围和第二信标资源,将第一信标资源更新为第三信标资源。
如图7所示,第一发送节点可以与第一发送节点所在星座中的其它发送节点进行交互,获取星座中的其它发送节点的覆盖范围和所使用的信标资源的信息,并判断是否与其它发送节点覆盖到同一接收节点,且信标资源在频域上存在重叠。如果第一发送节点确定第一发送节点和星座中的第二发送节点均覆盖到第一接收节点,且第一发送节点的第一信标资源和第二发送节点的第二信标资源在频域上存在重叠,则第一发送节点将第一信标资源更新为与第二信标资源在频域上不存在重叠的第三信标资源。具体的,第一发送节点可以在所在星座的多个信标资源中选择一个与第二信标资源在频域上不存在重叠的信标资源,作为第三信标资源。
另外,为了便于第一发送节点覆盖范围内的接收节点对第一发送节点更新后所使用的 第三信标资源的获知,在将第一信标资源更新为第三信标资源后,第一发送节点还可以发送第一信令(如信标资源配置指示信令),第一信令用于指示将第一信标资源更新为第三信标资源。例如可以在第一信令中携带第一发送节点的标识以及第三信标资源的标识,用于指示将第一发送节点当前使用的第一信标资源更新为第三信标资源。
作为一种示例:在将第一信标资源更新为第三信标资源后,第一发送节点可以向第一发送节点覆盖范围内的第一接收节点发送第一信令,第一信令中可以携带第一发送节点的标识以及第三信标资源的标识,用于指示将第一发送节点当前使用的第一信标资源更新为第三信标资源。第一接收节点接收到第一信令后,将保存的第一发送节点的第一信标资源更新为第三信标资源,以便根据第三信标资源来接收来自第一发送节点的信标信号。
方式三:第一发送节点接收来自第一接收节点的第二信令,第二信令用于指示第一发送节点与第二发送节点的信标资源在频域上存在重叠;第一发送节点根据第二发送节点的第二信标资源,将第一信标资源更新为第三信标资源。
如图8所示,第一接收节点通过第一发送节点和第二发送节点的星历,和第一发送节点和第二发送节点下发的信标资源的信息,确定第一发送节点与第二发送节点覆盖到第一接收节点、且第一发送节点的第一信标资源与第二发送节点的第二信标资源在频域上存在重叠,第一接收节点可以向第一发送节点发送第二信令(如信标资源配置更新请求信令),第二信令中可以携带第二发送节点的标识,用于指示第一发送节点与第二发送节点的信标资源在频域上存在重叠。
第一发送节点接收到来自第一接收节点的第二信令后,可以根据第二发送节点的第二信标资源,将自身的第一信标资源更新为与第二信标资源在频域上不存在重叠第三信标资源。
另外,为了便于第一发送节点覆盖范围内的接收节点对第一发送节点更新后所使用的第三信标资源的获知,在将第一信标资源更新为第三信标资源后,第一发送节点还可以向第一发送节点覆盖范围内的接收节点,如第一接收节点发送第一信令(如信标资源配置指示信令),第一信令可用于指示将第一信标资源更新为第三信标资源。第一接收节点接收到第一信令后,将保存的第一发送节点的第一信标资源更新为第三信标资源,以便根据第三信标资源来接收来自第一发送节点的信标信号。
方式四:第一发送节点接收来自第一接收节点的第三信令,第三信令用于指示将第一信标资源更新为第三信标资源;第一发送节点将第一信标资源更新为所述第三信标资源。
