WO2023097614A1 - 电池与电子装置 - Google Patents

电池与电子装置 Download PDF

Info

Publication number
WO2023097614A1
WO2023097614A1 PCT/CN2021/135125 CN2021135125W WO2023097614A1 WO 2023097614 A1 WO2023097614 A1 WO 2023097614A1 CN 2021135125 W CN2021135125 W CN 2021135125W WO 2023097614 A1 WO2023097614 A1 WO 2023097614A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall unit
wall
distance
unit
battery
Prior art date
Application number
PCT/CN2021/135125
Other languages
English (en)
French (fr)
Inventor
袁尹明月
闫东阳
曾巧
Original Assignee
东莞新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞新能源科技有限公司 filed Critical 东莞新能源科技有限公司
Priority to EP21966046.1A priority Critical patent/EP4394992A1/en
Priority to CN202180031546.1A priority patent/CN115552701A/zh
Priority to PCT/CN2021/135125 priority patent/WO2023097614A1/zh
Publication of WO2023097614A1 publication Critical patent/WO2023097614A1/zh
Priority to US18/622,406 priority patent/US20240243396A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/025Electrodes composed of, or comprising, active material with shapes other than plane or cylindrical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present application relate to the technical field of batteries, and in particular, to a battery and an electronic device.
  • a battery is a device that converts external energy into electrical energy and stores it inside to power external devices (such as portable electronic devices) when needed.
  • batteries are widely used in electronic devices such as mobile phones, tablets, notebook computers, and electric vehicles.
  • the current batteries are mostly in a square shape or a round shape; correspondingly, the electronic device is provided with a square or round battery compartment to accommodate the above-mentioned batteries.
  • the battery compartment can be in an L shape, and the battery compartment includes a first cavity and a second cavity that are bent relative to each other; At this time, although square or round batteries can be accommodated in the battery compartment by adjusting the size and specification, they can only be accommodated in one of the first cavity and the second cavity, resulting in the utilization of space in the battery compartment. on waste.
  • the embodiment of the present application aims to provide a battery and an electronic device to improve the current situation that the battery cannot make good use of the L-shaped battery compartment in the electronic device and improve safety performance.
  • the embodiment of the present application adopts the following technical solutions to solve its technical problems, which specifically include:
  • a battery includes a shell, an electrode assembly and tabs.
  • the housing includes a first end wall, a second end wall and a connecting wall. Both the first end wall and the second end wall are L-shaped and arranged at intervals along the thickness direction of the battery.
  • the connecting wall extends from the edge of the first end wall to the second end wall and encloses an L-shaped storage chamber; the first end wall is set as one end of the storage cavity, and the second end wall is set as the other end of the storage cavity.
  • the connecting wall includes a plurality of wall units, and the wall units are arranged in sequence along the edge contour of the first end wall.
  • the electrode assembly is L-shaped and includes an anode pole piece, a cathode pole piece and a separator.
  • the anode pole piece and the cathode pole piece are stacked alternately along the thickness direction.
  • the edge of the anode pole piece surrounds the projection of the cathode pole piece falling on the anode pole piece.
  • An isolation film is provided between the sheet and the cathode sheet.
  • the predetermined wall unit is included in the plurality of wall units, there is a first distance between the side of the anode pole piece that is opposite to the predetermined side wall unit and the predetermined wall unit that is oppositely arranged, and the anode pole piece
  • the distance from the side edge opposite to the preset wall unit beyond the cathode plate is the second distance, and the ratio of the first distance to the second distance corresponding to the same preset side wall unit is between 1/5 and 1/2 Between, wherein, the second distance is between 0.7 mm and 1.5 mm.
  • the casing of the battery provided in the embodiment of the present application is L-shaped as a whole, so when it is applied to an electronic device with an L-shaped battery compartment, the two parts of the battery provided in the embodiment of the present application that are bent relative to each other can be filled in the L-shaped compartment respectively. Inside the two cavities of the battery compartment to make better use of the L-shaped battery compartment. That is, the battery provided by the embodiment of the present application can improve the current situation that the battery cannot make good use of the L-shaped battery compartment in the above-mentioned electronic device.
  • the connecting wall includes a first wall unit, a second wall unit, a third wall unit, a fourth wall unit, a fifth wall unit and a sixth wall unit.
  • the first wall unit, the second wall unit and the third wall unit all extend along the first direction, and the first wall unit, the second wall unit and the third wall unit are sequentially arranged at intervals along the second direction , the length of the third wall unit extending in the first direction is greater than the length of the first wall unit and the second wall unit extending in the first direction, and the tab protrudes from the first wall unit, wherein the second wall unit Both the first direction and the second direction are perpendicular to the thickness direction, and the first direction intersects with the second direction.
  • the fourth wall unit, the fifth wall unit and the sixth wall unit all extend along the second direction, and the fourth wall unit, the fifth wall unit and the sixth wall unit are sequentially arranged at intervals along the first direction , the length of the sixth wall unit in the second direction is greater than the lengths of the fourth wall unit and the fifth wall unit extending in the second direction.
  • At least one of the second wall unit, the third wall unit, the fourth wall unit, the fifth wall unit or the sixth wall unit is a preset wall unit.
  • the casing further includes a sealing portion extending from the connecting wall portion, at least part of the sealing portion is bent to extend toward the first end wall, and the sealing portion includes a second side wall unit and a third side wall unit.
  • the second side wall unit extends from the second wall unit and extends toward the first end wall.
  • the third side wall unit extends from the third wall unit and extends toward the first end wall.
  • the anode pole piece has a second side disposed opposite to the second wall unit, the distance between the second side and the outer surface of the second side wall unit is G 2 , and the second side exceeds The distance of the cathode pole piece is D 2 , 1/3 ⁇ G 2 /D 2 ⁇ 4/5, wherein, 0.7mm ⁇ D 2 ⁇ 1.5mm; and/or, the anode pole piece has a position opposite to the third wall unit
  • the third side, the distance between the third side and the outer surface of the third side wall unit is G 3
  • the distance between the third side and the cathode plate is D 3 , 1/3 ⁇ G 3 /D 3 ⁇ 4/5, wherein, 0.7mm ⁇ D 3 ⁇ 1.5mm.
  • the sealing portion further includes a fourth side wall unit and a sixth side wall unit.
  • the fourth side wall unit extends from the fourth wall unit and extends toward the first end wall; the sixth side wall unit extends from the sixth wall unit and extends toward the first end wall.
  • the anode pole piece has a fourth side disposed opposite to the fourth wall unit, the distance between the fourth side and the outer surface of the fourth side wall unit is G 4 , and the fourth side exceeds The distance of the cathode pole piece is D 4 , 1/3 ⁇ G 4 /D 4 ⁇ 4/5, wherein, 0.7mm ⁇ D 4 ⁇ 1.5mm; and/or, the anode pole piece has a position opposite to the sixth wall unit
  • the sixth side, the distance between the sixth side and the outer surface of the sixth side wall unit is G 6
  • the distance between the sixth side and the cathode plate is D 6 , 1/3 ⁇ G 6 /D 6 ⁇ 4/5, wherein, 0.7mm ⁇ D 6 ⁇ 1.5mm.
  • the sealing part further includes a first arc-shaped side wall unit, the transition between the second side wall unit and the fourth side wall unit is through the first arc-shaped side wall unit, and the radius of the first arc-shaped side wall unit R 1 satisfies: 0.85(G 2 +D 2 ) ⁇ R 1 ⁇ 1.0(G 2 +D 2 ), transition between the second side and the fourth side through the first arc; and/or, the sealing part It also includes a second arc-shaped side wall unit, the third side wall unit and the fourth side wall unit transition through the second arc-shaped side wall unit, and the radius R of the second arc-shaped side wall unit satisfies: 0.85 (G 3 +D 3 ) ⁇ R 2 ⁇ 1.0(G 3 +D 3 ), the anode pole piece has a third side opposite to the third wall unit, and a second arc passes between the third side and the fourth side Shape transition; and/or, the sealing part also includes a third arc-shaped side wall unit, the transition between the
  • the first distance between the second side and the second wall unit is L 2
  • the thickness T of the connecting wall satisfies: 1/7 ⁇ T/L 2 ⁇ 1/3; and/or , 1/25 ⁇ T/G 2 ⁇ 3/10.
  • the portion of the sealing portion that is bent to extend toward the first end wall is adhesively fixed to the connecting wall portion.
  • the embodiment of the present application also adopts the following technical solutions to solve its technical problems, which specifically include:
  • An electronic device includes the above-mentioned battery.
  • Fig. 1 is the front view of the battery provided by one of the embodiments of the present application.
  • Figure 2 is a bottom view of the battery in Figure 1;
  • Fig. 3 is a schematic cutaway view of the battery along line A-A in Fig. 1;
  • Fig. 4 is a schematic cutaway view of the battery in Fig. 1 along the line B-B;
  • Figure 5 is a schematic cutaway view of the battery in Figure 2 along the C-C line;
  • Fig. 6 is a front view of a battery provided by another embodiment of the present application.
  • Fig. 7 is a front view of a battery provided by another embodiment of the present application.
  • Fig. 8 is a front view of a battery provided in another embodiment of the present application.
  • FIG. 9 is a schematic diagram of an electronic device provided by one embodiment of the present application.
  • electrode assembly 210, anode pole piece; 220, cathode pole piece; 230, separator; 211, first side; 212, second side; 213, third side; 214, fourth side; 215, the fifth side; 216, the sixth side; 217, the seventh side; 218a, the first arc portion; 218b, the second arc portion; 218c, the third arc portion; 231, the diaphragm unit;
  • the "installation” includes welding, screwing, clamping, gluing, etc. to fix or restrict a certain element or device to a specific position or place, and the said element or device can be held in a specific position or place. It can also be movable within a limited range, and the element or device can be disassembled or not disassembled after being fixed or restricted to a specific position or place, which is not limited in this embodiment of the present application.
  • the battery 1 includes a casing 100 , an electrode assembly 200 and tabs 300 .
  • the housing 100 is provided with a housing chamber 101 , and the electrode assembly 200 is housed in the housing chamber 101 ;
  • the specific structures of the casing 100 , the electrode assembly 200 and the tab 300 will be described in sequence.
  • the housing 100 includes a first end wall 110 , a second end wall 120 and a connecting wall portion 130 .
  • the first end wall 110 and the second end wall 120 are arranged in an L shape, and they are arranged opposite to each other along the thickness direction Z of the battery 1 as shown.
  • the connecting wall portion 130 extends from the edge of the first end wall 110 to the second end wall 120, and the connecting wall portion 130 itself encloses an L-shaped receiving chamber 101; At one end, the above-mentioned second end wall 120 is configured as the other end of the receiving cavity 101 .
  • the connecting wall portion 130 includes a plurality of wall units 139 , and each wall unit 139 is sequentially arranged along the edge contour of the first end wall 110 .
  • the plurality of wall units 139 specifically include a first wall unit 131, a second wall unit 132, and a third wall unit 133 all extending along the first direction X shown in the drawing, And the fourth wall unit 134 , the fifth wall unit 135 and the sixth wall unit 136 all extend along the second direction Y shown in the figure.
  • the first wall unit 131 is a wall unit from which the tab 300 protrudes.
  • the first wall unit 131 , the second wall unit 132 and the third wall unit 133 are sequentially arranged at intervals along the second direction Y shown in the figure, and the length of the third wall unit 133 extending in the first direction X is longer than that of the second wall unit 133 .
  • the length of the first wall unit 131 and the second wall unit 132 extending in the first direction X; that is to say, viewed along the thickness direction Z, the third wall unit 133 defines the long side or wide side of the battery 1 one of.
  • the fourth wall unit 134 , the fifth wall unit 135 and the sixth wall unit 136 are sequentially arranged at intervals along the first direction X; wherein the fourth wall unit 134 is located between the second wall unit 132 and the sixth wall unit 132 .
  • the fifth wall unit 135 is located between the first wall unit 131 and the second wall unit 132
  • the sixth wall unit 136 is located between the first wall unit 131 and the third wall unit.
  • the length of the sixth wall unit 136 extending in the second direction Y is greater than the length of the fourth wall unit 134 and the fifth wall unit 135 extending in the second direction Y; that is to say, viewed along the thickness direction Z, the sixth The wall unit 136 defines the other of the long side or the wide side of the battery 1 .
  • any two of the first direction X, the second direction Y described in this embodiment and the above-mentioned thickness direction Z are perpendicular to each other; but the application is not limited thereto, as long as the first direction Both the X and the second direction Y are perpendicular to the thickness direction Z, and the first direction X and the second direction Y only need to intersect each other.
  • the connecting wall portion 130 in this embodiment further includes an arc-shaped seventh wall unit 137 .
  • the seventh wall unit 137 is connected between the second wall unit 132 and the fifth wall unit 135 , and is concave toward the receiving cavity 101 .
  • the arrangement of the seventh wall unit 137 can facilitate the positioning and installation of the battery 1 in the electronic device.
  • the seventh wall unit 137 is concave and arc-shaped, which can avoid the right-angle transition between the second wall unit 132 and the fifth wall unit 135, thereby improving the tensile strength of the battery 1 there to a certain extent. performance.
  • the second wall unit 132 and the fifth wall unit 135 can be connected through a right-angle transition, compared with this embodiment, by setting the seventh wall unit 137, the battery 1
  • the seventh wall unit 137 is connected to the second wall unit 132 (and the fifth wall unit 135) through an obtuse angle, which also avoids the sharp right-angle transition with the second wall unit 132 to cause this point. Disadvantages of greater stress.
  • the seventh wall unit 137 can also be omitted.
  • FIG. 5 shows a schematic cross-sectional view of the battery 1 in FIG. 2 along the C-C line.
  • the battery 1 is a pouch battery; correspondingly, the casing 100 also includes a sealing portion 140 , the sealing part 140 is a part where the case 100 houses the electrode assembly 200 and seals it.
  • the sealing portion 140 extends from an end of the connecting wall portion 130 close to the second end wall 120, and is at least partially bent toward the first end wall 110, so as to reduce the overall occupied volume of the battery 1 on the one hand, On the other hand, it is superimposed with the connecting wall portion 130 to jointly form the side wall of the battery 1, thereby reducing the risk of the battery 1 being pierced on the side wall; it can be understood that in other embodiments of the present application, the sealing portion 140 can also be
