WO2023097866A1 - 一种降压电路及电源管理装置 - Google Patents

一种降压电路及电源管理装置 Download PDF

Info

Publication number
WO2023097866A1
WO2023097866A1 PCT/CN2022/070365 CN2022070365W WO2023097866A1 WO 2023097866 A1 WO2023097866 A1 WO 2023097866A1 CN 2022070365 W CN2022070365 W CN 2022070365W WO 2023097866 A1 WO2023097866 A1 WO 2023097866A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
terminal
input
switch
capacitor
Prior art date
Application number
PCT/CN2022/070365
Other languages
English (en)
French (fr)
Inventor
蔡桂港
路延
马许愿
Original Assignee
澳门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 澳门大学 filed Critical 澳门大学
Publication of WO2023097866A1 publication Critical patent/WO2023097866A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to the technical field of analog circuits, in particular, to a step-down circuit and a power management device.
  • a switched capacitor circuit or a step-down conversion circuit is usually used to reduce the voltage.
  • a plurality of capacitors need to be arranged in the switched capacitor circuit to realize step-down; a large-volume inductor needs to be arranged in the step-down conversion circuit to realize step-down.
  • the disclosure provides a step-down circuit and a power management device, which can reduce the complexity of the circuit system by using fewer circuit elements, and can realize the power supply circuit on portable and wearable electronic devices with small volume. Buck.
  • Embodiments of the present disclosure may be implemented, for example, in the following ways:
  • An embodiment of the present disclosure provides a step-down circuit
  • the step-down circuit may include: a voltage input terminal, a voltage output terminal, a step-down module, and a control module;
  • the step-down module may include: a plurality of switch components, a first capacitor, a second Two capacitance and inductance components;
  • the first terminal of the first switch component can be connected to the voltage input terminal
  • the second terminal of the first switch component can be connected to the first terminal of the third switch component
  • the second terminal of the third switch component can be connected to the first terminal of the fifth switch component.
  • One end is connected, and the second end of the fifth switch component can be connected to the voltage output end;
  • the first end of the second switch component can be grounded, the second end of the second switch component can be connected to the first end of the inductance element, and the second end of the inductance element can be connected to the voltage output terminal;
  • the first end of the first capacitor may be connected to the second end of the first switch component, and the second end of the first capacitor may be connected to the second end of the second switch component;
  • the first terminal of the second capacitor may be connected to the second terminal of the third switch component, and the second terminal of the second capacitor may be respectively connected to the second terminal of the fourth switch component and the first terminal of the sixth switch component;
  • the first terminal of the fourth switch component can be grounded, and the second terminal of the sixth switch component can be connected to the voltage output terminal;
  • the input end of the control module can be connected to the voltage output end, and the output end of the control module can be connected to the control end of each switch assembly.
  • control module may include: a voltage processing unit, a mode selection unit, and a control drive unit;
  • the input end of the voltage processing unit may be connected to the second end of the fifth switch assembly and the second end of the inductance element, the output end of the voltage processing unit may be connected to the input end of the mode selection unit, and the voltage processing unit may be configured to Signal preprocessing;
  • the output end of the mode selection unit may be connected to the control driving unit, and the mode selection unit may be configured to determine the target control driving mode based on the preprocessed voltage signal;
  • the output terminal of the control drive unit may be respectively connected to each switch assembly, and the drive control unit may be configured to control the opening and closing of the switch assembly in a corresponding mode based on the target control drive mode.
  • the voltage processing unit may include: an error amplifier, a first comparator, and a reset trigger;
  • the first input end of the error amplifier can be connected to the voltage output end, and the second input end of the error amplifier can be configured to input the first reference voltage; the output end of the error amplifier can be configured to send the error amplification result to the first comparator first input terminal;
  • the second input terminal of the first comparator may be configured to input a ramp voltage, and the output terminal of the first comparator may be configured to send the first comparison result to the first input terminal of the reset set flip-flop;
  • the second input end of the reset set flip-flop may be configured to input the first clock signal, and the output end of the reset set flip-flop may be configured to send the trigger result to the mode selection unit.
  • the error amplifier can be configured to compare the difference between the voltage signal input from the voltage output terminal and the first reference voltage, and amplify the difference voltage obtained by the comparison according to a preset amplification ratio to obtain an error amplification result , and send the error amplification result to the first comparator;
  • the first comparator may be configured to compare the error amplification result input from the error amplifier with the ramp voltage, obtain a first comparison result, and send the first comparison result to the reset reset flip-flop;
  • the reset set flip-flop may be configured to perform trigger processing based on the first comparison result input from the first comparator and the first clock signal, obtain a trigger result, and send the trigger result to the mode selection unit.
  • the voltage processing unit may also include: a ramp generator;
  • the ramp generator can be respectively connected with the second input end of the first comparator, the second input end of the reset reset flip-flop and the input end of the mode selection unit;
  • the ramp generator may be configured to provide a ramp voltage for the first comparator, a first clock signal for the reset bit flip-flop, and a second clock signal for the mode selection unit.
  • the voltage processing unit may further include: a second comparator, a first resistor, and a second resistor;
  • the first end of the first resistor may be connected to the voltage input end, the second end of the first resistor may be connected to the first end of the second resistor, and the second end of the second resistor may be grounded;
  • the first input end of the second comparator may be connected to the second end of the first resistor, the second input end of the second comparator may be configured to input a second reference voltage, and the output end of the second comparator may be configured to Send the second comparison result to the mode selection unit.
  • the second comparator may be configured to compare the input voltage divided by the resistors with the second reference voltage to obtain a second comparison result, and input the second comparison result into the mode selection unit.
  • the mode selection unit may be a digital mode selector, and the digital mode selector may be respectively configured to receive the second comparison result, the trigger result, and the second clock signal sent by the voltage processing unit to perform mode selection processing, and the selected Mode information and duty cycle are sent to the control drive unit.
  • the mode selection unit can be a digital mode selector with four inputs and two outputs, and the input of the digital mode selector with four inputs and two outputs can be two clock signals in the second comparison result, the trigger result and the second clock signal , wherein, two kinds of clock signals in the second clock signal are the clock signal that the duty cycle is 80% and 42% respectively; Send to control drive unit.
  • the mode selection unit may be configured to preliminarily determine the working mode according to the second comparison result, and send the determined working mode to the control driving unit.
  • the mode selection unit may be configured to obtain the duty cycle according to the trigger result and the second clock signal, and send a specific value of the duty cycle to the control drive unit in real time during operation;
  • the control drive unit may be configured to switch the working mode according to the specific value of the duty cycle.
  • control drive unit may be configured to switch to the 1/2 step-down mode if the duty cycle is greater than the first threshold for a period of time when in the 1/3 step-down mode, and when in the 1/3 step-down mode In the 1/2 step-down mode, if the duty ratio is less than the second threshold for a period of time, then the 1/3 step-down mode will be switched.
  • specific coefficients of the first threshold and the second threshold may be determined by the second clock signal.
  • both the first capacitor and the second capacitor may be flying capacitors arranged in the circuit; and the inductance element may be a small-volume inductor suitable for microcircuits.
  • control module may be configured to perform closed-loop regulation according to the output voltage of the step-down module, so as to control the connection or closure of the switch component according to the regulation result.
  • the step-down module may be configured to obtain an output voltage through a charging process of the inductor and a discharging process of the inductor, and the output voltage is a voltage obtained after the input voltage is stepped down.
  • the switch component may be a field effect transistor, or the switch component may be a switch composed of multiple field effect transistors connected in series.
  • the step-down circuit may further include: a third capacitor, a first end of the third capacitor is connected to the voltage output end, and a second end of the third capacitor is grounded.
  • Embodiments of the present disclosure also provide a power management device, which may include a step-down circuit and associated modules.
  • the step-down circuit may include: a voltage input terminal, a voltage output terminal, a step-down module, and a control module;
  • the step-down module includes: a plurality of switch components, a first Capacitor, second capacitor, inductance element; the first terminal of the first switch component is connected to the voltage input terminal, the second terminal of the first switch component is connected to the first terminal of the third switch component, and the second terminal of the third switch component is connected to the The first end of the fifth switch component is connected, the second end of the fifth switch component is connected to the voltage output terminal; the first end of the second switch component is grounded, the second end of the second switch component is connected to the first end of the inductance element, The second end of the inductance element is connected to the voltage output end; the first end of the first capacitor is connected to the second end of the first switch component, and the second end of the first capacitor is connected to the second end of the second switch component; the second capacitor The first end of the first capacitor is connected to the second end of the first switch component, and the
  • the inductor current can be greatly reduced. Therefore, in the case of low inductor current, a small-volume inductor can be used, which can improve the working efficiency of the circuit and reduce the size of the entire circuit system.
  • the size reduces the complexity of the circuit system, and can realize the step-down processing of the power circuit on the smaller portable and wearable electronic devices.
