WO2023097976A1 - 一种双向构型微流控液滴生成装置及其制备方法 - Google Patents

一种双向构型微流控液滴生成装置及其制备方法 Download PDF

Info

Publication number
WO2023097976A1
WO2023097976A1 PCT/CN2022/092448 CN2022092448W WO2023097976A1 WO 2023097976 A1 WO2023097976 A1 WO 2023097976A1 CN 2022092448 W CN2022092448 W CN 2022092448W WO 2023097976 A1 WO2023097976 A1 WO 2023097976A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary
rear end
syringe
droplet
droplets
Prior art date
Application number
PCT/CN2022/092448
Other languages
English (en)
French (fr)
Inventor
龚尧
伊翔
Original Assignee
广东省科学院生物与医学工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省科学院生物与医学工程研究所 filed Critical 广东省科学院生物与医学工程研究所
Publication of WO2023097976A1 publication Critical patent/WO2023097976A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • B01L3/0268Drop counters; Drop formers using pulse dispensing or spraying, eg. inkjet type, piezo actuated ejection of droplets from capillaries

Definitions

  • the invention relates to the field of microfluidic technology, in particular to a two-way configuration microfluidic droplet generating device and a preparation method thereof.
  • Droplet microfluidic technology is a microfluidic technology that uses the interaction between viscous shear force and surface tension to divide continuous fluid into discrete micro-droplets with a volume of nanoliter or below in a micro-scale flow channel. . Droplet-based microfluidics has the advantages of low reagent consumption, fast reaction speed, high analytical throughput, flexible droplet manipulation, and no cross-contamination between droplets, and has become a multifunctional tool for wide application.
  • Micro-droplets have the characteristics of large specific surface area, small volume, high flux, and system independence, and have important applications in the fields of drug controlled release, nucleic acid detection, microsphere material synthesis, microcapsule synthesis, catalysts, cosmetics, and food; In addition, microdroplets also involve lab-on-a-chip applications and are used as microreactors for chemical and biochemical reactions.
  • microfluidic technology is mainly implemented on the lab-on-a-chip (lab-on-a-chip), but the traditional chip manufacturing method is complicated and expensive, which hinders the further development of droplet microfluidic technology. Therefore, researchers are working on developing a simple and low-cost new manufacturing method, such as 3D printing, capillary microfluidics and other novel technologies.
  • the generation of micro-droplets depends on the micro-channel structure, which is mainly divided into T-junction, flow focusing and Co-flow.
  • the existing droplet generation methods are generally designed based on one of the structure types. After the flow channel configuration and the physical parameters (viscosity, density, and surface tension) of the oil-water two phases are determined, the only way to control the oil-water phase The flow rate ratio is used to control the droplet size, and the controllable range is small.
  • an embodiment of the present invention provides a bidirectional configuration microfluidic droplet generating device and a preparation method thereof, which can respectively form two configurations based on coaxial focusing and flow focusing by changing the flow direction of the fluid sample.
  • the droplet generation mechanism can generate microfluidic droplets in a wide range of nanoliters to picoliters, which improves the application range of the device.
  • the first aspect of the embodiments of the present invention provides a bidirectional configuration microfluidic droplet generating device, including:
  • the first capillary, the front end of the first capillary is used to input the continuous phase fluid
  • the front end of the second capillary is used to input the first discrete phase fluid or output the flow focused liquid droplet;
  • a third capillary the front end of the third capillary is wrapped outside the rear end of the first capillary, and the rear end of the second capillary is inserted from the front end of the third capillary to the rear end of the third capillary,
  • the rear end of the third capillary is used to output coaxial focusing liquid droplets or input the second discrete phase fluid;
  • a pressurizing fixture for fixing the rear end of the second capillary to the inner middle end of the rear end of the third capillary
  • the rear end of the third capillary is wrapped around the outer two sides of the rear end of the second capillary to form a symmetrical double-channel structure, and the second capillary and the third capillary form a two-way three-channel structure at the place where the pressurized fixture is fixed. pipeline structure.
  • the first capillary includes a soft tube and a hard tube.
  • the flexible tube includes a polytetrafluoroethylene capillary, a fluorinated ethylene propylene copolymer capillary, a polyetheretherketone capillary, or a silicone capillary.
  • the hard tube includes a glass capillary or a stainless steel capillary.
  • the second capillary includes a polyether ether ketone capillary, a glass capillary, or a stainless steel capillary.
  • the third capillary includes a polytetrafluoroethylene capillary, a fluorinated ethylene propylene copolymer capillary, a polyether ether ketone capillary, or a silica gel capillary.
  • the diameter of the front end of the capillary is larger than the diameter of the rear end, and the capillary includes a first capillary, a second capillary and a third capillary.
  • the second aspect of the embodiments of the present invention provides a method for preparing coaxial focusing droplets using the bidirectional configuration microfluidic droplet generation device described in the first aspect of the embodiments of the present invention, including:
  • the generated coaxial focusing droplets are collected.
  • the third aspect of the embodiments of the present invention provides a method for preparing flow-focused droplets using the bidirectional configuration microfluidic droplet generation device described in the first aspect of the embodiments of the present invention, including:
  • the generated coaxial focusing droplets are collected.
  • the fourth aspect of the embodiments of the present invention provides a method for preparing a bidirectional configuration microfluidic droplet generating device, including:
  • the embodiment of the present invention proposes a two-way configuration microfluidic droplet generating device.
  • the rear end of the third capillary is wrapped around the outer two sides of the rear end of the second capillary to form a symmetrical double channel structure, combined with the rear end of the second capillary.
  • the channel forms a two-way three-way pipe structure at the fixed place of the pressurized fixture.
  • two droplet generation mechanisms based on coaxial focusing and flow focusing can be formed respectively. It can generate microfluidic droplets in a wide range from nanoliters to picoliters, which improves the application range of the device.
