WO2023098084A1 - 一种激光喷丸制备铝合金超疏水表面的方法 - Google Patents

一种激光喷丸制备铝合金超疏水表面的方法 Download PDF

Info

Publication number
WO2023098084A1
WO2023098084A1 PCT/CN2022/104479 CN2022104479W WO2023098084A1 WO 2023098084 A1 WO2023098084 A1 WO 2023098084A1 CN 2022104479 W CN2022104479 W CN 2022104479W WO 2023098084 A1 WO2023098084 A1 WO 2023098084A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
laser peening
laser
superhydrophobic
preparing
Prior art date
Application number
PCT/CN2022/104479
Other languages
English (en)
French (fr)
Inventor
周建忠
缑延强
孟宪凯
黄舒
李鹏飞
李礼
姜高强
冯旭
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2023098084A1 publication Critical patent/WO2023098084A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/356Working by laser beam, e.g. welding, cutting or boring for surface treatment by shock processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Definitions

  • the invention relates to the fields of laser processing and material science, in particular to a method for preparing superhydrophobic surfaces of aluminum alloys by laser peening.
  • Aeronautical aluminum alloy is an important material for the preparation of key parts such as aircraft skins, skeletons, and wing ribs.
  • the superhydrophobic surface prepared on the surface of aviation aluminum alloy materials can effectively slow down the surface icing caused by the low temperature when the aircraft is flying at high altitudes. , It can also make the surface of the aircraft have a self-cleaning function.
  • laser processing As a method for preparing superhydrophobic surfaces, laser processing has the characteristics of environmental protection, high efficiency, and stability. It can directly prepare specific micro-nano structures on metal surfaces and prepare superhydrophobic surfaces of materials. It has received extensive attention in recent years. For example, the prior art proposes a method for preparing a metal superhydrophobic surface. By setting the parameters of the laser and the processing path, the polished metal surface is ablated, and the micron-scale parallel groove structure required for the superhydrophobic surface is prepared.
  • the present invention provides a method for preparing superhydrophobic surface of aluminum alloy by laser peening, which improves the traditional laser peening process and changes the absorbing layer of laser peening to the surface of the material,
  • the laser is irradiated directly on the surface of the material.
  • the clear water in the traditional flowing water confinement layer to an organic solvent
  • the morphology and composition of the prepared superhydrophobic surface can be regulated by adjusting the laser peening parameters and the composition of the organic solution.
  • laser peening produces GPa-level shock waves to effectively refine the near-surface grains of the material, introduce high-amplitude residual compressive stress into the material, and improve the mechanical properties of the material. Therefore, the preparation method proposed by the present invention can simultaneously realize super Hydrophobic surface preparation and material strengthening.
  • the present invention achieves the above-mentioned technical purpose through the following technical means.
  • a method for preparing an aluminum alloy superhydrophobic surface by laser peening comprising the steps of: using the surface of an aluminum alloy material as an absorbing layer, and coating a constrained layer containing an organic component on the surface of the aluminum alloy material, the constrained layer containing an organic component is A mixed organic solution of 5ml-10ml perfluorooctyltriethoxysilane, 100ml-200ml absolute ethanol and 30ml-50ml distilled water; laser peening is performed on the surface of the aluminum alloy workpiece, and the surface of the aluminum alloy workpiece forms a super-hydrophobic surface.
  • the method also includes the following step: performing constant temperature drying treatment on the surface of the aluminum alloy workpiece after laser peening processing, so as to improve the bonding of the surface material and the low free energy functional group.
  • the surface of the processed aluminum alloy workpiece is kept warm in an environment of 80-100° C. for 10-20 minutes.
