WO2023097574A1 - 电池单体及其制造方法和设备、电池以及用电装置 - Google Patents

电池单体及其制造方法和设备、电池以及用电装置 Download PDF

Info

Publication number
WO2023097574A1
WO2023097574A1 PCT/CN2021/134843 CN2021134843W WO2023097574A1 WO 2023097574 A1 WO2023097574 A1 WO 2023097574A1 CN 2021134843 W CN2021134843 W CN 2021134843W WO 2023097574 A1 WO2023097574 A1 WO 2023097574A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
end cap
insulator
battery cell
flange
Prior art date
Application number
PCT/CN2021/134843
Other languages
English (en)
French (fr)
Inventor
周文林
徐良帆
吴宁生
李全坤
王鹏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2021/134843 priority Critical patent/WO2023097574A1/zh
Priority to CN202180097082.4A priority patent/CN117136466A/zh
Publication of WO2023097574A1 publication Critical patent/WO2023097574A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/597Protection against reversal of polarity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of battery manufacturing, in particular, to a battery cell, its manufacturing method and equipment, a battery, and an electrical device.
  • the internal structure of the battery cell is not compact enough, resulting in a large external size of the battery cell and low energy density.
  • the present application proposes a battery cell and its manufacturing method and equipment, battery and electrical device, which have a compact structure and better energy density.
  • the embodiment of the first aspect of the present application provides a battery cell, including: a casing with an opening; an electrode assembly disposed inside the casing; an end cap assembly including an end cap, a first insulator, and a second insulator
  • the end cover is used to cover the opening, the first insulating member is arranged between the electrode assembly and the end cover to insulate and isolate the electrode assembly and the end cover, and the second insulating member It includes a main body part and a first flange part, the first flange part is connected to one end of the main body part, and the main body part is arranged between the casing and the electrode assembly to insulate and isolate the casing
  • the body is connected to the electrode assembly, and the first flange portion is connected to a side of the first insulator facing the end cap or a side facing away from the end cap.
  • the first flange portion of the second insulator is connected to the side of the first insulator facing the end cap or to the side away from the end cap.
  • the first insulator s The side facing the end cap or the side away from the end cap has enough area to be connected to the first flange, which can ensure the reliability of the connection between the first insulating member and the first flange;
  • the side of an insulator reserves the required area for connection with the first flange, allowing the thickness of the first insulator to be further reduced, so that the battery cell has a compact structure and better energy density.
  • the first flange portion is thermally fused connected to a side of the first insulating member facing the end cap or a side facing away from the end cap.
  • the area of the surface of the first insulator on the side facing the end cover or the side away from the end cover is larger than the area of the other surfaces, which can meet the minimum area required by the hot-melt process and realize the first flanging
  • the part is reliably hot-melt connected with the first insulating member.
  • a groove is provided on the side of the first insulating member facing the end cap or on the side facing away from the end cap, and the groove is located at the edge of the first insulating member , the groove is used to accommodate the first flange portion, and the first flange portion is connected to the surface of the groove.
  • the first flange part is accommodated inside the groove and connected to the surface of the groove, which can reduce the increase in the overall size of the battery cell due to the stacked arrangement of the first flange part and the first insulating member degree, thereby increasing the energy density of the battery cell.
  • the shape of the groove matches the shape of the first flange portion.
  • the shape of the groove matches the shape of the first flange portion, which can reduce the area occupied by the groove on the surface of the first insulator on the side facing the end cap or on the side away from the end cap, Therefore, on the basis of accommodating the first flange portion, the structural strength of the first insulating member will not be reduced too much, and it is also beneficial to limit the connection between the first flange portion and the first insulating member when the first flange portion is connected to the first insulating member.
  • the relative position of the parts simplifies the connection process between the first flange part and the first insulating part.
  • the depth of the groove is equal to the thickness of the first flange portion.
  • the first flange part is inserted between the first insulator and the end cap, or between the first insulator and the electrode assembly, without additionally increasing the external size of the battery cell, so that the battery cell Maintain the original energy density.
  • the width of the first flange portion is smaller than the width of the main body portion.
  • the second insulating member includes a plurality of first flange portions, and the plurality of first flange portions are arranged at intervals along the width direction of the main body portion.
  • the plurality of first flange portions are respectively connected to the first insulator, and in the case of the same connection area, the material used for the second insulator can be reduced, thereby reducing the manufacturing cost of the battery cell.
  • the number of the second insulators is multiple, the plurality of second insulators are distributed along the circumference of the electrode assembly, and all the adjacent two second insulators The main body parts are spliced together.
  • each second insulator it is possible to firstly connect the first flange portion of each second insulator to the first insulator, and then splice the main body of each second insulator, and multiple main bodies jointly insulate the isolated electrodes.
  • Components and housings simplify the assembly process of battery cells.
  • the first insulator has a rectangular shape
  • the number of the second insulators is four
  • the first flange portions of the four second insulators are correspondingly connected to the The four edges of the first insulating piece.
  • one edge of the first insulator corresponds to one second insulator, and the junction of the main bodies of adjacent second insulators corresponds to the end corner of the first insulator, which can simplify the assembly of the battery cells process.
  • the housing includes a bottom wall and a side wall, the side wall surrounds the bottom wall, and the main body is disposed between the electrode assembly and the side wall , the second insulating member further includes a second flange portion, the second flange portion is connected to the other end of the main body portion, and the second flange portion is disposed between the bottom wall and the electrode assembly between.
  • the second insulator is provided with a second flange portion, and the second flange portion insulates and isolates the bottom wall from the electrode assembly, so as to avoid short-circuiting between the electrode assembly and the bottom wall, thereby improving the safety performance of the battery cell .
  • the second flange portions of the plurality of second insulators jointly cover a side of the electrode assembly facing the bottom wall.
  • the battery cell further includes: an adhesive member, configured to adhere and fix the second flange portions of the plurality of second insulating members.
  • the relative positions of the second flanges of the multiple second insulators can be fixed, preventing the second flanges from lifting to expose the surface of the electrode assembly, causing the electrode assembly to be short-circuited with the bottom wall, resulting in safety hazards. Hidden danger.
  • the embodiment of the second aspect of the present application provides a battery, including the battery cell provided in the embodiment of the first aspect of the present application.
  • the battery of the embodiment of the second aspect of the present application also has the advantages of compact structure and high energy density.
  • the embodiment of the third aspect of the present application provides an electric device, including the battery provided in the embodiment of the second aspect of the present application, and the battery is used to provide electric energy.
  • the electric device provided by the embodiment of the third aspect of the present application also has the advantages of compact structure and high energy density.
  • the embodiment of the fourth aspect of the present application provides a method for manufacturing a battery cell, including:
  • An end cap assembly is provided, the end cap assembly includes an end cap, a first insulator and a second insulator, the first insulator is disposed between the electrode assembly and the end cap to insulate and isolate the electrodes Assembly and the end cover, the second insulating member includes a main body and a first flange, the first flange is connected to one end of the main body, the first flange and the second flange an insulator is attached to a side facing the end cap or a side facing away from the end cap;
  • the embodiment of the fourth aspect of the present application provides a battery cell manufacturing equipment, including:
  • a first providing device for providing a housing having an opening
  • the third providing device is used to provide an end cap assembly
  • the end cap assembly includes an end cap, a first insulator and a second insulator
  • the first insulator is arranged between the electrode assembly and the end cap , to insulate and isolate the electrode assembly from the end cap
  • the second insulator includes a main body and a first flange, the first flange is connected to one end of the main body, and the first The flange portion is connected to a side of the first insulating member facing the end cap or a side away from the end cap;
  • an assembly module for covering the main body on the electrode assembly, placing the electrode assembly inside the casing, and insulating the casing from the electrode assembly through the second insulating member , covering the opening with the end cap, so as to seal the electrode assembly inside the casing.
  • FIG. 1 shows is a simple schematic diagram of a vehicle in an embodiment of the present application
  • Fig. 2 shows a schematic structural view of the battery of the vehicle in Fig. 1;
  • Figure 3 shows an exploded view of a battery cell in some embodiments of the present application
  • Fig. 4 shows a structural schematic diagram of a viewing angle of the battery cell in Fig. 3 (the housing is not shown);
  • FIG. 5 and FIG. 6 are structural schematic diagrams of two perspectives of the end cap assembly in the battery cell according to some embodiments of the present application.
  • Fig. 7 and Fig. 8 show the structural schematic diagrams of two connection forms of the first flange part and the first insulator in the battery cell according to some embodiments of the present application;
  • Fig. 9 shows a schematic structural view of the assembly of the first insulator and the end cap of the end cap assembly in Fig. 8;
  • Fig. 10 and Fig. 11 are schematic splicing diagrams of two viewing angles of a plurality of second insulators in a battery cell according to some embodiments of the present application;
  • Fig. 12 shows a structural schematic diagram of another viewing angle of a battery cell in some embodiments of the present application (the housing is not shown);
  • Fig. 13 shows a schematic structural view of a battery cell in some embodiments of the present application using an adhesive to bond and fix the second flange portion (the housing is not shown);
  • Fig. 14 shows a schematic diagram of a method for manufacturing a battery cell according to some embodiments of the present application.
  • Fig. 15 shows a schematic diagram of a battery cell manufacturing equipment according to some embodiments of the present application.
  • Icons 1000-vehicle; 100-battery; 10-battery unit; 11-shell; 111-bottom wall; 112-side wall; 12-end cover assembly; 121-end cover; 122-electrode terminal; 123-section 1231-first surface; 1232-second surface; 1233-third surface; 1234-groove; 12341-fourth surface; 12342-fifth surface; 1235-first edge; 1236-second edge 1237-third edge; 1238-fourth edge; 124-second insulating member; 1241-main body; - first flange; 1243 - second flange; 13 - electrode assembly; 131 - body; 1311 - bottom; 1312 - top; 1313 - side; 132 - first tab; 133 - second tab ; 14-collecting components; 15-adhesives; 20-box; 21-first box; 22-second box; 200-controller; 300-motor; 2000-battery unit manufacturing equipment; 2100-first providing device
  • connection should be understood in a broad sense unless otherwise clearly specified and limited, for example, it can be a fixed connection or a Detachable connection, or integral connection; can be directly connected, can also be indirectly connected through an intermediary, and can be internal communication of two components.
  • connection can be a fixed connection or a Detachable connection, or integral connection; can be directly connected, can also be indirectly connected through an intermediary, and can be internal communication of two components.
  • “Plurality” in this application refers to two or more (including two).
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to the way of packaging: cylindrical battery cells, square battery cells and pouch battery cells.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • a battery generally includes a box for encapsulating one or more battery cells, and the box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode collector without the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer. Fluid, the positive electrode current collector not coated with the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode collector without the negative electrode active material layer protrudes from the negative electrode collector coated with the negative electrode active material layer. Fluid, the negative electrode current collector not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the isolation film may be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the battery cell also includes a current collecting member, which is used to electrically connect the tabs of the battery cell to the electrode terminals, so as to transmit electric energy from the electrode assembly to the electrode terminals, and then to the outside of the battery cell through the electrode terminals;
  • the electrical connection between the battery cells is realized through the busbar, so as to realize the series connection, parallel connection or mixed connection of multiple battery cells.
  • a commonly used insulation method is to use the lower plastic insulation to isolate the electrode assembly and the end cover, use the insulating film to cover the electrode assembly, connect the insulating film and the lower plastic to fix the position of the insulating film, and then wrap the insulating film
  • the electrode assembly of the membrane is placed inside the casing, and the insulating film is arranged between the electrode assembly and the inner wall of the casing to achieve insulation and isolation of the electrode assembly and the casing to ensure the safety performance of the battery cell.
  • the inventor found through research that, in the above insulation method, the electrode assembly is covered with an insulating film after the electrode assembly, the lower plastic and the end cap have been assembled into one, because the side of the lower plastic facing the end cap is bonded to the end cap , the side away from the end cap is attached to the electrode assembly, and only the side of the lower plastic (that is, the side of the lower plastic extending circumferentially around the thickness direction) can be used to connect with the insulating film.
  • this application proposes a new technical solution, before the end cover, the lower plastic and the electrode assembly are assembled, the lower plastic is connected to the insulating film, and the side of the insulating film facing or facing away from the end cover is connected to the insulating film. Allowing the thickness of the plastic to be further thinned, the battery cell has a compact structure and a higher energy density.
  • the battery cells described in the embodiments of the present application can directly supply power to electric devices, and can also be connected in parallel or in series to form battery modules or batteries to supply power to various electric devices in the form of battery modules or batteries. .
  • the electric devices that use battery cells, battery modules or batteries described in the embodiments of the present application can be in various forms, for example, mobile phones, portable devices, notebook computers, battery cars, electric cars, ships, Spacecraft, electric toys and electric tools, etc.
  • spacecraft include airplanes, rockets, space shuttles and spaceships, etc.
  • Electric toys include fixed or mobile electric toys, such as game consoles, electric car toys, electric Ship toys and electric airplane toys, etc.
  • Electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, such as electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, Concrete vibrator and planer.
  • the battery cells, battery modules or batteries described in the embodiments of the present application are not only limited to the above-described electric devices, but also applicable to all electric devices that use battery cells, battery modules, and batteries.
  • the following embodiments are all described by taking an electric vehicle as an example.