  • the connecting wall portion 130 extends from a central region and is at least partially bent toward the first end wall 110 .
  • the sealing part 140 includes a first sidewall unit 141 , a second sidewall unit 142 , a third sidewall unit 143 , a fourth sidewall unit 144 , a fifth sidewall unit 145 and a sixth sidewall unit 146 .
  • the first side wall unit 141 extends from the outer surface of the first wall unit 131 away from the receiving cavity 101 , and holds the tab 300 .
  • the second side wall unit 142 extends from the outer surface of the second wall unit 132 and extends toward the first end wall 110; the third side wall unit 143 extends from the outer surface of the third wall unit 133 and extends toward the first end wall 110.
  • An end wall 110 extends; the fourth side wall unit 144 extends from the outer surface of the fourth wall unit 134 and extends toward the first end wall 110; the fifth side wall unit 145 extends from the outer surface of the fifth wall unit 135
  • the sixth side wall unit 146 extends from the outer surface of the sixth wall unit 136 and extends towards the first end wall 110 . That is, the parts of the sealing part 140 except the first side wall unit 141 extend from the connecting wall part 130 and then bend toward the first end wall 110 . In this embodiment, the portion of the sealing portion 140 that is bent to extend toward the first end wall 110 is adhesively fixed to the connecting wall portion 130 to form a side wall of the battery 1 together with the connecting wall portion 130 .
  • the sealing part 140 can be by dispensing, or by spraying glue, or sticking adhesive tape on the sealing part 140 and/or the connecting wall part 130 In order to make the two fixed, it is not detailed here.
  • the sealing portion 140 can be single-layered as shown in FIG. 3 , or folded into double layers or other layers at the end away from the second end wall 120 , and bonded to the connecting wall portion 130 .
  • the connecting wall portion 120 does not always extend along the thickness direction Z shown in the figure, please refer to FIG. 3 , it is continuously bent at an end close to the second end wall 120 .
  • the casing 100 includes two composite sheets, and the composite sheet specifically includes a polymer material layer, a metal material layer, and a protective layer stacked in sequence; for the convenience of description, the two composite sheets will be described below They are respectively defined as the first composite sheet and the second composite sheet.
  • the middle area of the first composite sheet is recessed to form a cavity portion with a concave cavity
  • the edge area of the first composite sheet is arranged around the concave cavity to form a flange portion.
  • the cavity portion of the first composite sheet is formed by stamping.
  • the edge of the second composite sheet is bonded to the flange, and is sealed and fixed by heat fusion to form a sealing area.
  • a part of the sealing area is bent toward the cavity portion, thereby obtaining the above-mentioned casing 100 .
  • the first end wall 110 includes the bottom wall of the cavity in the first composite sheet; the second end wall 120 includes a part opposite to the bottom wall in the second composite sheet; the connecting wall 130 includes The side wall of the cavity in the first composite sheet, the part of the second composite sheet that is not thermally fused and close to the seal area, and the part of the side wall in the seal area that is close to the cavity, for example, one end of the seal area near the cavity
  • the 2mm area range; the seal part includes other areas within the seal area.
  • the metal material layer includes aluminum foil or steel foil
  • the protective layer can include polyethylene terephthalate
  • the polymer material layer can include polyethylene terephthalate. and/or polypropylene.
  • the present application does not specifically limit the structure of the composite sheet.
  • the casing 100 in this embodiment is composed of two composite sheets, in other embodiments, the casing 100 may also be composed of a single composite sheet.
  • FIG. 6 shows a schematic diagram of a battery 1b provided in another embodiment of the present application.
  • the first composite sheet and the second composite sheet of the casing of the battery 1b are It is bent and formed from the same sheet, and it is specifically connected integrally at the second end wall and the third wall unit 133 instead of being fixed by hot melting of the sheet; that is, the shell is not at the third wall unit 133 There is a sealing department.
  • FIG. 7 shows a schematic diagram of a battery 1c provided in another embodiment of the present application.
  • the first composite sheet and the second composite sheet of the casing of the battery 1c are It is formed by bending the same sheet, specifically, the second end wall is integrally connected with the fourth wall unit, instead of being fixed by hot melting of the sheet, that is, there is no seal at the fourth wall unit .
  • FIG. 8 shows a schematic diagram of a battery 1d provided in another embodiment of the present application.
  • the first composite sheet and the second composite sheet of the battery 1d casing are It is formed by bending the same sheet, specifically, the second end wall is integrally connected with the sixth wall unit, instead of being fixed by hot melting of the sheet, that is, there is no seal at the sixth wall unit .
  • the electrode assembly 200 includes an anode sheet 210 , a cathode sheet 220 and a separator 230 .
  • the anode pole pieces 210 and the cathode pole pieces 220 are L-shaped; the electrode assembly 200 includes the anode pole pieces 210 and the cathode pole pieces 220 , and the anode pole pieces 210 and the cathode pole pieces 220 are alternately stacked along the thickness direction Z.
  • the size of the anode pole piece 210 is slightly larger than the size of the cathode pole piece 220, and the edge profile of the anode pole piece 210 exceeds the edge contour of the adjacent cathode pole piece 220; that is, in the stacked state, the cathode pole piece 220 falls on the anode pole piece
  • the projection on 210 is surrounded by the anode pole piece 210 to reduce the risk of lithium precipitation.
  • the above-mentioned separator 230 is provided between the adjacent anode pole piece 210 and the cathode pole piece 220 .
  • the electrode assembly 200 includes a plurality of anode pole pieces 210 and a plurality of cathode pole pieces 220, and the separator 230 is bent in a continuous Z shape, and forms a plurality of separators arranged at intervals along the thickness direction Z in the figure.
  • Units 231 each diaphragm unit 231 separates adjacent anode pole pieces 210 from cathode pole pieces 220 .
  • the separator 230 may not be in a continuous bending shape, but in a flat sheet shape; There is an isolation film 230 .
  • the anode sheet 210 includes a first side 211, a second side 212, a third side 213, a fourth side 214, a fifth side 215, a sixth side 216, and a seventh side 217, each of which is The sides correspond to the first wall unit 131, the second wall unit 132, the third wall unit 133, the fourth wall unit 134, the fifth wall unit 135, the sixth wall unit 136 and the seventh wall unit in sequence.
  • the seventh side 217 follows the above-mentioned seventh wall unit 137, and is recessed relative to the adjacent second side 212 and fifth side 215; in this embodiment, the seventh side 217 is concave and arc-shaped shape.
  • the setting of the seventh side can improve the tensile and bending properties of the anode electrode piece 210 .
  • the tab 300 has a flat rectangular shape as a whole. One end of the tab 300 is connected to the electrode assembly 200 , and the other end extends out of the shell through the first wall unit 131 Body 100 outside.
  • the battery 1 includes two tabs 300, the two tabs 300 are respectively a first tab 300a and a second tab 300b; wherein the first tab 300a is respectively connected to each anode tab 210, and the second tab 300b Then it is connected with each cathode pole piece 220 .
  • the first tab 300a includes a first conductive portion and a second conductive portion.
  • the first conductive portion includes a plurality of first conductive sheets, which are formed by extending from the edge of the anode sheet 210; each first conductive sheet is stacked and fixedly connected by welding to form the first conductive sheet. department.
  • the first end of the second conductive part is connected to the first conductive part, and the second end extends out of the housing 100; one end.
  • the second tab 300b includes a third conductive portion and a fourth conductive portion.
  • the third conductive portion includes a plurality of second conductive sheets, which are formed by extending from the edge of the cathode electrode sheet 220; each second conductive sheet is stacked and fixedly connected by welding to form the third conductive sheet. department.
  • the first end of the fourth conductive part is connected to the third conductive part, and the second end extends out of the housing 100; one end.
  • the electrode assembly 200 may be broken in a certain direction under a sudden impact. part, the two parts will reversely move away from the remaining impact energy and press the side wall of the casing 100 outward, thereby piercing the casing 100; or causing a risk of short circuit due to the puncture of the diaphragm. Therefore, battery manufacturers will conduct a crash test on the battery before leaving the factory, which is usually called impact test in the industry.
  • the impact test includes a fracture test simulating two environments in which the electrode assembly 200 is broken into two parts in the first direction X and broken into two parts along the second direction Y.
  • the test method specifically includes the following steps:
  • S1 Place the round rods for testing. Specifically, place a round bar at a predetermined height above the battery 1 and arrange it to extend along the first direction X, while ensuring that the round bar is positioned at the second wall unit 132 when viewed along the thickness direction. and the third wall unit 133 .
  • S3 Repeat the above steps S1-S2 to observe whether the battery 1 passes the test.
  • the condition of passing the test is that the case 100 of the battery 1 is not pierced and the electrode assembly 200 of the battery 1 is not short-circuited after repeating the above steps S1-S2 for a set number of times. That is to say, if the case of the battery 1 has been punctured or the electrode assembly 200 is short-circuited before the above steps are repeated for a set number of times, that is, the test fails, and the test should be stopped immediately.
  • step S4 Using the above step S3 to test 20 batteries, and record the number of batteries that passed the test.
  • the distance between any one of the above-mentioned first to sixth sides and the outer surface of the opposite wall unit is defined as a first distance L n (n ⁇ 1).
  • the distance by which any one of the above-mentioned first to sixth sides exceeds the cathode sheet is defined as a second distance D n (n ⁇ 1).
  • the distance between any one of the above-mentioned first to sixth sides and the outer surface of the opposite side wall unit is defined as a third distance G n (n ⁇ 1).
  • the measurement method of the first distance L n , the second distance D n and the third distance G n in the experiment it can take a CT image, measure it in the CT image, and convert it into an actual size.
  • the inventor first conducted tests on different combinations between the first distance L2 and the second distance D2 , and observed the test results; wherein, the first distance L2 is the distance between the second side 212 and the second wall unit 132. The distance between the surfaces, the second distance D 2 is the distance that the second side 212 exceeds the cathode sheet 220 .
  • the first distance L3 is consistent with the first distance L2
  • the second distance D3 is consistent with the second distance D2 ; wherein, the first distance L3 is the distance between the third side 213 and the outer surface of the third wall unit 133 , and the second distance D 3 is the distance from the third side 213 beyond the cathode sheet 220 .
  • Table 1 shows the effects of different combinations of the first distance L 2 and the second distance D 2 and different combinations of the first distance L 3 and the second distance D 3 on the anti-collision performance of the battery. From the data in Table 1 combined with the experimental method of controlling variables, it can be seen that if the factors such as the second distance D2 and the second distance D3 are regarded as fixed value observations, the factors such as the second distance D2 and the second distance D3 are regarded as As an irrelevant variable, the first distance L 2 and the first distance L 3 are regarded as independent variables; at the same time combined with different group observations, when the ratio between the first distance L 2 and the second distance D 2 is between 1/ When between 5 and 1/2, the number of batteries 1 passing the test is obviously more; that is, the anti-collision performance of battery 1 is better at this time.
  • the electrode assembly 200 when L 2 /D 2 ⁇ 1/5, after the test rod is dropped on the battery 1, the electrode assembly 200 will at least partly be broken into two parts facing each other along the second direction Y.
  • the two directions Y move backwards and pierce the second wall unit 132 and the third wall unit 133 in a short time.
  • the electrode assembly 200 is at least partially broken into two parts, and the two parts move backward along the second direction Y, due to L 2 (or L 3 ) is relatively large, and its probability of piercing the casing 100 is relatively small; however, the process time for the above two parts to move back to contact with the corresponding wall unit is relatively long, and each anode electrode piece 210 and the cathode electrode piece During this process, the sheet 220 may cause partial wrinkling due to relative movement, and pierce the separator 230 , thereby causing a short circuit of the battery 1 .
  • 1/5 ⁇ L 2 /D 2 ⁇ 1/2 the probability of the occurrence of the above two situations is at the bottom, so the anti-collision performance of the battery 1 configured in this way is better.
  • the ratio between the first distance L2 and the second distance D2 is regarded as a fixed value observation, and the second distance D2 is regarded as an independent variable, then when the dimension between the second distance D2 is between 0.7mm When the thickness is between ⁇ 1.5 mm, the number of batteries 1 that pass the test is obviously more; that is, the anti-collision performance of the battery 1 is better at this time.
  • the time difference between the anode pole piece 210 and the cathode pole piece 220 contacting the second wall unit 132 (or the third wall unit 133) is extremely short, which means that the second wall
  • the outer unit 132 (or the third wall unit 133 ) is subjected to the impact force of the anode pole piece 210 and the cathode pole piece 220 substantially at the same time, and the risk of being punctured is high, so the number of batteries passing the test is small.
  • the distance difference between the edge of the anode pole piece 210 and the cathode pole piece 220 is relatively large; that is to say, before the cathode pole piece 220 contacts with the second wall unit 132 (or the third wall unit 133) , the movement time of the cathode pole piece 220 is longer, and this increases the risk of the anode pole piece 210 and the cathode pole piece 220 being wrinkled and piercing the separator 230, thereby causing a short circuit, so the number of batteries 1 passing the test is also less.
  • the time difference between the anode pole piece 210 and the cathode pole piece 220 contacting the second wall unit 132 (or the third wall unit 133) is longer, and at the same time it can To some extent, the process time for moving the cathode tab 220 to the second wall unit 132 (or the third wall unit 133 ) is shorter; therefore, the anti-collision performance of the battery 1 configured in this way is better.
