WO2023060468A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023060468A1
WO2023060468A1 PCT/CN2021/123461 CN2021123461W WO2023060468A1 WO 2023060468 A1 WO2023060468 A1 WO 2023060468A1 CN 2021123461 W CN2021123461 W CN 2021123461W WO 2023060468 A1 WO2023060468 A1 WO 2023060468A1
Authority
WO
WIPO (PCT)
Prior art keywords
ncsg
state
pattern
terminal device
measurement
Prior art date
Application number
PCT/CN2021/123461
Other languages
English (en)
French (fr)
Inventor
张晋瑜
胡荣贻
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/123461 priority Critical patent/WO2023060468A1/zh
Priority to CN202180103008.9A priority patent/CN118044248A/zh
Publication of WO2023060468A1 publication Critical patent/WO2023060468A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Definitions

  • the embodiments of the present application relate to the communication field, and in particular to a wireless communication method, a terminal device, and a network device.
  • a terminal device can perform measurements based on a pre-configured Measurement Gap (pre-MG) pattern. Some terminal devices can also perform measurements based on Network Control Small Gap (NCSG) patterns. Measurements based on NCSG patterns can reduce the interruption time required for measurements compared to measurements based on MG patterns. When the terminal equipment supports measurement based on MG pattern and NCSG pattern at the same time, how the terminal equipment performs measurement is an urgent problem to be solved.
  • pre-MG Measurement Gap
  • NCSG Network Control Small Gap
  • the present application provides a wireless communication method, a terminal device and a network device.
  • the terminal device and the network device can determine the target state of the measurement and/or the target measurement configuration used for the measurement in a consistent manner, which is beneficial to ensure that the terminal device and the network
  • the device has a consistent understanding of the active measurement configuration.
  • a wireless communication method including: a terminal device determines a measurement target state in multiple states, and/or, the terminal device determines an activated target measurement configuration;
  • the multiple states include at least two of the following states:
  • the first state corresponds to the terminal device performing measurement based on no interval
  • the second state corresponds to the terminal device performing measurement based on the measurement interval MG;
  • the third state corresponds to the terminal device performing measurement based on a network-controllable small-interval NCSG;
  • the fourth state corresponds to the terminal device performing measurement based on the MG and NCSG.
  • a wireless communication method including: a network device determines a target state in which a terminal device performs measurement in multiple states, and/or, the network device determines a target measurement configuration activated by the terminal device;
  • the multiple states include at least two of the following states:
  • the first state corresponds to the terminal device performing measurement based on no interval
  • the second state corresponds to the terminal device performing measurement based on the measurement interval MG;
  • the third state corresponds to the terminal device performing measurement based on a network-controllable small-interval NCSG;
  • the fourth state corresponds to the terminal device performing measurement based on the MG and NCSG.
  • a terminal device configured to execute the method in the foregoing first aspect or various implementation manners thereof.
  • the terminal device includes a functional module for executing the method in the above first aspect or its various implementation manners.
  • a network device configured to execute the method in the foregoing second aspect or various implementation manners thereof.
  • the network device includes a functional module for executing the method in the above second aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above first aspect or its various implementations.
  • a sixth aspect provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above second aspect or its various implementations.
  • a chip is provided for implementing any one of the above first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first to second aspects or any of the implementations thereof. method.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • a ninth aspect provides a computer program product, including computer program instructions, the computer program instructions cause a computer to execute any one of the above first to second aspects or the method in each implementation manner.
  • a computer program which, when running on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner.
  • the terminal device can determine the target state of the measurement and/or the activated target measurement configuration in multiple states, and correspondingly, the network device can also determine the target state and/or the target state of the terminal device to perform the measurement in multiple states
  • the target measurement configuration used for measurement is beneficial to ensure that the terminal device and the network device have a consistent understanding of the activated measurement configuration.
  • FIG. 1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
  • Fig. 2 is a schematic diagram of an MG and an NCSG in a synchronization scenario provided by the present application.
  • Fig. 3 is a schematic diagram of an MG and an NCSG in an asynchronous scenario provided by the present application.
  • Fig. 4 is a schematic flowchart of a wireless communication method provided according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of determining a target state according to a specific example of the present application.
  • Fig. 6 is a schematic diagram of determining a target state according to another specific example of the present application.
  • Fig. 7 is a schematic flowchart of another wireless communication method provided according to an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) deployment Web scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent deployment Web scene
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • gNB network equipment in the network or the network equipment in the future evolved PLMN network or the network equipment in the NTN network, etc.
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
  • the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefinition can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in devices (for example, including terminal devices and network devices).
  • the implementation method is not limited.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied in future communication systems, which is not limited in the present application.
  • the network device can configure the terminal device to measure the reference signal of the target neighboring cell within a specific time window, where the target neighboring cell can be the same-frequency neighboring cell or a different-frequency neighboring cell or a different-network neighboring cell. district.
  • the reference signal may include but not limited to synchronization signal/physical broadcast channel block (synchronization signal/physical broadcast channel block, SS/PBCH block, SSB for short), position reference signal (positioning reference signals, PRS), channel state information reference Signal (Channel State Information Reference Signal, CSI-RS).
  • synchronization signal/physical broadcast channel block synchronization signal/physical broadcast channel block, SS/PBCH block, SSB for short
  • position reference signal positioning reference signals
  • PRS position reference signals
  • channel state information reference Signal Channel State Information Reference Signal
  • the measurement of the reference signal may be Reference Signal Received Power (Reference Signal Received Power, RSRP), or Reference Signal Received Quality (Reference Signal Received Quality, RSRQ), or Signal to Interference plus Noise Ratio (Signal to Interference plus Noise Ratio , SINR) measurement.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SINR Signal to Interference plus Noise Ratio
  • the specific time window is called the measurement interval.
  • FR Frequency range
  • FR1 and FR2 frequency ranges
  • Table 1 the frequency ranges corresponding to FR1 and FR2 are shown in Table 1 below.
  • FR1 is also called sub 6GHz frequency range
  • FR2 is also called It is the millimeter wave frequency range. It should be noted that the frequency ranges corresponding to FR1 and FR2 are not limited to the frequency ranges shown in Table 1, and can also be adjusted.
  • the terminal equipment According to whether the terminal equipment supports the ability of FR1 and FR2 to work independently, there are two types of gaps in the measurement interval, one is the measurement interval per UE (per UE gap), and the other is the measurement interval per FR (per FR gap). Further, per FR gap is divided into per FR1 gap and per FR2 gap. Among them, per UE gap is also called gapUE, per FR1 gap is also called gapFR1, and per FR2 gap is also called gapFR2.
  • the terminal device introduces a capability indication of whether to support FR1 and FR2 to work independently. This capability indication is called independentGapConfig.
  • This capability indication is used by the network device to determine whether the measurement interval of the per FR type can be configured for the terminal device, such as per FR1 gap, per FR2 gap. Specifically, if the capability indication is used to indicate that the terminal device supports FR1 and FR2 to work independently, the network device can configure a per FR measurement interval; if the capability indication is used to indicate that the terminal device does not support FR1 and FR2 to work independently, the network device does not The measurement interval of per FR type can be configured, and only the measurement interval of per UE type (that is, per UE gap) can be configured for terminal devices.
  • the per FR1 gap, per FR2 gap, and per UE gap are described below.
  • the measurement interval belonging to the per FR1 gap type is only applicable to the measurement of FR1.
  • the per FR1 gap and per UE gap do not support simultaneous configuration.
  • the configuration rule of the MG is related to the frequency point of the serving cell and the frequency point of the target cell.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRA-NR Dual Connectivity, EN-DC Evolved Universal Terrestrial Radio Access
  • the master node (Master Node, MN) is the long-term evolution ( Long Term Evolution (LTE) standard
  • the secondary node Secondary Node, SN
  • LTE Long Term Evolution
  • SN secondary Node
  • per FR2 gap (that is, gapFR2): The measurement interval belonging to the per FR2 gap type is only applicable to the measurement of FR2.
  • the per FR2 gap and per UE gap do not support simultaneous configuration.
  • the per FR2 gap and per FR1 gap support simultaneous configuration.
  • the terminal device can perform independent measurements on FR1 and FR2, and the terminal device can be configured with a measurement interval of per FR gap type, such as per FR1 gap type Measurement interval, measurement interval of per FR2 gap type.
  • the measurement interval belonging to the per UE gap type applies to measurements in all frequency bands (including FR1 and FR2).
  • MN In EN-DC mode, MN is in LTE mode, SN is in NR mode, and only MN can configure per UE gap. If per UE gap is configured, per FR gap (such as per FR1 gap, per FR2 gap) cannot be configured again.
  • the terminal device During the duration of a measurement interval of type per UE gap, the terminal device is not allowed to transmit any data and is not expected to adjust the receivers of the primary and secondary carriers.
  • the network device configures the measurement configuration (i.e. MeasConfig) through radio resource control (Radio Resource Control, RRC) dedicated signaling, as shown in Table 2 below.
  • MeasConfig includes the measurement gap configuration and the measurement object configuration, wherein the measurement gap configuration is measGapConfig, and the measurement The object configuration is measObjectToAddModList.
  • the configuration information of a measurement interval includes: measurement interval offset (ie gapOffset), measurement interval repetition period (Measurement Gap Repetition Period, MGRP), measurement interval length (Measurement Gap Length, MGL). Among them, the measurement interval offset is used to determine the starting point of the measurement interval.
  • the type of a measurement interval can be per UE gap, or per FR1 gap, or per FR2 gap.
  • There are 26 types of measurement interval patterns (referred to as interval patterns for short), and different interval patterns correspond to different MGRPs and/or MGLs. Some interval patterns are used for FR1 measurement, corresponding to per FR1 gap; some interval patterns are used for FR2 measurement, corresponding to per FR2 gap.
  • the configuration information of a measurement object can configure the synchronization block measurement timing configuration (SS/PBCH block measurement timing configuration, SMTC) associated with the measurement object, and the SMTC configuration can support ⁇ 5,10,20,40,80,160 ⁇ milliseconds ( ms) period, and ⁇ 1,2,3,4,5 ⁇ ms window length, SMTC time offset (time offset) is strongly correlated with the period, the value is ⁇ 0,...,period-1, ⁇ . Since the carrier frequency is no longer included in the measurement object, the SMTC can be configured independently for each measurement object (Measurement Object, MO) instead of each frequency point.
  • MO Measurement Object
  • NCSG Network Control Small Gap
  • NCSG can reduce the interruption time required for measurement.
  • VIL Visible Interruption Length
  • VIL1 and VIL2 the visible interruption length
  • ML Measurement Length
  • NCSG#0 and NCSG#2 are based on MG pattern#0, which are applicable to synchronous and asynchronous scenarios respectively; NCSG#1 and NCSG#3 are based on MG pattern#1(
  • the Visible Interruption Repetition Period (VIRP) of NCSG is equal to the Measurement Gap Repetition Period (MGRP) of MG, and the VIL1+ML+VIL2 of NCSG is equal to the MGL of MG), which are applicable to synchronous and asynchronous respectively Scenarios, the MG and NCSG in the synchronous scenario may be shown in Figure 2, and the MG and NCSG in the asynchronous scenario may be shown in Figure 3.
  • VIL visible Interruption Length
  • the UE needs to perform radio frequency adjustment, etc., and cannot perform data transmission.
  • SSB measurement even the same measurement object
  • a pre-configured MG For example, for BWP1, the SSB resource (frequency domain resource) is completely contained in BWP1, and the subcarrier spacing (Subcarrier spacing, SCS) or cyclic prefix (Cyclic Prefix, CP) is the same, then the terminal device can measure without MG, in other words, the terminal The device can perform no-gap measurement, and this state is recorded as the no-gap state; when the UE switches to BWP2, the SSB resource is not included in BWP2, at this time, the terminal device must be in the MG to perform measurement. The state in which the terminal equipment performs measurement based on the MG is recorded as the MG state.
  • Pre-MG can be activated by:
  • Method 1 The activation or deactivation of the pre-MG is implicitly triggered through downlink control information (Downlink Control Information, DCI) or based on timer (Timer based) BWP switching;
  • DCI Downlink Control Information
  • timer Timer based
  • Mode 2 Explicitly control the activation or deactivation of the pre-MG through network signaling.
  • the activation status of each BWP is configured through RRC signaling.
  • the terminal device may perform measurement in various states, for example, perform measurement based on MG, perform measurement based on no-gap, or perform measurement based on NCSG. In this case, how the terminal equipment performs measurement is an urgent problem to be solved.
  • FIG. 4 is a schematic diagram of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 4 , the wireless communication method 200 may include at least part of the following content:
  • the terminal device determines the target state of the measurement in multiple states, and/or the terminal device determines the active target measurement configuration
  • the multiple states include at least two of the following states:
  • the first state corresponds to the terminal device performing measurements based on no-gap
  • the second state corresponds to the terminal device performing measurement based on the measurement interval MG;
  • the third state corresponds to the terminal device performing measurement based on a network-controllable small-interval NCSG;
  • the fourth state corresponds to the terminal device performing measurement based on the MG and NCSG.
  • the terminal device supports measurement based on the NCSG and supports measurement based on the MG.
  • the terminal device has the capability of concurrent NCSG and MG, that is, the terminal device supports concurrent NCSG and MG.
  • the capability of the terminal device to have the NCSG and the MG concurrently can be understood as: the terminal device has the capability of using the NCSG and the MG simultaneously, or the terminal device has the capability of the coexistence of the NCSG and the MG.
  • the terminal device when the terminal device has the capability of performing measurement based on the NCSG pattern and the capability of performing measurement based on the MG pattern, it is determined that the terminal device has the capability of NCSG and MG concurrently. Certainly, the terminal device may also determine that it has the capability of NCSG and MG concurrently based on other parameters, which is not limited in this application.
  • the terminal device when the terminal device has the capability of performing measurements based on the NCSG pattern and the capability of performing measurements based on the MG pattern, the terminal device sends indication information to the network device, where the indication information is used to indicate that the terminal device It has the ability of NCSG and MG concurrently. That is, the terminal device can report to the network device that it has the capability of NCSG and MG concurrently.
  • the terminal device may indicate to the network device that it has the capability of NCSG and MG concurrently through radio resource control (Radio Resource Control, RRC) signaling or uplink control information (Uplink Control Information, UCI) signaling.
  • RRC Radio Resource Control
  • UCI Uplink Control Information
  • the measurement in this embodiment of the present application may be a measurement of a reference signal
  • the reference signal may include but not limited to SSB, CSI-RS, and PRS.
  • the measurement of the reference signal by the terminal device may include but not limited to measuring at least one of RSRP, RSRQ and SINR of the reference signal.
  • NCSG can be replaced by NCSG pattern, for example, measurement based on NCSG can be replaced by measurement based on NCSG pattern, activation or deactivation of MG can be replaced by activation or deactivation of MG pattern; similarly, MG can also be replaced by MG pattern, for example, measuring based on MG can refer to measuring based on MG pattern, activating or deactivating NCSG can be replaced by activating or deactivating NCSG pattern.
  • the first state is called no-gap state, that is, the terminal device can perform measurements without MG and NCSG;
  • the second state is called MG state, or pre-MG state, that is, the terminal device needs to perform measurements based on MG Perform measurement;
  • the third state is called NCSG state, that is, the terminal device performs measurement based on NCSG;
  • the fourth state is called MG and NCSG concurrent state, that is, the terminal device performs measurement based on MG and NCSG.
  • the MG pattern and the NCSG pattern may be associated, or may not be associated.
  • the NCSG pattern and the MG pattern are associated and include at least one of the following:
  • the period of the NCSG is the same as that of the associated MG;
  • the offset of the NCSG is the same as that of the associated MG.
  • the sum of the ML and VIL of the NCSG is approximately the same as the MGL of the MG, or the difference between the sum of the ML and VIL of the NCSG and the MGL of the MG is smaller than the first time threshold, for example, the first time threshold is 2 time slots, also That is to say, when the sum of ML and VIL of NCSG is 1 or 2 more time slots than the MGL of MG, it can also be considered that the sum of ML and VIL of NCSG is the same as the MGL of MG.
  • the NCSG pattern and the MG pattern are disjoint, comprising at least one of the following:
  • NCSG is different from that of MG
  • NCSG is different from that of MG.
  • the network device may preconfigure at least one MG pattern for the terminal device.
  • the at least one MG pattern is pre-configured through RRC signaling.
  • the MG can be activated or deactivated through signaling of the network device.
  • the activation or deactivation of the MG can be explicitly controlled.
  • the MG may be activated or deactivated implicitly.
  • the MG when the BWP is activated, the MG is in the activated state on the BWP, and when the BWP is deactivated, the MG is in the deactivated state on the BWP.
  • the terminal device when the BWP is activated, uses the MG to perform measurement on the BWP, and when the BWP is deactivated, the terminal device does not perform measurement based on the MG on the BWP, or does not perform measurement on the BWP.
  • the MG pattern can be configured based on UE granularity, for example, the network device can configure one or more MG patterns for the terminal device, and the one or more MG patterns can be applied to all BWPs , that is, no matter which BWP is activated, when the terminal device determines to perform measurement based on MG, the terminal device can perform measurement based on the one or more MG patterns. For example, when the first BWP is activated, the terminal device may perform measurements on the first BWP based on the one or more MG patterns, that is, on the first BWP, the one or more MG patterns are in an active state.
  • the terminal device may perform measurements based on the one or more MG patterns when it is not on the first BWP, that is, on the first BWP, the one or more MG patterns are in a deactivated state .
  • the MG pattern can be configured based on BWP granularity.
  • the network device can configure a corresponding MG pattern for each BWP of the terminal device, and then the terminal device determines that the measurement is based on the MG. , the terminal device can perform measurements based on the MG pattern configured on the activated BWP. For example, when the first BWP is activated, the terminal device can perform measurements on the first BWP based on the MG pattern corresponding to the first BWP, that is, when the first BWP is activated, the MG pattern corresponding to the first BWP is active .
  • the terminal device may perform measurements based on the MG pattern corresponding to the first BWP when the terminal device is not on the first BWP, that is, when the first BWP is deactivated, the MG pattern corresponding to the first BWP is deactivated.
  • the MG can be activated or deactivated according to preset rules.
  • the preset rule may be related to at least one of whether MO needs MG, addition or release of primary secondary cell (PSCell), addition or release of secondary cell (SCell), addition or removal of MO, and BWP switching relevant.
  • the MG is deactivated.
  • one or more measurement objects in the measurement objects configured on the terminal device require an MG, and the MG is activated.
  • the activation or deactivation of the MG may be at the BWP granularity, or may also be at the UE granularity, and the present application is not limited thereto.
  • the network device may preconfigure at least one NCSG pattern for the terminal device.
  • the at least one NCSG pattern is pre-configured through RRC signaling.
  • the network device may explicitly indicate the NCSG pattern, or may also indicate to convert the MG pattern into the corresponding NCSG pattern.
  • the NCSG can be activated or deactivated through signaling of network equipment.
  • the activation or deactivation of the NCSG can be explicitly controlled.
  • NCSG is activated or deactivated through RRC signaling.
  • NCSG may be activated or deactivated implicitly.
  • the NCSG when the BWP is activated, the NCSG is in the activated state on the BWP, and when the BWP is deactivated, the NCSG is in the deactivated state on the BWP.
  • the terminal device when the BWP is activated, uses the NCSG to perform measurements on the BWP, and when the BWP is deactivated, the terminal device does not perform measurements on the BWP based on the NCSG, or does not perform measurements on the BWP.
  • the NCSG pattern can be configured based on UE granularity, for example, the network device can configure one or more NCSG patterns for the terminal device, and the one or more NCSG patterns can be applied to all BWPs , that is, no matter which BWP is activated, when the terminal device determines to perform measurement based on NCSG, the terminal device can perform measurement based on the one or more NCSG patterns. For example, when the first BWP is activated, the terminal device may perform measurements on the first BWP based on the one or more NCSG patterns, that is, on the first BWP, the one or more NCSG patterns are in an active state.
  • the terminal device may perform measurements based on the one or more NCSG patterns when it is not on the first BWP, that is, on the first BWP, the one or more NCSG patterns are in a deactivated state .
  • the NCSG pattern can be configured based on BWP granularity.
  • the network device can configure a corresponding NCSG pattern for each BWP of the terminal device, and then the terminal device determines that the measurement is based on NCSG , the terminal device can perform measurements based on the NCSG pattern configured on the activated BWP.
  • the terminal device can perform measurements on the first BWP based on the NCSG pattern corresponding to the first BWP, that is, when the first BWP is activated, the NCSG pattern corresponding to the first BWP is active .
  • the terminal device when the first BWP is deactivated, the terminal device is not on the first BWP and can perform measurements based on the NCSG pattern corresponding to the first BWP, that is, when the first BWP is deactivated, the NCSG pattern corresponding to the first BWP pattern is deactivated.
  • the NCSG can be activated or deactivated according to preset rules.
  • the preset rule may be related to at least one of whether the MO needs NCSG, addition or release of primary secondary cell (PSCell), addition or release of secondary cell (SCell), addition or removal of MO, and BWP switching relevant.
  • the NCSG is deactivated.
  • one or more measurement objects in the measurement objects configured on the terminal device need the NCSG, and the NCSG is activated.
  • the activation or deactivation of the NCSG may be at the BWP granularity, or may also be at the UE granularity.
  • activation or deactivation of the BWP may be controlled through signaling, or may also be controlled based on a timer.
  • the network device can control the activation or deactivation of the BWP through downlink signaling, such as RRC signaling or Media Access Control Control Element (Media Access Control Control Element, MAC CE).
  • downlink signaling such as RRC signaling or Media Access Control Control Element (Media Access Control Control Element, MAC CE).
  • BWP switching is performed, that is, one BWP is deactivated and another BWP is activated.
  • activating or deactivating NCSG can also be replaced by activating or deactivating NCSG pattern, the two are equivalent and can be replaced with each other, similarly, activating or deactivating MG can also be replaced by activating Or deactivate the MG pattern, the two are equivalent and can replace each other.
  • the terminal device may determine the target state for the terminal device to perform measurement in multiple states according to signaling of the network device, a preset rule or a BWP switching instruction.
  • the signaling of the network device may be used to activate or deactivate the MG, and/or, activate or deactivate the NCSG.
  • the signaling of the network device may be at UE granularity, or may also be at BWP granularity, or may also be at other granularity, and this application does not specifically limit the control mode of the network device.
  • the BWP switching instruction may refer to instruction information or switching conditions for triggering BWP switching, for example, the BWP switching instruction may be a BWP activation or deactivation instruction, or may also be a timer for BWP switching, This application is not limited to this.
  • the preset rules may be related to at least one of the following:
  • no-gap, NCSG and MG can be regarded as multiple gap types. Among them, the intervals are sorted from small to large as no-gap, NCSG and MG.
  • the terminal device may determine the target interval type for performing measurement among multiple interval types.
  • the terminal device may determine that the terminal device performs measurement based on no-gap, or MG, or NCSG, or MG+NCSG according to signaling of the network device, a preset rule, or a BWP switching instruction.
  • the terminal device may also determine the target measurement configuration used to perform the measurement, that is, the active target measurement configuration. For example, the terminal device may determine the target measurement configuration used by the terminal device for measurement according to the target state.
  • the terminal device can use NCSG as a special MG, or use NCSG as a special no-gap, or use NCSG as a third state that is not equal to MG and no-gap.
  • the terminal device can regard the NCSG as a special MG. Therefore, the NCSG can be activated and deactivated in the manner of MG activation and deactivation.
  • the multiple states include the first state and the third state.
  • the terminal device can perform measurement based on no-gap, or perform measurement based on NCSG.
  • the terminal device can determine the target gap type for measurement in the two gap types of no-gap and NCSG.
  • the network device may preconfigure at least one NCSG pattern for the terminal device.
  • At least one NCSG pattern is pre-configured through RRC signaling.
  • the NCSG may be activated or deactivated explicitly, or the NCSG may be activated or deactivated implicitly.
  • NCSG when NCSG is activated, use NCSG for measurements, and when NCSG is deactivated, use no-gap for measurements.
  • the terminal device may determine the target state in the first state and the third state according to first information, where the first information includes at least one of the following:
  • the first signaling of the network device to activate or deactivate the NCSG may correspond to explicitly activating or deactivating the NCSG.
  • the first signaling may be, for example, RRC signaling, DCI, MAC CE, etc., which is not limited in this application.
  • the terminal device may perform measurement based on the NCSG, that is, the target state is the third state.
  • the terminal device may perform measurement based on no-gap, that is, the target state is the first state.
  • the first signaling indicating to activate or deactivate the NCSG may be at the BWP granularity, or may also be at the UE granularity.
  • the terminal device may determine the target state of the terminal device performing measurement on a specific BWP according to the first signaling.
  • the terminal device performs measurement based on the NCSG on the first BWP, that is, the target state on the first BWP is the third state.
  • the terminal device performs measurement based on no-gap on the first BWP, that is, the target state on the first BWP is the first state.
  • the first preset rule is related to whether the measurement object needs NCSG.
  • the first preset rule includes but is not limited to at least one of the following:
  • the terminal device may perform measurement based on no-gap, that is, the target state is the first state, or, if one or more measurement objects of the terminal device The object needs the NCSG, and the terminal device can perform measurement based on the NCSG, that is, the target state is the third state.
  • the terminal device may also determine the activation or deactivation of the NCSG according to the activation or deactivation of the BWP (for example, a BWP switching indication).
  • the terminal device may determine that the NCSG is in an active state on the first BWP, that is, perform measurement based on the NCSG on the first BWP.
  • the terminal device may determine that the NCSG on the first BWP is in the deactivated state, that is, it does not perform measurements based on the NCSG on the first BWP, or does not Measurements are performed on the first BWP.
  • the NCSG pattern is configured based on UE granularity.
  • the network device can configure one or more NCSG patterns for the terminal device, and the one or more NCSG patterns can be applied to all BWPs, then the first The NCSG being activated on a BWP may refer to: on the first BWP, the one or more NCSG patterns are activated, and the NCSG being deactivated on the first BWP may refer to: on the first BWP, the one or multiple NCSG patterns are deactivated.
  • the NCSG pattern is configured based on BWP granularity.
  • the network device can configure a corresponding NCSG pattern for each BWP of the terminal device, and the NCSG being active on the first BWP can refer to: On the first BWP, the NCSG pattern corresponding to the first BWP is in the active state; the NCSG on the first BWP is in the deactivated state may refer to: on the first BWP, the NCSG pattern corresponding to the first BWP is in the deactivated state.
  • the NCSG is in the activated state or the deactivated state on a certain BWP, and the above explanation may also be referred to, and for the sake of brevity, details are not repeated here.
  • the activation or deactivation of the BWP may be based on the signaling of the network device, or based on the timer.
  • the relevant description above and for the sake of brevity, details are not repeated here.
  • the terminal device determines the activated target measurement configuration, including:
  • the active target measurement configuration is determined from the target state, or the target measurement configuration is determined from the target interval type.
  • the terminal device determines that the pre-configured NCSG pattern is the active target measurement configuration.
  • the terminal device determines that the pre-configured NCSG pattern is the active target measurement configuration.
  • the NCSG pattern can be configured based on UE granularity.
  • the network device can configure one or more NCSG patterns for the terminal device, and the one or more NCSG patterns can be applied to all BWP, that is, no matter which BWP is activated, when the target state is the third state, the terminal device can perform measurements based on the one or more NCSG patterns, that is, the target measurement configuration used for measurement can include the preconfigured one or more NCSG patterns. Multiple NCSG patterns.
  • the NCSG pattern may be configured based on BWP granularity, for example, the network device may configure a corresponding NCSG pattern for each BWP of the terminal device, then when the target state is the third state, End devices can perform measurements based on the configured NCSG pattern on the activated BWP. That is, the NCSG pattern configured on the activated BWP can be determined as the target measurement configuration.
  • the method 200 further includes:
  • the terminal device reports first measurement capability information to the network device, where the first measurement capability information is used to instruct the terminal device to switch between the first state and the second state, or, in the second state, switching between the first state and the third state.
  • the first measurement capability information may be used to instruct the terminal device to select the target gap type from the no-gap and NCSG gap types, or to select the target gap type from the no-gap and MG gap types.
  • the configuration granularity of the first measurement capability information includes at least one of the following: user equipment, frequency band range FR, frequency band (band), and frequency band combination (band combination).
  • the terminal device may report the first measurement capability information of per-UE, or report the first measurement capability information of per-FR, or report the first measurement capability information of per-band, or report the first measurement capability information of per-BC. Measuring capability information.
  • the terminal device may select the target interval type based on per-UE, per-FR, per-Band, or per-BC first measurement capability information. For example, the target interval type used for measurement on the first frequency band is selected according to the first measurement capability information corresponding to the first frequency band, and the target interval type used for measurement on the second frequency band is selected according to the first measurement capability information corresponding to the second frequency band. Target interval type.
  • the first measurement capability type (or Type-1a type), corresponding to the switching between the first state and the second state of the terminal device, or in other words, the terminal device is in two gap types: no-gap and MG Select the target interval type in ;
  • the second measurement capability type (or Type-1b type), corresponding to the terminal device switching between the first state and the third state, or in other words, the terminal device is in the no-gap and NCSG gap types Select the target interval type in .
  • the network device may indicate through signaling whether to activate the MG, or whether to activate the MG or no-gap.
  • 1-bit indication information may be used to indicate whether to activate the MG or no-gap.
  • the 1 bit takes a value of 0 to indicate that no-gap is activated or the MG is deactivated, and a value of 1 indicates that the MG is activated.
  • the MG may be activated or deactivated according to a preset rule. For example, when all measurement objects configured on the terminal device do not require the MG, the MG is deactivated, and when one or more measurement objects configured on the terminal device require the MG, the MG is activated.