  • FIG. 1 is a first structural schematic diagram of a step-down circuit provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a control module provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a voltage processing unit provided by an embodiment of the present disclosure.
  • FIG. 4 is a second structural schematic diagram of a step-down circuit provided by an embodiment of the present disclosure.
  • FIG. 5 is a working schematic diagram 1 of a step-down circuit provided by an embodiment of the present disclosure.
  • FIG. 6 is a working schematic diagram 2 of a step-down circuit provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a power management device provided by an embodiment of the present disclosure.
  • S1-first switch component S2-second switch component; S3-third switch component; S4-fourth switch component; S5-fifth switch component; S6-sixth switch component; C1 first capacitor; Two capacitors; C3-third capacitor; R1-first resistor; R2-second resistor; L-inductive element;
  • a switched capacitor (Switched-capacitor, SC) and a step-down conversion circuit (Buckconverter, Buck) are two commonly used schemes.
  • Switched capacitors can achieve high current density and high efficiency at a specific voltage conversion ratio (voltage conversion ratio, VCR).
  • VCR voltage conversion ratio
  • reconfigurable multi-VCR switched capacitors are required, which increases the complexity of the system.
  • the conventional buck circuit can achieve good efficiency over a wide continuous VCR range, but it requires a bulky inductor, which significantly reduces the system current density.
  • FCML flying capacitor multilevel
  • the inductor since all of the output current flows through the inductor, the inductor must maintain a relatively large volume to obtain a low DC resistance (DCR), thereby reducing conduction losses.
  • DCR DC resistance
  • the switched capacitor In a hybrid circuit that can reduce the inductor current, the switched capacitor not only reduces the node voltage of the switch, but also provides another current path to the output, reducing the inductor current.
  • problems such as limited VCR range or large inductor current ripple, which weakens the benefits of reducing the inductor current.
  • step-down circuit The specific structure of the step-down circuit provided in the embodiment of the present disclosure and the connection relationship of relevant electronic devices therein will be explained in detail below.
  • FIG. 1 is a structural schematic diagram of a step-down circuit provided by an embodiment of the present disclosure. Please refer to FIG. 1.
  • the step-down circuit includes: a voltage input terminal 100, a voltage output terminal 200, a step-down module 300, and a control module 400; 300 includes: a plurality of switch components, a first capacitor C1, a second capacitor C2, and an inductance element L.
  • the first terminal of the first switch component S1 is connected to the voltage input terminal 100, the second terminal of the first switch component S1 is connected to the first terminal of the third switch component S3, and the second terminal of the third switch component S3 is connected to the fifth switch component.
  • the first terminal of S5 is connected, the second terminal of the fifth switch component S5 is connected to the voltage output terminal 200; the first terminal of the second switch component S2 is grounded, the second terminal of the second switch component S2 is connected to the first terminal of the inductance element L connection, the second terminal of the inductance element L is connected to the voltage output terminal 200;
  • the first terminal of the first capacitor C1 is connected to the second terminal of the first switch component S1, and the second terminal of the first capacitor C1 is connected to the second terminal of the second switch component S2
  • the second end is connected; the first end of the second capacitor C2 is connected to the second end of the third switch group S3, and the second end of the second capacitor C2 is respectively connected to the second end of the fourth switch assembly S4 and the sixth switch assembly
  • the input terminal of the control module 400 may be connected to the voltage output terminal 200, and the output terminal of the control module 400 may be connected to the control terminals of each switch assembly.
  • the switch components may include: a first switch component S1, a second switch component S2, a third switch component S3, a fourth switch component S4, a fifth switch component S5, and a sixth switch component S6.
  • Each switch component may be a switching device for realizing connection or disconnection in a circuit.
  • both the first capacitor C1 and the second capacitor C2 can be flying capacitors arranged in the circuit, and the inductance element L can be a small-volume inductor with low inductive current, which can be applied to microcircuits.
  • the embodiment of the present disclosure is aimed at the application of step-down conversion of the lithium battery voltage (2.8-4.2V) to a voltage below 1V, so two flying capacitors C1 and C2 are used.
  • two flying capacitors C1 and C2 are used.
  • one flying capacitor or three or more flying capacitors can be used, and the number of flying capacitors is not specifically limited here.
  • the step-down module 300 can reduce the voltage during operation, that is, the voltage at the voltage output terminal 200 is lower than the voltage at the voltage input terminal 100. According to actual needs, it can be 1/2 or 1 /3 ratio to reduce the voltage.
  • control module 400 may perform closed-loop regulation according to the output voltage of the step-down module 300, so as to control the connection or closure of the above-mentioned switch components according to the regulation result.
  • the step-down operation may include two processes: the charging process ( ⁇ 1) of the inductor and the discharging process ( ⁇ 2) of the inductor. After the above two processes, the output voltage can be obtained, and the output voltage is the input voltage The voltage obtained after stepping down.
  • a step-down circuit may include: a voltage input terminal, a voltage output terminal, a step-down module, and a control module; the step-down module may include: a plurality of switch components, a first capacitor, a second capacitor, and an inductive element ;
  • the first end of the first switch assembly is connected to the voltage input end, the second end of the first switch assembly is connected to the first end of the third switch assembly, the second end of the third switch assembly is connected to the first end of the fifth switch assembly connected, the second end of the fifth switch component is connected to the voltage output terminal;
  • the first end of the second switch component is grounded, the second end of the second switch component is connected to the first end of the inductance element, and the second end of the inductance element is connected to the voltage Output terminal;
  • the first end of the first capacitor is connected to the second end of the first switch assembly, the second end of the first capacitor is connected to the second end of the second switch assembly;
  • the first end of the second capacitor is connected to the third switch The second end of the
  • the inductor current can be greatly reduced. Therefore, in the case of low inductor current, a small-volume inductor can be used, which can improve the working efficiency of the circuit and reduce the size of the entire circuit system.
  • the size reduces the complexity of the circuit system, and can realize the step-down processing of the power circuit on the smaller portable and wearable electronic devices.
  • the step-down circuit provided in the embodiments of the present disclosure uses a smaller inductance, the inductor current ripple is also smaller; in addition, due to its circuit structure, it can also achieve continuous High efficiency; and the use of a specific flying capacitor setting method does not need to balance the voltage of the flying capacitor.
  • control module in the step-down circuit provided in the embodiment of the present disclosure will be explained in detail below.
  • FIG. 2 is a schematic structural diagram of a control module provided by an embodiment of the present disclosure. Please refer to FIG. 2 .
  • the control module 400 includes: a voltage processing unit 410, a mode selection unit 420, and a control driving unit 430;
  • the input end of the voltage processing unit 410 is connected to the second end of the fifth switch assembly S5 and the second end of the inductance element L, the output end of the voltage processing unit 410 is connected to the input end of the mode selection unit 420, and the voltage processing unit 410 is configured
  • the voltage signals are preprocessed in pairs; the output terminal of the mode selection unit 420 is connected to the control drive unit 430, and the mode selection unit 420 is configured to determine the target control drive mode based on the preprocessed voltage signal; the output terminals of the control drive unit 430 are respectively Connected with each switch assembly, the control drive unit 430 is configured to control the opening and closing of the switch assembly in the corresponding mode based on the target control drive mode.
  • the voltage processing unit 410 can obtain the output voltage of the step-down module 300, and based on the voltage, various processing methods such as error amplification processing, comparison processing, and trigger processing can be sequentially performed, and the processed voltage signal can be sent to mode selection unit 420 .
  • the mode selection unit 420 can perform mode determination based on the preprocessed voltage signal, for example, determine whether the current circuit is in 1/3 step-down mode or 1/2 step-down mode, and in the same step-down mode, it can also determine whether it is in the process of inductive charging It is also an inductor discharge process, and then the target control driving mode is determined according to the corresponding mode.
  • the control driving unit 430 can determine the turn-on and turn-off of each switch component based on the target control drive mode. For different target control drive modes, the switch components can be turned on and off differently.
  • control drive unit 430 may be provided with six output terminals, which respectively correspond to the control terminals of the above six switch components.
  • FIG. 3 is a schematic structural diagram of a voltage processing unit provided by an embodiment of the present disclosure. Please refer to FIG.
  • the input terminal is connected to the voltage output terminal 200, and the second input terminal of the error amplifier 411 is used to input the first reference voltage; the output terminal of the error amplifier 411 is used to send the error amplification result to the first input terminal of the first comparator 412;
  • the second input terminal of a comparator 412 is used for inputting the ramp voltage, and the output terminal of the first comparator 412 is used for sending the first comparison result to the first input terminal of the reset set flip-flop 413;
  • the second input terminal of 413 is used for inputting the first clock signal, and the output terminal of reset flip-flop 413 is used for sending the trigger result to the mode selection unit 420 .
  • the error amplifier 411 can compare the difference between the input voltage signal and the first reference voltage, amplify the difference voltage obtained by comparison according to a preset amplification ratio, and send the obtained error amplification result to the first reference voltage.
  • a comparator 412 a comparator 412 .
  • the first comparator 412 may compare the input error amplification result and the ramp voltage to obtain a first comparison result, and after obtaining the first comparison result, may send it to the reset reset flip-flop 413 .
  • the reset set flip-flop 413 which is an R (reset, reset) S (set, set) flip-flop, can perform trigger processing based on the input first comparison result and the first clock signal to obtain a trigger result, And the trigger result can be sent to the mode selection unit 420 .
