WO2023098217A1 - 一种两电平型三相整流矫正器及其控制方法 - Google Patents

一种两电平型三相整流矫正器及其控制方法 Download PDF

Info

Publication number
WO2023098217A1
WO2023098217A1 PCT/CN2022/117906 CN2022117906W WO2023098217A1 WO 2023098217 A1 WO2023098217 A1 WO 2023098217A1 CN 2022117906 W CN2022117906 W CN 2022117906W WO 2023098217 A1 WO2023098217 A1 WO 2023098217A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
phase
switch
rectifier
rectification
Prior art date
Application number
PCT/CN2022/117906
Other languages
English (en)
French (fr)
Inventor
刘斌
李玲
Original Assignee
刘三英
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘三英 filed Critical 刘三英
Publication of WO2023098217A1 publication Critical patent/WO2023098217A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the technical field of three-phase rectification rectifiers, in particular to a two-level three-phase rectification rectifier and a control method thereof.
  • the power of electrical equipment is getting bigger and bigger, and more and more electrical equipment adopts three-phase power supply mode. If the electrical equipment does not have power factor correction (PFC) function, it will greatly damage the power quality of the grid. In severe cases It may even lead to the breakdown of the power grid. In order to meet the quality requirements of the power grid, reduce harmonic pollution to the power grid or cause unnecessary transmission burden on the distribution network, three-phase electrical equipment must have PFC function or add filtering devices to meet the requirements of relevant regulations.
  • PFC power factor correction
  • the object of the present invention is to provide a two-level three-phase rectification rectifier and its control method, which can economically and effectively solve the harmonic problem of three-phase rectification equipment with a simple control circuit.
  • a technical solution adopted by the present invention is: a two-level three-phase rectifier rectifier, including an input switch rectification bridge arm group, an energy storage freewheeling inductor and an output rectification unit;
  • the input switch rectification bridge arm group includes a first A switch rectification bridge arm, a second switch rectification bridge arm and a third switch rectification bridge arm, each switch rectification bridge arm includes an AC input port, a positive output port and a negative output port, the AC input port, the positive output port and the An equivalent controllable selection switch is provided between the negative output ports;
  • the output rectification unit includes a seventh diode, an eighth diode and a first filter capacitor;
  • the second switch rectification bridge arm and the third switch rectification bridge arm are connected in sequence, they are then connected to the cathode of the seventh diode and one end of the energy storage freewheeling inductance;
  • the second switch rectification bridge arm and the third switch rectification bridge arm are connected in sequence, they are connected with the anode of the eighth diode and the other end of the energy storage freewheeling inductance;
  • One end of the first filter capacitor is connected to the cathode of the eighth diode to form the positive output end of the three-phase rectifier rectifier, and the other end of the first filter capacitor is connected to the anode of the seventh diode to form a three-phase rectifier The negative output terminal of the rectifier.
  • the equivalent controllable selection switch is a series combination of a diode and a high-frequency switching tube or two high-frequency switching tubes are connected in reverse series and then connected to a diode, and the equivalent controllable selection switch is conducted according to the AC rectification It is necessary to apply a high-frequency PWM drive signal to the high-frequency switch tube to control the turn-on and turn-off so as to achieve a direction-selective conduction connection, that is, to form a high-frequency pulse rectification conduction for the positive half-wave of the AC, or the negative half-wave of the AC Wave high frequency pulse rectification conduction.
  • the equivalent controllable selection switch consists of one switch tube and four diodes, or two switch tubes and two diodes;
  • the source of the switch tube is connected to the anodes of the first diode and the second diode, and the source of the switch tube Connected to the cathode of the third diode and the fourth diode;
  • the cathode of the first diode is connected to the positive output port;
  • the cathode of the second diode is connected to the anode of the third diode connected to the AC input port;
  • the anode of the fourth diode is connected to the negative output port;
  • the first connection mode is that after the first switch tube and the first diode are connected in series to form the first branch circuit, one end is connected to the AC input port, the other end is connected to the positive output port, and the second switch tube and the second After the diodes are connected in series to form a second branch, one end is connected to the AC input port, and the other end is connected to the negative output port, and the first branch and the second branch are symmetrical about the AC input port ;
  • the second connection mode is that after the first switch tube and the second switch tube are connected in reverse series, the first switch tube is connected to the AC input port, and the second switch tube is connected to the anode of the first diode and the second diode
  • the cathode of the first diode is connected to the positive output port, and the anode of the second diode is connected to the negative output port;
  • the third connection mode is that after the first switch tube and the second switch tube are reversely connected in series, the first switch tube is connected to the AC input port, and the anode of the first diode is connected to the first switch tube and the second switch tube.
  • the points are connected in series, the cathode of the first diode is connected to the positive output port, the cathode of the second diode is connected to the second switch tube, and the anode of the second diode is connected to the negative output port.
  • the switching tube is a high-frequency switching tube provided with an anti-parallel diode or a high-frequency switching tube equivalent to the same function, and the anti-parallel diode is an integrated diode, a parasitic diode or an external diode; the first filtering
  • the capacitor is a polarized capacitor or a non-polarized capacitor.
  • an input filter is further included, and the input filter is connected to the AC input ports of the first switching rectification bridge arm, the second switching rectification bridge arm and the third switching rectification bridge arm.
  • S200 Analyze the instantaneous value of the voltage of each phase power supply in each of the interval segments according to the phase-locked phase in step S100;
  • S400 Apply a drive signal to the switching rectifier bridge arm under the current interval to perform PWM drive control, so that the two-phase current of the highest phase and the lowest phase of the instantaneous value is turned on; the current is stored on the energy storage freewheeling inductor, and then turned off The phase with the highest instantaneous value is cut off, so that the current of the phase with the lowest instantaneous value is continuously conducted through the energy storage inductor;
  • the specific method is: apply a normally-on high-level PWM to the switch tube corresponding to the switching rectifier bridge arm in the AC circuit of the lowest instantaneous value Drive signal, and at the same time apply a "low" mode PWM drive signal to the switch tube corresponding to the switch rectifier bridge arm in the current loop with the highest instantaneous value, to provide a current conduction loop for the low-voltage AC phase voltage that cannot pass through; and control according to calculation The duty cycle of the PWM driving signal in the "low” mode makes the output voltage not exceed the instantaneous voltage of the
  • steps S300-S500 the same drive signal as the normally-on high-level PWM drive signal or the high-level PWM drive signal that was turned on earlier than the "low" mode is turned off is applied to the switching rectifier bridge arm of the lowest phase of the instantaneous value of the AC input. level PWM drive signal.
  • the current conduction time of each phase is proportional to the instantaneous value of the phase voltage, and the current conduction time of the phase with the largest instantaneous value is equal to the sum of the current conduction time of the other two phases.
  • a three-phase rectifier circuit including a three-phase full-bridge rectifier unit, a second filter capacitor and the two-level three-phase rectifier described in the aforementioned technical solution;
  • the phase full-bridge rectification unit includes an eleventh diode and a fourteenth diode connected in series, a twelfth diode and a fifteenth diode connected in series, and a thirteenth diode and a diode connected in series
  • the AC input port of the first switch rectification bridge arm is connected to the anode of the twelfth diode, and the AC input port of the second switch rectification bridge arm is connected to the eleventh diode
  • Anode connection, the AC input port of the third switching rectification bridge arm is connected to the anode of the thirteenth diode;
  • the cathodes of the eleventh diode, the twelfth diode and the thirteenth diode It is connected with the positive output end of
  • FIG. 1 is a schematic diagram of an existing traditional three-phase rectification structure
  • FIG. 2 is a schematic diagram of a two-level three-phase rectifier of an embodiment of the present invention
  • Fig. 3 is the concrete implementation schematic diagram of the three-phase rectification circuit of the embodiment of the present invention
  • FIG. 4 is a schematic diagram of a three-phase AC voltage waveform and a schematic diagram of a definition of an intersection point according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a specific embodiment of a switching rectifier bridge arm according to an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of another specific embodiment of the converter of the embodiment of the present invention.
  • Fig. 7 is a schematic diagram of the conduction inductance energy storage of the BC phase in the AC-0 interval of the embodiment of the present invention.
  • Fig. 8 is a schematic diagram of the freewheeling flow of the C-phase conduction inductance in the AC-0 interval of the embodiment of the present invention.
  • Fig. 9 is a schematic diagram of AC phase conduction inductance energy storage in the 0-BC interval of the embodiment of the present invention.