  • the network device may indicate through signaling whether to activate the NCSG, or whether to activate the NCSG or no-gap.
  • 1-bit indication information may be used to indicate whether to activate the NCSG or no-gap.
  • the 1 bit takes a value of 0 to indicate that NCSG is deactivated, or activates no-gap, and a value of 1 indicates that NCSG is activated.
  • the NCSG may be activated or deactivated according to a preset rule. For example, when all measurement objects configured on the terminal device do not need the NCSG, the NCSG is deactivated, and when one or more measurement objects configured on the terminal device require the NCSG, the NCSG is activated.
  • the terminal device when the terminal device supports the first measurement capability type, the terminal device may perform measurement based on no-gap or MG, and this measurement mode is recorded as the first measurement mode.
  • the terminal device when the terminal device supports the second measurement capability type, the terminal device can perform measurement based on no-gap or NCSG, and this measurement mode is recorded as the second measurement mode.
  • the terminal device can report the first measurement capability information at UE granularity, and the network device can pre-configure the measurement mode of the MG, NCSG or the terminal device according to the first measurement capability information reported by the terminal device, for example, using the first measurement capability information mode or the second measurement mode. In this way, no matter which frequency band or BWP the terminal device works in, the terminal device can activate or deactivate the MG or NCSG according to the measurement mode indicated by the network device.
  • the terminal device may report the first measurement capability information using frequency band combination granularity.
  • the first measurement capability information reported by the terminal device is shown in Table 3.
  • the terminal device supports frequency bands B1 to B6, and the terminal device can report the measurement capability type supported by each frequency band.
  • B1 to B4 support the second measurement capability type
  • B5 and B6 support the first measurement capability type. Therefore, the terminal device may determine the measurement mode adopted by the measurement object according to the frequency band of the measurement object, and correspondingly, the network device may determine the measurement mode adopted by the terminal device according to the frequency band corresponding to the measurement object of the terminal device. For example, if the measurement object belongs to the frequency band B1, it is determined that the terminal device adopts the second measurement method. For another example, if the measurement object belongs to the frequency band B5, it is determined that the terminal device adopts the first measurement method.
  • the terminal device may report the first measurement capability information at the BWP granularity.
  • the terminal device may have a measurement capability type corresponding to BWP1 and a measurement capability type corresponding to BWP2, the measurement capability type of BWP1 is Type-1a type, and the measurement capability type of BWP2 is Type-1b type, wherein, BWP1 and SSB resources have different center frequency points and SCS/CP, BWP2 and SSB resources have the same center frequency point and SCS/CP, and the bandwidth of BWP2 does not completely cover SSB resources, and the measurement capability type of BWP1 is Type-1a , the measurement capability type of BWP2 is Type-1b.
  • the terminal device When the terminal device works on BWP1, the terminal device needs to measure SSB based on MG, and the terminal device cannot receive data on BWP1 at the same time when measuring SSB. Therefore, on BWP1, the terminal device can use Type-1a to preconfigure MG performs activation and deactivation.
  • the terminal device When the terminal device switches to BWP2, the terminal device only needs the NCSG to open the RF receiving bandwidth, and can measure SSB and receive data on BWP2 at the same time. Therefore, on BWP2, the terminal device can activate and deactivate the pre-configured NCSG according to the Type-1b type.
  • the network device may also configure the measurement mode adopted by the terminal device on each BWP.
  • the network device may configure the terminal device to adopt the first measurement method on BWP1.
  • the network device may configure the terminal device to adopt the second measurement method on BWP2.
  • the terminal device may regard the NCSG as a special no-gap, and when the terminal device does not need to perform measurement based on the MG, the terminal device may use the NCSG to perform measurement.
  • the multiple states include the second state and the third state.
  • the terminal equipment can perform measurement based on the MG, or perform measurement based on the NCSG.
  • the terminal device can determine the target interval type for measurement in the two interval types of MG and NCSG.
  • the network device may preconfigure at least one NCSG pattern and/or at least one MG pattern for the terminal device.
  • At least one NCSG pattern is preconfigured through RRC signaling, and/or, at least one MG pattern is preconfigured.
  • the NCSG pattern and the MG pattern pre-configured by the network device may be associated or may not be associated.
  • the network device can only be configured with the NCSG pattern, or only the MG pattern.
  • the association relationship between the NCSG pattern and the MG pattern may be predefined, or configured by the network device.
  • the NCSG pattern and the MG pattern are associated and include at least one of the following:
  • the period of the NCSG is the same as that of the associated MG;
  • the offset of the NCSG is the same as that of the associated MG.
  • the NCSG pattern and the MG pattern are not associated, including at least one of the following:
  • NCSG is different from that of MG
  • NCSG is different from that of MG.
  • the VIL of the NCSG includes a first VIL (corresponding to VIL1) and a second VIL (corresponding to VIL2), wherein the first VIL is located before the ML, and the The second VIL is located after the ML.
  • the NCSG when the MG is activated, the NCSG is deactivated, and when the MG is deactivated, the NSCG is activated.
  • the MG may be activated or deactivated explicitly, or the MG may be activated or deactivated implicitly.
  • the measurement is performed using the MG
  • the measurement is performed using the NCSG.
  • the NCSG may be activated or deactivated explicitly, or the NCSG may be activated or deactivated implicitly.
  • the NCSG when the NCSG is activated, the NCSG is used for measurement, and when the NCSG is deactivated, the MG is used for measurement.
  • the terminal device can determine the target state according to the activation state of the MG or the activation state of the NCSG.
  • the terminal device may determine the target interval type used for measurement according to the activation state of the MG, or the activation state of the NCSG.
  • the target state is the second state
  • the target interval type is MG.
  • the measurement is performed based on the NCSG, that is, the target state is the third state, and the target interval type is NCSG.
  • the terminal device determines the target state of the measurement in multiple states, including:
  • the terminal device determines the target state in the second state and the third state according to the second information, where the second information includes at least one of the following:
  • the second signaling of the network device the BWP switching instruction, and the second preset rule.
  • the second signaling of the network device activates or deactivates the MG, which may correspond to explicitly activating or deactivating the MG.
  • the terminal device may perform measurement based on the MG, that is, the target state is the second state.
  • the terminal device may perform measurement based on the NCSG, that is, the target state is the third state.
  • the second signaling of the network device activates or deactivates the NCSG, which may correspond to explicitly activating or deactivating the NCSG.
  • the terminal device may perform measurement based on the NCSG, that is, the target state is the third state.
  • the terminal device may perform measurement based on the MG, that is, the target state is the second state.
  • the second signaling may be, for example, RRC, DCI, MAC CE, etc., which is not limited in this application.
  • the following uses the second signaling to activate or deactivate the MG as an example.
  • the second signaling can also be used to activate or deactivate the NCSG.
  • the second signaling is used to activate or deactivate the NCSG, determine the target The state and target measurement configurations are similar and will not be repeated here.
  • the second signaling indicating to activate or deactivate the MG may be at UE granularity, that is, the second signaling is used to activate or deactivate MGs on all BWPs, or it may be BWP granularity. That is, the terminal device may determine whether the MG of the terminal device on a specific BWP is activated according to the second signaling.
  • the second signaling includes first indication information, and the first indication information indicates that the MG on each BWP in at least one BWP is in an activated state or a deactivated state through a bitmap (bitmap) manner .
  • bitmap bitmap
  • the terminal device performs measurement based on the MG on the first BWP, that is, the target state on the first BWP is the second state.
  • the terminal device performs measurement based on the NCSG on the first BWP, that is, the target state on the first BWP is the third state.
  • the first indication information may include at least one bit, each bit corresponds to a BWP, and the value of each bit is used for the activation state or deactivation state of the MG on the corresponding BWP. For example, a value of 1 indicates that the MG on the corresponding BWP is in an active state, and a value of 0 indicates that the MG on the corresponding BWP is in a deactivated state.
  • the MG pattern is configured based on UE granularity.
  • the network device can configure one or more MG patterns for the terminal device, and the one or more MG patterns can be applied to all BWPs, then the first The MG being activated on a BWP may refer to: on the first BWP, the one or more MG patterns are activated, and the MG being deactivated on the first BWP may refer to: on the first BWP, the one or multiple MG patterns are deactivated.
  • the MG pattern is configured based on BWP granularity.
  • the network device can configure a corresponding MG pattern for each BWP of the terminal device, and the MG being activated on the first BWP can refer to: On the first BWP, the MG pattern corresponding to the first BWP is in an active state; the MG on the first BWP being in a deactivated state may refer to: on the first BWP, the MG pattern corresponding to the first BWP is in a deactivated state.
  • the MG is in the activated state or the deactivated state on a certain BWP, and the above explanation may also be referred to, and for the sake of brevity, details are not repeated here.
  • the second preset rule is related to whether the measurement object of the terminal device needs an MG.
  • the terminal device may determine whether to activate the MG according to whether the measurement object configured on the terminal device needs the MG, or determine whether to activate the MG or the NCSG according to whether the measurement object configured on the terminal device needs the MG.
  • the second preset rules include but are not limited to:
  • NCSG in the case that all measurement objects configured on the terminal equipment do not require MG;
  • the second preset rule is related to whether the measurement object of the terminal device needs NCSG.
  • the terminal device may determine whether to activate the NCSG according to whether the measurement object configured on the terminal device needs the NCSG, or determine whether to activate the NCSG or activate the MG according to whether the measurement object configured on the terminal device needs the NCSG.
  • the second preset rules include but are not limited to:
  • the terminal device may also determine the activation or deactivation of the MG according to the activation or deactivation of the BWP (for example, the BWP switching indication).
  • the MG when the first BWP is deactivated, the MG is in the deactivated state on the first BWP.
  • the MG when the first BWP is activated, the MG is in an active state on the first BWP, that is, measurement is performed based on the MG on the first BWP.
  • the terminal device may also determine the activation or deactivation of the NCSG according to the activation or deactivation of the BWP (for example, a BWP switching indication).
  • the NCSG is deactivated on the first BWP.
  • the NCSG is activated on the first BWP, that is, the measurement is performed on the first BWP based on the NCSG.
  • the terminal device determines the activated target measurement configuration, including:
  • the active target measurement configuration is determined from the target state, or the target measurement configuration is determined from the target interval type.
  • the preconfigured MG pattern is the active target measurement configuration.
  • the target state is the second state
  • only the NCSG pattern is configured on the terminal device, and the NCSG pattern and the MG pattern have an association relationship
  • determine the target measurement configuration to be activated according to the currently activated NCSG pattern combined with the association relationship For example, convert the currently activated NCSG pattern into the corresponding MG pattern, and further determine the corresponding MG pattern as the target measurement configuration to be activated.
  • the target state is the third state
  • only the MG pattern is configured on the terminal device, and the NCSG pattern and the MG pattern have an association relationship
  • determine the target measurement configuration to be activated according to the currently activated MG pattern combined with the association relationship For example, convert the currently activated MG pattern into a corresponding NCSG pattern, and further determine the corresponding NCSG pattern as the target measurement configuration to be activated.
  • the target state is the third state and the NSCG pattern is configured on the terminal device, it is determined that the pre-configured NCSG pattern is the active target measurement configuration.
  • the method 200 further includes:
  • the terminal device reports second measurement capability information to the network device, where the second measurement capability information is used to instruct the terminal device to switch between the first state and the second state, or to switch between the second state and the second state state and the third state.
  • the second measurement capability information may be used to instruct the terminal device to select the target gap type from the two gap types of no-gap and MG, or to select the target gap type from the two gap types of MG and NCSG.
  • the configuration granularity of the second measurement capability information includes at least one of the following: user equipment, frequency band range FR, frequency band (band), and frequency band combination (band combination).
  • the terminal device can report the second measurement capability information of per-UE, or report the second measurement capability information of per-FR, or report the second measurement capability information of per-band, or report the second measurement capability information of per-BC capability information.
  • the terminal device may select the target interval type based on per-UE, per-FR, per-Band, or per-BC second measurement capability information. For example, the target interval type used for measurement on the first frequency band is selected according to the second measurement capability information corresponding to the first frequency band, and the target interval type used for measurement on the second frequency band is selected according to the second measurement capability information corresponding to the second frequency band. Target interval type.
  • the first measurement capability type (or Type-1a type), corresponding to the switching between the first state and the second state of the terminal device, or in other words, the terminal device is in two gap types: no-gap and MG Select the target interval type in ;
  • the third measurement capability type corresponds to the terminal device switching between the second state and the third state, or in other words, the terminal device selects between MG and NCSG interval types Target interval type.
  • the network device may indicate through signaling whether to activate the MG, or whether to activate the MG or no-gap.
  • 1-bit indication information may be used to indicate whether to activate the MG or no-gap.
  • the 1 bit takes a value of 0 to indicate that no-gap is activated or the MG is deactivated, and a value of 1 indicates that the MG is activated.
  • the MG may be activated or deactivated according to a preset rule. For example, when all measurement objects configured on the terminal device do not require the MG, the MG is deactivated, and when one or more measurement objects configured on the terminal device require the MG, the MG is activated.
  • the network device may indicate to activate or deactivate the MG through signaling, or to activate the NCSG or to activate the MG.
  • 1-bit indication information may be used to indicate whether to activate the NCSG or to activate the MG.
  • a value of 1 bit indicates that the NCSG is activated, and a value of 1 indicates that the MG is activated.
  • MG can be activated or deactivated according to preset rules, or MG or NCSG can be activated, for example, when all measurement objects configured on the terminal device do not require MG, activate NCSG , activate the MG when one or more measurement objects configured on the terminal device require the MG.
  • the terminal device when the terminal device supports the first measurement capability type, the terminal device may perform measurement based on no-gap or MG, and this measurement mode is recorded as the first measurement mode.
  • the terminal equipment when the terminal equipment supports the third measurement capability type, the terminal equipment can perform measurement based on MG or NCSG, and this measurement mode is recorded as the third measurement mode.
  • the terminal device can report the second measurement capability information at UE granularity, and the network device can pre-configure the measurement mode of the MG, NCSG or the terminal device according to the second measurement capability information reported by the terminal device, for example, using the first measurement capability mode or the third measurement mode. In this way, no matter which frequency band or BWP the terminal device works in, the terminal device can activate or deactivate the MG or NCSG according to the measurement mode indicated by the network device.
  • the terminal device may report the second measurement capability information using frequency band combination granularity.
  • the second measurement capability information reported by the terminal device is shown in Table 2.
  • the terminal device can support frequency bands B1-B6, and the terminal device can report the measurement capability type supported by each frequency band, for example, B1, B2, B5, and B6 support the third measurement capability type, and B3 and B4 support the first measurement capability type. Therefore, the terminal device may determine the measurement mode adopted by the measurement object according to the frequency band of the measurement object, and correspondingly, the network device may determine the measurement mode adopted by the terminal device according to the frequency band corresponding to the measurement object of the terminal device. For example, if the measurement object belongs to the frequency band B1, it is determined that the terminal device adopts the third measurement method. For another example, if the measurement object belongs to the frequency band B3, it is determined that the terminal device adopts the first measurement method.
  • the terminal device may report the second measurement capability information at the BWP granularity.
  • the terminal device may report the measurement capability type corresponding to BWP1 and the measurement capability type corresponding to BWP2, where the measurement capability type of BWP1 is Type-1a type, and the measurement capability type of BWP2 is Type-1c type.
  • BWP1 and CSI-RS resources have different center frequency points and SCS/CP
  • BWP2 and SSB resources have the same center frequency point and SCS/CP
  • the bandwidth of BWP2 does not completely include SSB resources.
  • the terminal device When the terminal device works in BWP1, if the terminal device only measures SSB, no gap is needed, that is, the terminal device can perform measurement based on no-gap, and if it needs to measure CSI-RS, it needs MG. Therefore, when the terminal device reports that the measurement capability type corresponding to BWP1 is Type-1a, the terminal device can activate or deactivate the pre-configured MG according to the Type-1a type.
  • the terminal device When the terminal device switches to BWP2, if the terminal device only measures SSB, then NCSG is required, and if the terminal device needs to measure CSI-RS, then MG is required. Therefore, when the terminal device reports that the measurement capability type corresponding to BWP2 is Type-1c, the terminal device can activate or deactivate the pre-configured MG according to the Type-1c type.
  • the terminal device regards NCSG as the third state that is not equal to MG and no-gap.
  • the interval type for the terminal device to perform measurement is selected among NCSG, no-gap and MG, namely Measure based on no-gap, or measure based on NCSG, or measure based on MG.
  • the multiple states include the first state, the second state and the third state.
  • the terminal device may perform measurement based on no-gap, or perform measurement based on MG, or perform measurement based on NCSG.
  • the terminal device can determine the target gap type for measurement among the three gap types of no-gap, MG and NCSG.
  • the terminal equipment can select the target state among the three states of needing MG, needing NCSG and needing no-gap.
  • the network device may preconfigure at least one NCSG pattern and/or at least one MG pattern for the terminal device.
  • At least one NCSG pattern is preconfigured through RRC signaling, and/or, at least one MG pattern is preconfigured.
  • the NCSG pattern and the MG pattern pre-configured by the network device may be associated or may not be associated.
  • the network device may only be configured with the NCSG pattern, or may only be configured with the MG pattern.
  • the association relationship between the NCSG pattern and the MG pattern may be predefined, or configured by the network device.
  • the NCSG pattern and the MG pattern are associated and include at least one of the following:
  • the period of the NCSG is the same as that of the associated MG;
  • the offset of the NCSG is the same as that of the associated MG.
  • the NCSG pattern and the MG pattern are not associated, including:
  • the period of the NCSG is different from that of the MG; and/or
  • NCSG is different from that of MG.
  • the VIL of the NCSG includes a first VIL (corresponding to VIL1) and a second VIL (corresponding to VIL2), wherein the first VIL is located before the ML, and the The second VIL is located after the ML.
  • the terminal device determines the target state of the measurement in multiple states, including:
  • the terminal device determines a target state in the first state, the second state, and the third state according to third information, wherein the third information includes at least one of the following:
  • the third signaling of the network device, the BWP switching instruction, and the third preset rule is the third signaling of the network device, the BWP switching instruction, and the third preset rule.
  • the third signaling may be used to indicate the activation state of the gap type, where the gap type may include no-gap, MG and NSCG.
  • the network device indicates no-gap activation (ie both MG and NCSG are deactivated), MG activation (ie NCSG deactivation) and NCSG activation (ie MG deactivation) through the third signaling.
  • the network device may indicate three states of no-gap activation, MG activation and NCSG activation through the third signaling.
  • the at least one MG pattern and the at least one NCSG pattern have an association relationship or do not have an association relationship.
  • the network device indicates no-gap activation (ie both MG and NCSG are deactivated), MG activation (ie NCSG deactivation) and transition to NCSG (ie MG deactivation) through the third signaling .
  • the network device can indicate no-gap activation, MG activation and transition to NCSG three states through the third signaling.
  • the network device indicates no-gap activation (ie both MG and NCSG are deactivated), NCSG activation (ie MG deactivation) and transition to MG (ie NCSG deactivation) through the third signaling .
  • the network device can indicate no-gap activation, NCSG activation and transition to MG through the third signaling.
  • the above three states may be indicated by 2 bits, for example, the above three states may be indicated by different values of the 2 bits.
  • a value of 00 indicates no-gap activation, that is, both MG and NCSG are deactivated
  • a value of 01 indicates MG activation, that is, NCSG deactivation
  • a value of 10 indicates NCSG activation, that is, MG deactivation.
  • a value of 00 indicates no-gap activation, that is, both MG and NCSG are deactivated
  • a value of 01 indicates MG activation, that is, NCSG deactivation
  • a value of 10 indicates conversion to NCSG, that is, MG deactivation.
  • the above three states can be indicated by 2 bits, for example, one bit (denoted as Y1) is used to indicate whether the MG is activated, and the other bit (denoted as Y2) indicates whether the MG is converted to NCSG .
  • a value of Y2Y1 of 00 indicates that MG is deactivated and MG is not converted to NCSG, that is, no-gap activation; a value of Y2Y1 of 01 indicates that MG is activated; a value of Y2Y1 of 11 indicates that MG is activated after conversion to NCSG.
  • the conversion of MG to NCSG may refer to the conversion of MG to an associated NCSG, for example, the conversion of MG to the corresponding NCSG according to the association relationship between MG and NCSG; similarly, the conversion of NCSG to MG may refer to the conversion of NCSG to The associated MG, for example, converts the NCSG into a corresponding MG according to the association relationship between the MG and the NCSG.
  • the activation state of the interval type indicated by the third signaling may be at UE granularity, or may also be at BWP granularity. That is, the terminal device may determine the target interval type activated by the terminal device on a specific BWP according to the third signaling.
  • the third signaling includes second indication information
  • the second indication information indicates three types of no-gap activation, MG activation or NCSG activation on each BWP in at least one BWP through bit mapping
  • the state, or, the second indication information indicates three states of no-gap activation, MG activation or transition to the associated NCSG on each BWP in the at least one BWP through bit mapping.
  • the second indication information includes at least one bit group, each bit group corresponds to a BWP, and the value of each bit group is used to indicate the activation state of the interval on the corresponding BWP, such as activating no-gap, activating MG or activating NCSG.
  • each bit group is 2 bits, and the different values of the 2 bits indicate the activated gap type. For example, a value of 00 indicates that no-gap is activated, that is, the target state is the first state, and a value of 01 indicates that Activate MG, that is, the target state is the second state, and a value of 10 indicates that the NCSG is activated, that is, the target state is the third state.
  • the second indication information includes at least one bit group, each bit group corresponds to a BWP, and the value of each bit group is used to indicate the activation state of the gap on the corresponding BWP, such as activating no-gap, activating MG or switching is the corresponding NCSG.
  • each bit group is 2 bits, and the different values of the 2 bits indicate the activated gap type. For example, a value of 00 indicates that no-gap is activated, that is, the target state is the first state, and a value of 01 indicates that Activate MG, that is, the target state is the second state, and a value of 10 indicates transition to NCSG, that is, the target state is the third state.
  • the terminal device if the second indication information indicates that no-gap is activated on the first BWP, the terminal device performs measurement based on no-gap on the first BWP, that is, the target state of the measurement on the first BWP for the first state.
  • the terminal device performs measurement based on the MG on the first BWP, that is, the target state of the measurement on the first BWP is the second state .
  • the terminal device if the third signaling indicates that NCSG is activated on the first BWP, the terminal device performs measurement based on NCSG on the first BWP, that is, the target state of the measurement on the first BWP is the first BWP Three states.
  • the terminal device converts the MG to NCSG, further activates the NCSG, and performs measurement based on the NCSG, that is, the first BWP
  • the target state for measurement is the third state.
  • the third preset rule is related to whether the measurement object configured on the terminal device needs an MG, and/or whether the measurement object configured on the terminal device needs an NCSG.
  • the third preset rule includes but is not limited to at least one of the following:
  • the terminal device determines the activated target measurement configuration, including:
  • the active target measurement configuration is determined from the target state, or the target measurement configuration is determined from the target interval type.
  • the pre-configured MG pattern may be determined as the target measurement configuration used for measurement.
  • the pre-configured NCSG pattern may be determined as the target measurement configuration used for measurement.
  • the terminal device when the terminal device switches from the second state to the third state, and the NCSG pattern is not configured on the terminal device, the terminal device can combine the association between the MG pattern and the NCSG pattern according to the MG pattern used in the second state , to determine the corresponding NCSG pattern in the third state.
  • only one MG pattern is configured on the terminal device.
  • the terminal device performs measurement according to the MG pattern.
  • the network device indicates to activate NCSG, or indicates to switch to NCSG, then the terminal device can convert the MG pattern to the corresponding NCSG pattern and activate it, and then measure based on the NCSG pattern.
  • the MG pattern can be configured based on UE granularity.
  • the network device can configure one or more MG patterns for the terminal device, and the one or more MG patterns can be applied to all BWP, that is, no matter which BWP is activated, when the target state is the second state, the terminal device can perform measurements based on the one or more MG patterns, that is, the target measurement configuration used for measurement can include the preconfigured one or more MG patterns. Multiple MG patterns.
  • the MG pattern may be configured based on BWP granularity, for example, the network device may configure a corresponding MG pattern for each BWP of the terminal device, then when the target state is the second state, End devices can perform measurements based on the MG pattern configured on the active BWP. That is, the target measurement configuration used for measurement includes the MG pattern configured on the active BWP.
  • the NCSG pattern can be configured based on UE granularity.
  • the network device can configure one or more NCSG patterns for the terminal device, and the one or more NCSG patterns can be applied to all BWP, that is, no matter which BWP is activated, when the target state is the third state, the terminal device can perform measurements based on the one or more NCSG patterns, that is, the target measurement configuration used for measurement can include the preconfigured one or more NCSG patterns. Multiple NCSG patterns.
  • the NCSG pattern may be configured based on BWP granularity, for example, the network device may configure a corresponding NCSG pattern for each BWP of the terminal device, then when the target state is the third state, End devices can perform measurements based on the configured NCSG pattern on the activated BWP. That is, the target measurement configuration used for measurement can include the NCSG pattern configured on the activated BWP.
  • the method 200 further includes:
  • the terminal device reports third measurement capability information to the network device, where the third measurement capability information is used to instruct the terminal device to switch between the first state, the second state and the third state.
  • the third measurement capability information may be used to instruct the terminal device to select the target gap type among the three gap types of no-gap, MG and NCSG.
  • the configuration granularity of the third measurement capability information includes at least one of the following: user equipment, frequency band range FR, frequency band (band), and frequency band combination (band combination).
  • the terminal device can report the third measurement capability information of per-UE, or report the third measurement capability information of per-FR, or report the third measurement capability information of per-band, or report the third measurement capability information of per-BC capability information.
  • the terminal device may select the target interval type based on the third measurement capability information of per-UE, per-FR, per-Band, or per-BC.
  • the target interval type used for measurement on the first frequency band is selected according to the third measurement capability information corresponding to the first frequency band
  • the target interval type used for measurement on the second frequency band is selected according to the third measurement capability information corresponding to the second frequency band.
  • the terminal device when the terminal device does not support the third measurement capability information, the terminal device may fall back to switching between the first state and the second state, that is, perform measurement based on the first measurement manner.
  • the multiple states include the first state, the second state, the third state and the fourth state.
  • the terminal device may perform measurement based on no-gap, or perform measurement based on MG, or perform measurement based on NCSG, or perform measurement based on MG and NCSG.
  • the measurement performed by the terminal device based on the MG may include:
  • the terminal device performs measurement based on a single MG pattern, or multiple MG (concurrent MG) patterns.
  • a single MG pattern can be activated, or multiple MG patterns can be activated simultaneously.
  • the measurement performed by the terminal device based on the NCSG may include:
  • the terminal device performs measurements based on a single NCSG pattern, or multiple NCSG (concurrent NCSG) patterns.
  • NCSG pattern can be activated, or multiple NCSG patterns can be activated simultaneously.
  • the measurement performed by the terminal device based on the MG and the NCSG may refer to:
  • the terminal device performs measurements based on at least one MG pattern and at least one NCSG pattern.
  • At least one MG pattern and at least one NCSG pattern can be activated simultaneously.
  • the method 200 further includes:
  • the terminal device receives first configuration information of the network device, and the first configuration information is used to configure at least one of the following:
  • At least one NCSG pattern At least one NCSG pattern
  • a measurement object corresponding to each NCSG pattern in the at least one NCSG pattern is
  • the network device can configure the measurement object corresponding to the MG pattern when configuring the MG pattern, or the measurement object applicable to the MG pattern, or, when configuring the NCSG pattern, it can configure the measurement object corresponding to the NCSG pattern, or , the measurement object to which the NCSG pattern applies.
  • MO1 and MO2 correspond to the NCSG pattern
  • MO3 corresponds to the MG pattern.
  • the first configuration information may be configured through downlink signaling such as RRC signaling, DCI or MAC CE, which is not limited in this application.
  • the configuration granularity of the first configuration information includes at least one of the following: user equipment, BWP.
  • the network device may configure first configuration information of per-UE, or first configuration information of per-BWP.
  • the terminal device determines the target state of the measurement in multiple states, including:
  • the terminal device determines a target state in the first state, the second state, the third state, and the fourth state according to fourth information, wherein the fourth information includes at least one item:
  • the fourth signaling of the network device the BWP switching instruction, and the fourth preset rule.
  • the fourth signaling is used to indicate at least one of the following:
  • whether the at least one NCSG pattern is converted may refer to whether the at least one NCSG pattern is converted to an associated MG pattern. Similarly, whether at least one MG pattern is converted may refer to whether the at least one MG pattern is converted to an associated NCSG pattern.
  • the content indicated by the fourth signaling may be at UE granularity, that is, BWP, frequency band, etc. are not distinguished.
  • the content indicated by the fourth signaling may also be at the BWP granularity, and the present application is not limited thereto.
  • Case 1 At least one NCSG pattern and at least one MG pattern are pre-configured on the terminal device.
  • the at least one NCSG pattern and the at least one MG pattern are not associated.
  • the NCSG pattern and the MG pattern are not associated and may include:
  • NCSG pattern and MG pattern are different.
  • the maximum number of NCSG patterns configurable on the terminal device is X1
  • the maximum number of MG patterns configurable on the terminal device is X2.
  • X1 is determined according to the capability of the terminal device, or is predefined.
  • X2 is determined according to the capability of the terminal device, or is predefined.
  • X1+X2 is determined according to the capability of the terminal device, or is predefined.
  • the fourth signaling includes third indication information, and the third indication information indicates the activation status of the MG pattern and the NCSG pattern on each BWP in the at least one BWP in a bitmap manner.
  • the activation state of the MG pattern may include two states: activation and deactivation.
  • the activation state of the NCSG pattern may include two states: activation and deactivation.