  • the voltage processing unit 410 may further include: a ramp generator 414; the ramp generator 414 is connected to the second input terminal of the first comparator 412, the second input terminal of the reset trigger 413 and the mode selection The input terminal of the unit 420 is connected; the ramp generator 414 is used to provide the ramp voltage for the first comparator 412 , provide the first clock signal for the reset flip-flop 413 , and provide the second clock signal for the mode selection unit 420 .
  • a ramp generator 414 is connected to the second input terminal of the first comparator 412, the second input terminal of the reset trigger 413 and the mode selection The input terminal of the unit 420 is connected; the ramp generator 414 is used to provide the ramp voltage for the first comparator 412 , provide the first clock signal for the reset flip-flop 413 , and provide the second clock signal for the mode selection unit 420 .
  • the ramp generator 414 may be an electronic component for generating a ramp and a clock signal, and may provide a ramp voltage to the first comparator 412 and a first clock signal to reset the set flip-flop 413 .
  • the mode selection unit 420 needs two additional clock signals to determine the mode during operation, that is, the second clock signal.
  • the second clock signal there may be two second clock signals, which are respectively The duty cycle is 80% and 42% of the clock signal.
  • the above specific value is only an example, and the value of the clock signal can be set according to actual requirements in an actual circuit structure, and is not limited thereto.
  • the voltage processing unit 410 may further include: a second comparator 415, a first resistor R1, and a second resistor R2; the first terminal of the first resistor R1 is connected to the voltage input terminal 100, and the second terminal of the first resistor R1 end is connected with the first end of the second resistance R2, and the second end of the second resistance R2 is grounded; the first input end of the second comparator 415 is connected with the second end of the first resistance R1, and the second end of the second comparator 415 The two input terminals are used to input the second reference voltage, and the output terminal of the second comparator 415 is used to send the second comparison result to the mode selection unit 420 .
  • the second comparator 415 can be used to compare the input voltage after resistance division with the second reference voltage to obtain a second comparison result, which can also be input into the mode selection unit 420 .
  • the mode selection unit 420 may be a digital mode selector, and the digital mode selector is used to respectively receive the second comparison result, the trigger result, and the second clock signal sent by the voltage processing unit for mode selection processing, and select the selected mode The information along with the duty cycle is sent to the control drive unit.
  • the mode selection unit 420 can be a digital mode selector with four inputs and two outputs, wherein the input can specifically be the above-mentioned second comparison result (the result obtained by the above-mentioned processing of the input voltage), the trigger result (the output voltage has been processed by the above-mentioned ) and two clock signals in the second clock signal (two clock signals with duty cycles of 80% and 42%).
  • the input can specifically be the above-mentioned second comparison result (the result obtained by the above-mentioned processing of the input voltage), the trigger result (the output voltage has been processed by the above-mentioned ) and two clock signals in the second clock signal (two clock signals with duty cycles of 80% and 42%).
  • the output may specifically be sending the selected mode information (that is, the specific working mode) and the duty cycle (the duty cycle D, specifically a number between 0-1) to the control drive unit.
  • the mode selection unit 420 can preliminarily determine the working mode according to the second comparison result.
  • the ratio between the input voltage V IN and the second reference voltage V REF can be determined, wherein the ratio is the second
  • the mode selection unit 420 can determine whether to adopt the 1/3 step-down mode or the 1/2 step-down mode according to the value of the second comparison result, for example, when V REF /V IN is less than 0.29, it can be determined to adopt the 1/3 step-down mode mode; correspondingly, when V REF /V IN is greater than or equal to 0.29, it can be determined to adopt the 1/2 step-down mode, and the step-down mode is the mode information selected above, and the mode selection unit 420 can send the mode to the control drive unit 430.
  • the mode selection unit 420 can also obtain the duty cycle D according to the trigger result and the second clock signal, and can send the specific value of D to the control driving unit 430 in real time during operation.
  • control drive unit 430 can switch the working mode according to the specific value of D, for example: when in the 1/3 step-down mode, if D is greater than the first threshold for a period of time, then it will switch to 1/3 2 buck mode. Similarly, in the 1/2 step-down mode, if D is less than the second threshold for a period of time, it will switch to the 1/3 step-down mode.
  • the specific coefficients of the first threshold and the second threshold may be determined by the above-mentioned second clock signal, for example, when the duty cycle is 80% and 42%, the first threshold may be 0.8, and the second threshold may be 0.42, Specifically, it may be a value set according to actual requirements, and is not limited thereto.
  • FIG. 4 is a second structural schematic diagram of a step-down circuit provided by an embodiment of the present disclosure. Please refer to FIG. 4 .
  • the switch component is a field effect transistor, or the switch component is a switch composed of multiple field effect transistors connected in series.
  • S1 can be realized by stacking two 2.5V PMOS tubes in series
  • S2 and S3 can be realized by stacking one 2.5V and one 1V NMOS in series
  • S4, S5 and S6 can be realized by using 1V NMOS accomplish.
  • a field effect transistor is used as an example.
  • a triode, a switching transistor, or any other type of switching device can be used (for example, other transistors such as gallium nitride and silicon carbide) , is not limited to this.
  • the step-down circuit 10 may further include: a third capacitor C3, the first terminal of the third capacitor C3 is connected to the voltage output terminal 200, and the second terminal of the third capacitor C3 is grounded.
  • the third capacitor C3 may be a capacitor for stabilizing the output voltage.
  • FIG. 5 is a working schematic diagram of a step-down circuit provided by an embodiment of the present disclosure. Please refer to FIG. 5.
  • FIG. 5 shows the working conditions of the circuit when the voltage conversion ratio (output voltage ratio input voltage) is at most 1/3.
  • ⁇ 1 charging
  • the switch components S1, S4 and S5 are turned on, S2, S3 and S6 are turned off, the first capacitor C1 and the inductance element L are charged in series, and the second capacitor C2 is discharged to the voltage output terminal.
  • ⁇ 2 discretharging
  • the switch components S1, S4 and S5 are turned off, S2, S3 and S6 are turned on, the first capacitor C1 charges the second capacitor C2, and the inductance element L discharges to the voltage output terminal at the same time.
  • V C1 2V OUT
  • V C2 V OUT
  • the output voltage V OUT DV IN /(1+2D)
  • the inductor current I L I OUT /(1+2D ).
  • V C1 is the voltage of the first capacitor
  • V C2 is the voltage of the second capacitor
  • V IN is the input voltage
  • V OUT is the output voltage
  • I L is the inductor current
  • I OUT is the output current
  • D is the aforementioned representation Empty ratio.
  • the inductor current is greatly reduced.
  • D is 0.5
  • I L 0.5I OUT
  • the inductor current is reduced to half of the output current, and the conduction loss on the inductor is reduced to 25% of the original.
  • the theoretical maximum output voltage is V IN /3.
  • FIG. 6 is the second working schematic diagram of the step-down circuit provided by the embodiment of the present disclosure. Please refer to FIG. 6.
  • FIG. 6 shows the working condition of the circuit when the voltage conversion ratio is at most 1/2. Under this condition, the switch components S4 and S5 remains on and S6 remains off. At ⁇ 1, the switch component S1 is turned on, S2 and S3 are turned off, and the first capacitor C1 and the inductance element L are charged in series. At ⁇ 2, the switch component S1 is turned off, S2 and S3 are turned on, the first capacitor C1 discharges the output, and the inductance element L discharges the output at the same time.
  • V OUT DV IN /(1+D)
  • I L I OUT /(1+D).
  • FIG. 7 is a schematic structural diagram of a power management device provided by an embodiment of the present disclosure.
  • the power management device includes a step-down circuit 10 and an associated module 20 .
  • the step-down circuit 10 can be connected with at least one associated module 20, wherein the associated module can be a related processing module arranged in the power supply circuit, for example: a related module in a lithium-ion battery, for assisting the step-down circuit 10 to implement a power management device work.
  • the associated module can be a related processing module arranged in the power supply circuit, for example: a related module in a lithium-ion battery, for assisting the step-down circuit 10 to implement a power management device work.
  • the power management device may specifically be a device structure composed of a battery or a power circuit in other power devices.
  • the step-down circuit may include: a voltage input terminal, a voltage output end, a step-down module, and a control module;
  • the step-down module includes: a plurality of switch components, a first capacitor, The second capacitance and inductance element; the first terminal of the first switch component is connected to the voltage input terminal, the second terminal of the first switch component is connected to the first terminal of the third switch component, the second terminal of the third switch component is connected to the fifth The first end of the switch assembly is connected, the second end of the fifth switch assembly is connected to the voltage output terminal; the first end of the second switch assembly is grounded, the second end of the second switch assembly is connected to the first end of the inductance element, and the inductance element The second end of the first capacitor is connected to the voltage output end; the first end of the first capacitor is connected to the second end of the first switch component, the second end of the first capacitor is connected to the second end of the second switch component; the second end of the
  • the inductor current can be greatly reduced. Therefore, in the case of low inductor current, a small-volume inductor can be used, which can improve the working efficiency of the circuit and reduce the size of the entire circuit system.
  • the size reduces the complexity of the circuit system, and can realize the step-down processing of the power circuit on the smaller portable and wearable electronic devices.
  • the step-down circuit provided in the embodiments of the present disclosure uses a smaller inductance, the inductor current ripple is also smaller; in addition, due to its circuit structure, it can also achieve continuous High efficiency; and the use of a specific flying capacitor setting method does not need to balance the voltage of the flying capacitor.
  • step-down circuit and power management device of the present application are reproducible and can be used in various industrial applications.
  • step-down circuit and the power management device of the present application can be used in technical fields requiring analog circuits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本公开提供一种降压电路及电源管理装置,属于模拟电路技术领域。降压电路包括:电压输入端、电压输出端、降压模块、控制模块;降压模块包括:多个开关组件、第一电容、第二电容、电感元件;第一开关组件的第一端连接电压输入端,第一开关组件的第二端与第三开关组件的第一端连接,第三开关组件的第二端与第五开关组件的第一端连接,第五开关组件的第二端连接电压输出端;控制模块的输出端连接分别连接每个开关组件的控制端。本公开可以采用较少的电路元件实现对电路系统复杂性的降低,并且可以实现对体积较小的可携带和可穿戴的电子设备上电源电路的降压。