  • FIG. 1 shows a simplified schematic diagram of a vehicle in an embodiment of the present application
  • FIG. 2 shows a schematic structural diagram of a battery of the vehicle in FIG. 1 .
  • a battery 100 , a controller 200 and a motor 300 are disposed inside the vehicle 1000 , for example, the battery 100 may be disposed at the bottom, front or rear of the vehicle 1000 .
  • the vehicle 1000 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle.
  • the battery 100 can be used for power supply of the vehicle 1000 , for example, the battery 100 can be used as an operating power source of the vehicle 1000 .
  • the controller 200 is used to control the power supply of the battery 100 to the motor 300 , for example, for starting, navigating, and working power requirements of the vehicle 1000 during driving.
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1000 .
  • the battery 100 mentioned in the embodiment of the present application refers to a single physical module including one or more battery cells 10 to provide higher voltage and capacity.
  • a plurality of battery cells 10 may be connected in series, parallel or mixed to form the battery 100 directly.
  • the mixed connection means that the plurality of battery cells 10 are both connected in series and in parallel.
  • a plurality of battery cells 10 may also be connected in series, parallel or mixed first to form a battery module, and then multiple battery modules are connected in series, parallel or mixed to form a battery 100 .
  • the battery 100 includes a plurality of battery cells 10 and a case 20 , and the plurality of battery cells 10 are placed in the case 20 .
  • the box body 20 includes a first box body 21 and a second box body 22 , and the first box body 21 and the second box body 22 are closed to form a cavity of the battery 100 , and a plurality of battery 100 modules are placed in the cavity of the battery 100 .
  • the shapes of the first box body 21 and the second box body 22 may be determined according to the combined shape of a plurality of battery 100 modules, and each of the first box body 21 and the second box body 22 may have an opening.
  • both the first box body 21 and the second box body 22 can be hollow cuboids and only one face is an opening face, the openings of the first box body 21 and the second box body 22 are arranged oppositely, and the first box body 21 and the second box body 22 are arranged oppositely.
  • the second boxes 22 are interlocked to form the box 20 with a closed chamber.
  • a plurality of battery cells 10 are connected in parallel or connected in series or mixed and placed in the box 20 formed by fastening the first box 21 and the second box 22 .
  • FIG. 3 shows an exploded view of a battery cell in some embodiments of the present application
  • FIG. 4 shows a structural schematic diagram of a perspective view of the battery cell in FIG. 3 (the housing is not shown).
  • the battery cell 10 includes a case 11 , an end cap assembly 12 , an electrode assembly 13 and a current collecting member 14 .
  • the housing 11 includes a bottom wall 111 and a side wall 112.
  • the side wall 112 is surrounded by the bottom wall 111.
  • One end of the side wall 112 is connected to the bottom wall 111, and the other end forms an opening.
  • the end cover assembly 12 includes an end cover 121, an electrode The terminal 122 and the first insulator 123 .
  • the end cap 121 covers the opening to seal the electrode assembly 13 inside the shell.
  • the end cap 121 is provided with two electrode lead-out holes, and there are two electrode terminals 122 , the electrode terminals 122 correspond to the electrode lead-out holes one by one, and the electrode terminals 122 are installed in the corresponding electrode lead-out holes.
  • the housing 11 may be made of metal material such as aluminum, aluminum alloy or nickel-plated steel.
  • the end cap 121 is a plate-shaped structure, the size and shape of the end cap 121 match the opening of the housing 11, and the end cap 121 is fixed to the opening of the housing 11, thereby sealing the electrode assembly 13 and the electrolyte in the housing cavity of the housing 11 .
  • the end cap 121 is made of metal materials, such as aluminum, steel and other materials.
  • the electrode assembly 13 is disposed inside the casing 11 , and the electrode assembly 13 includes a body 131 , a first tab 132 and a second tab 133 .
  • the body 131 includes a positive pole piece, a negative pole piece and a separator, and the separator is located between the positive pole piece and the negative pole piece for separating the positive pole piece from the negative pole piece.
  • the polarities of the first tab 132 and the second tab 133 are opposite, the first tab 132 is connected to one electrode terminal 122 through a current collecting member 14, and the second tab 133 is connected to the other electrode terminal 122 through another current collecting member. Components 14 are connected.
  • the first tab 132 is a positive tab
  • the second tab 133 is a negative tab
  • the material of the current collecting member 14 corresponding to the first tab 132 is aluminum.
  • the material of the current collecting member 14 corresponding to the second tab 133 is copper.
  • the first insulating part 123 can be a plastic part, and can also be a silicone part or a plastic part.
  • the first insulation is the lower plastic, and on the basis of insulating and isolating the electrode assembly 13 and the end cover 121, the end cover 121 and the current collecting member 14 are further insulated and isolated, so as to avoid the current collecting member 14 and the end cover 121 contact to cause a short circuit inside the battery cell 10 .
  • the first insulator 123 may also refer to a component with the function of isolating the electrode assembly 13 and the end cap 121 combined with other purposes, which is not further limited herein.
  • the housing 11 is a hexahedron, the length direction of the housing 11 extends along the first direction X, the width direction extends along the second direction Y, and the height direction extends along the second direction.
  • Three directions Z extend.
  • the electrode assembly 13 is an ellipse body or a hexahedron, and the length direction, width direction and height direction of the electrode assembly 13 are arranged corresponding to the casing 11 .
  • the end cover 121 is a rectangular plate structure, the length direction of the end cover 121 extends along the first direction X, the width direction extends along the second direction Y, and the thickness direction extends along the third direction Z.
  • the first insulating member 123 is a rectangular plate structure. The length direction of the first insulating member 123 extends along the first direction X, the width direction extends along the second direction Y, and the thickness direction extends along the third direction Z.
  • the housing 11 may also be a cylinder or an elliptical cylinder
  • the end cover 121 may be a circular or elliptical plate-shaped structure
  • the first insulating member 123 may be a circular or elliptical plate-shaped structure.
  • FIG. 5 and FIG. 6 are structural schematic diagrams of two viewing angles of the end cap assembly in the battery cell according to some embodiments of the present application.
  • some embodiments of the present application provide a battery cell 10 , including a casing 11 , an electrode assembly 13 and an end cap assembly 12 .
  • the casing 11 has an opening, and the electrode assembly 13 is disposed inside the casing 11 .
  • the end cover assembly 12 includes an end cover 121, a first insulating member 123 and a second insulating member 124.
  • the end cover 121 is used to cover the opening, and the first insulating member 123 is arranged between the electrode assembly 13 and the end cover 121 to insulate and isolate the electrodes. Assembly 13 and end cap 121.
  • the second insulator 124 includes a main body portion 1241 and a first flange portion 1242, the first flange portion 1242 is connected to one end of the main body portion 1241, and the main body portion 1241 is arranged between the housing 11 and the electrodes. Between the components 13 , the shell 11 and the electrode component 13 are insulated, and the first flange portion 1242 is connected to the side of the first insulator 123 facing the end cap 121 or the side away from the end cap 121 .
  • the second insulating part 124 can be a sheet material or a film material; it can be a soft material or a hard material; it can be a plastic part, a silicone part or a plastic part. In some embodiments of the present application, the second insulating member 124 is a Mylar film. In other embodiments, the second insulating member 124 may also be a plastic insulating sheet.
  • the main body part 1241 and the first flange part 1242 can be integrally formed, and the main body part 1241 and the first flange part 1242 can also be two separate parts and connected.
  • the main body 1241 and the first flange part 1242 are integrally formed Mylar membranes, and the main body 1241 is connected to the first flange part 1242 by creases After the end cover assembly 12 and the electrode assembly 13 are assembled into one body, the main body 1241 and the first flange portion 1242 are bent, so that the main body 1241 is insulated from the electrode assembly 13 and the casing 11 .
  • the main body part 1241 and the first flange part 1242 can also be provided separately, the first flange part 1242 and the main body part 1241 are bonded or hot-melt connected, the first flange part 1242 and the main body part 1241
  • the first flange part 1242 can be connected as a whole before being assembled with the first insulating part 123 , or can be connected as a whole after the first flange part 1242 is assembled with the first insulating part 123 .
  • the body 131 of the electrode assembly 13 includes a bottom surface 1311, a top surface 1312 and a side surface 1313.
  • the bottom surface 1311 and the top surface 1312 are arranged opposite to each other along the third direction Z, and the side surface 1313 connects the bottom surface 1311 and the top surface 1312, surrounding the second The three directions extend in the Z circumferential direction.
  • the opposite ends of the main body 1241 are respectively a first end 12411 and a second end 12412.
  • the end 12412 is located at the end away from the end cap 121 , the first end 12411 is connected to the first flange portion 1242 , and the second end 12412 extends to the bottom surface 1311 of the electrode assembly 13 (please refer to FIG. 3 ).
  • the number of the second insulating member 124 may be one, and the first flange portion 1242 of the second insulating member 124 is connected to the first insulating member 123 .
  • the main body 1241 is disposed around the electrode assembly 13 and covers the surface of the electrode assembly 13 .
  • the number of second insulators 124 can also be multiple, and multiple second insulators 124 are arranged around the electrode assembly 13 around the third direction Z, so as to cover the surface of the electrode assembly 13 around the third direction Z.
  • the first flange portion 1242 can completely cover the first insulating member 123, or extend inward from the edge of the first insulating member 123 to partially cover the first insulating member 123. Item 123.
  • FIG. 7 and FIG. 8 are schematic structural diagrams of two connection forms of the first flange portion and the first insulator in the battery cell according to some embodiments of the present application.
  • the thickness direction of the first insulating member 123 extends along the third direction Z, along the third direction Z, the surface of the first insulating member 123 facing the end cover 121 is the first surface 1231, away from The surface of the end cap 121 is the second surface 1232 , the surface surrounding the third direction Z is the third surface 1233 , and the third surface 1233 connects the first surface 1231 and the second surface 1232 .
  • the first flange portion 1242 may be disposed between the first insulating member 123 and the end cover 121 and connected to the first surface 1231 .
  • the first flange portion 1242 may be disposed between the first insulator 123 and the top surface 1312 of the electrode assembly 13 (please refer to FIG. 3 ) and connected to the second Surface 1232 is connected.
  • the first surface 1231 or the second surface 1232 may be provided with a groove 1234 or a positioning protrusion corresponding to the first flange portion 1242 ; or it may be a smooth surface.
  • the first flange portion 1242 of the second insulating member 124 is connected to the first surface 1231 or the second surface 1232 of the first insulating member 123.
  • the first insulating member 123 The first surface 1231 has enough area to be connected with the first flange portion 1242, which can ensure the connection reliability between the first insulating member 123 and the first flange portion 1242;
  • the edge portion 1242 is connected to the first surface 1231 or the second surface 1232 of the first insulator 123, and there is no need to reserve an area required for connection with the first flange portion 1242 on the third surface 1233 of the first insulator 123, allowing The thickness of the first insulating member 123 is further reduced, so that the battery cell 10 has a compact structure and better energy density.
  • the first flange portion 1242 is connected to the side of the first insulating member 123 facing the end cap 121 or the side facing away from the end cap 121 by heat fusion.
  • first flange portion 1242 is connected to the first surface 1231 or the second surface 1232 of the first insulating member 123 by heat fusion.
  • the first flange portion 1242 may be connected to the first surface 1231 or the second surface 1232 of the first insulating member 123 through a thermal melting point, and the thermal melting point is located at a central position of the first flange portion 1242 in the length direction.
  • the first flange portion 1242 may also be connected to the first surface 1231 or the second surface 1232 of the first insulating member 123 through multiple thermal fusion points, and the multiple thermal fusion points are arranged at intervals along the length direction of the first flange portion 1242 .
  • the area of the first surface 1231 or the second surface 1232 of the first insulating member 123 is larger than the area of the third surface 1233, which can meet the minimum area required by the hot-melt process, and realize the first flange portion 1242 and the second surface.
  • An insulator 123 is connected reliably by heat fusion.
  • a groove 1234 is provided on the side of the first insulator 123 facing the end cap 121 or away from the end cap 121 , and the groove 1234 is located on the second On an edge of the insulating member 123 , the groove 1234 is used to accommodate the first flange portion 1242 , and the first flange portion 1242 is connected to the surface of the groove 1234 .
  • a groove 1234 is disposed on a side of the first insulating member 123 close to the first flange portion 1242 for receiving the first flange portion 1242 .
  • FIG. 9 is a schematic structural view showing the assembly of the first insulator and the end cover of the end cover assembly in FIG. 8 .
  • the groove 1234 is formed by recessing the second surface 1232 , the groove 1234 extends to the edge of the first insulating member 123 , and the first flange portion 1242 is inserted into the groove 1234 from the edge of the first insulating member 123 , and is thermally melted connected with the surface of the groove 1234 .
  • the edge of the first insulating member 123 refers to the outer contour of the first insulating member 123 along the XY plane.
  • the number and arrangement positions of the grooves 1234 may be set in one-to-one correspondence with the number and arrangement positions of the first flange portions 1242 of the first insulating member 123 .
  • the groove 1234 is also provided with a plurality of first flange portions 1242 .
  • the edge portion 1242 is disposed corresponding to the groove 1234
  • a first flange portion 1242 is disposed in a groove 1234 .
  • one groove 1234 may also be provided, and multiple first flange portions 1242 are accommodated in the same groove 1234 , so as to simplify the construction of the first insulating member 123 .
  • the first flange portion 1242 is accommodated inside the groove 1234 and connected to the surface of the groove 1234, which can reduce the damage caused by the stacked arrangement of the first flange portion 1242 and the first insulating member 123. 10 to increase the overall size, thereby increasing the energy density of the battery cell 10 .
  • the shape of the groove 1234 matches the shape of the first flange portion 1242 .
  • the groove 1234 includes a fourth surface 12341 and a fifth surface 12342 , and the fourth surface 12341 One side of the fifth surface 12342 is connected to the fifth surface 12342 , the other side extends to the edge of the first insulating member 123 and is connected to the third surface 1233 , and the side of the fifth surface 12342 away from the fourth surface 12341 is connected to the first surface 1231 .
  • the edge of the first flange portion 1242 abuts against the fifth surface 12342 of the groove 1234 .
  • the shape of the groove 1234 matches the shape of the first flange portion 1242, which can reduce the area occupied by the groove 1234 on the first surface 1231 or the second surface 1232 of the first insulator 123, thereby achieving
  • the structural strength of the first insulating member 123 will not be reduced too much, and it is also beneficial to limit the connection between the first flange portion 1242 and the first insulating member 123 when the first flange portion 1242 is connected to the first insulating member 123.
  • a relative position of the insulating member 123 simplifies the connection process between the first flange portion 1242 and the first insulating member 123 .
  • the depth of the groove 1234 is equal to the thickness of the first flange portion 1242 .
