WO2023097589A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023097589A1
WO2023097589A1 PCT/CN2021/134949 CN2021134949W WO2023097589A1 WO 2023097589 A1 WO2023097589 A1 WO 2023097589A1 CN 2021134949 W CN2021134949 W CN 2021134949W WO 2023097589 A1 WO2023097589 A1 WO 2023097589A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing offset
offset value
specific timing
network device
cell
Prior art date
Application number
PCT/CN2021/134949
Other languages
English (en)
French (fr)
Inventor
马东俊
赵楠德
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/134949 priority Critical patent/WO2023097589A1/zh
Priority to CN202180101407.1A priority patent/CN118104327A/zh
Publication of WO2023097589A1 publication Critical patent/WO2023097589A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the embodiments of the present application relate to the communication field, and in particular to a wireless communication method, a terminal device, and a network device.
  • the terminal device transmits according to a certain timing relationship. For example, if the terminal device receives the first downlink transmission on time slot n, the first downlink transmission can be associated with time slot n+ The first uplink transmission on K.
  • NR New Radio
  • an offset parameter K offset is introduced in the NTN system, and the K offset parameter is applied to the relevant timing relationship.
  • a cell-specific timing offset value (cell specific K_offset) is used to determine a timing relationship for uplink transmission.
  • the terminal device needs to determine the timing relationship for uplink transmission according to the terminal device-specific timing offset value (UE specific K_offset). Since in the NTN system, network equipment is mobile, there may be situations where UE specific K_offset and cell specific K_offset are different. In this case, how to configure UE specific K_offset to ensure the normal operation of terminal equipment is an urgent problem to be solved
  • the present application provides a wireless communication method, a terminal device and a network device.
  • the network device can ensure the normal operation of the terminal device by configuring an appropriate cell-specific timing offset value for the terminal device.
  • a wireless communication method including: a terminal device receives first indication information and second indication information of a network device, wherein the first indication information is used to indicate a target cell-specific timing offset value, The second indication information is used to indicate a differential terminal device-specific timing offset value, where the differential terminal device-specific timing offset value is a timing offset value greater than or equal to zero; The offset value and the differential terminal device-specific timing offset value are used to determine the target terminal device-specific timing offset value.
  • a wireless communication method including: a network device sending first indication information and second indication information to a terminal device, wherein the first indication information is used to indicate a target cell-specific timing offset value, The second indication information is used to indicate a differential terminal equipment-specific timing offset value, and the differential terminal equipment-specific timing offset value is a timing offset value greater than or equal to zero.
  • a terminal device configured to execute the method in the foregoing first aspect or various implementation manners thereof.
  • the terminal device includes a functional module for executing the method in the above first aspect or its various implementation manners.
  • a network device configured to execute the method in the foregoing second aspect or various implementation manners thereof.
  • the network device includes a functional module for executing the method in the above second aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above first aspect or its various implementations.
  • a sixth aspect provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above second aspect or its various implementations.
  • a chip is provided for implementing any one of the above first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first to second aspects or any of the implementations thereof. method.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • a ninth aspect provides a computer program product, including computer program instructions, the computer program instructions cause a computer to execute any one of the above first to second aspects or the method in each implementation manner.
  • a computer program which, when running on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner.
  • the network device configures the terminal device with a cell-specific timing offset value and a differential terminal device-specific timing offset value, and further, the terminal device can The offset value is used to determine the specific timing offset value of the terminal equipment, so as to ensure the normal operation of the terminal equipment.
  • FIGS. 1A-1C are schematic diagrams of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of an NTN scenario based on transparent forwarding satellites.
  • Fig. 3 is a schematic diagram of an NTN scenario based on regenerative and forwarding satellites.
  • FIG. 4 is a schematic diagram of cell coverage under the NTN system provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a wireless communication method provided according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of configuring a cell-specific timing offset value according to a configurable range of the cell-specific timing offset value.
  • Fig. 7 is a schematic diagram of performing cell-specific timing offset value configuration according to the running track of the network equipment.
  • Fig. 8 is a schematic diagram of configuring a cell-specific timing offset value according to the coverage of a network device.
  • Fig. 9 is a schematic diagram of configuring a cell-specific timing offset value according to time information.
  • Fig. 10 is a schematic diagram of configuring cell-specific timing offset values based on events.
  • Fig. 11 is a schematic diagram of a wireless communication method according to another embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • Fig. 14 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 15 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • Fig. 16 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) network deployment scenario.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent network deployment scenario
  • the communication system in the embodiment of the present application can be applied to an unlicensed spectrum, wherein the unlicensed spectrum can also be considered as a shared spectrum; or, the communication system in the embodiment of the present application can also be applied to a licensed spectrum, wherein the licensed spectrum can also be Considered as unshared spectrum.
  • Non-Terrestrial Networks NTN
  • TN terrestrial communication network
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in the WLAN, and can be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal equipment involved in the embodiments of the present application may also be referred to as terminal, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station , remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • Terminal equipment can also be fixed or mobile.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • gNB network equipment in the network or the network equipment in the future evolved PLMN network or the network equipment in the NTN network, etc.
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, in water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • FIG. 1A is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • a communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1A exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminals within the coverage area.
  • the device is not limited in the embodiment of this application.
  • FIG. 1B is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • a terminal device 1101 and a satellite 1102 are included, and wireless communication can be performed between the terminal device 1101 and the satellite 1102 .
  • the network formed between the terminal device 1101 and the satellite 1102 may also be referred to as NTN.
  • the satellite 1102 may function as a base station, and the terminal device 1101 and the satellite 1102 may communicate directly. Under the system architecture, the satellite 1102 can be referred to as a network device.
  • the communication system may include multiple network devices 1102, and the coverage of each network device 1102 may include other numbers of terminal devices, which is not limited in this embodiment of the present application.
  • FIG. 1C is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • it includes a terminal device 1201 , a satellite 1202 and a base station 1203 , wireless communication can be performed between the terminal device 1201 and the satellite 1202 , and communication can be performed between the satellite 1202 and the base station 1203 .
  • the network formed among the terminal equipment 1201, the satellite 1202 and the base station 1203 may also be referred to as NTN.
  • the satellite 1202 may not have the function of a base station, and the communication between the terminal device 1201 and the base station 1203 needs to be relayed through the satellite 1202 .
  • the base station 1203 may be called a network device.
  • the communication system may include multiple network devices 1203, and the coverage of each network device 1203 may include other numbers of terminal devices, which is not limited in this embodiment of the present application.
  • Fig. 1A-Fig. 1C are only illustrations of the systems to which this application is applicable.
  • the methods shown in the embodiments of this application can also be applied to other systems, for example, 5G communication systems, LTE communication systems, etc. , which is not specifically limited in this embodiment of the present application.
  • the wireless communication system shown in FIG. 1A-FIG. 1C may further include a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF) and other network entities, which are not limited in this embodiment of the present application.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions, and the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • the indication information in the embodiment of the present application is configured by at least one of the following signaling: system message, physical layer signaling (such as downlink control information (Downlink Control Information, DCI)), radio resource control (Radio Resource Control, RRC) Signaling and Media Access Control Element (Media Access Control Control Element, MAC CE).
  • system message such as downlink control information (Downlink Control Information, DCI)
  • radio resource control Radio Resource Control, RRC
  • Media Access Control Element Media Access Control Element
  • predefined can be realized by pre-saving corresponding codes, tables, or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices). Its specific implementation manner is not limited. For example, the predefined ones may refer to those defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in the present application.
  • Satellites can be divided into two types based on the functions they provide: transparent payload and regenerative payload.
  • transparent forwarding satellites it only provides the functions of radio frequency filtering, frequency conversion and amplification, and only provides transparent forwarding of signals without changing the waveform signal it forwards.
  • regenerative transponder satellites in addition to providing radio frequency filtering, frequency conversion and amplification functions, it can also provide demodulation/decoding, routing/conversion, coding/modulation functions, which have part or all of the functions of the base station.
  • one or more gateways may be included for communication between satellites and terminal equipment.
  • FIG. 2 and FIG. 3 respectively show schematic diagrams of NTN scenarios based on transparent forwarding satellites and regenerative forwarding satellites.
  • the communication between the gateway and the satellite is through the feeder link, and the communication between the satellite and the terminal device can be through the service link.
  • the satellites communicate with each other through the InterStar link, and the gateway and the satellite communicate through the feeder link.
  • the satellite and the terminal Devices can communicate through service links.
  • the feeder link may also be referred to as a feeder link.
  • FIG. 1 to FIG. 3 are only examples of application scenarios of the present application, and should not be construed as limitations on the present application.
  • the NTN system may also include an unmanned aircraft system (Unmanned Aircraft System).
  • Unmanned Aircraft System Unmanned Aircraft System
  • UAS platforms include, but are not limited to, High Altitude Platform Stations (HAPS).
  • HAPS High Altitude Platform Stations
  • FIG. 4 is a schematic diagram of cell coverage under the NTN system provided by an embodiment of the present application.
  • the field of view of the satellite depends on the antenna pattern and the minimum elevation angle, and the satellite (or UAS platform) generates multiple beams for a given service area within its field of view, and the coverage of each beam Can be called cell coverage and the beam is usually elliptical.
  • FIG. 4 only shows the coverage of one beam.
  • multiple cells may be formed by multiple beams, which is not specifically limited in this application.
  • the coverage of the network device may refer to the coverage of all beams of the satellite.
  • LEO satellite cell scenarios can include Earth moving cells (Earth moving cells) scenarios and Earth fixed cells (Earth fixed cells) scenarios, wherein, the Earth moving cells scenario means that as the satellite moves, the cell also moves with it, and the distance between the satellite and the cell The relative position remains unchanged.
  • the Earth fixed cells scenario means that as the satellite moves, the position of the cell on the ground is fixed, but because the satellite is moving at a high speed, the size or angle of the fixed cell covered by the satellite will change.
  • timing advance timing advance
  • TA timing advance
  • Koffset is an enhanced timing offset value
  • Koffset is greater than or equal to the TA of the terminal device.
  • a cell specific timing offset value (cell specific K_offset) may be configured through a system message.
  • the terminal device needs to determine the timing relationship for uplink transmission according to the terminal device-specific timing offset value (UE specific K_offset).
  • UE specific K_offset terminal device-specific timing offset value
  • the network equipment is mobile, and there may be a situation where the UE specific K_offset at a certain moment is greater than the current cell specific K_offset, which will cause the terminal equipment to lose connection and fail to work normally. Therefore, how to configure an appropriate cell-specific timing It is an urgent problem to be solved to determine the offset value to ensure the normal operation of the terminal equipment.
  • FIG. 5 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 5, the method 200 includes the following content:
  • the terminal device receives first indication information and second indication information from the network device, wherein the first indication information is used to indicate the target cell-specific timing offset value, and the second indication information is used to indicate the differential terminal device-specific timing offset value;
  • the terminal device determines a target terminal device-specific timing offset value according to the target cell-specific timing offset value and the differential terminal device-specific timing offset value.
  • the method 200 can be applied to an NTN system, such as a LEO satellite cell scenario, or other scenarios where the RTT between the network device and the terminal device is relatively large.
  • the network device may be a network device in the NTN system, such as a satellite.
  • the first indication information is sent through a system message or MAC CE.
  • the second indication information is sent through MAC CE.
  • the differential terminal equipment-specific timing offset value (denoted as differential UE specific K_offset) may be a network device based on the cell-specific timing offset value (denoted as cell specific K_offset) and the terminal equipment-specific timing offset value at the current moment ( It is recorded as UE specific K_offset).
  • differential UE specific K_offset is the difference between cell specific K_offset minus UE specific K_offset.
  • the terminal device determines the target terminal device-specific timing offset value according to the target cell-specific timing offset value and the differential terminal device-specific timing offset value, which may include:
  • the terminal device in the connected state can determine the specific timing offset value of the target terminal device according to the specific timing offset value of the target cell and the differential terminal device specific timing offset value, and further based on the specific timing offset value of the target terminal device.
  • the uplink transmission of the timing offset value is beneficial to ensure the timing relationship between the terminal device and the network device.
  • the value of differential UE specific K_offset is defined to be greater than or equal to 0.
  • the network device is mobile, such as the Earth fixed cells scenario, there may be a situation where the UE specific K_offset at a certain moment is greater than the current cell specific K_offset, in this case, according to the above differential method, the network device cannot provide Configure a correct UE specific K_offset.
  • the configuration of the target cell-specific timing offset value is further designed to ensure that the network device can configure a correct UE for the terminal device based on the differential method. specific K_offset, to ensure the normal operation of the terminal equipment.