  • the anti-collision performance of the battery 1 is excellent.
  • this embodiment is to make the parameters of the part of the battery 1 shown in FIG. Proportional range setting, so as to play a better effect. Based on this, it is easy to understand that, in some other embodiments of the present application, one side of the above-mentioned part along the second direction Y may also be arranged according to the above-mentioned size ratio range.
  • the electrode assembly 200 also has the risk of being broken into two parts along the first direction X shown in FIG.
  • the relationship between the first distance L 4 and the second distance D 4 and the relationship between the first distance L 6 and the second distance D 6 are also set with reference to the above-mentioned size ranges and numerical ratios.
  • the first spacing L4 is the distance between the fourth side 214 and the outer surface of the fourth wall unit 134
  • the second spacing D4 is the distance that the fourth side 214 exceeds the cathode pole piece 220
  • the first spacing L 6 is the distance between the sixth side 216 and the outer surface of the sixth wall unit 136
  • the sixth distance D 6 is the distance from the sixth side 216 beyond the cathode sheet 220
  • the second distance D4 is between 0.7 mm and 1.5 mm
  • the ratio of the first distance L4 to the second distance D4 is between 1/5 and 1/2
  • the second spacing D 6 is between 0.7mm ⁇ 1.5mm
  • the ratio of the first spacing L 6 to the second spacing D 6 is between 1/5 ⁇ 1/2.
  • the corresponding sides of the first wall unit 131 and the fifth wall unit 135 and the anode sheet 210 can also satisfy the above relationship.
  • the connecting wall 130 includes at least one preset wall unit, and the preset wall unit satisfies: the first distance L′ and the second distance corresponding to the same preset wall unit
  • the ratio of D′ is between 1/5 ⁇ 1/2, and the second distance is between 0.7 mm ⁇ 1.5 mm; thus, the battery 1 can obtain a better anti-collision effect.
  • the "preset wall unit” described in this application document is a certain wall unit among the wall units in the connecting wall 130, and the "connecting wall part includes at least one preset wall unit” described in this application document.
  • Setting up a wall unit means that one or more of the wall units connected to the wall 130 are preset wall units; in this application, the above-mentioned first wall unit 131, second wall unit 132, second wall unit Any one of the three wall units 133, the fourth wall unit 134, the fifth wall unit 135, and the sixth wall unit 136 can be the preset wall unit; When all are the above-mentioned preset wall units, the anti-collision effect of the battery 1 is the best.
  • the "first distance” mentioned in this application document is the distance between the side of the anode pole piece that is opposite to the preset wall unit and the preset wall unit; for example, when the second wall unit is the preset wall unit When a wall unit is provided, the first distance corresponding to the preset wall unit is the above-mentioned first distance L 2 ; for another example, when the third wall unit 133 is a preset wall unit, the preset wall unit The corresponding first distance is the above-mentioned first distance L 3 .
  • the "second distance” mentioned in this application document is the distance that the side of the anode pole piece opposite to the preset wall unit exceeds the cathode pole piece; for example, when the second wall unit is a preset wall unit , the second distance corresponding to the preset wall unit is the above-mentioned second distance D 2 ; for another example, when the third wall unit 133 is a preset wall unit, the second distance corresponding to the preset wall unit The distance is the above-mentioned second distance D 3 .
  • the "first distance and second distance corresponding to the same preset wall unit” mentioned in this application document refers to the distance between the anode pole piece 210 and a certain preset wall unit.
  • the first distance and the second distance corresponding to the sides are the above-mentioned first distance L2 and the second distance D2 ; for another example, when the second wall unit 132 and the third wall unit 133 are both When a wall unit is provided, the first distance and the second distance corresponding to the same preset wall unit 132 are: the above-mentioned matched first distance L 2 and the second distance D 3 , and the above-mentioned matched first distance The distance L 3 and the second distance D 3 .
  • the thickness T of the casing 100 at the connecting wall portion 130 and the above-mentioned first distance L' satisfies 1/7 ⁇ T/L' ⁇ 1/3 ; wherein, L' can be any one of L 1 , L 3 , L 4 , L 5 and L 6 .
  • L 1 is the distance between the first side 211 and the outer surface of the first wall unit 131
  • L 5 is the distance between the fifth side 215 and the outer surface of the fifth wall unit 135 .
  • the connecting wall portion 130 and the sealing portion 140 covering it together constitute the side wall of the battery 1 ; that is to say, the sealing portion 140 will participate in the protection of the electrode assembly 200 . Therefore, the inventor next focuses on the third distance Gn (n ⁇ 2) between the side of the anode pole piece 210 and the outer surface of the corresponding side wall unit in the sealing part 140, and the above-mentioned second distance Dn different combinations were tested.
  • the distance between the second side 212 and the outer surface of the second side wall unit 142 is the third distance G 2
  • the distance between the third side 213 and the outer surface of the third side wall unit 143 is the third distance G 3.
  • the distance between the fourth side 214 and the outer surface of the fourth side wall unit 144 is the fourth distance G 4
  • the distance between the fifth side 215 and the outer surface of the fifth side wall unit 145 is the fifth distance G 5
  • the distance between the sixth side 216 and the outer surface of the sixth sidewall unit 146 is the third distance G 6 .
  • Table 2 shows the effects of different combinations of the third distance G2 and the second distance D2 , and different combinations of the third distance G3 and the second distance D3 on the anti-collision performance of the battery. From the data in Table 2 combined with the experimental method of controlling variables, it can be seen that if the second distance D2 and the second distance D3 are regarded as fixed value observations, the factors such as the second distance D2 and the second distance D3 are regarded as irrelevant variable, the third distance G 2 and the third distance G 3 are regarded as independent variables; at the same time combined with different group observations, when the ratio between the third distance G 2 and the second distance D 2 is between 1/3 ⁇ Between 4/5, the number of batteries 1 passing the test is obviously more; that is, the anti-collision performance of battery 1 is better at this time.
  • the electrode assembly 200 when G 2 /D 2 ⁇ 1/3, after the test rod is dropped on the battery 1, the electrode assembly 200 will at least partially break into two parts that are opposite along the second direction Y, and the two parts are along the second direction Y.
  • the two directions Y move backwards and pierce the second side wall unit 142 and the third side wall unit 143 within a short time.
  • the ratio between the third distance G2 and the second distance D2 is regarded as a fixed value observation, and the second distance D2 is regarded as an independent variable, then when the size between the second distance D2 is between 0.7mm When the thickness is between ⁇ 1.5 mm, the number of batteries 1 that pass the test is obviously more; that is, the anti-collision performance of the battery 1 is better at this time.
  • the time difference between the anode pole piece 210 and the cathode pole piece 220 contacting the second side wall unit 142 (or the third side wall unit 143) is extremely short, which means that the second side The wall unit 142 (or the third side wall unit 143 ) is impacted by the anode pole piece 210 and the cathode pole piece 220 substantially at the same time, and the risk of being punctured is high, so the number of batteries passing the test is small.
  • the distance difference between the edge of the anode pole piece 210 and the cathode pole piece 220 is relatively large; that is to say, before the cathode pole piece 220 is in contact with the second side wall unit 142 (or the third side wall unit 143) , the movement time of the cathode pole piece 220 is longer, and this increases the risk of the anode pole piece 210 and the cathode pole piece 220 being wrinkled and piercing the separator 230, thereby causing a short circuit, so the number of batteries 1 passing the test is also less.
  • both the anode pole piece 210 and the cathode pole piece 220 contact the second side wall unit 142 (or the third side wall unit 143)
  • the time difference is relatively long; at the same time, compared with the situation of D 2 >1.5mm, the process time for the cathode pole piece 220 to move to the second side wall unit 142 (or the third side wall unit 143) is relatively short; therefore, it is configured as
  • the anti-collision performance of the battery 1 with 0.5mm ⁇ D 2 ⁇ 1.5mm is better.
  • the anti-collision performance of the battery 1 is excellent.
  • this embodiment is to make the parameters of the part of the battery 1 shown in FIG. Proportional range setting, so as to play a better effect. Based on this, it is easy to understand that, in some other embodiments of the present application, only one side of the above-mentioned part along the second direction Y may be arranged according to the above-mentioned size ratio range.
  • the electrode assembly 200 also has the risk of breaking into two parts in the first direction Y shown in FIG.
  • the relationship between the third distance G4 and the second distance D4 , and the relationship between the third distance G6 and the second distance D6 are also set with reference to the above-mentioned size range and numerical ratio.
  • the second distance D4 is between 0.7 mm and 1.5 mm
  • the ratio of the third distance G4 to the second distance D4 is between 1/3 and 4/5
  • the third distance G 6 is between 0.7mm ⁇ 1.5mm
  • the ratio of the first distance L 6 to the second distance D 6 is between 1/3 ⁇ 4/5.
  • the fifth wall unit 135 and the fifth side 215 can also satisfy the above relationship.
  • the shell 100 satisfies 1/25 ⁇ T/ G2 ⁇ 3 /10 between the thickness T of the connecting wall part 130 and the above-mentioned third distance G2 ;
  • this setting is also applicable to other parts of the housing 100 , that is, any one of G 3 , G 4 , G 5 and G 6 can be replaced by G 2 in the relational expression.
  • the sealing part 140 also includes a second A curved side wall unit 147 , a second curved side wall unit 148 and a third curved side wall unit 149 .
  • the transition connection between the second side wall unit 142 and the fourth side wall unit 144 is through the above-mentioned first arc-shaped side wall unit 147
  • the connection between the third side wall unit 143 and the fourth side wall unit 144 is through the second arc-shaped
  • the third side wall unit 143 and the sixth side wall unit 146 are transitionally connected through a third arc-shaped side wall unit 149 .
  • the arrangement of the first arc-shaped side wall unit 147, the second arc-shaped side wall unit 148, and the third arc-shaped side wall unit 149 shrinks the size of the battery 1 at the three corners, which can reduce interference during installation.
  • the stress of the arc-shaped structure is smaller than that of the sharp corner, so this setting can also improve the local mechanical properties of the battery 1 .
  • the transition between the second side 212 and the fourth side 214 of the anode pole piece 210 passes through the first arc portion 218a; the third side 213 and the fourth side 214 of the anode pole piece 210 pass through The second arc portion 218b transitions; the transition between the third side 213 and the sixth side 216 of the anode pole piece 210 is through the third arc portion 218c.
  • the arrangement of the above-mentioned first to third arc-shaped side wall units will cause the gap between the anode pole piece 210 and the sealing part 140 to decrease, while the first arc-shaped part 218a, the second arc-shaped part 218b and the third arc-shaped part
  • the setting of 218c aims to increase the gap to a certain extent on this basis, thereby reducing the risk that the electrode assembly 200 is more likely to pierce the connecting wall portion 130 and the sealing portion 140 when the battery 1 is impacted.
  • Table 3 shows the third distance G 2 and the second distance D 2 .
  • Different combinations, different combinations of the third distance G3 and the second distance D3 , and the influence of the fillet radius of the above-mentioned arc-shaped side wall unit on the anti-collision performance of the battery, the first arc-shaped side wall of the same embodiment in this test The fillet radii of the unit 147 , the second arc-shaped side wall unit 148 and the third arc-shaped side wall unit 149 adopt the same size. It is worth mentioning about the method of measuring the fillet radius.
  • the fillet radius of the outer surfaces of the first to third arc-shaped side wall units 149 is measured by a three-dimensional profile measuring instrument; of course, in this application, other measuring tools such as R gauge can also be used for measurement.
  • the second distance D2 is the same as the second distance D3
  • the third distance G2 is the same as the third distance G3
  • the second distance D 2 and the second distance D 3 , the third distance G 2 and the third distance G 3 can also be different, such as: 0.8 ⁇ G 2 /G 3 ⁇ 1 and 1 ⁇ G 2 /G 3 ⁇ 1.2; at this time, the fillet radius of each arc-shaped side wall unit is correspondingly satisfied: 0.85(G 2 +D 2 ) ⁇ R 1 ⁇ 1.0(G 2 +D 2 ), 0.85(G 3 +D 3 ) ⁇ R 2 ⁇ 1.0(G 3 +D 3 ), 0.85(G 3 +D 3 ) ⁇ R 3 ⁇ 1.0(G 3 +D 3 ); wherein, R 1 is the radius of the outer surface of the first arc-shaped side wall unit 147, R 2 is the radius of the outer surface of the second arc-shaped side wall unit
  • the battery 1 provided by the embodiment of the present application includes the casing 100 , the electrode assemblies 200 and 300 .
  • the housing 100 includes an L-shaped first end wall 110, an L-shaped second end wall 120, and a connecting wall portion 130 extending from the first end wall 110 to the second end wall 120, that is, the housing 100
  • the whole is L-shaped. Therefore, when the battery 1 is applied to an electronic device with an L-shaped battery compartment, the two parts of the battery 1 that are bent relative to each other can be respectively filled in the two cavities of the L-shaped battery compartment to better utilize the L-shaped battery. warehouse. That is, the battery provided by the embodiment of the present application can improve the current situation that the battery cannot make good use of the L-shaped battery compartment in the above-mentioned electronic device.
  • the connecting wall portion 130 includes at least one predetermined wall unit, and the ratio between the first distance and the second distance corresponding to the predetermined wall unit is between 1/5 ⁇ 1/2, wherein the The second distance is between 0.7 mm and 1.5 mm; this setting is beneficial to enhance the anti-collision performance of the battery 1 .
  • FIG. 9 shows a schematic diagram of the electronic device 2.
  • the electronic device 2 is a mobile phone; it can be understood that, in other embodiments of the present application, the electronic device 2 can also be a tablet computer, a computer, a drone and other electronic devices that need to be driven by electricity .
  • the battery in the electronic device 2 can improve the current situation that the battery cannot make good use of the L-shaped battery compartment in the above-mentioned electronic device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请涉及电池技术领域,公开了电池与电子装置。该电池包括壳体、电极组件以及极耳。壳体包括第一端壁、第二端壁以及连接壁部。其中,第一端壁与第二端壁均呈L形,两者之间沿电池的厚度方向间隔设置;连接壁部自第一端壁的边缘延伸至第二端壁,并围成一L形的收容腔,第一端壁设置成收容腔的一端,第二端壁设置成收容腔的另一端。本申请实施例提供的电池的壳体呈L形,因此在应用于具有L形电池仓的电子装置时,该电池中彼此相对弯折的两部分可分别填充在L形电池仓的两个腔体内,以更好地利用L形的电池仓。即是,本申请实施例提供的电池能够改善目前电池不能很好地利用上述电子装置中L形电池仓的现状。