  • the spot size of the laser peening is 0.5mm-2mm
  • the impact method of the laser peening adopts multi-point overlapping and large-area impact
  • the overlapping rate of the laser peening is 30%-80%.
  • the wavelength of the laser beam of the laser shot blasting is 1064nm
  • the pulse width is 8ns
  • the repetition frequency is 1Hz-10Hz
  • the energy of a single pulse is 2J, showing a Gaussian distribution.
  • the thermal effect produced by laser peening can cause complex physical and chemical reactions such as gasification and liquefaction on the surface of the material, and the force effect of laser peening combined with thermal effect makes the material
  • a porous micro-nano multi-level structure is produced on the surface, which makes the morphology of the aluminum alloy surface material superhydrophobic.
  • the composition of the flowing water constrained layer in the traditional laser peening process is changed to an organic solution.
  • the aluminum alloy surface material reacts with the organic substances in the constrained layer, making the low free energy
  • the functional groups are bonded to the surface of the aluminum alloy, which reduces the surface energy of the material. Under the joint action of the prepared porous micro/nano structure and the lower surface energy, the surface of the aluminum alloy material has a better superhydrophobic effect.
  • the improved laser peening process not only affects the surface morphology and surface energy of the aluminum alloy, but also causes high strain rate plastic deformation of the material near the surface ( ⁇ 500 ⁇ m) due to the shock wave formed by the high-pressure plasma explosion generated by laser peening , a high-density dislocation structure and a large number of deformation twins will be generated inside the material, the grains of the structure will be significantly refined, the mechanical stability of the hydrophobic structure will be enhanced, and the fatigue performance of the aluminum alloy hydrophobic structure will also be improved.
  • the preparation process proposed by the invention can simultaneously realize the superhydrophobic surface preparation and material strengthening of the aluminum alloy.
  • the method for preparing superhydrophobic surfaces of aluminum alloys by laser peening according to the present invention can efficiently realize the preparation of superhydrophobic surfaces of aluminum alloy materials and the strengthening of material substrates.
  • the laser parameters and the composition of the constrained layer are precisely controllable, and have good Processing quality and repeatability, high processing flexibility and automation.
  • the method for preparing the superhydrophobic surface of aluminum alloy by laser peening according to the present invention can realize the reinforcement of matrix material and the preparation of hydrophobic functional surface at the same time, the process method is simple and efficient, the hydrophobic effect is good, and the porous micro-nano structure prepared has higher The reliability and stability of the aluminum alloy super-hydrophobic functional surface preparation technology has effectively promoted the application in the aerospace field.
  • Fig. 1 is a strengthening schematic diagram of the method for preparing an aluminum alloy superhydrophobic surface by laser peening according to the present invention.
  • Fig. 2 is a schematic diagram of laser peening paths with different overlapping ratios for preparing superhydrophobic surfaces of aerospace aluminum alloys by laser peening according to the present invention.
  • Fig. 3 is a droplet static contact angle (WCA) image obtained in Example 1 of the present invention.
  • FIG. 4 is an image of the droplet rolling angle (SA) obtained in Example 1 of the present invention.
  • Fig. 5 is a SEM image of the porous micro-nano structure obtained in Example 1 of the present invention.
  • Fig. 6 is a graph showing the variation of droplet contact angles on superhydrophobic surfaces prepared at different ultrasonic treatment times in Example 1 of the present invention.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • the thermal effect produced by the laser peening process makes the surface of the aluminum alloy material produce a porous micro-nano structure, and the laser peening process flow