  • the target cell-specific timing offset value may be determined according to at least one of the following:
  • a first value range where the first value range is a configurable value range of a cell-specific timing offset value
  • the target cell-specific timing offset value may be updated periodically, or updated based on a motion track, or updated based on a coverage area.
  • Determining the target cell-specific timing offset value configured for the terminal device based on the above information is conducive to ensuring that the cell specific K_offset configured for the terminal device is on a certain running track, or a certain coverage area, or is the largest cell specific K_offset within a period of time, that is The UE specific K_offset is less than or equal to the cell specific K_offset, so that based on the differential method, the network device can obtain a non-negative differential UE specific K_offset.
  • different operating locations of the network device may correspond to different coverage areas, or in other words, correspond to different cells.
  • the cell For example, for the Earth moving cells scenario, as the satellite moves, the cell also moves.
  • the position of the cell on the ground is fixed, but the distance between the satellite and the cell angle will change.
  • the running time information of the network device may refer to absolute time information, such as the current time, or may also refer to relative time information, such as the relative time information in a running cycle of the network device at the current time .
  • the running time information of the network device may refer to a certain moment in 24 hours.
  • the running time information of the network device may refer to a relative time of the current moment in 8 hours.
  • Embodiment 1 The target cell-specific timing offset value is determined according to the first value range.
  • the cell-specific timing offset value corresponds to an optional value range, that is, a first value range.
  • the target cell-specific timing offset value is the largest cell-specific timing offset value in the first value range.
  • the target cell-specific timing offset value By configuring the target cell-specific timing offset value to be the maximum value in the first value range, it is beneficial to ensure that no matter where the network device operates, the cell specific K_offset is greater than the UE specific K_offset, that is, the differential UE specific K_offset is a positive value, thus A reasonable UE specific K_offset can be obtained according to the differential method to ensure the normal operation of the terminal equipment.
  • the first value range is predefined or configured by the network device.
  • the first value range is 0-1023ms.
  • the network device may configure the target cell-specific timing offset value as 1023ms.
  • the first value range is related to application scenarios.
  • the first value range may be [239]–[542]ms
  • the first value range may be [47]–[395]ms
  • the first value range A value range can be [4]–[49]ms, etc., or all scenarios use the same value range, for example, [0]–[542]ms or [0]–[1023]ms are used scope.
  • the maximum value of the first value range may be determined according to a maximum round trip delay (Round Trip Time, RTT) and a minimum RTT between the network device and the terminal device. For example, it is determined according to the operating track of the network device and the difference between the maximum RTT and the minimum RTT between the terminal devices in the cell.
  • RTT Round Trip Time
  • the maximum RTT between the network device and the terminal device can be the RTT of the service link and the feeder link at an elevation angle equal to 10 degrees
  • the minimum RTT between the network device and the terminal device can be the RTT of the service link and the RTT of the feeder link at an elevation angle equal to 90 degrees.
  • the maximum value of the first value range may be determined according to the running track of the network device and the maximum RTT between the terminal devices in the cell. For example, it is determined according to the maximum RTT between the running track of the network device and the terminal device at the center of the cell, or according to the maximum RTT between the running track of the network device and the terminal device at the edge of the cell.
  • the network device only needs to configure the specific timing offset value of the target cell in the initial access stage, and does not need to follow the movement trajectory or coverage of the network device, etc. Updating the specific timing offset value of the target cell is beneficial to reducing the implementation complexity of the network equipment, and at the same time reducing the signaling overhead.
  • Embodiment 2 The target cell-specific timing offset value is determined according to the operating location of the network equipment.
  • the network device can configure an appropriate cell-specific timing offset value for the network device based on the operating location.
  • the network device may determine the target cell-specific timing offset value according to the segment of the target operating track corresponding to the operating location.
  • the running track of the network device may be divided into multiple running track segments, and each running track segment corresponds to a corresponding maximum cell-specific timing offset value.
  • the network device can determine the target cell-specific timing offset value configured for the terminal device according to the segment of the running track corresponding to its running position.
  • the running track of the network device since the running track of the network device is known, the running track of the network device is segmented, and the maximum cell-specific timing offset value corresponding to each running track segment is further determined. In this way, the network device can be based on the running Trajectory segmentation performs updating of cell-specific timing offset values.
  • the maximum cell-specific timing offset value corresponding to each operating trajectory segment may be based on each operating location in the operating trajectory segment and the terminal equipment within the coverage area of the network device corresponding to the operating location determined by the maximum RTT between.
  • the coverage area corresponding to the operating location of the network device may refer to a cell corresponding to the operating location of the network device.
  • the maximum cell-specific timing offset value corresponding to the running track segment may be determined according to the maximum value of the maximum RTT between all running positions in the running track segment and the terminal devices within the corresponding coverage.
  • the maximum cell-specific timing offset value corresponding to each operating position in the operating track segment is determined according to the maximum cell-specific timing offset value corresponding to each operating position in the operating track segment.
  • the maximum value among the maximum cell-specific timing offset values corresponding to all operating positions in the operating track segment may be determined as the maximum cell-specific timing offset value corresponding to the operating track segment.
  • the terminal device of the network device within the coverage area corresponding to the operating position may be the terminal device at the center of the cell, or it may be the terminal device at the edge of the cell, for example, the terminal device in the cell is farthest from the operating position terminal equipment at the location.
  • the maximum cell-specific timing offset value corresponding to the operating position 1 is based on the The determination of the RTT between the terminal equipment at location 1 and the network equipment at operating location 1, the determination of the maximum cell-specific timing offset values corresponding to other operating locations is similar, and further, the maximum cell-specific timing offset values corresponding to all operating locations can be included in The maximum value of is determined as the maximum cell-specific timing offset value corresponding to the running trajectory segment.
  • the network device may determine the maximum RTT between the terminal device and the network device at each of the n operating positions, and further determine the operating trajectory based on the maximum value of the maximum RTT corresponding to each operating position The maximum cell-specific timing offset value corresponding to the segment.
  • the maximum cell-specific timing offset value corresponding to the running track segment is determined according to the maximum RTT between the network device and the terminal device in the running track segment. It is beneficial to ensure that no matter where the network device runs in the running track segment, the cell specific K_offset is greater than the UE specific K_offset, that is, the differential UE specific K_offset is a positive value, so that a reasonable UE specific K_offset can be obtained according to the differential method , to ensure the normal operation of the terminal equipment.
  • the network device's running track from t0 to t1 corresponds to the first running track segment
  • the running track from t1 to t2 corresponds to the second running track segment
  • the first running track segment and the second running track segment The track segments respectively correspond to a maximum cell-specific timing offset value.
  • the maximum cell-specific timing offset value corresponding to the first operating track segment may be determined according to the RTT between each operating position in the first operating track segment of the network device and the terminal device in the corresponding coverage area, or in other words, Determine according to the maximum cell-specific timing offset value corresponding to each operating position in the first operating track segment.
  • the maximum cell-specific timing offset value corresponding to the second running track segment can be determined according to the maximum RTT between each running position in the second running track segment of the network device and the terminal device in the corresponding coverage area, or in other words, according to The maximum cell-specific timing offset value corresponding to each operating position in the second operating track segment is determined.
  • cell specific K_offset 1 the maximum cell-specific timing offset value corresponding to the operating position of the network device at t0 is cell specific K_offset 1
  • cell specific K_offset 2 the maximum cell-specific timing offset value corresponding to the operating position of t1 is cell specific K_offset 2
  • cell specific K_offset 2 is the maximum cell-specific timing offset value corresponding to the first running track segment.
  • the maximum cell-specific timing offset value corresponding to the operating position of the network device at t2 is cell specific K_offset 3, where cell specific K_offset 3 is greater than cell specific K_offset 2, it can be determined that cell specific K_offset 3 corresponds to the second operating track segment The maximum cell-specific timing offset value for .
  • the target cell-specific timing offset value configured for the terminal device is cell specific K_offset 2
  • the terminal device is configured with The target cell-specific timing offset value configured by the device is cell specific K_offset 3, that is, when the network device runs into a certain running track segment, the cell-specific timing offset value configured for the terminal device is the maximum corresponding to the running track segment
  • the cell-specific timing offset value is beneficial to ensure that no matter where the network device runs in the running track segment, the cell specific K_offset is greater than the UE specific K_offset, that is, the differential UE specific K_offset is a positive value, so that it can be guaranteed to be obtained according to the differential method A reasonable UE specific K_offset to ensure the normal operation of the terminal equipment.
  • the network device may update the cell-specific timing offset value based on the running track. For example, when the network device runs to the next running track segment, the cell-specific timing offset value is updated to the maximum cell-specific timing offset value corresponding to the running track segment.
  • Embodiment 3 The target cell-specific timing offset value is determined according to the coverage of the network equipment.
  • the running track of the network device may correspond to multiple coverage areas, and each coverage area corresponds to a maximum cell-specific timing offset value.
  • the coverage of the network device may change with the movement of the network device, therefore, the RTT between the network device and the terminal device may also change, therefore, based on the network device For the coverage area, configure an appropriate cell-specific timing offset value for the terminal device.
  • the corresponding coverage of the network device within a period of running trajectory may be considered as constant, or the corresponding coverage within a period of time may be considered as constant.
  • the target cell-specific timing offset value may be determined according to the maximum RTT between the network device and the terminal device within its coverage.
  • the running track of the network device since the running track of the network device is known, the corresponding coverage of the network device in the running track is also known. Therefore, according to the network device and the terminal device within the coverage of the network device The maximum RTT determines the maximum cell-specific timing offset value corresponding to each coverage area.
  • the terminal device within the coverage of the network device may be the terminal device at the center of the cell, or it may be the terminal device at the edge of the cell, for example, the terminal at the position farthest from the operating position in the cell equipment.
  • the network device when the coverage of the network device is updated, the network device configures the maximum cell-specific timing offset value corresponding to the updated coverage, which is beneficial to ensure the cell specific within the updated coverage.
  • K_offset is greater than UE specific K_offset, that is, differential UE specific K_offset is a positive value, so that a reasonable UE specific K_offset can be obtained according to the differential method to ensure the normal operation of the terminal device.
  • the target cell-specific timing offset value may be configured as the maximum cell-specific timing offset value corresponding to the coverage area 1.
  • the maximum cell-specific timing offset value corresponding to the coverage area 1 may be determined according to the RTT between the network equipment and the terminal equipment in the coverage area 1. For example, it may be determined according to the maximum RTT between the network device and the terminal device within the coverage area 1 .
  • the RTT between the network device and the terminal device at position 1 within the coverage area 1 corresponds to cell specific K_offset 1
  • the RTT between the network device and the terminal device at position 2 within the coverage area corresponds to cell specific K_offset 2
  • the RTT between the network device and the terminal device at position n within the coverage corresponds to cell specific K_offset n
  • cell specific K_offset n is the maximum value of the above cell specific K_offset, that is, the network device and the position n within the coverage
  • the RTT between the terminal devices is the largest, then it can be determined that the maximum cell-specific timing offset value corresponding to the coverage area 1 is cell specific K_offset n.
  • the target cell-specific timing offset value configured for the terminal device is cell specific K_offset n, which is beneficial to ensure that the cell specific K_offset is greater than the UE specific K_offset, that is, the differential UE specific K_offset is Positive value, so that a reasonable UE specific K_offset can be obtained according to the differential method to ensure the normal operation of the terminal equipment.
  • the network device can update the cell-specific timing offset value based on the coverage area. For example, when the coverage area changes, the target cell-specific timing offset value is updated to the maximum value corresponding to the changed coverage area. Cell-specific timing offset value.
  • Embodiment 4 The target cell-specific timing offset value is determined according to the running time information of the network device.
  • the network device can configure an appropriate cell-specific timing offset value configuration for the terminal device based on the runtime information.
  • the network device may determine the target cell-specific timing offset value according to the time period corresponding to the running time information of the network device.
  • an operating cycle of a network device (for example, the time it takes to orbit the earth once) can be divided into multiple time periods, and each time period corresponds to a corresponding maximum cell-specific timing offset value.
  • the network device can determine the target cell-specific timing offset value configured for the terminal device according to the corresponding time period in one running cycle according to the current running time information of the network device.
  • the time period may correspond to the segment of the running track in Embodiment 2, or correspond to the coverage range in Embodiment 3. That is, in different time periods, it can be considered that the network equipment operates in different operation track segments, or corresponds to different coverage areas.
  • the maximum cell-specific timing offset value corresponding to each time period is determined according to the maximum RTT between the network device and the terminal device within the coverage of the network device corresponding to the time period.
  • the maximum cell-specific timing offset value corresponding to each time period may be determined according to the maximum RTT between each operating location within the time period and a terminal device within the coverage of the network device corresponding to the operating location.