  • the third indication information includes K bit groups, each bit group corresponds to a BWP, each bit group includes X1+X2 bits, and the X1+X2 bits correspond to X1 NCSG pattern and X2 MG patterns, each bit is used to indicate whether the corresponding pattern is active, where K is a positive integer.
  • the third indication information can be used to indicate the 2 (X1+X2) that may appear when the terminal device is performing measurements. situation.
  • Measure based on MG measure based on NCSG, measure based on MG and NCSG, and measure based on no-gap.
  • each bit group is used to indicate four states, for example, each bit group includes 2 bits (denoted as C1C0), C0 corresponds to MG, C1 corresponds to NCSG, and a bit value of 1 indicates that the corresponding pattern is activated , a value of 0 means that the corresponding pattern is deactivated.
  • the value of C1C0 is 00, indicating that no-gap is activated
  • the value of C1C0 is 01, indicating that MG is activated, and NCSG is deactivated
  • the value of C1C0 is 10, indicating that MG is deactivated, and NCSG is activated
  • the value of C1C0 is 11, indicating that both NCSG and MG are activated.
  • Case 2 At least one MG pattern is pre-configured on the terminal device.
  • the at least one MG pattern is associated with at least one NCSG pattern.
  • each MG pattern in the at least one MG pattern is associated with a corresponding NCSG pattern.
  • the activation state of the MG pattern may include three states: activation, deactivation, and conversion to NCSG.
  • the fourth signaling includes fourth indication information, and the fourth indication information indicates the state of the interval on each BWP in the at least one BWP through bit mapping, wherein the state of the interval Including at least one of MG deactivation, MG activation and MG conversion to NCSG.
  • the third indication information includes K bit groups, each bit group corresponds to a BWP, each bit group includes 2*X2 bits, and the 2*X2 bits correspond to X2 MG patterns, where each The MG pattern corresponds to 2 bits, which are used to indicate the three states of the corresponding MG pattern: activation, deactivation and conversion to NCSG, where K is a positive integer.
  • the third indication information may be used to indicate 3 (X2) situations that may occur when the terminal device performs measurement.
  • Measurements are based on MG1, i.e. MG1 is activated and MG2 is deactivated;
  • Measurements are based on MG2, i.e. MG2 is activated and MG1 is deactivated;
  • Measurements are based on NCSG1, i.e. MG1 is activated after switching to the associated NCSG1 and MG2 is deactivated;
  • Measurements are based on NCSG2, i.e. MG2 is activated after switching to the associated NCSG2 and MG1 is deactivated;
  • MG1 is activated and MG2 is activated after switching to the associated NCSG2;
  • Measurements are based on MG1 and MG2, i.e. both MG1 and MG2 are activated;
  • MG2 is activated and MG1 is activated after switching to the associated NCSG1;
  • each bit group is used to indicate nine states
  • each bit group can include 4 bits, and the different values of the 4 bits are used to indicate the corresponding state, for example, a value of 0000 means no- The gap is activated.
  • the value of 0100 indicates that MG1 is activated and MG2 is deactivated.
  • the value of 1100 indicates that MG1 is activated after converting to NCSG, and MG2 is deactivated, and so on.
  • Case 3 At least one NCSG pattern is pre-configured on the terminal device.
  • the at least one NCSG pattern is associated with at least one MG pattern.
  • each NCSG pattern in the at least one NCSG pattern is associated with a corresponding MG pattern.
  • the activation state of the NCSG pattern may include three states: activation, deactivation, and transition to MG.
  • the fourth signaling includes fifth indication information
  • the fifth indication information indicates the status of the gap on each BWP in at least one BWP in a bit-mapping manner, where the status of the gap
  • the status includes at least one of the following: NCSG deactivation, NCSG activation and NCSG transition to MG.
  • the third indication information includes K bit groups, each bit group corresponds to a BWP, each bit group includes 2*X1 bits, and the 2*X1 bits correspond to X1 NCSG patterns, where each The NCSG pattern corresponds to 2 bits, which are used to indicate the three states of the corresponding NCSG pattern: activation, deactivation and conversion to MG, where K is a positive integer.
  • the fifth indication information can be used to indicate 4 (X1) situations that may occur when the terminal device performs measurement.
  • NCSG1 is activated and NCSG2 is deactivated
  • NCSG1 is deactivated and NCSG2 is activated
  • NCSG2 is deactivated, and NCSG1 is activated after conversion to MG1;
  • NCSG1 is deactivated, and NCSG2 is activated after conversion to MG2;
  • Measurements are based on NCSG1 and MG2, i.e. NCSG1 is activated and NCSG2 is activated after conversion to MG2;
  • NCSG1 and NCSG2 activation Measured based on NCSG1 and NCSG2, i.e. NCSG1 and NCSG2 activation;
  • Measurements are based on NCSG2 and MG1, i.e. NCSG2 is activated and NCSG1 is activated after conversion to MG1;
  • Measurements are based on MG1 and MG2, that is, NCSG1 and NCSG2 are activated after conversion to the corresponding MG;
  • each bit group is used to indicate nine states
  • each bit group can include 4 bits, and the different values of the 4 bits are used to indicate the corresponding state, for example, a value of 0000 means no- The gap is activated.
  • the value of 0100 indicates that NCSG1 is activated and MG2 is deactivated.
  • the value of 1100 indicates that NCSG1 is transformed into MG for deactivation, NCSG2 is deactivated, and so on.
  • the fourth preset rule is related to at least one of the following:
  • the NCSG is deactivated.
  • the NCSG is activated.
  • the MG is deactivated.
  • the MG is activated.
  • the fourth preset rule is related to at least one of the following:
  • the measurement object associated with the NCSG pattern requires NCSG, whether the measurement object associated with the NCSG pattern requires MG, whether the measurement object associated with the MG pattern requires MG, and whether the measurement object associated with the MG pattern requires NCSG.
  • the measurement object associated with the NCSG pattern and the measurement object associated with the MG pattern can be obtained according to the first configuration information mentioned above.
  • the first NCSG pattern is deactivated.
  • the first NCSG pattern is converted into a corresponding MG pattern and then activated.
  • the first MG pattern is deactivated.
  • the first MG pattern is converted into the corresponding NCSG pattern and then activated.
  • the fourth preset rule may be at UE granularity, or may also be at BWP granularity.
  • the first NCSG pattern is deactivated.
  • the first NCSG pattern For another example, on the first BWP, if one or more measurement objects associated with the first NCSG pattern require MG, convert the first NCSG pattern into the corresponding MG pattern and then activate it.
  • the first MG pattern is deactivated.
  • the second BWP if one or more measurement objects associated with the first MG pattern need an MG, activate the first MG.
  • the second BWP if all measurement objects associated with the first MG pattern do not require MG, but one or more measurement objects associated with the first MG pattern require NCSG, then convert the first MG pattern to the corresponding Activated after the NCSG pattern.
  • the fourth preset rule includes at least one of the following:
  • one or more measurement objects associated with the first MG pattern need MG, activate the first MG pattern.
  • the fourth preset rule includes at least one of the following:
  • one or more measurement objects associated with the first NCSG pattern need MG, then convert the first NCSG pattern into a corresponding MG pattern and then activate it;
  • the first MG pattern is converted to the corresponding NCSG pattern and then activate;
  • one or more measurement objects associated with the first MG pattern need MG, activate the first MG pattern.
  • the terminal device determines the activated target measurement configuration, including:
  • the pre-configured MG pattern may be determined as the target measurement configuration used for measurement.
  • the pre-configured NCSG pattern may be determined as the target measurement configuration used for measurement.
  • the terminal device when the terminal device switches from the second state to the third state, and the NCSG pattern is not configured on the terminal device, the terminal device can combine the association between the MG pattern and the NCSG pattern according to the MG pattern used in the second state , to determine the corresponding NCSG pattern in the third state.
  • the terminal device when the terminal device switches from the third state to the second state, and the MG pattern is not configured on the terminal device, the terminal device can combine the association relationship between the MG pattern and the NCSG pattern according to the NCSG pattern used in the third state , to determine the corresponding MG pattern in the third state.
  • the terminal device may determine the pre-configured MG pattern and NCSG pattern as the target measurement configuration used for measurement.
  • the MG pattern can be configured based on UE granularity.
  • the network device can configure one or more MG patterns for the terminal device, and the one or more MG patterns can be applied to all BWP, that is, no matter which BWP is activated, when the target state is the second state or the fourth state, the terminal device can perform measurements based on the one or more MG patterns, that is, the target measurement configuration used for measurement can include pre-configuration The one or more MG patterns.
  • the MG pattern can be configured based on BWP granularity.
  • the network device can configure a corresponding MG pattern for each BWP of the terminal device, and the target state is the second state or the second state.
  • the terminal device can perform measurements based on the MG pattern configured on the active BWP. That is, the target measurement configuration used for measurement may include the MG pattern configured on the active BWP.
  • the NCSG pattern can be configured based on UE granularity.
  • the network device can configure one or more NCSG patterns for the terminal device, and the one or more NCSG patterns can be applied to all BWP, that is, no matter which BWP is activated, when the target state is the third state or the fourth state, the terminal device can perform measurements based on the one or more NCSG patterns, that is, the target measurement configuration used for measurement can include pre-configuration The one or more NCSG patterns.
  • the NCSG pattern can be configured based on BWP granularity.
  • the network device can configure a corresponding NCSG pattern for each BWP of the terminal device, and then the target state is the third state or the first state
  • the terminal device can perform measurements based on the NCSG pattern configured on the activated BWP. That is, the target measurement configuration used for measurement can include the NCSG pattern configured on the activated BWP.
  • the method 200 further includes:
  • the terminal device reports fourth measurement capability information to the network device, where the fourth measurement capability information is used to instruct the terminal device to switch between the first state, the second state, the third state and the fourth state.
  • the fourth measurement capability information may be used to instruct the terminal device to select the target gap type from the four gap types of no-gap, MG, NCSG and MG+NCSG.
  • the configuration granularity of the fourth measurement capability information includes at least one of the following: user equipment, frequency band range FR, frequency band (band), and frequency band combination (band combination).
  • the terminal device can report the fourth measurement capability information of per-UE, or report the fourth measurement capability information of per-FR, or report the fourth measurement capability information of per-band, or report the fourth measurement capability information of per-BC capability information.
  • the terminal device may select the target interval type based on per-UE, per-FR, per-Band, or per-BC fourth measurement capability information. For example, the target interval type used for measurement on the first frequency band is selected according to the fourth measurement capability information corresponding to the first frequency band, and the target interval type used for measurement on the second frequency band is selected according to the fourth measurement capability information corresponding to the second frequency band. Target interval type.
  • the terminal device when the terminal device does not support the fourth measurement capability information, the terminal device may fall back to switching between the first state and the second state, that is, perform measurement based on the first measurement manner.
  • the terminal device can determine the target state for performing the measurement according to the signaling of the network device, the BWP switching instruction or the preset rule, and/or the target measurement configuration used for the measurement.
  • the network device can also follow a consistent method Determining the target state for the terminal device to perform the measurement, and/or the target measurement configuration used for the measurement, is beneficial to ensure that the network device and the terminal device have the same understanding of the activated interval type, so as to ensure normal measurement process and data transmission.
  • FIG. 7 is a schematic flowchart of a wireless communication method 300 according to another embodiment of the present application.
  • the method 300 may be executed by a network device in the communication system shown in FIG. 1 .
  • the method 300 includes As follows:
  • the network device determines a target state in which the terminal device performs measurement in multiple states, and/or, the network device determines a target measurement configuration activated by the terminal device;
  • the multiple states include at least one of the following states:
  • the first state corresponds to the terminal device performing measurement based on no interval
  • the second state corresponds to the terminal device performing measurement based on the measurement interval MG;
  • the third state corresponds to the terminal device performing measurement based on a network-controllable small-interval NCSG;
  • the fourth state corresponds to the terminal device performing measurement based on the MG and NCSG.
  • the network device may determine the target state and/or the target measurement configuration in a manner similar to that of the terminal device.
  • the relevant description in method 200 For specific implementation, refer to the relevant description in method 200. For brevity, no further repeat.
  • the multiple states include the first state and the third state
  • the S310 includes:
  • the first information determine the target state for the terminal device to perform measurement in the first state and the third state, where the first information includes at least one of the following:
  • the first signaling of the network device is a first preset rule, wherein the first signaling is used to activate or deactivate the NCSG.
  • the determining the target state for the terminal device to perform measurement in the first state and the third state according to the first information includes:
  • the first signaling indicates to activate NCSG, determining that the target state for the terminal device to perform measurement is the third state; or
  • the target state for the terminal device to perform measurement is the first state.
  • the first preset rule includes:
  • the determining the target state for the terminal device to perform measurement in the first state and the third state according to the first information includes:
  • the S310 includes:
  • the network device determines that the NCSG pattern preconfigured on the terminal device is the target measurement configuration activated by the terminal device.
  • the NCSG pattern is configured through radio resource control RRC signaling.
  • the method 300 further includes:
  • the network device receives first measurement capability information reported by the terminal device, where the first measurement capability information is used to instruct the terminal device to switch between the first state and the second state, or to switch between the switching between the first state and the third state.
  • the configuration granularity of the first measurement capability information includes at least one of the following: user equipment, frequency band range FR, frequency band, and frequency band combination.
  • the multiple states include the second state and the third state
  • the network device determines a target state for the terminal device to perform measurement in the multiple states, including:
  • the second signaling of the network device is a BWP switching instruction and a second preset rule, wherein the second signaling is used to activate or deactivate the MG.
  • the second signaling includes first indication information, and the first indication information indicates that on each BWP in at least one bandwidth part BWP, the MG is in the activated state or deactivated. active state.
  • the network device determines the target state for the terminal device to perform measurement in multiple states, including:
  • the second signaling indicates that the MG is in an active state on the first BWP, determining that the target state for the terminal device to perform measurements on the first BWP is the second state;
  • the second signaling indicates that the MG is in a deactivated state on the first BWP, determine that the target state for the terminal device to perform measurement on the first BWP is the third state.
  • the second preset rules include:
  • At least one NCSG pattern and/or at least one MG pattern are preconfigured on the terminal device.
  • the at least one NCSG pattern and the at least one MG pattern are associated or not associated.
  • the at least one NCSG pattern and the at least one MG pattern are associated, including at least one of the following:
  • the period of the NCSG is the same as that of the associated MG;
  • the sum of the measurement length ML and the visible interruption length VIL of the NCSG is the same as the measurement interval length MGL of the associated MG;
  • the offset of the NCSG is the same as that of the associated MG.
  • the network device determines the target measurement configuration activated by the terminal device, including:
  • the target state for performing measurement by the terminal device is the second state, determining that the pre-configured MG pattern on the terminal device is the target measurement configuration activated by the terminal device;
  • the target state of the terminal device to perform measurement is the third state, determine that the NCSG pattern preconfigured on the terminal device is the target measurement configuration activated by the terminal device, or, according to the The currently activated MG pattern determines the NCSG pattern to be activated by the terminal device in combination with the association relationship between the MG pattern and the NCSG pattern.
  • the method also includes:
  • the network device receives second measurement capability information reported by the terminal device, where the second measurement capability information is used to instruct the terminal device to switch between the first state and the second state, or to switch between the switching between the second state and the third state.
  • the multiple states include the first state, the second state and the third state
  • the S310 includes:
  • the target state is determined in the first state, the second state and the third state, wherein the third information includes at least one of the following:
  • the third signaling of the network device, the BWP switching instruction, and the third preset rule is the third signaling of the network device, the BWP switching instruction, and the third preset rule.
  • the third signaling includes second indication information, and the second indication information indicates non-gap activation, MG activation or NCSG activation on each BWP in the at least one BWP in a bit-mapping manner.
  • the determining the target state in the first state, the second state and the third state according to the third information includes:
  • the third signaling indicates that there is no interval activation on the first BWP, determining that the target state for the terminal device to perform measurements on the first BWP is the first state;
  • the third signaling indicates that the MG is activated on the first BWP, determining that the target state for the terminal device to perform measurements on the first BWP is the second state;
  • the target state for the terminal device to perform measurement on the first BWP is the third state.
  • the third preset rule includes at least one of the following:
  • At least one NCSG pattern and/or at least one MG pattern are preconfigured on the terminal device.
  • the at least one NCSG pattern and the at least one MG pattern are associated or not associated.
  • the at least one NCSG pattern and the at least one MG pattern are associated, including at least one of the following:
  • the period of the NCSG is the same as that of the associated MG;
  • the measurement interval length MGL of the MG is equal to the sum of the measurement length ML and the visible interruption length VIL of the NCSG;
  • the offset of the NCSG is the same as that of the associated MG.
  • the S310 includes:
  • the target state is the second state, determining that the pre-configured MG pattern on the terminal device is the target measurement configuration activated by the terminal device;
  • the target state is the third state
  • determine that the NCSG pattern preconfigured on the terminal device is the target measurement configuration activated by the terminal device, or, according to the currently activated MG pattern on the terminal device
  • the NCSG pattern to be activated by the terminal device is determined in combination with the association relationship between the MG pattern and the NCSG pattern.
  • the multiple states include the first state, the second state, the third state, and the fourth state
  • the S310 includes:
  • a target state is determined in the first state, the second state, the third state, and the fourth state according to fourth information, wherein the fourth information includes at least one of the following:
  • the fourth signaling of the network device the BWP switching instruction, and the fourth preset rule.
  • At least one NCSG pattern and at least one MG pattern are pre-configured on the terminal device.
  • the at least one NCSG pattern and the at least one MG pattern are not associated.
  • the maximum number of NCSG patterns configurable on the terminal device is X1, and the maximum number of MG patterns configurable on the terminal device is X2;
  • X1 is determined according to the capability of the terminal equipment, or is predefined
  • X2 is determined according to the capability of the terminal device, or is predefined
  • X1+X2 is determined according to the capability of the terminal device, or is predefined.
  • the fourth signaling includes third indication information, and the third indication information indicates the activation state of the MG pattern and the NCSG pattern on each BWP in the at least one BWP through bit mapping .
  • the third indication information includes K bit groups, each bit group corresponds to a BWP, each bit group includes X1+X2 bits, and the X1+X2 bits correspond to the X1 NCSG patterns and X2 MG patterns, each bit is used to indicate whether the corresponding pattern is activated or deactivated, where K is a positive integer.
  • At least one MG pattern is preconfigured on the terminal device, and each MG pattern in the at least one MG pattern is associated with a corresponding NCSG pattern.
  • the fourth signaling includes fourth indication information, and the fourth indication information indicates the status of intervals on each BWP in at least one BWP through bit mapping, wherein the interval The status includes at least one of the following: MG deactivation, MG activation and MG transition to NCSG.
  • At least one NCSG pattern is preconfigured on the terminal device, and each NCSG pattern in the at least one NCSG pattern is associated with a corresponding MG pattern.
  • the fourth signaling includes fifth indication information
  • the fifth indication information indicates the status of intervals on each BWP in at least one BWP through bit mapping, wherein the interval The status includes at least one of the following: NCSG deactivation, NCSG activation and NCSG transition to MG.
  • the method 300 further includes:
  • the network device sends first configuration information to the terminal device, where the first configuration information is used to configure at least one of the following:
  • At least one NCSG pattern At least one NCSG pattern
  • Each NCSG pattern in the at least one NCSG pattern corresponds to a measurement object.
  • the configuration granularity of the first configuration information includes at least one of the following: user equipment, BWP.
  • the fourth preset rule includes at least one of the following:
  • one or more measurement objects associated with the first MG pattern need MG, activate the first MG pattern.
  • the fourth preset rule includes at least one of the following:
  • one or more measurement objects associated with the first NCSG pattern need MG, then convert the first NCSG pattern into a corresponding MG pattern and then activate it;
  • the first MG pattern is converted to the corresponding NCSG pattern and then activate;
  • one or more measurement objects associated with the first MG pattern need MG, activate the first MG pattern.
  • Fig. 8 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • a processing unit 410 configured to determine a measurement target state in multiple states, and/or, the terminal device determines an activated target measurement configuration
  • the multiple states include at least two of the following states:
  • the first state corresponds to the terminal device performing measurement based on no interval
  • the second state corresponds to the terminal device performing measurement based on the measurement interval MG;
  • the third state corresponds to the terminal device performing measurement based on a network-controllable small-interval NCSG;
  • the fourth state corresponds to the terminal device performing measurement based on the MG and NCSG.
  • the multiple states include the first state and the third state
  • the processing unit 410 is further configured to:
  • first information includes at least one of the following:
  • processing unit 410 is further configured to:
  • the first preset rules include:
  • processing unit 410 is further configured to:
  • processing unit 410 is further configured to:
  • the NCSG pattern is configured through RRC signaling.
  • the terminal device also includes:
  • a communication unit configured to report first measurement capability information to a network device, where the first measurement capability information is used to instruct the terminal device to switch between the first state and the second state, or to switch between the first state and the second state; switching between the first state and the third state.
  • the configuration granularity of the first measurement capability information includes at least one of the following: user equipment, frequency band range FR, frequency band, and frequency band combination.
  • the multiple states include the second state and the third state
  • the processing unit 410 is further configured to:
  • the second signaling includes first indication information, and the first indication information indicates that on each BWP in at least one bandwidth part BWP, the MG is in an active state or a deactivated state through bit mapping .
  • processing unit 410 is further configured to:
  • the second signaling indicates that the MG is in an active state on the first BWP, determine that the target state of the measurement on the first BWP is the second state;
  • the second signaling indicates that the MG is in a deactivated state on the first BWP, determine that the target state of the measurement on the first BWP is the third state.
  • the second preset rules include:
  • At least one NCSG pattern and/or at least one MG pattern are pre-configured on the terminal device.
  • the at least one NCSG pattern and the at least one MG pattern are associated, or are not associated.
  • said at least one NCSG pattern and said at least one MG pattern are associated, comprising at least one of the following:
  • the period of the NCSG is the same as that of the associated MG;
  • the sum of the measurement length ML and the visible interruption length VIL of the NCSG is the same as the measurement interval length MGL of the associated MG;
  • the offset of the NCSG is the same as that of the associated MG.
  • processing unit 410 is further configured to:
  • the target state is the second state, determining a pre-configured MG pattern as the active target measurement configuration
  • the target state is the third state
  • the terminal device also includes:
  • a communication unit configured to report second measurement capability information to a network device, where the second measurement capability information is used to instruct the terminal device to switch between the first state and the second state, or to switch between the first state and the second state, or to switch between the first state and the second state switch between the second state and the third state.
  • the multiple states include the first state, the second state and the third state
  • the processing unit 410 is further configured to:
  • the target state is determined in the first state, the second state and the third state, wherein the third information includes at least one of the following:
  • the third signaling of the network device, the BWP switching instruction, and the third preset rule is the third signaling of the network device, the BWP switching instruction, and the third preset rule.
  • the third signaling includes second indication information, and the second indication information indicates no gap activation, MG activation or NCSG activation on each BWP in at least one BWP in a bit-mapping manner.
  • the processing unit 410 is also used to
  • the third signaling indicates that there is no interval activation on the first BWP, determining that the target state of the measurement on the first BWP is the first state;
  • the third signaling indicates that the MG is activated on the first BWP, determining that the target state of the measurement on the first BWP is the second state;
  • the third signaling indicates that the NCSG on the first BWP is deactivated, determine that the target state of the measurement on the first BWP is the third state.
  • the third preset rule includes at least one of the following:
  • At least one NCSG pattern and/or at least one MG pattern are pre-configured on the terminal device.
  • the at least one NCSG pattern and the at least one MG pattern are associated, or are not associated.
  • said at least one NCSG pattern and said at least one MG pattern are associated, comprising at least one of the following:
  • the period of the NCSG is the same as that of the associated MG;
  • the offset of the NCSG is the same as that of the associated MG.
  • processing unit 410 is further configured to:
  • the target state is the second state, determining a pre-configured MG pattern as the active target measurement configuration
  • the target state is the third state
  • the multiple states include the first state, the second state, the third state, and the fourth state
  • the processing unit 410 is further configured to:
  • a target state is determined in the first state, the second state, the third state, and the fourth state according to fourth information, wherein the fourth information includes at least one of the following:
  • the fourth signaling of the network device the BWP switching instruction, and the fourth preset rule.
  • At least one NCSG pattern and at least one MG pattern are preconfigured on the terminal device.
  • said at least one NCSG pattern and said at least one MG pattern are unassociated.
  • the maximum number of NCSG patterns configurable on the terminal device is X1, and the maximum number of MG patterns configurable on the terminal device is X2;
  • X1 is determined according to the capability of the terminal equipment, or is predefined
  • X2 is determined according to the capability of the terminal device, or is predefined
  • X1+X2 is determined according to the capability of the terminal device, or is predefined.
  • the fourth signaling includes third indication information, and the third indication information indicates the activation state of the MG pattern and the NCSG pattern on each BWP in the at least one BWP in a bit mapping manner.
  • the third indication information includes K bit groups, each bit group corresponds to a BWP, each bit group includes X1+X2 bits, and the X1+X2 bits correspond to the X1 NCSGs A pattern and X2 MG patterns, each bit is used to indicate whether the corresponding pattern is activated or deactivated, where K is a positive integer.
  • At least one MG pattern is preconfigured on the terminal device, and each MG pattern in the at least one MG pattern is associated with a corresponding NCSG pattern.
  • the fourth signaling includes fourth indication information, and the fourth indication information indicates the state of the interval on each BWP in the at least one BWP through bit mapping, wherein the state of the interval Including at least one of the following: MG deactivation, MG activation, or MG conversion to NCSG.
  • At least one NCSG pattern is preconfigured on the terminal device, and each NCSG pattern in the at least one NCSG pattern is associated with a corresponding MG pattern.
  • the fourth signaling includes fifth indication information
  • the fifth indication information indicates the state of the interval on each BWP in at least one BWP through bit mapping, wherein the state of the interval It includes at least one of the following: NCSG deactivation, NCSG activation, or NCSG conversion to MG.
  • the terminal device also includes:
  • a communication unit configured to receive first configuration information of a network device, where the first configuration information is used to configure at least one of the following:
  • At least one NCSG pattern At least one NCSG pattern
  • Each NCSG pattern in the at least one NCSG pattern corresponds to a measurement object.
  • the configuration granularity of the first configuration information includes at least one of the following: user equipment, BWP.
  • the fourth preset rule includes at least one of the following:
  • one or more measurement objects associated with the first MG pattern need MG, activate the first MG pattern.
  • the fourth preset rule includes at least one of the following:
  • one or more measurement objects associated with the first NCSG pattern need MG, then convert the first NCSG pattern into a corresponding MG pattern and then activate it;
  • the first MG pattern is converted to the corresponding NCSG pattern and then activate;
  • one or more measurement objects associated with the first MG pattern need MG, activate the first MG pattern.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are to realize the For the sake of brevity, the corresponding process of the terminal device in the shown method 200 will not be repeated here.
  • Fig. 9 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 500 of Figure 9 includes:
  • the processing unit 510 is configured to determine a target state for the terminal device to perform measurement in multiple states, and/or determine a target measurement configuration activated by the terminal device;
  • the multiple states include at least one of the following states:
  • the first state corresponds to the terminal device performing measurement based on no interval
  • the second state corresponds to the terminal device performing measurement based on the measurement interval MG;
  • the third state corresponds to the terminal device performing measurement based on a network-controllable small-interval NCSG;
  • the fourth state corresponds to the terminal device performing measurement based on the MG and NCSG.
  • the multiple states include the first state and the third state
  • the processing unit 510 is further configured to:
  • the first information determine the target state for the terminal device to perform measurement in the first state and the third state, where the first information includes at least one of the following:
  • the first signaling of the network device is a first preset rule, wherein the first signaling is used to activate or deactivate the NCSG.
  • processing unit 510 is further configured to:
  • the first signaling indicates to activate NCSG, determining that the target state for the terminal device to perform measurement is the third state; or
  • the target state for the terminal device to perform measurement is the first state.
  • the first preset rules include:
  • processing unit 510 is further configured to:
  • processing unit 510 is further configured to:
  • the network device determines that the NCSG pattern preconfigured on the terminal device is the target measurement configuration activated by the terminal device.
  • the NCSG pattern is configured through RRC signaling.
  • the network device also includes
  • a communication unit configured to receive first measurement capability information reported by the terminal device, where the first measurement capability information is used to instruct the terminal device to switch between the first state and the second state, or switching between the first state and the third state.
  • the configuration granularity of the first measurement capability information includes at least one of the following: user equipment, frequency band range FR, frequency band, and frequency band combination.
  • the multiple states include the second state and the third state
  • the processing unit 510 is further configured to:
  • the second signaling of the network device is a BWP switching instruction and a second preset rule, wherein the second signaling is used to activate or deactivate the MG.
  • the second signaling includes first indication information, and the first indication information indicates in a bit-mapping manner that on each BWP in at least one bandwidth part BWP, the MG is in an activated state or a deactivated state.
  • processing unit 510 is further configured to:
  • the second signaling indicates that the MG is activated on the first BWP, determining that the target state for the terminal device to perform measurements on the first BWP is the second state;
  • the second signaling indicates that the MG on the first BWP is deactivated, determine that the target state for the terminal device to perform measurement on the first BWP is the third state.
  • the second preset rules include:
  • At least one NCSG pattern and/or at least one MG pattern are pre-configured on the terminal device.
  • the at least one NCSG pattern and the at least one MG pattern are associated, or are not associated.
  • said at least one NCSG pattern and said at least one MG pattern are associated, comprising at least one of the following:
  • the period of the NCSG is the same as that of the associated MG;
  • the sum of the measurement length ML and the visible interruption length VIL of the NCSG is the same as the measurement interval length MGL of the associated MG;
  • the offset of the NCSG is the same as that of the associated MG.