  • the thickness direction of the first flange portion 1242 extends along the third direction Z, and the depth of the groove 1234 also extends along the third direction Z.
  • the depth of the groove 1234 may also be smaller than the thickness of the first flange portion 1242, and the first flange portion 1242 is partially accommodated in the groove 1234, and partially protrudes from the first surface 1231 or the second surface 1232 .
  • the first flange portion 1242 is inserted between the first insulator 123 and the end cap 121 , or between the first insulator 123 and the electrode assembly 13 , without additionally increasing the external size of the battery cell 10 , Therefore, the original energy density of the battery cell 10 is maintained.
  • FIG. 10 and FIG. 11 are respectively schematic splicing diagrams of two viewing angles of a plurality of second insulators in a battery cell according to some embodiments of the present application.
  • the width of the first flange portion 1242 is smaller than the width of the main body portion 1241 .
  • the width of the second insulator 124 is the outer dimension of the second insulator 124 in the circumferential direction around the electrode assembly 13 .
  • the opposite ends of the second insulating member 124 are the third end 12413 and the fourth end 12414 respectively, and the width of the main body 1241 refers to the third end 12413 and the fourth end 12414 of the second insulating member 124.
  • the distance between the four ends 12414 and the width of the first flanged portion 1242 refer to the extension length of the first flanged portion 1242 along the direction around the circumference of the electrode assembly 13 .
  • the width of the first flange portion 1242 is smaller than the width of the main body portion 1241 .
  • both ends of the first flange portion 1242 are located inside the third end 12413 and the fourth end 12414 of the main body portion 1241;
  • one end of the first flange portion 1242 is located at the side of the third end 12413 close to the fourth end 12414, and the other end is located at the side of the fourth end 12414 away from the third end 12413,
  • the distance between one end of the first flange portion 1242 and the third end 12413 is larger than the distance between the other end and the fourth end 12414;
  • the distance between one end of the first flange portion 1242 and the third end 12413 is greater than the distance between the other end and the fourth
  • the second insulating member 124 includes a plurality of first flange portions 1242 , and the plurality of first flange portions 1242 are arranged at intervals along the width direction of the main body portion 1241 .
  • the width direction of the main body part 1241 extends along the circumferential direction of the electrode assembly 13, and the dimensions of the plurality of first flange parts 1242 may be the same, and the plurality of first flange parts 1242 are arranged at equal intervals along the width direction of the main body part 1241.
  • the first flange portion 1242 is hot-melt connected with the first insulating member 123 .
  • the sizes and distances of the plurality of first flange portions 1242 may also be different, so as to flexibly utilize the surface of the first insulating member 123 to provide corresponding grooves 1234 .
  • the plurality of first flange portions 1242 are respectively connected to the first insulator 123 , and in the case of the same connection area, the material used for the second insulator 124 can be reduced, thereby reducing the manufacturing cost of the battery cell 10 . cost.
  • the number of second insulators 124 is multiple, and a plurality of second insulators 124 are arranged along the electrode assembly 13 (please refer to FIG. 3 ). Distributed in the circumferential direction, the main body portions 1241 of adjacent second insulating members 124 are spliced together.
  • splicing means that the adjacent edges of the main body portions 1241 of two adjacent second insulators 124 can be butted together to cover the outer peripheral surface of the electrode assembly 13 .
  • the widths of the plurality of second insulators 124 can be the same or different.
  • the widths of the plurality of second insulating members 124 can be the same;
  • the edge profile of the first insulator 123 flexibly sets the width of the second insulator 124 , making it easy to assemble and able to cover the outer peripheral surface of the electrode assembly 13 .
  • the first insulator 123 is rectangular, the number of second insulators 124 is four, and the fourth of the four second insulators 124 A flange portion 1242 is correspondingly connected to four edges of the first insulating member 123 .
  • the four edges of the rectangular first insulating member 123 are respectively a first edge 1235 , a second edge 1236 , a third edge 1237 and a fourth edge 1238 , and the first edge 1235 and the third edge
  • the edge 1237 is arranged oppositely
  • the second edge 1236 and the fourth edge 1238 are arranged oppositely
  • each edge is correspondingly arranged with a second insulating member 124 .
  • the first edge 1235 of the first insulator 123 is provided with a groove 1234, and the first flip of the second insulator 124
  • the side portion 1242 extends into the groove 1234 and is accommodated inside the groove 1234.
  • the main body portion 1241 covers a part of the outer peripheral surface of the electrode assembly 13 corresponding to the first edge 1235.
  • the third end 12413 and the fourth end 12414 of the main body portion 1241 are respectively connected to The two main body portions 1241 of the two adjacent second insulators 124 are spliced together.
  • one edge of the first insulator 123 corresponds to one second insulator 124 , which can simplify the assembly process of the prismatic battery 100 .
  • FIG. 12 is a structural schematic diagram of another viewing angle of a battery cell according to some embodiments of the present application (the housing is not shown).
  • the housing 11 includes a bottom wall 111 and a side wall 112 , the side wall 112 surrounds the bottom wall 111 , and the main body 1241 is disposed on Between the electrode assembly 13 and the side wall 112 , the second insulator 124 further includes a second flange portion 1243 , the second flange portion 1243 is connected to the other end of the main body portion 1241 , and the second flange portion 1243 is disposed on the bottom wall 111 and the electrode assembly 13.
  • the second flange portion 1243 is connected to the second end 12412 of the main body portion 1241 , and the second flange portion 1243 is used to insulate and isolate the bottom surface 1311 of the electrode assembly 13 from the bottom wall 111 of the casing 11 .
  • the second flange portion 1243 can be formed by bending the second end 12412 of the main body portion 1241 , or can be separately provided from the main body portion 1241 and connected by bonding or hot-melt connection.
  • the second flange portion 1243 can be directly attached to the bottom wall 111 of the housing 11 to insulate and isolate the bottom surface 1311 of the electrode assembly 13 from the bottom wall 111 of the housing 11;
  • a third insulating member (not shown in the figure) is further arranged between the bottom wall 111 to further improve the reliability of the insulation isolation between the electrode assembly 13 and the bottom wall 111 .
  • At least one of the plurality of second insulators 124 is provided with a second flange portion 1243 .
  • one of the second insulators 124 is provided with a second flange portion 1243, the second flange portion 1243 covers the bottom surface 1311 of the electrode assembly 13, and the second end 12412 of the main body portion 1241 of the other second insulator 124 extends to The bottom surface 1311 of the electrode assembly 13 is spliced with the second flange portion 1243 .
  • two of the second insulators 124 are provided with second flanges 1243, and the second flanges 1243 of the two second insulators 124 jointly cover the bottom surface 1311 of the electrode assembly 13, and the other second insulators 124
  • the second end 12412 of the main body portion 1241 extends to the bottom surface 1311 of the electrode assembly 13 and is spliced with the second flange portion 1243 .
  • each second insulator 124 is provided with a second flange portion 1243 , and the plurality of second flange portions 1243 jointly cover the bottom surface 1311 of the electrode assembly 13 .
  • the second insulator 124 is provided with a second flange portion 1243, and the second flange portion 1243 insulates and isolates the bottom wall 111 from the electrode assembly 13, so as to avoid short-circuiting between the electrode assembly 13 and the bottom wall 111, thereby improving the The safety performance of the battery cell 10 .
  • the second flange portions 1243 of the plurality of second insulators 124 jointly cover the side of the electrode assembly 13 facing the bottom wall 111 .
  • the second flange portions 1243 of the four second insulators 124 jointly cover the bottom surface 1311 of the electrode assembly 13
  • the second flange portions 1243 of the plurality of second insulators 124 can cover the bottom surface 1311 of the electrode assembly 13 in a spliced manner, or can cover the bottom surface 1311 of the electrode assembly 13 in a manner of stacking edges.
  • the areas of the second flanged portions 1243 of the plurality of second insulators 124 may be the same, and the plurality of second flanged portions 1243 uniformly cover the bottom surface 1311 of the electrode assembly 13; the second flanged portions 1243 of the plurality of second insulating members 124
  • the areas of the second flanged portions 1243 may also be different, and the area of one second flanged portion 1243 is the same as that of the bottom surface 1311 of the electrode assembly 13 , and the area of the other second flanged portions 1243 is smaller than the area of the bottom surface 1311 of the electrode assembly 13 .
  • the second flange portions 1243 of the plurality of second insulators 124 are used to jointly insulate and isolate the bottom wall 111 and the electrode assembly 13, so that the main body portions 1241 of the plurality of second insulators 124 can be spliced to form a common circumference. Insulation, and then the second flanged parts 1243 of a plurality of second insulators 124 are spliced or at least partially laminated to cover the side of the electrode assembly 13 facing the bottom wall 111, which simplifies the use of second insulators 124. The assembly process of the covered electrode assembly 13.
  • FIG. 13 is a schematic structural view of a battery cell in some embodiments of the present application using an adhesive member to bond and fix the second flange portion (the housing is not shown).
  • the battery cell 10 further includes: an adhesive member 15 for adhesively fixing the second flange portions 1243 of the plurality of second insulating members 124 .
  • the bonding member 15 can be an insulating tape, or double-sided tape.
  • One adhesive member 15 may be provided, and a plurality of second flange portions 1243 may be fixed by using one adhesive member 15 .
  • the relative positions of the second flanged portions 1243 of the plurality of second insulators 124 can be fixed to prevent the second flanged portions 1243 from lifting to expose the surface of the electrode assembly 13, causing the electrode assembly 13 to be in contact with the bottom wall 111. short circuit, causing safety hazards.
  • Some embodiments of the present application provide a battery 100, including a battery cell 10.
  • the battery 100 has the advantages of compact structure and high energy density.
  • Some embodiments of the present application provide an electric device, including a battery 100 for providing electric energy.
  • the electric device has the advantages of compact structure and high energy density.
  • FIG. 14 is a schematic diagram of a method for manufacturing a battery cell according to some embodiments of the present application.
  • some embodiments of the present application provide a method for manufacturing a battery cell, including:
  • the end cap assembly 12 includes an end cap 121, a first insulator 123 and a second insulator 124, the first insulator 123 is disposed between the electrode assembly 13 and the end cap 121 to insulate and isolate the electrodes
  • the assembly 13 and the end cap 121, the second insulating member 124 includes a main body portion 1241 and a first flange portion 1242, the first flange portion 1242 is connected to one end of the main body portion 1241, the first flange portion 1242 is connected to the first insulating member 123
  • the side facing the end cover 121 or the side away from the end cover 121 is connected;
  • S400 Cover the main body part 1241 on the electrode assembly 13, put the electrode assembly 13 into the casing 11, insulate and isolate the casing 11 and the electrode assembly 13 through the second insulating member 124, cover the opening with the end cap 121, so that The electrode assembly 13 is enclosed inside the casing 11 .
  • FIG. 15 is a schematic diagram of a battery cell manufacturing equipment according to some embodiments of the present application.
  • a battery cell manufacturing equipment 2000 including:
  • the first providing device 2100 is used to provide the casing 11, the casing 11 has an opening;
  • the second providing device 2200 is used to provide the electrode assembly 13;
  • the third providing device 2300 is used to provide the end cap assembly 12.
  • the end cap assembly 12 includes an end cap 121, a first insulator 123 and a second insulator 124.
  • the first insulator 123 is arranged between the electrode assembly 13 and the end cap 121.
  • the second insulator 124 includes a main body part 1241 and a first flange part 1242, the first flange part 1242 is connected to one end of the main body part 1241, and the first flange part 1242 connected to the side of the first insulating member 123 facing the end cover 121 or the side away from the end cover 121;
  • the assembly module 2400 is used to cover the main body 1241 on the electrode assembly 13, put the electrode assembly 13 into the casing 11, insulate and isolate the casing 11 and the electrode assembly 13 through the second insulator 124, and cover the end cover 121
  • the opening is used to seal the electrode assembly 13 inside the casing 11 .
  • some embodiments of the present application also propose a square battery cell 10 , including a casing 11 , an end cap 121 , an electrode assembly 13 , a first insulating member 123 , and a second insulating member 124 And the bonding part 15, wherein the first insulating part 123 is a lower plastic, the second insulating part 124 is a Mylar film, and the bonding part 15 is an adhesive tape.
  • the second insulator 124 is disposed between the end cap 121 and the electrode assembly 13 to insulate and isolate the end cap 121 and the electrode assembly 13 .
  • the second insulating member 124 includes a main body portion 1241 , a first flange portion 1242 and a second flange portion 1243 , opposite ends of the main body portion 1241 are respectively connected to the first flange portion 1242 and the second flange portion 1243 .
  • the top side surface (namely the first surface 1231) or the bottom side surface (namely the second surface 1232) of the first insulator 123 is provided with a groove 1234, the groove 1234 can accommodate the first flange portion 1242, so that the second A flange portion 1242 does not protrude from the surface of the first insulator 123, and can also accommodate the soldering protrusions during thermal melting, so as to interfere with the upper end cap 121 or occupy the arrangement space of the lower electrode assembly 13 .
  • the top side surface (ie, the first surface 1231 ) or the bottom side surface (ie, the second surface 1232 ) of the first insulating member 123 is thermally welded to the first flange portion 1242 . Then the first insulator 123 is assembled with the end cover 121 , combined with the electrode terminals 122 on the end cover 121 and other components to form the end cover assembly 12 .
  • the tabs of the electrode assembly 13 Connect the tabs of the electrode assembly 13 to the corresponding electrode terminals 122 through the current collecting member, bend the main body portion 1241 and the first flange portion 1242 of the four second insulators 124, and wrap the side surface 1313 of the electrode assembly 13
  • the main body parts 1241 of two adjacent second insulators 124 are spliced and connected, and the four main body parts 1241 cover the electrode assembly 13 in the circumferential direction together.
  • the four second flange portions 1243 jointly cover the bottom surface 1311 of the electrode assembly 13 .
  • One of the second flanging parts 1243 is a large flanging, completely covering the bottom surface 1311 of the electrode assembly 13, and the other three second flanging parts 1243 are short flanging, and the three short flangings cover the edge of the large flanging, and use
  • the two adhesive members 15 bond and fix the four second flange portions 1243 to complete the insulating coating of the electrode assembly 13 by the second insulating member 124 .
  • the electrode assembly 13 coated with the second insulator 124 is put into the casing 11 , and the end cap 121 is welded to the casing 11 to complete the assembly of a battery cell 10 .
  • the second insulator 124 is wrapped from the top surface 1312 of the electrode assembly 13 to the direction of the bottom surface 1311, and the first insulator 123, the end cap 121 and the electrode assembly 13 are assembled.
  • the fixing process of the first insulating member 123 and the second insulating member 124 is carried out before, allowing the upper and lower sides of the first insulating member 123 to be thermally welded to the first flange portion 1242, so that the first insulating member 123
  • the thickness is not required, and the thickness of the first insulating member 123 can be effectively reduced, so that the battery cell 10 has a compact structure and a higher energy density.