  • the maximum cell-specific timing offset value corresponding to the time period may be determined according to the maximum value of the maximum RTT between all operating positions within the time period and the terminal devices within the corresponding coverage.
  • the maximum cell-specific timing offset value corresponding to each time period is determined according to the maximum cell-specific timing offset value corresponding to each operating position within the time period. For example, the maximum value among the maximum cell-specific timing offset values corresponding to all operating positions within the time period may be determined as the maximum cell-specific timing offset value corresponding to the time period.
  • the terminal device of the network device within the coverage area corresponding to the operating position may be the terminal device at the center of the cell, or it may be the terminal device at the edge of the cell, for example, the terminal device in the cell is farthest from the operating position terminal equipment at the location.
  • the maximum cell-specific timing offset value corresponding to the time period from t0 to t1 is cell specific K_offset 2, where cell specific K_offset 2 is the maximum cell-specific timing offset value corresponding to this period of time,
  • the maximum cell-specific timing offset value corresponding to the time period from t1 to t2 is cell specific K_offset 3, where cell specific K_offset 3 is the maximum cell-specific timing offset value corresponding to this period of time.
  • the target cell-specific timing offset configured by the network device for the terminal device is cell specific K_offset 2
  • the target cell-specific timing offset configured by the network device for the terminal device The value is cell specific K_offset 3, which can ensure that within a period of time, the cell specific K_offset is greater than the UE specific K_offset, so that a reasonable UE specific K_offset can be obtained according to the differential method to ensure the normal operation of the terminal device.
  • the network device can periodically update the cell-specific timing offset value, for example, when the next time period arrives, update the target cell-specific timing offset value to the maximum value corresponding to the next time period Cell-specific timing offset value.
  • the target cell-specific timing offset value may be updated periodically, for example, when the next time period arrives, the target cell-specific timing offset value is updated to the next time period
  • the corresponding maximum cell-specific timing offset value, or the target cell-specific timing offset value can also be updated based on the running track, for example, when the network device runs to the next running track segment, the target cell-specific timing offset value
  • the offset value is updated to the maximum cell-specific timing offset value corresponding to the next running trajectory segment, or the target cell-specific timing offset value can also be updated based on the coverage, for example, when the coverage of the network device changes, the The target cell-specific timing offset value is updated to the maximum cell-specific timing offset value corresponding to the changed coverage area.
  • the first indication information is sent based on an event trigger. That is, the target cell-specific timing offset value may be updated based on event triggers.
  • the event may refer to any event that causes the cell-specific timing offset value to be updated, for example, the network device moves to another track segment, or the coverage of the network device changes, or moves to enter Wait for the next time period.
  • the first indication information may be sent when the differential terminal device-specific timing offset value satisfies the first condition. It can be considered that the current UE specific K_offset is relatively large (or, with the operation of the network device, it will become larger and larger, or that the UE specific K_offset will enter an increasing trend) if the differential terminal device dedicated timing offset value satisfies the first condition. Increase the cell specific K_offset to ensure that the cell specific K_offset is greater than the UE specific K_offset, that is, the differential UE specific K_offset is a positive value.
  • the first indication information is sent when the differential UE specific K_offset is greater than or equal to the first threshold.
  • the differential UE specific K_offset is greater than or equal to the first threshold, as the network device moves, it can be considered that the UE specific K_offset will increase (that is, the UE specific K_offset will enter an increasing trend).
  • the cell specific K_offset will be updated A larger value is beneficial to ensure that the cell specific K_offset is greater than the UE specific K_offset, that is, the differential UE specific K_offset is a positive value.
  • the first threshold is predefined or configured by the network device.
  • the first threshold is a maximum value of a second value range
  • the second value range is a configurable value range of a differential terminal device-specific timing offset value.
  • the first threshold may be 63ms.
  • the second value range is predefined or configured by the network device.
  • the first indication information is sent when the difference between the cell-specific timing offset value and the reference cell-specific timing offset value (denoted as reference cell specific K_offset) is greater than or equal to the second threshold.
  • the reference cell-specific timing offset value is determined according to the round-trip delay between the reference point within the coverage of the network device and the network device.
  • the reference point may be a center point of the cell, or may be a point in the cell that is closest to the network device, or a point in the cell that is farthest from the network device.
  • the difference between reference cell specific K_offset and cell specific K_offset is greater than or equal to the second threshold, as the network device moves, it can be considered that UE specific K_offset will increase (that is, UE specific K_offset will increase)
  • updating the cell specific K_offset to a larger value is beneficial to ensure that the cell specific K_offset is greater than the UE specific K_offset, that is, the differential UE specific K_offset is a positive value.
  • the target cell-specific timing offset value indicated by the first indication information may be determined according to the methods described in Embodiment 1 to Embodiment 4 above. , or, it may also be a timing offset value greater than the currently used cell-specific timing offset value, which is not limited in this application.
  • network devices configure cell specific K_offset to the maximum value within the configurable range of cell specific K_offset, or configure cell specific K_offset for terminal devices according to the operating track, coverage or time information of network devices, which is conducive to ensuring Configure a reasonable cell specific K_offset for the terminal device, and then ensure that the UE specific K_offset is smaller than the cell specific K_offset, that is, the differential UE specific K_offset is a positive value, so as to ensure that a reasonable UE specific K_offset is obtained according to the differential method, and the normal operation of the terminal device is guaranteed.
  • FIG. 11 is a schematic flowchart of a wireless communication method 300 according to another embodiment of the present application. As shown in FIG. 11, the method 300 includes the following content:
  • the network device sends first indication information and second indication information to the terminal device, wherein the first indication information is used to indicate the target cell-specific timing offset value, and the second indication information is used to indicate the differential terminal device-specific A timing offset value, where the differential terminal equipment-specific timing offset value is a timing offset value greater than or equal to zero.
  • the target cell-specific timing offset value is determined according to at least one of the following:
  • a first value range where the first value range is a configurable value range of a cell-specific timing offset value
  • the operating location of the network device is the operating location of the network device
  • the target cell-specific timing offset value is the largest cell-specific timing offset value in a first value range
  • the first value range is a configurable cell-specific timing offset value. range of values.
  • the target cell-specific timing offset value is determined according to the operating location of the network device.
  • the target cell-specific timing offset value is determined according to the segmented target operating trajectory corresponding to the operating location of the network device, wherein the operating trajectory of the network device includes multiple operating trajectories Segmentation, each trajectory segment corresponds to a maximum cell-specific timing offset value.
  • the maximum cell-specific timing offset value corresponding to the operating track segment is based on each operating position on the operating track segment and the terminals within the coverage corresponding to each operating position The maximum round-trip delay between devices is determined.
  • the target cell-specific timing offset value is determined according to the coverage of the network device, wherein the operating track of the network device corresponds to multiple coverage areas, and each coverage area corresponds to a Maximum cell-specific timing offset value.
  • the maximum cell-specific timing offset value corresponding to the coverage area is determined according to the maximum round-trip delay between the terminal device within the coverage area and the network device.
  • the target cell-specific timing offset value is determined by a time period corresponding to the running time information of the network device, wherein one running cycle of the network device includes multiple time periods, and each The time period corresponds to a maximum cell-specific timing offset value.
  • the maximum cell-specific timing offset value corresponding to the time period is based on the maximum round-trip time between the network device and the terminal device within the coverage area corresponding to the time period. Delay is OK.
  • the first indication information is sent based on an event trigger.
  • the first indication information is sent when the differential terminal device-specific timing offset value is greater than or equal to a first threshold.
  • the first threshold is a maximum value of a second value range
  • the second value range is a configurable value range of a differential terminal device-specific timing offset value
  • the first indication information is sent when the difference between the cell-specific timing offset value and the reference cell-specific timing offset value is greater than or equal to a second threshold.
  • the reference cell-specific timing offset value is determined according to a round-trip delay between a reference point within the coverage of the network device and the network device.
  • the network device is a network device in a non-terrestrial network NTN system.
  • the network device configures the target cell-specific timing offset value as the maximum value within the configurable range of the cell-specific timing offset value, or, according to the operating track of the network device, coverage or time information Configuring the target cell-specific timing offset value for the terminal device is beneficial to ensure that a reasonable cell-specific timing offset value is configured for the terminal device, thereby ensuring that the terminal device-specific timing offset value is smaller than the target cell-specific timing offset value, that is, the differential terminal device
  • the dedicated timing offset value is positive, so as to ensure that a reasonable UE specific K_offset is obtained according to the differential method, and the normal operation of the terminal equipment is guaranteed.
  • Fig. 12 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the communication unit 410 is configured to receive first indication information and second indication information of a network device, wherein the first indication information is used to indicate a target cell-specific timing offset value, and the second indication information is used to indicate a differential terminal A device-specific timing offset value, where the differential terminal device-specific timing offset value is a timing offset value greater than zero;
  • the processing unit 420 is configured to determine a target terminal device specific timing offset value according to the target cell specific timing offset value and the differential terminal device specific timing offset value.
  • the target cell-specific timing offset value is determined according to at least one of the following:
  • a first value range where the first value range is a configurable value range of a cell-specific timing offset value
  • the operating location of the network device is the operating location of the network device
  • the target cell-specific timing offset value is the largest cell-specific timing offset value in the first value range.
  • the largest cell-specific timing offset value in the first value range is determined according to the maximum round-trip delay and the minimum round-trip delay between the network device and the terminal device.
  • the target cell-specific timing offset value is determined according to the segmented target operating trajectory corresponding to the operating location of the network device, wherein the operating trajectory of the network device includes multiple operating trajectories Segmentation, each trajectory segment corresponds to a maximum cell-specific timing offset value.
  • the maximum cell-specific timing offset value corresponding to the operating track segment is based on each operating position on the operating track segment and the terminals within the coverage corresponding to each operating position The maximum round-trip delay between devices is determined.
  • the target cell-specific timing offset value is determined according to the coverage of the network device, wherein the operating track of the network device corresponds to multiple coverage areas, and each coverage area corresponds to a Maximum cell-specific timing offset value.
  • the maximum cell-specific timing offset value corresponding to the coverage area is determined according to the maximum round-trip delay between the terminal device within the coverage area and the network device.
  • the target cell-specific timing offset value is determined by a time period corresponding to the running time information of the network device, wherein one running cycle of the network device includes multiple time periods, and each The time period corresponds to a maximum cell-specific timing offset value.
  • the maximum cell-specific timing offset value corresponding to the time period is based on the maximum round-trip time between the network device and the terminal device within the coverage area corresponding to the time period. Delay is OK.
  • the first indication information is sent based on an event trigger.
  • the first indication information is sent when the differential terminal device-specific timing offset value is greater than or equal to a first threshold.
  • the first threshold is a maximum value of a second value range
  • the second value range is a configurable value range of a differential terminal device-specific timing offset value
  • the first indication information is sent when the difference between the cell-specific timing offset value and the reference cell-specific timing offset value is greater than or equal to a second threshold.
  • the reference cell-specific timing offset value is determined according to a round-trip delay between a reference point within the coverage of the network device and the network device.
  • the processing unit 420 is further configured to:
  • the network device is a network device in a non-terrestrial network NTN system.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system on chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are to realize the For the sake of brevity, the corresponding process of the terminal device in the shown method 200 will not be repeated here.
  • Fig. 13 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 500 of Figure 13 includes:
  • the communication unit 510 is configured to send first indication information and second indication information to the terminal device, where the first indication information is used to indicate the target cell-specific timing offset value, and the second indication information is used to indicate the differential terminal A device-specific timing offset value, where the differential terminal device-specific timing offset value is a timing offset value greater than zero.
  • the target cell-specific timing offset value is determined according to at least one of the following:
  • a first value range where the first value range is a configurable value range of a cell-specific timing offset value
  • the operating location of the network device is the operating location of the network device
  • the target cell-specific timing offset value is the largest cell-specific timing offset value in the first value range.
  • the largest cell-specific timing offset value in the first value range is determined according to the maximum round-trip delay and the minimum round-trip delay between the network device and the terminal device.
  • the target cell-specific timing offset value is determined according to the segmented target operating trajectory corresponding to the operating location of the network device, wherein the operating trajectory of the network device includes multiple operating trajectories Segmentation, each trajectory segment corresponds to a maximum cell-specific timing offset value.
  • the maximum cell-specific timing offset value corresponding to the operating track segment is based on each operating position on the operating track segment and the terminals within the coverage corresponding to each operating position The maximum round-trip delay between devices is determined.
  • the target cell-specific timing offset value is determined according to the coverage of the network device, wherein the operating track of the network device corresponds to multiple coverage areas, and each coverage area corresponds to a Maximum cell-specific timing offset value.