Description

电池与电子装置 技术领域
本申请实施例涉及电池技术领域,尤其涉及一种电池与电子装置。
背景技术
电池是一种将外界的能量转化为电能并储存于其内部,以在需要的时刻对外部设备(如便携式电子设备)进行供电的装置。当前,电池广泛地运用于手机、平板、笔记本电脑、电动车等电子装置中。
目前的电池多呈现为方形形态或圆形形态;相应地,电子装置设有方形或圆形的电池仓,以收纳上述电池。然而,在有些电子装置中,在对该电子装置其他的电子器件合理排布之后,电池仓可呈现为L形,该电池仓包括彼此相对弯折设置的第一腔体与第二腔体;此时,方形或圆形的电池虽可通过调整尺寸规格的方式以收容在电池仓内,但其只能收纳于上述第一腔体与第二腔体中的一个,从而造成电池仓空间利用上的浪费。
发明内容
本申请实施例旨在提供一种电池与电子装置,以改善目前电池不能很好利用上述电子装置中L形电池仓的现状以及提高安全性能。
第一方面,本申请实施例采用以下技术方案来解决其技术问题,该方案具体包括:
一种电池,包括壳体、电极组件以及极耳。壳体包括第一端壁、第二端壁以及连接壁部。第一端壁与第二端壁均呈L形,且沿电池的厚度方向间隔设置。连接壁部自第一端壁的边缘向第二端壁延伸,并围成一L形的收容腔;第一端壁设置成收容腔的一端,第二端壁设置成收容腔的另一端。连接壁部包括复数个壁部单元,各壁部单元之间沿第一端壁的边缘轮廓依次设置。电极组件呈L形并包括阳极极片、阴极极片及隔离膜,阳极极片与阴极极片沿厚度方向交替堆叠,阳极极片的边缘环绕阴极极片落在阳极极片上的投影,阳极极片与阴极极片之间设有隔离膜。复数个壁部单元中包括预设壁部单元,则:阳极极片中和预设侧壁单元相对设置的侧边与相对设置的预设壁部单元之间具有第一距 离,阳极极片中和预设壁部单元相对设置的侧边超出阴极极片的距离为第二距离,同一预设侧壁单元所对应的第一距离与第二距离的比值介于1/5~1/2之间,其中,第二距离介于0.7mm~1.5mm之间。
本申请实施例提供的电池的壳体整体呈L形,因此在应用于具有L形电池仓的电子装置时,本申请实施例提供的电池中彼此相对弯折的两部分可分别填充在L形电池仓的两个腔体内,以更好地利用L形的电池仓。即是,本申请实施例提供的电池能够改善目前电池不能很好地利用上述电子装置中L形电池仓的现状。
在一些实施例中,连接壁部包括第一壁部单元、第二壁部单元、第三壁部单元、第四壁部单元、第五壁部单元以及第六壁部单元。第一壁部单元、第二壁部单元以及第三壁部单元均沿第一方向延伸,第一壁部单元、第二壁部单元以及第三壁部单元之间沿第二方向依次间隔设置,第三壁部单元于第一方向延伸的长度大于第一壁部单元与第二壁部单元于第一方向延伸的的长度,极耳自第一壁部单元伸出壳体,其中,第一方向与第二方向均与厚度方向垂直,第一方向与第二方向相交。第四壁部单元、第五壁部单元以及第六壁部单元均沿第二方向延伸,第四壁部单元、第五壁部单元以及第六壁部单元之间沿第一方向依次间隔设置,第六壁部单元于第二方向的长度大于第四壁部单元与第五壁部单元于第二方向延伸的长度。
作为上述方案的进一步改进方案,第二壁部单元、第三壁部单元、第四壁部单元、第五壁部单元或第六壁部单元中的至少一个为预设壁部单元。
在一些实施例中,壳体还包括自连接壁部延伸出的封印部,封印部的至少部分弯折至朝向第一端壁延伸,封印部包括第二侧壁单元与第三侧壁单元。第二侧壁单元自第二壁部单元延伸出并朝向第一端壁延伸。第三侧壁单元自第三壁部单元延伸出并朝向第一端壁延伸。
在一些实施例中,阳极极片具有与第二壁部单元相对设置的第二侧边,第二侧边与第二侧壁单元的外表面之间的距离为G 2,第二侧边超出阴极极片的距离为D 2,1/3≤G 2/D 2≤4/5,其中,0.7mm≤D 2≤1.5mm;和/或,阳极极片具有与第三壁部单元相对设置的第三侧边,第三侧边与第三侧壁单元的外表面之间的距离为G 3,第三侧边超出阴极极片的距离为D 3,1/3≤G 3/D 3≤4/5,其中,0.7mm≤D 3≤1.5mm。
在一些实施例中,封印部还包括第四侧壁单元与第六侧壁单元。第四侧壁单元自第四壁部单元延伸出并朝向第一端壁延伸;第六侧壁单元自第六壁部单元延伸出并朝向第一端壁延伸。
在一些实施例中,阳极极片具有与第四壁部单元相对设置的第四侧边,第四侧边与第四侧壁单元的外表面之间的距离为G 4,第四侧边超出阴极极片的距离为D 4,1/3≤G 4/D 4≤4/5,其中,0.7mm≤D 4≤1.5mm;和/或,阳极极片具有与第六壁部单元相对设置的第六侧边,第六侧边与第六侧壁单元的外表面之间的距离为G 6,第六侧边超出阴极极片的距离为D 6,1/3≤G 6/D 6≤4/5,其中,0.7mm≤D 6≤1.5mm。
在一些实施例中,封印部还包括第一弧形侧壁单元,第二侧壁单元与第四侧壁单元之间通过第一弧形侧壁单元过渡,第一弧形侧壁单元的半径R 1满足:0.85(G 2+D 2)≤R 1≤1.0(G 2+D 2),第二侧边及第四侧边之间通过第一弧形部过渡;和/或,封印部还包括第二弧形侧壁单元,第三侧壁单元与第四侧壁单元之间通过第二弧形侧壁单元过渡,第二弧形侧壁单元的半径R 2满足:0.85(G 3+D 3)≤R 2≤1.0(G 3+D 3),阳极极片具有与第三壁部单元相对设置的第三侧边,第三侧边及第四侧边之间通过第二弧形部过渡;和/或,封印部还包括第三弧形侧壁单元,第三侧壁单元与第六侧壁单元之间通过第三弧形侧壁单元过渡,第一弧形侧壁单元的半径R 3满足:0.85(G 3+D 3)≤R 3≤1.0(G 3+D 3),第三侧边及第六侧边之间通过第三弧形部过渡。
在一些实施例中,第二侧边与第二壁部单元之间的第一距离为L 2,连接壁部的厚度T满足:1/7≤T/L 2≤1/3;和/或,1/25≤T/G 2≤3/10。
在一些实施例中,封印部中弯折至朝向第一端壁延伸的部分粘接固定于连接壁部。
第二方面,本申请实施例还采用以下技术方案来解决其技术问题,该方案具体包括:
一种电子装置,包括上述的电池。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的 元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请其中一实施例提供的电池的主视图;
图2为图1中电池的仰视图;
图3为图1中电池沿A-A线的剖切示意图;
图4为图1中电池沿B-B线的剖切示意图;
图5为图2中电池沿C-C线的剖切示意图;
图6为本申请其中另一实施例提供的电池的主视图;
图7为本申请其中又一实施例提供的电池的主视图;
图8为本申请其中再一实施例提供的电池的主视图;
图9为本申请其中一实施例提供的电子装置的示意图。
图中:
1、电池;
100、壳体;110、第一端壁;120、第二端壁;130、连接壁部;140、封印部;131、第一壁部单元;132、第二壁部单元;133、第三壁部单元;134、第四壁部单元;135、第五壁部单元;136、第六壁部单元;137、第七壁部单元;139、壁部单元;141、第一侧壁单元;142、第二侧壁单元;143、第三侧壁单元;144、第四侧壁单元;145、第五侧壁单元;146、第六侧壁单元;147、第一弧形侧壁单元;148、第二弧形侧壁单元;149、第三弧形侧壁单元;101、收容腔;
200、电极组件;210、阳极极片;220、阴极极片;230、隔离膜;211、第一侧边;212、第二侧边;213、第三侧边;214、第四侧边;215、第五侧边;216、第六侧边;217、第七侧边;218a、第一弧形部;218b、第二弧形部;218c、第三弧形部;231、隔膜单元;
300、极耳;
2、电子装置。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”/“固接于”/“安装于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的 元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
在本说明书中,所述“安装”包括焊接、螺接、卡接、粘合等方式将某一元件或装置固定或限制于特定位置或地方,所述元件或装置可在特定位置或地方保持不动也可在限定范围内活动,所述元件或装置固定或限制于特定位置或地方后可进行拆卸也可不能进行拆卸,在本申请实施例中不作限制。
请参阅图1至图4,其分别示出了本申请其中一实施例提供的电池1的主视图、仰视图、电池沿图示A-A线的剖切示意图以及电池沿B-B线的剖切示意图,该电池1包括壳体100、电极组件200以及极耳300。其中,壳体100设有收容腔101,电极组件200收容于该收容腔101;极耳300与电极组件200连接,其一端延伸出壳体100。接下来,依次对壳体100、电极组件200以及极耳300的具体结构进行说明。
对于上述壳体100,请具体参阅图3,同时结合图1与图2,壳体100包括第一端壁110、第二端壁120以及连接壁部130。其中,第一端壁110与第二端壁120均呈L形设置,两者沿着图示电池1的厚度方向Z间隔相对设置。连接壁部130则自第一端壁110的边缘向第二端壁120延伸,连接壁部130本身围成一呈L形的收容腔101;上述第一端壁110设置成该收容腔101的一端,上述第二端壁120则设置成该收容腔101的另一端。
请具体参阅图1,并结合其他附图,连接壁部130包括复数个壁部单元139,各个壁部单元139沿第一端壁110的边缘轮廓依次设置。具体地,沿上述厚度方向Z观察,上述复数个壁部单元139具体包括均沿图示第一方向X延伸的第一壁部单元131、第二壁部单元132和第三壁部单元133,以及均沿图示第二方 向Y延伸的第四壁部单元134、第五壁部单元135以及第六壁部单元136。其中,第一壁部单元131是供极耳300伸出的壁部单元。该第一壁部单元131、第二壁部单元132以及第三壁部单元133沿图示上述第二方向Y依次间隔设置,且第三壁部单元133于第一方向X延伸的长度大于第一壁部单元131与第二壁部单元132于第一方向X延伸的长度;即是说,沿上述厚度方向Z观察,第三壁部单元133确定出了该电池1的长边或宽边中的一者。第四壁部单元134、第五壁部单元135以及第六壁部单元136之间则沿上述第一方向X依次间隔设置;其中,第四壁部单元134位于第二壁部单元132与第三壁部单元133之间,第五壁部单元135位于第一壁部单元131与第二壁部单元132之间,第六壁部单元136则位于第一壁部单元131与第三壁部单元133之间。第六壁部单元136于第二方向Y延伸的长度大于第四壁部单元134与第五壁部单元135于第二方向Y延伸的长度;即是说,沿上述厚度方向Z观察,第六壁部单元136确定出了该电池1的长边或宽边中的另一者。值得一提的是,本实施例中所述的第一方向X、第二方向Y与上述厚度方向Z之中的任意两者相互垂直;但本申请并不局限于此,只要保证第一方向X及第二方向Y均与厚度方向Z垂直,第一方向X与第二方向Y之间相交即可。
较优地,除上述第一至第六壁部单元之外,本实施例中该连接壁部130还包括一弧形的第七壁部单元137。具体地,该第七壁部单元137连接于第二壁部单元132与第五壁部单元135之间,且朝向收容腔101内凹。第七壁部单元137的设置可以方便该电池1在电子装置中的定位安装。另外,第七壁部单元137内凹呈弧形,其可以避免第二壁部单元132与第五壁部单元135之间通过直角过渡,从而在一定程度上提升电池1在该处的抗拉性能。具体地说,在其他实施例中,第二壁部单元132与第五壁部单元135可以通过直角过渡连接,与之相比,本实施例通过设置第七壁部单元137,进而使电池1在不增加体积的基础上,连接壁部130在该处的尺寸长度相对直角过渡的方式得以相对增长。因此,即使电池1受到环绕图1所示厚度方向Z的弯折力或扭曲力,第七壁部单元137也可以缓解第二壁部单元132与第五壁部单元135收到的拉力,以及变形的程度。并且,第七壁部单元137与第二壁部单元132(和第五壁部单元135)之间通过钝角连接,其还同样避免了与第二壁部单元132通过尖锐的直角过渡造成该处应力较大的弊端。当然,在本申请的其他实施例中,该第七壁部单元137 亦是可以省略的。