Abstract

本申请涉及一种电池单体及其制造方法和设备、电池以及用电装置,属于电池制造技术领域。本申请提出一种电池单体,包括:壳体;电极组件;端盖组件,包括端盖、第一绝缘件和第二绝缘件,第一绝缘件设置于电极组件与端盖之间,以绝缘隔离电极组件与端盖,第二绝缘件包括主体部和第一翻边部,第一翻边部连接于主体部的一端,主体部设置于壳体与电极组件之间,以绝缘隔离壳体与所述电极组件,第一翻边部与第一绝缘件的面向端盖的一侧或背离端盖的一侧连接。该电池单体结构紧凑,具有较好的能量密度。本申请还提出一种电池以及用电装置,包括该电池单体。本申请还提出一种电池单体的制造方法和设备。

Description

电池单体及其制造方法和设备、电池以及用电装置 技术领域
本申请涉及电池制造技术领域,具体而言,涉及一种电池单体及其制造方法和设备、电池以及用电装置。
背景技术
随着新能源汽车市场的持续繁荣,动力电池行业迅速扩产壮大,锂电池技术日益精进,对电池单体的安全性能、能量密度和工业化要求提出了越来越高的要求。
目前,电池单体内部结构不够紧凑,导致电池单体的外尺寸较大,能量密度较低。
发明内容
为此,本申请提出一种电池单体及其制造方法和设备、电池以及用电装置,结构紧凑,具有较好的能量密度。
本申请第一方面实施例提供一种电池单体,包括:壳体,具有开口;电极组件,设置于所述壳体的内部;端盖组件,包括端盖、第一绝缘件和第二绝缘件,所述端盖用于覆盖所述开口,所述第一绝缘件设置于所述电极组件与所述端盖之间,以绝缘隔离所述电极组件与所述端盖,第二绝缘件包括主体部和第一翻边部,所述第一翻边部连接于所述主体部的一端,所述主体部设置于所述壳体与所述电极组件之间,以绝缘隔离所述壳体与所述电极组件,所述第一翻边部与所述第一绝缘件的面向所述端盖的一侧或背离所述端盖的一侧连接。
本申请实施例的电池单体中,第二绝缘件的第一翻边部与第一绝缘件的面向端盖的一侧或者与背离端盖的一侧连接,一方面,第一绝缘件的面向端盖的一侧或者背离端盖的一侧具有足够的面积与第一翻边部连接,能够保证第一绝缘件与第一翻边部的连接可靠性;另一方面,不需要在第一绝缘件的侧面预留与第一翻边部连接所需要的面积,容许第一绝缘件的厚度进一步减薄,从而使电池单体结构紧凑,具有较好的能量密度。
根据本申请的一些实施例,所述第一翻边部与所述第一绝缘件的面向所述端盖的一侧或背离所述端盖的一侧热熔连接。
通过该种布置形式,第一绝缘件的面向端盖的一侧或者背离端盖的一侧的表面的面积大于其他表面的面积,能够满足热熔工艺所需要的最小面积,实现第一翻边部与第一绝缘件可靠热熔连接。
根据本申请的一些实施例,所述第一绝缘件的面向所述端盖的一侧或背离所述端盖的一侧设置有凹槽,所述凹槽位于所述第一绝缘件的边缘,所述凹槽用于容纳所述第一翻边部,所述第一翻边部与所述凹槽的表面连接。
通过该种布置形式,第一翻边部容纳于凹槽的内部且与凹槽的表面连接,能够降低由于第一翻边部和第一绝缘件层叠设置所导致的电池单体整体尺寸的增加程度,从而提高电池单体的能量密度。
根据本申请的一些实施例,所述凹槽的形状与所述第一翻边部的形状匹配。
通过该种布置形式,凹槽的形状与第一翻边部的形状匹配,能够降低第一绝缘件的面向端盖的一侧或者背离端盖的一侧的表面上凹槽所占用的面积,从而在实现容纳第一翻边部的基础上不会过多降低第一绝缘件的结构强度,还利于在第一翻边部与第一绝缘件连接时限制第一翻边部与第一绝缘件的相对位置,简化第一翻边部与第一绝缘件的连接工艺。
根据本申请的一些实施例,所述凹槽的深度与所述第一翻边部的厚度相等。
通过该种布置形式,第一翻边部插入第一绝缘件与端盖之间,或者插入第一绝缘件与电极 组件之间,不会额外增加电池单体的外尺寸,从而使电池单体维持原有的能量密度。
根据本申请的一些实施例,所述第一翻边部的宽度小于所述主体部的宽度。
通过该种布置形式,利于在第一翻边部与第一绝缘件连接时限制第一翻边部与第一绝缘件的相对位置,简化第一翻边部与第一绝缘件的连接工艺,且能够减小第一绝缘件的表面的凹槽占用的面积,提高第一绝缘件的强度。
根据本申请的一些实施例,所述第二绝缘件包括多个所述第一翻边部,多个所述第一翻边部沿所述主体部的宽度方向间隔设置。
通过该种布置形式,多个第一翻边部分别与第一绝缘件连接,在同等的连接面积的情况下,能够降低第二绝缘件的用料,从而降低电池单体的制造成本。
根据本申请的一些实施例,所述第二绝缘件的数量为多个,多个所述第二绝缘件沿所述电极组件的周向分布,相邻两个所述第二绝缘件的所述主体部相互拼接。
通过该种布置形式,能够实现先将每个第二绝缘件的第一翻边部与第一绝缘件连接,再将每个第二绝缘件的主体部拼接,多个主体部共同绝缘隔离电极组件与壳体,简化了电池单体的组装过程。
根据本申请的一些实施例,所述第一绝缘件呈矩形,所述第二绝缘件的数量为四个,四个所述第二绝缘件的所述第一翻边部对应连接于所述第一绝缘件的四个边缘。
通过该种布置形式,第一绝缘件的一个边缘对应一个第二绝缘件,相邻的第二绝缘件的主体部的拼合处与第一绝缘件的端角对应,能够简化电池单体的组装过程。
根据本申请的一些实施例,所述壳体包括底壁和侧壁,所述侧壁围设在所述底壁的周围,所述主体部设置于所述电极组件和所述侧壁之间,所述第二绝缘件还包括第二翻边部,所述第二翻边部连接于所述主体部的另一端,所述第二翻边部设置于所述底壁与所述电极组件之间。
通过该种布置形式,第二绝缘件设置有第二翻边部,第二翻边部绝缘隔离底壁与电极组件,以避免电极组件与底壁短接,从而提高了电池单体的安全性能。
根据本申请的一些实施例,多个所述第二绝缘件的所述第二翻边部共同覆盖所述电极组件的面向所述底壁的一侧。
通过该种布置形式,能够实现先将多个第二绝缘件的主体部拼接以共同周向绝缘隔离,再将多个第二绝缘件的第二翻边部以拼接或者至少部分层叠的形式覆盖电极组件的面向底壁的一侧,简化了使用第二绝缘件包覆电极组件的组装过程。
根据本申请的一些实施例,所述电池单体还包括:粘接件,用于将多个所述第二绝缘件的所述第二翻边部粘接固定。
通过该种布置形式,能够固定多个第二绝缘件的第二翻边部的相对位置,避免第二翻边部翘起以暴露电极组件的表面,导致电极组件与底壁短接,导致安全隐患。
本申请第二方面实施例提供一种电池,包括本申请第一方面实施例提供的电池单体。
由于本申请第一方面实施例提供的电池单体的特性,本申请第二方面实施例的电池也具有结构紧凑、能量密度较高的优点。
本申请第三方面实施例提供一种用电装置,包括本申请第二方面实施例提供的电池,所述电池用于提供电能。
由于本申请第一方面实施例提供的电池单体的特性,本申请第三方面实施例提供的用电装置也具有结构紧凑、能量密度较高的优点。
本申请第四方面实施例提供一种电池单体的制造方法,包括:
提供壳体,所述壳体具有开口;
提供电极组件;
提供端盖组件,所述端盖组件包括端盖、第一绝缘件和第二绝缘件,所述第一绝缘件设置于所述电极组件与所述端盖之间,以绝缘隔离所述电极组件与所述端盖,所述第二绝缘件包括主体部和第一翻边部,所述第一翻边部连接于所述主体部的一端,所述第一翻边部与所述第一绝缘件的面向所述端盖的一侧或背离所述端盖的一侧连接;
将所述主体部包覆于所述电极组件,将所述电极组件放入所述壳体的内部,通过所述第二绝缘件绝缘隔离所述壳体与所述电极组件,将所述端盖覆盖所述开口,以将所述电极组件封闭于所述壳体的内部。
本申请第四方面实施例提供一种电池单体的制造设备,包括:
第一提供装置,用于提供壳体,所述壳体具有开口;
第二提供装置,用于提供电极组件;
第三提供装置,用于提供端盖组件,所述端盖组件包括端盖、第一绝缘件和第二绝缘件,所述第一绝缘件设置于所述电极组件与所述端盖之间,以绝缘隔离所述电极组件与所述端盖,所述第二绝缘件包括主体部和第一翻边部,所述第一翻边部连接于所述主体部的一端,所述第一翻边部与所述第一绝缘件的面向所述端盖的一侧或背离所述端盖的一侧连接;
组装模块,用于将所述主体部包覆于所述电极组件,将所述电极组件放入所述壳体的内部,通过所述第二绝缘件绝缘隔离所述壳体与所述电极组件,将所述端盖覆盖所述开口,以将所述电极组件封闭于所述壳体的内部。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出的是本申请一实施例中的一种车辆的简易示意图;
图2示出的是图1中车辆的电池的结构示意图;
图3示出的是本申请一些实施例的电池单体的爆炸图;
图4示出的是图3中电池单体的一种视角的结构示意图(未示出壳体);
图5和图6示出的分别是本申请的一些实施例的电池单体中端盖组件的两种视角的结构示意图;
图7和图8示出的是本申请的一些实施例的电池单体中第一翻边部与第一绝缘件的两种连接形式的结构示意图;
图9示出的是图8中端盖组件的第一绝缘件与端盖组装的结构示意图;
图10和图11示出的分别是本申请的一些实施例的电池单体中多个第二绝缘件的两种视角的拼接示意图;
图12示出的是本申请的一些实施例的电池单体的另一种视角的结构示意图(未示出壳体);
图13示出的是本申请的一些实施例的电池单体中使用粘接件粘接固定第二翻边部的结构示意图(未示出壳体);
图14示出的是本申请的一些实施例的一种电池单体的制造方法的示意图;
图15示出的是本申请的一些实施例的一种电池单体的制造设备的示意图;
上述附图未按比例提供。
图标:1000-车辆;100-电池;10-电池单体;11-壳体;111-底壁;112-侧壁;12-端盖组件;121-端盖;122-电极端子;123-第一绝缘件;1231-第一表面;1232-第二表面;1233-第三表面;1234-凹槽;12341-第四表面;12342-第五表面;1235-第一边缘;1236-第二边缘;1237-第三边缘;1238-第四边缘;124-第二绝缘件;1241-主体部;12411-第一端;12412-第二端;12413-第三端;12414-第四端;1242-第一翻边部;1243-第二翻边部;13-电极组件;131-本体;1311-底面;1312-顶面;1313-侧面;132-第一极耳;133-第二极耳;14-集流构件;15-粘接件;20-箱体;21-第一箱体;22-第二箱体;200-控制器;300-马达;2000-电池单体的制造设备;2100-第一提供装置;2200-第二提供装置;2300-第三提供装置;2400-组装模块。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中需要说明的是除非另有明确的规定和限定术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:圆柱电池单体、方形电池单体和软包电池单体。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体,箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质 层的负极集流体作负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池单体还包括集流构件,集流构件用于将电池单体的极耳和电极端子电连接,以将电能从电极组件输送至电极端子,经电极端子输送至电池单体的外部;多个电池单体之间通过汇流部件实现电连接,以实现多个电池单体的串联、并联或者混联。