  • the maximum cell-specific timing offset value corresponding to the coverage area is determined according to the maximum round-trip delay between the terminal device within the coverage area and the network device.
  • the target cell-specific timing offset value is determined by a time period corresponding to the running time information of the network device, wherein one running cycle of the network device includes multiple time periods, and each The time period corresponds to a maximum cell-specific timing offset value.
  • the maximum cell-specific timing offset value corresponding to the time period is based on the maximum round-trip time between the network device and the terminal device within the coverage area corresponding to the time period. Delay is OK.
  • the first indication information is sent based on an event trigger.
  • the first indication information is sent when the differential terminal device-specific timing offset value is greater than or equal to a first threshold.
  • the first threshold is a maximum value of a second value range
  • the second value range is a configurable value range of a differential terminal device-specific timing offset value
  • the first indication information is sent when the difference between the cell-specific timing offset value and the reference cell-specific timing offset value is greater than or equal to a second threshold.
  • the reference cell-specific timing offset value is determined according to a round-trip delay between a reference point within the coverage of the network device and the network device.
  • the network device is a network device in a non-terrestrial network NTN system.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system on chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are to realize the For the sake of brevity, the corresponding flow of the network device in the method embodiment shown will not be repeated here.
  • FIG. 14 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 14 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the network device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 600 may specifically be the mobile terminal/terminal device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for the sake of brevity , which will not be repeated here.
  • FIG. 15 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 15 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may also include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, specifically, may obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • Fig. 16 is a schematic block diagram of a communication system 900 provided by an embodiment of the present application. As shown in FIG. 16 , the communication system 900 includes a terminal device 910 and a network device 920 .
  • the terminal device 910 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 920 can be used to realize the corresponding functions realized by the network device in the above method.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the methods of the embodiments of the present application, For the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program executes each method in the embodiment of the present application to be implemented by the mobile terminal/terminal device
  • the corresponding process will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法、终端设备和网络设备,该方法包括:终端设备接收网络设备的第一指示信息和第二指示信息,其中,第一指示信息用于指示目标小区专用时序偏移值,第二指示信息用于指示差分终端设备专用时序偏移值,差分终端设备专用时序偏移值为大于或等于零的时序偏移值;终端设备根据目标小区专用时序偏移值和差分终端设备专用时序偏移值,确定目标终端设备专用时序偏移值。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法、终端设备和网络设备。
背景技术
在新无线(New Radio,NR)系统中,终端设备按照一定时序关系进行传输,例如,若终端设备在时隙n上收到第一下行传输,第一下行传输可以关联时隙n+K上的第一上行传输。
为了克服非地面通信网络(Non-Terrestrial Networks,NTN)系统中的大传输时延,在NTN系统中引入偏移参数K offset,并将该K offset参数应用到相关的时序关系中。具体地,对于初始接入过程的终端设备,使用小区专用时序偏移值(cell specific K_offset)确定用于上行传输的时序关系。初始接入完成后,终端设备需要根据终端设备专用时序偏移值(UE specific K_offset)确定用于上行传输的时序关系。由于在NTN系统中,网络设备是移动的,可能存在UE specific K_offset和cell specific K_offset不同的情况,此情况下,如何配置UE specific K_offset以保证终端设备正常工作是一项亟需解决的问题
发明内容
本申请提供了一种无线通信的方法、终端设备和网络设备,网络设备通过给终端设备配置合适的小区专用时序偏移值,从而能够保证终端设备的正常工作。
第一方面,提供了一种无线通信的方法,包括:终端设备接收网络设备的第一指示信息和第二指示信息,其中,所述第一指示信息用于指示目标小区专用时序偏移值,所述第二指示信息用于指示差分终端设备专用时序偏移值,所述差分终端设备专用时序偏移值为大于或等于零的时序偏移值;所述终端设备根据所述目标小区专用时序偏移值和所述差分终端设备专用时序偏移值,确定目标终端设备专用时序偏移值。
第二方面,提供了一种无线通信的方法,包括:网络设备向终端设备发送第一指示信息和第二指示信息,其中,所述第一指示信息用于指示目标小区专用时序偏移值,所述第二指示信息用于指示差分终端设备专用时序偏移值,所述差分终端设备专用时序偏移值为大于或等于零的时序偏移值。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,网络设备通过给终端设备配置小区专用时序偏移值以及差分终端设备专用时序偏移值,进一步地,终端设备可以根据该小区专用时序偏移值和该差分终端设备专用时序偏移值,确定终端设备专用时序偏移值,从而能够保证终端设备的正常工作。
附图说明
图1A-图1C是本申请实施例提供的一种通信系统架构的示意性图。
图2是基于透明转发卫星的NTN场景的示意图。
图3是基于再生转发卫星的NTN场景的示意图。
图4是本申请实施例提供的NTN系统下的小区覆盖范围的示意图。
图5是根据本申请实施例提供的一种无线通信的方法的示意性图。
图6是根据小区专用时序偏移值的可配置范围进行小区专用时序偏移值配置的示意图。
图7是根据网络设备的运行轨迹进行小区专用时序偏移值配置的示意图。
图8是根据网络设备的覆盖范围进行小区专用时序偏移值配置的示意图。
图9是根据时间信息进行小区专用时序偏移值配置的示意图。
图10是基于事件进行小区专用时序偏移值配置的示意图。
图11是根据本申请又一实施例的一种无线通信的方法的示意性图。
图12是根据本申请实施例提供的一种终端设备的示意性框图。
图13是根据本申请实施例提供的一种网络设备的示意性框图。
图14是根据本申请实施例提供的一种通信设备的示意性框图。
图15是根据本申请实施例提供的一种芯片的示意性框图。
图16是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例可应用于非地面通信网络(Non-Terrestrial Networks,NTN)系统,也可应用于地面通信网络(Terrestrial Networks,TN)系统。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程 医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。本申请实施例所涉及的终端设备还可以称为终端、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备也可以是固定的或者移动的。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在本申请一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在本申请一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,图1A为本申请实施例提供的一种通信系统的架构示意图。如图1A所示,通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1A示例性地示出了一个网络设备和两个终端设备,在本申请一些实施例中,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
示例性的,图1B为本申请实施例提供的另一种通信系统的架构示意图。请参见图1B,包括终端设备1101和卫星1102,终端设备1101和卫星1102之间可以进行无线通信。终端设备1101和卫星1102之间所形成的网络还可以称为NTN。在图1B所示的通信系统的架构中,卫星1102可以具有基站的功能,终端设备1101和卫星1102之间可以直接通信。在系统架构下,可以将卫星1102称为网络设备。在本申请一些实施例中,通信系统中可以包括多个网络设备1102,并且每个网络设备1102的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
示例性的,图1C为本申请实施例提供的另一种通信系统的架构示意图。请参见图1C,包括终端设备1201、卫星1202和基站1203,终端设备1201和卫星1202之间可以进行无线通信,卫星1202与基站1203之间可以通信。终端设备1201、卫星1202和基站1203之间所形成的网络还可以称为NTN。在图1C所示的通信系统的架构中,卫星1202可以不具有基站的功能,终端设备1201和基站1203之间的通信需要通过卫星1202的中转。在该种系统架构下,可以将基站1203称为网络设备。在本申请一些实施例中,通信系统中可以包括多个网络设备1203,并且每个网络设备1203的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1A-图1C只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统,例如,5G通信系统、LTE通信系统等,本申请实施例对此不作具体限定。
在本申请一些实施例中,图1A-图1C所示的无线通信系统还可以包括移动性管理实体(Mobility  Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1A示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中的指示信息通过以下信令中的至少一种配置:系统消息、物理层信令(例如下行控制信息(Downlink Control Information,DCI))、无线资源控制(Radio Resource Control,RRC)信令和媒体接入控制单元(Media Access Control Control Element,MAC CE)。
在本申请一些实施例中,"预定义的"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义的可以是指协议中定义的。