  • processing unit 510 is further configured to:
  • the target state for performing measurement by the terminal device is the second state, determining that the pre-configured MG pattern on the terminal device is the target measurement configuration activated by the terminal device;
  • the target state of the terminal device to perform measurement is the third state, determine that the NCSG pattern preconfigured on the terminal device is the target measurement configuration activated by the terminal device, or, according to the The currently activated MG pattern determines the NCSG pattern to be activated by the terminal device in combination with the association relationship between the MG pattern and the NCSG pattern.
  • the network device also includes:
  • a communication unit configured to receive second measurement capability information reported by the terminal device, where the second measurement capability information is used to instruct the terminal device to switch between the first state and the second state, or switching between the second state and the third state.
  • the multiple states include the first state, the second state and the third state
  • the processing unit 510 is further configured to:
  • the target state is determined in the first state, the second state and the third state, wherein the third information includes at least one of the following:
  • the third signaling of the network device, the BWP switching instruction, and the third preset rule is the third signaling of the network device, the BWP switching instruction, and the third preset rule.
  • the third signaling includes second indication information, and the second indication information indicates no gap activation, MG activation or NCSG activation on each BWP in at least one BWP in a bit-mapping manner.
  • processing unit 510 is further configured to:
  • the third signaling indicates that there is no interval activation on the first BWP, determining that the target state for the terminal device to perform measurements on the first BWP is the first state;
  • the third signaling indicates that the MG is activated on the first BWP, determining that the target state for the terminal device to perform measurements on the first BWP is the second state;
  • the target state for the terminal device to perform measurement on the first BWP is the third state.
  • the third preset rule includes at least one of the following:
  • At least one NCSG pattern and/or at least one MG pattern are pre-configured on the terminal device.
  • the at least one NCSG pattern and the at least one MG pattern are associated, or are not associated.
  • said at least one NCSG pattern and said at least one MG pattern are associated, comprising at least one of the following:
  • the period of the NCSG is the same as that of the associated MG;
  • the measurement interval length MGL of the MG is equal to the sum of the measurement length ML and the visible interruption length VIL of the NCSG;
  • the offset of the NCSG is the same as that of the associated MG.
  • processing unit 510 is further configured to:
  • the target state is the second state, determining that the pre-configured MG pattern on the terminal device is the target measurement configuration activated by the terminal device;
  • the target state is the third state
  • determine that the NCSG pattern preconfigured on the terminal device is the target measurement configuration activated by the terminal device, or, according to the currently activated MG pattern on the terminal device
  • the NCSG pattern to be activated by the terminal device is determined in combination with the association relationship between the MG pattern and the NCSG pattern.
  • the multiple states include the first state, the second state, the third state, and the fourth state
  • the processing unit 510 is further configured to:
  • a target state is determined in the first state, the second state, the third state, and the fourth state according to fourth information, wherein the fourth information includes at least one of the following:
  • the fourth signaling of the network device the BWP switching instruction, and the fourth preset rule.
  • At least one NCSG pattern and at least one MG pattern are preconfigured on the terminal device.
  • said at least one NCSG pattern and said at least one MG pattern are unassociated.
  • the maximum number of NCSG patterns configurable on the terminal device is X1, and the maximum number of MG patterns configurable on the terminal device is X2;
  • X1 is determined according to the capability of the terminal equipment, or is predefined
  • X2 is determined according to the capability of the terminal device, or is predefined
  • X1+X2 is determined according to the capability of the terminal device, or is predefined.
  • the fourth signaling includes third indication information, and the third indication information indicates the activation state of the MG pattern and the NCSG pattern on each BWP in the at least one BWP in a bit-mapping manner.
  • the third indication information includes K bit groups, each bit group corresponds to a BWP, each bit group includes X1+X2 bits, and the X1+X2 bits correspond to the X1 NCSGs A pattern and X2 MG patterns, each bit is used to indicate whether the corresponding pattern is activated or deactivated, where K is a positive integer.
  • At least one MG pattern is preconfigured on the terminal device, and each MG pattern in the at least one MG pattern is associated with a corresponding NCSG pattern.
  • the fourth signaling includes fourth indication information, and the fourth indication information indicates MG deactivation, MG activation, or MG conversion on each BWP in at least one BWP in a bit-mapping manner for NCSG.
  • At least one NCSG pattern is preconfigured on the terminal device, and each NCSG pattern in the at least one NCSG pattern is associated with a corresponding MG pattern.
  • the fourth signaling includes fifth indication information, and the fifth indication information indicates NCSG deactivation, NCSG activation, or NCSG conversion on each BWP in the at least one BWP in a bit-mapping manner for MG.
  • the network device also includes:
  • a communication unit configured to send first configuration information to the terminal device, where the first configuration information is used to configure at least one of the following: at least one MG pattern;
  • At least one NCSG pattern At least one NCSG pattern
  • Each NCSG pattern in the at least one NCSG pattern corresponds to a measurement object.
  • the configuration granularity of the first configuration information includes at least one of the following: user equipment, BWP.
  • the fourth preset rule includes at least one of the following:
  • one or more measurement objects associated with the first MG pattern need MG, activate the first MG pattern.
  • the fourth preset rule includes at least one of the following:
  • one or more measurement objects associated with the first NCSG pattern need MG, then convert the first NCSG pattern into a corresponding MG pattern and then activate it;
  • the first MG pattern is converted to the corresponding NCSG pattern and then activate;
  • one or more measurement objects associated with the first MG pattern need MG, activate the first MG pattern.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are to realize the method shown in FIG. 7
  • the corresponding processes of the network devices in 300 will not be repeated here.
  • FIG. 10 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 10 includes a processor 610, and the processor 610 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the network device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 600 may specifically be the mobile terminal/terminal device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for the sake of brevity , which will not be repeated here.
  • FIG. 11 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 11 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may also include an input interface 730 .
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • Fig. 12 is a schematic block diagram of a communication system 900 provided by an embodiment of the present application. As shown in FIG. 12 , the communication system 900 includes a terminal device 910 and a network device 920 .
  • the terminal device 910 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 920 can be used to realize the corresponding functions realized by the network device in the above method.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the methods of the embodiments of the present application, For the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program executes each method in the embodiment of the present application to be implemented by the mobile terminal/terminal device
  • the corresponding process will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法、终端设备和网络设备,该方法包括:终端设备在多个状态中确定测量的目标状态,和/或,所述终端设备确定激活的目标测量配置;其中,所述多个状态包括以下状态中的至少两个:第一状态,对应所述终端设备基于无间隔进行测量;第二状态,对应所述终端设备基于测量间隔MG进行测量;第三状态,对应所述终端设备基于网络可控的小间隔NCSG进行测量;第四状态,对应所述终端设备基于MG和NCSG进行测量。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法、终端设备和网络设备。
背景技术
在新空口(New Radio,NR)系统中,终端设备可以基于预配置测量间隔(pre-configured Measurement Gap,pre-MG)图样(pattern)进行测量。有些终端设备也可以基于网络可控制的小间隔(Network Control Small Gap,NCSG)图样(pattern)进行测量,基于NCSG pattern进行测量相对于基于MG pattern进行测量能够减小测量所需的中断时间。当终端设备同时支持基于MG pattern进行测量以及基于NCSG pattern进行测量时,终端设备如何进行测量是一项亟需解决的问题。
发明内容
本申请提供了一种无线通信的方法、终端设备和网络设备,终端设备和网络设备可以按照一致的方式确定测量的目标状态和/或测量所使用的目标测量配置,有利于保证终端设备和网络设备对于激活的测量配置的理解一致。
第一方面,提供了一种无线通信的方法,包括:终端设备在多个状态中确定测量的目标状态,和/或,所述终端设备确定激活的目标测量配置;
其中,所述多个状态包括以下状态中的至少两个:
第一状态,对应所述终端设备基于无间隔进行测量;
第二状态,对应所述终端设备基于测量间隔MG进行测量;
第三状态,对应所述终端设备基于网络可控的小间隔NCSG进行测量;
第四状态,对应所述终端设备基于MG和NCSG进行测量。
第二方面,提供了一种无线通信的方法,包括:网络设备在多个状态中确定终端设备执行测量的目标状态,和/或,所述网络设备确定所述终端设备激活的目标测量配置;
其中,所述多个状态包括以下状态中的至少两个:
第一状态,对应所述终端设备基于无间隔进行测量;
第二状态,对应所述终端设备基于测量间隔MG进行测量;
第三状态,对应所述终端设备基于网络可控的小间隔NCSG进行测量;
第四状态,对应所述终端设备基于MG和NCSG进行测量。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,终端设备可以在多个状态中确定测量的目标状态和/或激活的目标测量配置,对应地,网络设备也可以在多个状态中确定终端设备执行测量的目标状态和/或测量所使用的目标测量配置,有利于保证终端设备和网络设备对于激活的测量配置的理解一致。
附图说明
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是本申请提供的一种同步场景下MG和NCSG的示意性图。
图3是本申请提供的一种异步场景下MG和NCSG的示意性图。
图4是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图5是根据本申请一个具体示例的确定目标状态的示意性图。
图6是根据本申请另一具体示例的确定目标状态的示意性图。
图7是根据本申请实施例提供的另一种无线通信的方法的示意性流程图。
图8是根据本申请实施例提供的一种终端设备的示意性框图。
图9是根据本申请实施例提供的一种网络设备的示意性框图。
图10是根据本申请实施例提供的一种通信设备的示意性框图。
图11是根据本申请实施例提供的一种芯片的示意性框图。
图12是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart  home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
为了终端设备更好实现移动性切换,网络设备可以配置终端设备在特定的时间窗口内测量目标邻 区的参考信号,其中,目标邻区可以是同频邻区或者异频邻区或者异网络邻区。
作为示例,参考信号可以包括但不限于同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block,简称SSB),位置参考信号(positioning reference signals,PRS)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)。
作为示例,参考信号的测量可以是参考信号接收功率(Reference Signal Received Power,RSRP)、或者参考信号接收质量(Reference Signal Received Quality,RSRQ)、或者信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)的测量。特定的时间窗口称为测量间隔。
NR系统的研究主要考虑两个频段范围(Frequency range,FR),分别为FR1和FR2,其中,FR1和FR2对应的频率范围如下表1所示,FR1又称为sub 6GHz频段范围,FR2又称为毫米波频段范围。需要说明的是,FR1和FR2对应的频率范围并不局限于表1所示的频率范围,也可以进行调整。
表1
频段 频率范围
FR1 450MHz–6GHz
FR2 24.25GHz–52.6GHz
根据终端设备是否支持FR1和FR2独立工作的能力,测量间隔的gap类型有两种,一种是每用户设备测量间隔(per UE gap),另一种是每FR测量间隔(per FR gap),进一步,per FR gap又分为per FR1 gap和per FR2 gap。其中,per UE gap又称为gapUE,per FR1 gap又称为gapFR1,per FR2 gap又称为gapFR2。与此同时,终端设备引入了是否支持FR1和FR2独立工作的能力指示,该能力指示称为independentGapConfig,该能力指示用于网络设备确定是否能够配置per FR类型的测量间隔给终端设备,例如per FR1 gap、per FR2 gap。具体地,若能力指示用于指示终端设备支持FR1和FR2独立工作,则网络设备能够配置per FR类型的测量间隔;若能力指示用于指示终端设备不支持FR1和FR2独立工作,则网络设备不能够配置per FR类型的测量间隔,仅能够配置per UE类型的测量间隔(即per UE gap)给终端设备。
以下对per FR1 gap、per FR2 gap、以及per UE gap进行说明。
per FR1 gap(即gapFR1):属于per FR1 gap类型的测量间隔只适用于FR1的测量。per FR1 gap与per UE gap不支持同时配置。MG的配置规则与服务小区的频点、目标小区的频点有关。
在演进的通用无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA)和NR双连接(E-UTRA-NR Dual Connectivity,EN-DC)模式下,主节点(Master Node,MN)为长期演进(Long Term Evolution,LTE)制式,辅节点(Secondary Node,SN)为NR制式,只有MN可以配置per FR1 gap。
per FR2 gap(即gapFR2):属于per FR2 gap类型的测量间隔只适用于FR2的测量。per FR2 gap与per UE gap不支持同时配置。per FR2 gap和per FR1 gap支持同时配置。
若终端设备支持FR1和FR2独立工作的能力(即independent gap能力),则终端设备可以针对FR1和FR2进行独立测量,该终端设备可以被配置per FR gap类型的测量间隔,例如per FR1 gap类型的测量间隔,per FR2 gap类型的测量间隔。
per UE gap(gapUE):属于per UE gap类型的测量间隔适用于所有频段(包括FR1和FR2)的测量。
在EN-DC模式下,MN为LTE制式,SN为NR制式,只有MN可以配置per UE gap。若配置了per UE gap,则per FR gap(如per FR1 gap,per FR2 gap)不可以再配置。
在per UE gap类型的测量间隔的持续时间内,终端设备不允许发送任何数据,也不期望调整主载波和辅载波的接收机。
(2)测量配置
网络设备通过无线资源控制(Radio Resource Control,RRC)专用信令配置测量配置(即MeasConfig),如下表2所示,MeasConfig包括测量间隔配置和测量对象配置,其中,测量间隔配置即为measGapConfig,测量对象配置即为measObjectToAddModList。
一个测量间隔的配置信息有:测量间隔偏置(即gapOffset)、测量间隔重复周期(Measurement Gap Repetition Period,MGRP)、测量间隔长度(Measurement Gap Length,MGL)。其中,测量间隔偏置用于确定测量间隔的起点。
一个测量间隔的类型可以是per UE gap,或者是per FR1 gap,或者是per FR2 gap。测量间隔的图样(简称为间隔图样)支持26种,不同的间隔图样对应的MGRP和/或MGL不同。有些间隔图样用于FR1的测量,对应于per FR1 gap;有些间隔图样用于FR2的测量,对应于per FR2 gap。
一个测量对象的配置信息中可以配置与该测量对象关联的同步块测量定时配置(SS/PBCH block  measurement timing configuration,SMTC),SMTC的配置可支持{5,10,20,40,80,160}毫秒(ms)的周期,以及{1,2,3,4,5}ms的窗口长度,SMTC的时间偏置(time offset)与周期是强相关的,取值为{0,…,周期-1,}。由于测量对象中不再包含载频,SMTC可以独立按每个测量对象(Measurement Object,MO)而不是每个频点来配置。
为便于更好的理解本申请实施例,以下对本申请相关的网络可控制的小间隔(Network Control Small Gap,NCSG)进行说明。
NCSG相比于MG可以减小测量所需的中断时间,如图2和图3所示,NCSG图样(pattern)中只有首尾的可见中断长度(Visible Interruption Length,VIL)(包括VIL1和VIL2)会造成短暂的中断,在测量长度(Measurement Length,ML)中可以同时保持测量和服务小区的数据收发,可以在保证测量的同时有效地减少数据中断的时间。显然,用户是否支持NCSG是一种能力,例如UE是否有空闲的RF资源。
在一些场景中,定义了如下4种NCSG pattern,其中NCSG#0和NCSG#2是基于MG pattern#0,分别适用于同步和异步场景;NCSG#1和NCSG#3是基于MG pattern#1(NCSG的可见中断的重复周期(Visible Interruption Repetition Period,VIRP)等于MG的测量间隔重复周期(Measurement Gap Repetition Period,MGRP),NCSG的VIL1+ML+VIL2等于MG的MGL),分别适用于同步和异步场景,同步场景下的MG和NCSG可以如图2所示,异步场景下的MG和NCSG可以如图3所示。在可见中断长度(Visible Interruption Length,VIL)中UE需要进行射频调整等,无法进行数据传输。
当终端设备工作在不同的带宽部分(BandWidth Part,BWP)时,SSB测量(即使是同一个测量对象)可能有不同的测量需求,故引入了预配置的MG(即pre-MG)。比如对于BWP1,SSB资源(频域资源)完全包含在BWP1内,且子载波间隔(Subcarrier spacing,SCS)或循环前缀(Cyclic Prefix,CP)相同,则终端设备无需MG就可以测量,换言之,终端设备可以进行无间隔(no-gap)测量,此状态记为no-gap状态;而当UE切换到BWP2时,SSB资源不包括在BWP2内,此时,终端设备必须在MG内才能进行测量,终端设备基于MG进行测量的状态记为MG状态。
在一些场景中,可以通过如下方式激活Pre-MG:
方式一:通过下行控制信息(Downlink Control Information,DCI)或基于定时器(Timer based)BWP切换来隐式触发pre-MG的激活或去激活;
方式二:通过网络信令显式控制pre-MG的激活或去激活。例如通过RRC信令来配置每个BWP的激活状态。
因此,终端设备可以采用多种状态进行测量,例如基于MG进行测量,基于no-gap进行测量或者,基于NCSG进行测量等。此情况下,终端设备如何进行测量是一项亟需解决的问题。
以下通过具体实施例详述本申请的技术方案。
图4是根据本申请实施例的无线通信的方法200的示意性图,如图4所示,该无线通信的方法200可以包括如下内容中的至少部分内容:
S210,终端设备在多个状态中确定测量的目标状态,和/或,终端设备确定激活的目标测量配置;
其中,所述多个状态包括以下状态中的至少两个:
第一状态,对应所述终端设备基于无间隔(no-gap)进行测量;
第二状态,对应所述终端设备基于测量间隔MG进行测量;
第三状态,对应所述终端设备基于网络可控的小间隔NCSG进行测量;
第四状态,对应所述终端设备基于MG和NCSG进行测量。
在本申请一些实施例中,终端设备支持基于NCSG进行测量并且支持基于MG进行测量。