如图9所示,第一接收节点可以通过第一发送节点和第二发送节点的星历,和第一发送节点和第二发送节点下发的信标资源的信息,确定第一发送节点与第二发送节点覆盖到第一接收节点、且第一发送节点的第一信标资源与第二发送节点的第二信标资源在频域上存在重叠后,第一接收节点可以为第一发送节点确定一个与第二信标资源在频域上不存在重叠的第三信标资源,并向第一发送节点送用于指示将第一信标资源更新为第三信标资源的第三信令(如信标资源配置更新指示信令)。另外,第一接收节点还可以将保存的第一发送节点的第一信标资源更新为第三信标资源,以便根据第三信标资源来接收来自第一发送节点的信标信号。
第一发送节点接收到第三信令后,即可根据第三信令,将第一信标资源更新为第三信标资源,采用第三信标资源发送信标信号。
作为一种示例,在第三信令中可以携带第三信标资源的标识,以实现对将第一信标资 源更新为第三信标资源的指示。
可以理解的是,为了实现上述实施例中功能,第一接收节点和第一发送节点包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图10和图11为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中第一接收节点或第一发送节点的功能,因此也能实现上述方法实施例所具备的有益效果。在一种可能的实现中,该通信装置可以是如图1所示的网络设备,也可以是如图1所示的终端设备,还可以是应用于网络设备或终端设备的模块(如芯片)。
如图10所示,通信装置1000包括处理单元1010和接口单元1020,其中接口单元1020还可以为收发单元或输入输出接口。通信装置1000可用于实现上述图2、或图7、或图8、或图9中所示的方法实施例中第一接收节点或第一发送节点的功能。
当通信装置1000用于实现图2、或图7、或图8、或图9所示的方法实施例中第一接收节点的功能时:
处理单元1010,用于确定第一频带中的一个或多个子载波,其中第一频带为第一发送节点的第一信标资源中包括的N个频带中的一个,N为大于或等于1的整数;
接口单元1020,用于在一个或多个子载波上接收信标信号;
处理单元1010,还用于解析信标信号。
在一种可能的设计中,信标信号包括以下中的至少一项:预设的电平信号、预设的调制符号、用于导航和/或测控的参考信号、或测控信息。
在一种可能的设计中,接收预设的电平信号或预设的调制符号的子载波个数小于或等于预设的阈值。
在一种可能的设计中,采用CP模式接收预设的电平信号或预设的调制符号。
在一种可能的设计中,接口单元1020,还用于接收来自第一发送节点的第一信令,第一信令用于指示将第一信标资源更新为第三信标资源;处理单元1010,还用于将第一发送节点的第一信标资源更新为第三信标资源。
在一种可能的设计中,处理单元1010,还用于确定第一发送节点与第二发送节点覆盖到通信装置、且第一信标资源与第二发送节点的第二信标资源在频域上存在重叠;接口单元1020,还用于向第一发送节点发送第二信令,第二信令用于指示第一发送节点与第二发送节点的信标资源在频域上存在重叠。
在一种可能的设计中,处理单元1010,还用于确定第一发送节点与第二发送节点覆盖到通信装置、且第一信标资源与第二发送节点的第二信标资源在频域上存在重叠;接口单元1020,还用于向第一发送节点发送第三信令,第三信令用于指示将第一信标资源更新为第三信标资源。
在一种可能的设计中,处理单元1010,还用于将第一发送节点的第一信标资源更新为第三信标资源。
当通信装置1000用于实现图2、或图7、或图8、或图9所示的方法实施例中第一发 送节点的功能时:
处理单元1010,用于确定第一频带中的一个或多个子载波,其中第一频带为通信装置的第一信标资源中包括的N个频带中的一个,N为大于或等于1的整数;