在本申请一些实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
卫星从其提供的功能上可以分为透明转发(transparent payload)和再生转发(regenerative payload)两种。对于透明转发卫星,只提供无线频率滤波,频率转换和放大的功能,只提供信号的透明转发,不会改变其转发的波形信号。对于再生转发卫星,除了提供无线频率滤波,频率转换和放大的功能,还可以提供解调/解码,路由/转换,编码/调制的功能,其具有基站的部分或者全部功能。
在NTN系统中,可以包括一个或多个网关(Gateway),用于卫星和终端设备之间的通信。
图2和图3分别示出了基于透明转发卫星和再生转发卫星的NTN场景的示意图。
如图2所示,对于基于透明转发卫星的NTN场景,网关和卫星之间通过馈电链路(Feeder link)进行通信,卫星和终端设备之间可以通过服务链路(service link)进行通信。如图3所示,对于基于再生转发卫星的NTN场景,卫星和卫星之间通过星间(InterStar link)进行通信,网关和卫星之间通过馈电链路(Feeder link)进行通信,卫星和终端设备之间可以通过服务链路(service link)进行通信。其中,馈电链路也可称为馈线链路。
应当理解,图1至图3仅为本申请应用场景的示例,不应理解为对本申请的限制。
例如,在其他可替代实施例中,NTN系统还可包括无人机系统(Unmanned Aircraft System)。
具体地,可以将图2至图3中的卫星替换为UAS平台。例如,UAS平台包括但不限于高空平台站(High Altitude Platform Station,HAPS)。
为便于理解本申请实施例,下面对NTN系统中与小区覆盖范围相关的内容进行说明。
图4是本申请实施例提供的NTN系统下的小区覆盖范围的示意图。
如图4所示,卫星(或UAS平台)的视野取决于天线图和最小仰角,卫星(或UAS平台)在其视野范围内针对给定服务区域生成多个波束,其中每一个波束的覆盖范围可以称为小区覆盖范围且波束通常为椭圆形。
需要说明的是,为便于说明,图4仅示出了一个波束的覆盖范围,在其他可替代实施例中,可以由多个波束形成多个小区,本申请对此不作具体限定。除非特别说明,在下文实施例中,网络设备的覆盖范围可以指卫星的所有波束的覆盖范围。
LEO卫星小区场景可以包括地球移动小区(Earth moving cells)场景和地球固定小区(Earth fixed cells)场景,其中,Earth moving cells场景是指随着卫星移动,小区也随着移动,卫星和小区之间的相对位置保持不变。Earth fixed cells场景是指随着卫星移动,小区在地面上的位置是固定的,但是,由于卫星是高速运动的,因此,卫星覆盖的该固定小区的大小或角度会发生变化。
与传统NR采用的蜂窝网络相比,NTN中终端设备与卫星之间的定时提前(timing advance,TA)调整量更大。因此,需要引入时序偏移值以增强上下行时序关系,避免时序关系混乱。例如,假设网 络设备调度终端设备在时隙n发送上行数据,此时,终端设备需要增强到时隙n+Koffset上发送上行数据,以避免终端设备的上行发送发生在下行调度之前。其中,Koffset为增强的时序偏移值,且Koffset大于或等于终端设备的TA。
例如,对于初始接入过程的终端设备,由于网络设备缺少该终端设备的相关信息,因此可以通过系统消息配置一个小区专用时序偏移值(cell specific K_offset)。初始接入完成后,终端设备需要根据终端设备专用时序偏移值(UE specific K_offset)确定用于上行传输的时序关系。由于在NTN场景中,网络设备是移动的,可能存在某一时刻的UE specific K_offset大于当前的cell specific K_offset的情况,进而导致终端设备失去连接而不能正常工作,因此,如何配置合适的小区专用时序偏移值以保证终端设备的正常工作是一项亟需解决的问题。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图5是根据本申请实施例的无线通信的方法200的示意性流程图,如图5所示,该方法200包括如下内容:
S210,终端设备接收网络设备的第一指示信息和第二指示信息,其中,所述第一指示信息用于指示目标小区专用时序偏移值,所述第二指示信息用于指示差分终端设备专用时序偏移值;
S220,所述终端设备根据所述目标小区专用时序偏移值和所述差分终端设备专用时序偏移值,确定目标终端设备专用时序偏移值。
在一些实施例中,该方法200可以应用于NTN系统,例如LEO卫星小区场景,或者,网络设备和终端设备之间的RTT较大的其他场景。也即,网络设备可以为NTN系统中的网络设备,例如卫星。
在一些实施例中,第一指示信息是通过系统消息或MAC CE发送的。
在一些实施例中,第二指示信息是通过MAC CE发送的。
可选地,差分终端设备专用时序偏移值(记为differential UE specific K_offset)可以是网络设备根据小区专用时序偏移值(记为cell specific K_offset)和当前时刻的终端设备专用时序偏移值(记为UE specific K_offset)确定的。例如,differential UE specific K_offset为cell specific K_offset减去UE specific K_offset的差值。
在一些实施例中,该终端设备根据目标小区专用时序偏移值和差分终端设备专用时序偏移值,确定目标终端设备专用时序偏移值,可以包括:
将目标小区专用时序偏移值和差分终端设备专用时序偏移值的差值确定为目标终端设备专用时序偏移值。即UE specific K_offset=cell specific K_offset-differential UE specific K_offset。
因此,在本申请实施例中,连接态的终端设备可以根据目标小区专用时序偏移值和差分终端设备专用时序偏移值,确定目标终端设备专用时序偏移值,进一步基于该目标终端设备专用时序偏移值进行上行传输,有利于保证终端设备和网络设备之间的时序关系。
为降低网络设备指示differential UE specific K_offset的复杂度,定义differential UE specific K_offset的取值为大于或等于0的值。但是,一些场景中,网络设备是移动的,例如Earth fixed cells场景,可能存在某一时刻的UE specific K_offset大于当前的cell specific K_offset的情况,此情况下,根据上述差分方式网络设备无法给终端设备配置一个正确的UE specific K_offset,基于该技术问题,在本申请实施例中,进一步对目标小区专用时序偏移值的配置进行了设计以保证网络设备基于差分方式能够给终端设备配置一个正确的UE specific K_offset,保证终端设备的正常工作。
在本申请一些实施例中,目标小区专用时序偏移值可以根据以下中的至少一项确定:
第一取值范围,该第一取值范围为小区专用时序偏移值可配置的取值范围;
网络设备的运动位置;
网络设备的覆盖范围;
所述网络设备的运行时间信息。
也即,目标小区专用时序偏移值可以是周期性更新的,或者,基于运动轨迹更新的,或者,基于覆盖范围更新的。
基于上述信息确定给终端设备配置的目标小区专用时序偏移值有利于保证给终端设备配置的cell specific K_offset在一段运行轨迹,或者一定的覆盖范围,或者一段时间内是最大的cell specific K_offset,即UE specific K_offset小于或等于该cell specific K_offset,这样,基于差分方式,网络设备可以得到一个非负的differential UE specific K_offset。
应理解,在本申请实施例中,网络设备在不同的运行位置可能对应不同的覆盖范围,或者说,对应不同的小区。例如,对于Earth moving cells场景,随着卫星移动,小区也随着移动,又例如,对于 Earth fixed cells场景,随着卫星移动,小区在地面上的位置是固定的,但是,卫星和小区之间的角度会发生变化。
可选地,在一些实施例中,网络设备的运行时间信息可以指绝对时间信息,例如当前时刻,或者,也可以指相对时间信息,例如当前时刻在网络设备的一个运行周期中的相对时间信息。例如,该网络设备的运行时间信息可以指24小时中的某个时刻。又例如,一个运行周期是8小时,该网络设备的运行时间信息可以指当前时刻在8小时中的相对时间。
以下,结合具体实施例,说明目标小区专用时序偏移值的确定方式。
实施例1:目标小区专用时序偏移值根据第一取值范围确定。
在该实施例一中,小区专用时序偏移值对应一个可选的取值范围,即第一取值范围。
在一些实施例中,目标小区专用时序偏移值是第一取值范围中的最大的小区专用时序偏移值。
通过配置目标小区专用时序偏移值为第一取值范围中的最大值,有利于保证无论网络设备运行到哪个位置,cell specific K_offset均大于UE specific K_offset,即differential UE specific K_offset为正值,从而能够可以根据差分方式获得合理的UE specific K_offset,以保证终端设备的正常工作。
在一些实施例中,第一取值范围是预定义的,或者是网络设备配置的。
例如,如图6所示,第一取值范围是0~1023ms,此情况下,网络设备可以配置目标小区专用时序偏移值为1023ms。
在一些实施例中,第一取值范围与应用场景相关。例如,在GEO场景,该第一取值范围可以为[239]–[542]ms,在MEO场景,该第一取值范围可以为[47]–[395]ms,在LEO场景,该第一取值范围可以为[4]–[49]ms等,或者,所有场景采用相同的取值范围,例如均采用[0]–[542]ms或[0]–[1023]ms的取值范围。
在一些实施例中,第一取值范围的最大值可以是根据网络设备和终端设备之间的最大往返时延(Round Trip Time,RTT)和最小RTT确定。例如,根据网络设备的运行轨迹和小区中的终端设备之间的最大RTT和最小RTT的差值确定。
作为示例而非限定,网络设备和终端设备之间的最大RTT可以为服务链路和馈电链路在仰角等于10度时的RTT,网络设备和终端设备之间的最小RTT可以为服务链路和馈电链路在仰角等于90度时的RTT。
在另一些实施例中,第一取值范围的最大值可以是根据网络设备的运行轨迹和小区中的终端设备之间的最大RTT确定。例如,根据网络设备的运行轨迹和小区的中心位置的终端设备之间的最大RTT确定,或者根据网络设备的运行轨迹和小区的边缘位置的终端设备之间的最大RTT确定。
采用此方式配置目标小区专用时序偏移值的鲁棒性较强,网络设备只需在初始接入阶段进行目标小区专用时序偏移值的配置,不必随着网络设备的运动轨迹或覆盖范围等更新目标小区专用时序偏移值,有利于降低网络设备实现的复杂度,同时降低信令开销。
实施例2:目标小区专用时序偏移值是根据网络设备的运行位置确定的。
由于网络设备的运行轨迹是椭圆形,网络设备在不同的运行位置与小区内的终端设备之间的RTT会有差异,因此,所适用的小区专用时序偏移值也会有差异。因此,网络设备可以基于运行位置,给网络设备配置合适的小区专用时序偏移值。
在一些实施例中,网络设备可以根据运行位置对应的目标运行轨迹分段确定目标小区专用时序偏移值。
例如,可以将网络设备的运行轨迹划分为多个运行轨迹分段,每个运行轨迹分段对应相应的最大小区专用时序偏移值。这样,网络设备可以根据其运行位置对应的运行轨迹分段确定给终端设备配置的目标小区专用时序偏移值。
具体而言,由于网络设备的运行轨迹是已知的,将网络设备的运行轨迹进行分段,进一步确定每个运行轨迹分段对应的最大小区专用时序偏移值,这样,网络设备可以基于运行轨迹分段进行小区专用时序偏移值的更新。
在一些实施例中,每个运行轨迹分段对应的最大小区专用时序偏移值可以是根据该运行轨迹分段中的每个运行位置和网络设备在该运行位置对应的覆盖范围内的终端设备之间的最大RTT确定的。
应理解,该网络设备在该运行位置对应的覆盖范围可以指网络设备在该运行位置对应的小区。
例如,可以根据运行轨迹分段中的所有运行位置和对应覆盖范围内的终端设备之间的最大RTT中的最大值确定该运行轨迹分段对应的最大小区专用时序偏移值。
或者,根据运行轨迹分段中的每个运行位置对应的最大小区专用时序偏移值确定。例如,可以将该运行轨迹分段中的所有运行位置对应的最大小区专用时序偏移值中的最大值确定为该运行轨迹分段对应的最大小区专用时序偏移值。
可选地,网络设备在该运行位置对应的覆盖范围内的终端设备可以是小区的中心位置的终端设备,或者,也可以是小区的边缘位置的终端设备,例如小区内距离该运行位置最远的位置上的终端设备。
作为示例,一个运行轨迹分段包括n个运行位置,每个运行位置对应一个覆盖范围,运行位置k对应覆盖范围k,其中,k=1,2,……,n,网络设备可以确定该n个运行位置中的每个运行位置和对应的覆盖范围内的终端设备之间的最大RTT。
例如,在网络设备处于运行位置1时,若覆盖范围1内的位置1处的终端设备和网络设备之间的RTT最大,则该运行位置1对应的最大小区专用时序偏移值根据该位置1处的终端设备和运行位置1的网络设备之间的RTT确定,其他运行位置对应的最大小区专用时序偏移值的确定方式类似,进一步可以将所有运行位置对应的最大小区专用时序偏移值中的最大值确定为该运行轨迹分段对应的最大小区专用时序偏移值。或者,网络设备可以确定在n个运行位置中的每个运行位置时,终端设备和网络设备之间的最大RTT,进一步基于该每个运行位置对应的最大RTT中的最大值,确定该运行轨迹分段对应的最大小区专用时序偏移值。
因此,当网络设备运行到某个运行轨迹分段时,由于该运行轨迹分段对应的最大小区专用时序偏移值是根据该运行轨迹分段中的网络设备和终端设备之间的最大RTT确定的,有利于保证无论网络设备运行到该运行轨迹分段中的哪个位置,cell specific K_offset均大于UE specific K_offset,即differential UE specific K_offset为正值,从而能够根据差分方式获得一个合理的UE specific K_offset,以保证终端设备的正常工作。
如图7所示,网络设备在t0到t1的运行轨迹对应第一运行轨迹分段,在t1到t2的运行轨迹对应第二运行轨迹分段,其中,第一运行轨迹分段和第二运行轨迹分段分别对应一个最大小区专用时序偏移值。
其中,第一运行轨迹分段对应的最大小区专用时序偏移值可以根据网络设备第一运行轨迹分段中的每个运行位置和对应覆盖区域中的终端设备之间的RTT确定,或者说,根据第一运行轨迹分段中的每个运行位置对应的最大小区专用时序偏移值确定。第二运行轨迹分段对应的最大小区专用时序偏移值可以根据网络设备第二运行轨迹分段中的每个运行位置和对应覆盖区域中的终端设备之间的最大RTT确定,或者说,根据第二运行轨迹分段中的每个运行位置对应的最大小区专用时序偏移值确定。
假设网络设备在t0的运行位置对应的最大小区专用时序偏移值是cell specific K_offset 1,在t1的运行位置对应的最大小区专用时序偏移值是cell specific K_offset 2,其中,cell specific K_offset 2大于cell specific K_offset 1,则可以确定cell specific K_offset 2为第一运行轨迹分段对应的最大小区专用时序偏移值。假设网络设备在t2的运行位置对应的最大小区专用时序偏移值是cell specific K_offset 3,其中,cell specific K_offset 3大于cell specific K_offset 2,则可以确定cell specific K_offset 3为第二运行轨迹分段对应的最大小区专用时序偏移值。