请参阅图5,其示出了图2中电池1沿C-C线的剖切示意图,同时结合其他附图,本实施例中,电池1为软包电池;相应地,壳体100还包括封印部140,封印部140是壳体100收纳电极组件200后进行密封的部位。具体地,封印部140自连接壁部130的靠近第二端壁120的一端延伸出,其至少部分弯折至朝向上述第一端壁110设置,以一方面减小电池1整体的占用体积,另一方面与连接壁部130叠加而共同形成电池1的侧壁,进而降低电池1在侧壁被刺破的风险;可以理解的是,在本申请的其他实施例中,封印部140亦可以自连接壁部130的中部区域延伸出,并至少部分朝向第一端壁110弯折设置。更具体地,封印部140包括第一侧壁单元141、第二侧壁单元142、第三侧壁单元143、第四侧壁单元144、第五侧壁单元145以及第六侧壁单元146。第一侧壁单元141自第一壁部单元131的外表面背离收容腔101延伸,其夹持极耳300。第二侧壁单元142自第二壁部单元132的外表面延伸出并朝向上述第一端壁110延伸;第三侧壁单元143自第三壁部单元133的外表面延伸出并朝向上述第一端壁110延伸;第四侧壁单元144自第四壁部单元134的外表面延伸出并朝向上述第一端壁110延伸;第五侧壁单元145自第五壁部单元135的外表面延伸出并朝向上述第一端壁110延伸;第六侧壁单元146自第六壁部单元136的外表面延伸出并朝向上述第一端壁110延伸。即是,封印部140中除第一侧壁单元141之外的部分均自连接壁部130延伸出后朝向第一端壁110弯折。本实施例中,封印部140中弯折至朝向第一端壁110延伸的部分粘接固定于连接壁部130,以和上述连接壁部130共同构成电池1的侧壁。至于封印部140粘接固定所采取的方式,其可以是通过点胶的方式,亦可以是通过喷涂胶水粘接固定,还可以是在封印部140和/或连接壁部130上贴上胶纸以使得两者固定,在此不一一详举。其中,封印部140可以如图3所示的单层状,也可是在背离第二端壁120的一端折叠成双层或其他层数,并粘接于连接壁部130上。
值得说明的是,连接壁部120并非是始终沿图示厚度方向Z延伸的,请参阅图3,其在靠近第二端壁120的一端是呈连续弯折状的。具体地,本实施例中,壳体100包括两复合片材,该复合片材具体包括依次层叠设置的聚合物材料层、金属材料层以及防护层;为方便说明,以下将该两复合片材分别定义为第一复合片材与第二复合片材。其中,第一复合片材的中间区域凹陷而形成具有凹腔 的腔体部,第一复合片材的边缘区域环绕该凹腔设置而形成凸缘部。可选地,第一复合片材的腔体部通过冲压的方式形成。第二复合片材的边缘与凸缘部贴合,并通过热熔的方式密封固定,以形成封印区域。封印区域的部分朝向腔体部弯折,从而得到上述壳体100。其中,上述第一端壁110包括第一复合片材中腔体部的底壁;第二端壁120则包括第二复合片材中与该底壁相对设置的部分;连接壁部130则包括第一复合片材中腔体部的侧壁、第二复合片材未热熔并靠近封印区域的部分,以及封印区域中靠近腔体部的侧壁的部分,例如封印区域靠近腔体部一端的2mm区域范围;封印部则包括封印区域内的其他区域。至于复合片材的选材实则是多样的,例如,在一些实施例中,金属材料层包括铝箔或钢箔,防护层可以包括聚对苯二甲酸乙二醇酯,聚合物材料层可以包括聚乙烯和/或聚丙烯。本申请不对复合片材的结构作出具体限定。
应当理解,即使本实施例中壳体100是由两复合片材构成,但在其他的实施例中,壳体100亦可以是由单张复合片材构成。例如,请参阅图6,其示出了本申请其中另一实施例提供电池1b的示意图,与前述电池1不同的是,电池1b的壳体的第一复合片材与第二复合片材是由同一片材弯折成型的,其具体是在第二端壁与第三壁部单元133处一体连接的,而非通过片材的热熔固定;即壳体不在第三壁部单元133处设有封印部。又例如,请参阅图7,其示出了本申请其中又一实施例提供电池1c的示意图,与前述电池1不同的是,电池1c的壳体的第一复合片材与第二复合片材是由同一片材弯折成型的,其具体是在第二端壁与第四壁部单元一体连接的,而非通过片材的热熔固定,即不在第四壁部单元处设有封印部。再例如,请参阅图8,其示出了本申请其中再一实施例提供电池1d的示意图,与前述电池1不同的是,电池1d的壳体的第一复合片材与第二复合片材是由同一片材弯折成型的,其具体是在第二端壁与第六壁部单元一体连接的,而非通过片材的热熔固定,即不在第六壁部单元处设有封印部。
对于上述电极组件200,请继续参阅图3至图5,同时结合其他附图,电极组件200包括阳极极片210、阴极极片220以及隔离膜230。其中,阳极极片210与阴极极片220均呈L形;电极组件200包括阳极极片210与阴极极片220,各阳极极片210与阴极极片220之间沿上述厚度方向Z交替堆叠。阳极极片210的尺寸略大于阴极极片220的尺寸,阳极极片210的边缘轮廓超出相邻阴极极片220的边缘轮廓;即是,在堆叠状态下,阴极极片220落在阳极极片210上 的投影被阳极极片210所环绕,以减小析锂的风险。相邻的阳极极片210与阴极极片220之间设有上述隔离膜230。本实施例中,电极组件200包括复数个的阳极极片210与复数个的阴极极片220,隔离膜230呈连续Z形弯折状,并形成沿图示厚度方向Z依次间隔设置的众多隔膜单元231,每一隔膜单元231将相邻的阳极极片210与阴极极片220分隔开。当然,在本申请的其他实施例中,隔离膜230也可以不成连续弯折状,而是呈扁平的薄片状;此时,每相邻的阳极极片210与阴极极片220之间均设有一隔离膜230。
阳极极片210包括第一侧边211、第二侧边212、第三侧边213、第四侧边214、第五侧边215、第六侧边216以及第七侧边217,上述各侧边依序对应第一壁部单元131、第二壁部单元132、第三壁部单元133、第四壁部单元134、第五壁部单元135、第六壁部单元136以及第七壁部单元137。其中,第七侧边217跟随上述第七壁部单元137,相对所临接的第二侧边212和第五侧边215内凹设置;本实施例中,第七侧边217内凹呈弧形。同理,第七侧边的设置可以提升阳极极片210的抗拉与抗弯性能。
对于上述极耳300,请参阅图5,并结合图1,其整体呈扁平的矩形状,极耳300的一端与电极组件200连接,另一端则经由上述第一壁部单元131而伸出壳体100之外。本实施例中,电池1包括两极耳300,该两极耳300分别为第一极耳300a以及第二极耳300b;其中第一极耳300a分别与各阳极极片210连接,第二极耳300b则与各阴极极片220连接。具体地,第一极耳300a包括第一导电部与第二导电部。其中,第一导电部包括多个第一导电片,该第一导电片自阳极极片210的边缘起始延伸形成;各第一导电片层叠并通过焊接等方式固定连接而形成上述第一导电部。第二导电部的第一端与第一导电部连接,第二端则延伸出壳体100;该第二导电部的第二端即是上文提及的极耳300延伸出壳体100的一端。同理,第二极耳300b包括第三导电部与第四导电部。其中,第三导电部包括多个第二导电片,该第二导电片自阴极极片220的边缘起始延伸形成;各第二导电片层叠并通过焊接等方式固定连接而形成上述第三导电部。第四导电部的第一端与第三导电部连接,第二端则延伸出壳体100;该第四导电部的第二端即是上文提及的极耳300延伸出壳体100的一端。
在电池的运输或使用的过程中,其难以避免地会发生跌落或与其他物品发生碰撞,尤其是在极端的情况下,电极组件200可能会在突然的冲击下沿某个 方向整体断裂呈两部分,该两部分会在剩余的冲击能量下反向远离并朝外挤压壳体100侧壁,进而刺破壳体100;或者造成因隔膜刺穿而产生短路的风险。因此电池厂商都会在电池出厂前对电池作碰撞测试,行业内通常称为impact测试。通常impact测试包括模拟电极组件200在第一方向X断裂成两部分和沿第二方向Y断裂成两部分的两种环境的断裂测试。接下来,以电极组件200在第二方向Y断裂成两部分的测试为例,该测试方法具体包括以下步骤:
S1:摆放测试用的圆棒。具体地,将一圆棒放置在电池1的上方的预设高度位置并将其摆放成沿第一方向X延伸,同时保证沿上述厚度方向观察时,该圆棒位于第二壁部单元132与第三壁部单元133之间。
S2:释放该圆棒以使其落在电池1上,从而使电池1受到冲击力。
S3:重复上述步骤S1~S2,观察电池1是否通过测试。其中,通过测试的条件为,重复上述步骤S1~S2设定次数电池1的壳体100仍未被刺破,电池1的电极组件200也未发生短路。即是说,若电池1在结束重复设定次数上述步骤之前已经发生壳体刺破或电极组件200短路的情况,即未通过测试,当立刻停止测试。
S4:采用上述步骤S3对20个电池进行测试,记录通过测试的电池数量。
为方便说明与理解,将上述第一至第六侧边中任意一个与相对的壁部单元外表面之间的距离定义为第一间距L n(n≥1)。将上述第一至第六侧边中任意一个超出阴极极片的距离定义为第二间距D n(n≥1)。将上述第一至第六侧边中任意一个与相对的侧壁单元外表面之间的距离定义为第三间距G n(n≥1)。关于该第一间距L n、第二间距D n以及第三间距G n在实验时的测量方式,其可以采取拍CT图,在CT图中测量,并换算成实际尺寸的方式。
首先,发明人先针对第一间距L 2与第二间距D 2之间的不同组合进行测试,观察测试结果;其中,第一间距L 2为第二侧边212与第二壁部单元132外表面之间的距离,第二间距D 2为第二侧边212超出阴极极片220的距离。同时为获得更明显的测试结果,并加快测试进程,第一间距L 3与第一间距L 2保持一致,第二间距D 3则与第二间距D 2保持一致;其中,第一间距L 3为第三侧边213与第三壁部单元133外表面之间的距离,第二间距D 3为第三侧边213超出阴极极片220的距离。
表一示出了第一间距L 2和第二间距D 2的不同组合、第一间距L 3与第二间 距D 3的不同组合对电池防碰撞性能的影响情况。由表一的数据同时结合控制变量的实验方法可知,若将第二间距D 2与第二间距D 3等因素视为定值观察,即将第二间距D 2与第二间距D 3等因素视为无关变量,将第一间距L 2与第一间距L 3视为自变量;同时结合不同的组别观察,则当第一间距L 2与第二间距D 2之间的比值介于1/5~1/2之间时,通过测试的电池1的数量明显较多;即此时电池1的防碰撞性能更优。具体来说,当L 2/D 2<1/5时,测试圆棒砸落在电池1上后,电极组件200至少部分会断裂成沿第二方向Y相对的两部分,该两部分沿第二方向Y背向运动并在短时间内即刺破第二壁部单元132和第三壁部单元133。当L 2/D 2>1/2时,测试圆棒砸落在电池1上后,电极组件200至少部分断裂成两部分,该两部分沿第二方向Y背向运动,由于L 2(或L 3)较大,其刺破壳体100的概率相对前者情况较小;但是在上述两部分背向运动至与相应的壁部单元接触的过程时间较长,各阳极极片210与阴极极片220在该过程中可能因相对运动而引发部局部起皱,并刺穿隔离膜230,进而导致电池1短路。相比之下,当1/5≤L 2/D 2≤1/2时,上述两种情况发生的概率交底,故而配置呈如此的电池1的防碰撞性能更优。
而若将第一间距L 2与第二间距D 2之间的比值视为定值观察,将第二间距D 2视为自变量,则当第二间距D 2之间的尺寸介于0.7mm~1.5mm之间时,通过测试的电池1的数量明显较多;即此时电池1的防碰撞性能更优。具体来说,当D 2<0.5mm时,阳极极片210与阴极极片220两者接触第二壁部单元132(或第三壁部单元133)的时差极短,这意味着第二壁部单元132(或第三壁部单元133)基本同时受到阳极极片210与阴极极片220的冲击力,其被刺破的风险较高,因此通过测试的电池数量较少。当D 2>1.5mm时,阳极极片210与阴极极片220边缘的距离差较大;即是说在阴极极片220与第二壁部单元132(或第三壁部单元133)接触之前,阴极极片220的运动时间较长,而这增加了阳极极片210与阴极极片220起皱并刺穿隔离膜230,进而引发短路的风险,因此通过测试的电池1数量也较少。相比之下,0.5mm<D 2<1.5mm时,阳极极片210与阴极极片220两者接触第二壁部单元132(或第三壁部单元133)的时差较长,同时也能在一点程度上限制使阴极极片220运动至第二壁部单元132(或第三壁部单元133)的过程时间较短;因此配置呈如此的电池1的防碰撞性能更优。
综上所述,当第二间距介于0.7mm~1.5mm之间,且第一间距与第二间距的 比值介于1/5~1/2时,电池1的防碰撞性能优异。
表一、第一间距L 2和第二间距D 2的不同组合、第一间距L 3与第二间距D 3的不同组合对电池防碰撞性能的影响情况
Figure PCTCN2021135125-appb-000001
由于本实施例是使图5所示的电池1于第二壁部单元132与第三壁部单元133之间的部分在沿上述第二方向Y相对的两侧的参数同时按照上述尺寸范围及比例范围设置,从而起到较好的效果。在此基础上容易理解的是,在本申请其他的一些实施例中,也可以使上述部分沿第二方向Y的单侧按照上述尺寸比 例范围设置。
此外,电极组件200同样存在沿图5所示第一方向X断成两部分,进而造成壳体100的第四壁部单元134与第六壁部单元136刺破的风险;因此,根据上述测试结果,本实施例中将第一间距L 4与第二间距D 4之间的关系、第一间距L 6与第二间距D 6之间的关系同样参照上述尺寸范围及数值比例设置。其中,第一间距L 4为第四侧边214与第四壁部单元134外表面之间的距离,第二间距D 4为第四侧边214超出阴极极片220的距离;第一间距L 6为第六侧边216与第六壁部单元136外表面之间的距离,第六距离D 6为第六侧边216超出阴极极片220的距离。具体地说,即是第二间距D 4介于0.7mm~1.5mm之间,第一间距L 4与第二间距D 4的比值介于1/5~1/2之间;和/或,第二间距D 6介于0.7mm~1.5mm之间,第一间距L 6与第二间距D 6的比值介于1/5~1/2之间。同理,在某些实施例中,第一壁部单元131与第五壁部单元135与阳极极片210中对应的侧边亦可以满足上述关系。