Description

一种降压电路及电源管理装置
相关申请的交叉引用
本公开要求于2021年12月1日提交中国专利局的申请号为202111450740.1、名称为“一种降压电路及电源管理装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及模拟电路技术领域,具体而言,涉及一种降压电路及电源管理装置。
背景技术
随着电子技术的不断发展,可携带和可穿戴的电子设备的体积不断减小,因此需要高电流密度的电源管理装置,而此类电源管理装置中,通常会需要降压电路来实现电压的降低处理。
相关技术中,通常是采用开关电容电路或者降压式变换电路来实现电压的降低的。其中,开关电容电路中需要设置多个电容来实现降压;降压式变换电路中需要设置大体积的电感来实现降压。
然而,多个开关电容会导致整个电路系统的复杂性增加,而较大体积的电感并不适用于体积较小的可携带和可穿戴的电子设备,导致了电路的适用性受到局限。
发明内容
本公开提供了一种降压电路及电源管理装置,可以采用较少的电路元件实现对电路系统复杂性的降低,并且可以实现对体积较小的可携带和可穿戴的电子设备上电源电路的降压。
本公开的实施例例如可以通过下述方式来实现:
本公开实施例提供了一种降压电路,该降压电路可以包括:电压输入端、电压输出端、降压模块、控制模块;降压模块可以包括:多个开关组件、第一电容、第二电容、电感元件;
第一开关组件的第一端可以连接电压输入端,第一开关组件的第二端可以与第三开关组件的第一端连接,第三开关组件的第二端可以与第五开关组件的第一端连接,第五开关 组件的第二端可以连接电压输出端;
第二开关组件的第一端可以接地,第二开关组件的第二端可以与电感元件的第一端连接,电感元件的第二端可以连接电压输出端;
第一电容的第一端可以与第一开关组件的第二端连接,第一电容的第二端可以与第二开关组件的第二端连接;
第二电容的第一端可以与第三开关组件的第二端连接,第二电容的第二端可以分别与第四开关组件的第二端以及第六开关组件的第一端连接;
第四开关组件的第一端可以接地,第六开关组件的第二端可以连接电压输出端;
控制模块的输入端可以连接电压输出端,控制模块的输出端可以连接分别连接每个开关组件的控制端。
可选地,控制模块可以包括:电压处理单元、模式选择单元、控制驱动单元;
电压处理单元的输入端可以与第五开关组件的第二端以及电感元件的第二端连接,电压处理单元的输出端可以与模式选择单元的输入端连接,电压处理单元可以被配置成对电压信号进行预处理;
模式选择单元的输出端可以与控制驱动单元连接,模式选择单元可以被配置成基于预处理后的电压信号确定目标控制驱动模式;
控制驱动单元的输出端可以分别与每个开关组件连接,驱动控制单元可以被配置成基于目标控制驱动模式控制对应模式下的开关组件的开断。
可选地,电压处理单元可以包括:误差放大器、第一比较器、复位置位触发器;
误差放大器的第一输入端可以连接电压输出端,误差放大器的第二输入端可以被配置成输入第一参考电压;误差放大器的输出端可以被配置成将误差放大结果发送给第一比较器的第一输入端;
第一比较器的第二输入端可以被配置成输入斜波电压,第一比较器的输出端可以被配置成将第一比较结果发送给复位置位触发器的第一输入端;
复位置位触发器的第二输入端可以被配置成输入第一时钟信号,复位置位触发器的输出端可以被配置成将触发结果发送给模式选择单元。
可选地,误差放大器可以被配置成对从电压输出端输入的电压信号和第一参考电压进行差值比较,并将比较得到的差值电压按照预设的放大比例进行放大,得到误差放大结果,并将误差放大结果发送给第一比较器;
第一比较器可以被配置成对从误差放大器输入的误差放大结果和斜波电压进行比较处理,得到第一比较结果,并将第一比较结果发送给复位置位触发器;
复位置位触发器可以被配置成基于从第一比较器输入的第一比较结果和第一时钟信号进行触发处理,得到触发结果,并将触发结果发送给模式选择单元。
可选地,电压处理单元还可以包括:斜波发生器;
斜波发生器可以分别与第一比较器的第二输入端、复位置位触发器的第二输入端以及模式选择单元的输入端连接;
斜波发生器可以被配置成为第一比较器提供斜波电压、为复位置位触发器提供第一时钟信号,为模式选择单元提供第二时钟信号。
可选地,电压处理单元还可以包括:第二比较器、第一电阻、第二电阻;
第一电阻的第一端可以与电压输入端连接,第一电阻的第二端可以与第二电阻的第一端连接,第二电阻的第二端可以接地;
第二比较器的第一输入端可以与第一电阻的第二端连接,第二比较器的第二输入端可以被配置成输入第二参考电压,第二比较器的输出端可以被配置成将第二比较结果发送给模式选择单元。
可选地,第二比较器可以被配置为将经过电阻分压后的输入电压与第二参考电压进行比较,以得到第二比较结果,并将第二比较结果输入至模式选择单元中。
可选地,模式选择单元可以为数字模式选择器,数字模式选择器可以分别被配置成接收电压处理单元发送的第二比较结果、触发结果、第二时钟信号进行模式选择处理,并将选择的模式信息以及占空比发送给控制驱动单元。
可选地,模式选择单元可以为四输入双输出的数字模式选择器,四输入双输出的数字模式选择器的输入可以为第二比较结果、触发结果以及第二时钟信号中的两种时钟信号,其中,第二时钟信号中的两种时钟信号分别是占空比为80%和42%的时钟信号;四输入双输出的数字模式选择器的输出可以为将选择的模式信息以及占空比发送给控制 驱动单元。
可选地,模式选择单元可以被配置成根据第二比较结果来初步确定工作模式,并将确定的工作模式发送给控制驱动单元。
可选地,模式选择单元可以被配置成根据触发结果以及第二时钟信号得到占空比,并且在工作的过程中实时向控制驱动单元发送占空比的具体值;
控制驱动单元可以被配置成根据所述占空比的具体值进行工作模式的切换。
可选地,控制驱动单元可以被配置成当处于1/3降压模式时,若占空比持续一段时间内都大于第一阈值,那么将切换成1/2降压模式,以及当处于所述1/2降压模式时,若占空比持续一段时间内都小于第二阈值,那么将切换成所述1/3降压模式。
可选地,第一阈值和第二阈值的具体系数可以由第二时钟信号决定。
可选地,第一电容和所述第二电容可以均是设置在电路中的飞电容;以及电感元件可以是适用于微型电路的小体积电感。
可选地,控制模块可以被配置成根据降压模块的输出电压进行闭环调节,从而根据调节的结果控制开关组件的连通或者关断。
可选地,降压模块可以被配置成经过电感的充电过程及电感的放电过程得到输出电压,所述输出电压为输入电压经过降压之后得到的电压。
可选地,开关组件可以为一个场效应管,或者,开关组件可以为多个场效应管串联组成的开关。
可选地,降压电路还可以包括:第三电容,第三电容的第一端连接电压输出端,第三电容的第二端接地。
本公开实施例的还提供了一种电源管理装置,该电源管理装置可以包括降压电路以及关联模块。
本公开实施例的有益效果包括:
本公开实施例提供的一种降压电路及电源管理装置中,降压电路可以包括:电压输入端、电压输出端、降压模块、控制模块;降压模块包括:多个开关组件、第一电容、第二电容、电感元件;第一开关组件的第一端连接电压输入端,第一开关组件的第二端与第三 开关组件的第一端连接,第三开关组件的第二端与第五开关组件的第一端连接,第五开关组件的第二端连接电压输出端;第二开关组件的第一端接地,第二开关组件的第二端与电感元件的第一端连接,电感元件的第二端连接电压输出端;第一电容的第一端与第一开关组件的第二端连接,第一电容的第二端与第二开关组件的第二端连接;第二电容的第一端与第三开关组件的第二端连接,第二电容的第二端分别与第四开关组件的第二端以及第六开关组件的第一端连接;第四开关组件的第一端接地,第六开关组件的第二端连接电压输出端;控制模块的输入端连接电压输出端,控制模块的输出端连接分别连接每个开关组件的控制端。其中,通过上述降压电路的电路结构,可以实现将电感电流大幅度降低,因此,在低电感电流的情况下,可以使用小体积的电感,相应可以提高电路的工作效率并减小整个电路系统的尺寸,降低了电路系统的复杂性,并可以在体积较小的可携带和可穿戴的电子设备上实现电源电路的降压处理。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例提供的降压电路的结构示意图一;
图2为本公开实施例提供的控制模块的结构示意图;
图3为本公开实施例提供的电压处理单元的结构示意图;
图4为本公开实施例提供的降压电路的结构示意图二;
图5为本公开实施例提供的降压电路的工作示意图一;
图6为本公开实施例提供的降压电路的工作示意图二;
图7为本公开实施例提供的电源管理装置的结构示意图。