  • Fig. 10 is a schematic diagram of the freewheeling flow of the C-phase conduction inductance in the 0-BC interval of the embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the AC-0 interval AB phase conduction inductance energy storage of the embodiment of the present invention.
  • Fig. 12 is a schematic diagram of the freewheeling flow of the AB phase conduction inductance in the AC-0 interval of the embodiment of the present invention.
  • FIG. 13 is a schematic diagram of the freewheeling flow of the CB-phase conduction inductor in the AC-0 interval of the embodiment of the present invention.
  • a two-level three-phase rectifier rectifier includes an input switch rectifier bridge arm group, an energy storage freewheeling inductance L1 and an output rectifier unit;
  • the input switch rectifier bridge arm group includes a first switch rectifier The bridge arm KB1, the second switch rectification bridge arm KB2 and the third switch rectification bridge arm KB3, each switch rectification bridge arm includes an AC input port 1, a positive output port 2 and a positive output port 3, the AC input port 1, the positive output port An equivalent controllable selection switch is provided between the output port 2 and the positive output port 3;
  • the output rectification unit includes a seventh diode D7, an eighth diode D8 and a first filter capacitor C1;
  • the positive output ports 2 of the first switch rectification bridge arm KB1 After the positive output ports 2 of the first switch rectification bridge arm KB1, the second switch rectification bridge arm KB2 and the third switch rectification bridge arm KB3 are connected in sequence, they are connected with the cathode of the seventh diode D7 and the energy storage freewheeling inductance One end of L1 is connected; after the positive output ports 3 of the first switch rectification bridge arm KB1, the second switch rectification bridge arm KB2 and the third switch rectification bridge arm KB3 are connected in sequence, they are connected with the anode of the eighth diode D8 and The other end of the energy storage freewheeling inductance L1 is connected; one end of the first filter capacitor C1 is connected to the cathode of the eighth diode D8 to form the positive output end of the three-phase rectifier rectifier, and the other end of the first filter capacitor C1 One end is connected to the anode of the seventh diode D7 to form the negative output end
  • the equivalent controllable selection switch is a series combination of a diode and a high-frequency switching tube or two high-frequency switching tubes are connected in reverse series and then connected to a diode.
  • the equivalent controllable selection switch is based on AC rectification conduction needs to apply high-frequency PWM drive signal to the high-frequency switch tube to control the turn-on and turn-off so as to realize the direction-selective conduction connection, that is, to form a high-frequency pulse rectification conduction for the positive half-wave of the AC. Or AC negative half-wave high-frequency pulse rectification conduction.
  • the equivalent controllable selection switch is composed of one switch tube and four diodes, or two switch tubes and two diodes;
  • the source of the switch tube is connected to the anodes of the first diode D1 and the second diode D2, and the switch tube
  • the source is connected to the cathodes of the third diode D3 and the fourth diode D4;
  • the cathode of the first diode D1 is connected to the positive output port 2;
  • the anode of the third diode D3 is connected to the AC input port 1;
  • the anode of the fourth diode D4 is connected to the positive output port 3;
  • the first connection mode is that after the first switching tube T1 and the first diode D1 are connected in series to form the first branch, one end is connected to the AC input port 1, the other end is connected to the positive output port 2, and the second switch After the tube T2 and the second diode D2 are connected in series to form a second branch, one end is connected to the AC input port 1, and the other end is connected to the positive output port 3, and the first branch is connected to the second branch
  • the path is symmetrical about the AC input port 1;
  • the second connection mode is that after the first switching tube T1 and the second switching tube T2 are connected in reverse series, the first switching tube T1 is connected to the AC input port 1, and the second switching tube T2 is connected to the anode of the first diode D1 connected to the cathode of the second diode D2, the cathode of the first diode D1 is connected to the positive output port 2, and the anode of the second diode D2 is connected to the negative output port 3;
  • the third connection mode is that after the first switching tube T1 and the second switching tube T2 are connected in reverse series, the first switching tube T1 is connected to the AC input port 1, and the anode of the first diode D1 is connected to the first switching tube T1 It is connected to the series point of the second switching tube T2, the cathode of the first diode D1 is connected to the positive output port 2, the cathode of the second diode D2 is connected to the second switching tube T2, and the second diode D2 The anode is connected to the negative output port 3.
  • the three-phase full-bridge rectifier unit includes a series-connected first The eleventh diode D11 and the fourteenth diode D14, the twelfth diode D12 and the fifteenth diode D15 connected in series, and the thirteenth diode D13 and the sixteenth diode D13 connected in series Tube D16; the AC input port 1 of the first switching rectification bridge arm KB1 is connected to the anode of the twelfth diode D12, and the AC input port 1 of the second switching rectification bridge arm KB2 is connected to the eleventh diode
  • the anode of D11 is connected, the AC input port 1 of the third switching rectifier bridge arm KB3 is connected to the anode of the thirteenth diode D13; the eleventh diode D11, the twelfth
  • the switching tube is a high-frequency switching tube provided with an anti-parallel diode or a high-frequency switching tube equivalent to the same function, and the anti-parallel diode is an integrated diode, a parasitic diode or an external diode;
  • the first filter capacitor C1 is a polarized capacitor or a non-polarized capacitor.
  • the embodiment of the present invention may further include an input filter, one end of the input filter is connected to the AC input port 1 of the first switch rectification bridge arm KB1, the second switch rectification bridge arm KB2 and the third switch rectification bridge arm KB3, The other end is connected to the three-phase AC power supply, which can filter the input power supply, and can also filter and attenuate the internal clutter reflected to the input terminal.
  • S200 Analyze the instantaneous value of the voltage of each phase power supply in each of the interval segments according to the phase-locked phase in step S100;
  • the method of judging the magnitude of the instantaneous value is to compare the magnitude of the instantaneous value of each phase.
  • steps S300-S500 apply the same drive signal as the normally-on high-level PWM drive signal to the switching rectifier bridge arm of the lowest phase of the AC input instantaneous value or the high-level PWM drive that is turned on before the "low" mode is turned off Signal.
  • the current conduction time of each phase is proportional to the instantaneous value of the phase voltage, and the current conduction time of the phase with the largest instantaneous value is equal to the sum of the current conduction time of the other two phases.
  • FIG. 5 a schematic circuit diagram of a specific implementation of the switching rectification bridge arm.
  • the AC input port 1 is connected to the cathode of the second diode D2 and the anode of the third diode D3
  • the source of the first switching tube T1 is connected to the second diode D2 and the first
  • the anode of the diode D1 the drain of the first switching tube T1 are connected to the cathodes of the third diode D3 and the fourth diode D4
  • the cathode of the first diode D1 is the positive output port 2
  • the anode of tube D4 is the negative output port 3.
  • the AC input port 1 is connected to the cathode of the first diode D1 and the anode of the second diode D2, and the source of the second switching transistor T2 is connected to the anode of the second diode D2.
  • the drain of the second switching tube T2 is the negative output port 3
  • the drain of the first switching tube T1 is connected to the cathode of the first diode D1
  • the source of the first switching tube T1 is the positive output port 2 .
  • the AC input port 1 is connected to the drain of the first switching tube T1 and the source of the second switching tube T2, and the source of the first switching tube T1 is connected to the anode of the first diode D1.
  • the cathode of the first diode D1 is the positive output port 2
  • the drain of the second switching transistor T2 is connected to the cathode of the second diode D2
  • the anode of the second diode D2 is the negative output port 3 .
  • the AC input port 1 is connected to the drain of the first switching tube T1
  • the source of the first switching tube T1 is connected to the source of the second switching tube T2
  • the drain of the second switching tube T2 It is connected with the anode of the first diode D1 and the cathode of the second diode D2
  • the cathode of the first diode D1 is the positive output port 2
  • the anode of the second diode D2 is the negative output port 3.
  • the AC input port 1 is connected to the source of the first switching tube T1, the drain of the first switching tube T1 is connected to the drain of the second switching tube T2, and the source of the second switching tube T2 It is connected with the anode of the first diode D1 and the cathode of the second diode D2, the cathode of the first diode D1 is the positive output port 2, and the anode of the second diode D2 is the negative output port 3.
  • the AC input port 1 is connected to the drain of the first switching tube T1
  • the source of the first switching tube T1 is connected to the source of the second switching tube T2
  • the anode of the first diode D1 It is connected to the source of the first switching tube T1
  • the drain of the second switching tube T2 is connected to the cathode of the second diode D2
  • the cathode of the first diode D1 is the positive output port 2
  • the second diode D2 The anode of the negative output port 3.