因此,当网络设备在运行到第一运行轨迹分段时,给终端设备配置的目标小区专用时序偏移值为cell specific K_offset 2,当网络设备在运行到第二运行轨迹分段时,给终端设备配置的目标小区专用时序偏移值为cell specific K_offset 3,即网络设备运行到某个运行轨迹分段中时,给终端设备配置的小区专用时序偏移值是该运行轨迹分段对应的最大小区专用时序偏移值,有利于保证无论网络设备运行到该运行轨迹分段中的哪个位置,cell specific K_offset均大于UE specific K_offset,即differential UE specific K_offset为正值,从而能够保证根据差分方式获得一个合理的UE specific K_offset,以保证终端设备的正常工作。
因此,在本申请实施例中,网络设备可以基于运行轨迹更新小区专用时序偏移值。例如,网络设备在运行到下一个运行轨迹分段时,将小区专用时序偏移值更新为该运行轨迹分段所对应的最大小区专用时序偏移值。
实施例3:目标小区专用时序偏移值是根据网络设备的覆盖范围确定的。
在一些实施例中,网络设备的运行轨迹可以对应多个覆盖范围,每个覆盖范围对应一个最大小区专用时序偏移值。
在一些场景中,在网络设备运行时,网络设备的覆盖范围可能会随着网络设备的移动而发生变化,因此,网络设备和终端设备之间的RTT也可能发生变化,因此,可以基于网络设备的覆盖范围,给终端设备配置合适的小区专用时序偏移值。
在一些实施例中,网络设备在一段运行轨迹内对应的覆盖范围内可以认为是不变的,或者,在一段时间内对应的覆盖范围可以认为是不变的。
在一些实施例中,可以根据网络设备和其覆盖范围内的终端设备之间的最大RTT确定目标小区 专用时序偏移值。
具体地,由于网络设备的运行轨迹是已知的,因此网络设备在运行轨迹中对应的覆盖范围也是已知的,因此,可以根据网络设备和该网络设备的覆盖范围内的终端设备之间的最大RTT确定每个覆盖范围对应的最大小区专用时序偏移值。
可选地,网络设备的覆盖范围内的终端设备可以是小区的中心位置的终端设备,或者,也可以是小区的边缘位置的终端设备,例如小区内距离该运行位置最远的位置上的终端设备。
因此,在本申请实施例中,当网络设备的覆盖范围发生更新时,网络设备配置该更新后的覆盖范围对应的最大小区专用时序偏移值,有利于保证更新后的覆盖范围内的cell specific K_offset大于UE specific K_offset,即differential UE specific K_offset为正值,从而能够根据差分方式获得一个合理的UE specific K_offset,以保证终端设备的正常工作。
如图8所示,网络设备的覆盖范围为覆盖范围1时,可以配置目标小区专用时序偏移值为该覆盖范围1对应的最大小区专用时序偏移值。
其中,覆盖范围1对应的最大小区专用时序偏移值可以根据网络设备和该覆盖范围1中的终端设备之间的RTT确定。例如,可以根据网络设备和该覆盖范围1内的终端设备之间的最大RTT确定。
假设网络设备和覆盖范围1内的位置1处的终端设备之间的RTT对应cell specific K_offset 1,网络设备和覆盖范围内的位置2处的终端设备之间的RTT对应cell specific K_offset 2,……,网络设备和覆盖范围内的位置n处的终端设备之间的RTT对应cell specific K_offset n,若cell specific K_offset n是上述cell specific K_offset中的最大值,即网络设备和覆盖范围内的位置n处的终端设备之间的RTT最大,则可以确定该覆盖范围1对应的最大小区专用时序偏移值为cell specific K_offset n。
因此,当网络设备的覆盖范围为覆盖范围1时,给终端设备配置的目标小区专用时序偏移值为cell specific K_offset n,有利于保证cell specific K_offset均大于UE specific K_offset,即differential UE specific K_offset为正值,从而能够根据差分方式获得一个合理的UE specific K_offset,保证终端设备的正常工作。
因此,在本申请实施例中,网络设备可以基于覆盖范围更新小区专用时序偏移值,例如,覆盖范围发生变更时,将目标小区专用时序偏移值更新为变更后的覆盖范围所对应的最大小区专用时序偏移值。
实施例4:目标小区专用时序偏移值是根据所述网络设备的运行时间信息确定的。
由于网络设备的运行轨迹是已知的,网络设备在不同的时间点的运行位置,或者覆盖范围是已知的。即根据该网络设备的运行时间信息可以确定该网络设备的运行位置,或覆盖范围。因此,网络设备可以基于运行时间信息给终端设备配置合适的小区专用时序偏移值配置。
在一些实施例中,网络设备可以根据网络设备的运行时间信息对应的时间段确定目标小区专用时序偏移值。
例如,可以将网络设备的一个运行周期(例如绕地球运行一周所花费的时间)划分为多个时间段,每个时间段对应一个相应的最大小区专用时序偏移值。这样,网络设备可以根据网络设备当前的运行时间信息在一个运行周期中所对应的时间段确定给终端设备配置的目标小区专用时序偏移值。
在一些实施例中,该时间段可以和实施例2中的运行轨迹分段对应,或者,和实施例3中的覆盖范围对应。即在不同的时间段内,可以认为网络设备运行在不同的运行轨迹分段,或者,对应不同的覆盖范围。
在一些实施例中,每个时间段对应的最大小区专用时序偏移值根据所述网络设备在该时间段对应的覆盖范围内的终端设备和该网络设备之间的最大RTT确定。
例如,每个时间段对应的最大小区专用时序偏移值可以是根据该时间段内的每个运行位置和网络设备在该运行位置对应的覆盖范围内的终端设备之间的最大RTT确定的。
作为示例,可以根据时间段内的所有运行位置和对应覆盖范围内的终端设备之间的最大RTT中的最大值确定该时间段对应的最大小区专用时序偏移值。
在另一些实施例中,每个时间段对应的最大小区专用时序偏移值根据该时间段内的每个运行位置对应的最大小区专用时序偏移值确定。例如,可以将该时间段内的所有运行位置对应的最大小区专用时序偏移值中的最大值确定为该时间段对应的最大小区专用时序偏移值。
可选地,网络设备在该运行位置对应的覆盖范围内的终端设备可以是小区的中心位置的终端设备,或者,也可以是小区的边缘位置的终端设备,例如小区内距离该运行位置最远的位置上的终端设备。
如图9所示,假设t0~t1的时间段对应的最大小区专用时序偏移值为cell specific K_offset 2,其中,cell specific K_offset 2是这一段时间内对应的最大的小区专用时序偏移值,t1~t2的时间段对应的最大 小区专用时序偏移值为cell specific K_offset 3,其中,cell specific K_offset 3是这一段时间内对应的最大的小区专用时序偏移值。
那么在t0~t1的时间段,网络设备给终端设备配置的目标小区专用时序偏移值为cell specific K_offset 2,在t1~t2的时间段,网络设备给终端设备配置的目标小区专用时序偏移值为cell specific K_offset 3,这样可以保证在一段时间内,cell specific K_offset均大于UE specific K_offset,从而能够根据差分方式获得一个合理的UE specific K_offset,以保证终端设备的正常工作。
因此,在本申请实施例中,网络设备可以周期性地更新小区专用时序偏移值,例如,到达下一个时间段时,将目标小区专用时序偏移值更新为下一个时间段所对应的最大小区专用时序偏移值。
综上所述,在本申请实施例中,目标小区专用时序偏移值可以是周期性更新的,例如,到达下一个时间段时,将目标小区专用时序偏移值更新为该下一个时间段所对应的最大小区专用时序偏移值,或者,目标小区专用时序偏移值也可以是基于运行轨迹更新的,例如,当网络设备运行至下一个运行轨迹分段时,将目标小区专用时序偏移值更新为下一个运行轨迹分段对应的最大小区专用时序偏移值,或者,目标小区专用时序偏移值也可以是基于覆盖范围更新的,例如,当网络设备的覆盖范围变更时,将目标小区专用时序偏移值更新为变更后的覆盖范围对应的最大小区专用时序偏移值。
在本申请一些实施例中,第一指示信息是基于事件触发发送的。即目标小区专用时序偏移值可以是基于事件触发更新的。
在一些实施例中,该事件可以指导致小区专用时序偏移值需要更新的任意事件,例如,网络设备运行至另一个运行轨迹分段,或者,网络设备的覆盖范围变更,或者,运行至进入下一个时间段等。
在一些实施例中,该第一指示信息可以是在差分终端设备专用时序偏移值满足第一条件的情况下发送的。差分终端设备专用时序偏移值满足第一条件可以认为当前的UE specific K_offset较大(或者,随着网络设备的运行会越来越大,或者说,UE specific K_offset进入增大的趋势),需要增大cell specific K_offset,以保证cell specific K_offset大于UE specific K_offset,即differential UE specific K_offset为正值。
在一些实施例中,第一指示信息是在differential UE specific K_offset大于或等于第一阈值的情况下发送的。differential UE specific K_offset大于或等于第一阈值时,随着网络设备的移动,可以认为UE specific K_offset会随着增大(即UE specific K_offset进入增大的趋势),此情况下,将cell specific K_offset更新为更大的值,有利于保证cell specific K_offset大于UE specific K_offset,即differential UE specific K_offset为正值。
在一些实施例中,第一阈值是预定义的,或者是网络设备配置的。
在一些实施例中,第一阈值是第二取值范围的最大值,所述第二取值范围是差分终端设备专用时序偏移值可配置的取值范围。
例如,第二取值范围为0~63ms,则第一阈值可以为63ms。
在一些实施例中,第二取值范围是预定义的,或者是网络设备配置的。
在一些实施例中,第一指示信息是在小区专用时序偏移值和参考小区专用时序偏移值(记为reference cell specific K_offset)的差值大于或等于第二阈值的情况下发送的。
可选地,参考小区专用时序偏移值根据网络设备的覆盖范围内的参考点和网络设备之间的往返时延确定。
可选地,如图10所示,该参考点可以是小区的中心点,或者,也可以是小区中距离网络设备最近的点,或者小区中距离网络设备最远的点。
在一些实施例中,reference cell specific K_offset和cell specific K_offset的差值大于或等于第二阈值时,随着网络设备的移动,可以认为UE specific K_offset会随着增大(即UE specific K_offset进入增大的趋势),此情况下,将cell specific K_offset更新为更大的值,有利于保证cell specific K_offset大于UE specific K_offset,即differential UE specific K_offset为正值。
应理解,在本申请实施例中,在基于事件触发确定发送第一指示信息时,第一指示信息所指示的目标小区专用时序偏移值可以根据前述实施例1至实施例4所述方式确定,或者,也可以是比当前使用的小区专用时序偏移值更大的一个时序偏移值,本申请对此不作限定。
综上所述,网络设备通过将cell specific K_offset配置为cell specific K_offset可配置范围内的最大值,或者,根据网络设备的运行轨迹,覆盖范围或时间信息给终端设备配置cell specific K_offset,有利于保证给终端设备配置合理的cell specific K_offset,进而保证UE specific K_offset小于cell specific K_offset,即differential UE specific K_offset为正值,从而保证根据差分方式获得一个合理的UE specific K_offset,保证终端设备的正常工作。
上文结合图5至图10,从终端设备的角度详细描述了根据本申请实施例的无线通信的方法,下 文结合图11,从网络设备的角度详细描述根据本申请另一实施例的无线通信的方法。应理解,网络设备侧的描述与终端设备侧的描述相互对应,相似的描述可以参见上文,为避免重复,此处不再赘述。
图11是根据本申请另一实施例的无线通信的方法300的示意性流程图,如图11所示,该方法300包括如下内容:
S310,网络设备向终端设备发送第一指示信息和第二指示信息,其中,所述第一指示信息用于指示目标小区专用时序偏移值,所述第二指示信息用于指示差分终端设备专用时序偏移值,所述差分终端设备专用时序偏移值为大于或等于零的时序偏移值。
在本申请一些实施例中,所述目标小区专用时序偏移值根据以下中的至少一项确定:
第一取值范围,所述第一取值范围为小区专用时序偏移值可配置的取值范围;
所述网络设备的运行位置;
所述网络设备的覆盖范围;
所述网络设备的运行时间信息。
应理解,网络设备给终端设备配置目标小区专用时序偏移值的具体实现参考方法200中的相关描述,为了简洁,这里不再赘述。
在本申请一些实施例中,所述目标小区专用时序偏移值是第一取值范围中的最大的小区专用时序偏移值,所述第一取值范围为小区专用时序偏移值可配置的取值范围。
在本申请一些实施例中,所述目标小区专用时序偏移值是根据所述网络设备的运行位置确定的。
在本申请一些实施例中,所述目标小区专用时序偏移值是根据所述网络设备的运行位置对应的目标运行轨迹分段确定的,其中,所述网络设备的运行轨迹包括多个运行轨迹分段,每个运动轨迹分段对应一个最大小区专用时序偏移值。
在本申请一些实施例中,所述运行轨迹分段对应的最大小区专用时序偏移值根据所述运行轨迹分段上的每个运行位置和所述每个运行位置对应的覆盖范围内的终端设备之间的最大往返时延确定。
在本申请一些实施例中,所述目标小区专用时序偏移值是根据所述网络设备的覆盖范围确定的,其中,所述网络设备的运行轨迹对应多个覆盖范围,每个覆盖范围对应一个最大小区专用时序偏移值。
在本申请一些实施例中,所述覆盖范围对应的最大小区专用时序偏移值根据所述覆盖范围内的终端设备和所述网络设备之间的最大往返时延确定。
在本申请一些实施例中,所述目标小区专用时序偏移值是所述网络设备的运行时间信息对应的时间段确定,其中,所述网络设备的一个运行周期包括多个时间段,每个时间段对应一个最大小区专用时序偏移值。
在本申请一些实施例中,所述时间段对应的最大小区专用时序偏移值根据所述网络设备在所述时间段对应的覆盖范围内的终端设备和所述网络设备之间的最大往返时延确定。
在本申请一些实施例中,所述第一指示信息是基于事件触发发送的。
在本申请一些实施例中,所述第一指示信息是在所述差分终端设备专用时序偏移值大于或等于第一阈值的情况下发送的。
在本申请一些实施例中,所述第一阈值是第二取值范围的最大值,所述第二取值范围是差分终端设备专用时序偏移值可配置的取值范围。
在本申请一些实施例中,所述第一指示信息是在所述小区专用时序偏移值和参考小区专用时序偏移值的差值大于或等于第二阈值的情况下发送的。
在本申请一些实施例中,所述参考小区专用时序偏移值根据所述网络设备覆盖范围内的参考点和所述网络设备之间的往返时延确定。
在本申请一些实施例中,所述网络设备为非地面网络NTN系统中的网络设备。
因此,在本申请实施例中,网络设备通过将目标小区专用时序偏移值配置为小区专用时序偏移值可配置范围内的最大值,或者,根据网络设备的运行轨迹,覆盖范围或时间信息给终端设备配置目标小区专用时序偏移值,有利于保证给终端设备配置合理的小区专用时序偏移值,进而保证终端设备专用时序偏移值小于目标小区专用时序偏移值,即差分终端设备专用时序偏移值为正值,从而保证根据差分方式获得一个合理的UE specific K_offset,保证终端设备的正常工作。