附图标记:10-降压电路;20-关联模块;100-电压输入端;200-电压输出端;300-降压模块;400-控制模块;410-电压处理单元;420-模式选择单元;430-控制驱动单元;411-误差放大器;412-第一比较器;413-复位置位触发器;414-斜波发生器;415-第二比较器;
S1-第一开关组件;S2-第二开关组件;S3-第三开关组件;S4-第四开关组件;S5-第五 开关组件;S6-第六开关组件;C1第一电容;C2-第二电容;C3-第三电容;R1-第一电阻;R2-第二电阻;L-电感元件;
Φ1-电感的充电过程;Φ2-电感的放电过程。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本公开的描述中,需要说明的是,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
随着电子电路技术的不断发展,可携带和可穿戴的电子设备的体积不断减小,因此需要高电流密度的电源管理装置。
开关电容(Switched-capacitor,SC)和降压式变换电路(Buckconverter,Buck)是两种常用的方案。开关电容可以实现高的电流密度和在特定的电压转换比(voltageconversionratio,VCR)下实现高的效率。但是,为了覆盖宽的输入输出电压范围,需要可重构的多VCR的开关电容,这增加了系统的复杂性。另一方面,传统的Buck电路可以在很宽的连续的VCR范围下实现不错的效率,但是它需要一个体积庞大的电感,这显著地降低了系统的电流密度。
为了解决电流密度与效率的折中,同时使用电容和电感的飞电容多电平(flyingcapacitormultilevel,FCML)的电压转换器被提出并研究。与传统的只使用电感的Buck电路相比,这种混合型电路的电感电压变化范围更小,开关频率更高,对同一个VCR开关信号的占空比(dutycycle,D)也更大,因此降低了对电感的要求从而实现了更高的 电流密度。
然而,因为所有的输出电流都流过电感,电感必须保持一个相对大的体积来获得一个小的直流电阻(DCR),从而减小导通损耗。
在可减小电感电流的混合型电路中,开关电容不仅降低了开关的节点电压,同时提供了另外一条电流通路到输出,减小了电感的电流。但是存在VCR范围有限,或者电感电流纹波大等问题,削弱了减小电感电流带来的好处。
下面来具体解释本公开实施例中提供的降压电路的具体结构以及其中相关电子器件的连接关系。
图1为本公开实施例提供的降压电路的结构示意图一,请参照图1,该降压电路包括:电压输入端100、电压输出端200、降压模块300、控制模块400;降压模块300包括:多个开关组件、第一电容C1、第二电容C2、电感元件L。
第一开关组件S1的第一端连接电压输入端100,第一开关组件S1的第二端与第三开关组件S3的第一端连接,第三开关组件S3的第二端与第五开关组件S5的第一端连接,第五开关组件S5的第二端连接电压输出端200;第二开关组件S2的第一端接地,第二开关组件S2的第二端与电感元件L的第一端连接,电感元件L的第二端连接电压输出端200;第一电容C1的第一端与第一开关组件S1的第二端连接,第一电容C1的第二端与第二开关组件S2的第二端连接;第二电容C2的第一端与第三开关组S3件的第二端连接,第二电容C2的第二端分别与第四开关组件S4的第二端以及第六开关组件S6的第一端连接;第四开关组件S4的第一端接地,第六开关组件S6的第二端连接电压输出端200。
可选地,控制模块400的输入端可以连接电压输出端200,控制模块400的输出端可以连接分别连接每个开关组件的控制端。
可选地,开关组件可以包括:第一开关组件S1,第二开关组件S2,第三开关组件S3,第四开关组件S4,第五开关组件S5,第六开关组件S6。每个开关组件均可以是用于实现电路中连通或者关断的开关器件。
可选地,第一电容C1和第二电容C2均可以是设置在电路中的飞电容,电感元件L可以是小体积电感,具有电感电流低的特点,可以适用于微型电路中。
可选地,本公开的实施例是以针对锂电池电压(2.8-4.2V)降压转换到1V以下电压的应用,因此使用了2个飞电容C1和C2。可选地,对于其它电压转换比的应用可以 使用1个飞电容或者3个及以上的飞电容,飞电容的数量在此不作具体限制。
可选地,降压模块300在工作的过程中可以实现电压的降低,也即是使得电压输出端200的电压比电压输入端100的电压要低,根据实际需求,可以按照1/2或者1/3的比例进行电压的降低。
可选地,控制模块400可以根据降压模块300的输出电压进行闭环调节,从而根据调节的结果控制上述开关组件的连通或者关断。
可选地,在降压工作的过程中可以包括两个过程:电感的充电过程(Φ1)以及电感的放电过程(Φ2),经过上述两个过程即可以得到输出电压,该输出电压为输入电压经过降压之后得到的电压。
本公开实施例提供的一种降压电路可以包括:电压输入端、电压输出端、降压模块、控制模块;降压模块可以包括:多个开关组件、第一电容、第二电容、电感元件;第一开关组件的第一端连接电压输入端,第一开关组件的第二端与第三开关组件的第一端连接,第三开关组件的第二端与第五开关组件的第一端连接,第五开关组件的第二端连接电压输出端;第二开关组件的第一端接地,第二开关组件的第二端与电感元件的第一端连接,电感元件的第二端连接电压输出端;第一电容的第一端与第一开关组件的第二端连接,第一电容的第二端与第二开关组件的第二端连接;第二电容的第一端与第三开关组件的第二端连接,第二电容的第二端分别与第四开关组件的第二端以及第六开关组件的第一端连接;第四开关组件的第一端接地,第六开关组件的第二端连接电压输出端;控制模块的输入端连接电压输出端,控制模块的输出端连接分别连接每个开关组件的控制端。其中,通过上述降压电路的电路结构,可以实现将电感电流大幅度降低,因此,在低电感电流的情况下,可以使用小体积的电感,相应可以提高电路的工作效率并减小整个电路系统的尺寸,降低了电路系统的复杂性,并可以在体积较小的可携带和可穿戴的电子设备上实现电源电路的降压处理。
另外,本公开实施例中提供的降压电路由于采用的是体积较小的电感,因此,电感电流纹波也较小;另外,由于其电路结构,导致在宽的VCR范围内也可以实现连续的高效率;而采用特定的飞电容的设置方式也可以不需要对飞电容的电压平衡处理。
下面来具体解释本公开实施例中提供的降压电路中控制模块的具体结构。
图2为本公开实施例提供的控制模块的结构示意图,请参照图2,控制模块400包括: 电压处理单元410、模式选择单元420、控制驱动单元430;
电压处理单元410的输入端与第五开关组件S5的第二端以及电感元件L的第二端连接,电压处理单元410的输出端与模式选择单元420的输入端连接,电压处理单元410被配置成对电压信号进行预处理;模式选择单元420的输出端与控制驱动单元430连接,模式选择单元420被配置成基于预处理后的电压信号确定目标控制驱动模式;控制驱动单元430的输出端分别与每个开关组件连接,控制驱动单元430被配置成基于目标控制驱动模式控制对应模式下的开关组件的开断。
可选地,电压处理单元410可以获取降压模块300的输出电压,基于该电压可以分别依次进行误差放大处理、比较处理、触发处理等多种处理方式,并将处理完毕之后的电压信号发送给模式选择单元420。
模式选择单元420可以基于预处理之后的电压信号进行模式确定,例如确定当前电路为1/3降压模式还是1/2降压模式,在同一降压模式下,还可以确定是处于电感充电过程还是电感放电过程,进而根据对应的模式确定目标控制驱动模式。
控制驱动单元430可以基于目标控制驱动模式确定每个开关组件的开通和关断,对于不同的目标控制驱动模式,其开关组件的开断可以有所不同。
可选地,在本公开实施例中,控制驱动单元430可以设置有六个输出端,分别对应上述六个开关组件的控制端。
下面来具体解释本公开实施例中提供的电压处理单元的具体结构连接关系。
图3为本公开实施例提供的电压处理单元的结构示意图,请参照图3,电压处理单元410包括:误差放大器411、第一比较器412、复位置位触发器413;误差放大器411的第一输入端连接电压输出端200,误差放大器411的第二输入端用于输入第一参考电压;误差放大器411的输出端用于将误差放大结果发送给第一比较器412的第一输入端;第一比较器412的第二输入端用于输入斜波电压,第一比较器412的输出端用于将第一比较结果发送给复位置位触发器413的第一输入端;复位置位触发器413的第二输入端用于输入第一时钟信号,复位置位触发器413的输出端用于将触发结果发送给模式选择单元420。
可选地,误差放大器411可以是对输入的电压信号和第一参考电压进行差值比较,并将比较得到的差值电压按照预设的放大比例进行放大,将得到的误差放大结果发送给 第一比较器412。