  • the composition of the constrained layer is changed, so that the aluminum alloy surface material and the low free energy functional group are firmly bonded under the ultra-high temperature and ultra-high pressure environment generated by laser peening, and the surface energy of the material is reduced.
  • the acquisition of low surface energy makes the aluminum alloy surface a surface with excellent hydrophobic properties.
  • the 2024-T351 aluminum alloy is selected as the research object, and the present invention will be described in detail below in conjunction with the accompanying drawings and three specific examples.
  • S01 The 2024-T351 aluminum alloy plate is made into a 15mm ⁇ 15mm ⁇ 2mm square workpiece by wire cutting. Then use 400#, 800#, 1000#, 1500# and 2000# sandpaper to smooth the surface of the workpiece to be treated and polish it to a mirror surface, and finally put the surface polished workpiece into an alcohol solution for ultrasonic cleaning, so that there is no excess impurities on the surface of the material .
  • S02 Install the processed workpiece on the fixture of the laser peening process, use the surface of the aluminum alloy material as the absorption layer, and contain a mixed organic solution composed of 5ml perfluorooctyltriethoxysilane, 100ml ethanol solution and 50ml distilled water Prepare a 2mm-thick organic solution confinement layer;
  • Nd:YAG solid-state laser output parameters are: wavelength 1064nm, repetition frequency 10Hz, pulse width 8ns, single pulse energy 1.5J, set the overlap rate of spots between rows and columns to 20 %, the diameter of the laser spot is 500 ⁇ m; the scanning path of laser peening is shown in a in Figure 2, and the starting point of peening is in the upper left corner of the workpiece.
  • Laser peening is performed on the surface of the aluminum alloy workpiece, and the surface of the aluminum alloy workpiece forms a superhydrophobic surface.
  • a superhydrophobic surface was prepared by an improved laser peening process on the aluminum alloy surface. is 4°, achieving a good surface hydrophobic effect.
  • the porous micro-nano structure can store a large amount of air, reducing the contact area between the droplet and the material.
  • the porous micro-nano structure of the aluminum alloy super-hydrophobic surface is prepared by laser peening. Good hydrophobicity provides structural support. After ultrasonic vibration for different durations, the contact angle changes of the prepared aluminum alloy superhydrophobic surface are shown in Figure 6.
  • the contact angle decreases with the increase of the sample vibration time, which is consistent with the prepared porous
  • the contact angle of the droplet can still reach more than 160° after 5 hours of ultrasonic vibration; within 30 days after the superhydrophobic surface of the prepared aluminum alloy is placed, the observed value of the contact angle of the droplet is 169° It shows that the prepared aluminum alloy superhydrophobic surface has high structural stability.
  • the preparation process of the superhydrophobic surface of the aluminum alloy material in Example 2 is the same as in Example 1, but the laser peening parameters and the composition content of the constrained layer are adjusted, so that the porous micro-nano structure on the surface of the aluminum alloy material changes, In turn, the contact angle of the droplet changes.
  • the static contact angle (WCA) of the prepared aluminum alloy superhydrophobic surface measured by contact angle measurement software was 161.7°
  • the dynamic sliding angle (SA) was 4.6°, showing good hydrophobicity.
  • Example 3 the laser peening spot overlap rate was 80%.
  • the spot diameter was 1mm, and the porous micro-nano structure on the surface of the material formed by laser peening was denser.
  • the static contact angle (WCA) of the prepared aluminum alloy superhydrophobic surface measured by contact angle measurement software is 163.3°, and the dynamic sliding angle (SA) is 5.5°.
  • the prepared aluminum alloy superhydrophobic surface has good hydrophobic effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