综上所述,本申请中只要保证连接壁部130包括至少一预设壁部单元,且该预设壁部单元满足:同一预设壁部单元所对应的第一距离L′与第二距离D′的比值介于1/5~1/2之间,第二距离介于0.7mm~1.5mm之间;即可使电池1获得较佳的防碰撞效果。其中,本申请文件中所述的“预设壁部单元”是连接壁部130中的各壁部单元中的某一个壁部单元,本申请文件中所述的“连接壁部包括至少一预设壁部单元”则是指连接壁部130的各壁部单元中一个或多个为预设壁部单元;在本申请中,上述第一壁部单元131、第二壁部单元132、第三壁部单元133、第四壁部单元134、第五壁部单元135以及第六壁部单元136中的任意一个均可以为所述预设壁部单元;在第一至第六壁部单元均为上述预设壁部单元时,电池1的防碰撞效果最佳。本申请文件中所述的“第一距离”为阳极极片中与预设壁部单元相对设置的侧边与该预设壁部单元之间的距离;例如,当第二壁部单元为预设壁部单元时,该预设壁部单元所对应的第一距离为上述第一间距L 2;又例如,当第三壁部单元133为预设壁部单元时,该预设壁部单元所对应的第一距离为上述第一间距L 3。本申请文件中所述的“第二距离”为阳极极片的与预设壁部单元相对设置的侧边超出阴极极片的距离;例如,当第二壁部单元为预设壁部单元时,该预设壁部单元所对应的第二距离为上述第二间距D 2;又例如,当第三壁部单元133为预设壁部单元时,该预设壁部单元所 对应的第二距离为上述第二间距D 3。最后值得指出的是,本申请文件中所述的“同一预设壁部单元所对应的第一距离与第二距离”是指,阳极极片210上与某一预设壁部单元相对设置的侧边所对应匹配的第一间距与第二间距;例如,当仅第二壁部单元132为预设壁部单元时,该同一预设壁部单元所对应的第一距离与第二距离为第二侧边所对应的第一距离与第二距离,即为上述第一间距L 2与第二间距D 2;又例如,当第二壁部单元132与第三壁部单元133均为预设壁部单元时,该同一预设壁部单元132所对应的第一距离与第二距离为:上述相匹配的第一间距L 2与第二间距D 3,以及,上述相匹配的第一间距L 3与第二间距D 3
较优地,为保证第一间距能够提供足够的缓冲空间,壳体100在连接壁部130处的厚度T与上述第一距离L′之间满足1/7≤T/L′≤1/3;其中,L′可以为L 1、L 3、L 4、L 5和L 6中的任意一个。其中,L 1为第一侧边211与第一壁部单元131外表面之间的距离,L 5为第五侧边215与第五壁部单元135外表面之间的距离。
由于在封印部140所覆盖的高度范围内,连接壁部130与覆盖其的封印部140共同构成电池1的侧壁;也即是说封印部140会参与对电极组件200的保护。故,发明人接下来针对阳极极片210的侧边与封印部140中相应的侧壁单元外表面之间的第三间距G n(n≥2),与,上述第二间距D n之间的不同组合进行测试。其中,第二侧边212与第二侧壁单元142外表面之间的距离为第三间距G 2,第三侧边213与第三侧壁单元143外表面之间的距离为第三间距G 3,第四侧边214与第四侧壁单元144外表面之间的距离为第四距离G 4,第五侧边215与第五侧壁单元145外表面之间的距离为第五距离G 5,第六侧边216与第六侧壁单元146外表面之间的距离为第三间距G 6
表二示出了第三间距G 2和第二间距D 2的不同组合、第三间距G 3与第二间距D 3的不同组合对电池防碰撞性能的影响情况。由表二的数据同时结合控制变量的实验方法可知,若将第二间距D 2与第二间距D 3视为定值观察,即将第二间距D 2与第二间距D 3等因素视为无关变量,将第三间距G 2与第三间距G 3视为自变量;同时结合不同的组别观察,则当第三间距G 2与第二间距D 2之间的比值介于1/3~4/5之间时,通过测试的电池1的数量明显较多;即此时电池1的防碰撞性能更优。具体来说,当G 2/D 2<1/3时,测试圆棒砸落在电池1上后,电极组件200至少部分会断裂成沿第二方向Y相对的两部分,该两部分沿第二方向Y背 向运动并在短时间内即刺破第二侧壁单元142与第三侧壁单元143。当G 2/D 2>4/5时,测试圆棒砸落在电池1上后,电极组件200至少部分断裂成两部分,该两部分沿第二方向Y背向运动,由于G 2较大,其刺破壳体100的概率相对前者情况较小;但是在上述两部分背向运动至与相应的侧壁单元接触的过程时间较长,各阳极极片210与阴极极片220在该过程中可能因相对运动而引发部局部起皱,并刺穿隔离膜230,进而导致电池1短路。相比之下,当1/3≤G 2/D 2≤4/5时,上述两种情况发生的概率交底,故而配置呈如此的电池1的防碰撞性能更优。
而若将第三间距G 2与第二间距D 2之间的比值视为定值观察,将第二间距D 2视为自变量,则当第二间距D 2之间的尺寸介于0.7mm~1.5mm之间时,通过测试的电池1的数量明显较多;即此时电池1的防碰撞性能更优。具体来说,当D 2<0.5mm时,阳极极片210与阴极极片220两者接触第二侧壁单元142(或第三侧壁单元143)的时差极短,这意味着第二侧壁单元142(或第三侧壁单元143)基本同时受到阳极极片210与阴极极片220的冲击力,其被刺破的风险较高,因此通过测试的电池数量较少。当D 2>1.5mm时,阳极极片210与阴极极片220边缘的距离差较大;即是说在阴极极片220与第二侧壁单元142(或第三侧壁单元143)接触之前,阴极极片220的运动时间较长,而这增加了阳极极片210与阴极极片220起皱并刺穿隔离膜230,进而引发短路的风险,因此通过测试的电池1数量也较少。当0.5mm<D 2<1.5mm时,与D 2<0.5mm的情况相比,阳极极片210与阴极极片220两者接触第二侧壁单元142(或第三侧壁单元143)的时差相对较长;同时,与D 2>1.5mm的情况相比,阴极极片220运动至第二侧壁单元142(或第三侧壁单元143)的过程时间则相对较短;因此配置成0.5mm<D 2<1.5mm的电池1的防碰撞性能更优。
综上所述,当第二间距介于0.7mm~1.5mm之间,且第三间距与第二间距的比值介于1/3~4/5时,电池1的防碰撞性能优异。
表二、第三间距G 2和第二间距D 2的不同组合、第三间距G 3与第二间距D 3的不同组合对电池防碰撞性能的影响情况
Figure PCTCN2021135125-appb-000002
Figure PCTCN2021135125-appb-000003
由于本实施例是使图5所示的电池1于第二壁部单元132与第三壁部单元133之间的部分在沿上述第二方向Y相对的两侧的参数同时按照上述尺寸范围及比例范围设置,从而起到较好的效果。在此基础上容易理解的是,在本申请其他的一些实施例中,也可以仅使上述部分沿第二方向Y的单侧按照上述尺寸比例范围设置。
此外,电极组件200同样存在图5所示第一方向Y断裂呈两部分,进而造成壳体100的第四侧壁单元144与第六侧壁单元146刺破的风险;因此,根据上述测试结果,本实施例中将第三间距G 4与第二间距D 4之间的关系、第三间距G 6与第二间距D 6之间的关系同样参照上述尺寸范围及数值比例设置。具体来说,即是第二间距D 4介于0.7mm~1.5mm之间,第三间距G 4与第二间距D 4的比值介于1/3~4/5之间;和/或,第三间距G 6介于0.7mm~1.5mm之间,第一间距L 6 与第二间距D 6的比值介于1/3~4/5之间。同理,在某些实施例中,第五壁部单元135与第五侧边215亦可以满足上述关系。
较优地,为保证第三距离能够提供足够的缓冲空间,壳体100在连接壁部130的厚度T与上述第三间距G 2之间满足1/25≤T/G 2≤3/10;同理,该设置同样适用于壳体100的其他部位,即是G 3、G 4、G 5和G 6中的任意一个均可替换为该关系式中的G 2
进一步地,为避免电池1中远离极耳300的角位处因尖角设置而容易存在较大的应力,且同时使电池1占据较大的空间且不便于安装,该封印部140还包括第一弧形侧壁单元147、第二弧形侧壁单元148以及第三弧形侧壁单元149。具体地,第二侧壁单元142与第四侧壁单元144之间通过上述第一弧形侧壁单元147过渡连接,第三侧壁单元143与第四侧壁单元144之间通过第二弧形侧壁单元148过渡连接,第三侧壁单元143与第六侧壁单元146之间通过第三弧形侧壁单元149过渡连接。该第一弧形侧壁单元147、第二弧形侧壁单元148以及第三弧形侧壁单元149的设置使电池1在该三个角位上的尺寸得到收缩,可减少安装时干涉现象的发生;同时,弧形结构的应力较尖角更小,因此该设置还可改善电池1局部的力学性能。
更进一步地,阳极极片210的第二侧边212与第四侧边214之间通过第一弧形部218a过渡;阳极极片210的第三侧边213与第四侧边214之间通过第二弧形部218b过渡;阳极极片210的第三侧边213与第六侧边216之间通过第三弧形部218c过渡。上述第一至第三弧形侧壁单元的设置会导致阳极极片210与封印部140之间的间隙减小,而第一弧形部218a、第二弧形部218b以及第三弧形部218c的设置则旨在在此基础上一定程度地增大该间隙,进而降低电池1受到冲击时电极组件200更容易刺穿连接壁部130和封印部140的风险。
接下来,发明人在上述表二测试方法的基础上,对每组测试引入弧形侧壁单元这一变量进行进一步的测试,表三示出了第三间距G 2和第二间距D 2的不同组合、第三间距G 3与第二间距D 3的不同组合以及上述弧形侧壁单元的圆角半径对电池防碰撞性能的影响情况,该测试中同一实施例的第一弧形侧壁单元147、第二弧形侧壁单元148以及第三弧形侧壁单元149的圆角半径采用同一尺寸。关于圆角半径的测量方式是值得一提的,在本申请中是通过三维轮廓测量仪对上述第一至第三弧形侧壁单元149外表面的圆角半径进行测量的;当然,在本 申请的其他实施例中,还可以采取R规等其他量具进行测量。
由表三的数据同时结合控制变量的实验方法可知,若将第二间距D 2、第二间距D 3、第三间距G 2以及第三间距G 3视为定值观察,即将第二间距与第三间距视为无关变量,将各弧形侧壁单元的圆角半径R视为自变量,同时结合不同的组别观察,则当上述圆角半径R与第三间距G 2、第二间距D 2两者求和的比值介于0.85~1.0之间时,通过测试的电池1的数量明显较多;即此时电池1的防碰撞性能更优。
表三、第三间距G 2和第二间距D 2的不同组合、第三间距G 3与第二间距D 3的不同组合以及各圆角半径R(第一弧形侧壁单元、第二弧形侧壁单元以及第三弧形侧壁单元的圆角半径)不同组合对电池防碰撞性能的影响情况
Figure PCTCN2021135125-appb-000004
Figure PCTCN2021135125-appb-000005
Figure PCTCN2021135125-appb-000006
Figure PCTCN2021135125-appb-000007
Figure PCTCN2021135125-appb-000008
应当理解,即使本测试中是以第二间距D 2与第二间距D 3尺寸相同、第三间距G 2与第三间距G 3尺寸相同为例进行测试的,但在本申请的其他实施例中,该第二间距D 2与第二间距D 3,第三间距G 2与第三间距G 3亦可以不同,如:0.8≤G 2/G 3<1且1<G 2/G 3≤1.2;此时各弧形侧壁单元的圆角半径则相应满足:0.85(G 2+D 2)≤R 1≤1.0(G 2+D 2),0.85(G 3+D 3)≤R 2≤1.0(G 3+D 3),0.85(G 3+D 3)≤R 3≤1.0(G 3+D 3);其中,R 1为第一弧形侧壁单元147外表面的半径,R 2为第二弧形侧壁单元148外表面的半径,R 3为第三弧形侧壁单元149外表面的半径。
综上所述,本申请实施例提供的电池1包括壳体100、电极组件200以及300。其中,壳体100包括L形的第一端壁110、L形的第二端壁120,以及自第一端壁110延伸至第二端壁120的连接壁部130,即是该壳体100整体呈L形形状。因此该电池1在应用于具有L形电池仓的电子装置时,该电池1彼此相对弯折的两部分可分别填充在L形电池仓的两个腔体内,以更好地利用L形的电池仓。即是,本申请实施例提供的电池能够改善目前电池不能很好地利用上述电子装置中L形电池仓的现状。
此外,连接壁部130包括至少一预设壁部单元,该预设壁部单元所对应的第一距离与第二距离之间的比值介于1/5~1/2之间,其中,该第二距离介于0.7mm~1.5mm之间;该设置有利于强化电池1的防碰撞性能。
基于同一发明构思,本申请另一实施例还提供一种电子装置2,具体请参阅图9,其示出了该电子装置2的示意图,同时结合图1至图4,该电子装置2包括上述实施例中的电池1。本实施例中,该电子装置2为手机;可以理解的是,在本申请的其他实施例中,该电子装置2还可以是平板电脑、电脑、无人机等其他需要由电驱动的电子装置。
该电子装置2中的电池能够改善目前电池不能很好地利用上述电子装置中L形电池仓的现状。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (11)