上文结合图5至图11,详细描述了本申请的方法实施例,下文结合图12至图16,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图12示出了根据本申请实施例的终端设备400的示意性框图。如图12所示,该终端设备400包括:
通信单元410,用于接收网络设备的第一指示信息和第二指示信息,其中,所述第一指示信息用于指示目标小区专用时序偏移值,所述第二指示信息用于指示差分终端设备专用时序偏移值,所述差 分终端设备专用时序偏移值为大于零的时序偏移值;
处理单元420,用于根据所述目标小区专用时序偏移值和所述差分终端设备专用时序偏移值,确定目标终端设备专用时序偏移值。
在本申请一些实施例中,所述目标小区专用时序偏移值根据以下中的至少一项确定:
第一取值范围,所述第一取值范围为小区专用时序偏移值可配置的取值范围;
所述网络设备的运行位置;
所述网络设备的覆盖范围;
所述网络设备的运行时间信息。
在本申请一些实施例中,所述目标小区专用时序偏移值是所述第一取值范围中的最大的小区专用时序偏移值。
在本申请一些实施例中,所述第一取值范围中的最大的小区专用时序偏移值是根据所述根据网络设备和终端设备之间的最大往返时延和最小往返时延确定的。
在本申请一些实施例中,所述目标小区专用时序偏移值是根据所述网络设备的运行位置对应的目标运行轨迹分段确定的,其中,所述网络设备的运行轨迹包括多个运行轨迹分段,每个运动轨迹分段对应一个最大小区专用时序偏移值。
在本申请一些实施例中,所述运行轨迹分段对应的最大小区专用时序偏移值根据所述运行轨迹分段上的每个运行位置和所述每个运行位置对应的覆盖范围内的终端设备之间的最大往返时延确定。
在本申请一些实施例中,所述目标小区专用时序偏移值是根据所述网络设备的覆盖范围确定的,其中,所述网络设备的运行轨迹对应多个覆盖范围,每个覆盖范围对应一个最大小区专用时序偏移值。
在本申请一些实施例中,所述覆盖范围对应的最大小区专用时序偏移值根据所述覆盖范围内的终端设备和所述网络设备之间的最大往返时延确定。
在本申请一些实施例中,所述目标小区专用时序偏移值是所述网络设备的运行时间信息对应的时间段确定,其中,所述网络设备的一个运行周期包括多个时间段,每个时间段对应一个最大小区专用时序偏移值。
在本申请一些实施例中,所述时间段对应的最大小区专用时序偏移值根据所述网络设备在所述时间段对应的覆盖范围内的终端设备和所述网络设备之间的最大往返时延确定。
在本申请一些实施例中,所述第一指示信息是基于事件触发发送的。
在本申请一些实施例中,所述第一指示信息是在所述差分终端设备专用时序偏移值大于或等于第一阈值的情况下发送的。
在本申请一些实施例中,所述第一阈值是第二取值范围的最大值,所述第二取值范围是差分终端设备专用时序偏移值可配置的取值范围。
在本申请一些实施例中,所述第一指示信息是在所述小区专用时序偏移值和参考小区专用时序偏移值的差值大于或等于第二阈值的情况下发送的。
在本申请一些实施例中,所述参考小区专用时序偏移值根据所述网络设备覆盖范围内的参考点和所述网络设备之间的往返时延确定。
在本申请一些实施例中,所述处理单元420还用于:
将所述目标小区专用时序偏移值和所述差分终端设备专用时序偏移值的差值,确定为所述终端设备专用时序偏移值。
在本申请一些实施例中,所述网络设备是非地面网络NTN系统中的网络设备。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图5至图10所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图13是根据本申请实施例的网络设备的示意性框图。图13的网络设备500包括:
通信单元510,用于向终端设备发送第一指示信息和第二指示信息,其中,所述第一指示信息用于指示目标小区专用时序偏移值,所述第二指示信息用于指示差分终端设备专用时序偏移值,所述差分终端设备专用时序偏移值为大于零的时序偏移值。
在本申请一些实施例中,所述目标小区专用时序偏移值根据以下中的至少一项确定:
第一取值范围,所述第一取值范围为小区专用时序偏移值可配置的取值范围;
所述网络设备的运行位置;
所述网络设备的覆盖范围;
所述网络设备的运行时间信息。
在本申请一些实施例中,所述目标小区专用时序偏移值是所述第一取值范围中的最大的小区专用时序偏移值。
在本申请一些实施例中,所述第一取值范围中的最大的小区专用时序偏移值是根据所述根据网络设备和终端设备之间的最大往返时延和最小往返时延确定的。
在本申请一些实施例中,所述目标小区专用时序偏移值是根据所述网络设备的运行位置对应的目标运行轨迹分段确定的,其中,所述网络设备的运行轨迹包括多个运行轨迹分段,每个运动轨迹分段对应一个最大小区专用时序偏移值。
在本申请一些实施例中,所述运行轨迹分段对应的最大小区专用时序偏移值根据所述运行轨迹分段上的每个运行位置和所述每个运行位置对应的覆盖范围内的终端设备之间的最大往返时延确定。
在本申请一些实施例中,所述目标小区专用时序偏移值是根据所述网络设备的覆盖范围确定的,其中,所述网络设备的运行轨迹对应多个覆盖范围,每个覆盖范围对应一个最大小区专用时序偏移值。
在本申请一些实施例中,所述覆盖范围对应的最大小区专用时序偏移值根据所述覆盖范围内的终端设备和所述网络设备之间的最大往返时延确定。
在本申请一些实施例中,所述目标小区专用时序偏移值是所述网络设备的运行时间信息对应的时间段确定,其中,所述网络设备的一个运行周期包括多个时间段,每个时间段对应一个最大小区专用时序偏移值。
在本申请一些实施例中,所述时间段对应的最大小区专用时序偏移值根据所述网络设备在所述时间段对应的覆盖范围内的终端设备和所述网络设备之间的最大往返时延确定。
在本申请一些实施例中,所述第一指示信息是基于事件触发发送的。
在本申请一些实施例中,所述第一指示信息是在所述差分终端设备专用时序偏移值大于或等于第一阈值的情况下发送的。
在本申请一些实施例中,所述第一阈值是第二取值范围的最大值,所述第二取值范围是差分终端设备专用时序偏移值可配置的取值范围。
在本申请一些实施例中,所述第一指示信息是在所述小区专用时序偏移值和参考小区专用时序偏移值的差值大于或等于第二阈值的情况下发送的。
在本申请一些实施例中,所述参考小区专用时序偏移值根据所述网络设备覆盖范围内的参考点和所述网络设备之间的往返时延确定。
在本申请一些实施例中,所述网络设备是非地面网络NTN系统中的网络设备。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图5至图11所示方法实施例中网络设备的相应流程,为了简洁,在此不再赘述。
图14是本申请实施例提供的一种通信设备600示意性结构图。图14所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图14所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图14所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图15是本申请实施例的芯片的示意性结构图。图15所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图15所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图16是本申请实施例提供的一种通信系统900的示意性框图。如图16所示,该通信系统900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序 指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (74)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备接收网络设备的第一指示信息和第二指示信息,其中,所述第一指示信息用于指示目标小区专用时序偏移值,所述第二指示信息用于指示差分终端设备专用时序偏移值,所述差分终端设备专用时序偏移值为大于或等于零的时序偏移值;
    所述终端设备根据所述目标小区专用时序偏移值和所述差分终端设备专用时序偏移值,确定目标终端设备专用时序偏移值。
  2. 根据权利要求1所述的方法,其特征在于,所述目标小区专用时序偏移值根据以下中的至少一项确定:
    第一取值范围,所述第一取值范围为小区专用时序偏移值可配置的取值范围;
    所述网络设备的运行位置;
    所述网络设备的覆盖范围;
    所述网络设备的运行时间信息。
  3. 根据权利要求2所述的方法,其特征在于,所述目标小区专用时序偏移值是所述第一取值范围中的最大的小区专用时序偏移值。
  4. 根据权利要求3所述的方法,其特征在于,所述第一取值范围中的最大的小区专用时序偏移值是根据所述根据网络设备和终端设备之间的最大往返时延和最小往返时延确定的。
  5. 根据权利要求2-4中任一项所述的方法,其特征在于,所述目标小区专用时序偏移值是根据所述网络设备的运行位置对应的目标运行轨迹分段确定的,其中,所述网络设备的运行轨迹包括多个运行轨迹分段,每个运动轨迹分段对应一个最大小区专用时序偏移值。
  6. 根据权利要求5所述的方法,其特征在于,所述运行轨迹分段对应的最大小区专用时序偏移值根据所述运行轨迹分段上的每个运行位置和所述每个运行位置对应的覆盖范围内的终端设备之间的最大往返时延确定。
  7. 根据权利要求2-6中任一项所述的方法,其特征在于,所述目标小区专用时序偏移值是根据所述网络设备的覆盖范围确定的,其中,所述网络设备的运行轨迹对应多个覆盖范围,每个覆盖范围对应一个最大小区专用时序偏移值。
  8. 根据权利要求7所述的方法,其特征在于,所述覆盖范围对应的最大小区专用时序偏移值根据所述覆盖范围内的终端设备和所述网络设备之间的最大往返时延确定。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述目标小区专用时序偏移值是所述网络设备的运行时间信息对应的时间段确定,其中,所述网络设备的一个运行周期包括多个时间段,每个时间段对应一个最大小区专用时序偏移值。
  10. 根据权利要求9所述的方法,其特征在于,所述时间段对应的最大小区专用时序偏移值根据所述网络设备在所述时间段对应的覆盖范围内的终端设备和所述网络设备之间的最大往返时延确定。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述第一指示信息是基于事件触发发送的。
  12. 根据权利要求11所述的方法,其特征在于,所述第一指示信息是在所述差分终端设备专用时序偏移值大于或等于第一阈值的情况下发送的。
  13. 根据权利要求12所述的方法,其特征在于,所述第一阈值是第二取值范围的最大值,所述第二取值范围是差分终端设备专用时序偏移值可配置的取值范围。
  14. 根据权利要求11所述的方法,其特征在于,所述第一指示信息是在所述小区专用时序偏移值和参考小区专用时序偏移值的差值大于或等于第二阈值的情况下发送的。
  15. 根据权利要求14所述的方法,其特征在于,所述参考小区专用时序偏移值根据所述网络设备覆盖范围内的参考点和所述网络设备之间的往返时延确定。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,所述终端设备根据所述目标小区专用时序偏移值和所述差分终端设备专用时序偏移值,确定终端设备专用时序偏移值,包括:
    所述终端设备将所述目标小区专用时序偏移值和所述差分终端设备专用时序偏移值的差值,确定为所述终端设备专用时序偏移值。
  17. 一种无线通信的方法,其特征在于,包括:
    网络设备向终端设备发送第一指示信息和第二指示信息,其中,所述第一指示信息用于指示目标小区专用时序偏移值,所述第二指示信息用于指示差分终端设备专用时序偏移值,所述差分终端设备专用时序偏移值为大于或等于零的时序偏移值。
  18. 根据权利要求17所述的方法,其特征在于,所述目标小区专用时序偏移值根据以下中的至 少一项确定:
    第一取值范围,所述第一取值范围为小区专用时序偏移值可配置的取值范围;
    所述网络设备的运行位置;
    所述网络设备的覆盖范围;
    所述网络设备的运行时间信息。
  19. 根据权利要求18所述的方法,其特征在于,所述目标小区专用时序偏移值是所述第一取值范围中的最大的小区专用时序偏移值。
  20. 根据权利要求19所述的方法,其特征在于,所述第一取值范围中的最大的小区专用时序偏移值是根据所述根据网络设备和终端设备之间的最大往返时延和最小往返时延确定的。
  21. 根据权利要求18-20中任一项所述的方法,其特征在于,所述目标小区专用时序偏移值是根据所述网络设备的运行位置对应的目标运行轨迹分段确定的,其中,所述网络设备的运行轨迹包括多个运行轨迹分段,每个运动轨迹分段对应一个最大小区专用时序偏移值。
  22. 根据权利要求21所述的方法,其特征在于,所述运行轨迹分段对应的最大小区专用时序偏移值根据所述运行轨迹分段上每个运行位置和所述每个运行位置对应的覆盖范围内的终端设备之间的最大往返时延确定。
  23. 根据权利要求17-22中任一项所述的方法,其特征在于,所述目标小区专用时序偏移值是根据所述网络设备的覆盖范围确定的,其中,所述网络设备的运行轨迹对应多个覆盖范围,每个覆盖范围对应一个最大小区专用时序偏移值。
  24. 根据权利要求23所述的方法,其特征在于,所述覆盖范围对应的最大小区专用时序偏移值根据所述覆盖范围内的终端设备和所述网络设备之间的最大往返时延确定。
  25. 根据权利要求17-24中任一项所述的方法,其特征在于,所述目标小区专用时序偏移值是所述网络设备的运行时间信息对应的时间段确定,其中,所述网络设备的一个运行周期包括多个时间段,每个时间段对应一个最大小区专用时序偏移值。
  26. 根据权利要求25所述的方法,其特征在于,所述时间段对应的最大小区专用时序偏移值根据所述网络设备在所述时间段对应的覆盖范围内的终端设备和所述网络设备之间的最大往返时延确定。
  27. 根据权利要求17-26中任一项所述的方法,其特征在于,所述第一指示信息是基于事件触发发送的。
  28. 根据权利要求27所述的方法,其特征在于,所述第一指示信息是在所述差分终端设备专用时序偏移值大于或等于第一阈值的情况下发送的。
  29. 根据权利要求28所述的方法,其特征在于,所述第一阈值是第二取值范围的最大值,所述第二取值范围是差分终端设备专用时序偏移值可配置的取值范围。
  30. 根据权利要求27所述的方法,其特征在于,所述第一指示信息是在所述小区专用时序偏移值和参考小区专用时序偏移值的差值大于或等于第二阈值的情况下发送的。
  31. 根据权利要求30所述的方法,其特征在于,所述参考小区专用时序偏移值根据所述网络设备覆盖范围内的参考点和所述网络设备之间的往返时延确定。
  32. 根据权利要求17-31中任一项所述的方法,其特征在于,所述网络设备是非地面网络NTN系统中的网络设备。
  33. 一种终端设备,其特征在于,包括:
    通信单元,用于接收网络设备的第一指示信息和第二指示信息,其中,所述第一指示信息用于指示目标小区专用时序偏移值,所述第二指示信息用于指示差分终端设备专用时序偏移值,所述差分终端设备专用时序偏移值为大于或等于零的时序偏移值;
    处理单元,用于根据所述目标小区专用时序偏移值和所述差分终端设备专用时序偏移值,确定目标终端设备专用时序偏移值。
  34. 根据权利要求33所述的终端设备,其特征在于,所述目标小区专用时序偏移值根据以下中的至少一项确定:
    第一取值范围,所述第一取值范围为小区专用时序偏移值可配置的取值范围;
    所述网络设备的运行位置;
    所述网络设备的覆盖范围;
    所述网络设备的运行时间信息。