接口单元1020,用于在一个或多个子载波上发送信标信号。
在一种可能的设计中,信标信号包括以下中的至少一项:预设的电平信号、预设的调制符号、用于导航和/或测控的参考信号、或测控信息。
在一种可能的设计中,发送预设的电平信号或预设的调制符号的子载波个数小于或等于预设的阈值。
在一种可能的设计中,采用CP模式发送预设的电平信号或预设的调制符号。
在一种可能的设计中,处理单元1010,还用于根据通信装置的覆盖范围,以及第二发送节点的覆盖范围和第二信标资源,将第一信标资源更新为第三信标资源。
在一种可能的设计中,处理单元1010将第一信标资源更新为第三信标资源之前,还用于确定通信装置和第二发送节点覆盖到第一接收节点、且第一信标资源与第二信标资源在频域上存在重叠。
在一种可能的设计中,接口单元1020,还用于在处理单元1010将第一信标资源更新为第三信标资源之前,接收来自第一接收节点的第二信令,第二信令用于指示通信装置与第二发送节点的信标资源在频域上存在重叠。
在一种可能的设计中,接口单元1020,还用于向第一接收节点发送第一信令,第一信令用于指示将第一信标资源更新为第三信标资源。
在一种可能的设计中,接口单元1020,还用于接收来自第一接收节点的第三信令,第三信令用于指示将第一信标资源更新为第三信标资源;处理单元1010,还用于将第一信标资源更新为第三信标资源。
如图11所示,通信装置1100包括处理器1110和接口电路1120。处理器1110和接口电路1120之间相互耦合。可以理解的是,接口电路1120可以为收发器或输入输出接口。可选的,通信装置1100还可以包括存储器1130,用于存储处理器1110执行的指令或存储处理器1110运行指令所需要的输入数据或存储处理器1110运行指令后产生的数据。可选的,存储器1130还可以和处理器1110集成在一起。
当通信装置1100用于实现图2、或图7、或图8、或图9所示的方法时,处理器1110用于实现上述处理单元1010的功能,接口电路1120用于实现上述接口单元1020的功能。
当上述通信装置为应用于第一接收节点的芯片时,该第一接收节点芯片实现上述方法实施例中第一接收节点的功能。该第一接收节点芯片从第一接收节点中的其它模块(如射频模块或天线)接收信息,该信息是第一发送节点或其它发送节点发送给第一接收节点的;或者,该第一接收节点芯片向第一接收节点中的其它模块(如射频模块或天线)发送信息,该信息是第一接收节点发送给第一发送节点或其它发送节点的。
当上述通信装置为应用于第一发送节点的芯片时,该第一发送节点芯片实现上述方法实施例中第一发送节点的功能。该第一发送节点芯片从第一发送节点中的其它模块(如射频模块或天线)接收信息,该信息是第一接收节点或其它接收节点或其它发送节点发送给第一接收节点的;或者,该第一发送节点芯片向第一发送节点中的其它模块(如射频模块或天线)发送信息,该信息是第一发送节点发送给第一接收节点或其它接收节点或其它发送节点的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
另外,需要理解,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
此外,本申请实施例中,信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (39)