  • the entire step-down switch rectifier bridge arm can also be equivalent to two series diodes connected from the positive output port 3 to the positive output port 2, only the connection of the two diodes The point will be clamped by the AC of the AC input port 1.
  • the above is the common knowledge of those skilled in the art.
  • the present invention is not limited to the connection method of the above-mentioned high-frequency switching tube and diode to realize the connection between the AC input port 1, the positive output port 2 and the positive output port 3 of the switching rectifier bridge arm. , other combinations that can realize the functions of the controllable selector switch of the present invention also belong to the protection category of the present invention.
  • FIG. 6 is a specific implementation circuit diagram of FIG. 2 adopting the circuit structure of FIG. 5( b ).
  • the three-phase AC power input in the embodiment of the present invention includes A-phase input PhaseA, B-phase input PhaseB, and C-phase input PhaseC. Since the actual input AC voltage may have transients or distortions, the implementation of the present invention
  • the voltage waveform shown in the example uses the standard waveform as a reference, which is convenient for the following description.
  • a load or a circuit that can be equivalent to a load can be connected between the positive output terminal and the negative output terminal of the three-phase rectification circuit.
  • the bus voltage is only the rectified voltage, so in the embodiment of the present invention, A The 0° or origin of the phase is used as a reference, and the lowest point of the instantaneous difference of the voltage difference should be the 30°, 90°, 150°, 210°, 270°, 330° point of the A phase, or a similar periodic phase difference relationship point.
  • the lowest value at the time is 1+1/2 times the highest amplitude of the phase voltage; the highest point of the instantaneous difference of the voltage difference should be 60°, 120°, 180°, 240°, 300°, 360° of phase A point, or a point similar to the periodic difference relationship, the highest value at this time is times the maximum amplitude of the phase voltage. Therefore, in the three-phase rectification circuit, if there is no intervention of an external rectifier, only the two-phase rectification power supply with a higher voltage amplitude will always be available. If you want to turn on the other phase, you must boost the voltage of the phase with the lower phase voltage or use the energy storage freewheeling inductor L1 to conduct freewheeling. At this time, it works in the three-phase natural rectification voltage following correction mode, also known as Natural rectification unsteady voltage correction mode.
  • the capacitors have a large energy storage filtering effect, so the bus voltage will be higher at the lowest voltage point after charging at the highest voltage point In this range, if there is no intervention of an external rectifier, the three-phase AC cannot be turned on, so the three-phase must be boosted to make it possible Conduction, that is, it works in the three-phase boost follow bus voltage correction mode at this time, also known as bus capacitor voltage follow correction mode.
  • phase B As shown in Figure 7, in the AC-0 interval from AC point to 0 point, the instantaneous value of phase B voltage is the highest, followed by phase A, and phase C is the lowest.
  • the first switch rectification bridge arm KB1 applies a "low" PWM drive signal to the negative rectification conduction path, and applies a long high PWM drive signal to the third switch rectification bridge arm KB3 positive rectification conduction path, so it is connected to the C phase
  • the third switching rectifier bridge arm is positively conducting, and the voltage is recorded as Vc;
  • the first switching rectifying bridge arm KB1 connected to the B phase is negatively conducting, and the voltage is recorded as Vb;