在本申请一些实施例中,终端设备具备NCSG和MG并发的能力,也即,终端设备支持NCSG和MG并发。
应理解,终端设备具备NCSG和MG并发的能力可以理解为:终端设备具备NCSG和MG同时使用的能力,或者,终端设备具备NCSG和MG共存的能力。
在一些实施例中,在该终端设备具有基于NCSG pattern进行测量的能力以及具有基于MGpattern进行测量的能力的情况下,确定该终端设备具备NCSG和MG并发的能力。当然,该终端设备也可以基于其他参数确定其具有NCSG和MG并发的能力,本申请对此并不限定。
在另一些实施例中,在终端设备具有基于NCSG pattern进行测量的能力以及具有基于MG pattern进行测量的能力的情况下,该终端设备向网络设备发送指示信息,该指示信息用于指示该终端设备具有NCSG和MG并发的能力。也即,终端设备可以向网络设备上报其具有NCSG和MG并发的能力。
在一些实施例中,终端设备可以通过无线资源控制(Radio Resource Control,RRC)信令或上行控制信息(Uplink Control Information,UCI)信令向网络设备指示其具有NCSG和MG并发的能力。
应理解,本申请实施例中的测量可以是对参考信号的测量,该参考信号可以包括但不限于SSB,CSI-RS、PRS。
在一些实施例中,终端设备对参考信号的测量,可以包括但不限于测量参考信号的RSRP,RSRQ和SINR中的至少一种。
应理解,在本申请一些实施例中,NCSG可以替换为NCSG pattern,例如基于NCSG进行测量可以替换为基于NCSG pattern进行测量,激活或去激活MG可以替换为激活或去激活MG pattern;类似地,MG也可以替换为MG pattern,例如,基于MG进行测量可以指基于MG pattern进行测量,激活或去激活NCSG可以替换为激活或去激活NCSG pattern。
在本申请一些实施例中,第一状态或称no-gap状态,即终端设备无需MG和NCSG即可执行测量;第二状态或称MG状态,或者pre-MG状态,即终端设备需要基于MG进行测量;第三状态或称NCSG状态,即终端设备基于NCSG进行测量;第四状态或称MG和NCSG并发状态,即终端设备基于MG和NCSG进行测量。
在本申请一些实施例中,MG pattern和NCSG pattern可以是关联的,或者,也可以是不关联的。
在一些实施例中,NCSG pattern和MG pattern是关联的,包括以下中的至少一项:
NCSG的周期和关联的MG的周期相同;
NCSG的ML和VIL之和与MG的MGL相同;
NCSG的偏移和关联的MG的偏移相同。
应理解,在本申请实施例中,NCSG的ML和VIL之和与MG的MGL相同,可以指:
NCSG的ML和VIL之和与MG的MGL近似相同,或者,NCSG的ML和VIL之和与MG的MGL的差值小于第一时间阈值,例如,该第一时间阈值为2个时隙,也就是说,当NCSG的ML和VIL之和比MG的MGL多1个或2个时隙时,也可以认为NCSG的ML和VIL之和与MG的MGL相同。
在一些实施例中,NCSG图样和MG图样是不关联的,包括以下中的至少一项:
NCSG的周期和MG的周期不同;
NCSG的偏移和MG的偏移不同。
在本申请一些实施例中,网络设备可以给终端设备预配置至少一个MG pattern。
例如,通过RRC信令预配置该至少一个MG pattern。
在一些实施例中,可以通过网络设备的信令激活或去激活MG。
即可以显式控制MG的激活或去激活。
例如,通过RRC信令或MAC CE激活或去激活MG。
在另一些实施例中,可以隐式激活或去激活MG。
例如,在BWP激活时,在该BWP上MG为激活状态,在BWP去激活时,在该BWP上MG为去激活状态。
换言之,在BWP激活时,终端设备在该BWP上使用MG进行测量,在BWP去激活时,终端设备不在该BWP上基于MG进行测量,或者不在该BWP上进行测量。
应理解,在本申请一些实施例中,MG pattern可以是基于UE粒度配置的,例如,网络设备可以给终端设备配置一个或多个MG pattern,该一个或多个MG pattern可以适用于所有的BWP,即无论激活的BWP是哪个,则在终端设备确定基于MG进行测量时,终端设备均可以基于该一个或多个MG pattern进行测量。例如,在第一BWP激活时,终端设备在该第一BWP上可以基于该一个或多个MG pattern进行测量,即在该第一BWP上,该一个或多个MG pattern为激活状态。又例如,在第一BWP去激活时,终端设备不在该第一BWP上可以基于该一个或多个MG pattern进行测量,即在该第一BWP上,该一个或多个MG pattern为去激活状态。
还应理解,在本申请另一些实施例中,MG pattern可以是基于BWP粒度配置的,例如,网络设备可以给终端设备的每个BWP配置对应的MG pattern,则在终端设备确定基于MG进行测量时,终端设备可以基于激活的BWP上配置的MG pattern进行测量。例如,在第一BWP激活时,终端设备在该第一BWP上可以基于该第一BWP对应的MG pattern进行测量,即在该第一BWP激活时,该第一BWP对应的MG pattern为激活状态。又例如,在第一BWP去激活时,终端设备不在该第一BWP上可以基于该第一BWP对应的MG pattern进行测量,即在该第一BWP去激活时,该第一BWP对应的MG pattern为去激活状态。
在又一些实施例中,可以根据预设规则激活或去激活MG。
可选地,所述预设规则可以与MO是否需要MG,主辅小区(PSCell)的添加或释放,辅小区(SCell)的添加或释放,添加或移除MO,BWP切换中的至少一项相关。
例如,在终端设备上配置的所有测量对象均不需要MG时,去激活MG。
又例如,在终端设备上配置的测量对象中的一个或多个测量对象需要MG,激活MG。
应理解,在本申请实施例中,MG的激活或去激活可以是BWP粒度的,或者,也可以是UE粒度的,本申请并不限于此。
在本申请一些实施例中,网络设备可以给终端设备预配置至少一个NCSG pattern。
例如,通过RRC信令预配置该至少一个NCSG pattern。
例如,网络设备可以显式指示NCSG pattern,或者,也可以指示将MG pattern转换为对应的NCSG pattern。
在一些实施例中,可以通过网络设备的信令激活或去激活NCSG。
即可以显式控制NCSG的激活或去激活。
例如,通过RRC信令激活或去激活NCSG。
在另一些实施例中,可以隐式激活或去激活NCSG。
例如,在BWP激活时,在该BWP上NCSG为激活状态,在BWP去激活时,在该BWP上NCSG为去激活状态。
换言之,在BWP激活时,终端设备在该BWP上使用NCSG进行测量,在BWP去激活时,终端设备不在该BWP基于NCSG进行测量,或者,不在该BWP上进行测量。
应理解,在本申请一些实施例中,NCSG pattern可以是基于UE粒度配置的,例如,网络设备可以给终端设备配置一个或多个NCSG pattern,该一个或多个NCSG pattern可以适用于所有的BWP,即无论激活的BWP是哪个,则在终端设备确定基于NCSG进行测量时,终端设备均可以基于该一个或多个NCSG pattern进行测量。例如,在第一BWP激活时,终端设备在该第一BWP上可以基于该一个或多个NCSG pattern进行测量,即在该第一BWP上,该一个或多个NCSG pattern为激活状态。又例如,在第一BWP去激活时,终端设备不在该第一BWP上可以基于该一个或多个NCSG pattern进行测量,即在该第一BWP上,该一个或多个NCSG pattern为去激活状态。
还应理解,在本申请另一些实施例中,NCSG pattern可以是基于BWP粒度配置的,例如,网络设备可以给终端设备的每个BWP配置对应的NCSG pattern,则在终端设备确定基于NCSG进行测量时,终端设备可以基于激活的BWP上配置的NCSG pattern进行测量。例如,在第一BWP激活时,终端设备在该第一BWP上可以基于该第一BWP对应的NCSG pattern进行测量,即在该第一BWP激活时,该第一BWP对应的NCSG pattern为激活状态。又例如,在第一BWP去激活时,终端设备不在该第一BWP上可以基于该第一BWP对应的NCSG pattern进行测量,即在该第一BWP去激活时,该该第一BWP对应的NCSG pattern为去激活状态。
在又一些实施例中,可以根据预设规则激活或去激活NCSG。
可选地,所述预设规则可以与MO是否需要NCSG,主辅小区(PSCell)的添加或释放,辅小区(SCell)的添加或释放,添加或移除MO,BWP切换中的至少一项相关。
例如,在终端设备上配置的所有测量对象均不需要NCSG时,去激活NCSG。
又例如,在终端设备上配置的测量对象中的一个或多个测量对象需要NCSG,激活NCSG。
应理解,在本申请实施例中,NCSG的激活或去激活可以是BWP粒度的,或者,也可以是UE粒度的。
应理解,在本申请实施例中,BWP的激活或去激活可以是通过信令控制的,或者,也可以是基于定时器控制的。
例如,网络设备可以通过下行信令,例如RRC信令或媒体接入控制控制元素(Media Access Control Control Element,MAC CE)控制BWP的激活或去激活。
又例如,在定时器超时后,执行BWP切换,即去激活一个BWP,激活另一BWP。
应理解,在本申请实施例中,激活或去激活NCSG也可以替换为激活或去激活NCSG pattern,二者是等效的,可以相互替换,类似地,激活或去激活MG也可以替换为激活或去激活MG pattern,二者是等效的,可以相互替换。
在本申请一些实施例中,终端设备可以根据网络设备的信令,预设规则或BWP切换指示在多个状态中确定终端设备进行测量的目标状态。
可选地,所述网络设备的信令可以用于激活或去激活MG,和/或,激活或去激活NCSG。
可选地,所述网络设备的信令可以是UE粒度的,或者,也可以是BWP粒度的,或者也可以是其他粒度的,本申请对于网络设备的控制方式不作具体限定。
应理解,该BWP切换指示可以指用于触发BWP切换的指示信息或切换条件,例如,该BWP切换指示可以为BWP的激活或去激活指令,或者,也可以为用于BWP切换的定时器,本申请对此不 作限定。
在一些实施例中,所述预设规则可以与以下中的至少一项相关:
测量对象是否需要MG,测量对象是否需要NCSG。
应理解,在本申请实施例中,no-gap、NCSG和MG可以认为是多种间隔类型。其中,间隔由小到大的排序为no-gap,NCSG和MG。
即,在本申请实施例中,终端设备可以在多种间隔类型中确定执行测量的目标间隔类型。
例如,终端设备可以根据网络设备的信令,预设规则或BWP切换指示确定终端设备基于no-gap,或MG,或NCSG,或,MG+NCSG进行测量。
在本申请一些实施例中,终端设备还可以确定执行测量所使用的目标测量配置,即激活的目标测量配置。例如,终端设备可以根据目标状态确定终端设备进行测量所使用的目标测量配置。
在一些实施例中,终端设备可以将NCSG作为一种特殊的MG,或者,将NCSG作为一种特殊的no-gap,或者,将NCSG作为不等同于MG和no-gap的第三种状态。
以下,结合实施例一至实施例四,说明终端设备确定目标状态和/或目标测量配置的具体实现。
实施例一
在该实施例一中,终端设备可以将NCSG看作一种特殊的MG。因此,可以采用MG的激活和去激活方式激活和去激活NCSG。
在该实施例一中,所述多个状态包括所述第一状态和所述第三状态。
即,终端设备可以基于no-gap进行测量,或者,基于NCSG进行测量。
换言之,终端设备可以在no-gap和NCSG两种间隔类型中确定用于测量的目标间隔类型。
在该实施例一中,网络设备可以给终端设备预配置至少一个NCSG pattern。
例如通过RRC信令预配置至少一个NCSG pattern。
在该实施例一中,可以显式激活或去激活NCSG,或者,隐式激活或去激活NCSG。
例如,在NCSG激活时,使用NCSG进行测量,在NCSG去激活时,使用no-gap进行测量。
在一些实施例中,所述终端设备可以根据第一信息,在所述第一状态和所述第三状态中确定目标状态,其中,所述第一信息包括以下中的至少一项:
网络设备的第一信令,BWP切换指示,第一预设规则,其中,所述第一信令用于激活或去激活NCSG。
其中,网络设备的第一信令激活或去激活该NCSG,可以对应显式激活或去激活NCSG。
可选地,所述第一信令可以例如为RRC信令,DCI,MAC CE等,本申请对此不作限定。
例如,第一信令指示激活NCSG,则终端设备可以基于NCSG进行测量,即目标状态为第三状态。
又例如,第一信令指示去激活NCSG,则终端设备可以基于no-gap进行测量,即目标状态为第一状态。
应理解,在本申请实施例中,第一信令指示激活或去激活NCSG可以是BWP粒度的,或者,也可以是UE粒度的。
即,终端设备可以根据第一信令确定该终端设备在特定BWP上进行测量的目标状态。
例如,若第一信令指示在第一BWP上NCSG为激活状态,则终端设备在第一BWP上基于NCSG进行测量,即第一BWP上的目标状态为第三状态。
又例如,若第一信令指示在第一BWP上NCSG为去激活状态,则终端设备在第一BWP上基于no-gap进行测量,即第一BWP上的目标状态为第一状态。
在本申请一些实施例中,所述第一预设规则和测量对象是否需要NCSG相关。
作为示例,所述第一预设规则包括但不限于以下至少一项:
在所述终端设备上配置的所有测量对象均不需要NCSG的情况下,不激活NCSG;
在所述终端设备上配置的一个或多个测量对象需要NCSG的情况下,激活NCSG。
也即,若所述终端设备上配置的所有测量对象均不需要NCSG,终端设备可以基于no-gap进行测量,即目标状态为第一状态,或者,若所述终端设备的一个或多个测量对象需要NCSG,终端设备可以基于NCSG进行测量,即目标状态为第三状态。
可选地,在一些实施例中,终端设备也可以根据BWP的激活或去激活(例如BWP切换指示)确定NCSG的激活或去激活。
例如,终端设备可以在第一BWP激活时,确定在第一BWP上NCSG为激活状态,即在第一BWP上基于NCSG进行测量。
又例如,终端设备可以在第一BWP去激活(如,切换到第二BWP)时,确定在第一BWP上NCSG为去激活状态,即不在该第一BWP上基于NCSG进行测量,或者,不在该第一BWP上进行测量。
可选地,在一些场景中,NCSG pattern是基于UE粒度配置的,例如,网络设备可以给终端设备配置一个或多个NCSG pattern,该一个或多个NCSG pattern可以适用于所有的BWP,则第一BWP上NCSG为激活状态可以指:在该第一BWP上,该一个或多个NCSG pattern为激活状态,该第一BWP上NCSG为去激活状态可以指:在该第一BWP上,该一个或多个NCSG pattern为去激活状态。
可选地,在一些场景中,NCSG pattern是基于BWP粒度配置的,例如,网络设备可以给终端设备的每个BWP配置对应的NCSG pattern,则第一BWP上NCSG为激活状态可以指:在该第一BWP上,该第一BWP对应的NCSG pattern为激活状态;第一BWP上NCSG为去激活状态可以指:在该第一BWP上,该第一BWP对应的NCSG pattern为去激活状态。在其他实施例中,在某个BWP上NCSG为激活状态或去激活状态,也可以参考上述解释,为了简洁,这里不再赘述。
可选的,BWP的激活或去激活可以是基于网络设备的信令,或者基于定时器,具体实现参考前文的相关描述,为了简洁,这里不再赘述。
在本申请一些实施例中,所述终端设备确定激活的目标测量配置,包括:
根据目标状态确定激活的目标测量配置,或者,根据目标间隔类型确定目标测量配置。
例如,在目标状态为第三状态的情况下,所述终端设备确定预配置的NCSG pattern为激活的目标测量配置。
又例如,在目标间隔类型为NCSG的情况下,所述终端设备确定预配置的NCSG pattern为激活的目标测量配置。
可选地,在本申请一些实施例中,NCSG pattern可以是基于UE粒度配置的,例如,网络设备可以给终端设备配置一个或多个NCSG pattern,该一个或多个NCSG pattern可以适用于所有的BWP,即无论激活的BWP是哪个,在目标状态为第三状态时,终端设备均可以基于该一个或多个NCSG pattern进行测量,即测量所使用的目标测量配置可以包括预配置的该一个或多个NCSG pattern。
可选地,在本申请一些实施例中,NCSG pattern可以是基于BWP粒度配置的,例如,网络设备可以给终端设备的每个BWP配置对应的NCSG pattern,则在目标状态为第三状态时,终端设备可以基于激活的BWP上配置的NCSG pattern进行测量。即可以将激活的BWP上配置的NCSG pattern确定为目标测量配置。
在本申请一些实施例中,所述方法200还包括:
所述终端设备向网络设备上报第一测量能力信息,所述第一测量能力信息用于指示所述终端设备在所述第一状态和所述第二状态之间切换,或者,在所述第一状态和所述第三状态之间切换。
换言之,第一测量能力信息可以用于指示终端设备在no-gap和NCSG两种间隔类型中选择目标间隔类型,或者,在no-gap和MG两种间隔类型中选择目标间隔类型。
在一些实施例中,所述第一测量能力信息的配置粒度包括以下至少之一:用户设备,频段范围FR,频段(band),频段组合(band combination)。
即,终端设备可以上报per-UE的第一测量能力信息,或者,上报per-FR的第一测量能力信息,或上报per-band的第一测量能力信息,或者,上报per-BC的第一测量能力信息。
对应地,终端设备可以基于per-UE的,per-FR的,per-Band,或者per-BC的第一测量能力信息进行目标间隔类型的选择。例如,根据第一频段对应的第一测量能力信息选择在第一频段上进行测量所使用的目标间隔类型,根据第二频段对应的第一测量能力信息选择在第二频段上进行测量所使用的目标间隔类型。
为便于区分和说明,定义如下两种测量能力类型:
第一测量能力类型(或称Type-1a类型),对应所述终端设备在所述第一状态和所述第二状态之间切换,或者说,终端设备在no-gap和MG两种间隔类型中选择目标间隔类型;
第二测量能力类型(或称Type-1b类型),对应所述终端设备在所述第一状态和所述第三状态之间切换,或者说,终端设备在no-gap和NCSG两种间隔类型中选择目标间隔类型。
对于第一测量能力类型,在一些实现方式中,网络设备可以通过信令指示是否激活MG,或者,激活MG还是no-gap。例如,可以通过1比特的指示信息指示激活MG还是no-gap。作为示例,该1比特取值为0表示激活no-gap或去激活MG,取值为1表示激活MG。
对于第一测量能力类型,在另一些实现方式中,可以根据预设规则激活或去激活MG。例如,在终端设备上配置的所有测量对象均不需要MG时,去激活MG,在终端设备上配置的一个或多个测量对象需要MG时,激活MG。
对于第二测量能力类型,在一些实现方式中,网络设备可以通过信令指示是否激活NCSG,或者,激活NCSG还是no-gap。例如,可以通过1比特的指示信息指示激活NCSG还是no-gap。作为示例,该1比特取值为0表示去激活NCSG,或者激活no-gap,取值为1表示激活NCSG。
对于第二测量能力类型,在另一些实现方式中,可以根据预设规则激活或去激活NCSG。例如,在终端设备上配置的所有测量对象均不需要NCSG时,去激活NCSG,在终端设备上配置的一个或多个测量对象需要NCSG时,激活NCSG。
在本申请一些实施例中,当终端设备支持第一测量能力类型时,终端设备可以基于no-gap或MG进行测量,这种测量方式记为第一测量方式。当终端设备支持第二测量能力类型时,终端设备可以基于no-gap或NCSG进行测量,这种测量方式记为第二测量方式。
在一些实施例中,终端设备可以采用UE粒度上报第一测量能力信息,网络设备可以根据终端设备上报的第一测量能力信息预配置MG,NCSG或终端设备的测量方式,例如,采用第一测量方式还是第二测量方式。这样,无论终端设备工作在哪个频段或BWP,终端设备均可以根据网络设备指示的测量方式进行MG或NCSG的激活或去激活。
在另一些实施例中,终端设备可以采用频段组合粒度上报第一测量能力信息。
作为示例,终端设备上报的第一测量能力信息如表3所示,终端设备支持频段B1~B6,终端设备可以上报每个频段支持的测量能力类型,例如,B1~B4支持第二测量能力类型,B5和B6支持第一测量能力类型。因此,终端设备可以根据测量对象的频段确定采用的测量方式,对应地,网络设备可以根据终端设备的测量对象对应的频段确定终端设备所采用的测量方式。例如,若测量对象属于频段B1,则确定终端设备采用第二测量方式,又例如,若测量对象属于频段B5,则确定终端设备采用第一测量方式。
表3
Figure PCTCN2021123461-appb-000001
在又一些实施例中,终端设备可以上报BWP粒度的第一测量能力信息。
例如,如图5所示,终端设备可以设备BWP1对应的测量能力类型和BWP2对应的测量能力类型,BWP1的测量能力类型为Type-1a类型,BWP2的测量能力类型为Type-1b类型,其中,BWP1与SSB资源具有不同的中心频点和SCS/CP,BWP2与SSB资源具有相同的中心频点和SCS/CP,并且BWP2的带宽未完全包含SSB资源,BWP1的测量能力类型为Type-1a类型,BWP2的测量能力类型为Type-1b类型。
当终端设备工作在BWP1时,则终端设备需要基于MG才能测量SSB,且终端设备测量SSB时无法同时在BWP1上接收数据,因此,在BWP1上,终端设备可以按照Type-1a类型对预配置的MG进行激活和去激活。
当终端设备切换到BWP2时,终端设备只需要NCSG打开射频接收带宽,就可以同时测量SSB和在BWP2上接收数据。因此,在BWP2上,终端设备可以按照Type-1b类型对预配置的NCSG进行激活和去激活。
可选的,网络设备在收到终端设备上报的per-BWP的第一测量能力信息时,网络设备也可以对终端设备在每个BWP上所采用的测量方式进行配置。
例如,在BWP1上的测量能力类型为Type-1a类型时,网络设备可以配置终端设备在BWP1上采用第一测量方式。
又例如,在BWP2上的测量能力类型为Type-1b类型时,网络设备可以配置终端设备在BWP2上采用第二测量方式。
实施例二
在该实施例二中,终端设备可以将NCSG看作一种特殊的no-gap,当终端设备不需要基于MG进行测量时,终端设备可以使用NCSG进行测量。
在该实施例二中,所述多个状态包括所述第二状态和所述第三状态。
即终端设备可以基于MG进行测量,或者,基于NCSG进行测量。
换言之,终端设备可以在MG和NCSG两种间隔类型中确定用于测量的目标间隔类型。
在该实施例二中,网络设备可以给终端设备预配置至少一个NCSG pattern,和/或,至少一个MG pattern。
例如,通过RRC信令预配置至少一个NCSG pattern,和/或,至少一个MG pattern。
在一些实施例中,网络设备预配置的NCSG pattern和MG pattern可以是关联的,或者也可以是不关联的。
应理解,在NCSG pattern和MG pattern关联的情况下,网络设备可以只配置NCSG pattern,或 者,只配置MG pattern。
在一些实施例中,NCSG pattern和MG pattern的关联关系可以是预定义的,或者,网络设备配置的。
在一些实施例中,NCSG pattern和MG pattern是关联的,包括以下中的至少一项:
NCSG的周期和关联的MG的周期相同;
NCSG的ML和VIL之和与关联的MG的MGL相同;
NCSG的偏移和关联的MG的偏移相同。
在一些实施例中,NCSG pattern和MG pattern不关联,包括以下中的至少一项:
NCSG的周期和MG的周期不同;
NCSG的偏移和MG的偏移不同。
可选地,如图2和图3所示,所述NCSG的VIL包括第一VIL(对应VIL1)和第二VIL(对应VIL2),其中,所述第一VIL位于所述ML之前,所述第二VIL位于所述ML之后。
在该实施例二中,在MG激活时,NCSG去激活,在MG去激活时,NSCG激活。
在该实施例二中,可以显式激活或去激活MG,或者,隐式激活或去激活MG。
例如,在MG激活时,使用MG进行测量,在MG去激活时,使用NCSG进行测量。
在该实施例二中,可以显式激活或去激活NCSG,或者,隐式激活或去激活NCSG。
例如,在NCSG激活时,使用NCSG进行测量,在NCSG去激活时,使用MG进行测量。
也就是说,终端设备可以根据MG的激活状态,或者NCSG的激活状态,确定目标状态。
或者,终端设备可以根据MG的激活状态,或者,NCSG的激活状态,确定测量所采用的目标间隔类型。
例如,在MG激活或NCSG去激活时,基于MG进行测量,即目标状态为第二状态,目标间隔类型为MG。
又例如,在MG去激活或NCSG激活时,基于NCSG进行测量,即目标状态为第三状态,目标间隔类型为NCSG。
在实施例二中,所述终端设备在多个状态中确定测量的目标状态,包括:
所述终端设备根据第二信息,在所述第二状态和所述第三状态中确定目标状态,其中,所述第二信息包括以下中的至少一项:
网络设备的第二信令,BWP切换指示,第二预设规则。
可选地,网络设备的第二信令激活或去激活该MG,可以对应显式激活或去激活MG。
例如,第二信令指示激活MG,则终端设备可以基于MG进行测量,即目标状态为第二状态。
又例如,第二信令指示去激活MG,则终端设备可以基于NCSG进行测量,即目标状态为第三状态。
可选地,网络设备的第二信令激活或去激活该NCSG,可以对应显式激活或去激活NCSG。
例如,第二信令指示激活NCSG,则终端设备可以基于NCSG进行测量,即目标状态为第三状态。
又例如,第二信令指示去激活NCSG,则终端设备可以基于MG进行测量,即目标状态为第二状态。
可选地,所述第二信令可以例如为RRC,DCI,MAC CE等,本申请对此不作限定。
以下以第二信令用于激活或去激活MG为例进行说明,当然,第二信令也可以用于激活或去激活NCSG,当第二信令用于激活或去激活NCSG时,确定目标状态和目标测量配置的方式类似,这里不再赘述。
应理解,在本申请实施例中,第二信令指示激活或去激活MG可以是UE粒度的,即所述第二信令用于激活或去激活所有BWP上的MG,或者,也可以是BWP粒度的。即,终端设备可以根据第二信令确定该终端设备在特定BWP上的MG是否激活。
在一些实施例中,所述第二信令包括第一指示信息,所述第一指示信息通过比特映射(bitmap)方式指示至少一个BWP中的每个BWP上的MG为激活状态或去激活状态。
例如,若第二信令指示在第一BWP上MG为激活状态,则终端设备在第一BWP上基于MG进行测量,即第一BWP上的目标状态为第二状态。
又例如,若第二信令指示在第一BWP上MG为去激活状态,则终端设备在第一BWP上基于NCSG进行测量,即第一BWP上的目标状态为第三状态。
可选地,所述第一指示信息可以包括至少一个比特,每个比特对应一个BWP,每个比特的取值用于对应的BWP上MG为激活状态或去激活状态。例如,取值为1表示对应的BWP上MG为激活状态,取值为0表示对应的BWP上MG为去激活状态。
可选地,在一些场景中,MG pattern是基于UE粒度配置的,例如,网络设备可以给终端设备配置一个或多个MG pattern,该一个或多个MG pattern可以适用于所有的BWP,则第一BWP上MG为激活状态可以指:在该第一BWP上,该一个或多个MG pattern为激活状态,该第一BWP上MG为去激活状态可以指:在该第一BWP上,该一个或多个MG pattern为去激活状态。
可选地,在一些场景中,MG pattern是基于BWP粒度配置的,例如,网络设备可以给终端设备的每个BWP配置对应的MG pattern,则第一BWP上MG为激活状态可以指:在该第一BWP上,该第一BWP对应的MG pattern为激活状态;第一BWP上MG为去激活状态可以指:在该第一BWP上,该第一BWP对应的MG pattern为去激活状态。
在其他实施例中,在某个BWP上MG为激活状态或去激活状态,也可以参考上述解释,为了简洁,这里不再赘述。
在一些实施例中,第二预设规则与终端设备的测量对象是否需要MG相关。
即,终端设备可以根据终端设备上配置的测量对象是否需要MG,确定是否激活MG,或者根据终端设备上配置的测量对象是否需要MG,确定激活MG还是激活NCSG。
作为示例,所述第二预设规则包括但不限于:
在终端设备上配置的所有测量对象均不需要MG的情况下,激活NCSG;和/或
在终端设备上配置的一个或多个测量对象需要MG的情况下,激活MG。
在一些实施例中,第二预设规则与终端设备的测量对象是否需要NCSG相关。
即,终端设备可以根据终端设备上配置的测量对象是否需要NCSG,确定是否激活NCSG,或者根据终端设备上配置的测量对象是否需要NCSG,确定激活NCSG还是激活MG。
作为示例,所述第二预设规则包括但不限于:
在终端设备上配置的一个或多个测量对象需要MG的情况下,激活MG;和/或
在终端设备上配置的所有测量对象都只需要NCSG的情况下,激活NCSG。
可选地,终端设备也可以根据BWP的激活或去激活(例如BWP切换指示)确定MG的激活或去激活。
例如,在去激活第一BWP时,在第一BWP上MG为去激活状态。又例如,在激活第一BWP时,在第一BWP上MG为激活状态,即在第一BWP上基于MG进行测量。
可选地,终端设备也可以根据BWP的激活或去激活(例如BWP切换指示)确定NCSG的激活或去激活。
例如,在去激活第一BWP时,在第一BWP上,去激活NCSG。
又例如,在激活第一BWP时,在第一BWP上,激活NCSG,即在第一BWP上基于NCSG进行测量。
在本申请一些实施例中,所述终端设备确定激活的目标测量配置,包括:
根据目标状态确定激活的目标测量配置,或者,根据目标间隔类型确定目标测量配置。
例如,在目标状态为第二状态的情况下,确定预配置的MG pattern为激活的目标测量配置。
又例如,在目标状态为第二状态,终端设备上仅配置了NCSG pattern,并且NCSG pattern和MG pattern具有关联关系的情况下,根据当前激活的NCSG pattern结合该关联关系确定待激活的目标测量配置。例如将当前激活的NCSG pattern转换为对应的MG pattern,进一步将该对应的MG pattern确定为待激活的目标测量配置。
又例如,在目标状态为第三状态,终端设备上仅配置了MG pattern,并且NCSG pattern和MG pattern具有关联关系的情况下,根据当前激活的MG pattern结合该关联关系确定待激活的目标测量配置。例如将当前激活的MG pattern转换为对应的NCSG pattern,进一步将该对应的NCSG pattern确定为待激活的目标测量配置。
再例如,在目标状态为第三状态,并且终端设备上配置了NSCG pattern的情况下,确定预配置的NCSG pattern为激活的目标测量配置。
在本申请一些实施例中,所述方法200还包括:
所述终端设备向网络设备上报第二测量能力信息,所述第二测量能力信息用于指示所述终端设备在所述第一状态和所述第二状态之间切换,或者在所述第二状态和所述第三状态之间切换。
换言之,第二测量能力信息可以用于指示终端设备在no-gap和MG两种间隔类型中选择目标间隔类型,或者,在MG和NCSG两种间隔类型中选择目标间隔类型。
在一些实施例中,所述第二测量能力信息的配置粒度包括以下至少之一:用户设备,频段范围FR,频段(band),频段组合(band combination)。
即终端设备可以上报per-UE的第二测量能力信息,或者,上报per-FR的第二测量能力信息,或 上报per-band的第二测量能力信息,或者,上报per-BC的第二测量能力信息。
对应地,终端设备可以基于per-UE的,per-FR的,per-Band,或者per-BC的第二测量能力信息进行目标间隔类型的选择。例如,根据第一频段对应的第二测量能力信息选择在第一频段上进行测量所使用的目标间隔类型,根据第二频段对应的第二测量能力信息选择在第二频段上进行测量所使用的目标间隔类型。
为便于区分和说明,定义如下两种测量能力类型:
第一测量能力类型(或称Type-1a类型),对应所述终端设备在所述第一状态和所述第二状态之间切换,或者说,终端设备在no-gap和MG两种间隔类型中选择目标间隔类型;
第三测量能力类型(或称Type-1c类型),对应所述终端设备在所述第二状态和所述第三状态之间切换,或者说,终端设备在MG和NCSG两种间隔类型中选择目标间隔类型。
对于第一测量能力类型,在一些实现方式中,网络设备可以通过信令指示是否激活MG,或者,激活MG还是no-gap。例如,可以通过1比特的指示信息指示激活MG还是no-gap。作为示例,该1比特取值为0表示激活no-gap或去激活MG,取值为1表示激活MG。
对于第一测量能力类型,在另一些实现方式中,可以根据预设规则激活或去激活MG。例如,在终端设备上配置的所有测量对象均不需要MG时,去激活MG,在终端设备上配置的一个或多个测量对象需要MG时,激活MG。
对于第三测量能力类型,在一些实现方式中,网络设备可以通过信令指示激活或去激活MG,或者,激活NCSG还是激活MG。例如,可以通过1比特的指示信息指示激活NCSG还是激活MG。作为示例,该1比特取值为0表示激活NCSG,取值为1表示激活MG。
对于第三测量能力类型,在另一些实现方式中,可以根据预设规则激活或去激活MG,或者激活MG或NCSG,例如,在终端设备上配置的所有测量对象均不需要MG时,激活NCSG,在终端设备上配置的一个或多个测量对象需要MG时,激活MG。
在本申请一些实施例中,当终端设备支持第一测量能力类型时,终端设备可以基于no-gap或MG进行测量,这种测量方式记为第一测量方式。当终端设备支持第三测量能力类型时,终端设备可以基于MG或NCSG进行测量,这种测量方式记为第三测量方式。
在一些实施例中,终端设备可以采用UE粒度上报第二测量能力信息,网络设备可以根据终端设备上报的第二测量能力信息预配置MG,NCSG或终端设备的测量方式,例如,采用第一测量方式还是第三测量方式。这样,无论终端设备工作在哪个频段或BWP,终端设备均可以根据网络设备指示的测量方式进行MG或NCSG的激活或去激活。
在一些实施例中,终端设备可以采用频段组合粒度上报第二测量能力信息。