  • the bidirectional configuration microfluidic droplet generation device of the present invention can be constructed and prepared according to the assembly of capillaries, which solves the problem of traditional
  • the microfluidic chip solution has disadvantages such as complex process, long preparation cycle, high production cost, and high technical threshold.
  • Figure 1 is a schematic diagram of the appearance of a bidirectional configuration microfluidic droplet generating device provided by an embodiment of the present invention
  • Fig. 2 is a top view of a bidirectional configuration microfluidic droplet generation device provided by an embodiment of the present invention
  • Fig. 3 is an A-A cross-sectional view of a bidirectional configuration microfluidic droplet generating device based on Fig. 2 provided by an embodiment of the present invention
  • Fig. 4 is a schematic diagram of coaxial focusing droplet generation of a bidirectional configuration microfluidic droplet generation device provided by an embodiment of the present invention
  • FIG. 5 is a schematic flow chart of a coaxial focusing droplet preparation method using a bidirectional configuration microfluidic droplet generation device provided by an embodiment of the present invention
  • Fig. 6 is a schematic diagram of the effect of generating droplets by the coaxial focusing droplet preparation method provided by the embodiment of the present invention.
  • Fig. 7 is a schematic diagram of flow-focused droplet generation of a bidirectional configuration microfluidic droplet generation device provided by an embodiment of the present invention.
  • Fig. 8 is a schematic flow chart of a flow focusing droplet preparation method using a bidirectional configuration microfluidic droplet generation device provided by an embodiment of the present invention
  • Fig. 9 is a schematic diagram of the effect of generating droplets by the flow focusing droplet preparation method provided by the embodiment of the present invention.
  • Fig. 10 is a schematic flowchart of a method for preparing a bidirectional configuration microfluidic droplet generation device provided by an embodiment of the present invention.
  • Flow focusing is a microfluidic technology whose purpose is to generate water droplets or bubbles by direct hydrodynamic means.
  • the basic principle is that the continuous phase fluid surrounds or surrounds the discrete phase fluid in order to Droplets or bubble collapse near the orifice from which the two fluids are extruded.
  • Coaxial focus means that the continuous phase flow channel and the discrete phase flow channel form a concentric or coaxial parallel flow channel, the fluid of the continuous phase and the discrete phase flow in parallel in the flow channel, and the discrete phase When entering the continuous phase flow channel, under the viscous shear force of the continuous phase fluid, it is squeezed and broken to form droplets.
  • Capillary A tube with a very thin inner diameter is called a "capillary”. It usually refers to a thin tube with an inner diameter equal to or less than 1 mm. It is called a capillary because the diameter of the tube is as thin as a hair. At present, it is mainly used in medicine and construction materials.
  • the embodiment of the present invention provides a kind of two-way configuration microfluidic droplet generating device, comprising: first capillary 1, second capillary 2, third capillary 3, sealant (Fig. 1 and Fig. 2 not shown) and pressurized fixture 4.
  • the front end of the first capillary 1 is used to input the continuous phase fluid, the rear end of the first capillary 1 is connected to the front end of the third capillary 3, and the front end of the third capillary 3 is wrapped around the outside of the rear end of the first capillary 1; the second capillary The front end of 2 can be used to input the first discrete phase fluid or output the flow focusing liquid droplet, the rear end of the second capillary 2 is inserted from the front end of the third capillary 3 to the rear end of the third capillary 3; the sealant is set on the third capillary 3, the rear end of the third capillary 3 is used to output the coaxial focus droplet or input the second discrete phase fluid; the pressurized fixture 4 is used to fix the rear end of the second capillary 2 to the rear end of the third capillary 3 Internal midrange.
  • the front end of the third capillary 3 is sealed with a sealant to prevent leakage of the device, and the rear end of the third capillary 3 is deformed by pressing the outer pipe with a pressurized clamp 4 and is tightly sealed with the second capillary 2 inside. Contact, so that the inner and outer pipes on the cross section of the second capillary 2 and the third capillary 3 remain coaxial.
  • the rear end of the third capillary 3 is wrapped around the outer sides of the rear end of the second capillary 2 to form a symmetrical dual-channel structure, and the dual-channel structure based on the third capillary 3 combined with the second capillary 2 is fixed on the pressurized fixture A two-way three-way pipeline structure is formed.
  • the discrete-phase fluid i.e., the first discrete-phase fluid
  • the continuous-phase fluid can be input from the front end of the first capillary 1 for preparing coaxial focusing droplets.
  • the back-end channel of the second capillary 2 and the dual-channel structure of the third capillary 3 form a coaxial focusing micro-channel, and the size of the droplet mainly depends on the size of the outer channel (the third capillary 3 rear-end channel), that is, bidirectional
  • the three-way pipe structure is used as a coaxial focusing microfluidic channel; the two-way three-way pipe structure can also be used to input the discrete phase fluid (i.e.
  • the second discrete phase fluid from the rear end of the third capillary 3, and the first capillary 1
  • the continuous-phase fluid is input into the front end to prepare flow-focused droplets.
  • the dual-channel structure of the back-end channel of the second capillary 2 and the third capillary 3 forms a flow-focused microchannel, and the size of the droplet mainly depends on the internal flow.
  • the size of the channel (the channel at the rear end of the second capillary 2), that is, the two-way three-way channel structure is used as a flow-focused micro-channel.
  • the material of the first capillary is not limited, and the first capillary can be a soft tube or a hard tube.
  • the flexible tube used for the first capillary includes polytetrafluoroethylene capillary, fluorinated ethylene propylene copolymer capillary, polyether ether ketone capillary, silicone capillary, and the like.
  • the first capillary adopts a hard tube including glass capillary, stainless steel capillary and the like.
  • the second capillary is a hard tube with high mechanical strength, including polyether ether ketone capillary, glass capillary, stainless steel capillary, etc., so as to ensure that it will not be excessively deformed when subjected to the pressure of the clamp.