一种激光喷丸制备铝合金超疏水表面的方法,包括如下步骤:以铝合金材料表面作为吸收层,在铝合金材料表面涂覆含有有机成分的约束层,含有有机成分的约束层为5ml~10ml的全氟辛基三乙氧基硅烷、100ml~200ml无水乙醇和30ml~50ml蒸馏水的混合有机溶液;对铝合金工件表面进行激光喷丸,铝合金工件表面形成超疏水表面。

Description

一种激光喷丸制备铝合金超疏水表面的方法 技术领域
本发明涉及激光加工与材料科学领域,具体涉及一种激光喷丸制备铝合金超疏水表面的方法。
背景技术
航空铝合金是制备航空飞机蒙皮、骨架、翼肋等关键零部件的重要材料,在航空铝合金材料表面制备超疏水表面,可以有效减缓飞机在高空飞行时由于气温较低而产生表面结冰,还可以使飞机表面具有自清洁功能。
当前,制备超疏水表面的方法有很多,常见的制备方法有:化学刻蚀、电化学沉积、水热法、气相沉积等,这些方法存在自身的局限性,如制备的微纳结构机械稳定性差、工艺复杂、大规模制备困难等,难以在受力复杂的航空领域上应用。
激光加工作为一种制备超疏水表面的方法,具有环保、高效、稳定等特点,可以直接在金属表面制备特定的微纳米结构,进行材料超疏水表面的制备,近年来受到广泛关注。例如现有技术提出了一种金属超疏水表面制备的方法,通过设定激光器的参数及加工路径对抛光好的金属表面进行烧蚀,制备出了超疏水表面所需的微米级平行槽结构,随后采用酸溶液超声处理及羟基化处理得到疏水角高达170°的超疏水表面;又如现有技术提出了一种具有强化滴状冷凝传热的金属基超疏水表面的制备方法,其采用激光烧蚀技术对表面贴有聚酰亚胺胶带的金属表面进行了烧蚀,得到具有碳化聚酰亚胺碳化颗粒沉积的微槽结构,一步实现了金属表面超疏水织构的制备。由于激光烧蚀过程具有极热瞬冷的特点,使得激光烧蚀制备的微/纳结构具有一定的脆硬性,同时重熔层表面及内部会产生拉应力,机械强度低,稳定性差,使航空铝合金基体材料的力学性能降低。
发明内容
针对现有技术中存在的不足,本发明提供了一种激光喷丸制备铝合金超疏水表面的方法,对传统的激光喷丸工艺进行改进,将激光喷丸的吸收层改为材料的表面,使激光直接辐照在材料表面上。将传统流水约束层中的清水调整为有机溶剂,可以通过调整激光喷丸参数和有机溶液成分组成,对制备的超疏水表面形貌及成分进行调控。同时激光喷丸产生GPa量级的冲击波使材料的近表层晶粒得到有效细化,材料内部引入高幅残余压应力,材料力学性能得到提高,因此,采用本发明提出的制备方法可以同步实现超疏水表面制备与材料强化。
本发明是通过以下技术手段实现上述技术目的的。
一种激光喷丸制备铝合金超疏水表面的方法,包括如下步骤:以铝合金材料表面作为吸收层,在铝合金材料表面涂覆含有有机成分的约束层,所述含有有机成分的约束层为5ml~10ml的全氟辛基三乙氧基硅烷、100ml~200ml无水乙醇和30ml~50ml蒸馏水的混合有机溶液;对铝合金工件表面进行激光喷丸,铝合金工件表面形成超疏水表面。
进一步,还包括如下步骤:对激光喷丸加工后的铝合金工件表面进行恒温干燥处理,用于提高表面材料与低自由能官能团的键合。
进一步,加工后的铝合金工件表面在80~100℃的环境中保温10~20min。
进一步,所述激光喷丸的光斑大小为0.5mm~2mm,激光喷丸的冲击方式采用多点搭接大面积冲击,激光喷丸的搭接率为30%~80%。
进一步,所述激光抛丸的激光束波长为1064nm,脉冲宽度8ns,重复频率1Hz~10Hz,单次脉冲能量2J,呈高斯分布。
本发明的有益效果在于:
1.本发明所述的激光喷丸制备铝合金超疏水表面的方法,激光喷丸产生的热效应可使材料表面发生气化液化等复杂的物理化学反应,激光喷丸的力效应结合热效应使得材料表面产生了多孔的微纳多级结构,使铝合金表面材料的形貌具有超疏水性。将传统激光喷丸工艺中流水约束层成分改为有机溶液,受激光喷丸热力效应及产生的超高温超高压环境影响,铝合金表面材料与约束层中的有机物质发生反应,使低自由能官能团键合在了铝合金的表面,降低了材料的表面能,在制备的多孔微/纳结构及较低表面能共同作用下,铝合金材料表面具有了较好的超疏水效果。改进后的激光喷丸工艺不仅对铝合金的表面形貌和表面能产生影响,还会由于激光喷丸产生的高压等离子爆炸形成的冲击波使材料近表层(≤500μm)产生高应变率塑形变形,材料内部会产生高密度位错结构及大量的形变孪晶,组织晶粒得到了明显的细化,疏水结构的机械稳定性增强,铝合金疏水结构制备后的疲劳性能也得到提高,采用本发明提出的制备工艺可以同步实现铝合金超疏水表面制备与材料强化。
2.本发明所述的激光喷丸制备铝合金超疏水表面的方法,可以高效的实现铝合金材料超疏水表面的制备与材料基体的加强,激光器参数与约束层成分精准可控,具有良好的加工质量和重复性,加工柔性与自动化程度高。
3.本发明所述的激光喷丸制备铝合金超疏水表面的方法,可以同时实现基体材料强化与疏水功能表面的制备,工艺方法简单高效,疏水效果好,制备的多孔微纳结构具有较高的可靠性和稳定性,有力的促进了铝合金超疏水功能表面制备工艺在航天航空领域的应用。
附图说明
图1为本发明所述的激光喷丸制备铝合金超疏水表面的方法的强化示意图。
图2为本发明所述的激光喷丸制备航空铝合金超疏水表面的不同搭接率激光喷丸路径示意图。
图3为本发明实施例1中获得的液滴静态接触角(WCA)图像。
图4为本发明实施例1中获得的液滴滚动角(SA)图像。
图5为本发明实施例1中获得的多孔微纳结构SEM图像。
图6为本发明实施例1中不同超声处理时间制备超疏水表面液滴接触角的变化曲线图。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“轴向”、“径向”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
如图1所示,本发明所述的激光喷丸制备航空铝合金超疏水表面的方法,通过激光喷丸工艺产生的热力效应使铝合金材料表面产生多孔微纳结构,对激光喷丸工艺流水约束层的成分进行改变,使铝合金表面材料与低自由能官能团在激光喷丸产生的超高温超高压的环境下稳固的键合起来,材料表面能得到降低,多孔微纳结构材料表面与较低表面能的获得使铝合金表面成为具有优良疏水性能的表面。由于激光喷丸产生的GPa量级冲击波的作用,多孔微纳结构下方的材料中产生大量的位错组织,晶粒得到细化,同时材料中也注入了高幅残余压 应力,从而制备的超疏水表面具有超高机械稳定性。选取2024-T351铝合金作为研究对象,下面结合附图和三个具体实施例对本发明进行详细描述。
实施例1:
S01:将2024-T351铝合金板材通过线切割制成15mm×15mm×2mm的方块工件。然后采用400#、800#、1000#、1500#和2000#的砂纸将待处理工件表面打磨光滑并抛光至镜面,最后将表面抛光工件放入酒精溶液中超声清洗,以使材料表面无多余杂质。
S02:将处理好的工件安装在激光喷丸工艺的夹具上,以铝合金材料表面作为吸收层,含有5ml全氟辛基三乙氧基硅烷、100ml乙醇溶液和50ml的蒸馏水组成的混合有机溶液制备2mm厚的有机溶液约束层;Nd:YAG固体激光器输出参数为:波长1064nm,重复频率10Hz,脉冲宽度8ns,单脉冲能量1.5J,设定行间和列间的光斑搭接率均为20%,激光光斑直径为500μm;激光喷丸扫描路径如图2中的a所示,喷丸起始点在工件左上角,对铝合金工件表面进行激光喷丸,铝合金工件表面形成超疏水表面。
S03:激光喷丸完成后,将工件放置在80℃的烘干箱中保温处理10min,以去除材料表面多余的水分,促进铝合金材料表面与低自由能官能团进一步键合,材料表面能得到进一步降低,结合激光热力效应产生的具有多孔微纳结构的粗糙表面,完成铝合金超疏水表面的制备。