  1. 一种信标接收方法,其特征在于,包括:
    第一接收节点确定第一频带中的一个或多个子载波,其中所述第一频带为第一发送节点的第一信标资源中包括的N个频带中的一个,所述N为大于或等于1的整数;
    所述第一接收节点在所述一个或多个子载波上接收信标信号;
    所述第一接收节点解析所述信标信号。
  2. 如权利要求1所述的方法,其特征在于,所述信标信号包括以下中的至少一项:
    预设的电平信号、预设的调制符号、用于导航和/或测控的参考信号、或测控信息。
  3. 如权利要求2所述的方法,其特征在于,接收所述预设的电平信号或所述预设的调制符号的子载波个数小于或等于预设的阈值。
  4. 如权利要求2或3所述的方法,其特征在于,采用无循环前缀CP模式接收所述预设的电平信号或所述预设的调制符号。
  5. 如权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一接收节点接收来自所述第一发送节点的第一信令,所述第一信令用于指示将所述第一信标资源更新为第三信标资源;
    所述第一接收节点将所述第一发送节点的所述第一信标资源更新为所述第三信标资源。
  6. 如权利要求5所述的方法,其特征在于,所述第一接收节点接收来自所述第一发送节点的第一信令之前,所述方法还包括:
    所述第一接收节点确定所述第一发送节点与第二发送节点覆盖到所述第一接收节点、且所述第一信标资源与所述第二发送节点的第二信标资源在频域上存在重叠;
    所述第一接收节点向所述第一发送节点发送第二信令,所述第二信令用于指示所述第一发送节点与所述第二发送节点的信标资源在频域上存在重叠。
  7. 如权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一接收节点确定所述第一发送节点与第二发送节点覆盖到所述第一接收节点、且所述第一信标资源与所述第二发送节点的第二信标资源在频域上存在重叠;
    所述第一接收节点向所述第一发送节点发送第三信令,所述第三信令用于指示将所述第一信标资源更新为第三信标资源。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第一接收节点将所述第一发送节点的所述第一信标资源更新为所述第三信标资源。
  9. 一种信标发送方法,其特征在于,包括:
    第一发送节点确定第一频带中的一个或多个子载波,其中所述第一频带为所述第一发送节点的第一信标资源中包括的N个频带中的一个,所述N为大于或等于1的整数;
    所述第一发送节点在所述一个或多个子载波上发送信标信号。
  10. 如权利要求9所述的方法,其特征在于,所述信标信号包括以下中的至少一项:
    预设的电平信号、预设的调制符号、用于导航和/或测控的参考信号、或测控信息。
  11. 如权利要求10所述的方法,其特征在于,发送所述预设的电平信号或所述预设的调制符号的子载波个数小于或等于预设的阈值。
  12. 如权利要求10或11所述的方法,其特征在于,采用无循环前缀CP模式发送所述预设的电平信号或所述预设的调制符号。
  13. 如权利要求9-12中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一发送节点根据所述第一发送节点的覆盖范围,以及第二发送节点的覆盖范围和第二信标资源,将所述第一信标资源更新为第三信标资源。
  14. 如权利要求13所述的方法,其特征在于,所述将所述第一信标资源更新为第三信标资源之前,所述方法还包括:
    所述第一发送节点确定所述第一发送节点和所述第二发送节点覆盖到第一接收节点、且所述第一信标资源与所述第二信标资源在频域上存在重叠。
  15. 如权利要求13所述的方法,其特征在于,所述将所述第一信标资源更新为第三信标资源之前,所述方法还包括:
    所述第一发送节点接收来自第一接收节点的第二信令,所述第二信令用于指示所述第一发送节点与所述第二发送节点的信标资源在频域上存在重叠。
  16. 如权利要求13-15中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一发送节点向第一接收节点发送第一信令,所述第一信令用于指示将所述第一信标资源更新为所述第三信标资源。
  17. 如权利要求9-12中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一发送节点接收来自第一接收节点的第三信令,所述第三信令用于指示将所述第一信标资源更新为第三信标资源;
    所述第一发送节点将所述第一信标资源更新为所述第三信标资源。
  18. 一种通信装置,其特征在于,包括接口单元和处理单元;
    所述处理单元,用于确定第一频带中的一个或多个子载波,其中所述第一频带为第一发送节点的第一信标资源中包括的N个频带中的一个,所述N为大于或等于1的整数;
    所述接口单元,用于在所述一个或多个子载波上接收信标信号;
    所述处理单元,还用于解析所述信标信号。
  19. 如权利要求18所述的装置,其特征在于,所述信标信号包括以下中的至少一项:
    预设的电平信号、预设的调制符号、用于导航和/或测控的参考信号、或测控信息。