  • the third capillary is a hose with low mechanical strength, including polytetrafluoroethylene capillary, fluorinated ethylene propylene copolymer capillary, polyetheretherketone capillary, silicone capillary, etc., to ensure that it is subjected to a pressurized clamp.
  • the pressure easily deforms when in close contact with the rear end of the second capillary and remains coaxial.
  • the diameters of the front ends of the first capillary, the second capillary, and the third capillary are all larger than the diameters of the rear ends, which facilitates assembly and application of the above-mentioned device.
  • an embodiment of the present invention provides a method for preparing coaxial focusing droplets using the above-mentioned device embodiment. As shown in FIG. 5, the method includes :
  • the output end of the first syringe is connected to the front end of the first capillary;
  • the generated concentric droplets are collected.
  • the liquid droplet preparation method using the above-mentioned device embodiment adopts a coaxial focusing method.
  • the method embodiment is realized through the following steps:
  • the micro-droplets output from the rear end of the third capillary are introduced into the droplet storage chip.
  • the storage chip has a rectangular cavity with a height of 0.15mm.
  • the imported droplets are tiled in the cavity of the chip, and the droplets are stacked in multiple layers;
  • the average diameter of the droplet is 153.55 ⁇ 0.93 ⁇ m, as shown in FIG. 6 .
  • an embodiment of the present invention also provides a method for preparing a flow-focused droplet using the above-mentioned device embodiment. As shown in FIG. 8 , the method includes:
  • the output end of the first syringe is connected to the front end of the first capillary;
  • the generated flow-focused droplets are collected.
  • the method embodiment is realized through the following steps:
  • the oil phase sample and the water phase sample meet, they flow in opposite directions in their respective flow channels.
  • the fluids in the two microchannels converge to the rear end of the second capillary, and the circumferentially symmetrical oil
  • the phase sample squeezes the aqueous phase sample to break it, thereby forming droplets. Since the droplets are generated in the smaller-sized inner flow channel (second capillary), the generated droplets are small in size (generally on the scale of picoliters) As shown in Figure 9;
  • the micro-droplet output from the front end of the second capillary is introduced into the droplet storage chip.
  • the storage chip has a rectangular cavity with a height of 0.15mm.
  • the imported droplet is spread in the chip cavity and is divided into upper and lower layers;
  • the average diameter of the droplet is 58.21 ⁇ 1.06 ⁇ m, as shown in FIG. 9 .
  • An embodiment of the present invention provides a method for preparing a bidirectional configuration microfluidic droplet generating device. Referring to FIG. 10 , the method includes:
  • the rear end of the third capillary is wrapped around the outer two sides of the rear end of the second capillary to form a symmetrical double channel structure, the second capillary and The third capillary forms a two-way three-way pipe structure at the fixed place of the pressurized fixture, and completes the preparation of the microfluidic droplet generating device with a two-way configuration.
  • the method embodiment may be implemented through the following steps:
  • the first capillary, second capillary and third capillary were manufactured according to the following specifications:
  • the first capillary is made of polytetrafluoroethylene, the outer diameter of the front end is 0.6mm, the inner diameter of the front end is 0.3mm, the outer diameter of the rear end is 0.15mm, and the inner diameter of the rear end is 0.1mm;
  • the second capillary is made of polyether ether ketone, the outer diameter of the front end is 0.6mm, the inner diameter of the front end is 0.3mm, the outer diameter of the rear end is 0.1mm, and the inner diameter of the rear end is 0.05mm;
  • the third capillary is made of polytetrafluoroethylene, the outer diameter of the front end is 0.6mm, the inner diameter of the front end is 0.3mm, the outer diameter of the rear end is 0.18mm, and the inner diameter of the rear end is 0.13mm;
  • the rear end of the third capillary is wrapped around the outer two sides of the rear end of the second capillary to form a symmetrical double channel structure, the second capillary and The third capillary forms a two-way three-way pipe structure at the fixed place of the pressurized fixture, and completes the preparation of the microfluidic droplet generating device with a two-way configuration.
  • the content of the device embodiment of the present invention is applicable to the method embodiment, and the functions realized by the method embodiment are the same as those of the above-mentioned device embodiment, and the beneficial effects achieved are also the same as those achieved by the above-mentioned device embodiment .
  • the present invention proposes a two-way configuration microfluidic droplet generation device and its preparation method.
  • the device of the present invention relies on the special combination of two capillaries to form a two-way three-way pipeline structure. Based on this structure, a droplet generation device with a two-way microfluidic structure is formed. The device can only change the flow direction of the aqueous phase sample.
  • the droplet generation mechanism can be switched, and the droplet preparation method including coaxial focusing and flow focusing droplet preparation method can be realized.
  • Precisely control the droplet size improve the application range of the device, realize one machine with multiple functions, cost-effective, save manpower and consumable costs.
  • the device of the present invention builds a special structure relying on simple raw materials and assembly steps, which can effectively reduce equipment costs and shorten procedures, and solve the problems of complex procedures, long preparation cycles, high production costs, and high technical thresholds of traditional microfluidic chip solutions. shortcoming.
  • the functions/operations noted in the block diagrams may occur out of the order noted in the operational diagrams.
  • two blocks shown in succession may, in fact, be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/operations involved.
  • the embodiments presented and described in the flowcharts of the present invention are provided by way of example in order to provide a more comprehensive understanding of the technology. The disclosed methods are not limited to the operations and logical flow presented herein. Alternative embodiments are contemplated in which the order of various operations is changed and in which sub-operations described as part of larger operations are performed independently.