  1. 一种电池,包括壳体、电极组件以及与所述电极组件电连接的极耳,其特征在于,所述壳体包括:
    L形的第一端壁;
    L形的第二端壁,与所述第一端壁沿所述电池的厚度方向间隔设置;以及
    连接壁部,自所述第一端壁的边缘向所述第二端壁延伸,并围设成L形的收容腔,所述第一端壁设置成所述收容腔的一端,所述第二端壁设置成所述收容腔的另一端,所述连接壁部包括复数个壁部单元,各所述壁部单元沿所述第一端壁的边缘轮廓依次设置;
    所述电极组件呈L形并包括阳极极片、阴极极片及设于所述阳极极片和所述阴极极片之间的隔离膜,所述阳极极片与所述阴极极片沿所述厚度方向交替堆叠,所述阳极极片的边缘环绕所述阴极极片落在所述阳极极片上的投影;
    所述复数个壁部单元中包括预设壁部单元,所述阳极极片的与所述预设壁部单元相对设置的侧边和所述预设壁部单元之间具有第一距离,所述阳极极片的与所述预设壁部单元相对设置的侧边超出所述阴极极片的距离为第二距离,同一所述预设壁部单元所对应的所述第一距离与所述第二距离的比值的范围为1/5至1/2,所述第二距离的范围为0.7mm至1.5mm。
  2. 根据权利要求1所述的电池,其特征在于,所述复数个壁部单元包括第一壁部单元、第二壁部单元、第三壁部单元、第四壁部单元、第五壁部单元以及第六壁部单元;
    所述第一壁部单元、所述第二壁部单元以及所述第三壁部单元沿第一方向延伸并沿第二方向依次间隔设置,所述第三壁部单元于所述第一方向延伸的长度大于所述第一壁部单元与所述第二壁部单元于所述第一方向延伸的长度,所述极耳自所述第一壁部单元伸出所述壳体,其中,所述第一方向与所述第二方向均与所述厚度方向垂直,所述第一方向与所述第二方向相交;
    所述第四壁部单元、所述第五壁部单元以及所述第六壁部单元沿所述第二方向延伸并沿所述第一方向依次间隔设置,所述第六壁部单元于所述第二方向延伸的长度大于所述第四壁部单元与所述第五壁部单元于所述第二方向延伸的长度。
  3. 根据权利要求2所述的电池,其特征在于,所述第二壁部单元、所述第三壁部单元、所述第四壁部单元、所述第五壁部单元或所述第六壁部单元中的至少一个为所述预设壁部单元。
  4. 根据权利要求2所述的电池,其特征在于,所述壳体还包括自所述连接壁部延伸出的封印部,所述封印部的至少部分弯折设置至朝向所述第一端壁延伸,所述封印部包括:
    第二侧壁单元,自所述第二壁部单元延伸出并朝向所述第一端壁延伸;以及
    第三侧壁单元,自所述第三壁部单元延伸出并朝向所述第一端壁延伸。
  5. 根据权利要求4所述的电池,其特征在于,
    所述阳极极片具有与所述第二壁部单元相对设置的第二侧边,所述第二侧边与所述第二侧壁单元的外表面之间的距离为G 2,所述第二侧边超出所述阴极极片的距离为D 2,1/3≤G 2/D 2≤4/5,其中,0.7mm≤D 2≤1.5mm;和/或,
    所述阳极极片具有与所述第三壁部单元相对设置的第三侧边,所述第三侧边与所述第三侧壁单元的外表面之间的距离为G 3,所述第三侧边超出所述阴极极片的距离为D 3,1/3≤G 3/D 3≤4/5,其中,0.7mm≤D 3≤1.5mm。
  6. 根据权利要求5所述的电池,其特征在于,所述封印部还包括:
    第四侧壁单元,自所述第四壁部单元延伸出并朝向所述第一端壁延伸;以及
    第六侧壁单元,自所述第六壁部单元延伸出并朝向所述第一端壁延伸。
  7. 根据权利要求6所述的电池,其特征在于,
    所述阳极极片具有与所述第四壁部单元相对设置的第四侧边,所述第四侧边与所述第四侧壁单元的外表面之间的距离为G 4,所述第四侧边超出所述阴极极片的距离为D 4,1/3≤G 4/D 4≤4/5,其中,0.7mm≤D 4≤1.5mm;和/或,
    所述阳极极片具有与所述第六壁部单元相对设置的第六侧边,所述第六侧 边与所述第六侧壁单元的外表面之间的距离为G 6,所述第六侧边超出所述阴极极片的距离为D 6,1/3≤G 6/D 6≤4/5,其中,0.7mm≤D 6≤1.5mm。
  8. 根据权利要求7所述的电池,其特征在于,
    所述封印部还包括第一弧形侧壁单元,所述第二侧壁单元与所述第四侧壁单元之间通过所述第一弧形侧壁单元过渡,所述第一弧形侧壁单元的半径R 1满足:0.85(G 2+D 2)≤R 1≤1.0(G 2+D 2),所述第二侧边及所述第四侧边之间通过第一弧形部过渡;和/或,
    所述封印部还包括第二弧形侧壁单元,所述第三侧壁单元与所述第四侧壁单元之间通过所述第二弧形侧壁单元过渡,所述第二弧形侧壁单元的半径R 2满足:0.85(G 3+D 3)≤R 2≤1.0(G 3+D 3),所述阳极极片具有与所述第三壁部单元相对设置的第三侧边,所述第三侧边及所述第四侧边之间通过第二弧形部过渡;和/或,
    所述封印部还包括第三弧形侧壁单元,所述第三侧壁单元与所述第六侧壁单元之间通过所述第三弧形侧壁单元过渡,所述第一弧形侧壁单元的半径R 3满足:0.85(G 3+D 3)≤R 3≤1.0(G 3+D 3),所述第三侧边及所述第六侧边之间通过第三弧形部过渡。
  9. 根据权利要求7所述的电池,其特征在于,所述第二侧边与所述第二壁部单元之间的距离为L 2,所述连接壁部的厚度T满足:
    1/7≤T/L 2≤1/3;和/或,
    1/25≤T/G 2≤3/10。
  10. 根据权利要求4所述的电池,其特征在于,所述封印部中弯折至朝向所述第一端壁延伸的部分粘接固定于所述连接壁部。
  11. 一种电子装置,其特征在于,包括如权利要求1至10中任一项所述的电池。
PCT/CN2021/135125 2021-12-02 2021-12-02 电池与电子装置 WO2023097614A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21966046.1A EP4394992A1 (en) 2021-12-02 2021-12-02 Battery and electronic device
CN202180031546.1A CN115552701A (zh) 2021-12-02 2021-12-02 电池与电子装置
PCT/CN2021/135125 WO2023097614A1 (zh) 2021-12-02 2021-12-02 电池与电子装置
US18/622,406 US20240243396A1 (en) 2021-12-02 2024-03-29 Battery and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/135125 WO2023097614A1 (zh) 2021-12-02 2021-12-02 电池与电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/622,406 Continuation US20240243396A1 (en) 2021-12-02 2024-03-29 Battery and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2023097614A1 true WO2023097614A1 (zh) 2023-06-08