  20. 如权利要求19所述的装置,其特征在于,接收所述预设的电平信号或所述预设的调制符号的子载波个数小于或等于预设的阈值。
  21. 如权利要求19或20所述的装置,其特征在于,采用无循环前缀CP模式接收所述预设的电平信号或所述预设的调制符号。
  22. 如权利要求18-21中任一项所述的装置,其特征在于,所述接口单元,还用于接收来自所述第一发送节点的第一信令,所述第一信令用于指示将所述第一信标资源更新为第三信标资源;
    所述处理单元,还用于将所述第一发送节点的所述第一信标资源更新为所述第三信标资源。
  23. 如权利要求22所述的装置,其特征在于,所述处理单元,还用于确定所述第一发送节点与第二发送节点覆盖到所述通信装置、且所述第一信标资源与所述第二发送节点的第二信标资源在频域上存在重叠;
    所述接口单元,还用于向所述第一发送节点发送第二信令,所述第二信令用于指示所 述第一发送节点与所述第二发送节点的信标资源在频域上存在重叠。
  24. 如权利要求18-21中任一项所述的装置,其特征在于,所述处理单元,还用于确定所述第一发送节点与第二发送节点覆盖到所述通信装置、且所述第一信标资源与所述第二发送节点的第二信标资源在频域上存在重叠;
    所述接口单元,还用于向所述第一发送节点发送第三信令,所述第三信令用于指示将所述第一信标资源更新为第三信标资源。
  25. 如权利要求24所述的装置,其特征在于,所述处理单元,还用于将所述第一发送节点的所述第一信标资源更新为所述第三信标资源。
  26. 一种通信装置,其特征在于,包括接口单元和处理单元;
    所述处理单元,用于确定第一频带中的一个或多个子载波,其中所述第一频带为所述通信装置的第一信标资源中包括的N个频带中的一个,所述N为大于或等于1的整数;
    所述接口单元,用于在所述一个或多个子载波上发送信标信号。
  27. 如权利要求26所述的装置,其特征在于,所述信标信号包括以下中的至少一项:
    预设的电平信号、预设的调制符号、用于导航和/或测控的参考信号、或测控信息。
  28. 如权利要求27所述的装置,其特征在于,发送所述预设的电平信号或所述预设的调制符号的子载波个数小于或等于预设的阈值。
  29. 如权利要求27或28所述的装置,其特征在于,采用无循环前缀CP模式发送所述预设的电平信号或所述预设的调制符号。
  30. 如权利要求26-29中任一项所述的装置,其特征在于,所述处理单元,还用于根据所述通信装置的覆盖范围,以及第二发送节点的覆盖范围和第二信标资源,将所述第一信标资源更新为第三信标资源。
  31. 如权利要求30所述的装置,其特征在于,所述处理单元将所述第一信标资源更新为第三信标资源之前,还用于确定所述通信装置和所述第二发送节点覆盖到第一接收节点、且所述第一信标资源与所述第二信标资源在频域上存在重叠。
  32. 如权利要求30所述的装置,其特征在于,所述接口单元,还用于在所述处理单元将所述第一信标资源更新为第三信标资源之前,接收来自第一接收节点的第二信令,所述第二信令用于指示所述通信装置与所述第二发送节点的信标资源在频域上存在重叠。
  33. 如权利要求30-32中任一项所述的装置,其特征在于,所述接口单元,还用于向第一接收节点发送第一信令,所述第一信令用于指示将所述第一信标资源更新为所述第三信标资源。
  34. 如权利要求26-29中任一项所述的装置,其特征在于,所述接口单元,还用于接收来自第一接收节点的第三信令,所述第三信令用于指示将所述第一信标资源更新为第三信标资源;
    所述处理单元,还用于将所述第一信标资源更新为所述第三信标资源。
  35. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器,或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1-8中任一项所述的方法,或用于实现如权利要求9-17中任一项所述的方法。
  36. 一种计算机程序产品,其特征在于,包括程序代码,当所述程序代码被执行,如权 利要求1-8中任一项所述的方法被实现,或如权利要求9-17中任一项所述的方法被实现。
  37. 一种芯片,其特征在于,所述芯片用于实现如权利要求1-8中任一项所述的方法,或用于实现如权利要求9-17中任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,使得如权利要求1-8中任一项所述的方法被实现,或如权利要求9-17中任一项所述的方法被实现。
  39. 一种通信系统,其特征在于,所述系统包括第一接收节点和第一发送节点,其中所述第一接收节点用于实现如权利要求1-8中任一项所述的方法,所述第一发送节点用于实现如权利要求9-17中任一项所述的方法。
PCT/CN2022/130826 2021-12-02 2022-11-09 一种信标发送、接收方法及装置 WO2023098431A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111463385.1A CN116232409A (zh) 2021-12-02 2021-12-02 一种信标发送、接收方法及装置
CN202111463385.1 2021-12-02