Landscapes

  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种双向构型微流控液滴生成装置及其制备方法,提供一种双向构型微流控液滴生成装置,根据该装置的双向三通管道结构,形成具有双向微流控结构类型的液滴生成装置,包括:第一毛细管(1)、第二毛细管(2)、第三毛细管(3)、密封胶和加压夹具(4)。第一毛细管(1)的前端用于输入连续相流体,第一毛细管(1)的后端与第三毛细管(3)的前端连接,且第三毛细管(3)的前端包裹于第一毛细管(1)的后端的外部;第二毛细管(2)的前端可以用于输入第一离散相流体或输出流动聚焦液滴,第二毛细管(2)的后端由第三毛细管(3)的前端插入至第三毛细管(3)的后端;密封胶设于第三毛细管(3)的前端,第三毛细管(3)的后端用于输出共轴聚焦液滴或输入第二离散相流体;加压夹具(4),用于固定第二毛细管(2)的后端于第三毛细管(3)的后端的内部中端。

Description

一种双向构型微流控液滴生成装置及其制备方法 技术领域
本发明涉及微流控技术领域,尤其是一种双向构型微流控液滴生成装置及其制备方法。
背景技术
液滴微流控技术是在微尺度流道内,利用粘性剪切力与表面张力之间的相互作用将连续的流体分割分离成离散的纳升级及以下体积微液滴的一种微流控技术。基于液滴的微流控技术具有试剂消耗低、反应速度快、分析通量高、液滴操作灵活、液滴间无交叉污染等优点,已成为一种广泛应用的多功能工具。微液滴具有比表面积大、体积小、通量高、体系独立等特性,在药物控释、核酸检测、微球材料合成、微胶囊合成、催化剂、化妆品和食品等领域中均有重要应用;另外,微液滴还涉及芯片实验室的应用,被用作微反应器来进行化学和生物化学反应。
但是传统的微流控技术主要在芯片实验室(lab-on-a-chip)上实现,但传统的芯片制造方法复杂而昂贵,阻碍了液滴微流体技术的进一步发展。因此,研究人员正致力于开发一种简单、低成本的新型制造方法,如3D打印,毛细管微流控等新型技术。微液滴的生成依赖于微流道结构,主要分为T型结构(T-junction),流动聚焦型(flow focusing)和共轴聚焦型(Co-flow)等。然而,现有液滴生成方法一般都基于其中一种结构类型进行设计,流道构型和油水两相的物性参数(粘度、密度、表面张力)确定后,只能通过控制油相和水相的流速比来调控液滴尺寸,可控范围较小。
发明内容
有鉴于此,本发明实施例提供一种双向构型微流控液滴生成装置及其制备方法,能够通过改变流体样本的流动方向,分别形成基于共轴聚焦和流动聚焦两种构型的液滴生成机制,可生成纳升至皮升大范围尺度的微流控液滴,提升该装置的应用范围。
本发明实施例的第一方面提供了一种双向构型微流控液滴生成装置,包括:
第一毛细管,所述第一毛细管的前端用于输入连续相流体;
第二毛细管,所述第二毛细管的前端用于输入第一离散相流体或输出流动聚焦液滴;
第三毛细管,所述第三毛细管的前端包裹于所述第一毛细管的后端的外部,所述第二毛细管的后端由所述第三毛细管的前端插入至所述第三毛细管的后端,所述第三毛细管的后端用于输出共轴聚焦液滴或输入第二离散相流体;
密封胶,设于所述第三毛细管的前端;
加压夹具,用于固定所述第二毛细管的后端于第三毛细管的后端的内部中端;
其中,所述第三毛细管的后端包裹于所述第二毛细管的后端的外部两侧形成对称的双通道结构,所述第二毛细管和所述第三毛细管于加压夹具固定处形成双向三通管道结构。
可选地,所述第一毛细管包括软管和硬管。
可选地,所述软管包括聚四氟乙烯毛细管、氟化乙烯丙烯共聚物毛细管、聚醚醚酮毛细管、硅胶毛细管。
可选地,所述硬管包括玻璃毛细管、不锈钢毛细管。
可选地,所述第二毛细管包括聚醚醚酮毛细管、玻璃毛细管、不锈钢毛细管。
可选地,所述第三毛细管包括聚四氟乙烯毛细管、氟化乙烯丙烯共聚物毛细管、聚醚醚酮毛细管、硅胶毛细管。
可选地,所述毛细管前端的直径大于后端的直径,所述毛细管包括第一毛细管、第二毛细管和第三毛细管。
本发明实施例第二方面提供了一种应用本发明实施例第一方面所述的双向构型微流控液滴生成装置共轴聚焦液滴制备方法,包括:
将所述连续相流体装入第一注射器,所述第一注射器的输出端连接于所述第一毛细管的前端;
将所述第一离散相流体装入第二注射器,所述第二注射器的输出端连接于所述第二毛细管的前端;
将液滴存储芯片连接于所述第三毛细管的后端;
驱动所述第一注射器的活塞和所述第二注射器的活塞,使所述连续相流体流入所述第三毛细管的对称的双通道和所述第一离散相样本流入所述第二毛细管的后端的流道,于所述双向三通管道结构处汇聚,在所述第三毛细管的后端生成共轴聚焦液滴;
根据所述液滴存储芯片,收集生成的所述共轴聚焦液滴。
本发明实施例第三方面提供了一种应用如本发明实施例第一方面所述的双向构型微流控液滴生成装置的流动聚焦液滴制备方法,包括:
将所述连续相流体装入第一注射器,所述第一注射器的输出端连接于所述第一毛细管的前端;
将所述第二离散相流体装入第二注射器,所述第二注射器的输出端连接于所述第三毛细管的后端;
将液滴存储芯片连接于所述第二毛细管的前端;
驱动所述第一注射器的活塞和所述第二注射器的活塞,使所述连续相流体流入所述第三毛细管的对称的双通道和所述第二离散相样本流入所述第三毛细管的后端的流道,于所述双向三通管道结构处汇聚,在所述第二毛细管的后端生成流动聚焦液滴;
根据所述液滴存储芯片,收集生成的所述共轴聚焦液滴。
本发明实施例的第四方面提供了一种双向构型微流控液滴生成装置的制备方法,包括:
将待加工毛细管进行预处理;
根据预设规格加工得到第一毛细管、第二毛细管和第三毛细管;
将所述第一毛细管的后端插入所述第三毛细管的前端,所述第二毛细管的后端由所述第三毛细管的前端插入至所述第三毛细管的后端;