相关技术中,在电池单体的组装过程中,需要在电池单体的内部绝缘隔离电极组件与壳体,以避免电极组件与壳体接触导致电池单体内部发生短路。常用的一种绝缘方式为,使用下塑胶绝缘隔离电极组件与端盖,使用绝缘膜包覆电极组件,将绝缘膜与下塑胶热熔连接,以固定绝缘膜的位置,再将包覆有绝缘膜的电极组件放入壳体的内部,绝缘膜设置于电极组件与壳体的内壁之间,实现绝缘隔离电极组件与壳体,保证电池单体的安全性能。
发明人经研究发现,在上述绝缘方式中,在电极组件、下塑胶与端盖已经组装为一体之后才使用绝缘膜包覆电极组件,由于下塑胶的面向端盖的一侧与端盖贴合,背离端盖的一侧与电极组件贴合,只能利用下塑胶的侧面(即下塑胶的围绕厚度方向周向延伸的侧面)与绝缘膜进行连接。为了保证下塑胶与绝缘膜的连接可靠性,需要在下塑胶的侧面留出足够的连接面积,这往往导致下塑胶的厚度增加,进而导致电池单体的外尺寸增加,结构不够紧凑,能量密度也较低。
基于上述思路,本申请提出一种新的技术方案,在端盖、下塑胶和电极组件组装之前将下塑胶与绝缘膜连接,利用绝缘膜的面向或者背离端盖的一侧与绝缘膜连接,容许下塑胶的厚度进一步减薄,使电池单体结构紧凑,能量密度较高。
可以理解的是,本申请实施例描述的电池单体可以直接对用电装置供电,也可以通过并联或者串联的方式形成电池模块或者电池,以电池模块或者电池的形式对各种用电装置供电。
可以理解的是,本申请实施例中描述的使用电池单体、电池模块或者电池所适用的用电装置可以为多种形式,例如,手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。
本申请的实施例描述的电池单体、电池模块或者电池不仅仅局限适用于上述所描述的用电装置,还可以适用于所有使用电池单体、电池模块以及电池的用电装置,但为描述简洁,下述实施例均以电动汽车为例进行说明。
图1示出的是本申请一实施例中的一种车辆的简易示意图,图2示出的是图1中车辆的电池的结构示意图。
如图1所示,车辆1000的内部设置有电池100、控制器200和马达300,例如,在车辆1000的底部或车头或车尾可以设置电池100。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。
在本申请的一些实施例中,电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。控制器200用来控制电池100为马达300的供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在其他实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,替代或部分地替代燃油或天然气为车辆1000提供驱动动力。
其中,本申请的实施例所提到的电池100是指包括一个或多个电池单体10以提供更高的电压和容量的单一的物理模块。其中,多个电池单体10之间可以串联、并联或者混联直接组成电池100,混联指的是,多个电池单体10中既有串联又有并联。多个电池单体10也可以先串联、并联或者混联组成电池模块,多个电池模块再串联、并联或者混联组成电池100。
如图2所示,电池100包括多个电池单体10和箱体20,多个电池单体10放置于箱体20内。箱体20包括第一箱体21和第二箱体22,第一箱体21和第二箱体22相互盖合后形成电池100腔,多个电池100模块放置于电池100腔内。其中,第一箱体21和第二箱体22的形状可以根据多个电池100模块组合的形状而定,第一箱体21和第二箱体22可以均具有一个开口。例如,第一箱体21和第二箱体22均可以为中空长方体且各自只有一个面为开口面,第一箱体21和第二箱体22的开口相对设置,并且第一箱体21和第二箱体22相互扣合形成具有封闭腔室的箱体20。多个电池单体10相互并联或串联或混联组合后置于第一箱体21和第二箱体22扣合后形成的箱体20内。
图3示出的是本申请一些实施例的电池单体的爆炸图;图4示出的是图3中电池单体的一种视角的结构示意图(未示出壳体)。
如图3和图4所示,电池单体10包括壳体11、端盖组件12、电极组件13和集流构件14。
壳体11包括底壁111和侧壁112,侧壁112围设在底壁111的周围,侧壁112的一端与底壁111连接,另一端形成开口,端盖组件12包括端盖121、电极端子122和第一绝缘件123。端盖121覆盖开口,以将电极组件13封闭于外壳的内部。端盖121设有两个电极引出孔,电极端子122设置有两个,电极端子122与电极引出孔一一对应,电极端子122安装于对应的电极引出孔。
壳体11可由金属材料制成,诸如铝、铝合金或者镀镍钢。端盖121为板状结构,端盖121的尺寸和形状与壳体11的开口匹配,端盖121固定于壳体11的开口,从而将电极组件13和电解液封闭于壳体11的容纳腔。端盖121采用金属材料制成,例如铝、钢等材料。
电极组件13设置于壳体11的内部,电极组件13包括本体131、第一极耳132和第二极耳133。本体131包括正极极片、负极极片和隔离膜,隔离膜位于正极极片与负极极片之间,用于隔开正极极片与负极极片。第一极耳132和第二极耳133的极性相反,第一极耳132与一个电极端子122通过一个集流构件14连接,第二极耳133与另一个电极端子122通过另一个集流构件14连接。第一极耳132和第二极耳133中,第一极耳132为正极极耳,第二极耳133为负极极耳,与第一极耳132对应的集流构件14的材料为铝,与第二极耳133对应的集流构件14的材料为铜。
第一绝缘件123可以为塑料件,也可以为硅胶件或者塑胶件。在本申请的一些实施例中,第一绝缘为下塑胶,在绝缘隔离电极组件13与端盖121的基础上进一步绝缘隔离端盖121和集流构件14,避免集流构件14与端盖121接触以导致电池单体10内部发生短路。在其他实施例中,第一绝缘件123也可以指结合其他用途的具有隔离电极组件13与端盖121的功能的部件,本文不作进一步限定。
如图3和图4所示,在本申请的一些实施例中,壳体11为六面体,壳体11的长度方向沿第一方向X延伸,宽度方向沿第二方向Y延伸,高度方向沿第三方向Z延伸。电极组件13为椭圆主体或者六面体,电极组件13的长度方向、宽度方向以及高度方向与壳体11对应设置。端盖121为长方形板状结构,端盖121的长度方向沿第一方向X延伸,宽度方向沿第二方向Y延伸,厚度方向沿第三方向Z延伸。第一绝缘件123为长方形板状结构,第一绝缘件123的长度方向沿第一方向X延伸,宽度方向沿第二方向Y延伸,厚度方向沿第三方向Z延伸。
在其他实施例中,壳体11也可以为圆柱体或者椭圆柱体,端盖121为圆形或者椭圆形板状结构,第一绝缘件123为圆形或者椭圆形板状结构。
图5和图6示出的分别是本申请的一些实施例的电池单体中端盖组件的两种视角的结构示意图。
如图3、图4、图5和图6所示,本申请的一些实施例提供一种电池单体10,包括壳体11、电极组件13和端盖组件12。壳体11具有开口,电极组件13设置于壳体11的内部。端盖组件12包括端盖121、第一绝缘件123和第二绝缘件124,端盖121用于覆盖开口,第一绝缘件123设置于电极组件13与端盖121之间,以绝缘隔离电极组件13与端盖121。如图5和图6所示,第二绝缘件124包括主体部1241和第一翻边部1242,第一翻边部1242连接于主体部1241的一端,主体部1241设置于壳体11与电极组件13之间,以绝缘隔离壳体11与电极组件13,第一翻边部1242与第一绝缘件123的面向端盖121的一侧或背离端盖121的一侧连接。
第二绝缘件124可以为片状材料,也可以为膜状材料;可以为软质材料,也可以为硬质材料;可以为塑料件,也可以为硅胶件或者塑胶件。在本申请的一些实施例中,第二绝缘件124为迈拉膜片(Mylar)。在其他实施例中,第二绝缘件124也可以为塑料绝缘片。
主体部1241与第一翻边部1242可以为一体成型的结构,主体部1241与第一翻边部1242也可以为分体设置且相连的两个部件。
如图5和图6所示,在本申请的一些实施例中,主体部1241与第一翻边部1242为一体成型的迈拉膜片,主体部1241与第一翻边部1242折痕连接,主体部1241与第一翻边部1242在端盖组件12与电极组件13组装为一体后弯折,以使主体部1241绝缘隔离电极组件13与壳体11。
在其他实施例中,主体部1241和第一翻边部1242也可以分体设置,第一翻边部1242与主体部1241粘接连接或者热熔连接,第一翻边部1242与主体部1241可以在第一翻边部1242与第一绝缘件123组装之前连接为一体,也可以在第一翻边部1242与第一绝缘件123组装之后连接为一体。
如图3所示,电极组件13的本体131包括底面1311、顶面1312和侧面1313,底面1311和顶面1312沿着第三方向Z相对设置,侧面1313连接底面1311和顶面1312,围绕第三方向Z周向延伸。
如图4所示,沿着第三方向Z,主体部1241的相对两端分别为第一端12411和第二端12412,主体部1241的第一端12411位于靠近端盖121的一端,第二端12412位于背离端盖121的一端,第一端12411与第一翻边部1242连接,第二端12412延伸至电极组件13的底面1311(请参照图3)。
第二绝缘件124的数量可以为一个,第二绝缘件124的第一翻边部1242与第一绝缘件123连接。主体部1241围绕电极组件13周向设置并包覆电极组件13的表面。第二绝缘件124的数量也可以为多个,多个第二绝缘件124绕第三方向Z围绕电极组件13设置,以绕第三方向Z包覆电极组件13的表面。
在垂直于第三方向Z的平面上(即XY平面),第一翻边部1242可以全部覆盖第一绝缘件123,也可以从第一绝缘件123的边缘向内延伸,部分覆盖第一绝缘件123。
图7和图8示出的是本申请的一些实施例的电池单体中第一翻边部与第一绝缘件的两种连接形式的结构示意图。
如图7和图8所示,第一绝缘件123的厚度方向沿第三方向Z延伸,沿着第三方向Z,第一绝缘件123的面向端盖121的表面为第一表面1231,背离端盖121的表面为第二表面1232,围绕第三方向Z的表面为第三表面1233,第三表面1233连接第一表面1231和第二表面1232。
如图7所示,在本申请的一些实施例中,第一翻边部1242可以设置于第一绝缘件123与端盖121之间且与第一表面1231连接。如图8所示,在本申请的另一些实施例中,第一翻边部1242可以设置于第一绝缘件123与电极组件13的顶面1312(请参照图3)之间且与第二表面1232连接。第一表面1231或者第二表面1232可以设有与第一翻边部1242对应的凹槽1234或者定位凸起;也可以为平滑的表面。
本申请实施例的电池单体10中,第二绝缘件124的第一翻边部1242与第一绝缘件123的第一表面1231或者第二表面1232连接,一方面,第一绝缘件123的第一表面1231具有足够的面积与第一翻边部1242连接,能够保证第一绝缘件123与第一翻边部1242的连接可靠性;另一方面,利用第二绝缘件124的第一翻边部1242与第一绝缘件123的第一表面1231或者第二表面1232连接,不需要在第一绝缘件123的第三表面1233预留与第一翻边部1242连接所需要的面积,容许第一绝缘件123的厚度进一步减薄,从而使电池单体10结构紧凑,具有较好的能量密度。
在本申请的一些实施例中,第一翻边部1242与第一绝缘件123的面向端盖121的一侧或背离端盖121的一侧热熔连接。
具体而言,第一翻边部1242与第一绝缘件123的第一表面1231或者第二表面1232热熔连接。