可选地,第一比较器412可以对输入的误差放大结果和斜波电压进行比较处理,得到第一比较结果,得到该第一比较结果之后,可以将其发送给复位置位触发器413。
可选地,复位置位触发器413,即为R(reset,复位)S(set,置位)触发器,可以基于输入的第一比较结果和第一时钟信号进行触发处理,得到触发结果,并可以将触发结果发送给模式选择单元420。
可选地,电压处理单元410还可以包括:斜波发生器414;斜波发生器414分别与第一比较器412的第二输入端、复位置位触发器413的第二输入端以及模式选择单元420的输入端连接;斜波发生器414用于为第一比较器412提供斜波电压、为复位置位触发器413提供第一时钟信号,为模式选择单元420提供第二时钟信号。
可选地,斜波发生器414可以是用于产生斜波和时钟信号的电子元件,可以为第一比较器412提供斜波电压以及为复位置位触发器413提供第一时钟信号。
可选地,模式选择单元420在工作的过程中需要额外两个时钟信号进行模式确定,也即是第二时钟信号,在本公开的实施例中第二时钟信号可以是两个,分别是占空比为80%和42%的时钟信号。可选地,上述具体的值仅为一种示例,在实际电路结构中可以根据实际需求进行时钟信号的值的设置,并不会以此为限。
可选地,电压处理单元410还可以包括:第二比较器415、第一电阻R1、第二电阻R2;第一电阻R1的第一端与电压输入端100连接,第一电阻R1的第二端与第二电阻R2的第一端连接,第二电阻R2的第二端接地;第二比较器415的第一输入端与第一电阻R1的第二端连接,第二比较器415的第二输入端用于输入第二参考电压,第二比较器415的输出端用于将第二比较结果发送给模式选择单元420。
可选地,第二比较器415可以用于将,经过电阻分压后的输入电压与第二参考电压进行比较,得到第二比较结果,该第二比较结果也可以输入至模式选择单元420中。
可选地,模式选择单元420可以为数字模式选择器,数字模式选择器分别用于接收电压处理单元发送的第二比较结果、触发结果、第二时钟信号进行模式选择处理,并将选择的模式信息以及占空比发送给控制驱动单元。
可选地,模式选择单元420可以是一个四输入双输出的数字模式选择器,其中输入具体可以是上述第二比较结果(输入电压经过上述处理得到的结果)、触发结果(输出电 压经过上述处理得到的结果)以及第二时钟信号中的两种时钟信号(占空比为80%和42%的两个时钟信号)。
可选地,输出具体可以是将选择的模式信息(也即是具体的工作模式)以及占空比(占空比D,用具体是0-1之间的数字)发送给控制驱动单元。
可选地,模式选择单元420可以根据第二比较结果来初步确定工作模式,在第二比较器中,可以确定输入电压V IN和第二参考电压V REF的比值,其中该比值即为第二比较结果,模式选择单元420可以根据该第二比较结果的值来确定采用1/3降压模式还是1/2降压模式,例如当V REF/V IN小于0.29可以确定采用1/3降压模式;相应地,当V REF/V IN大于或者等于0.29可以确定采用1/2降压模式,该降压模式即为上述选择的模式信息,模式选择单元420可以将该模式发送给控制驱动单元430。
可选地,模式选择单元420还可以根据触发结果以及第二时钟信号得到占空比D,在工作的过程中可以实时向控制驱动单元430发送D的具体值。
可选地,控制驱动单元430可以根据D的具体值进行工作模式的切换,例如:当处于1/3降压模式时,若D持续一段时间内都大于第一阈值,那么将切换成1/2降压模式。同理,在1/2降压模式时,如果D持续一段时间内都小于第二阈值,那么将切换成1/3降压模式。
可选地,第一阈值和第二阈值的具体系数可以由上述第二时钟信号决定,例如当占空比为80%和42%时,第一阈值可以是0.8,第二阈值可以是0.42,具体可以是根据实际需求设置的值,并不以此为限。
下面来具体解释本公开实施例中提供的降压电路的另一具体结构连接关系。
图4为本公开实施例提供的降压电路的结构示意图二,请参照图4,开关组件为一个场效应管,或者,开关组件为多个场效应管串联组成的开关。
可选地,S1可以是用2个2.5V的PMOS管串联堆叠实现,S2、S3可以是用1个2.5V和1个1V的NMOS串联堆叠实现,S4、S5、S6可以是用1V的NMOS实现。
可选地,本公开的实施例中是以场效应管为例,在实际使用中,采用三极管、开关管或者其他任意类型的开关器件均可(例如:氮化镓、碳化硅等其它晶体管),并不以此为限。
可选地,降压电路10还可以包括:第三电容C3,第三电容C3的第一端连接电压输 出端200,第三电容C3的第二端接地。
可选地,第三电容C3可以是用于稳定输出电压的电容。
下面来具体解释本公开实施例中提供的降压电路在不同工作模式下的工作原理。
图5为本公开实施例提供的降压电路的工作示意图一,请参照图5,图5所示为电压转换比(输出电压比输入电压)至多为1/3时电路的工作情况,在该条件下,在Φ1(充电)时,开关组件S1、S4和S5打开,S2、S3和S6关断,第一电容C1和电感元件L串联充电,同时第二电容C2向电压输出端放电。在Φ2(放电)时,开关组件S1、S4和S5关断,S2、S3和S6打开,第一电容C1对第二电容C2充电,同时电感元件L向电压输出端放电。
通过计算可得,2个飞电容的电压为V C1=2V OUT,V C2=V OUT,输出电压V OUT=DV IN/(1+2D),电感电流I L=I OUT/(1+2D)。
其中,V C1为第一电容的电压,V C2为第二电容的电压,V IN为输入电压,V OUT为输出电压,I L为电感电流,I OUT为输出电流,D即为前述表示占空比。
该电路中,电感电流被大幅降低,例如,当D为0.5时,I L=0.5I OUT,电感电流减小为输出电流的一半,电感上的导通损耗减小为原来的25%。在该模式下,理论上最大的输出电压为V IN/3。
图6为本公开实施例提供的降压电路的工作示意图二,请参照图6,图6所示为电压转换比至多为1/2时电路的工作情况,在该条件下,开关组件S4和S5保持打开,S6保持关断。在Φ1时,开关组件S1打开,S2和S3关断,第一电容C1和电感元件L串联充电。在Φ2时,开关组件S1关断,S2和S3打开,第一电容C1对输出放电,同时电感元件L对输出放电。
通过计算可得,2个飞电容的电压为V C1=V C2=V OUT,输出电压V OUT=DV IN/(1+D),电感电流I L=I OUT/(1+D)。
可以得到,在该电路中,理论上最大的输出电压为V IN/2。
下面来具体解释本公开实施例中提供的电源管理装置的具体结构示意关系。
图7为本公开实施例提供的电源管理装置的结构示意图,请参照图7,电源管理装置包括降压电路10以及关联模块20。
降压电路10可以与至少一个关联模块20连接,其中,关联模块可以是设置于电源 电路中的相关处理模块,例如:锂离子电池中的相关模块,用于协助降压电路10实现电源管理装置的工作。
其中,电源管理装置具体可以是电池或者其他电源设备中的电源电路组成的装置结构。
上仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开实施例提供的降压电路及电源管理装置中,降压电路可以包括:电压输入端、电压输出端、降压模块、控制模块;降压模块包括:多个开关组件、第一电容、第二电容、电感元件;第一开关组件的第一端连接电压输入端,第一开关组件的第二端与第三开关组件的第一端连接,第三开关组件的第二端与第五开关组件的第一端连接,第五开关组件的第二端连接电压输出端;第二开关组件的第一端接地,第二开关组件的第二端与电感元件的第一端连接,电感元件的第二端连接电压输出端;第一电容的第一端与第一开关组件的第二端连接,第一电容的第二端与第二开关组件的第二端连接;第二电容的第一端与第三开关组件的第二端连接,第二电容的第二端分别与第四开关组件的第二端以及第六开关组件的第一端连接;第四开关组件的第一端接地,第六开关组件的第二端连接电压输出端;控制模块的输入端连接电压输出端,控制模块的输出端连接分别连接每个开关组件的控制端。其中,通过上述降压电路的电路结构,可以实现将电感电流大幅度降低,因此,在低电感电流的情况下,可以使用小体积的电感,相应可以提高电路的工作效率并减小整个电路系统的尺寸,降低了电路系统的复杂性,并可以在体积较小的可携带和可穿戴的电子设备上实现电源电路的降压处理。
另外,本公开实施例中提供的降压电路由于采用的是体积较小的电感,因此,电感电流纹波也较小;另外,由于其电路结构,导致在宽的VCR范围内也可以实现连续的高效率;而采用特定的飞电容的设置方式也可以不需要对飞电容的电压平衡处理。
此外,可以理解的是,本申请的降压电路及电源管理装置是可以重现的,并且可以用 在多种工业应用中。例如,本申请的降压电路及电源管理装置可以用于需要用模拟电路技术领域。