对第三毛细管的前端进行密封处理;
用加压夹具固定所述第二毛细管的后端于第三毛细管的后端的内部中端,所述第三毛细管的后端包裹于所述第二毛细管的后端的外部两侧形成对称的双通道结构,所述第二毛细管和所述第三毛细管于加压夹具固定处形成双向三通管道结构,完成双向构型微流控液滴生成装置的制备。
本发明实施例提出了双向构型微流控液滴生成装置,通过第三毛细管的后端包裹于第二毛细管的后端的外部两侧形成对称的双通道结构,结合第二毛细管的后端流道于加压夹具固定处形成双向三通管道结构,根据该双向三通管道结构,通过改变流体样本的流动方向,能够分别形成基于共轴聚焦和流动聚焦两种构型的液滴生成机制,可生成纳升至皮升大范围尺度的微流控液滴,提升该装置的应用范围,同时根据毛细管的组装就能构建制备本发明的双向构型微流控液滴生成装置,解决了传统微流控芯片方案工序复杂、制备周期长、生产成本高、技术门槛高等缺点。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种双向构型微流控液滴生成装置的外观示意图;
图2为本发明实施例提供的一种双向构型微流控液滴生成装置的顶视图;
图3为本发明实施例提供的基于图2的一种双向构型微流控液滴生成装置的的A-A截面剖视图;
图4为本发明实施例提供的一种双向构型微流控液滴生成装置的共轴聚焦型液滴生成原理图;
图5为本发明实施例提供的应用双向构型微流控液滴生成装置的一种共轴聚焦液滴制备方法的流程示意图;
图6为本发明实施例提供的共轴聚焦液滴制备方法生成液滴的效果示意图;
图7为本发明实施例提供的一种双向构型微流控液滴生成装置的流动聚焦型液滴生成原理图;
图8为本发明实施例提供的应用双向构型微流控液滴生成装置的一种流动聚焦液滴制备方法的流程示意图;
图9为本发明实施例提供的流动聚焦液滴制备方法生成液滴的效果示意图;
图10为本发明实施例提供的一种双向构型微流控液滴生成装置的制备方法的流程示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
为了使本申请内容及技术方案更加清楚明白,对相关术语及含义进行说明:
流动聚焦(flow focusing):流动聚焦是一项微流控技术,其目的是通过直接的流体力学手段产生水滴或气泡,其基本原理是连续相流体围绕在离散相流体的侧翼或四周,以便在两种流体被挤出的孔口附近产生液滴或气泡破裂。
共轴聚焦(co-flow):共轴流聚焦是指,连续相流道与离散相流道形成同心或同轴的平行流道,连续相和离散相的流体在流道内平行流动,离散相在进入连续相流道时,在连续相流体粘性剪切力的作用下,被挤压断裂形成液滴。
毛细管:凡内径很细的管子叫“毛细管”。通常指的是内径等于或小于1毫米的细管,因管径有的细如毛发故称毛细管。目前主要应用在医学和建筑材料上。
下面结合说明书附图,对本发明的装置的结构功能进行详细说明:
参照图1及图2,本发明实施例提供了一种双向构型微流控液滴生成装置,包括:第一毛细管1、第二毛细管2、第三毛细管3、密封胶(图1和图2未示出)和加压夹具4。第一毛细管1的前端用于输入连续相流体,第一毛细管1的后端与第三毛细管3的前端连接,且第三毛细管3的前端包裹于第一毛细管1的后端的外部;第二毛细管2的前端可以用于输入 第一离散相流体或输出流动聚焦液滴,第二毛细管2的后端由第三毛细管3的前端插入至第三毛细管3的后端;密封胶设于第三毛细管3的前端,第三毛细管3的后端用于输出共轴聚焦液滴或输入第二离散相流体;加压夹具4,用于固定第二毛细管2的后端于第三毛细管3的后端的内部中端。
需要说明的是,第三毛细管3的前端用密封胶进行封闭处理,用于防止装置漏液,第三毛细管3的后端用加压夹具4挤压外管道变形并与其内部第二毛细管2紧密接触,使第二毛细管2和第三毛细管3的横截面上内外管道保持共轴。参照图3,通过第三毛细管3的后端包裹于第二毛细管2的后端的外部两侧形成对称的双通道结构,基于第三毛细管3的双通道结构结合第二毛细管2于加压夹具固定处形成双向三通管道结构。利用该双向三通管道结构可以从第二毛细管2的前端输入离散相流体(即第一离散相流体),以及第一毛细管1的前端输入连续相流体用于制备共轴聚焦液滴,此时第二毛细管2的后端流道与第三毛细管3的双通道结构形成共轴聚焦型微流道,液滴的尺寸主要取决于外流道(第三毛细管3后端流道)尺寸,即双向三通管道结构用作共轴聚焦型微流道;利用该双向三通管道结构还可以从第三毛细管3的后端输入离散相流体(即第二离散相流体),以及第一毛细管1的前端输入连续相流体用于制备流动聚焦液滴,此时第二毛细管2的后端流道与第三毛细管3的双通道结构形成流动聚焦型微流道,液滴的尺寸主要取决于内流道(第二毛细管2后端流道)尺寸,即双向三通管道结构用作流动聚焦型微流道。
在一些实施例中,对于第一毛细管的材质不做限定,第一毛细管既可采用软管,也可采用硬管。
在一些实施例中,第一毛细管采用软管包括聚四氟乙烯毛细管、氟化乙烯丙烯共聚物毛细管、聚醚醚酮毛细管、硅胶毛细管等。
在一些实施例中,第一毛细管采用硬管包括玻璃毛细管、不锈钢毛细管等。
在一些实施例中,第二毛细管为机械强度较高的硬管,包括聚醚醚酮毛细管、玻璃毛细管、不锈钢毛细管等,以保证其受到加压夹具的压力时不发生过度变形。
在一些实施例中,第三毛细管为机械强度较低的软管,包括聚四氟乙烯毛细管、氟化乙烯丙烯共聚物毛细管、聚醚醚酮毛细管、硅胶毛细管等,以保证其受到加压夹具的压力时易发生变形与所述第二毛细管的后端紧密接触,并保持共轴。
在一些实施例中,上述的第一毛细管、第二毛细管和第三毛细管前端的直径均大于后端的直径,方便组装应用上述装置。
参照图4(包括共轴聚焦液滴5,为皮升尺度液滴)为本发明实施例提供了一种应用上述 装置实施例的共轴聚焦液滴制备方法,如图5所示,方法包括:
将连续相流体装入第一注射器,第一注射器的输出端连接于第一毛细管的前端;
将第一离散相流体装入第二注射器,第二注射器的输出端连接于第二毛细管的前端;
将液滴存储芯片连接于第三毛细管的后端;
驱动第一注射器的活塞和所述第二注射器的活塞,使连续相流体流入第三毛细管的对称的双通道和第一离散相样本流入第二毛细管的后端的流道,于双向三通管道结构处汇聚,在第三毛细管的后端生成共轴聚焦液滴;
根据液滴存储芯片,收集生成的共轴聚焦液滴。
具体地,该应用上述装置实施例的液滴制备方法采用共轴聚焦方式,在一些具体的实施例中,通过以下步骤实现该方法实施例:
利用注射器装载含2%表面活性剂的油相样本,通过机械注射泵将油相样本从第一毛细管前端注入,输送流量为20μl/min;
利用注射器装载水相样本,通过机械注射泵将水相样本从第二毛细管前端注入,输送流量为20μl/min;
油相样本与水相样本相遇之前,分别在各自流道内平行流动,当水相样本进入油相样本流道时,在粘性剪切力的作用下,被挤压断裂形成液滴,由于液滴在尺寸较大的外流道(第三毛细管)中生成,故生成的液滴尺寸较大(一般为纳升尺度)如图6所示;
将第三毛细管后端输出的微液滴导入液滴储存芯片中,储存芯片有矩形空腔,空腔高度为0.15mm,导入的液滴平铺在芯片空腔内,液滴多层叠加;
具体地,利用显微镜观察和测量芯片空腔内液滴尺寸,液滴的平均直径为153.55±0.93μm,如图6所示。
参照图7(包括流动聚焦液滴6,为皮升尺度液滴),本发明实施例还提供了一种应用上述装置实施例的流动聚焦液滴制备方法,如图8所示,方法包括:
将连续相流体装入第一注射器,第一注射器的输出端连接于第一毛细管的前端;
将第二离散相流体装入第二注射器,第二注射器的输出端连接于第三毛细管的后端;
将液滴存储芯片连接于第二毛细管的前端;
驱动第一注射器的活塞和第二注射器的活塞,使连续相流体流入第三毛细管的对称的双通道和第二离散相样本流入第三毛细管的后端的流道,于双向三通管道结构处汇聚,在第二毛细管的后端生成流动聚焦液滴;
根据液滴存储芯片,收集生成的流动聚焦液滴。
具体地,该应用上述装置实施例的微液滴制备方法流动聚焦方式,在一些具体的实施例中,通过以下步骤实现该方法实施例:
利用注射器装载含2%表面活性剂的油相样本,通过机械注射泵将油相样本从第一毛细管前端注入,输送流量为20μl/min;
利用注射器装载水相样本,通过机械注射泵将水相样本从第三毛细管后端注入,输送流量为10μl/min;
油相样本与水相样本相遇之前,在各自流道内以相反方向流动,油相样本与水相样本相遇时,两条微流道中的流体汇聚到第二毛细管的后端,周向对称的油相样本挤压水相样本使其断裂,从而形成液滴,由于液滴在尺寸较小的内流道(第二毛细管)中生成,故生成的液滴尺寸较小(一般为皮升尺度)如图9所示;
将第二毛细管前端输出的微液滴导入液滴储存芯片中,储存芯片有矩形空腔,空腔高度为0.15mm,导入的液滴平铺在芯片空腔内,分为上下两层;
具体地,利用显微镜观察和测量芯片空腔内液滴尺寸,液滴的平均直径为58.21±1.06μm,如图9所示。
本发明实施例提供了一种双向构型微流控液滴生成装置的制备方法,参考图10,方法包括:
将待加工毛细管进行预处理;
根据预设规格加工得到第一毛细管、第二毛细管和第三毛细管;
将第一毛细管的后端插入第三毛细管的前端,第二毛细管的后端由第三毛细管的前端插入至第三毛细管的后端;
对第三毛细管的前端进行密封处理;
用加压夹具固定第二毛细管的后端于第三毛细管的后端的内部中端,第三毛细管的后端包裹于第二毛细管的后端的外部两侧形成对称的双通道结构,第二毛细管和第三毛细管于加压夹具固定处形成双向三通管道结构,完成双向构型微流控液滴生成装置的制备。
具体地,在一些具体的实施例中,可以通过以下步骤实现该方法实施例:
将非均匀直径毛细管通过挤出、轧制、压制或拉制等成型工艺进行加工;
根据以下规格制造得到第一毛细管、第二毛细管和第三毛细管:
第一毛细管采用聚四氟乙烯材质,前端外径0.6mm,前端内径0.3mm,后端外径0.15mm,后端内径0.1mm;
第二毛细管采用聚醚醚酮材质,前端外径0.6mm,前端内径0.3mm,后端外径0.1mm,后端内径0.05mm;
第三毛细管采用聚四氟乙烯材质,前端外径0.6mm,前端内径0.3mm,后端外径0.18mm,后端内径0.13mm;
将第一毛细管的后端插入第三毛细管的前端,第二毛细管的后端由第三毛细管的前端插入至第三毛细管的后端;
用热熔胶对第三毛细管的前端进行密封处理;
用加压夹具固定第二毛细管的后端于第三毛细管的后端的内部中端,第三毛细管的后端包裹于第二毛细管的后端的外部两侧形成对称的双通道结构,第二毛细管和第三毛细管于加压夹具固定处形成双向三通管道结构,完成双向构型微流控液滴生成装置的制备。
本发明装置实施例的内容均适用于本方法实施例,本方法实施例所具体实现的功能与上述装置实施例具有的功能相同,并且达到的有益效果与上述装置实施例达到的有益效果也相同。
综上所述,针对传统微流控技术只能通过控制油相和水相的流速比来调控液滴尺寸,可控范围较小的问题,以及传统的微流控技术主要在芯片实验室上实现导致的工艺流程复杂、装置制备周期长、成本高以及技术门槛严苛等问题,本发明提出了一种双向构型微流控液滴生成装置及其制备方法。本发明的装置依靠两个毛细管的特殊组合方式,形成了双向三通管道结构,基于此结构,形成具有双向微流控结构类型的液滴生成装置,该装置能够仅通过改变水相样本流向,即可切换液滴生成机制,能够实现包括共轴聚焦的液滴制备方法和流动聚焦的液滴制备方法,同时基于不同制备方法以及该方法的液滴生成的管道内径尺寸的不同,能够大范围地调控液滴尺寸,提升装置的应该范畴,实现一机多用,经济高效,节约人力和耗材成本。同时本发明的装置依靠简易的原材料及组装步骤而构建了特殊的结构,能够有效降低设备成本,缩短工序,解决了传统微流控芯片方案工序复杂、制备周期长、生产成本高、技术门槛高等缺点。