第一翻边部1242与第一绝缘件123的第一表面1231或者第二表面1232可以通过一处热熔点连接,热熔点设置于第一翻边部1242在长度方向上的居中位置。第一翻边部1242与第一绝缘件123的第一表面1231或者第二表面1232也可以通过多处热熔点连接,多个热熔点沿着第一翻边部1242的长度方向间隔设置。
在上述方案中,第一绝缘件123的第一表面1231或者第二表面1232的面积大于第三表面1233的面积,能够满足热熔工艺所需要的最小面积,实现第一翻边部1242与第一绝缘件123可靠热熔连接。
如图7和图8所示,在本申请的一些实施例中,第一绝缘件123的面向端盖121的一侧或背离端盖121的一侧设置有凹槽1234,凹槽1234位于第一绝缘件123的边缘,凹槽1234用于容纳第一翻边部1242,第一翻边部1242与凹槽1234的表面连接。
第一绝缘件123的靠近第一翻边部1242的一侧设置有凹槽1234,以容纳第一翻边部1242。
图9示出的是图8中端盖组件的第一绝缘件与端盖组装的结构示意图。
如图9所示,以第一绝缘件123与第二表面1232连接为例,凹槽1234由第二表面1232凹陷形成,凹槽1234延伸至第一绝缘件123的边缘,第一翻边部1242从第一绝缘件123的边缘插入凹槽1234,并与凹槽1234的表面热熔连接。可以理解的是,第一绝缘件123的边缘指的是,沿着XY平面,第一绝缘件123的外轮廓处。
凹槽1234的数量和布置位置可以与第一绝缘件123的第一翻边部1242的数量和布置位置一一对应设置。在本申请的一些实施例中,如图9所示,基于前述的“第一绝缘件123包括多个第一翻边部1242”的实施形式,凹槽1234也设置有多个,第一翻边部1242与凹槽1234对应设置,一个第一翻边部1242设置于一个凹槽1234。在其他实施例中,凹槽1234也可以设置有一个,多个第一翻边部1242共同容纳于同一个凹槽1234中,以简化第一绝缘件123的构造。
在上述方案中,第一翻边部1242容纳于凹槽1234的内部且与凹槽1234的表面连接,能够降低由于第一翻边部1242和第一绝缘件123层叠设置所导致的电池单体10整体尺寸的增加程度,从而提高电池单体10的能量密度。
在本申请的一些实施例中,凹槽1234的形状与第一翻边部1242的形状匹配。
具体而言,如图8和图9所示,以凹槽1234设置于第一绝缘件123的第二表面1232为例,凹槽1234包括第四表面12341和第五表面12342,第四表面12341的一侧与第五表面12342连接,另一侧延伸至第一绝缘件123的边缘并与第三表面1233连接,第五表面12342的远离第四表面12341的一侧与第一表面1231连接。第一翻边部1242容纳于凹槽1234时,第一翻边部1242的边缘与凹槽1234的第五表面12342抵接。
在上述方案中,凹槽1234的形状与第一翻边部1242的形状匹配,能够降低第一绝缘件123的第一表面1231或者第二表面1232上凹槽1234所占用的面积,从而在实现容纳第一翻边部1242的基础上不会过多降低第一绝缘件123的结构强度,还利于在第一翻边部1242与第一绝缘件123连接时限制第一翻边部1242与第一绝缘件123的相对位置,简化第一翻边部1242与第一绝缘件123的连接工艺。
在本申请的一些实施例中,凹槽1234的深度与第一翻边部1242的厚度相等。
第一翻边部1242与第一绝缘件123连接时,第一翻边部1242的厚度方向沿第三方向Z延伸,凹槽1234的深度也沿第三方向Z延伸。
在其他实施例中,凹槽1234的深度也可以小于第一翻边部1242的厚度,第一翻边部1242部分容纳于凹槽1234内,部分凸出于第一表面1231或者第二表面1232。
在上述方案中,第一翻边部1242插入第一绝缘件123与端盖121之间,或者插入第一绝缘件123与电极组件13之间,不会额外增加电池单体10的外尺寸,从而使电池单体10维持原有的能量密度。
图10和图11示出的分别是本申请的一些实施例的电池单体中多个第二绝缘件的两种视角的拼接示意图。
如图10和图11所示,在本申请的一些实施例中,第一翻边部1242的宽度小于主体部1241的宽度。
对于第二绝缘件124而言,第二绝缘件124的宽度为围绕电极组件13的周向上第二绝缘件124的外尺寸。围绕电极组件13的周向,第二绝缘件124的相对的两端分别为第三端12413和第四端12414,主体部1241的宽度指的是第二绝缘件124的第三端12413与第四端12414之间的间距,第一翻边部1242的宽度指的是沿着围绕电极组件13周向的方向第一翻边部1242的延伸长度。
实现第一翻边部1242的宽度小于主体部1241的宽度的实施方式具有多种。例如,如图11所示,沿着第二绝缘件124的宽度方向,第一翻边部1242的两端均位于主体部1241的第三端12413和第四端12414的内侧;再例如,沿着第二绝缘件124的宽度方向,第一翻边部1242的一端位于第三端12413的靠近第四端12414的一侧,另一端位于第四端12414的远离第三端12413的一侧,第一翻边部1242的一端与第三端12413之间的间距大于另一端与第四端12414之间的间距;再例如,第一翻边部1242的两端均位于主体部1241的第三端12413和第四端12414的同一侧,第一翻边部1242的一端与第三端12413之间的间距大于另一端与第四端12414之间的间距。
在上述方案中,利于在第一翻边部1242与第一绝缘件123连接时限制第一翻边部1242与第一绝缘件123的相对位置,简化第一翻边部1242与第一绝缘件123的连接工艺,且能够减小第一绝缘件123的表面的凹槽1234占用的面积,提高第一绝缘件123的强度。
如图11所示,在本申请的一些实施例中,第二绝缘件124包括多个第一翻边部1242,多个第一翻边部1242沿主体部1241的宽度方向间隔设置。
主体部1241的宽度方向沿着电极组件13的周向延伸,多个第一翻边部1242的尺寸可以相同,多个第一翻边部1242沿主体部1241的宽度方向等间距间隔设置,每个第一翻边部1242与第一绝缘件123热熔连接。多个第一翻边部1242的尺寸以及间距也可以不同,以灵活利用第一绝缘件123的表面设置对应的凹槽1234。
在上述方案中,多个第一翻边部1242分别与第一绝缘件123连接,在同等的连接面积的情况下,能够降低第二绝缘件124的用料,从而降低电池单体10的制造成本。
如图9、图10和图11所示,在本申请的一些实施例中,第二绝缘件124的数量为多个,多个第二绝缘件124沿电极组件13(请参照图3)的周向分布,相邻所述第二绝缘件124的主体部1241相互拼接。
可以理解的是,拼接指的是,相邻的两个第二绝缘件124的主体部1241的相互靠近的边缘能够对接,共同覆盖电极组件13的外周面。
多个第二绝缘件124的宽度可以相同,也可以不同。例如,当第一绝缘件123的形状为圆形或者正方形板状结构时,多个第二绝缘件124的宽度可以相同;当第一绝缘件123的形状为长方形板状结构时,可以根据第一绝缘件123的边缘轮廓灵活设置第二绝缘件124的宽度,使其易于组装,且能够覆盖电极组件13的外周面。
在上述方案中,能够实现先将每个第二绝缘件124的第一翻边部1242与第一绝缘件123连接,再将每个第二绝缘件124的主体部1241拼接,多个主体部1241共同绝缘隔离电极组件13与壳体11,简化了电池单体10的组装过程。
请参照图9、图10和图11所示,在本申请的一些实施例中,第一绝缘件123呈矩形,第二绝缘件124的数量为四个,四个第二绝缘件124的第一翻边部1242对应连接于第一绝缘件123的 四个边缘。
具体而言,如图9所示,矩形的第一绝缘件123的四个边缘分别为第一边缘1235、第二边缘1236、第三边缘1237和第四边缘1238,第一边缘1235和第三边缘1237相对设置,第二边缘1236和第四边缘1238相对设置,每个边缘对应设置一个第二绝缘件124。
如图8和图9所示,以第一边缘1235对应的第二绝缘件124为例,第一绝缘件123的第一边缘1235设有一个凹槽1234,第二绝缘件124的第一翻边部1242伸入凹槽1234且容纳于凹槽1234内部,主体部1241覆盖电极组件13的与第一边缘1235对应的部分外周面,主体部1241的第三端12413和第四端12414分别与相邻的两个第二绝缘件124的两个主体部1241拼接。
在上述方案中,第一绝缘件123的一个边缘对应一个第二绝缘件124,能够简化方壳电池100的组装过程。
图12示出的是本申请的一些实施例的电池单体的另一种视角的结构示意图(未示出壳体)。
如图3、图11和图12所示,在本申请的一些实施例中,壳体11包括底壁111和侧壁112,侧壁112围设在底壁111的周围,主体部1241设置于电极组件13和侧壁112之间,第二绝缘件124还包括第二翻边部1243,第二翻边部1243连接于主体部1241的另一端,第二翻边部1243设置于底壁111与电极组件13之间。
具体而言,第二翻边部1243连接于主体部1241的第二端12412,第二翻边部1243用于绝缘隔离电极组件13的底面1311与壳体11的底壁111。
第二翻边部1243可以由主体部1241的第二端12412弯折形成,也可以与主体部1241分体设置且采用粘接或者热熔连接的形式相连。
第二翻边部1243可以直接与壳体11的底壁111贴合,以绝缘隔离电极组件13的底面1311与壳体11的底壁111;也可以在第二翻边部1243和壳体11的底壁111之间进一步设置一个第三绝缘件(图中没有示出),进一步提高电极组件13与底壁111绝缘隔离的可靠性。
基于前述的“第二绝缘件124设置有多个”的实施形式,多个第二绝缘件124中的至少一者设有第二翻边部1243。例如,其中一个第二绝缘件124设有第二翻边部1243,第二翻边部1243覆盖电极组件13的底面1311,其他的第二绝缘件124的主体部1241的第二端12412延伸至电极组件13的底面1311并与第二翻边部1243拼接。再例如,其中两个第二绝缘件124设有第二翻边部1243,两个第二绝缘件124的第二翻边部1243共同覆盖电极组件13的底面1311,其他的第二绝缘件124的主体部1241的第二端12412延伸至电极组件13的底面1311并与第二翻边部1243拼接。再例如,每个第二绝缘件124均设置有第二翻边部1243,多个第二翻边部1243共同覆盖电极组件13的底面1311。
在上述方案中,第二绝缘件124设置有第二翻边部1243,第二翻边部1243绝缘隔离底壁111与电极组件13,以避免电极组件13与底壁111短接,从而提高了电池单体10的安全性能。
如图12所示,在本申请的一些实施例中,多个第二绝缘件124的第二翻边部1243共同覆盖电极组件13的面向底壁111的一侧。
例如,当第二绝缘件124设置有四个时,四个第二绝缘件124的第二翻边部1243共同覆盖电极组件13的底面1311
多个第二绝缘件124的第二翻边部1243可以以拼接的方式覆盖电极组件13的底面1311,也可以以边缘部分层叠的方式覆盖电极组件13的底面1311。多个第二绝缘件124的第二翻边部1243的面积可以相同,多个第二翻边部1243均匀覆盖电极组件13的底面1311;多个第二绝缘件124的第二翻边部1243的面积也可以不相同,其中一个第二翻边部1243的面积与电极组件13的底面1311面积相同,其他的第二翻边部1243的面积小于电极组件13的底面1311面积。多个第二翻边部1243之间具有层叠区域,以更可靠地覆盖电极组件13的底面1311。