  • the A phase has no drive, so the second switching rectifying bridge arm KB2 If it cannot be turned on, the current of phase C can flow through the energy storage freewheeling inductance L1 through the "KB3 positive” path, and then return to the AC source of phase B through the "KB1 negative” path; the phase A
  • each phase current is realized in each switching cycle, and the PF correction and harmonic current compensation are realized.
  • each lowest amplitude AC phase can be boosted and stored with the highest voltage AC phase. can, so that the current conducts and compensates the power of the three-phase rectifier circuit. Therefore, in each switching cycle, the driving signal mode of the switching tube that is turned off first is recorded as "low", and the driving signal mode of the switching tube that is turned off last is recorded as "high".
  • the switching tube with the lowest instantaneous value is driven by Applying a long high-level drive voltage can actually be understood as an extreme of the "high" mode PWM drive signal. Therefore, in the actual control of the embodiment of the present invention, although there are three types of duty ratios for the conduction of the switch tube, However, under normal circumstances, the PWM driving signal of each cycle has two duty cycle values to satisfy the control.
  • the waveform logic tables of the driving signals of the first to third switching rectifier bridge arms KB1 ⁇ KB3 are shown in Table 1.
  • the diodes of the three-phase full-bridge rectifier unit are reverse-biased and cannot conduct, so the three-phase AC must be boosted.
  • the boost energy storage and energy release state of the second-highest phase and the highest phase are added, and the energy storage link of the original lowest amplitude phase is replaced by the boost energy storage of the second-highest phase.
  • the waveform logic tables of the driving signals of the first to third switching rectification bridge arms KB1 ⁇ KB3 are shown in Table 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

一种两电平型三相整流矫正器及其控制方法,两电平型三相整流矫正器包括输入开关整流桥臂组、储能续流电感(L1)和输出整流单元;输入开关整流桥臂组包括三个开关整流桥臂(KB1、KB2、KB3);每个开关整流桥臂(KB1、KB2、KB3)均包括交流输入端口(1)、正输出端口(2)和负输出端口(3),交流输入端口(1)、正输出端口(2)和负输出端口(3)之间设置有等效可控选择开关;输出整流单元包括第七二极管(D7)、第八二极管(D8)和第一滤波电容(C1)。通过对输入开关整流桥臂组中的开关管施加合适的"中"、"高"模式PWM驱动信号,实现功率因数补偿及矫正,减少谐波污染,降低电网电流畸变,适用于三相全桥整流电源设备较多的场合,如工业变频器等。

Description

一种两电平型三相整流矫正器及其控制方法 技术领域
本申请涉及三相整流矫正器技术领域,具体涉及一种两电平型三相整流矫正器及其控制方法。
背景技术
当前用电设备功率越来越大,采用三相供电方式的用电设备也越来越多,如果用电设备没有功率因数矫正(PFC)功能就会对电网的电能质量破坏很大,严重时甚至会导致电网的瘫痪。为满足电网质量要求,减少对电网的谐波污染或者造成配网不必要的输送负担,三相用电设备必须具备PFC功能或者增加滤波装置,以满足相关法规要求。
在很多传统工业设备场合,还大量的存在三相自然整流电源设备,如大型的炼钢厂的设备电源,工矿企业的大型设备电源,以及其他各种变频电源。基本上都是使用二极管或者可控硅等器件进行三相整流,因此导致电网电流畸变很厉害,产生大量的谐波电流,常用的解决方式为在设备前级增加常规的PFC有源功率因数矫正器、增加无源滤波器或在总的电网中增配交流型有源滤波器。前述各种办法具有价格昂贵、效果不佳的缺陷。
发明内容
本发明的目的在于,提供一种两电平型三相整流矫正器及其控制方法,能够采用简单的控制电路经济有效地解决三相整流型设备谐波问题。
本发明采取的一种技术方案是:一种两电平型三相整流矫正器,包括输入开关整流桥臂组、储能续流电感和输出整流单元;所述输入开关整流桥臂组包括第一开关整流桥臂、第二开关整流桥臂和第三开关整流桥臂,每个开关整流桥臂均包括交流输入端口、正输出端口和负输出端口,所述交流输入端口、正输出端口和负输出端口之间设置有等效可控选择开关;所述输出整流单元包括第七二极管、第八二极管和第一滤波电容;
所述第一开关整流桥臂、第二开关整流桥臂和第三开关整流桥臂的正输出端口依次连接后,再与第七二极管的阴极和储能续流电感的一端连接;所述第一开关整流桥臂、第二开关整流桥臂和第三开关整流桥臂的负输出端口依次连接后,再与第八二极管的阳极和储能续流电感的另一端连接;所述第一滤波电容一端与第八二极管的阴极连接,形成三相整流矫正器 的正输出端,所述第一滤波电容的另一端与第七二极管的阳极连接,形成三相整流矫正器的负输出端。
进一步地,所述等效可控选择开关为二极管与高频开关管的串联组合或者两个高频开关管反向串联后再与二极管连接,所述等效可控选择开关根据交流整流导通的需要对高频开关管施加高频PWM驱动信号可以控制开通与关断从而实现有方向选择性的导通连接,即形成对交流正半波的高频脉冲式整流导通,或者交流负半波高频脉冲式整流导通。
进一步地,所述等效可控选择开关由一个开关管和四个二极管组成,或者由两个开关管和两个二极管组成;
当所述等效可控选择开关由一个开关管和四个二极管组成时,所述开关管的源极与第一二极管和第二二极管的阳极连接,所述开关管的源极与第三二极管和第四二极管的阴极连接;所述第一二极管的阴极与所述正输出端口连接;所述第二二极管的阴极和第三二极管的阳极与所述交流输入端口连接;所述第四二极管的阳极与所述负输出端口连接;
当所述等效可控选择开关由两个开关管和两个二极管组成时,具有三种连接方式:
第一种连接方式为第一开关管和第一二极管串联成第一支路后,一端与所述交流输入端口连接,另一端与所述正输出端口连接,第二开关管和第二二极管串联成第二支路后,一端与所述交流输入端口连接,另一端与所述负输出端口连接,所述第一支路与所述第二支路关于所述交流输入端口对称;
第二种连接方式为第一开关管和第二开关管反向串联后,第一开关管与所述交流输入端口连接,第二开关管与第一二极管的阳极和第二二极管的阴极连接,第一二极管的阴极与所述正输出端口连接,第二二极管的阳极与所述负输出端口连接;
第三种连接方式为第一开关管和第二开关管反向串联后,第一开关管与所述交流输入端口连接,第一二极管的阳极与第一开关管和第二开关管的串联点连接,第一二极管的阴极与所述正输出端口连接,第二二极管的阴极与第二开关管连接,第二二极管的阳极与所述负输出端口连接。
进一步地,所述开关管为设置有反并二极管的高频开关管或等效为相同功能的高频开关管,所述反并二极管为集成二极管、寄生二极管或外加二极管;所述第一滤波电容为有极性的电容或无极性的电容。
进一步地,还包括输入滤波器,所述输入滤波器与所述第一开关整流桥臂、第二开关整流桥臂和第三开关整流桥臂的交流输入端口连接。
上述两电平型三相整流矫正器的控制方法为:
S100:根据输入的三相三线电源电压信号的锁相分析各相电源当前时刻所处的相位和区间段;
S200:根据步骤S100中的锁相相位分析出各个所述区间段中各相电源的电压的瞬时值大小;