在一些可选择的实施例中,在方框图中提到的功能/操作可以不按照操作示图提到的顺序发生。例如,取决于所涉及的功能/操作,连续示出的两个方框实际上可以被大体上同时地执行或所述方框有时能以相反顺序被执行。此外,在本发明的流程图中所呈现和描述的实施例以示例的方式被提供,目的在于提供对技术更全面的理解。所公开的方法不限于本文所呈现的操作和逻辑流程。可选择的实施例是可预期的,其中各种操作的顺序被改变以及其中被描述为较大操作的一部分的子操作被独立地执行。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或 者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。
以上是对本发明的较佳实施进行了具体说明,但本发明并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种双向构型微流控液滴生成装置,其特征在于,包括:
    第一毛细管,所述第一毛细管的前端用于输入连续相流体;
    第二毛细管,所述第二毛细管的前端用于输入第一离散相流体或输出流动聚焦液滴;
    第三毛细管,所述第三毛细管的前端包裹于所述第一毛细管的后端的外部,所述第二毛细管的后端由所述第三毛细管的前端插入至所述第三毛细管的后端,所述第三毛细管的后端用于输出共轴聚焦液滴或输入第二离散相流体;
    密封胶,设于所述第三毛细管的前端;
    加压夹具,用于固定所述第二毛细管的后端于所述第三毛细管的后端的内部中端;
    其中,所述第三毛细管的后端包裹于所述第二毛细管的后端的外部两侧形成对称的双通道结构,所述第二毛细管和所述第三毛细管于加压夹具固定处形成双向三通管道结构。
  2. 根据权利要求1所述的一种双向构型微流控液滴生成装置,其特征在于,所述第一毛细管包括软管和硬管。
  3. 根据权利要求2所述的一种双向构型微流控液滴生成装置,其特征在于,所述软管包括聚四氟乙烯毛细管、氟化乙烯丙烯共聚物毛细管、聚醚醚酮毛细管、硅胶毛细管。
  4. 根据权利要求2所述的一种双向构型微流控液滴生成装置,其特征在于,所述硬管包括玻璃毛细管、不锈钢毛细管。
  5. 根据权利要求1所述的一种双向构型微流控液滴生成装置,其特征在于,所述第二毛细管包括聚醚醚酮毛细管、玻璃毛细管、不锈钢毛细管。
  6. 根据权利要求1所述的一种双向构型微流控液滴生成装置,其特征在于,所述第三毛细管包括聚四氟乙烯毛细管、氟化乙烯丙烯共聚物毛细管、聚醚醚酮毛细管、硅胶毛细管。
  7. 根据权利要求1至6任一项所述的一种双向构型微流控液滴生成装置,其特征在于,所述毛细管前端的直径大于后端的直径,所述毛细管包括第一毛细管、第二毛细管和第三毛细管。
  8. 一种应用如权利要求1所述的双向构型微流控液滴生成装置的共轴聚焦液滴制备方法,其特征在于,包括:
    将所述连续相流体装入第一注射器,所述第一注射器的输出端连接于所述第一毛细管的前端;
    将所述第一离散相流体装入第二注射器,所述第二注射器的输出端连接于所述第二毛细管的前端;
    将液滴存储芯片连接于所述第三毛细管的后端;
    驱动所述第一注射器的活塞和所述第二注射器的活塞,使所述连续相流体流入所述第三毛细管的对称的双通道和所述第一离散相样本流入所述第二毛细管的后端的流道,于所述双向三通管道结构处汇聚,在所述第三毛细管的后端生成共轴聚焦液滴;
    根据所述液滴存储芯片,收集生成的所述共轴聚焦液滴。
  9. 一种应用如权利要求1所述的双向构型微流控液滴生成装置的流动聚焦液滴制备方法,其特征在于,包括:
    将所述连续相流体装入第一注射器,所述第一注射器的输出端连接于所述第一毛细管的前端;
    将所述第二离散相流体装入第二注射器,所述第二注射器的输出端连接于所述第三毛细管的后端;
    将液滴存储芯片连接于所述第二毛细管的前端;
    驱动所述第一注射器的活塞和所述第二注射器的活塞,使所述连续相流体流入所述第三毛细管的对称的双通道和所述第二离散相样本流入所述第三毛细管的后端的流道,于所述双向三通管道结构处汇聚,在所述第二毛细管的后端生成流动聚焦液滴;
    根据所述液滴存储芯片,收集生成的所述共轴聚焦液滴。
  10. 一种双向构型微流控液滴生成装置的制备方法,其特征在于,包括:
    将待加工毛细管进行预处理;
    根据预设规格加工得到第一毛细管、第二毛细管和第三毛细管;
    将所述第一毛细管的后端插入所述第三毛细管的前端,所述第二毛细管的后端由所述第三毛细管的前端插入至所述第三毛细管的后端;
    对第三毛细管的前端进行密封处理;
    用加压夹具固定所述第二毛细管的后端于第三毛细管的后端的内部中端,所述第三毛细管的后端包裹于所述第二毛细管的后端的外部两侧形成对称的双通道结构,所述第二毛细管和所述第三毛细管于加压夹具固定处形成双向三通管道结构,完成双向构型微流控液滴生成装置的制备。
PCT/CN2022/092448 2021-11-30 2022-05-12 一种双向构型微流控液滴生成装置及其制备方法 WO2023097976A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111440793.5 2021-11-30
CN202111440793.5A CN114225988B (zh) 2021-11-30 2021-11-30 一种双向构型微流控液滴生成装置及其制备方法