在上述方案中,使用多个第二绝缘件124的第二翻边部1243共同绝缘隔离底壁111与电极 组件13,能够实现先将多个第二绝缘件124的主体部1241拼接以共同周向绝缘隔离,再将多个第二绝缘件124的第二翻边部1243以拼接或者至少部分层叠的形式覆盖电极组件13的面向底壁111的一侧,简化了使用第二绝缘件124包覆电极组件13的组装过程。
图13示出的是本申请的一些实施例的电池单体中使用粘接件粘接固定第二翻边部的结构示意图(未示出壳体)。
如图13所示,在本申请的一些实施例中,电池单体10还包括:粘接件15,用于将多个第二绝缘件124的第二翻边部1243粘接固定。
粘接件15可以为绝缘胶带,也可以为双面胶。粘接件15可以设置有一个,使用一个粘接件15固定多个第二翻边部1243。粘接件15也可以设置有多个,每个粘接件15至少粘接相邻的两个第二翻边部1243;例如,粘接件15设置有两个,两个粘接件15均为胶带,两个粘接件15沿电极组件13的长度方向(即第一方向X)间隔设置,每个粘接件15将一个第二翻边部1243和相邻的另外两个第二翻边部1243粘接。
在上述方案中,能够固定多个第二绝缘件124的第二翻边部1243的相对位置,避免第二翻边部1243翘起以暴露电极组件13的表面,导致电极组件13与底壁111短接,导致安全隐患。
本申请的一些实施例提供一种电池100,包括电池单体10,电池100具有结构紧凑、能量密度较高的优点。
本申请的一些实施例提供一种用电装置,包括电池100,电池100用于提供电能,用电装置具有结构紧凑、能量密度较高的优点。
图14示出的是本申请的一些实施例的一种电池单体的制造方法的示意图。
如图14所示,本申请的一些实施例提供一种电池单体的制造方法,包括:
S100:提供壳体11,壳体11具有开口;
S200:提供电极组件13;
S300:提供端盖组件12,端盖组件12包括端盖121、第一绝缘件123和第二绝缘件124,第一绝缘件123设置于电极组件13与端盖121之间,以绝缘隔离电极组件13与端盖121,第二绝缘件124包括主体部1241和第一翻边部1242,第一翻边部1242连接于主体部1241的一端,第一翻边部1242与第一绝缘件123的面向端盖121的一侧或背离端盖121的一侧连接;
S400:将主体部1241包覆于电极组件13,将电极组件13放入壳体11的内部,通过第二绝缘件124绝缘隔离壳体11与电极组件13,将端盖121覆盖开口,以将电极组件13封闭于壳体11的内部。
图15示出的是本申请的一些实施例的一种电池单体的制造设备的示意图。
如图15所示,本申请的一些实施例提供一种电池单体的制造设备2000,包括:
第一提供装置2100,用于提供壳体11,壳体11具有开口;
第二提供装置2200,用于提供电极组件13;
第三提供装置2300,用于提供端盖组件12,端盖组件12包括端盖121、第一绝缘件123和第二绝缘件124,第一绝缘件123设置于电极组件13与端盖121之间,以绝缘隔离电极组件13与端盖121,第二绝缘件124包括主体部1241和第一翻边部1242,第一翻边部1242连接于主体部1241的一端,第一翻边部1242与第一绝缘件123的面向所述端盖121的一侧或背离端盖121的一侧连接;
组装模块2400,用于将主体部1241包覆于电极组件13,将电极组件13放入壳体11的内部,通过第二绝缘件124绝缘隔离壳体11与电极组件13,将端盖121覆盖开口,以将电极组件13封闭于壳体11的内部。
如图1至图15所示,本申请的一些实施例还提出一种方形的电池单体10,包括壳体11、 端盖121、电极组件13、第一绝缘件123、第二绝缘件124和粘接件15,其中,第一绝缘件123为下塑胶,第二绝缘件124为迈拉膜片,粘接件15为胶带。第二绝缘件124设置于端盖121与电极组件13之间,以绝缘隔离端盖121和电极组件13。第二绝缘件124包括主体部1241、第一翻边部1242和第二翻边部1243,主体部1241的相对的两端分别连接第一翻边部1242和第二翻边部1243。其中,第二绝缘件124的数量共有四个,一个第二绝缘件124对应第一绝缘件123的一个边缘。
进一步地,第一绝缘件123的顶侧表面(即第一表面1231)或者底侧表面(即第二表面1232)设置有凹槽1234,凹槽1234可以容纳第一翻边部1242,使第一翻边部1242不凸出于第一绝缘件123的表面,还可以容纳热熔的时候焊印凸起,以与上侧的端盖121发生干涉或者占用下侧的电极组件13的布置空间。
在组装时,使用第一绝缘件123的顶侧表面(即第一表面1231)或者底侧表面(即第二表面1232)与第一翻边部1242热熔连接。再将第一绝缘件123与端盖121组装为一体,结合端盖121上的电极端子122等部件组装形成端盖组件12。通过集流构件将电极组件13的极耳与对应的电极端子122连接,将四个第二绝缘件124的主体部1241与第一翻边部1242弯折,对电极组件13的侧面1313进行包覆,相邻的两个第二绝缘件124的主体部1241拼接连接,四个主体部1241共同周向包覆电极组件13。在电极组件13的底面1311一侧,四个第二翻边部1243共同覆盖电极组件13的底面1311。其中一个第二翻边部1243为大片折边,完整覆盖电极组件13的底面1311,其他三个第二翻边部1243为短折边,三个短折边覆盖大片折边的边缘,并使用两个粘接件15将四个第二翻边部1243粘接固定,完成第二绝缘件124对电极组件13的绝缘包覆。将包覆有第二绝缘件124的电极组件13放入壳体11的内部,将端盖121与壳体11焊接,完成一个电池单体10的组装。
在本申请的一些实施例的电池单体10中,由于第二绝缘件124由电极组件13的顶面1312向底面1311的方向包裹,且第一绝缘件123、端盖121和电极组件13组装之前进行第一绝缘件123与第二绝缘件124的固定工序,容许利用第一绝缘件123的上下两侧的表面与第一翻边部1242进行热熔连接,从而对第一绝缘件123的厚度没有要求,可以有效减小第一绝缘件123的厚度,使电池单体10结构紧凑,具有较高的能量密度。
需要说明的是,在不冲突的情况下,本申请中的实施例中的特征可以相互结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种电池单体,其中,包括:
    壳体,具有开口;
    电极组件,设置于所述壳体的内部;
    端盖组件,包括端盖、第一绝缘件和第二绝缘件,所述端盖用于覆盖所述开口,所述第一绝缘件设置于所述电极组件与所述端盖之间,以绝缘隔离所述电极组件与所述端盖,第二绝缘件包括主体部和第一翻边部,所述第一翻边部连接于所述主体部的一端,所述主体部设置于所述壳体与所述电极组件之间,以绝缘隔离所述壳体与所述电极组件,所述第一翻边部与所述第一绝缘件的面向所述端盖的一侧或背离所述端盖的一侧连接。
  2. 根据权利要求1所述的电池单体,其中,所述第一翻边部与所述第一绝缘件的面向所述端盖的一侧或背离所述端盖的一侧热熔连接。
  3. 根据权利要求1或2所述的电池单体,其中,所述第一绝缘件的面向所述端盖的一侧或背离所述端盖的一侧设置有凹槽,所述凹槽位于所述第一绝缘件的边缘,所述凹槽用于容纳所述第一翻边部,所述第一翻边部与所述凹槽的表面连接。
  4. 根据权利要求3所述的电池单体,其中,所述凹槽的形状与所述第一翻边部的形状匹配。
  5. 根据权利要求3所述的电池单体,其中,所述凹槽的深度与所述第一翻边部的厚度相等。
  6. 根据权利要求3所述的电池单体,其中,所述第一翻边部的宽度小于所述主体部的宽度。
  7. 根据权利要求1-6任一项所述的电池单体,其中,所述第二绝缘件包括多个所述第一翻边部,多个所述第一翻边部沿所述主体部的宽度方向间隔设置。
  8. 根据权利要求1-7任一项所述的电池单体,其中,所述第二绝缘件的数量为多个,多个所述第二绝缘件沿所述电极组件的周向分布,相邻两个所述第二绝缘件的所述主体部相互拼接。
  9. 根据权利要求8所述的电池单体,其中,所述第一绝缘件呈矩形,所述第二绝缘件的数量为四个,四个所述第二绝缘件的所述第一翻边部对应连接于所述第一绝缘件的四个边缘。
  10. 根据权利要求8所述的电池单体,其中,所述壳体包括底壁和侧壁,所述侧壁围设在所述底壁的周围,所述主体部设置于所述电极组件和所述侧壁之间,所述第二绝缘件还包括第二翻边部,所述第二翻边部连接于所述主体部的另一端,所述第二翻边部设置于所述底壁与所述电极组件之间。
  11. 根据权利要求10所述的电池单体,其中,多个所述第二绝缘件的所述第二翻边部共同覆盖所述电极组件的面向所述底壁的一侧。
  12. 根据权利要求10或11所述的电池单体,其中,所述电池单体还包括:
    粘接件,用于将多个所述第二绝缘件的所述第二翻边部粘接固定。
  13. 一种电池,其中,包括如权利要求1-12任一项所述的电池单体。
  14. 一种用电装置,其中,包括如权利要求13所述的电池,所述电池用于提供电能。
  15. 一种电池单体的制造方法,其中,包括:
    提供壳体,所述壳体具有开口;
    提供电极组件;
    提供端盖组件,所述端盖组件包括端盖、第一绝缘件和第二绝缘件,所述第一绝缘件设置于所述电极组件与所述端盖之间,以绝缘隔离所述电极组件与所述端盖,所述第二绝缘件包括主体部和第一翻边部,所述第一翻边部连接于所述主体部的一端,所述第一翻边部与所述第一绝缘件的面向所述端盖的一侧或背离所述端盖的一侧连接;
    将所述主体部包覆于所述电极组件,将所述电极组件放入所述壳体的内部,通过所述第二绝缘件绝缘隔离所述壳体与所述电极组件,将所述端盖覆盖所述开口,以将所述电极组件封闭于所述壳体的内部。
  16. 一种电池单体的制造设备,其中,包括:
    第一提供装置,用于提供壳体,所述壳体具有开口;
    第二提供装置,用于提供电极组件;
    第三提供装置,用于提供端盖组件,所述端盖组件包括端盖、第一绝缘件和第二绝缘件,所述第一绝缘件设置于所述电极组件与所述端盖之间,以绝缘隔离所述电极组件与所述端盖,所述第二 绝缘件包括主体部和第一翻边部,所述第一翻边部连接于所述主体部的一端,所述第一翻边部与所述第一绝缘件的面向所述端盖的一侧或背离所述端盖的一侧连接;
    组装模块,用于将所述主体部包覆于所述电极组件,将所述电极组件放入所述壳体的内部,通过所述第二绝缘件绝缘隔离所述壳体与所述电极组件,将所述端盖覆盖所述开口,以将所述电极组件封闭于所述壳体的内部。
PCT/CN2021/134843 2021-12-01 2021-12-01 电池单体及其制造方法和设备、电池以及用电装置 WO2023097574A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/134843 WO2023097574A1 (zh) 2021-12-01 2021-12-01 电池单体及其制造方法和设备、电池以及用电装置
CN202180097082.4A CN117136466A (zh) 2021-12-01 2021-12-01 电池单体及其制造方法和设备、电池以及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/134843 WO2023097574A1 (zh) 2021-12-01 2021-12-01 电池单体及其制造方法和设备、电池以及用电装置