S300:根据母线电压判断各相电源是自然整流电压,还是有大的储能型负载导致电压高于自然整流电压,从而决定矫正器的工作模式;
S400:对当前区间段下的开关整流桥臂施加驱动信号进行PWM驱动控制,使其中瞬时值最高相与最低相的两相电流导通;使电流在储能续流电感上储能,然后关断瞬时值最高相,使瞬时值最低相的电流通过储能电感续流导通;具体方法为:给瞬时值最低相交流回路中对应开关整流桥臂的开关管施加常通的高电平PWM驱动信号,同时对瞬时值最高相交流的电流回路中对应开关整流桥臂的开关管施加“低”模式PWM驱动信号,为不能通流的低压交流相电压提供电流导通回路;并根据计算控制“低”模式PWM驱动信号的占空比,使输出电压不超过三相整流瞬时电压,即此时矫正器工作于三相自然整流电压跟随矫正模式,又称自然整流不稳压矫正模式;
S500:若母线连接较大储能性负载,且根据输出采样电路检测反馈瞬时电压值远高于三相的整流电压,则矫正器调整为升压跟随模式,在该模式下,对电压次高相回路中对应开关整流桥臂的开关管施加“中”模式驱动信号,对电压瞬时值最高相回路中对应开关整流桥臂的开关管施加“低”模式信号,然后对瞬时值最低相交流回路中对应开关整流桥臂的开关管施加常通的高电平PWM驱动信号,从而给不能通流的交流相电压提供电流导通回路;并根据计算控制“低”及“中”模式PWM驱动信号的占空比,使输出电压不超过母线当前电压;即此时工作于三相升压跟随母线电压矫正模式,又称母线电容电压跟随矫正模式。
进一步地,在步骤S300~S500中,对交流输入瞬时值最低相的开关整流桥臂施加与常通的高电平PWM驱动信号相同的驱动信号或早于“低”模式关闭前开通的高电平PWM驱动信号。
进一步地,每相导通电流的时间与相电压的瞬时值成正比关系,瞬时值最大相的电流导通时间等于其它两相电流导通时间的总和。
本发明采取的另一种技术方案是:一种三相整流电路,包括三相全桥整流单元、第二滤波电容和前述技术方案所述的两电平型三相整流矫正器;所述三相全桥整流单元包括串联连 接的第十一二极管和第十四二极管、串联连接的第十二二极管和第十五二极管和串联连接的第十三二极管和第十六二极管;所述第一开关整流桥臂的交流输入端口与第十二二极管的阳极连接,所述第二开关整流桥臂的交流输入端口与第十一二极管的阳极连接,所述第三开关整流桥臂的交流输入端口与第十三二极管的阳极连接;所述第十一二极管、第十二二极管和第十三二极管的阴极与所述三相整流矫正器的正输出端和第二滤波电容的一端连接,形成三相整流电路的正输出端;所述第十四二极管、第十五二极管和第十六二极管的阳极与所述三相整流矫正器的负输出端和第二滤波电容的另一端连接,形成三相整流电路的负输出端。
本发明的有益效果在于:
(1)从结构及性能上,克服了传统的升压式三相整流变换电路的多电感,也简化了常规有源功率因素矫正器的电路变换的复杂性,使本发明比较容易匹配现有的三相整流电源;
(2)改变了传统升压或者降压式三相整流变换电路的实现形式,输出电压相对三相整流电源来说局限性更小,可以其中一相升压跟随自然整流电压,也可以三相升压跟随母线电容电压;
(3)由于结构上的简化,只需控制开合适的关型整流桥臂的导通即可,进而降低了控制的难度,通过对每相的开关管施加有规律或者逻辑的组合PWM驱动信号,简化控制方法;
(4)对输入开关整流桥臂组中的开关管施加合适的“中”模式PWM驱动信号和“高”模式PWM驱动信号,实现对传统三相全桥两电平整流型变换器的功率因数补偿及矫正,减少谐波污染,相比传统的方法降低了电网电流畸变,补偿了功因,适用于三相全桥整流电源设备较多的场合,如工业变频器等。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是现有传统的三相整流结构示意图;
图2是本发明实施例的两电平型三相整流矫正器的示意图;
图3是本发明实施例的三相整流电路的具体实施示意图
图4是本发明实施例的三相交流电压波形示意及交汇点定义示意图;
图5是本发明实施例的开关整流桥臂的具体实施例示意图;
图6是本发明实施例的变换器另外一种具体实施例示意图;
图7是本发明实施例的AC-0区间BC相导通电感储能示意图;
图8是本发明实施例的AC-0区间C相导通电感续流示意图;
图9是本发明实施例的0-BC区间AC相导通电感储能示意图;
图10是本发明实施例的0-BC区间C相导通电感续流示意图;
图11是本发明实施例的AC-0区间AB相导通电感储能示意图;
图12是本发明实施例的AC-0区间AB相导通电感续流示意图;
图13是本发明实施例的AC-0区间CB相导通电感续流示意图。
附图标记解释:KB1-第一开关整流桥臂,KB2-第二开关整流桥臂,KB3-第三开关整流桥臂,D1-第一二极管,D2-第二二极管,D3-第三二极管,D4-第四二极管,D7-第七二极管,D8-第八二极管,D11-第十一二极管,D12-第十二二极管,D13-第十三二极管,D14-第十四二极管,D15-第十五二极管,D16-第十六二极管,T1-第一开关管,T2-第二开关管,L1-储能续流电感,C1-第一滤波电容,C2-第二滤波电容,PhaseA-A相输入,Phase B-B相输入,Phase C-C相输入,1-交流输入端口,2-正输出端口,3-负输出端口。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明并不限于下面公开的具体实施例的限制。
除非另作定义,此处使用的技术术语或者科学术语应当为本申请所述领域内具有一般技能的人士所理解的通常意义。本专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
如图2所示,一种两电平型三相整流矫正器,包括输入开关整流桥臂组、储能续流电感L1和输出整流单元;所述输入开关整流桥臂组包括第一开关整流桥臂KB1、第二开关整流桥 臂KB2和第三开关整流桥臂KB3,每个开关整流桥臂均包括交流输入端口1、正输出端口2和正输出端口3,所述交流输入端口1、正输出端口2和正输出端口3之间设置有等效可控选择开关;所述输出整流单元包括第七二极管D7、第八二极管D8和第一滤波电容C1;
所述第一开关整流桥臂KB1、第二开关整流桥臂KB2和第三开关整流桥臂KB3的正输出端口2依次连接后,再与第七二极管D7的阴极和储能续流电感L1的一端连接;所述第一开关整流桥臂KB1、第二开关整流桥臂KB2和第三开关整流桥臂KB3的正输出端口3依次连接后,再与第八二极管D8的阳极和储能续流电感L1的另一端连接;所述第一滤波电容C1一端与第八二极管D8的阴极连接,形成三相整流矫正器的正输出端,所述第一滤波电容C1的另一端与第七二极管D7的阳极连接,形成三相整流矫正器的负输出端。
在本发明实施例中,所述等效可控选择开关为二极管与高频开关管的串联组合或者两个高频开关管反向串联后再与二极管连接,所述等效可控选择开关根据交流整流导通的需要对高频开关管施加高频PWM驱动信号可以控制开通与关断从而实现有方向选择性的导通连接,即形成对交流正半波的高频脉冲式整流导通,或者交流负半波高频脉冲式整流导通。
所述等效可控选择开关由一个开关管和四个二极管组成,或者由两个开关管和两个二极管组成;
当所述等效可控选择开关由一个开关管和四个二极管组成时,所述开关管的源极与第一二极管D1和第二二极管D2的阳极连接,所述开关管的源极与第三二极管D3和第四二极管D4的阴极连接;所述第一二极管D1的阴极与所述正输出端口2连接;所述第二二极管D2的阴极和第三二极管D3的阳极与所述交流输入端口1连接;所述第四二极管D4的阳极与所述正输出端口3连接;
当所述等效可控选择开关由两个开关管和两个二极管组成时,具有三种连接方式:
第一种连接方式为第一开关管T1和第一二极管D1串联成第一支路后,一端与所述交流输入端口1连接,另一端与所述正输出端口2连接,第二开关管T2和第二二极管D2串联成第二支路后,一端与所述交流输入端口1连接,另一端与所述正输出端口3连接,所述第一支路与所述第二支路关于所述交流输入端口1对称;
第二种连接方式为第一开关管T1和第二开关管T2反向串联后,第一开关管T1与所述交流输入端口1连接,第二开关管T2与第一二极管D1的阳极和第二二极管D2的阴极连接,第一二极管D1的阴极与所述正输出端口2连接,第二二极管D2的阳极与所述负输出端口3连接;
第三种连接方式为第一开关管T1和第二开关管T2反向串联后,第一开关管T1与所述交流输入端口1连接,第一二极管D1的阳极与第一开关管T1和第二开关管T2的串联点连接,第一二极管D1的阴极与所述正输出端口2连接,第二二极管D2的阴极与第二开关管T2连接,第二二极管D2的阳极与所述负输出端3口连接。
本发明实施例工作时,可与三相全桥整流单元和第二滤波电容C2连接,构成如图3所示的一种三相整流电路,所述三相全桥整流单元包括串联连接的第十一二极管D11和第十四二极管D14、串联连接的第十二二极管D12和第十五二极管D15和串联连接的第十三二极管D13和第十六二极管D16;所述第一开关整流桥臂KB1的交流输入端口1与第十二二极管D12的阳极连接,所述第二开关整流桥臂KB2的交流输入端口1与第十一二极管D11的阳极连接,所述第三开关整流桥臂KB3的交流输入端口1与第十三二极管D13的阳极连接;所述第十一二极管D11、第十二二极管D12和第十三二极管D13的阴极与所述三相整流矫正器的正输出端和第二滤波电容C2的一端连接,形成三相整流电路的正输出端;所述第十四二极管D14、第十五二极管D15和第十六二极管D16的阳极与所述三相整流矫正器的负输出端和第二滤波电容C2的另一端连接,形成三相整流电路的负输出端。所述第一开关整流桥臂KB1、第二开关整流桥臂KB2和第三开关整流桥臂KB3的交流输入端口1还分别连接三相交流电源。