本实施例在铝合金表面通过改进的激光喷丸工艺制备了超疏水表面,如图3和图4所示,采用角接触测量仪测试了喷丸区域液滴的接触角为169.9°,滚动角为4°,达到了较好的表面疏水效果。多孔的微纳结构可以存储大量的空气,减少了液滴与材料的接触面积,如图5为激光喷丸制备铝合金超疏水表面的多孔微纳结构,孔洞的密度较大,可以为材料表面良好的疏水性提供结构上的支持。经过不同时长的超声振动后,制备的铝合金超疏水表面的液滴接触角变化如图6所示,可以发现随着试样振动时间的增加,接触角有所下降,这与制备的多孔微纳多级结构的破坏有关,但液滴接触角在超声振动5个小时后,依然能达到160°以上;制备的铝合金超疏水表面放置的30天内,液滴接触角观测值均在169°左右,说明了所制备的铝合金超疏水表面具有较高的结构稳定性。
实施例2:
S01:采用不同粒径的砂纸将线切割制备的2024-T351铝合金工件表面打磨光滑并抛光,随后采用丙酮溶液对抛光工件表面进行超声清洗,清洗时间为5min。
S02:激光喷丸制备铝合金超疏水表面时,以材料表面作为吸收层,含有7ml全氟辛基三乙氧基硅烷、150ml乙醇溶液和40ml的蒸馏水组成的混合有机溶液制备2mm厚的有机溶液作为约束层;Nd:YAG固体激光器输出参数为:波长1064nm,重复频率10Hz,脉冲宽度8ns,单脉冲能量2J,设定行间和列间的光斑搭接率均为50%,激光光斑直径为500μm;激 光喷丸扫描路径如图2中的b所示,喷丸起始点在工件左上角。
S03:激光喷丸完成后,将工件放置在100℃的烘干箱中保温处理15min,以去除材料表面多余的水分,促进铝合金材料表面与低自由能官能团进一步键合,降低了材料的表面能,结合激光热力效应所产生的多孔微纳结构,完成2024-T351铝合金材料超疏水表面的制备。
实施例2与实施例1的铝合金材料超疏水表面的制备工艺是一致的,但对激光喷丸参数和约束层成分含量进行了调整,使得铝合金材料表面的多孔微纳结构发生了变化,进而使液滴的接触角发生改变。采用接触角测量软件测得制备的铝合金超疏水表面的静态接触角(WCA)为161.7°,动态滑动角(SA)为4.6°,具有良好的疏水性。
实施例3:
S01:2024-T351铝合金材料表面用不同粒径的的砂纸依次进行打磨,然后使用金相显微镜观察打磨表面划痕与裂纹,满足要求后于金相磨抛机上对处理表面抛光,使表面粗糙度≤0.05mm,最后在无水乙醇溶液中对抛光表面进行超声清洗;
S02:采用高能短脉冲激光器对铝合金工件表面进行喷丸处理时,以材料表面作为吸收层,含有10ml全氟辛基三乙氧基硅烷、200ml乙醇溶液和50ml的蒸馏水组成的混合有机溶液制备2mm厚的有机溶液作为约束层;Nd:YAG固体激光器输出参数为:波长1064nm,重复频率10Hz,脉冲宽度8ns,单脉冲能量2J,设定行间和列间的光斑搭接率均为80%,激光光斑直径为1mm;激光喷丸扫描路径如图2中的c所示,喷丸起始点在工件左上角。
S03:喷丸完成后对2024-T351铝合金材料表面进行烘干箱干燥处理,温度为90℃,时长为20分钟,干燥处理后的表面材料与低自由官能团键合率增加,表面能得到进一步降低,使激光喷丸后铝合金材料表面达到超疏水效果。
实施例3中激光喷丸光斑搭接率为80%,为了提高制备效率,光斑直径为1mm,激光喷丸形成的材料表面多孔微纳结构更加密集。采用接触角测量软件测得制备的铝合金超疏水表面的静态接触角(WCA)为163.3°,动态滑动角(SA)为5.5°,所制备的铝合金超疏水表面具有较好的疏水效果。
应当理解,虽然本说明书是按照各个实施例描述的,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施例的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施例或变更均应包含在本发明的保护范围之内。