Publications (1)

Publication Number Publication Date
WO2023097976A1 true WO2023097976A1 (zh) 2023-06-08

Family

ID=80752047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092448 WO2023097976A1 (zh) 2021-11-30 2022-05-12 一种双向构型微流控液滴生成装置及其制备方法

Country Status (2)

Country Link
CN (1) CN114225988B (zh)
WO (1) WO2023097976A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114225988B (zh) * 2021-11-30 2023-04-28 广东省科学院健康医学研究所 一种双向构型微流控液滴生成装置及其制备方法
CN114789131A (zh) * 2022-03-30 2022-07-26 广东省科学院生物与医学工程研究所 一种聚合物毛细管微流控装置的密封安装方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180093265A1 (en) * 2016-09-30 2018-04-05 The Board Of Trustees Of The Leland Stanford Junior University Electropermanent magnet activated microfluidic droplet size modulation
CN109613105A (zh) * 2019-01-04 2019-04-12 东北大学 一种单细胞液滴/单液滴发生系统及其使用方法
CN110394203A (zh) * 2019-08-08 2019-11-01 北京理工大学 一种可反复拆装和更换组件的复合微液滴生成装置
CN112892630A (zh) * 2021-03-16 2021-06-04 上海大学 一种基于同轴流聚焦结构的多材料液滴产生系统
CN113862140A (zh) * 2021-09-27 2021-12-31 广东省科学院健康医学研究所 一种便携式液滴数字pcr装置
CN114225988A (zh) * 2021-11-30 2022-03-25 广东省科学院健康医学研究所 一种双向构型微流控液滴生成装置及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10337484B4 (de) * 2003-08-14 2005-05-25 Zengerle, Roland, Prof. Dr. Mikrodosiervorrichtung und Verfahren zur dosierten Abgabe von Flüssigkeiten
WO2009037680A2 (en) * 2007-09-20 2009-03-26 Jean-Louis Viovy Encapsulation microfluidic device
EP2058129A1 (en) * 2007-11-09 2009-05-13 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Droplet break-up device
US8622987B2 (en) * 2008-06-04 2014-01-07 The University Of Chicago Chemistrode, a plug-based microfluidic device and method for stimulation and sampling with high temporal, spatial, and chemical resolution
CN103131665A (zh) * 2013-02-25 2013-06-05 东南大学 一种复合结构编码微载体及其制备方法和应用
GB2525634B (en) * 2014-04-30 2019-02-06 Univ Southampton A method for generating droplets
WO2016078339A1 (zh) * 2014-11-17 2016-05-26 中国科学院微生物研究所 微液滴生成装置、系统、方法及单细胞/单分子分析装置
CN104713815B (zh) * 2015-03-24 2017-04-05 中国科学院上海光学精密机械研究所 一种玻璃材料气溶胶聚焦气路样气管道及其制作方法
CN105413779B (zh) * 2015-12-11 2018-02-06 苏州汶颢芯片科技有限公司 制备多乳液的微流控芯片夹具、及多乳液的制备系统
CN106540641A (zh) * 2016-11-27 2017-03-29 重庆科技学院 一种微球成型反应器使用方法
JP2020525269A (ja) * 2017-07-04 2020-08-27 ユニヴェルシテ・リブレ・ドゥ・ブリュッセル 液滴および/または気泡生成器
CN109746061A (zh) * 2017-11-06 2019-05-14 北京新羿生物科技有限公司 微液滴生成装置
CN108159976A (zh) * 2018-01-03 2018-06-15 西南交通大学 一种油包水包水(w/w/o)单分散双重乳液制备方法及其微流控装置
CN110404467A (zh) * 2019-09-06 2019-11-05 徐州工程学院 一种超声辅助循环式膜分散装置及聚合物水分散液制备方法
CN112452251B (zh) * 2020-10-27 2021-12-14 山东大学 月牙形及其变形陶瓷微颗粒、其制备方法、应用及制备装置
CN113278494A (zh) * 2021-05-07 2021-08-20 深圳市第二人民医院(深圳市转化医学研究院) 数字pcr微滴生成芯片

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180093265A1 (en) * 2016-09-30 2018-04-05 The Board Of Trustees Of The Leland Stanford Junior University Electropermanent magnet activated microfluidic droplet size modulation
CN109613105A (zh) * 2019-01-04 2019-04-12 东北大学 一种单细胞液滴/单液滴发生系统及其使用方法
CN110394203A (zh) * 2019-08-08 2019-11-01 北京理工大学 一种可反复拆装和更换组件的复合微液滴生成装置
CN112892630A (zh) * 2021-03-16 2021-06-04 上海大学 一种基于同轴流聚焦结构的多材料液滴产生系统
CN113862140A (zh) * 2021-09-27 2021-12-31 广东省科学院健康医学研究所 一种便携式液滴数字pcr装置
CN114225988A (zh) * 2021-11-30 2022-03-25 广东省科学院健康医学研究所 一种双向构型微流控液滴生成装置及其制备方法

Also Published As

Publication number Publication date
CN114225988B (zh) 2023-04-28
CN114225988A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2023097976A1 (zh) 一种双向构型微流控液滴生成装置及其制备方法
Churski et al. High-throughput automated droplet microfluidic system for screening of reaction conditions
Cubaud et al. Capillary threads and viscous droplets in square microchannels
Jiu-Sheng et al. Droplet microfluidic technology: Mirodroplets formation and manipulation
CN109908986B (zh) 一种基于出口不对称毛细管的液滴生成系统及使用方法
CN109395788B (zh) 一种管内液滴制备芯片装置
Parhizkar et al. Effect of operating conditions and liquid physical properties on the size of monodisperse microbubbles produced in a capillary embedded T-junction device
CN113058669A (zh) 一种可按需定制的共轴聚焦微通道一体化装置和方法
Chen et al. Experimental study on droplet generation in flow focusing devices considering a stratified flow with viscosity contrast
Kumaran et al. Ultra-fast microfluidic mixing by soft-wall turbulence
CN107970847B (zh) 一种双t型入口结构的平面弯曲被动式微混合器
Li et al. A minimalist approach for generating picoliter to nanoliter droplets based on an asymmetrical beveled capillary and its application in digital PCR assay
CN106215988B (zh) 一种双支路实现微液滴两次分裂功能的微通道
US20210370303A1 (en) Pressure insensitive microfluidic circuit for droplet generation and uses thereof
CN112955259A (zh) 防堵塞微流体多通道装置
CN108993622B (zh) 一种实现不同组合液滴对碰撞的微流控芯片
CN105921188A (zh) 一种乳液多维度快速制备微流控装置
CN112076807A (zh) 一种自发形成油包水液滴的微流控芯片及装置
Vagner et al. Dripping and jetting of semi-dilute polymer solutions co-flowing in co-axial capillaries
CN110813167B (zh) 一种基于无源单向阀门结构的微流体混合器及其控制方法
CN114653414B (zh) 一种过盈配合辅助定位的毛细管微流控装置及其制备方法
Liu et al. Distribution of liquid–liquid two-phase flow in branching T-junction microchannels
Rhee et al. Versatile on-demand droplet generation for controlled encapsulation
CN211463116U (zh) 预混装置及带有预混装置的管式微反应器
CN112696528A (zh) 一种用于微流控芯片的液压开关阀以及微流控芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899799

Country of ref document: EP

Kind code of ref document: A1