在本发明实施例中,所述开关管为设置有反并二极管的高频开关管或等效为相同功能的高频开关管,所述反并二极管为集成二极管、寄生二极管或外加二极管;所述第一滤波电容C1为有极性的电容或无极性的电容。本发明实施例还可以包括输入滤波器,所述输入滤波器一端与所述第一开关整流桥臂KB1、第二开关整流桥臂KB2和第三开关整流桥臂KB3的交流输入端口1连接,另一端与三相交流电源连接,对输入电源起滤波作用,同时也可以对内部的杂波反射至输入端起滤波和衰减作用。
上述两电平型三相整流矫正器的控制方法为:
S100:根据输入的三相三线电源电压信号的锁相分析各相电源当前时刻所处的相位和区间段;
S200:根据步骤S100中的锁相相位分析出各个所述区间段中各相电源的电压的瞬时值大小;
S300:根据母线电压判断各相电源是自然整流电压,还是有大的储能型负载导致电压高于自然整流电压,从而决定矫正器的工作模式;
S400:对当前区间段下的开关整流桥臂施加驱动信号进行PWM驱动控制,使其中瞬时值最高相与最低相的两相电流导通;使电流在储能续流电感L1上储能,然后关断瞬时值最高相,使瞬时值最低相的电流通过储能电感续流导通;具体方法为:给瞬时值最低相交流回路中对应开关整流桥臂的开关管施加常通的高电平PWM驱动信号,同时对瞬时值最高相交流的电流回路中对应开关整流桥臂的开关管施加“低”模式PWM驱动信号,为不能通流的低压交流相电压提供电流导通回路;并根据计算控制“低”模式PWM驱动信号的占空比,使输出电压不超过三相整流瞬时电压,即此时矫正器工作于三相自然整流电压跟随矫正模式,又称自然整流不稳压矫正模式;
S500:若母线连接较大储能性负载,且根据输出采样电路检测反馈瞬时电压值远高于三相的整流电压,则矫正器调整为升压跟随模式,在该模式下,对电压次高相回路中对应开关整流桥臂的开关管施加“中”模式驱动信号,对电压瞬时值最高相回路中对应开关整流桥臂的开关管施加“低”模式信号,然后对瞬时值最低相交流回路中对应开关整流桥臂的开关管施加常通的高电平PWM驱动信号,从而给不能通流的交流相电压提供电流导通回路;并根据计算控制“低”及“中”模式PWM驱动信号的占空比,使输出电压不超过母线当前电压;即此时工作于三相升压跟随母线电压矫正模式,又称母线电容电压跟随矫正模式。
判断瞬时值大小的方法为比较各相瞬时值的幅值大小。在步骤S300~S500中,对交流输入瞬时值最低相的开关整流桥臂施加与常通的高电平PWM驱动信号相同的驱动信号或早于“低”模式关闭前开通的高电平PWM驱动信号。每相导通电流的时间与相电压的瞬时值成正比关系,瞬时值最大相的电流导通时间等于其它两相电流导通时间的总和。
如图5所示,所述开关整流桥臂的具体实施电路示意图。如图5(b)所示,交流输入端口1连接第二二极管D2的阴极及第三二极管D3的阳极,第一开关管T1的源极连接第二二极管D2和第一二极管D1的阳极,第一开关管T1的漏极连接第三二极管D3和第四二极管D4的阴极,第一二极管D1的阴极为正输出端口2,第四二极管D4的阳极为负输出端口3。如图5(c)所示,交流输入端口1连接第一二极管D1的阴极和第二二极管D2的阳极,第二开关管T2的源极连接第二二极管D2的阳极,第二开关管T2的漏极为负输出端口3,第一开关管T1的漏极连接第一二极管D1的阴极,第一开关管T1的源极为正输出端口2。如图5(d)所示,交流输入端口1连接第一开关管T1的漏极和第二开关管T2的源极,第一开关管T1的源极连接第一二极管D1的阳极,第一二极管D1的阴极为正输出端口2,第二开关管T2的漏极连接第二二极管D2的阴极,第二二极管D2的阳极为负输出端口3。如图5 (e)所示,交流输入端口1连接第一开关管T1的漏极,第一开关管T1的源极与第二开关管T2的源极连接,第二开关管T2的漏极与第一二极管D1的阳极和第二二极管D2的阴极连接,第一二极管D1的阴极为正输出端口2,第二二极管D2的阳极为负输出端口3。如图5(f)所示,交流输入端口1连接第一开关管T1的源极,第一开关管T1的漏极与第二开关管T2的漏极连接,第二开关管T2的源极与第一二极管D1的阳极和第二二极管D2的阴极连接,第一二极管D1的阴极为正输出端口2,第二二极管D2的阳极为负输出端口3。如图5(g)所示,交流输入端口1连接第一开关管T1的漏极,第一开关管T1的源极与第二开关管T2的源极连接,第一二极管D1的阳极与第一开关管T1的源极连接,第二开关管T2的漏极与第二二极管D2的阴极连接,第一二极管D1的阴极为正输出端口2,第二二极管D2的阳极为负输出端口3。
此外,图5在开关管被施加开通驱动信号后,整个降压开关整流桥臂也可以等效为一个从正输出端口3连接到正输出端口2的两个串联二极管,只是两个二极管的连接点会被交流输入端口1的交流所箝位。以上是本领域的技术人员的公知常识,本发明不局限于上述高频开关管及二极管的连接方法来实现开关整流桥臂的交流输入端口1、正输出端口2和正输出端口3之间的连接,其他可实现本发明可控选择开关的功能的组合方式亦都属于本发明的保护范畴。
假设在交流端口施加交流正半波,需要做正向整流脉冲导通控制时,当给图5中的第一开关管T1施加开通的PWM信号,则第一开关管T1导通,图5(b)中交流输入端口1与正输出端口2之间为第三二极管D3与第一二极管D1串联,等效为一个阳极连接交流输入端口1,阴极连接正输出端口2的二极管,因此可做正向整流;图5(c)和图5(d)中交流输入端口1与正输出端口2之间则等效为第一二极管D1的阳极连接交流输入端口1,第一二极管D1的阴极连接正输出端口2,因此可做正向整流。反之,假设在交流端口施加交流负半波,需要做负向整流脉冲导通控制时,当对图5(b)中的第一开关管T1或者对图5(c)和图5(d)的第二开关管T2施加开通的PWM信号,对应开关管导通,图5(b)中交流输入端口1与正输出端口3之间为第二二极管D2与第四二极管D4串联,等效为一个阴极连接交流输入端口1,阳极连接正输出端口3的二极管,因此可做负向整流;图5(c)和图5(d)中交流输入端口1与正输出端口3之间则等效为第二二极管D2的阳极连接正输出端口3,第二二极管D2的阴极连接交流输入端口1,因此可做负向整流;当多个开关整流桥臂的输出端并联在一起时,如果同时开通可控开关管,因通路的二极管等效性质,二极管的电压偏置效应小, 因此会优先最高电压正向导通或者最低电压负向导通,而另外通路的电压会因等效二极管被截止而无法导通。
因此,后续的案例讨论中,皆以开关整流桥臂正向整流导通或者负向整流导通表示上述工作原理和通路,并将对应通路记为“KB正”或者“KB负”。图6则是图2采用图5(b)的电路结构的具体实施电路图。
如图4所示,本发明实施例输入的三相交流电源,包括A相输入PhaseA、B相输入PhaseB和C相输入PhaseC,由于实际输入的交流电压可能存在瞬变或者畸变,所以本发明实施例所示的电压波形以标准的波形作为参考,便于后文描述。为了方便描述,设三相电压相差120°,且为正弦电压,每360°为一个循环;考虑到表述直观方便,以30°到390°,即下一周期的30°点为一个完整周期,各交汇点分别定义为AC(30°)、BC(90°)、BA(150°)、CA(210°)、CB(270°)、AB(330°)、AC(30°或390°);过零点标为“0”点。
如图3所示,三相整流电路的正极输出端与负极输出端之间可接负载或可等效为负载的电路。根据电路自然整流的基本原理,假设第一滤波电容C1及第二滤波电容C2相对与后端负载来说足够小,母线电压仅仅是整流电压,因此在本发明实施例中,以图5中A相的0°或者原点做参考,电压差的瞬时差值最低点应该是A相的30°、90°、150°、210°、270°、330°点,或者类似周期性相差关系点,此时的最低值为1+1/2倍的相电压最高幅值;所述电压差的瞬时差值最高点应该是A相的60°、120°、180°、240°、300°、360°点,或者类似周期性相差关系点,此时的最高值为
Figure PCTCN2022117906-appb-000001
倍的相电压最高幅值。因此,三相整流电路中,如果无外部矫正器的介入,则永远只有电压幅值较高两相整流供电。要想另外一相导通,则必须对相电压较低的那一相进行升压或者利用储能续流电感L1续流导通,此时工作于三相自然整流电压跟随矫正模式,又称自然整流不稳压矫正模式。
假设第一滤波电容C1及第二滤波电容C2相对与后端负载来说不是足够小,电容具备较大的储能滤波作用,因此母线电压在最高电压点充电后,在电压最低点则会高于最低电压,或者说在某一段区间都会高于自然整流电压,这个区间段内,如果无外部矫正器的介入,三相交流电均不能导通,因此必须对三相进行升压,使其可以导通,即此时工作于三相升压跟随母线电压矫正模式,又称母线电容电压跟随矫正模式。
(1)根据输出电压需求判定为三相自然整流电压跟随矫正模式
如图7所示,从AC点开始到0点的AC-0区间内,B相电压瞬时值的最高,A相次之,C相最低,根据前述的模式判断及KB导通原理,如果对第一开关整流桥臂KB1负向整流导 通通路施加“低”PWM驱动开通信号,对第三开关整流桥臂KB3正向整流导通通路施加长高的PWM驱动信号,因此与C相连接的第三开关型整流桥臂正导通,电压记为Vc;与B相连接的第一开关整流桥臂KB1负导通,电压记为Vb;A相无驱动,因此第二开关整流桥臂KB2无法导通,C相的电流可经由“KB3正”通路流经储能续流电感L1、再经过“KB1负”通路回到B相交流源;三相全桥整流单元的A相电流经第十一二极管D11,第一滤波电容C1,第二滤波电容C2及外接负载、再经第十五二极管D15回到B相交流源,进行自然整流,两端的电压为“Va-Vb”,即Vab;储能续流电感L1处于储能状态,施加储能续流电感L1在两端的电压为“Vc-Vb”,即Vcb。