Family

ID=84722829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135125 WO2023097614A1 (zh) 2021-12-02 2021-12-02 电池与电子装置

Country Status (4)

Country Link
US (1) US20240243396A1 (zh)
EP (1) EP4394992A1 (zh)
CN (1) CN115552701A (zh)
WO (1) WO2023097614A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162533A (ja) * 2015-02-27 2016-09-05 株式会社豊田自動織機 蓄電装置およびその製造方法
CN108206247A (zh) * 2017-10-20 2018-06-26 西安中兴新软件有限责任公司 一种电芯、电子设备和电芯的封装方法
CN108899600A (zh) * 2018-05-17 2018-11-27 中国电力科学研究院有限公司 一种l型锂离子电池及其化成方法
CN111584920A (zh) * 2020-05-11 2020-08-25 Oppo广东移动通信有限公司 异形电池的制备方法
WO2021195852A1 (zh) * 2020-03-30 2021-10-07 宁德新能源科技有限公司 电池组件、应用所述电池组件的电池及电子装置
WO2021195909A1 (zh) * 2020-03-31 2021-10-07 宁德新能源科技有限公司 电芯及应用所述电芯的电化学装置
WO2021195924A1 (zh) * 2020-03-31 2021-10-07 宁德新能源科技有限公司 电芯结构及电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162533A (ja) * 2015-02-27 2016-09-05 株式会社豊田自動織機 蓄電装置およびその製造方法
CN108206247A (zh) * 2017-10-20 2018-06-26 西安中兴新软件有限责任公司 一种电芯、电子设备和电芯的封装方法
CN108899600A (zh) * 2018-05-17 2018-11-27 中国电力科学研究院有限公司 一种l型锂离子电池及其化成方法
WO2021195852A1 (zh) * 2020-03-30 2021-10-07 宁德新能源科技有限公司 电池组件、应用所述电池组件的电池及电子装置
WO2021195909A1 (zh) * 2020-03-31 2021-10-07 宁德新能源科技有限公司 电芯及应用所述电芯的电化学装置
WO2021195924A1 (zh) * 2020-03-31 2021-10-07 宁德新能源科技有限公司 电芯结构及电池
CN111584920A (zh) * 2020-05-11 2020-08-25 Oppo广东移动通信有限公司 异形电池的制备方法

Also Published As

Publication number Publication date
US20240243396A1 (en) 2024-07-18
CN115552701A (zh) 2022-12-30
EP4394992A1 (en) 2024-07-03

Similar Documents

Publication Publication Date Title
US7862928B2 (en) Can for a battery and battery using the same
EP2038942B1 (en) Safety kit for secondary battery
JP5096671B2 (ja) 密閉角形電池
EP1999805B1 (en) Secondary battery of improved safety
US8808908B2 (en) Battery module of novel structure
US20080286644A1 (en) Label for secondary battery and secondary battery using the label
EP1901365A1 (en) Battery cell with small groove at surface and battery pack including the same
EP2325924A1 (en) Secondary battery comprising a short circuit inducing member
US11881588B2 (en) Secondary battery and battery module
WO2021143481A1 (zh) 二次电池、电池模块以及使用电池作为电源的装置
KR101440891B1 (ko) 이차 전지
KR101182274B1 (ko) 이차 전지 및 그 제조방법
JP2011081925A (ja) 非水固体電解質電池
EP3460866B1 (en) Flat cells
US20240030526A1 (en) Cell and electrical device
WO2023097614A1 (zh) 电池与电子装置
US20130029208A1 (en) Rechargeable battery
JP5756638B2 (ja) 角形電池用電極体ユニット
KR101924424B1 (ko) 전극 리드 굽힘 구조를 갖는 플렉서블 전지
CN112952242B (zh) 电芯组件、电池模组及电子设备
JP2015095433A (ja) ラミネート外装電池
JP5442072B2 (ja) 密閉角形電池
WO2023116539A1 (zh) 电池和用电装置
WO2023245350A1 (zh) 电化学装置及用电设备
KR20240104579A (ko) 이차전지 및 이를 포함하는 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966046

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202417002192

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2021966046

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021966046

Country of ref document: EP

Effective date: 20240327

NENP Non-entry into the national phase

Ref country code: DE