作为示例,终端设备上报的第二测量能力信息如表2所示。终端设备可以支持频段B1~B6,终端设备可以上报每个频段支持的测量能力类型,例如,B1、B2、B5和B6支持第三测量能力类型,B3和B4支持第一测量能力类型。因此,终端设备可以根据测量对象的频段确定采用的测量方式,对应地,网络设备可以根据终端设备的测量对象对应的频段确定终端设备所采用的测量方式。例如,若测量对象属于频段B1,则确定终端设备采用第三测量方式,又例如,若测量对象属于频段B3,则确定终端设备采用第一测量方式。
表2
Figure PCTCN2021123461-appb-000002
在另一些实施例中,终端设备可以上报BWP粒度的第二测量能力信息。
例如,如图6所示,终端设备可以上报BWP1对应的测量能力类型和BWP2对应的测量能力类型,其中,BWP1的测量能力类型为Type-1a类型,BWP2的测量能力类型为Type-1c类型。
其中,BWP1与CSI-RS资源具有不同的中心频点和SCS/CP,BWP2与SSB资源具有相同的中心频点和SCS/CP,并且BWP2的带宽未完全包含SSB资源。
当终端设备工作在BWP1时,如果终端设备仅测量SSB,则不需要gap,即终端设备可以基于no-gap进行测量,如果需要测量CSI-RS,则需要MG。因此,当终端设备上报BWP1对应的测量能力类型为Type-1a类型时,终端设备可以按照Type-1a类型对预配置的MG进行激活或去激活。
当终端设备切换到BWP2时,如果终端设备仅测量SSB,则需要NCSG,如果终端设备需要测量CSI-RS,则需要MG。因此,当终端设备上报BWP2对应的测量能力类型为Type-1c类型时,终端 设备可以按照Type-1c类型对预配置的MG进行激活或去激活。
实施例三
在该实施例三中,终端设备将NCSG看作不等同于MG和no-gap的第三种状态,此情况下,终端设备进行测量的间隔类型在NCSG,no-gap和MG中选择,即基于no-gap进行测量,或者基于NCSG进行测量,或者基于MG进行测量。
在该实施例三中,所述多个状态包括所述第一状态,所述第二状态和所述第三状态。
即,终端设备可以基于no-gap进行测量,或者,基于MG进行测量,或者,基于NCSG进行测量。
换言之,终端设备可以在no-gap,MG和NCSG三种间隔类型中确定用于测量的目标间隔类型。
换言之,终端设备可以在需要MG,需要NCSG和需要no-gap三种状态中选择目标状态。
在该实施例三中,网络设备可以给终端设备预配置至少一个NCSG pattern,和/或,至少一个MG pattern。
例如,通过RRC信令预配置至少一个NCSG pattern,和/或,至少一个MG pattern。
在一些实施例中,网络设备预配置的NCSG pattern和MG pattern可以是关联的,或者也可以是不关联的。
应理解,在NCSG pattern和MG pattern关联的情况下,网络设备可以只配置NCSG pattern,或者,只配置MG pattern。
在一些实施例中,NCSG pattern和MG pattern的关联关系可以是预定义的,或者,网络设备配置的。
在一些实施例中,NCSG pattern和MG pattern是关联的,包括以下中的至少一项:
NCSG的周期和关联的MG的周期相同;
NCSG的ML和VIL之和与关联的MG的MGL相同;
NCSG的偏移和关联的MG的偏移相同。
在一些实施例中,NCSG pattern和MG pattern不关联,包括:
NCSG的周期和MG的周期不同;和/或
NCSG的偏移和MG的偏移不同。
可选地,如图2和图3所示,所述NCSG的VIL包括第一VIL(对应VIL1)和第二VIL(对应VIL2),其中,所述第一VIL位于所述ML之前,所述第二VIL位于所述ML之后。
在本申请一些实施例中,所述终端设备在多个状态中确定测量的目标状态,包括:
所述终端设备根据第三信息,在所述第一状态,所述第二状态和所述第三状态中确定目标状态,其中,所述第三信息包括以下中的至少一项:
网络设备的第三信令,BWP切换指示,第三预设规则。
可选地,第三信令可以用于指示间隔类型的激活状态,其中,该间隔类型可以包括no-gap、MG和NSCG。
在一些实施例中,网络设备通过第三信令指示no-gap激活(即MG和NCSG都去激活),MG激活(即NCSG去激活)和NCSG激活(即MG去激活)三种状态。
例如,在终端设备上配置至少一个MG pattern和至少一个NCSG pattern的情况下,网络设备可以通过第三信令指示no-gap激活,MG激活和NCSG激活三种状态。
可选地,所述至少一个MG pattern和至少一个NCSG pattern具有关联关系或不具有关联关系。
在另一些实施例中,网络设备通过第三信令指示no-gap激活(即MG和NCSG都去激活),MG激活(即NCSG去激活)和转换为NCSG(即MG去激活)三种状态。
例如,在终端设备上配置至少一个MG pattern,并且MG pattern关联NCSG pattern的情况下,网络设备可以通过第三信令指示no-gap激活,MG激活和转换为NCSG三种状态。
在又一些实施例中,网络设备通过第三信令指示no-gap激活(即MG和NCSG都去激活),NCSG激活(即MG去激活)和转换为MG(即NCSG去激活)三种状态。
例如,在终端设备上配置至少一个NCSGpattern,并且NCSG pattern关联MG pattern的情况下,网络设备可以通过第三信令指示no-gap激活,NCSG激活和转换为MG三种状态。
可选地,在一些实施例中,上述三种状态可以通过2比特指示,例如通过2比特的不同取值指示上述三种状态。
作为一个示例,取值为00表示no-gap激活,即MG和NCSG都去激活,取值为01表示MG激活,即NCSG去激活,取值为10表示NCSG激活,即MG去激活。
作为另一示例,取值为00表示no-gap激活,即MG和NCSG都去激活,取值为01表示MG激 活,即NCSG去激活,取值为10表示转换为NCSG,即MG去激活。
可选地,在一些实施例中,上述三种状态可以通过2比特指示,例如其中一个比特(记为Y1)用于指示MG是否激活,另一个比特(记为Y2)指示MG是否转换为NCSG。
作为示例,Y2Y1取值为00表示MG去激活并且MG不转换为NCSG,即no-gap激活,Y2Y1取值为01表示MG激活;Y2Y1取值为11表示MG转化为NCSG后激活。
应理解,在本申请实施例中,MG转换为NCSG可以指MG转换为关联的NCSG,例如根据MG和NCSG的关联关系将MG转换为对应的NCSG;类似,NCSG转换为MG可以指NCSG转换为关联的MG,例如根据MG和NCSG的关联关系将NCSG转换为对应的MG。
应理解,在本申请实施例中,第三信令指示的间隔类型的激活状态可以是UE粒度的,或者,也可以是BWP粒度的。即,终端设备可以根据第三信令确定该终端设备在特定BWP上激活的目标间隔类型。
在一些实施例中,所述第三信令包括第二指示信息,所述第二指示信息通过比特映射方式指示至少一个BWP中的每个BWP上no-gap激活,MG激活或NCSG激活三种状态,或者,第二指示信息通过比特映射方式指示至少一个BWP中的每个BWP上no-gap激活,MG激活或转换为关联的NCSG三种状态。
作为示例,第二指示信息包括至少一个比特组,每个比特组对应一个BWP,每个比特组的取值用于指示对应的BWP上间隔的激活状态,例如激活no-gap,激活MG或激活NCSG。
例如,每个比特组为2比特,通过该2比特的不同取值指示激活的间隔类型,例如取值为00,表示激活no-gap,即目标状态为第一状态,取值为01,表示激活MG,即目标状态为第二状态,取值为10表示激活NCSG,即目标状态为第三状态。
作为示例,第二指示信息包括至少一个比特组,每个比特组对应一个BWP,每个比特组的取值用于指示对应的BWP上间隔的激活状态,例如激活no-gap,激活MG或转换为对应的NCSG。
例如,每个比特组为2比特,通过该2比特的不同取值指示激活的间隔类型,例如取值为00,表示激活no-gap,即目标状态为第一状态,取值为01,表示激活MG,即目标状态为第二状态,取值为10表示转换为NCSG,即目标状态为第三状态。
在一些实施例中,若所述第二指示信息指示第一BWP上no-gap激活,则终端设备在第一BWP上基于no-gap进行测量,即所述第一BWP上的测量的目标状态为所述第一状态。
在一些实施例中,若第二指示信息指示第一BWP上MG激活,则终端设备在第一BWP上基于MG进行测量,即所述第一BWP上的测量的目标状态为所述第二状态。
在一些实施例中,若所述第三信令指示第一BWP上NCSG激活,则终端设备在第一BWP上基于NCSG进行测量,即所述第一BWP上的测量的目标状态为所述第三状态。
在一些实施例中,若所述第三信令指示第一BWP上转换为NCSG,则终端设备将MG转换为NCSG,进一步激活该NCSG,基于该NCSG进行测量,即所述第一BWP上的测量的目标状态为所述第三状态。
在本申请一些实施例中,所述第三预设规则与终端设备上配置的测量对象是否需要MG,和/或,终端设备上配置的测量对象是否需要NCSG相关。
作为示例,所述第三预设规则包括但不限于以下中的至少一项:
在终端设备上配置的所有测量对象均不需要MG且不需要NCSG的情况下,激活no-gap;
在终端设备上配置的一个或多个测量对象需要NCSG的情况下,激活NCSG,不激活MG;
在终端设备上配置的一个或多个测量对象需要MG的情况下,激活MG,不激活NCSG。
在本申请一些实施例中,所述终端设备确定激活的目标测量配置,包括:
根据目标状态确定激活的目标测量配置,或者,根据目标间隔类型确定目标测量配置。
例如,在目标状态是第二状态,并且终端设备上预配置MG pattern的情况下,可以将预配置的MG pattern确定为测量所使用的目标测量配置。
又例如,在目标状态是第三状态时,并且终端设备上预配置NCSG pattern的情况下,可以将预配置的NCSG pattern确定为测量所使用的目标测量配置。
又例如,终端设备从第二状态切换为第三状态,并且终端设备上未配置NCSG pattern的情况下,终端设备可以根据第二状态下所使用的MG pattern,结合MG pattern和NCSG pattern的关联关系,确定第三状态下对应的NCSG pattern。
作为示例,终端设备上仅配置一个MG pattern,例如终端设备根据该MG pattern进行测量,进一步地,网络设备指示激活NCSG,或者指示转换为NCSG,则终端设备可以将该MG pattern转换为对应的NCSG pattern并激活,然后基于该NCSG pattern进行测量。
可选地,在本申请一些实施例中,MG pattern可以是基于UE粒度配置的,例如,网络设备可以给终端设备配置一个或多个MG pattern,该一个或多个MG pattern可以适用于所有的BWP,即无论激活的BWP是哪个,在目标状态为第二状态时,终端设备均可以基于该一个或多个MG pattern进行测量,即测量所使用的目标测量配置可以包括预配置的该一个或多个MG pattern。
可选地,在本申请一些实施例中,MG pattern可以是基于BWP粒度配置的,例如,网络设备可以给终端设备的每个BWP配置对应的MG pattern,则在目标状态为第二状态时,终端设备可以基于激活的BWP上配置的MG pattern进行测量。即测量所使用的目标测量配置包括激活的BWP上配置的MG pattern。
可选地,在本申请一些实施例中,NCSG pattern可以是基于UE粒度配置的,例如,网络设备可以给终端设备配置一个或多个NCSG pattern,该一个或多个NCSG pattern可以适用于所有的BWP,即无论激活的BWP是哪个,在目标状态为第三状态时,终端设备均可以基于该一个或多个NCSG pattern进行测量,即测量所使用的目标测量配置可以包括预配置的该一个或多个NCSG pattern。
可选地,在本申请一些实施例中,NCSG pattern可以是基于BWP粒度配置的,例如,网络设备可以给终端设备的每个BWP配置对应的NCSG pattern,则在目标状态为第三状态时,终端设备可以基于激活的BWP上配置的NCSG pattern进行测量。即测量所使用的目标测量配置可以包括激活的BWP上配置的NCSG pattern。
在本申请一些实施例中,所述方法200还包括:
所述终端设备向网络设备上报第三测量能力信息,所述第三测量能力信息用于指示所述终端设备在所述第一状态、第二状态和第三状态之间切换。
换言之,第三测量能力信息可以用于指示终端设备在no-gap、MG和NCSG三种间隔类型中选择目标间隔类型。
在一些实施例中,所述第三测量能力信息的配置粒度包括以下至少之一:用户设备,频段范围FR,频段(band),频段组合(band combination)。
即终端设备可以上报per-UE的第三测量能力信息,或者,上报per-FR的第三测量能力信息,或上报per-band的第三测量能力信息,或者,上报per-BC的第三测量能力信息。
对应地,终端设备可以基于per-UE的,per-FR的,per-Band,或者per-BC的第三测量能力信息进行目标间隔类型的选择。例如,根据第一频段对应的第三测量能力信息选择在第一频段上进行测量所使用的目标间隔类型,根据第二频段对应的第三测量能力信息选择在第二频段上进行测量所使用的目标间隔类型。
可选地,在一些实施例中,当终端设备不支持第三测量能力信息时,终端设备可以回退至在第一状态和第二状态之间切换,即基于第一测量方式进行测量。
实施例四
在该实施例四中,所述多个状态包括所述第一状态、所述第二状态、所述第三状态和所述第四状态。
即,终端设备可以基于no-gap进行测量,或者,基于MG进行测量,或者,基于NCSG进行测量,或者,基于MG和NCSG进行测量。
应理解,在该实施例四中,终端设备基于MG进行测量可以包括:
终端设备基于单个MG pattern,或者,多个MG(concurrent MG)pattern进行测量。
此情况下,可以有单个MG pattern激活,或者,也可以有多个MG pattern同时激活。
应理解,在该实施例四中,终端设备基于NCSG进行测量可以包括:
终端设备基于单个NCSG pattern,或者,多个NCSG(concurrent NCSG)pattern进行测量。
此情况下,可以有单个NCSG pattern激活,或者,也可以有多个NCSG pattern同时激活。
应理解,在该实施例四中,终端设备基于MG和NCSG进行测量可以指:
终端设备基于至少一个MG pattern和至少一个NCSG pattern进行测量。
此情况下,可以有至少一个MG pattern和至少一个NCSG pattern同时激活。
在本申请一些实施例中,所述方法200还包括:
所述终端设备接收网络设备的第一配置信息,所述第一配置信息用于配置以下中的至少一项:
至少一个MG pattern;
所述至少一个MG pattern中的每个MG pattern对应的测量对象;
至少一个NCSG pattern;
所述至少一个NCSG pattern中的每个NCSG pattern对应的测量对象。
即,网络设备在配置MG pattern时可以配置该MG pattern对应的测量对象,或者说,该MG pattern 适用的测量对象,或者,在配置NCSG pattern时,可以配置该NCSG pattern对应的测量对象,或者说,该NCSG pattern适用的测量对象。例如,MO1和MO2对应NCSG pattern,MO3对应MG pattern。
可选地,所述第一配置信息可以是通过RRC信令、DCI或MAC CE等下行信令配置的,本申请对此不作限定。
可选地,所述第一配置信息的配置粒度包括以下至少之一:用户设备,BWP。
即,网络设备可以配置per-UE的第一配置信息,或者,per-BWP的第一配置信息。
在本申请一些实施例中,所述终端设备在多个状态中确定测量的目标状态,包括:
所述终端设备根据第四信息,在所述第一状态、所述第二状态、所述第三状态和所述第四状态中确定目标状态,其中,所述第四信息包括以下中的至少一项:
网络设备的第四信令,BWP切换指示,第四预设规则。
可选地,所述第四信令用于指示以下中的至少一项:
至少一个NCSG pattern是否激活;
至少一个MG pattern是否激活;
至少一个NCSG pattern是否转换;
至少一个MG pattern是否转换。
应理解,所述至少一个NCSG pattern是否转换可以指该至少一个NCSG pattern是否转换为关联的MG pattern,类似地,至少一个MG pattern是否转换可以指该至少一个MG pattern是否转换为关联的NCSG pattern。
可选地,所述第四信令所指示的内容可以是UE粒度的,即不区分BWP,频段等。
可选地,所述第四信令所指示的内容也可以是BWP粒度的,本申请并不限于此。
以下,结合所述终端设备上的间隔的配置方式,对第四信令所指示的内容进行说明。
情况一:所述终端设备上预配置至少一个NCSG pattern和至少一个MG pattern。
可选地,所述至少一个NCSG pattern和所述至少一个MG pattern是不关联的。
在一些实施例中,NCSG pattern和MG pattern是不关联的可以包括:
NCSG pattern和MG pattern的偏移不同。
在一些实施例中,所述终端设备上可配置的NCSG pattern的最大个数为X1,所述终端设备可配置的MG pattern的最大个数为X2。
可选地,X1是根据终端设备的能力确定的,或者是预定义的。
可选地,X2是根据所述终端设备的能力确定的,或者是预定义的。
可选地,X1+X2是根据所述终端设备的能力确定的,或者是预定义的。
对于该情况一,所述第四信令包括第三指示信息,所述第三指示信息通过bitmap方式指示在至少一个BWP中的每个BWP上,MG pattern和NCSG pattern的激活状态。
可选地,MG pattern的激活状态可以包括激活和去激活两种状态。
可选地,NCSG pattern的激活状态可以包括激活和去激活两种状态。
在一些实施例中,所述第三指示信息包括K个比特组,每个比特组对应一个BWP,每个比特组包括X1+X2个比特,所述X1+X2个比特对应X1个NCSG pattern和X2个MG pattern,每个比特用于指示对应的pattern是否激活,其中,K为正整数。
例如,当终端设备同时配置了X1个NCSG pattern和X2个MG pattern,且允许多个MG同时激活时,可以通过第三指示信息指示终端设备在进行测量时可能会出现的2 (X1+X2)种情况。
以配置了X1=1,X2=1为例,则终端设备在进行测量时会出现如下四种情况:
基于MG进行测量,基于NCSG进行测量,基于MG和NCSG进行测量,以及基于no-gap进行测量。
此情况下,每个比特组用于指示四种状态,例如,每个比特组包括2个比特(记为C1C0),C0对应MG,C1对应NCSG,比特的取值为1表示对应的pattern激活,取值为0表示对应的pattern去激活。则C1C0取值为00表示no-gap激活,C1C0取值为01表示MG激活,NCSG去激活,C1C0取值为10表示MG去激活,NCSG激活,C1C0取值为11表示NCSG和MG均激活。
情况二:所述终端设备上预配置至少一个MG pattern。
可选地,所述至少一个MG pattern和至少一个NCSG pattern关联。
即,所述至少一个MG pattern中的每个MG pattern关联对应的NCSG pattern。
可选地,MG pattern的激活状态可以包括激活、去激活和转换为NCSG三种状态。
在一些实施例中,所述第四信令包括第四指示信息,所述第四指示信息通过比特映射方式指示在至少一个BWP中的每个BWP上间隔的状态,其中,所述间隔的状态包括如下至少之一MG去激活, MG激活和MG转换为NCSG。
例如,所述第三指示信息包括K个比特组,每个比特组对应一个BWP,每个比特组包括2*X2个比特,所述2*X2个比特对应X2个MG pattern,其中,每个MG pattern对应2比特,该2比特用于指示对应的MG pattern的三种状态:激活、去激活和转换为NCSG,其中,K为正整数。
例如,当终端设备同时配置了X2个MG pattern,且允许多个MG同时激活时,则可以通过第三指示信息指示终端设备在进行测量时可能会出现的3 (X2)种情况。
以配置了X2=2(包括MG1和MG2)为例,其中,MG1关联NCSG1,MG2关联NCSG2,则终端设备在进行测量时会出现如下九种情况:
基于MG1进行测量,即MG1激活,MG2去激活;
基于MG2进行测量,即MG2激活,MG1去激活;
基于NCSG1进行测量,即MG1转换为关联的NCSG1后激活,MG2去激活;
基于NCSG2进行测量,即MG2转换为关联的NCSG2后激活,MG1去激活;
基于MG1和NCSG2进行测量,即MG1激活,并且MG2转换为关联的NCSG2后激活;
基于MG1和MG2进行测量,即MG1和MG2均激活;
基于MG2和NCSG1进行测量,即MG2激活,并且MG1转换为关联的NCSG1后激活;
基于NCSG1和NCSG2进行测量,即MG1和MG2均转换为对应的NCSG后激活;
基于no-gap进行测量,即no-gap激活。
此情况下,每个比特组用于指示九种状态,则每个比特组可以包括4个比特,通过该4个比特的不同取值用于指示对应的状态,例如取值为0000表示no-gap激活,取值为0100表示MG1激活,MG2去激活,取值为1100表示MG1转换为NCSG后激活,MG2去激活,依次类推。
情况三:所述终端设备上预配置至少一个NCSG pattern。
可选地,所述至少一个NCSG pattern和至少一个MG pattern关联。
即,所述至少一个NCSG pattern中的每个NCSG pattern关联对应的MG pattern。
可选地,NCSG pattern的激活状态可以包括激活、去激活和转换为MG三种状态。
在一些实现方式中,所述第四信令包括第五指示信息,所述第五指示信息通过比特映射方式指示在至少一个BWP中的每个BWP上,间隔的状态,其中,所述间隔的状态包括如下至少之一:NCSG去激活,NCSG激活和NCSG转换为MG。
例如,所述第三指示信息包括K个比特组,每个比特组对应一个BWP,每个比特组包括2*X1个比特,所述2*X1个比特对应X1个NCSG pattern,其中,每个NCSG pattern对应2比特,该2比特用于指示对应的NCSG pattern的三种状态:激活、去激活和转换为MG,其中,K为正整数。
例如,当终端设备同时配置了X1个NCSG pattern,且允许多个NCSG同时激活时,则可以通过第五指示信息指示终端设备在进行测量时可能会出现的4 (X1)种情况。
以配置了X1=2(包括NCSG1和NCSG2)为例,其中,NCSG1关联MG1,NCSG2挂了MG2,则终端设备在进行测量时会出现如下九种情况:
基于NCSG1进行测量,即NCSG1激活,NCSG2去激活;
基于NCSG2进行测量,即NCSG1去激活,NCSG2激活;
基于MG1进行测量,即NCSG2去激活,NCSG1转换为MG1后激活;
基于MG2进行测量,即NCSG1去激活,NCSG2转换为MG2后激活;
基于NCSG1和MG2进行测量,即NCSG1激活,NCSG2转换为MG2后激活;
基于NCSG1和NCSG2进行测量,即NCSG1和NCSG2激活;
基于NCSG2和MG1进行测量,即NCSG2激活,NCSG1转换为MG1后激活;
基于MG1和MG2进行测量,即NCSG1和NCSG2转换为对应的MG后激活;
基于no-gap进行测量,即no-gap激活。
此情况下,每个比特组用于指示九种状态,则每个比特组可以包括4个比特,通过该4个比特的不同取值用于指示对应的状态,例如取值为0000表示no-gap激活,取值为0100表示NCSG1激活,MG2去激活,取值为1100表示NCSG1转换为MG去激活,NCSG2去激活,依次类推。
可选地,在一些实施例中,所述第四预设规则与以下中的至少一项相关:
测量对象是否需要NCSG,测量对象是否需要MG。
例如,在终端设备上配置的所有测量对象均不需要NCSG时,去激活NCSG。
又例如,在终端设备上配置的一个或多个测量对象需要NCSG时,激活NCSG。
例如,在终端设备上配置的所有测量对象均不需要MG时,去激活MG。
又例如,在终端设备上配置的一个或多个测量对象需要MG时,激活MG。
在一些实施例中,所述第四预设规则与以下中的至少一项相关:
NCSG pattern关联的测量对象是否需要NCSG,NCSG pattern关联的测量对象是否需要MG,MG pattern关联的测量对象是否需要MG,MG pattern关联的测量对象是否需要NCSG。
其中,NCSG pattern关联的测量对象,MG pattern关联的测量对象可以根据前文中的第一配置信息获得。
例如,若第一NCSG pattern关联的所有测量对象均不需要NCSG,则去激活第一NCSG pattern。
又例如,若第一NCSG pattern关联的一个或多个测量对象需要NCSG,则激活该第一NCSG。
又例如,若第一NCSG pattern关联的一个或多个测量对象需要MG,则将第一NCSG pattern转换为对应的MG pattern后激活。
又例如,若第一NCSG pattern关联的所有测量对象均不需要NCSG,并且该第一NCSG pattern关联的所有测量对象均不需要MG,则去激活该第一NCSG pattern。
例如,若第一MG pattern关联的所有测量对象均不需要MG,则去激活第一MG pattern。
又例如,若第一MG pattern关联的一个或多个测量对象需要MG,则激活该第一MG。
又例如,若第一MG pattern关联的所有测量对象均不需要MG,但是该第一MG pattern关联的一个或多个测量对象需要NCSG,则将第一MG pattern转换为对应的NCSG pattern后激活。
又例如,若第一MG pattern关联的所有测量对象均不需要MG,并且该第一MG pattern关联的所有测量对象均不需要NCSG,则去激活该第一MG pattern。
应理解,在本申请实施例中,所述第四预设规则可以是UE粒度的,或者,也可以是BWP粒度的。
例如,在第一BWP上,若第一NCSG pattern关联的所有测量对象均不需要NCSG,则去激活第一NCSG pattern。
又例如,在第一BWP上,若第一NCSG pattern关联的一个或多个测量对象需要NCSG,则激活该第一NCSG。
又例如,在第一BWP上,若第一NCSG pattern关联的一个或多个测量对象需要MG,则将第一NCSG pattern转换为对应的MG pattern后激活。
又例如,在第一BWP上,若第一NCSG pattern关联的所有测量对象均不需要NCSG,并且该第一NCSG pattern关联的所有测量对象均不需要MG,则去激活该第一NCSG pattern。
例如,在第二BWP上,若第一MG pattern关联的所有测量对象均不需要MG,则去激活第一MG pattern。
又例如,在第二BWP上,若第一MG pattern关联的一个或多个测量对象需要MG,则激活该第一MG。
又例如,在第二BWP上,若第一MG pattern关联的所有测量对象均不需要MG,但是该第一MG pattern关联的一个或多个测量对象需要NCSG,则将第一MG pattern转换为对应的NCSG pattern后激活。
又例如,在第二BWP上,若第一MG pattern关联的所有测量对象均不需要MG,并且该第一MG pattern关联的所有测量对象均不需要NCSG,则去激活该第一MG pattern。
综上,在本申请一些实施例中,所述第四预设规则包括以下中的至少一项:
若在第一BWP上,第一NCSG图样关联的所有测量对象均不需要NCSG,则去激活第一NCSG图样;
若在第一BWP上,第一NCSG图样关联的一个或多个测量对象需要NCSG,则激活第一NCSG图样;
若在第二BWP上,第一MG图样关联的所有测量对象均不需要MG,则去激活第一MG图样;
若在第二BWP上,第一MG图样关联的一个或多个测量对象需要MG,则激活第一MG图样。
综上,在本申请另一些实施例中,所述第四预设规则包括以下中的至少一项:
若在第一BWP上,第一NCSG图样关联的所有测量对象均不需要NCSG,则去激活第一NCSG图样;
若在第一BWP上,第一NCSG图样关联的一个或多个测量对象需要NCSG,则激活所述第一NCSG图样;
若在第一BWP上,所述第一NCSG图样关联的一个或多个测量对象需要MG,则将所述第一NCSG图样转换为对应的MG图样后再激活;
若在第二BWP上,第一MG图样关联的所有测量对象均不需要MG并且不需要NCSG,则去激活所述第一MG图样;
若在第二BWP上,第一MG图样关联的所有测量对象均不需要MG,但所述第一MG图样关联的一个或多个测量对象需要NCSG,则将所述第一MG图样转换为对应的NCSG图样后再激活;
若在第二BWP上,第一MG图样关联的一个或多个测量对象需要MG,则激活所述第一MG图样。
在本申请一些实施例中,所述终端设备确定激活的目标测量配置,包括:
根据激活的目标间隔类型确定目标测量配置。
例如,在目标状态是第二状态,并且终端设备上预配置MG pattern的情况下,可以将预配置的MG pattern确定为测量所使用的目标测量配置。
又例如,在目标状态是第三状态时,并且终端设备上预配置NCSG pattern的情况下,可以将预配置的NCSG pattern确定为测量所使用的目标测量配置。
又例如,终端设备从第二状态切换为第三状态,并且终端设备上未配置NCSG pattern的情况下,终端设备可以根据第二状态下所使用的MG pattern,结合MG pattern和NCSG pattern的关联关系,确定第三状态下对应的NCSG pattern。
又例如,终端设备从第三状态切换为第二状态,并且终端设备上未配置MG pattern的情况下,终端设备可以根据第三状态下所使用的NCSG pattern,结合MG pattern和NCSG pattern的关联关系,确定第三状态下对应的MG pattern。
再例如,在目标状态是第四状态时,并且终端设备上预配置MG pattern和NCSG pattern的情况下,终端设备可以将预配置的MG pattern和NCSG pattern确定为测量所使用的目标测量配置。
可选地,在本申请一些实施例中,MG pattern可以是基于UE粒度配置的,例如,网络设备可以给终端设备配置一个或多个MG pattern,该一个或多个MG pattern可以适用于所有的BWP,即无论激活的BWP是哪个,在目标状态为第二状态或第四状态时,终端设备均可以基于该一个或多个MG pattern进行测量,即测量所使用的目标测量配置可以包括预配置的该一个或多个MG pattern。
可选地,在本申请一些实施例中,MG pattern可以是基于BWP粒度配置的,例如,网络设备可以给终端设备的每个BWP配置对应的MG pattern,则在目标状态为第二状态或第四状态时,终端设备可以基于激活的BWP上配置的MG pattern进行测量。即测量所使用的目标测量配置可以包括激活的BWP上配置的MG pattern。
可选地,在本申请一些实施例中,NCSG pattern可以是基于UE粒度配置的,例如,网络设备可以给终端设备配置一个或多个NCSG pattern,该一个或多个NCSG pattern可以适用于所有的BWP,即无论激活的BWP是哪个,在目标状态为第三状态或第四状态时,终端设备均可以基于该一个或多个NCSG pattern进行测量,即测量所使用的目标测量配置可以包括预配置的该一个或多个NCSG pattern。
可选地,在本申请一些实施例中,NCSG pattern可以是基于BWP粒度配置的,例如,网络设备可以给终端设备的每个BWP配置对应的NCSG pattern,则在目标状态为第三状态或第四状态时,终端设备可以基于激活的BWP上配置的NCSG pattern进行测量。即测量所使用的目标测量配置可以包括激活的BWP上配置的NCSG pattern。
在本申请一些实施例中,所述方法200还包括:
所述终端设备向网络设备上报第四测量能力信息,所述第四测量能力信息用于指示所述终端设备在所述第一状态、第二状态、第三状态和第四状态之间切换。
换言之,第四测量能力信息可以用于指示终端设备在no-gap、MG、NCSG和MG+NCSG四种间隔类型中选择目标间隔类型。
在一些实施例中,所述第四测量能力信息的配置粒度包括以下至少之一:用户设备,频段范围FR,频段(band),频段组合(band combination)。
即终端设备可以上报per-UE的第四测量能力信息,或者,上报per-FR的第四测量能力信息,或上报per-band的第四测量能力信息,或者,上报per-BC的第四测量能力信息。
对应地,终端设备可以基于per-UE的,per-FR的,per-Band,或者per-BC的第四测量能力信息进行目标间隔类型的选择。例如,根据第一频段对应的第四测量能力信息选择在第一频段上进行测量所使用的目标间隔类型,根据第二频段对应的第四测量能力信息选择在第二频段上进行测量所使用的目标间隔类型。
可选地,在一些实施例中,当终端设备不支持第四测量能力信息时,终端设备可以回退至在第一状态和第二状态之间切换,即基于第一测量方式进行测量。
综上,终端设备可以根据网络设备的信令,BWP切换指示或预设规则确定执行测量的目标状态,和/或,测量所使用的目标测量配置,对应地,网络设备也可以按照一致的方式确定终端设备执行测 量的目标状态,和/或,测量所使用的目标测量配置,有利于保证网络设备和终端设备对于激活的间隔类型的理解一致,从而能够保证正常的测量流程和数据传输。
上文结合图4至图6,从终端设备的角度详细描述了根据本申请实施例的无线通信的方法,下文结合图7,从网络设备的角度详细描述根据本申请另一实施例的无线通信的方法。应理解,网络设备侧的描述与终端设备侧的描述相互对应,相似的描述可以参见上文,为避免重复,此处不再赘述。
图7是根据本申请另一实施例的无线通信的方法300的示意性流程图,该方法300可以由图1所示的通信系统中的网络设备执行,如图7所示,该方法300包括如下内容:
S310,网络设备在多个状态中确定终端设备执行测量的目标状态,和/或,所述网络设备确定所述终端设备激活的目标测量配置;
其中,所述多个状态包括以下状态中的至少之一:
第一状态,对应所述终端设备基于无间隔进行测量;
第二状态,对应所述终端设备基于测量间隔MG进行测量;
第三状态,对应所述终端设备基于网络可控的小间隔NCSG进行测量;
第四状态,对应所述终端设备基于MG和NCSG进行测量。