如图8所示,在AC-0区间内,当第一开关整流桥臂KB1负向整流导通通路的驱动被关断后,即“低”PWM驱动结束,此时由于回路中有储能续流电感L1的存在,所以电流无法立即反向,第三开关整流桥臂KB3正向整流导通通路依然存在,因此电感电动势反向释能续流,与Vc电压构成串联关系;C相电流继续由“KB3正”通路流经储能续流电感L1和第八二极管D8,并与前述的Vab整流电流汇合,经第一滤波电容C1、第二滤波电容C2及外接负载,再经过第十五二极管D15回到B相交流源。此时,由于Vab、第一滤波电容C1、第二滤波电容C2及负载存在,母线电压被钳制为整流电压Vab。
由上可知,本发明实施例工作于三相自然整流电压跟随矫正模式。
如图9所示,在0-BC区间内,A相电压瞬时值的最高,B相次之,C相最低,根据前述的模式判断及KB导通原理,如果对第二开关整流桥臂KB2正向整流导通通路施加“低”PWM驱动开通信号,对第三开关整流桥臂KB3负向整流导通通路施加长高的PWM驱动信号,因此与C相连接的第三开关型整流桥臂负导通,电压记为Vc;与A相连接的第二开关整流桥臂KB2正导通,电压记为Va;B相无驱动,因此第一开关整流桥臂KB1无法导通,A相的电流可经由“KB2正”通路流经储能续流电感L1、再经过“KB3负”通路回到C相交流源;三相全桥整流单元的A相电流经第十一二极管D11、第一滤波电容C1、第二滤波电容C2及外接负载、再经第十五二极管D15回到B相交流源,进行自然整流,两端的电压为“Va-Vb”,即Vab;储能续流电感L1处于储能状态,施加在储能续流电感L1两端的电压为“Vc-Vb”,即Vcb。
如图10所示,在0-BC区间内,当第二开关整流桥臂KB2正向整流导通通路的驱动被关断后,即“低”PWM驱动结束,此时由于回路中有储能续流电感L1的存在,所以电流无法立即反向,第三开关整流桥臂KB3负向整流导通通路依然存在,因此电感电动势反向释能 续流,与Vc电压构成串联关系;A相电流继续由第十一二极管D11流经第一滤波电容C1、第二滤波电容C2及外接负载,并与前述的Vab整流电流分开再经第七二极管D7、储能续流电感L1,再经过“KB3负”通路回到C相交流源。此时,由于Vab、第一滤波电容C1、第二滤波电容C2及负载存在,母线电压被钳制为整流电压Vab。
由上可知,在每个开关周期内均实现每相电流的导通,实现PF矫正及谐波电流补偿,其关键在于,每个最低幅值交流相均可以与最高电压交流相进行升压储能,从而使得电流导通并补偿三相整流电路的功率。因此在每个开关周期,最先关断的开关管的驱动信号模式记为“低”,最后关断的开关管的驱动信号模式记为“高”,瞬时值最低相的开关管驱动虽然是施加长高电平驱动电压,但其实可以理解为是“高”模式PWM驱动信号的一种极致,因此在本发明实施例的实际控制中,虽然开关管导通的占空比可以有三种,但是正常情况下每个周期的PWM驱动信号有两种占空比数值即可满足控制。
其他区间的导通按照前述控制方法以此类推,在此不再详细叙述。
由于现实中三相电压并不一定完全理想,存在相位、幅值、方向的变化,只能根据实际锁相来判断产生各区间段的驱动波形,因此应该以区间段各交流电压的瞬时波形的特征来判断,而不以理想角度来表示。根据三相电源信号的特点,可以分成十二个区间段,十二个区间段根据上述原理,第一至第三开关整流桥臂KB1~KB3的驱动信号的波形逻辑表如表1所示。
表1开关管驱动状态逻辑表
Figure PCTCN2022117906-appb-000002
(2)根据输出电压需求判定为三相升压跟随母线电压矫正模式
由于储能型负载的存在,导致三相全桥整流单元的二极管被反向偏置而不能导通,因此三相交流必须升压。相比自然整流跟随模式,增加次高相与最高相的升压储能及释能状态, 原幅值最低相的储能环节用次高相的升压储能代替执行。
因此如图11所示,从AC点开始到0点的AC-0区间内,B相电压瞬时值的最高,A相次之,C相最低,根据前述的模式判断及KB导通原理,如果对第一开关整流桥臂KB1负向整流导通通路施加“低”PWM驱动开通信号,对第二开关整流桥臂KB2正向整流导通通路施加“中”PWM驱动信号,对第三开关整流桥臂KB3正向整流导通通路施加长高的PWM驱动信号,与A相连接的第二开关整流桥臂KB2正导通,电压记为Va;与B相连接的第一开关整流桥臂KB1负导通,电压记为Vb;与C相连接的第三开关整流桥臂KB3正向整流导通通路的输出端因被电压Va反偏而无法导通,A相的电流可经由“KB2正”通路流经储能续流电感L1、再经过“KB1负”通路回到B相交流源;施加在储能续流电感L1两端的电压为“Va-Vb”,即Vab;此时储能续流电感L1处于储能状态。
如图12所示,在AC-0区间内,当第一开关整流桥臂KB1负向整流导通通路的驱动被关断后,即“低”模式PWM驱动结束,此时由于回路中有储能续流电感L1的存在,所以电流无法立即反向,第二开关整流桥臂KB2正向整流导通通路依然存在,因此电感电动势反向释能续流,与Va电压构成串联关系;A相电流继续由“KB2正”通路流经储能续流电感L1和第八二极管D8,经第一滤波电容C1、第二滤波电容C2及外接负载,再经过第十五二极管D15回到B相交流源。此时,由于第一滤波电容C1和第二滤波电容C2等储能型负载的存在,母线电压被钳制为原来的母线电压。
如图13所示,在AC-0区间内,当第二开关整流桥臂KB2正向整流导通通的驱动被关断后,即“中”PWM驱动结束,此时由于回路中有储能续流电感L1的存在,储能续流电感L1原来储存的能量还没有释放完成,电流无法立即反向,第三开关整流桥臂KB3正向整流导通通路依然存在,因此电感电动势增大并继续释能续流,与Vc电压构成串联关系;C相电流继续由“KB3正”通路流经储能续流电感L1和第八二极管D8,经第一滤波电容C1和第二滤波电容C2等储能型负载,再经过第十五二极管D15回到B相交流源。此时,由于第一滤波电容C1和第二滤波电容C2等储能型负载的存在,母线电压被钳制为原来的母线电压。
由上可知,本发明实施例工作于三相升压跟随母线电压矫正模式。其他区间的导通按照前述控制方法以此类推,在此不再详细叙述。
由于现实中三相电压并不一定完全理想,存在相位、幅值、方向的变化,只能根据实际锁相来判断产生各区间段的驱动波形,因此应该以区间段各交流电压的瞬时波形的特征来判断,而不以理想角度来表示。根据三相电源信号的特点,可以分成十二个区间段,十二个区 间段根据上述原理,第一至第三开关整流桥臂KB1~KB3的驱动信号的波形逻辑表如表2所示。
表2开关管驱动状态逻辑表
Figure PCTCN2022117906-appb-000003
根据表1及表2所示的开关管驱动状态逻辑表,将一个控制周期总分为12个区间段,并根据母线电压状态的判断执行对应的驱动控制逻辑。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种两电平型三相整流矫正器,其特征在于,包括输入开关整流桥臂组、储能续流电感和输出整流单元;所述输入开关整流桥臂组包括第一开关整流桥臂、第二开关整流桥臂和第三开关整流桥臂,每个开关整流桥臂均包括交流输入端口、正输出端口和负输出端口,所述交流输入端口、正输出端口和负输出端口之间设置有等效可控选择开关;所述输出整流单元包括第七二极管、第八二极管和第一滤波电容;
    所述第一开关整流桥臂、第二开关整流桥臂和第三开关整流桥臂的正输出端口依次连接后,再与第七二极管的阴极和储能续流电感的一端连接;所述第一开关整流桥臂、第二开关整流桥臂和第三开关整流桥臂的负输出端口依次连接后,再与第八二极管的阳极和储能续流电感的另一端连接;所述第一滤波电容一端与第八二极管的阴极连接,形成三相整流矫正器的正输出端,所述第一滤波电容的另一端与第七二极管的阳极连接,形成三相整流矫正器的负输出端。
  2. 根据权利要求1所述的一种两电平型三相整流矫正器,其特征在于,所述等效可控选择开关为二极管与高频开关管的串联组合或者两个高频开关管反向串联后再与二极管连接,所述等效可控选择开关根据交流整流导通的需要对高频开关管施加高频PWM驱动信号可以控制开通与关断从而实现有方向选择性的导通连接,即形成对交流正半波的高频脉冲式整流导通,或者交流负半波高频脉冲式整流导通。
  3. 根据权利要求2所述的一种两电平型三相整流矫正器,其特征在于,所述等效可控选择开关由一个开关管和四个二极管组成,或者由两个开关管和两个二极管组成;
    当所述等效可控选择开关由一个开关管和四个二极管组成时,所述开关管的源极与第一二极管和第二二极管的阳极连接,所述开关管的源极与第三二极管和第四二极管的阴极连接;所述第一二极管的阴极与所述正输出端口连接;所述第二二极管的阴极和第三二极管的阳极与所述交流输入端口连接;所述第四二极管的阳极与所述负输出端口连接;
    当所述等效可控选择开关由两个开关管和两个二极管组成时,具有三种连接方式:
    第一种连接方式为第一开关管和第一二极管串联成第一支路后,一端与所述交流输入端口连接,另一端与所述正输出端口连接,第二开关管和第二二极管串联成第二支路后,一端与所述交流输入端口连接,另一端与所述负输出端口连接,所述第一支路与所述第二支路关于所述交流输入端口对称;
    第二种连接方式为第一开关管和第二开关管反向串联后,第一开关管与所述交流输入端口连接,第二开关管与第一二极管的阳极和第二二极管的阴极连接,第一二极管的阴极与所 述正输出端口连接,第二二极管的阳极与所述负输出端口连接;
    第三种连接方式为第一开关管和第二开关管反向串联后,第一开关管与所述交流输入端口连接,第一二极管的阳极与第一开关管和第二开关管的串联点连接,第一二极管的阴极与所述正输出端口连接,第二二极管的阴极与第二开关管连接,第二二极管的阳极与所述负输出端口连接。
  4. 根据权利要求3所述的一种两电平型三相整流矫正器,其特征在于,所述开关管为设置有反并二极管的高频开关管或等效为相同功能的高频开关管,所述反并二极管为集成二极管、寄生二极管或外加二极管;所述第一滤波电容为有极性的电容或无极性的电容。