Claims (18)

  1. 一种降压电路,其特征在于,包括:电压输入端、电压输出端、降压模块、控制模块;所述降压模块包括:多个开关组件、第一电容、第二电容、电感元件;
    第一开关组件的第一端连接所述电压输入端,所述第一开关组件的第二端与第三开关组件的第一端连接,所述第三开关组件的第二端与第五开关组件的第一端连接,所述第五开关组件的第二端连接所述电压输出端;
    第二开关组件的第一端接地,所述第二开关组件的第二端与所述电感元件的第一端连接,所述电感元件的第二端连接所述电压输出端;
    所述第一电容的第一端与所述第一开关组件的第二端连接,所述第一电容的第二端与所述第二开关组件的第二端连接;
    所述第二电容的第一端与所述第三开关组件的第二端连接,所述第二电容的第二端分别与第四开关组件的第二端以及第六开关组件的第一端连接;
    所述第四开关组件的第一端接地,所述第六开关组件的第二端连接所述电压输出端;
    所述控制模块的输入端连接所述电压输出端,所述控制模块的输出端连接分别连接每个所述开关组件的控制端。
  2. 根据权利要求1所述的降压电路,其特征在于,所述控制模块包括:电压处理单元、模式选择单元、控制驱动单元;
    所述电压处理单元的输入端与所述第五开关组件的第二端以及所述电感元件的第二端连接,所述电压处理单元的输出端与所述模式选择单元的输入端连接,所述电压处理单元被配置成对电压信号进行预处理;
    所述模式选择单元的输出端与所述控制驱动单元连接,所述模式选择单元被配置成基于预处理后的电压信号确定目标控制驱动模式;
    所述控制驱动单元的输出端分别与每个所述开关组件连接,所述控制驱动单元被配置成基于所述目标控制驱动模式控制对应模式下的开关组件的开断。
  3. 根据权利要求2所述的降压电路,其特征在于,所述电压处理单元包括:误差放 大器、第一比较器、复位置位触发器;
    所述误差放大器的第一输入端连接所述电压输出端,所述误差放大器的第二输入端被配置成输入第一参考电压;所述误差放大器的输出端被配置成将误差放大结果发送给所述第一比较器的第一输入端;
    所述第一比较器的第二输入端被配置成输入斜波电压,所述第一比较器的输出端被配置成将第一比较结果发送给复位置位触发器的第一输入端;
    所述复位置位触发器的第二输入端被配置成输入第一时钟信号,所述复位置位触发器的输出端被配置成将触发结果发送给所述模式选择单元。
  4. 根据权利要求3所述的降压电路,其特征在于,所述误差放大器被配置成对从所述电压输出端输入的电压信号和所述第一参考电压进行差值比较,并将比较得到的差值电压按照预设的放大比例进行放大,得到所述误差放大结果,并将所述误差放大结果发送给所述第一比较器;
    所述第一比较器被配置成对从所述误差放大器输入的所述误差放大结果和所述斜波电压进行比较处理,得到所述第一比较结果,并将所述第一比较结果发送给所述复位置位触发器;
    所述复位置位触发器被配置成基于从所述第一比较器输入的第一比较结果和所述第一时钟信号进行触发处理,得到所述触发结果,并将所述触发结果发送给所述模式选择单元。
  5. 根据权利要求3或4所述的降压电路,其特征在于,所述电压处理单元还包括:斜波发生器;
    所述斜波发生器分别与所述第一比较器的第二输入端、复位置位触发器的第二输入端以及所述模式选择单元的输入端连接;
    所述斜波发生器被配置成为所述第一比较器提供斜波电压、为所述复位置位触发器提供第一时钟信号,为所述模式选择单元提供第二时钟信号。
  6. 根据权利要求3至5中任一项所述的降压电路,其特征在于,所述电压处理单元还包括:第二比较器、第一电阻、第二电阻;
    所述第一电阻的第一端与所述电压输入端连接,所述第一电阻的第二端与所述第 二电阻的第一端连接,所述第二电阻的第二端接地;
    所述第二比较器的第一输入端与所述第一电阻的第二端连接,所述第二比较器的第二输入端被配置成输入第二参考电压,所述第二比较器的输出端被配置成将第二比较结果发送给所述模式选择单元。
  7. 根据权利要求6所述的降压电路,其特征在于,所述第二比较器被配置为将经过电阻分压后的输入电压与所述第二参考电压进行比较,以得到所述第二比较结果,并将所述第二比较结果输入至所述模式选择单元中。
  8. 根据权利要求2至7中任一项所述的降压电路,其特征在于,所述模式选择单元为数字模式选择器,所述数字模式选择器分别被配置成接收所述电压处理单元发送的第二比较结果、触发结果、第二时钟信号进行模式选择处理,并将选择的模式信息以及占空比发送给所述控制驱动单元。
  9. 根据权利要求8所述的降压电路,其特征在于,所述模式选择单元为四输入双输出的数字模式选择器,所述四输入双输出的数字模式选择器的输入为所述第二比较结果、所述触发结果以及所述第二时钟信号中的两种时钟信号,其中,所述第二时钟信号中的两种时钟信号分别是占空比为80%和42%的时钟信号;所述四输入双输出的数字模式选择器的输出为将选择的模式信息以及占空比发送给所述控制驱动单元。
  10. 根据权利要求8或9所述的降压电路,其特征在于,所述模式选择单元被配置成根据所述第二比较结果来初步确定工作模式,并将确定的工作模式发送给所述控制驱动单元。
  11. 根据权利要求8至10中任一项所述的降压电路,其特征在于,所述模式选择单元被配置成根据所述触发结果以及所述第二时钟信号得到占空比,并且在工作的过程中实时向所述控制驱动单元发送所述占空比的具体值;
    所述控制驱动单元被配置成根据所述占空比的具体值进行工作模式的切换。
  12. 根据权利要求11所述的降压电路,其特征在于,所述控制驱动单元被配置成当处于1/3降压模式时,若所述占空比持续一段时间内都大于第一阈值,那么将切换成1/2降压模式,以及当处于所述1/2降压模式时,若所述占空比持续一段时间内都小于第二阈值,那么将切换成所述1/3降压模式;
    其中,所述第一阈值和所述第二阈值的具体系数由所述第二时钟信号决定。
  13. 根据权利要求1至12中任一项所述的降压电路,其特征在于,所述第一电容和所述第二电容均是设置在电路中的飞电容;以及所述电感元件是适用于微型电路的小体积电感。
  14. 根据权利要求1至13中任一项所述的降压电路,其特征在于,所述控制模块被配置成根据所述降压模块的输出电压进行闭环调节,从而根据调节的结果控制所述开关组件的连通或者关断。
  15. 根据权利要求1至14中任一项所述的降压电路,其特征在于,所述降压模块被配置成经过电感的充电过程及电感的放电过程得到输出电压,所述输出电压为输入电压经过降压之后得到的电压。
  16. 根据权利要求1至15中任一项所述的降压电路,其特征在于,所述开关组件为一个场效应管,或者,所述开关组件为多个场效应管串联组成的开关。
  17. 根据权利要求1至16中任一项所述的降压电路,其特征在于,所述降压电路还包括:第三电容,所述第三电容的第一端连接所述电压输出端,所述第三电容的第二端接地。
  18. 一种电源管理装置,其特征在于,所述电源管理装置包括根据权利要求1-17任一项所述的降压电路以及关联模块。
PCT/CN2022/070365 2021-12-01 2022-01-05 一种降压电路及电源管理装置 WO2023097866A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111450740.1 2021-12-01
CN202111450740.1A CN116207976A (zh) 2021-12-01 2021-12-01 一种降压电路及电源管理装置