  35. 根据权利要求34所述的终端设备,其特征在于,所述目标小区专用时序偏移值是所述第一取值范围中的最大的小区专用时序偏移值。
  36. 根据权利要求35所述的终端设备,其特征在于,所述第一取值范围中的最大的小区专用时序偏移值是根据所述根据网络设备和终端设备之间的最大往返时延和最小往返时延确定的。
  37. 根据权利要求34-36中任一项所述的终端设备,其特征在于,所述目标小区专用时序偏移值是根据所述网络设备的运行位置对应的目标运行轨迹分段确定的,其中,所述网络设备的运行轨迹包括多个运行轨迹分段,每个运动轨迹分段对应一个最大小区专用时序偏移值。
  38. 根据权利要求37所述的终端设备,其特征在于,所述运行轨迹分段对应的最大小区专用时序偏移值根据所述运行轨迹分段上的每个运行位置和所述每个运行位置对应的覆盖范围内的终端设备之间的最大往返时延确定。
  39. 根据权利要求34-38中任一项所述的终端设备,其特征在于,所述目标小区专用时序偏移值是根据所述网络设备的覆盖范围确定的,其中,所述网络设备的运行轨迹对应多个覆盖范围,每个覆盖范围对应一个最大小区专用时序偏移值。
  40. 根据权利要求39所述的终端设备,其特征在于,所述覆盖范围对应的最大小区专用时序偏移值根据所述覆盖范围内的终端设备和所述网络设备之间的最大往返时延确定。
  41. 根据权利要求34-40中任一项所述的终端设备,其特征在于,所述目标小区专用时序偏移值是所述网络设备的运行时间对应的时间段确定,其中,所述网络设备的一个运行周期包括多个时间段,每个时间段对应一个最大小区专用时序偏移值。
  42. 根据权利要求41所述的终端设备,其特征在于,所述时间段对应的最大小区专用时序偏移值根据所述网络设备在所述时间段对应的覆盖范围内的终端设备和所述网络设备之间的最大往返时延确定。
  43. 根据权利要求34-42中任一项所述的终端设备,其特征在于,所述第一指示信息是基于事件触发发送的。
  44. 根据权利要求43所述的终端设备,其特征在于,所述第一指示信息是在所述差分终端设备专用时序偏移值大于或等于第一阈值的情况下发送的。
  45. 根据权利要求44所述的终端设备,其特征在于,所述第一阈值是第二取值范围的最大值,所述第二取值范围是差分终端设备专用时序偏移值可配置的取值范围。
  46. 根据权利要求43所述的终端设备,其特征在于,所述第一指示信息是在所述小区专用时序偏移值和参考小区专用时序偏移值的差值大于或等于第二阈值的情况下发送的。
  47. 根据权利要求46所述的终端设备,其特征在于,所述参考小区专用时序偏移值根据所述网络设备覆盖范围内的参考点和所述网络设备之间的往返时延确定。
  48. 根据权利要求33-47中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    将所述目标小区专用时序偏移值和所述差分终端设备专用时序偏移值的差值,确定为所述终端设备专用时序偏移值。
  49. 一种网络设备,其特征在于,包括:
    通信单元,用于向终端设备发送第一指示信息和第二指示信息,其中,所述第一指示信息用于指示目标小区专用时序偏移值,所述第二指示信息用于指示差分终端设备专用时序偏移值,所述差分终端设备专用时序偏移值为大于零的时序偏移值。
  50. 根据权利要求49所述的网络设备,其特征在于,所述目标小区专用时序偏移值根据以下中的至少一项确定:
    第一取值范围,所述第一取值范围为小区专用时序偏移值可配置的取值范围;
    所述网络设备的运行位置;
    所述网络设备的覆盖范围;
    所述网络设备的运行时间信息。
  51. 根据权利要求50所述的网络设备,其特征在于,所述目标小区专用时序偏移值是所述第一取值范围中的最大的小区专用时序偏移值。
  52. 根据权利要求51所述的网络设备,其特征在于,所述第一取值范围中的最大的小区专用时序偏移值是根据所述根据网络设备和终端设备之间的最大往返时延和最小往返时延确定的。
  53. 根据权利要求50-52中任一项所述的网络设备,其特征在于,所述目标小区专用时序偏移值是根据所述网络设备的运行位置对应的目标运行轨迹分段确定的,其中,所述网络设备的运行轨迹包括多个运行轨迹分段,每个运动轨迹分段对应一个最大小区专用时序偏移值。
  54. 根据权利要求53所述的网络设备,其特征在于,所述运行轨迹分段对应的最大小区专用时序偏移值根据所述运行轨迹分段上的每个运行位置和所述每个运行位置对应的覆盖范围内的终端设备之间的最大往返时延确定。
  55. 根据权利要求50-54中任一项所述的网络设备,其特征在于,所述目标小区专用时序偏移值是根据所述网络设备的覆盖范围确定的,其中,所述网络设备的运行轨迹对应多个覆盖范围,每个覆盖范围对应一个最大小区专用时序偏移值。
  56. 根据权利要求55所述的网络设备,其特征在于,所述覆盖范围对应的最大小区专用时序偏移值根据所述覆盖范围内的终端设备和所述网络设备之间的最大往返时延确定。
  57. 根据权利要求50-56中任一项所述的网络设备,其特征在于,所述目标小区专用时序偏移值是所述网络设备的运行时间信息对应的时间段确定,其中,所述网络设备的一个运行周期包括多个时间段,每个时间段对应一个最大小区专用时序偏移值。
  58. 根据权利要求57所述的网络设备,其特征在于,所述时间段对应的最大小区专用时序偏移值根据所述网络设备在所述时间段对应的覆盖范围内的终端设备和所述网络设备之间的最大往返时延确定。
  59. 根据权利要求49-58中任一项所述的网络设备,其特征在于,所述第一指示信息是基于事件触发发送的。
  60. 根据权利要求59所述的网络设备,其特征在于,所述第一指示信息是在所述差分终端设备专用时序偏移值大于或等于第一阈值的情况下发送的。
  61. 根据权利要求60所述的网络设备,其特征在于,所述第一阈值是第二取值范围的最大值,所述第二取值范围是差分终端设备专用时序偏移值可配置的取值范围。
  62. 根据权利要求59所述的网络设备,其特征在于,所述第一指示信息是在所述小区专用时序偏移值和参考小区专用时序偏移值的差值大于或等于第二阈值的情况下发送的。
  63. 根据权利要求62所述的网络设备,其特征在于,所述参考小区专用时序偏移值根据所述网络设备覆盖范围内的参考点和所述网络设备之间的往返时延确定。
  64. 根据权利要求49-63中任一项所述的网络设备,其特征在于,所述网络设备是非地面网络NTN系统中的网络设备。
  65. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至16中任一项所述的方法。
  66. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至16中任一项所述的方法。
  67. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的方法。
  68. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至16中任一项所述的方法。
  69. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的方法。
  70. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求17至32中任一项所述的方法。
  71. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求17至32中任一项所述的方法。
  72. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求17至32中任一项所述的方法。
  73. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求17至32中任一项所述的方法。
  74. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求17至32中任一项所述的方法。
PCT/CN2021/134949 2021-12-02 2021-12-02 无线通信的方法、终端设备和网络设备 WO2023097589A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/134949 WO2023097589A1 (zh) 2021-12-02 2021-12-02 无线通信的方法、终端设备和网络设备
CN202180101407.1A CN118104327A (zh) 2021-12-02 2021-12-02 无线通信的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/134949 WO2023097589A1 (zh) 2021-12-02 2021-12-02 无线通信的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2023097589A1 true WO2023097589A1 (zh) 2023-06-08

Family

ID=86611267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134949 WO2023097589A1 (zh) 2021-12-02 2021-12-02 无线通信的方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN118104327A (zh)
WO (1) WO2023097589A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033094A1 (en) * 2019-08-16 2021-02-25 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling timing for large cells and long propagation delays
CN112911699A (zh) * 2021-01-14 2021-06-04 之江实验室 一种基于非地面通信网络的时间同步方法
WO2021190579A1 (en) * 2020-03-25 2021-09-30 FG Innovation Company Limited Method of initial access and related device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033094A1 (en) * 2019-08-16 2021-02-25 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling timing for large cells and long propagation delays
WO2021190579A1 (en) * 2020-03-25 2021-09-30 FG Innovation Company Limited Method of initial access and related device
CN112911699A (zh) * 2021-01-14 2021-06-04 之江实验室 一种基于非地面通信网络的时间同步方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MODERATOR (ERICSSON): "Feature lead summary#5 on timing relationship enhancements", 3GPP TSG-RAN WG1 MEETING #107-E R1-2112716, 20 November 2021 (2021-11-20), XP052097956 *
XIAOMI: "Discussion on the remaining issues on timing relationship enhancement for NTN", 3GPP TSG RAN WG1 #107-E R1-2111570, 5 November 2021 (2021-11-05), XP052179466 *

Also Published As

Publication number Publication date
CN118104327A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
CN109996306B (zh) 通信方法和通信设备
CN115413045A (zh) 信息传输方法、终端设备和网络设备
US20230115662A1 (en) Method for neighboring cell measurement, terminal device and network device
EP4231714A1 (en) Network access method, terminal device, and network device
WO2021237525A1 (zh) 无线通信的方法和设备
US20230085429A1 (en) Secondary node change method, terminal device and network device
WO2020220321A1 (zh) 无线通信方法、终端设备和网络设备
WO2023097589A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022151275A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023065156A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022198432A1 (zh) 无线通信的方法及设备
WO2023056604A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022082433A1 (zh) 位置注册的方法和终端设备
WO2022011682A1 (zh) 无线通信方法、终端设备和网络设备
WO2022000301A1 (zh) 信号测量的方法、终端设备和网络设备
WO2023060585A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022178844A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024011588A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023077406A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022198433A1 (zh) 无线通信的方法及设备
WO2024138361A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023060468A1 (zh) 无线通信的方法、终端设备和网络设备
US20230224763A1 (en) Wireless communication method, terminal device, and network device
WO2022236965A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023141760A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966022

Country of ref document: EP

Kind code of ref document: A1