  5. 根据权利要求1所述的一种两电平型三相整流矫正器,其特征在于,还包括输入滤波器,所述输入滤波器与所述第一开关整流桥臂、第二开关整流桥臂和第三开关整流桥臂的交流输入端口连接。
  6. 一种三相整流电路,其特征在于,包括三相全桥整流单元、第二滤波电容和如权利要求1~5任一权利要求所述的两电平型三相整流矫正器;所述三相全桥整流单元包括串联连接的第十一二极管和第十四二极管、串联连接的第十二二极管和第十五二极管和串联连接的第十三二极管和第十六二极管;所述第一开关整流桥臂的交流输入端口与第十二二极管的阳极连接,所述第二开关整流桥臂的交流输入端口与第十一二极管的阳极连接,所述第三开关整流桥臂的交流输入端口与第十三二极管的阳极连接;所述第十一二极管、第十二二极管和第十三二极管的阴极与所述三相整流矫正器的正输出端和第二滤波电容的一端连接,形成三相整流电路的正输出端;所述第十四二极管、第十五二极管和第十六二极管的阳极与所述三相整流矫正器的负输出端和第二滤波电容的另一端连接,形成三相整流电路的负输出端。
  7. 一种两电平型三相整流矫正器的控制方法,其特征在于,用于控制权利要求1~5任一权利要求所述的两电平型三相整流矫正器,包括如下步骤:
    S100:根据输入的三相三线电源电压信号的锁相分析各相电源当前时刻所处的相位和区间段;
    S200:根据步骤S100中的锁相相位分析出各个所述区间段中各相电源的电压的瞬时值大小;
    S300:根据母线电压判断各相电源是自然整流电压,还是有大的储能型负载导致电压高于自然整流电压,从而决定矫正器的工作模式;
    S400:对当前区间段下的开关整流桥臂施加驱动信号进行PWM驱动控制,使其中瞬时 值最高相与最低相的两相电流导通;使电流在储能续流电感上储能,然后关断瞬时值最高相,使瞬时值最低相的电流通过储能电感续流导通;具体方法为:给瞬时值最低相交流回路中对应开关整流桥臂的开关管施加常通的高电平PWM驱动信号,同时对瞬时值最高相交流的电流回路中对应开关整流桥臂的开关管施加“低”模式PWM驱动信号,为不能通流的低压交流相电压提供电流导通回路;并根据计算控制“低”模式PWM驱动信号的占空比,使输出电压不超过三相整流瞬时电压,即此时矫正器工作于三相自然整流电压跟随矫正模式,又称自然整流不稳压矫正模式;
    S500:若母线连接较大储能性负载,且根据输出采样电路检测反馈瞬时电压值远高于三相的整流电压,则矫正器调整为升压跟随模式,在该模式下,对电压次高相回路中对应开关整流桥臂的开关管施加“中”模式驱动信号,对电压瞬时值最高相回路中对应开关整流桥臂的开关管施加“低”模式信号,然后对瞬时值最低相交流回路中对应开关整流桥臂的开关管施加常通的高电平PWM驱动信号,从而给不能通流的交流相电压提供电流导通回路;并根据计算控制“低”及“中”模式PWM驱动信号的占空比,使输出电压不超过母线当前电压;即此时工作于三相升压跟随母线电压矫正模式,又称母线电容电压跟随矫正模式。
  8. 根据权利要求7所述的一种两电平型三相整流矫正器的控制方法,其特征在于,在步骤S300~S500中,对交流输入瞬时值最低相的开关整流桥臂施加与常通的高电平PWM驱动信号相同的驱动信号或早于“低”模式关闭前开通的高电平PWM驱动信号。
  9. 根据权利要求7所述的一种两电平型三相整流矫正器的控制方法,其特征在于,每相导通电流的时间与相电压的瞬时值成正比关系,瞬时值最大相的电流导通时间等于其它两相电流导通时间的总和。
PCT/CN2022/117906 2021-11-30 2022-09-08 一种两电平型三相整流矫正器及其控制方法 WO2023098217A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111440817.7A CN114362566A (zh) 2021-11-30 2021-11-30 一种两电平型三相整流矫正器及其控制方法
CN202111440817.7 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023098217A1 true WO2023098217A1 (zh) 2023-06-08

Family

ID=81096466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117906 WO2023098217A1 (zh) 2021-11-30 2022-09-08 一种两电平型三相整流矫正器及其控制方法

Country Status (2)

Country Link
CN (1) CN114362566A (zh)
WO (1) WO2023098217A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114362566A (zh) * 2021-11-30 2022-04-15 刘三英 一种两电平型三相整流矫正器及其控制方法
CN116208007B (zh) * 2022-11-17 2023-11-07 深圳市迪威电气有限公司 一种无输入储能电感的三相隔离型变换器及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112902A (zh) * 2019-06-11 2019-08-09 南昌航空大学 一种三相升降压型pfc整流电路
CN110165923A (zh) * 2019-05-28 2019-08-23 南昌杜迪电子技术有限公司 一种逆变电路
CN112838779A (zh) * 2021-01-21 2021-05-25 南京熊猫电子股份有限公司 一种三相升降压型逆变电路及调制方法
CN114362566A (zh) * 2021-11-30 2022-04-15 刘三英 一种两电平型三相整流矫正器及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165923A (zh) * 2019-05-28 2019-08-23 南昌杜迪电子技术有限公司 一种逆变电路
CN110112902A (zh) * 2019-06-11 2019-08-09 南昌航空大学 一种三相升降压型pfc整流电路
CN112838779A (zh) * 2021-01-21 2021-05-25 南京熊猫电子股份有限公司 一种三相升降压型逆变电路及调制方法
CN114362566A (zh) * 2021-11-30 2022-04-15 刘三英 一种两电平型三相整流矫正器及其控制方法

Also Published As

Publication number Publication date
CN114362566A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
CN109067219B (zh) 一种三相交直流变换器及其控制方法
CN109167524B (zh) 一种三相交直流升降压变换电路及其控制方法
WO2023098217A1 (zh) 一种两电平型三相整流矫正器及其控制方法
WO2019120244A1 (zh) 谐振变换电路及其控制方法
WO2017128499A1 (zh) 基于混合型模块化多电平变换器的四端口电力电子变压器
WO2023098214A1 (zh) 一种两电平型三相可升降压pfc整流变换器及其控制方法
CN101582633B (zh) 三相升降压功率因数校正电路及其控制方法
CN217087793U (zh) 一种两电平型三相可升降压pfc整流变换器及其构成的三相整流变换器
CN113556049B (zh) 一种非隔离式三相可升降压整流变换器及控制方法
CN113394990B (zh) 一种三相升降压整流变换器及其控制方法
CN113394992B (zh) 一种非隔离式三相升降压整流变换器及其控制方法
US6031739A (en) Two-stage, three-phase split boost converter with reduced total harmonic distortion
CN109120165A (zh) 一种隔离型三相交直流变换器及其控制方法
WO2023098216A1 (zh) 一种无输入储能电感隔离谐振软开关型三相pfc变换器及其控制方法
CN114301312A (zh) 一种无输入储能电感软开关隔离型三相pfc变换器及其控制方法
CN113507224B (zh) 一种三相升降压整流变换器及控制方法
CN113507226B (zh) 一种三相整流变换器及其控制方法
CN115065230A (zh) 一种三相无桥sepic型pfc变换器
CN115765515B (zh) 一种可双向变换的三相升降压变换器及其控制方法
CN217087792U (zh) 一种无输入储能电感隔离谐振软开关型三相pfc变换器
CN115995953A (zh) 一种功率因数校正电路的控制方法
CN115765514A (zh) 一种可双向变换的三相隔离型变换器及其控制方法
CN209105053U (zh) 一种隔离型三相交直流变换器
CN217087791U (zh) 一种两电平型三相整流矫正器及其构成的三相整流电路
CN113193768A (zh) 四开关管串联型的背靠背式三电平整流器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900026

Country of ref document: EP

Kind code of ref document: A1