Claims (5)

  1. 一种激光喷丸制备铝合金超疏水表面的方法,其特征在于,包括如下步骤:
    以铝合金材料表面作为吸收层,在铝合金材料表面涂覆含有有机成分的约束层,所述含有有机成分的约束层为5ml~10ml的全氟辛基三乙氧基硅烷、100ml~200ml无水乙醇和30ml~50ml蒸馏水的混合有机溶液;对铝合金工件表面进行激光喷丸,铝合金工件表面形成超疏水表面。
  2. 根据权利要求1所述的激光喷丸制备铝合金超疏水表面的方法,其特征在于,还包括如下步骤:对激光喷丸加工后的铝合金工件表面进行恒温干燥处理,用于提高表面材料与低自由能官能团的键合。
  3. 根据权利要求2所述的激光喷丸制备铝合金超疏水表面的方法,其特征在于,加工后的铝合金工件表面在80~100℃的环境中保温10~20min。
  4. 根据权利要求1所述的激光喷丸制备铝合金超疏水表面的方法,其特征在于,所述激光喷丸的光斑大小为0.5mm~2mm,激光喷丸的冲击方式采用多点搭接大面积冲击,激光喷丸的搭接率为30%~80%。
  5. 根据权利要求1所述的激光喷丸制备铝合金超疏水表面的方法,其特征在于,所述激光抛丸的激光束波长为1064nm,脉冲宽度8ns,重复频率1Hz~10Hz,单次脉冲能量2J,呈高斯分布。
PCT/CN2022/104479 2021-12-01 2022-07-08 一种激光喷丸制备铝合金超疏水表面的方法 WO2023098084A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111455045.4A CN114406475B (zh) 2021-12-01 2021-12-01 一种激光喷丸制备铝合金超疏水表面的方法
CN202111455045.4 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023098084A1 true WO2023098084A1 (zh) 2023-06-08

Family

ID=81266174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104479 WO2023098084A1 (zh) 2021-12-01 2022-07-08 一种激光喷丸制备铝合金超疏水表面的方法

Country Status (2)

Country Link
CN (1) CN114406475B (zh)
WO (1) WO2023098084A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114406475B (zh) * 2021-12-01 2023-09-22 江苏大学 一种激光喷丸制备铝合金超疏水表面的方法
GB2623639A (en) * 2022-06-08 2024-04-24 Univ Jiangsu Method for preparing aluminum alloy super-hydrophobic surface by flat-top laser peening
CN114985938B (zh) * 2022-06-08 2023-01-17 江苏大学 一种平顶激光喷丸制备铝合金超疏水表面的方法
CN115537800A (zh) * 2022-09-29 2022-12-30 江苏大学 一种金属表面多级超疏水结构的加工系统及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140314995A1 (en) * 2012-10-23 2014-10-23 Imra America, Inc. Pulsed laser processing method for producing superhydrophobic surfaces
CN110170747A (zh) * 2019-06-24 2019-08-27 吉林大学 一种仿生耦合集水铝合金防冰表面的制备方法
CN112894143A (zh) * 2021-01-25 2021-06-04 北京理工大学 基于飞秒激光直写扫描调控不锈钢表面浸润性的方法
CN113146049A (zh) * 2021-04-19 2021-07-23 江苏大学 一种实现超疏水金属微零件的激光加工装置及加工方法
CN113308600A (zh) * 2021-05-19 2021-08-27 武汉大学 基于疏水涂层的激光冲击方法
CN113714646A (zh) * 2021-08-31 2021-11-30 苏州金航纳米技术研究有限公司 一种激光构造超疏水超疏油表面的方法
CN114406475A (zh) * 2021-12-01 2022-04-29 江苏大学 一种激光喷丸制备铝合金超疏水表面的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102626826B (zh) * 2012-04-26 2015-02-04 江苏大学 一种基于激光冲击波的高效微凹槽制造装置及方法
CN103695906B (zh) * 2013-12-27 2016-08-17 东华大学 一种超疏水铝及铝合金表面的制备方法
CN109127328B (zh) * 2018-07-13 2021-01-19 西安交通大学 一种金属表面构建超疏水涂层的方法
CN109881195B (zh) * 2019-03-13 2021-11-16 江苏理工学院 一种镁合金微纳超疏水耐蚀性膜的制备方法
CN109989090A (zh) * 2019-04-29 2019-07-09 江苏理工学院 一种利用超滑表面制备镁合金耐蚀性膜层的方法
CN110760668B (zh) * 2019-10-08 2022-01-11 江苏大学 一种获取超细晶表层的超声辅助激光喷丸方法
CN110560888B (zh) * 2019-10-23 2020-07-10 山东大学 利用激光冲击成形技术将金属材料表面粗糙功能化的方法及其应用
CN111088469B (zh) * 2019-12-31 2021-06-18 江苏大学 一种铝合金表面强韧性的调控方法
CN113445101A (zh) * 2021-06-29 2021-09-28 上海交通大学 铝合金表面粗糙化的超疏水涂层制备方法
CN113621788B (zh) * 2021-07-20 2022-10-11 中国科学院上海光学精密机械研究所 适用于激光冲击强化的约束层材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140314995A1 (en) * 2012-10-23 2014-10-23 Imra America, Inc. Pulsed laser processing method for producing superhydrophobic surfaces
CN110170747A (zh) * 2019-06-24 2019-08-27 吉林大学 一种仿生耦合集水铝合金防冰表面的制备方法
CN112894143A (zh) * 2021-01-25 2021-06-04 北京理工大学 基于飞秒激光直写扫描调控不锈钢表面浸润性的方法
CN113146049A (zh) * 2021-04-19 2021-07-23 江苏大学 一种实现超疏水金属微零件的激光加工装置及加工方法
CN113308600A (zh) * 2021-05-19 2021-08-27 武汉大学 基于疏水涂层的激光冲击方法
CN113714646A (zh) * 2021-08-31 2021-11-30 苏州金航纳米技术研究有限公司 一种激光构造超疏水超疏油表面的方法
CN114406475A (zh) * 2021-12-01 2022-04-29 江苏大学 一种激光喷丸制备铝合金超疏水表面的方法