Publications (1)

Publication Number Publication Date
WO2023097866A1 true WO2023097866A1 (zh) 2023-06-08

Family

ID=86517888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070365 WO2023097866A1 (zh) 2021-12-01 2022-01-05 一种降压电路及电源管理装置

Country Status (2)

Country Link
CN (1) CN116207976A (zh)
WO (1) WO2023097866A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117578882A (zh) * 2024-01-17 2024-02-20 合肥乘翎微电子有限公司 单模式双电流通路的降压-升压转换器的控制电路及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034298A (ja) * 2011-08-01 2013-02-14 Institute Of National Colleges Of Technology Japan Dc/dc変換器及び電源モジュール
US20170279354A1 (en) * 2016-03-22 2017-09-28 Texas Instruments Deutschland Gmbh Hybrid Capacitive-Inductive Voltage Converter
CN109412439A (zh) * 2017-08-18 2019-03-01 丰郅(上海)新能源科技有限公司 抑制开关切换引发振荡的飞跨电容多电平逆变系统及方法
CN109617148A (zh) * 2018-10-24 2019-04-12 华为技术有限公司 一种飞跨电容的充电方法及装置
US20210175805A1 (en) * 2019-12-05 2021-06-10 Dialog Semiconductor (Uk) Limited Regulation Loop Circuit
CN112994449A (zh) * 2021-02-26 2021-06-18 珠海澳大科技研究院 三态谐振开关电容功率变换器及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034298A (ja) * 2011-08-01 2013-02-14 Institute Of National Colleges Of Technology Japan Dc/dc変換器及び電源モジュール
US20170279354A1 (en) * 2016-03-22 2017-09-28 Texas Instruments Deutschland Gmbh Hybrid Capacitive-Inductive Voltage Converter
CN109412439A (zh) * 2017-08-18 2019-03-01 丰郅(上海)新能源科技有限公司 抑制开关切换引发振荡的飞跨电容多电平逆变系统及方法
CN109617148A (zh) * 2018-10-24 2019-04-12 华为技术有限公司 一种飞跨电容的充电方法及装置
US20210175805A1 (en) * 2019-12-05 2021-06-10 Dialog Semiconductor (Uk) Limited Regulation Loop Circuit
CN112994449A (zh) * 2021-02-26 2021-06-18 珠海澳大科技研究院 三态谐振开关电容功率变换器及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117578882A (zh) * 2024-01-17 2024-02-20 合肥乘翎微电子有限公司 单模式双电流通路的降压-升压转换器的控制电路及方法
CN117578882B (zh) * 2024-01-17 2024-04-05 合肥乘翎微电子有限公司 单模式双电流通路的降压-升压转换器的控制电路及方法

Also Published As

Publication number Publication date
CN116207976A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
US11736010B2 (en) Power converter with capacitive energy transfer and fast dynamic response
US10468965B2 (en) Multi-stage multilevel DC-DC step-down converter
US10680513B2 (en) Pump capacitor configuration for voltage multiplier
US11088616B2 (en) Isolated converter with switched capacitors
US10790742B1 (en) Multi-level power converter with improved transient load response
WO2019076280A1 (zh) 一种开关电容变换电路、充电控制系统及控制方法
US10243455B2 (en) Bidirectional DC-DC converter
US10312813B2 (en) Multi-phase converter
US20230231480A1 (en) Switched-capacitor direct current/direct current converter, switching-mode power supply, and control method
Biswas et al. GaN based switched capacitor three-level buck converter with cascaded synchronous bootstrap gate drive scheme
WO2023097866A1 (zh) 一种降压电路及电源管理装置
CN114421761A (zh) 一种带有飞跨电容的三电平变换器及控制方法
US20230299669A1 (en) Resonant switched capacitor direct current/direct current converter and power system
WO2023274236A1 (zh) 电压变换电路和电子设备
CN116317464A (zh) 一种具备飞跨电容电压均衡电路的三电平降压升压转换器
CN115842476A (zh) 一种基于开关电容的单电感直流功率变换器
CN107493022A (zh) 一种低电压高效电荷泵
CN113796006A (zh) 驱动装置、芯片、拍摄装置和无人机
US11990831B2 (en) Hybrid buck boost converter with reduced inductor current
US11996764B2 (en) Power converter with asymmetric switch levels
US20230155493A1 (en) Cascade switched capacitor converter
CN113014093B (zh) 一种两相位dcdc转换器
US20230253883A1 (en) Hybrid Buck-Boost Power Converter
CN116418224A (zh) 直流转换电路、控制方法及电子设备
CN114244101A (zh) 一种开关电容谐振式直流转换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899692

Country of ref document: EP

Kind code of ref document: A1