应理解,在本申请实施例中,网络设备可以按照和终端设备类似的方式确定所述目标状态和/或所述目标测量配置,具体实现参考方法200中的相关描述,为了简洁,这里不再赘述。
在本申请一些实施例中,所述多个状态包括所述第一状态和所述第三状态,所述S310包括:
根据第一信息,在所述第一状态和所述第三状态中确定所述终端设备执行测量的目标状态,其中,所述第一信息包括以下中的至少一项:
所述网络设备的第一信令,第一预设规则,其中,所述第一信令用于激活或去激活NCSG。
在本申请一些实施例中,所述根据第一信息,在所述第一状态和所述第三状态中确定所述终端设备执行测量的目标状态,包括:
若所述第一信令指示激活NCSG,确定所述终端设备执行测量的目标状态为所述第三状态;或
若所述第一信令指示去激活NCSG,确定所述终端设备执行测量的目标状态为所述第一状态。
在本申请一些实施例中,所述第一预设规则包括:
在所述终端设备的所有测量对象均不需要NCSG的情况下,不激活NCSG;和/或
在所述终端设备的一个或多个测量对象需要NCSG的情况下,激活NCSG。
在本申请一些实施例中,所述根据第一信息,在所述第一状态和所述第三状态中确定所述终端设备执行测量的目标状态,包括:
若所述终端设备的所有测量对象均不需要NCSG,确定所述终端设备执行测量的目标状态为所述第一状态;或者
若所述终端设备的一个或多个测量对象需要NCSG,确定所述终端设备执行测量的目标状态为第三状态。
在本申请一些实施例中,所述S310包括:
在所述目标状态为所述第三状态的情况下,所述网络设备确定所述终端设备上预配置的NCSG图样为所述终端设备激活的目标测量配置。
在本申请一些实施例中,所述NCSG图样是通过无线资源控制RRC信令配置的。
在本申请一些实施例中,所述方法300还包括:
所述网络设备接收所述终端设备上报的第一测量能力信息,所述第一测量能力信息用于指示所述终端设备在所述第一状态和所述第二状态之间切换,或者在所述第一状态和所述第三状态之间切换。
在本申请一些实施例中,所述第一测量能力信息的配置粒度包括以下至少之一:用户设备,频段范围FR,频段,频段组合。
在本申请一些实施例中,所述多个状态包括所述第二状态和所述第三状态,所述网络设备在多个状态中确定终端设备执行测量的目标状态,包括:
根据第二信息,在所述第二状态和所述第三状态中确定目标状态,其中,所述第二信息包括以下中的至少一项:
所述网络设备的第二信令,BWP切换指示,第二预设规则,其中,所述第二信令用于激活或去激活MG。
在本申请一些实施例中,所述第二信令包括第一指示信息,所述第一指示信息通过比特映射方式指示在至少一个带宽部分BWP中的每个BWP上,MG为激活状态或去激活状态。
在本申请一些实施例中,所述网络设备在多个状态中确定终端设备执行测量的目标状态,包括:
若所述第二信令指示在第一BWP上MG为激活状态,确定所述终端设备在所述第一BWP上执 行测量的目标状态为所述第二状态;或
若所述第二信令指示在第一BWP上MG为去激活状态,确定所述终端设备在所述第一BWP上执行测量的目标状态为所述第三状态。
在本申请一些实施例中,所述第二预设规则包括:
在所述终端设备的所有测量对象均不需要MG的情况下,激活NCSG;和/或
在所述终端设备的一个或多个测量对象需要MG的情况下,激活MG。
在本申请一些实施例中,所述终端设备上预配置至少一个NCSG图样和/或至少一个MG图样。
在本申请一些实施例中,所述至少一个NCSG图样和所述至少一个MG图样是关联的,或者是不关联的。
在本申请一些实施例中,所述至少一个NCSG图样和所述至少一个MG图样是关联的,包括以下中的至少一项:
NCSG的周期和关联的MG的周期相同;
NCSG的测量长度ML和可见中断长度VIL之和与关联的MG的测量间隔长度MGL相同;
NCSG的偏移和关联的MG的偏移相同。
在本申请一些实施例中,所述网络设备确定所述终端设备激活的目标测量配置,包括:
在所述终端设备执行测量的目标状态为所述第二状态的情况下,确定所述终端设备上预配置的MG图样为所述终端设备激活的目标测量配置;或者
在所述终端设备执行测量的目标状态为所述第三状态的情况下,确定所述终端设备上预配置的NCSG图样为所述终端设备激活的目标测量配置,或者,根据所述终端设备上当前激活的MG图样结合MG图样和NCSG图样的关联关系确定所述终端设备待激活的NCSG图样。
在本申请一些实施例中,所述方法还包括:
所述网络设备接收所述终端设备上报的第二测量能力信息,所述第二测量能力信息用于指示所述终端设备在所述第一状态和所述第二状态之间切换,或者在所述第二状态和所述第三状态之间切换。
在本申请一些实施例中,所述多个状态包括所述第一状态,所述第二状态和所述第三状态,所述S310包括:
根据第三信息,在所述第一状态,所述第二状态和所述第三状态中确定目标状态,其中,所述第三信息包括以下中的至少一项:
所述网络设备的第三信令,BWP切换指示,第三预设规则。
在本申请一些实施例中,所述第三信令包括第二指示信息,所述第二指示信息通过比特映射方式指示至少一个BWP中的每个BWP上无间隔激活,MG激活或NCSG激活。
在本申请一些实施例中,所述根据第三信息,在所述第一状态,所述第二状态和所述第三状态中确定目标状态,包括:
若所述第三信令指示第一BWP上无间隔激活,确定所述终端设备在所述第一BWP上执行测量的目标状态为所述第一状态;或
若所述第三信令指示第一BWP上MG激活,确定所述终端设备在所述第一BWP上执行测量的目标状态为所述第二状态;或
若所述第三信令指示第一BWP上NCSG去激活,确定所述终端设备在所述第一BWP上执行测量的目标状态为所述第三状态。
在本申请一些实施例中,所述第三预设规则包括以下中的至少一项:
在所述终端设备的所有测量对象均不需要MG且不需要NCSG的情况下,激活无间隔;
在所述终端设备的一个或多个测量对象需要NCSG的情况下,激活NCSG,不激活MG;
在所述终端设备的一个或多个测量对象需要MG的情况下,激活MG,不激活NCSG。
在本申请一些实施例中,所述终端设备上预配置至少一个NCSG图样和/或至少一个MG图样。
在本申请一些实施例中,所述至少一个NCSG图样和所述至少一个MG图样是关联的,或者是不关联的。
在本申请一些实施例中,所述至少一个NCSG图样和所述至少一个MG图样是关联的,包括以下中的至少一项:
NCSG的周期和关联的MG的周期相同;
MG的测量间隔长度MGL与NCSG的测量长度ML和可见中断长度VIL之和相同;
NCSG的偏移和关联的MG的偏移相同。
在本申请一些实施例中,所述S310包括:
在所述目标状态为所述第二状态的情况下,确定所述终端设备上预配置的MG图样为所述终端设 备激活的目标测量配置;或者
在所述目标状态为所述第三状态的情况下,确定所述终端设备上预配置的NCSG图样为所述终端设备激活的目标测量配置,或者,根据所述终端设备上当前激活的MG图样结合MG图样和NCSG图样的关联关系确定所述终端设备待激活的NCSG图样。
在本申请一些实施例中,所述多个状态包括所述第一状态、所述第二状态、所述第三状态和所述第四状态,所述S310包括:
根据第四信息,在所述第一状态、所述第二状态、所述第三状态和所述第四状态中确定目标状态,其中,所述第四信息包括以下中的至少一项:
所述网络设备的第四信令,BWP切换指示,第四预设规则。
在本申请一些实施例中,所述终端设备上预配置至少一个NCSG图样和至少一个MG图样。
在本申请一些实施例中,所述至少一个NCSG图样和所述至少一个MG图样是不关联的。
在本申请一些实施例中,所述终端设备上可配置的NCSG图样的最大个数为X1,所述终端设备可配置的MG图样的最大个数为X2;
其中,X1是根据终端设备的能力确定的,或者是预定义的;
X2是根据所述终端设备的能力确定的,或者是预定义的;
X1+X2是根据所述终端设备的能力确定的,或者是预定义的。
在本申请一些实施例中,所述第四信令包括第三指示信息,所述第三指示信息通过比特映射方式指示在至少一个BWP中的每个BWP上,MG图样和NCSG图样的激活状态。
在本申请一些实施例中,所述第三指示信息包括K个比特组,每个比特组对应一个BWP,每个比特组包括X1+X2个比特,所述X1+X2个比特对应所述X1个NCSG图样和X2个MG图样,每个比特用于指示对应的图样为激活状态或去激活状态,其中,K为正整数。
在本申请一些实施例中,所述终端设备上预配置至少一个MG图样,所述至少一个MG图样中的每个MG图样关联对应的NCSG图样。
在本申请一些实施例中,所述第四信令包括第四指示信息,所述第四指示信息通过比特映射方式指示在至少一个BWP中的每个BWP上间隔的状态,其中,所述间隔的状态包括如下至少之一:MG去激活,MG激活和MG转换为NCSG。
在本申请一些实施例中,所述终端设备上预配置至少一个NCSG图样,所述至少一个NCSG图样中的每个NCSG图样关联对应的MG图样。
在本申请一些实施例中,所述第四信令包括第五指示信息,所述第五指示信息通过比特映射方式指示在至少一个BWP中的每个BWP上间隔的状态,其中,所述间隔的状态包括如下至少之一:NCSG去激活,NCSG激活和NCSG转换为MG。
在本申请一些实施例中,所述方法300还包括:
所述网络设备向所述终端设备发送第一配置信息,所述第一配置信息用于配置以下中的至少一项:
至少一个MG图样;
所述至少一个MG图样中的每个MG图样对应的测量对象;
至少一个NCSG图样;
所述至少一个NCSG图样中的每个NCSG图样对应的测量对象。
在本申请一些实施例中,所述第一配置信息的配置粒度包括以下至少之一:用户设备,BWP。
在本申请一些实施例中,所述第四预设规则包括以下中的至少一项:
若在第一BWP上,第一NCSG图样关联的所有测量对象均不需要NCSG,则去激活第一NCSG图样;
若在第一BWP上,第一NCSG图样关联的一个或多个测量对象需要NCSG,则激活第一NCSG图样;
若在第二BWP上,第一MG图样关联的所有测量对象均不需要MG,则去激活第一MG图样;
若在第二BWP上,第一MG图样关联的一个或多个测量对象需要MG,则激活第一MG图样。
在本申请一些实施例中,所述第四预设规则包括以下中的至少一项:
若在第一BWP上,第一NCSG图样关联的所有测量对象均不需要NCSG,则去激活第一NCSG图样;
若在第一BWP上,第一NCSG图样关联的一个或多个测量对象需要NCSG,则激活所述第一NCSG图样;
若在第一BWP上,第一NCSG图样关联的一个或多个测量对象需要MG,则将所述第一NCSG 图样转换为对应的MG图样后再激活;
若在第二BWP上,第一MG图样关联的所有测量对象均不需要MG并且不需要NCSG,则去激活所述第一MG图样;
若在第二BWP上,第一MG图样关联的所有测量对象均不需要MG,但所述第一MG图样关联的一个或多个测量对象需要NCSG,则将所述第一MG图样转换为对应的NCSG图样后再激活;
若在第二BWP上,第一MG图样关联的一个或多个测量对象需要MG,则激活所述第一MG图样。
上文结合图4至图7,详细描述了本申请的方法实施例,下文结合图8至图12,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图8示出了根据本申请实施例的终端设备400的示意性框图。如图8所示,该终端设备400包括:
处理单元410,用于在多个状态中确定测量的目标状态,和/或,所述终端设备确定激活的目标测量配置;
其中,所述多个状态包括以下状态中的至少两个:
第一状态,对应所述终端设备基于无间隔进行测量;
第二状态,对应所述终端设备基于测量间隔MG进行测量;
第三状态,对应所述终端设备基于网络可控的小间隔NCSG进行测量;
第四状态,对应所述终端设备基于MG和NCSG进行测量。
在一些实施例中,所述多个状态包括所述第一状态和所述第三状态,所述处理单元410还用于:
根据第一信息,在所述第一状态和所述第三状态中确定目标状态,其中,所述第一信息包括以下中的至少一项:
网络设备的第一信令,第一预设规则,其中,所述第一信令用于激活或去激活NCSG。
在一些实施例中,所述处理单元410还用于:
若所述第一信令指示激活NCSG,确定所述第三状态为目标状态;或
若所述第一信令指示去激活NCSG,确定所述第一状态为目标状态。
在一些实施例中,所述第一预设规则包括:
在所述终端设备的所有测量对象均不需要NCSG的情况下,不激活NCSG;和/或
在所述终端设备的一个或多个测量对象需要NCSG的情况下,激活NCSG。
在一些实施例中,所述处理单元410还用于:
若所述终端设备的所有测量对象均不需要NCSG,确定所述第一状态为目标状态;或者
若所述终端设备的一个或多个测量对象需要NCSG,确定所述第三状态为目标状态。
在一些实施例中,所述处理单元410还用于:
在所述目标状态为所述第三状态的情况下,确定预配置的NCSG图样为激活的目标测量配置。
在一些实施例中,所述NCSG图样是通过无线资源控制RRC信令配置的。
在一些实施例中,所述终端设备还包括:
通信单元,用于向网络设备上报第一测量能力信息,所述第一测量能力信息用于指示所述终端设备在所述第一状态和所述第二状态之间切换,或者在所述第一状态和所述第三状态之间切换。
在一些实施例中,所述第一测量能力信息的配置粒度包括以下至少之一:用户设备,频段范围FR,频段,频段组合。
在一些实施例中,所述多个状态包括所述第二状态和所述第三状态,所述处理单元410还用于:
根据第二信息,在所述第二状态和所述第三状态中确定目标状态,其中,所述第二信息包括以下中的至少一项:
网络设备的第二信令,BWP切换指示,第二预设规则,其中,所述第二信令用于激活或去激活MG。
在一些实施例中,所述第二信令包括第一指示信息,所述第一指示信息通过比特映射方式指示在至少一个带宽部分BWP中的每个BWP上,MG为激活状态或去激活状态。
在一些实施例中,所述处理单元410还用于:
若所述第二信令指示在第一BWP上MG为激活状态,确定所述第一BWP上的测量的目标状态为所述第二状态;或
若所述第二信令指示在第一BWP上MG为去激活状态,确定第一BWP上的测量的目标状态为所述第三状态。
在一些实施例中,所述第二预设规则包括:
在所述终端设备的所有测量对象均不需要MG的情况下,激活NCSG;和/或
在所述终端设备的一个或多个测量对象需要MG的情况下,激活MG。
在一些实施例中,所述终端设备上预配置至少一个NCSG图样和/或至少一个MG图样。
在一些实施例中,所述至少一个NCSG图样和所述至少一个MG图样是关联的,或者是不关联的。
在一些实施例中,所述至少一个NCSG图样和所述至少一个MG图样是关联的,包括以下中的至少一项:
NCSG的周期和关联的MG的周期相同;
NCSG的测量长度ML和可见中断长度VIL之和与关联的MG的测量间隔长度MGL相同;
NCSG的偏移和关联的MG的偏移相同。
在一些实施例中,所述处理单元410还用于:
在所述目标状态为所述第二状态的情况下,确定预配置的MG图样为激活的目标测量配置;或者
在所述目标状态为所述第三状态的情况下,确定预配置的NCSG图样为激活的目标测量配置,或者,根据当前激活的MG图样结合MG图样和NCSG图样的关联关系确定待激活的NCSG图样。
在一些实施例中,所述终端设备还包括:
通信单元,用于向网络设备上报第二测量能力信息,所述第二测量能力信息用于指示所述终端设备在所述第一状态和所述第二状态之间切换,或者在所述第二状态和所述第三状态之间切换。
在一些实施例中,所述多个状态包括所述第一状态,所述第二状态和所述第三状态,所述处理单元410还用于:
根据第三信息,在所述第一状态,所述第二状态和所述第三状态中确定目标状态,其中,所述第三信息包括以下中的至少一项:
网络设备的第三信令,BWP切换指示,第三预设规则。
在一些实施例中,所述第三信令包括第二指示信息,所述第二指示信息通过比特映射方式指示至少一个BWP中的每个BWP上无间隔激活,MG激活或NCSG激活。
在一些实施例中,所述处理单元410还用于
若所述第三信令指示第一BWP上无间隔激活,确定所述第一BWP上的测量的目标状态为所述第一状态;或
若所述第三信令指示第一BWP上MG激活,确定所述第一BWP上的测量的目标状态为所述第二状态;或
若所述第三信令指示第一BWP上NCSG去激活,确定所述第一BWP上的测量的目标状态为所述第三状态。
在一些实施例中,所述第三预设规则包括以下中的至少一项:
在所述终端设备的所有测量对象均不需要MG且不需要NCSG的情况下,激活无间隔;
在所述终端设备的一个或多个测量对象需要NCSG的情况下,激活NCSG,不激活MG;
在所述终端设备的一个或多个测量对象需要MG的情况下,激活MG,不激活NCSG。
在一些实施例中,所述终端设备上预配置至少一个NCSG图样和/或至少一个MG图样。
在一些实施例中,所述至少一个NCSG图样和所述至少一个MG图样是关联的,或者是不关联的。
在一些实施例中,所述至少一个NCSG图样和所述至少一个MG图样是关联的,包括以下中的至少一项:
NCSG的周期和关联的MG的周期相同;
NCSG的ML和VIL之和与关联的MG的MGL相同;
NCSG的偏移和关联的MG的偏移相同。
在一些实施例中,所述处理单元410还用于:
在所述目标状态为所述第二状态的情况下,确定预配置的MG图样为激活的目标测量配置;或者
在所述目标状态为所述第三状态的情况下,确定预配置的NCSG图样为激活的目标测量配置,或者,根据当前激活的MG图样结合MG图样和NCSG图样的关联关系确定待激活的NCSG图样。
在一些实施例中,所述多个状态包括所述第一状态、所述第二状态、所述第三状态和所述第四状态,所述处理单元410还用于:
根据第四信息,在所述第一状态、所述第二状态、所述第三状态和所述第四状态中确定目标状态,其中,所述第四信息包括以下中的至少一项:
网络设备的第四信令,BWP切换指示,第四预设规则。
在一些实施例中,所述终端设备上预配置至少一个NCSG图样和至少一个MG图样。
在一些实施例中,所述至少一个NCSG图样和所述至少一个MG图样是不关联的。
在一些实施例中,所述终端设备上可配置的NCSG图样的最大个数为X1,所述终端设备可配置的MG图样的最大个数为X2;
其中,X1是根据终端设备的能力确定的,或者是预定义的;
X2是根据所述终端设备的能力确定的,或者是预定义的;
X1+X2是根据所述终端设备的能力确定的,或者是预定义的。
在一些实施例中,所述第四信令包括第三指示信息,所述第三指示信息通过比特映射方式指示在至少一个BWP中的每个BWP上,MG图样和NCSG图样的激活状态。
在一些实施例中,所述第三指示信息包括K个比特组,每个比特组对应一个BWP,每个比特组包括X1+X2个比特,所述X1+X2个比特对应所述X1个NCSG图样和X2个MG图样,每个比特用于指示对应的图样为激活状态或去激活状态,其中,K为正整数。
在一些实施例中,所述终端设备上预配置至少一个MG图样,所述至少一个MG图样中的每个MG图样关联对应的NCSG图样。
在一些实施例中,所述第四信令包括第四指示信息,所述第四指示信息通过比特映射方式指示在至少一个BWP中的每个BWP上间隔的状态,其中,所述间隔的状态包括以下至少之一:MG去激活,MG激活,或者,MG转换为NCSG。
在一些实施例中,所述终端设备上预配置至少一个NCSG图样,所述至少一个NCSG图样中的每个NCSG图样关联对应的MG图样。
在一些实施例中,所述第四信令包括第五指示信息,所述第五指示信息通过比特映射方式指示在至少一个BWP中的每个BWP上间隔的状态,其中,所述间隔的状态包括如下至少之一:NCSG去激活,NCSG激活,或者,NCSG转换为MG。
在一些实施例中,所述终端设备还包括:
通信单元,用于接收网络设备的第一配置信息,所述第一配置信息用于配置以下中的至少一项:
至少一个MG图样;
所述至少一个MG图样中的每个MG图样对应的测量对象;
至少一个NCSG图样;
所述至少一个NCSG图样中的每个NCSG图样对应的测量对象。
在一些实施例中,所述第一配置信息的配置粒度包括以下至少之一:用户设备,BWP。
在一些实施例中,所述第四预设规则包括以下中的至少一项:
若在第一BWP上,第一NCSG图样关联的所有测量对象均不需要NCSG,则去激活第一NCSG图样;
若在第一BWP上,第一NCSG图样关联的一个或多个测量对象需要NCSG,则激活第一NCSG图样;
若在第二BWP上,第一MG图样关联的所有测量对象均不需要MG,则去激活第一MG图样;
若在第二BWP上,第一MG图样关联的一个或多个测量对象需要MG,则激活第一MG图样。
在一些实施例中,所述第四预设规则包括以下中的至少一项:
若在第一BWP上,第一NCSG图样关联的所有测量对象均不需要NCSG,则去激活第一NCSG图样;
若在第一BWP上,第一NCSG图样关联的一个或多个测量对象需要NCSG,则激活所述第一NCSG图样;
若在第一BWP上,第一NCSG图样关联的一个或多个测量对象需要MG,则将所述第一NCSG图样转换为对应的MG图样后再激活;
若在第二BWP上,第一MG图样关联的所有测量对象均不需要MG并且不需要NCSG,则去激活所述第一MG图样;
若在第二BWP上,第一MG图样关联的所有测量对象均不需要MG,但所述第一MG图样关联的一个或多个测量对象需要NCSG,则将所述第一MG图样转换为对应的NCSG图样后再激活;
若在第二BWP上,第一MG图样关联的一个或多个测量对象需要MG,则激活所述第一MG图样。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图4至图6所示方法200中终端设 备的相应流程,为了简洁,在此不再赘述。
图9是根据本申请实施例的网络设备的示意性框图。图9的网络设备500包括:
处理单元510,用于在多个状态中确定终端设备执行测量的目标状态,和/或,确定所述终端设备激活的目标测量配置;
其中,所述多个状态包括以下状态中的至少之一:
第一状态,对应所述终端设备基于无间隔进行测量;
第二状态,对应所述终端设备基于测量间隔MG进行测量;
第三状态,对应所述终端设备基于网络可控的小间隔NCSG进行测量;
第四状态,对应所述终端设备基于MG和NCSG进行测量。
在一些实施例中,所述多个状态包括所述第一状态和所述第三状态,所述处理单元510还用于:
根据第一信息,在所述第一状态和所述第三状态中确定所述终端设备执行测量的目标状态,其中,所述第一信息包括以下中的至少一项:
所述网络设备的第一信令,第一预设规则,其中,所述第一信令用于激活或去激活NCSG。
在一些实施例中,所述处理单元510还用于:
若所述第一信令指示激活NCSG,确定所述终端设备执行测量的目标状态为所述第三状态;或
若所述第一信令指示去激活NCSG,确定所述终端设备执行测量的目标状态为所述第一状态。
在一些实施例中,所述第一预设规则包括:
在所述终端设备的所有测量对象均不需要NCSG的情况下,不激活NCSG;和/或
在所述终端设备的一个或多个测量对象需要NCSG的情况下,激活NCSG。
在一些实施例中,所述处理单元510还用于:
若所述终端设备的所有测量对象均不需要NCSG,确定所述终端设备执行测量的目标状态为所述第一状态;或者
若所述终端设备的一个或多个测量对象需要NCSG,确定所述终端设备执行测量的目标状态为第三状态。
在一些实施例中,所述处理单元510还用于:
在所述目标状态为所述第三状态的情况下,所述网络设备确定所述终端设备上预配置的NCSG图样为所述终端设备激活的目标测量配置。
在一些实施例中,所述NCSG图样是通过无线资源控制RRC信令配置的。
在一些实施例中,所述网络设备还包括
通信单元,用于接收所述终端设备上报的第一测量能力信息,所述第一测量能力信息用于指示所述终端设备在所述第一状态和所述第二状态之间切换,或者在所述第一状态和所述第三状态之间切换。
在一些实施例中,所述第一测量能力信息的配置粒度包括以下至少之一:用户设备,频段范围FR,频段,频段组合。
在一些实施例中,所述多个状态包括所述第二状态和所述第三状态,所述处理单元510还用于:
根据第二信息,在所述第二状态和所述第三状态中确定目标状态,其中,所述第二信息包括以下中的至少一项:
所述网络设备的第二信令,BWP切换指示,第二预设规则,其中,所述第二信令用于激活或去激活MG。
在一些实施例中,所述第二信令包括第一指示信息,所述第一指示信息通过比特映射方式指示至少一个带宽部分BWP中的每个BWP上,MG为激活状态或去激活状态。
在一些实施例中,所述处理单元510还用于:
若所述第二信令指示第一BWP上MG激活,确定所述终端设备在所述第一BWP上执行测量的目标状态为所述第二状态;或
若所述第二信令指示第一BWP上的MG去激活,确定所述终端设备在所述第一BWP上执行测量的目标状态为所述第三状态。
在一些实施例中,所述第二预设规则包括:
在所述终端设备的所有测量对象均不需要MG的情况下,激活NCSG;和/或
在所述终端设备的一个或多个测量对象需要MG的情况下,激活MG。
在一些实施例中,所述终端设备上预配置至少一个NCSG图样和/或至少一个MG图样。
在一些实施例中,所述至少一个NCSG图样和所述至少一个MG图样是关联的,或者是不关联的。
在一些实施例中,所述至少一个NCSG图样和所述至少一个MG图样是关联的,包括以下中的至少一项:
NCSG的周期和关联的MG的周期相同;
NCSG的测量长度ML和可见中断长度VIL之和与关联的MG的测量间隔长度MGL相同;
NCSG的偏移和关联的MG的偏移相同。
在一些实施例中,所述处理单元510还用于:
在所述终端设备执行测量的目标状态为所述第二状态的情况下,确定所述终端设备上预配置的MG图样为所述终端设备激活的目标测量配置;或者
在所述终端设备执行测量的目标状态为所述第三状态的情况下,确定所述终端设备上预配置的NCSG图样为所述终端设备激活的目标测量配置,或者,根据所述终端设备上当前激活的MG图样结合MG图样和NCSG图样的关联关系确定所述终端设备待激活的NCSG图样。
在一些实施例中,所述网络设备还包括:
通信单元,用于接收所述终端设备上报的第二测量能力信息,所述第二测量能力信息用于指示所述终端设备在所述第一状态和所述第二状态之间切换,或者在所述第二状态和所述第三状态之间切换。
在一些实施例中,所述多个状态包括所述第一状态,所述第二状态和所述第三状态,所述处理单元510还用于:
根据第三信息,在所述第一状态,所述第二状态和所述第三状态中确定目标状态,其中,所述第三信息包括以下中的至少一项:
所述网络设备的第三信令,BWP切换指示,第三预设规则。
在一些实施例中,所述第三信令包括第二指示信息,所述第二指示信息通过比特映射方式指示至少一个BWP中的每个BWP上无间隔激活,MG激活或NCSG激活。
在一些实施例中,所述处理单元510还用于:
若所述第三信令指示第一BWP上无间隔激活,确定所述终端设备在所述第一BWP上执行测量的目标状态为所述第一状态;或
若所述第三信令指示第一BWP上MG激活,确定所述终端设备在所述第一BWP上执行测量的目标状态为所述第二状态;或
若所述第三信令指示第一BWP上NCSG去激活,确定所述终端设备在所述第一BWP上执行测量的目标状态为所述第三状态。
在一些实施例中,所述第三预设规则包括以下中的至少一项:
在所述终端设备的所有测量对象均不需要MG且不需要NCSG的情况下,激活无间隔;
在所述终端设备的一个或多个测量对象需要NCSG的情况下,激活NCSG,不激活MG;
在所述终端设备的一个或多个测量对象需要MG的情况下,激活MG,不激活NCSG。
在一些实施例中,所述终端设备上预配置至少一个NCSG图样和/或至少一个MG图样。
在一些实施例中,所述至少一个NCSG图样和所述至少一个MG图样是关联的,或者是不关联的。
在一些实施例中,所述至少一个NCSG图样和所述至少一个MG图样是关联的,包括以下中的至少一项:
NCSG的周期和关联的MG的周期相同;
MG的测量间隔长度MGL与NCSG的测量长度ML和可见中断长度VIL之和相同;
NCSG的偏移和关联的MG的偏移相同。
在一些实施例中,所述处理单元510还用于:
在所述目标状态为所述第二状态的情况下,确定所述终端设备上预配置的MG图样为所述终端设备激活的目标测量配置;或者
在所述目标状态为所述第三状态的情况下,确定所述终端设备上预配置的NCSG图样为所述终端设备激活的目标测量配置,或者,根据所述终端设备上当前激活的MG图样结合MG图样和NCSG图样的关联关系确定所述终端设备待激活的NCSG图样。
在一些实施例中,所述多个状态包括所述第一状态、所述第二状态、所述第三状态和所述第四状态,所述处理单元510还用于:
根据第四信息,在所述第一状态、所述第二状态、所述第三状态和所述第四状态中确定目标状态,其中,所述第四信息包括以下中的至少一项:
所述网络设备的第四信令,BWP切换指示,第四预设规则。
在一些实施例中,所述终端设备上预配置至少一个NCSG图样和至少一个MG图样。
在一些实施例中,所述至少一个NCSG图样和所述至少一个MG图样是不关联的。
在一些实施例中,所述终端设备上可配置的NCSG图样的最大个数为X1,所述终端设备可配置的MG图样的最大个数为X2;
其中,X1是根据终端设备的能力确定的,或者是预定义的;
X2是根据所述终端设备的能力确定的,或者是预定义的;
X1+X2是根据所述终端设备的能力确定的,或者是预定义的。
在一些实施例中,所述第四信令包括第三指示信息,所述第三指示信息通过比特映射方式指示至少一个BWP中的每个BWP上的MG图样和NCSG图样的激活状态。
在一些实施例中,所述第三指示信息包括K个比特组,每个比特组对应一个BWP,每个比特组包括X1+X2个比特,所述X1+X2个比特对应所述X1个NCSG图样和X2个MG图样,每个比特用于指示对应的图样为激活状态或去激活状态,其中,K为正整数。
在一些实施例中,所述终端设备上预配置至少一个MG图样,所述至少一个MG图样中的每个MG图样关联对应的NCSG图样。
在一些实施例中,所述第四信令包括第四指示信息,所述第四指示信息通过比特映射方式指示至少一个BWP中的每个BWP上的MG去激活,MG激活,或者,MG转换为NCSG。
在一些实施例中,所述终端设备上预配置至少一个NCSG图样,所述至少一个NCSG图样中的每个NCSG图样关联对应的MG图样。
在一些实施例中,所述第四信令包括第五指示信息,所述第五指示信息通过比特映射方式指示至少一个BWP中的每个BWP上的NCSG去激活,NCSG激活,或者,NCSG转换为MG。
在一些实施例中,所述网络设备还包括:
通信单元,用于向所述终端设备发送第一配置信息,所述第一配置信息用于配置以下中的至少一项:至少一个MG图样;
所述至少一个MG图样中的每个MG图样对应的测量对象;
至少一个NCSG图样;
所述至少一个NCSG图样中的每个NCSG图样对应的测量对象。
在一些实施例中,所述第一配置信息的配置粒度包括以下至少之一:用户设备,BWP。
在一些实施例中,所述第四预设规则包括以下中的至少一项:
若在第一BWP上,第一NCSG图样关联的所有测量对象均不需要NCSG,则去激活第一NCSG图样;
若在第一BWP上,第一NCSG图样关联的一个或多个测量对象需要NCSG,则激活第一NCSG图样;
若在第二BWP上,第一MG图样关联的所有测量对象均不需要MG,则去激活第一MG图样;
若在第二BWP上,第一MG图样关联的一个或多个测量对象需要MG,则激活第一MG图样。
在一些实施例中,所述第四预设规则包括以下中的至少一项:
若在第一BWP上,第一NCSG图样关联的所有测量对象均不需要NCSG,则去激活第一NCSG图样;
若在第一BWP上,第一NCSG图样关联的一个或多个测量对象需要NCSG,则激活所述第一NCSG图样;
若在第一BWP上,第一NCSG图样关联的一个或多个测量对象需要MG,则将所述第一NCSG图样转换为对应的MG图样后再激活;
若在第二BWP上,第一MG图样关联的所有测量对象均不需要MG并且不需要NCSG,则去激活所述第一MG图样;
若在第二BWP上,第一MG图样关联的所有测量对象均不需要MG,但所述第一MG图样关联的一个或多个测量对象需要NCSG,则将所述第一MG图样转换为对应的NCSG图样后再激活;
若在第二BWP上,第一MG图样关联的一个或多个测量对象需要MG,则激活所述第一MG图样。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图7所示方法300中网络设备的相应流程,为了简洁,在此不再赘述。
图10是本申请实施例提供的一种通信设备600示意性结构图。图10所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图10所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例的芯片的示意性结构图。图11所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图12是本申请实施例提供的一种通信系统900的示意性框图。如图12所示,该通信系统900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述 的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (92)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备在多个状态中确定测量的目标状态,和/或,所述终端设备确定激活的目标测量配置;
    其中,所述多个状态包括以下状态中的至少两个:
    第一状态,对应所述终端设备基于无间隔进行测量;
    第二状态,对应所述终端设备基于测量间隔MG进行测量;
    第三状态,对应所述终端设备基于网络可控的小间隔NCSG进行测量;
    第四状态,对应所述终端设备基于MG和NCSG进行测量。
  2. 根据权利要求1所述方法,其特征在于,所述多个状态包括所述第一状态和所述第三状态,所述终端设备在多个状态中确定测量的目标状态,包括:
    所述终端设备根据第一信息,在所述第一状态和所述第三状态中确定目标状态,其中,所述第一信息包括以下中的至少一项:
    网络设备的第一信令,第一预设规则,其中,所述第一信令用于激活或去激活NCSG。
  3. 根据权利要求2所述方法,其特征在于,所述终端设备根据第一信息,在所述第一状态和所述第三状态中确定目标状态,包括:
    若所述第一信令指示激活NCSG,所述终端设备确定所述第三状态为目标状态;或
    若所述第一信令指示去激活NCSG,所述终端设备确定所述第一状态为目标状态。
  4. 根据权利要求2或3所述方法,其特征在于,所述第一预设规则包括:
    在所述终端设备的所有测量对象均不需要NCSG的情况下,不激活NCSG;和/或
    在所述终端设备的一个或多个测量对象需要NCSG的情况下,激活NCSG。
  5. 根据权利要求4所述方法,其特征在于,所述终端设备根据第一信息,在所述第一状态和所述第三状态中确定目标状态,包括:
    若所述终端设备的所有测量对象均不需要NCSG,确定所述第一状态为目标状态;或者
    若所述终端设备的一个或多个测量对象需要NCSG,确定所述第三状态为目标状态。
  6. 根据权利要求2-5中任一项所述方法,其特征在于,所述终端设备确定激活的目标测量配置,包括:
    在所述目标状态为所述第三状态的情况下,所述终端设备确定预配置的NCSG图样为激活的目标测量配置。
  7. 根据权利要求6所述方法,其特征在于,所述NCSG图样通过无线资源控制RRC信令配置。
  8. 根据权利要求2-7中任一项所述方法,其特征在于,所述方法还包括:
    所述终端设备向网络设备上报第一测量能力信息,所述第一测量能力信息用于指示所述终端设备在所述第一状态和所述第二状态之间切换,或者在所述第一状态和所述第三状态之间切换。
  9. 根据权利要求8所述方法,其特征在于,所述第一测量能力信息的配置粒度包括以下至少之一:用户设备,频段范围FR,频段,频段组合。
  10. 根据权利要求1所述方法,其特征在于,所述多个状态包括所述第二状态和所述第三状态,所述终端设备在多个状态中确定测量的目标状态,包括:
    所述终端设备根据第二信息,在所述第二状态和所述第三状态中确定目标状态,其中,所述第二信息包括以下中的至少一项:
    网络设备的第二信令,BWP切换指示,第二预设规则,其中,所述第二信令用于激活或去激活MG。
  11. 根据权利要求10所述方法,其特征在于,所述第二信令包括第一指示信息,所述第一指示信息通过比特映射方式指示在至少一个带宽部分BWP中的每个BWP上,MG为激活状态或去激活状态。
  12. 根据权利要求11所述方法,其特征在于,所述终端设备根据第二信息,在所述第二状态和所述第三状态中确定目标状态,包括:
    若所述第二信令指示在第一BWP上MG为激活状态,确定所述第一BWP上的测量的目标状态为所述第二状态;或
    若所述第二信令指示在第一BWP上MG为去激活状态,确定所述第一BWP上的测量的目标状态为所述第三状态。
  13. 根据权利要求10-12中任一项所述方法,其特征在于,所述第二预设规则包括:
    在所述终端设备的所有测量对象均不需要MG的情况下,激活NCSG;和/或
    在所述终端设备的一个或多个测量对象需要MG的情况下,激活MG。
  14. 根据权利要求10-13中任一项所述方法,其特征在于,所述终端设备上预配置至少一个NCSG图样和/或至少一个MG图样。
  15. 根据权利要求14所述方法,其特征在于,所述至少一个NCSG图样和所述至少一个MG图样是关联的,或者是不关联的。
  16. 根据权利要求15所述方法,其特征在于,所述至少一个NCSG图样和所述至少一个MG图样是关联的,包括以下中的至少一项:
    NCSG的周期和关联的MG的周期相同;
    NCSG的测量长度ML和可见中断长度VIL之和与关联的MG的测量间隔长度MGL相同;
    NCSG的偏移和关联的MG的偏移相同。
  17. 根据权利要求10-16中任一项所述方法,其特征在于,所述终端设备确定激活的目标测量配置,包括:
    在所述目标状态为所述第二状态的情况下,所述终端设备确定预配置的MG图样为激活的目标测量配置;或者
    在所述目标状态为所述第三状态的情况下,所述终端设备确定预配置的NCSG图样为激活的目标测量配置,或者,根据当前激活的MG图样结合MG图样和NCSG图样的关联关系确定待激活的NCSG图样。
  18. 根据权利要求10-17中任一项所述方法,其特征在于,所述方法还包括:
    所述终端设备向网络设备上报第二测量能力信息,所述第二测量能力信息用于指示所述终端设备在所述第一状态和所述第二状态之间切换,或者在所述第二状态和所述第三状态之间切换。
  19. 根据权利要求1所述方法,其特征在于,所述多个状态包括所述第一状态,所述第二状态和所述第三状态,所述终端设备在多个状态中确定测量的目标状态,包括:
    所述终端设备根据第三信息,在所述第一状态,所述第二状态和所述第三状态中确定目标状态,其中,所述第三信息包括以下中的至少一项:网络设备的第三信令,BWP切换指示,第三预设规则。
  20. 根据权利要求19所述方法,其特征在于,所述第三信令包括第二指示信息,所述第二指示信息通过比特映射方式指示在至少一个BWP中的每个BWP上间隔的状态,其中,所述间隔的状态包括如下至少之一:无间隔激活,MG激活和NCSG激活。
  21. 根据权利要求20所述方法,其特征在于,所述终端设备根据第三信息,在所述第一状态,所述第二状态和所述第三状态中确定目标状态,包括:
    若所述第三信令指示在第一BWP上无间隔激活,确定所述第一BWP上的测量的目标状态为所述第一状态;或
    若所述第三信令指示在第一BWP上MG激活,确定所述第一BWP上的测量的目标状态为所述第二状态;或
    若所述第三信令指示在第一BWP上NCSG去激活,确定所述第一BWP上的测量的目标状态为所述第三状态。
  22. 根据权利要求19-21中任一项所述方法,其特征在于,所述第三预设规则包括以下中的至少一项:
    在所述终端设备的所有测量对象均不需要MG且不需要NCSG的情况下,激活无间隔;
    在所述终端设备的一个或多个测量对象需要NCSG的情况下,激活NCSG,不激活MG;
    在所述终端设备的一个或多个测量对象需要MG的情况下,激活MG,不激活NCSG。
  23. 根据权利要求19-22中任一项所述方法,其特征在于,所述终端设备上预配置至少一个NCSG图样和/或至少一个MG图样。
  24. 根据权利要求23所述方法,其特征在于,所述至少一个NCSG图样和所述至少一个MG图样是关联的,或者是不关联的。
  25. 根据权利要求24所述方法,其特征在于,所述至少一个NCSG图样和所述至少一个MG图样是关联的,包括以下中的至少一项:
    NCSG的周期和关联的MG的周期相同;
    NCSG的ML和VIL之和与关联的MG的MGL相同;
    NCSG的偏移和关联的MG的偏移相同。
  26. 根据权利要求19-25中任一项所述方法,其特征在于,所述终端设备确定激活的目标测量配置,包括:
    在所述目标状态为所述第二状态的情况下,所述终端设备确定预配置的MG图样为激活的目标测量配置;或者
    在所述目标状态为所述第三状态的情况下,所述终端设备确定预配置的NCSG图样为激活的目标测量配置,或者,根据当前激活的MG图样结合MG图样和NCSG图样的关联关系确定待激活的NCSG图样。
  27. 根据权利要求1所述方法,其特征在于,所述多个状态包括所述第一状态、所述第二状态、所述第三状态和所述第四状态,所述终端设备在多个状态中确定测量的目标状态,包括:
    所述终端设备根据第四信息,在所述第一状态、所述第二状态、所述第三状态和所述第四状态中确定目标状态,其中,所述第四信息包括以下中的至少一项:
    网络设备的第四信令,BWP切换指示,第四预设规则。
  28. 根据权利要求27所述方法,其特征在于,所述终端设备上预配置至少一个NCSG图样和至少一个MG图样。
  29. 根据权利要求28所述方法,其特征在于,所述至少一个NCSG图样和所述至少一个MG图样是不关联的。
  30. 根据权利要求28或29所述方法,其特征在于,所述终端设备上可配置的NCSG图样的最大个数为X1,所述终端设备可配置的MG图样的最大个数为X2;
    其中,X1是根据终端设备的能力确定的,或者是预定义的;
    X2是根据所述终端设备的能力确定的,或者是预定义的;
    X1+X2是根据所述终端设备的能力确定的,或者是预定义的。
  31. 根据权利要求30所述方法,其特征在于,所述第四信令包括第三指示信息,所述第三指示信息通过比特映射方式指示在至少一个BWP中的每个BWP上,MG图样和NCSG图样的激活状态。
  32. 根据权利要求31所述方法,其特征在于,所述第三指示信息包括K个比特组,每个比特组对应一个BWP,每个比特组包括X1+X2个比特,所述X1+X2个比特对应所述X1个NCSG图样和
    X2个MG图样,每个比特用于指示对应的图样为激活状态或去激活状态,其中,K为正整数。
  33. 根据权利要求27所述方法,其特征在于,所述终端设备上预配置至少一个MG图样,所述至少一个MG图样中的每个MG图样关联对应的NCSG图样。
  34. 根据权利要求33所述方法,其特征在于,所述第四信令包括第四指示信息,所述第四指示信息通过比特映射方式指示在至少一个BWP中的每个BWP上间隔的状态,其中,所述间隔的状态包括如下至少之一:MG去激活,MG激活和MG转换为NCSG。
  35. 根据权利要求27所述方法,其特征在于,所述终端设备上预配置至少一个NCSG图样,所述至少一个NCSG图样中的每个NCSG图样关联对应的MG图样。
  36. 根据权利要求35所述方法,其特征在于,所述第四信令包括第五指示信息,所述第五指示信息通过比特映射方式指示在至少一个BWP中的每个BWP上间隔的状态,其中,间隔的状态包括如下至少之一:NCSG去激活,NCSG激活,或者,NCSG转换为MG。
  37. 根据权利要求27-36中任一项所述方法,其特征在于,所述方法还包括:
    所述终端设备接收网络设备的第一配置信息,所述第一配置信息用于配置以下中的至少一项:
    至少一个MG图样;
    所述至少一个MG图样中的每个MG图样对应的测量对象;
    至少一个NCSG图样;
    所述至少一个NCSG图样中的每个NCSG图样对应的测量对象。
  38. 根据权利要求37所述方法,其特征在于,所述第一配置信息的配置粒度包括以下至少之一:用户设备,BWP。
  39. 根据权利要求37或38所述方法,其特征在于,所述第四预设规则包括以下中的至少一项:
    若在第一BWP上,第一NCSG图样关联的所有测量对象均不需要NCSG,则去激活第一NCSG图样;
    若在第一BWP上,第一NCSG图样关联的一个或多个测量对象需要NCSG,则激活第一NCSG图样;
    若在第二BWP上,第一MG图样关联的所有测量对象均不需要MG,则去激活第一MG图样;
    若在第二BWP上,第一MG图样关联的一个或多个测量对象需要MG,则激活第一MG图样。
  40. 根据权利要求37或38所述方法,其特征在于,所述第四预设规则包括以下中的至少一项:
    若在第一BWP上,第一NCSG图样关联的所有测量对象均不需要NCSG,则去激活第一NCSG图样;
    若在第一BWP上,第一NCSG图样关联的一个或多个测量对象需要NCSG,则激活所述第一NCSG图样;
    若在第一BWP上,第一NCSG图样关联的一个或多个测量对象需要MG,则将所述第一NCSG图样转换为对应的MG图样后再激活;
    若在第二BWP上,第一MG图样关联的所有测量对象均不需要MG并且不需要NCSG,则去激活所述第一MG图样;
    若在第二BWP上,第一MG图样关联的所有测量对象均不需要MG,但所述第一MG图样关联的一个或多个测量对象需要NCSG,则将所述第一MG图样转换为对应的NCSG图样后再激活;
    若在第二BWP上,第一MG图样关联的一个或多个测量对象需要MG,则激活所述第一MG图样。
  41. 一种无线通信的方法,其特征在于,包括:
    网络设备在多个状态中确定终端设备执行测量的目标状态,和/或,所述网络设备确定所述终端设备激活的目标测量配置;其中,所述多个状态包括以下状态中的至少之一:
    第一状态,对应所述终端设备基于无间隔进行测量;
    第二状态,对应所述终端设备基于测量间隔MG进行测量;
    第三状态,对应所述终端设备基于网络可控的小间隔NCSG进行测量;
    第四状态,对应所述终端设备基于MG和NCSG进行测量。
  42. 根据权利要求41所述方法,其特征在于,所述多个状态包括所述第一状态和所述第三状态,所述网络设备在多个状态中确定终端设备执行测量的目标状态,包括:
    根据第一信息,在所述第一状态和所述第三状态中确定所述终端设备执行测量的目标状态,其中,所述第一信息包括以下中的至少一项:
    所述网络设备的第一信令,第一预设规则,其中,所述第一信令用于激活或去激活NCSG。
  43. 根据权利要求42所述方法,其特征在于,所述根据第一信息,在所述第一状态和所述第三状态中确定所述终端设备执行测量的目标状态,包括:
    若所述第一信令指示激活NCSG,确定所述终端设备执行测量的目标状态为所述第三状态;或
    若所述第一信令指示去激活NCSG,确定所述终端设备执行测量的目标状态为所述第一状态。
  44. 根据权利要求42或43所述方法,其特征在于,所述第一预设规则包括:
    在所述终端设备的所有测量对象均不需要NCSG的情况下,不激活NCSG;和/或
    在所述终端设备的一个或多个测量对象需要NCSG的情况下,激活NCSG。
  45. 根据权利要求44所述方法,其特征在于,所述根据第一信息,在所述第一状态和所述第三状态中确定所述终端设备执行测量的目标状态,包括:
    若所述终端设备的所有测量对象均不需要NCSG,确定所述终端设备执行测量的目标状态为所述第一状态;或者
    若所述终端设备的一个或多个测量对象需要NCSG,确定所述终端设备执行测量的目标状态为第三状态。
  46. 根据权利要求42-45中任一项所述方法,其特征在于,所述网络设备确定所述终端设备激活的目标测量配置,包括:
    在所述目标状态为所述第三状态的情况下,所述网络设备确定所述终端设备上预配置的NCSG图样为所述终端设备激活的目标测量配置。
  47. 根据权利要求46所述方法,其特征在于,所述NCSG图样通过无线资源控制RRC信令配置。
  48. 根据权利要求42-47中任一项所述方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备上报的第一测量能力信息,所述第一测量能力信息用于指示所述终端设备在所述第一状态和所述第二状态之间切换,或者在所述第一状态和所述第三状态之间切换。
  49. 根据权利要求48所述方法,其特征在于,所述第一测量能力信息的配置粒度包括以下至少之一:用户设备,频段范围FR,频段,频段组合。
  50. 根据权利要求41所述方法,其特征在于,所述多个状态包括所述第二状态和所述第三状态,所述网络设备在多个状态中确定终端设备执行测量的目标状态,包括:
    根据第二信息,在所述第二状态和所述第三状态中确定目标状态,其中,所述第二信息包括以下中的至少一项:
    所述网络设备的第二信令,BWP切换指示,第二预设规则,其中,所述第二信令用于激活或去激活MG。
  51. 根据权利要求50所述方法,其特征在于,所述第二信令包括第一指示信息,所述第一指示信息通过比特映射方式指示至少一个带宽部分BWP中的每个BWP上的MG激活或去激活。
  52. 根据权利要求51所述方法,其特征在于,所述网络设备在多个状态中确定终端设备执行测 量的目标状态,包括:
    若所述第二信令指示在第一BWP上MG为激活状态,确定所述终端设备在所述第一BWP上执行测量的目标状态为所述第二状态;或
    若所述第二信令指示在第一BWP上MG为去激活状态,确定所述终端设备在所述第一BWP上执行测量的目标状态为所述第三状态。
  53. 根据权利要求50-52中任一项所述方法,其特征在于,所述第二预设规则包括:
    在所述终端设备的所有测量对象均不需要MG的情况下,激活NCSG;和/或
    在所述终端设备的一个或多个测量对象需要MG的情况下,激活MG。
  54. 根据权利要求50-53中任一项所述方法,其特征在于,所述终端设备上预配置至少一个NCSG图样和/或至少一个MG图样。
  55. 根据权利要求54所述方法,其特征在于,所述至少一个NCSG图样和所述至少一个MG图样是关联的,或者是不关联的。
  56. 根据权利要求55所述方法,其特征在于,所述至少一个NCSG图样和所述至少一个MG图样是关联的,包括以下中的至少一项:
    NCSG的周期和关联的MG的周期相同;
    NCSG的测量长度ML和可见中断长度VIL之和与关联的MG的测量间隔长度MGL相同;
    NCSG的偏移和关联的MG的偏移相同。
  57. 根据权利要求50-56中任一项所述方法,其特征在于,所述网络设备确定所述终端设备激活的目标测量配置,包括:
    在所述终端设备执行测量的目标状态为所述第二状态的情况下,确定所述终端设备上预配置的MG图样为所述终端设备激活的目标测量配置;或者
    在所述终端设备执行测量的目标状态为所述第三状态的情况下,确定所述终端设备上预配置的NCSG图样为所述终端设备激活的目标测量配置,或者,根据所述终端设备上当前激活的MG图样结合MG图样和NCSG图样的关联关系确定所述终端设备待激活的NCSG图样。
  58. 根据权利要求50-57中任一项所述方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备上报的第二测量能力信息,所述第二测量能力信息用于指示所述终端设备在所述第一状态和所述第二状态之间切换,或者在所述第二状态和所述第三状态之间切换。
  59. 根据权利要求41所述方法,其特征在于,所述多个状态包括所述第一状态,所述第二状态和所述第三状态,所述网络设备在多个状态中确定终端设备执行测量的目标状态,包括:
    根据第三信息,在所述第一状态,所述第二状态和所述第三状态中确定目标状态,其中,所述第三信息包括以下中的至少一项:
    所述网络设备的第三信令,BWP切换指示,第三预设规则。
  60. 根据权利要求59所述方法,其特征在于,所述第三信令包括第二指示信息,所述第二指示信息通过比特映射方式指示在至少一个BWP中的每个BWP上间隔的状态,其中,所述间隔的状态包括如下至少之一:无间隔激活,MG激活或NCSG激活。
  61. 根据权利要求60所述方法,其特征在于,所述根据第三信息,在所述第一状态,所述第二状态和所述第三状态中确定目标状态,包括:
    若所述第三信令指示在第一BWP上无间隔激活,确定所述终端设备在所述第一BWP上执行测量的目标状态为所述第一状态;或
    若所述第三信令指示在第一BWP上MG激活,确定所述终端设备在所述第一BWP上执行测量的目标状态为所述第二状态;或
    若所述第三信令指示在第一BWP上NCSG去激活,确定所述终端设备在所述第一BWP上执行测量的目标状态为所述第三状态。
  62. 根据权利要求59-61中任一项所述方法,其特征在于,所述第三预设规则包括以下中的至少一项:
    在所述终端设备的所有测量对象均不需要MG且不需要NCSG的情况下,激活无间隔;
    在所述终端设备的一个或多个测量对象需要NCSG的情况下,激活NCSG,不激活MG;
    在所述终端设备的一个或多个测量对象需要MG的情况下,激活MG,不激活NCSG。
  63. 根据权利要求59-62中任一项所述方法,其特征在于,所述终端设备上预配置至少一个NCSG图样和/或至少一个MG图样。
  64. 根据权利要求63所述方法,其特征在于,所述至少一个NCSG图样和所述至少一个MG图样是关联的,或者是不关联的。
  65. 根据权利要求64所述方法,其特征在于,所述至少一个NCSG图样和所述至少一个MG图样是关联的,包括以下中的至少一项:
    NCSG的周期和关联的MG的周期相同;
    MG的测量间隔长度MGL与NCSG的测量长度ML和可见中断长度VIL之和相同;
    NCSG的偏移和关联的MG的偏移相同。
  66. 根据权利要求59-65中任一项所述方法,其特征在于,所述网络设备确定所述终端设备激活的目标测量配置,包括:
    在所述目标状态为所述第二状态的情况下,确定所述终端设备上预配置的MG图样为所述终端设备激活的目标测量配置;或者
    在所述目标状态为所述第三状态的情况下,确定所述终端设备上预配置的NCSG图样为所述终端设备激活的目标测量配置,或者,根据所述终端设备上当前激活的MG图样结合MG图样和NCSG图样的关联关系确定所述终端设备待激活的NCSG图样。
  67. 根据权利要求41所述方法,其特征在于,所述多个状态包括所述第一状态、所述第二状态、所述第三状态和所述第四状态,所述网络设备在多个状态中确定终端设备执行测量的目标状态,包括:
    根据第四信息,在所述第一状态、所述第二状态、所述第三状态和所述第四状态中确定目标状态,其中,所述第四信息包括以下中的至少一项:
    所述网络设备的第四信令,BWP切换指示,第四预设规则。
  68. 根据权利要求67所述方法,其特征在于,所述终端设备上预配置至少一个NCSG图样和至少一个MG图样。
  69. 根据权利要求68所述方法,其特征在于,所述至少一个NCSG图样和所述至少一个MG图样是不关联的。
  70. 根据权利要求68或69所述方法,其特征在于,所述终端设备上可配置的NCSG图样的最大个数为X1,所述终端设备可配置的MG图样的最大个数为X2;
    其中,X1是根据终端设备的能力确定的,或者是预定义的;
    X2是根据所述终端设备的能力确定的,或者是预定义的;
    X1+X2是根据所述终端设备的能力确定的,或者是预定义的。
  71. 根据权利要求70所述方法,其特征在于,所述第四信令包括第三指示信息,所述第三指示信息通过比特映射方式指示在至少一个BWP中的每个BWP上,MG图样和NCSG图样的激活状态。
  72. 根据权利要求71所述方法,其特征在于,所述第三指示信息包括K个比特组,每个比特组对应一个BWP,每个比特组包括X1+X2个比特,所述X1+X2个比特对应所述X1个NCSG图样和
    X2个MG图样,每个比特用于指示对应的图样为激活状态或去激活状态,其中,K为正整数。
  73. 根据权利要求67所述方法,其特征在于,所述终端设备上预配置至少一个MG图样,所述至少一个MG图样中的每个MG图样关联对应的NCSG图样。
  74. 根据权利要求73所述方法,其特征在于,所述第四信令包括第四指示信息,所述第四指示信息通过比特映射方式指示至少一个BWP中的每个BWP上间隔的状态,其中,所述间隔的状态包括如下至少之一:MG去激活,MG激活和MG转换为NCSG。
  75. 根据权利要求67所述方法,其特征在于,所述终端设备上预配置至少一个NCSG图样,所述至少一个NCSG图样中的每个NCSG图样关联对应的MG图样。
  76. 根据权利要求75所述方法,其特征在于,所述第四信令包括第五指示信息,所述第五指示信息通过比特映射方式指示在至少一个BWP中的每个BWP上间隔的状态,其中,所述间隔的状态包括如下至少之一:NCSG去激活,NCSG激活和NCSG转换为MG。
  77. 根据权利要求67-76中任一项所述方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一配置信息,所述第一配置信息用于配置以下中的至少一项:至少一个MG图样;
    所述至少一个MG图样中的每个MG图样对应的测量对象;
    至少一个NCSG图样;
    所述至少一个NCSG图样中的每个NCSG图样对应的测量对象。
  78. 根据权利要求77所述方法,其特征在于,所述第一配置信息的配置粒度包括以下至少之一:用户设备,BWP。
  79. 根据权利要求77或78所述方法,其特征在于,所述第四预设规则包括以下中的至少一项:
    若在第一BWP上,第一NCSG图样关联的所有测量对象均不需要NCSG,则去激活第一NCSG图样;
    若在第一BWP上,第一NCSG图样关联的一个或多个测量对象需要NCSG,则激活第一NCSG图样;
    若在第二BWP上,第一MG图样关联的所有测量对象均不需要MG,则去激活第一MG图样;
    若在第二BWP上,第一MG图样关联的一个或多个测量对象需要MG,则激活第一MG图样。
  80. 根据权利要求77或78所述方法,其特征在于,所述第四预设规则包括以下中的至少一项:
    若在第一BWP上,第一NCSG图样关联的所有测量对象均不需要NCSG,则去激活第一NCSG图样;
    若在第一BWP上,第一NCSG图样关联的一个或多个测量对象需要NCSG,则激活所述第一NCSG图样;
    若在第一BWP上,第一NCSG图样关联的一个或多个测量对象需要MG,则将所述第一NCSG图样转换为对应的MG图样后再激活;
    若在第二BWP上,第一MG图样关联的所有测量对象均不需要MG并且不需要NCSG,则去激活所述第一MG图样;
    若在第二BWP上,第一MG图样关联的所有测量对象均不需要MG,但所述第一MG图样关联的一个或多个测量对象需要NCSG,则将所述第一MG图样转换为对应的NCSG图样后再激活;
    若在第二BWP上,第一MG图样关联的一个或多个测量对象需要MG,则激活所述第一MG图样。
  81. 一种终端设备,其特征在于,包括:
    处理单元,用于在多个状态中确定测量的目标状态,和/或,所述终端设备确定激活的目标测量配置;其中,所述多个状态包括以下状态中的至少两个:
    第一状态,对应所述终端设备基于无间隔进行测量;
    第二状态,对应所述终端设备基于测量间隔MG进行测量;
    第三状态,对应所述终端设备基于网络可控的小间隔NCSG进行测量;
    第四状态,对应所述终端设备基于MG和NCSG进行测量。
  82. 一种网络设备,其特征在于,包括:
    处理单元,用于在多个状态中确定终端设备执行测量的目标状态,和/或,所述网络设备确定所述终端设备激活的目标测量配置;其中,所述多个状态包括以下状态中的至少之一:
    第一状态,对应所述终端设备基于无间隔进行测量;
    第二状态,对应所述终端设备基于测量间隔MG进行测量;
    第三状态,对应所述终端设备基于网络可控的小间隔NCSG进行测量;
    第四状态,对应所述终端设备基于MG和NCSG进行测量。
  83. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至40中任一项所述的方法。
  84. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至40中任一项所述的方法。
  85. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至40中任一项所述的方法。
  86. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至40中任一项所述的方法。
  87. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至40中任一项所述的方法。
  88. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求41至80中任一项所述的方法。
  89. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求41至80中任一项所述的方法。
  90. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求41至80中任一项所述的方法。
  91. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求41至80中任一项所述的方法。
  92. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求41至80中任一项所述的方法。
PCT/CN2021/123461 2021-10-13 2021-10-13 无线通信的方法、终端设备和网络设备 WO2023060468A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/123461 WO2023060468A1 (zh) 2021-10-13 2021-10-13 无线通信的方法、终端设备和网络设备
CN202180103008.9A CN118044248A (zh) 2021-10-13 2021-10-13 无线通信的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/123461 WO2023060468A1 (zh) 2021-10-13 2021-10-13 无线通信的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2023060468A1 true WO2023060468A1 (zh) 2023-04-20

Family

ID=85988125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123461 WO2023060468A1 (zh) 2021-10-13 2021-10-13 无线通信的方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN118044248A (zh)
WO (1) WO2023060468A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138985A1 (en) * 2016-02-12 2017-08-17 Intel IP Corporation Signaling for enhanced measurement gap for synchronous network
CN107637120A (zh) * 2015-04-09 2018-01-26 英特尔Ip公司 基于每个分量载波的增强的测量间隙配置的信令
CN108366379A (zh) * 2017-01-26 2018-08-03 北京三星通信技术研究有限公司 测量能力上报和配置的方法、用户设备和基站
CN110537375A (zh) * 2017-05-16 2019-12-03 英特尔Ip公司 每ue网络控制的小间隙(ncsg)信令

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107637120A (zh) * 2015-04-09 2018-01-26 英特尔Ip公司 基于每个分量载波的增强的测量间隙配置的信令
WO2017138985A1 (en) * 2016-02-12 2017-08-17 Intel IP Corporation Signaling for enhanced measurement gap for synchronous network
CN108366379A (zh) * 2017-01-26 2018-08-03 北京三星通信技术研究有限公司 测量能力上报和配置的方法、用户设备和基站
CN110537375A (zh) * 2017-05-16 2019-12-03 英特尔Ip公司 每ue网络控制的小间隙(ncsg)信令

Also Published As

Publication number Publication date
CN118044248A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
US20230179374A1 (en) Channel transmission method, terminal device, and network device
US20230115662A1 (en) Method for neighboring cell measurement, terminal device and network device
WO2021003624A1 (zh) Bwp切换方法和终端设备
WO2020186532A1 (zh) 无线通信方法、终端设备和网络设备
WO2022027488A1 (zh) 无线通信的方法、终端设备和网络设备
US20230021791A1 (en) Method for configuring multiple carriers, terminal device, and network device
WO2022021035A1 (zh) 测量方法、终端设备和网络设备
WO2023060468A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022261839A1 (zh) 测量方法、终端设备和网络设备
WO2022000301A1 (zh) 信号测量的方法、终端设备和网络设备
CN113498136B (zh) 测量方法及装置
WO2022266966A1 (zh) 测量方法、测量配置方法、终端设备和网络设备
WO2023141760A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023050146A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023141872A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024108526A1 (zh) 无线通信的方法, 终端设备和网络设备
WO2023102914A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022151256A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023201489A1 (zh) 通信方法、终端设备和网络设备
WO2023010261A1 (zh) 测量位置的确定方法、终端设备、芯片和存储介质
WO2023283889A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023102732A1 (zh) 一种测量配置方法及装置、网络设备
WO2023108556A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023050320A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023035144A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960210

Country of ref document: EP

Kind code of ref document: A1