Publications (1)

Publication Number Publication Date
WO2023098431A1 true WO2023098431A1 (zh) 2023-06-08

Family

ID=86584765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130826 WO2023098431A1 (zh) 2021-12-02 2022-11-09 一种信标发送、接收方法及装置

Country Status (2)

Country Link
CN (1) CN116232409A (zh)
WO (1) WO2023098431A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104956751A (zh) * 2013-01-24 2015-09-30 联发科技(新加坡)私人有限公司 用于d2d通信的快速设备发现
US20190173523A1 (en) * 2017-12-06 2019-06-06 Electronics And Telecommunications Research Institute Operation method of communication node in network supporting low power communication
CN112166333A (zh) * 2018-05-25 2021-01-01 高通股份有限公司 确定用于定位估计的报告的定时测量的定时分辨率和范围
CN113133117A (zh) * 2020-01-10 2021-07-16 华为技术有限公司 资源分配方法、通信装置及相关设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104956751A (zh) * 2013-01-24 2015-09-30 联发科技(新加坡)私人有限公司 用于d2d通信的快速设备发现
US20190173523A1 (en) * 2017-12-06 2019-06-06 Electronics And Telecommunications Research Institute Operation method of communication node in network supporting low power communication
CN112166333A (zh) * 2018-05-25 2021-01-01 高通股份有限公司 确定用于定位估计的报告的定时测量的定时分辨率和范围
CN113133117A (zh) * 2020-01-10 2021-07-16 华为技术有限公司 资源分配方法、通信装置及相关设备

Also Published As

Publication number Publication date
CN116232409A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
US11902953B2 (en) Carrier switching method, apparatus, and system for multi-carrier communication
CN110719648B (zh) 一种信息发送、信息接收方法及装置
CN111669257B (zh) Prs的频域资源映射方法、装置及存储介质
US20210258958A1 (en) Communications Method and Apparatus
CN106911438B (zh) 一种数据帧实现方法和装置
US20220069901A1 (en) Mechanisms for doppler shift indication and handling
WO2022061507A1 (zh) 信息传输方法、设备及存储介质
US20240163152A1 (en) Communication processing method and communication processing apparatus
WO2023033854A9 (en) Configuring bandwidth parts (bwp) based on an indication relating to adc/dac resolution
WO2023098431A1 (zh) 一种信标发送、接收方法及装置
US10652062B2 (en) Configurable waveform for beyond 52.6GHz
US20230045122A1 (en) Methods and apparatus for frequency layer configuration for nr positioning reference signals
US20230052173A1 (en) Communication device and communication method
CN111901090A (zh) 信号处理和信息配置方法、装置、设备和存储介质
WO2023077310A1 (en) Method, device and computer readable medium for communication
CN116848789B (zh) 用于无线通信的方法及装置
WO2024041269A1 (zh) 一种通信方法及装置
WO2023011247A1 (zh) 一种通信方法及通信装置
WO2022062823A1 (zh) 波束管理方法、装置及系统
WO2023070384A1 (en) Method, device and computer readable medium for communication
WO2024040539A1 (en) Methods, devices, and computer readable medium for communication
WO2023150906A1 (en) Methods, devices, and medium for communication
WO2022027485A1 (en) Methods for communication, terminal device, network device and computer-readable media
CN117322111A (zh) 通信方法及通信装置
CN117999845A (zh) 用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900236

Country of ref document: EP

Kind code of ref document: A1