Also Published As

Publication number Publication date
CN114406475A (zh) 2022-04-29
CN114406475B (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
WO2023098084A1 (zh) 一种激光喷丸制备铝合金超疏水表面的方法
CN113967796B (zh) 一种铝合金表面激光冲击压印微纳米颗粒制备超疏水性表面的方法
CN112851388A (zh) 一种碳化硅陶瓷连接件及其连接方法和应用
CN112025098B (zh) 一种对可见光具有低反射率的钛合金表面制备方法
CN114273783A (zh) 基于纳秒激光的非晶合金大面积超疏水表面制备方法
CN107099656A (zh) 一种钛合金用激光冲击吸收层的制备方法
CN108637468A (zh) 一种热障涂层表面超疏水结构的制备方法
CN110804753A (zh) 一种合金表面复合热控涂层的制备方法
US11839934B1 (en) Method for preparing super-hydrophobic aluminum alloy surface through flat-topped laser peening
CN109183094B (zh) 一种镁合金表面高发射率涂层的制备方法
CN102286734B (zh) 一种钛合金表面金属镀覆的前处理工艺及金属镀覆方法
CN111926287A (zh) 一种提高MCrAlY涂层与单晶高温合金界面组织稳定性的表面预处理方法
CN114985938B (zh) 一种平顶激光喷丸制备铝合金超疏水表面的方法
CN114799532B (zh) 激光辐照结合蜡封抛光制备高质量非晶合金微凹坑的方法
CN211311566U (zh) 基于钛合金表面激光氮化和喷丸同步复合技术的装置
CN109485449B (zh) 一种基于毛细作用制备密度梯度防热材料的方法
CN109482995B (zh) 一种具有球面特征阵列微结构的金属基体及其构建方法
CN114134446B (zh) 一种fgh96合金尺寸超差部位的前处理及修复方法
CN109868439A (zh) 一种多毛刺金刚石及其制备方法
US20240042552A1 (en) Stress and texture morphology controlling method for preparing super-hydrophobic surface of aluminum alloy by laser etching
CN115354320B (zh) 一种强化铝合金表面耐磨性能的方法
CN112935709B (zh) 双锥对撞点火中聚合物球冠的飞秒激光加工方法及系统
CN109207988B (zh) 一种钛合金薄壁件表面损伤修复用冷喷涂粉末及修复方法
CN112725860B (zh) 一种简易微弧氧化铝材的处理方法
CN117303751A (zh) 一种石英纤维复材表面耐高温防水涂层及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899904

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18286758

Country of ref document: US