Publications (1)

Publication Number Publication Date
WO2023097574A1 true WO2023097574A1 (zh) 2023-06-08

Family

ID=86611244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134843 WO2023097574A1 (zh) 2021-12-01 2021-12-01 电池单体及其制造方法和设备、电池以及用电装置

Country Status (2)

Country Link
CN (1) CN117136466A (zh)
WO (1) WO2023097574A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005602A (zh) * 2009-09-01 2011-04-06 Sb锂摩托有限公司 可再充电电池
CN102903883A (zh) * 2011-07-25 2013-01-30 Sb锂摩托有限公司 二次电池
US20190363316A1 (en) * 2017-02-10 2019-11-28 Samsung Sdi Co., Ltd. Rechargeable battery
WO2021125504A1 (ko) * 2019-12-19 2021-06-24 삼성에스디아이 주식회사 이차 전지
CN215266598U (zh) * 2021-07-30 2021-12-21 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005602A (zh) * 2009-09-01 2011-04-06 Sb锂摩托有限公司 可再充电电池
CN102903883A (zh) * 2011-07-25 2013-01-30 Sb锂摩托有限公司 二次电池
US20190363316A1 (en) * 2017-02-10 2019-11-28 Samsung Sdi Co., Ltd. Rechargeable battery
WO2021125504A1 (ko) * 2019-12-19 2021-06-24 삼성에스디아이 주식회사 이차 전지
CN215266598U (zh) * 2021-07-30 2021-12-21 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置

Also Published As

Publication number Publication date
CN117136466A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
WO2023005408A1 (zh) 电池单体、电池以及用电装置
WO2022213400A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
EP4354642A1 (en) Battery cell, and method and device for manufacturing battery cell, battery, and power consuming device
WO2022247292A1 (zh) 电池单体、电池以及用电装置
US20240128604A1 (en) Battery cell, battery, electrical device, and manufacturing method and device for battery cell
US20230045904A1 (en) Battery cell, manufacturing method and manufacturing system of same, battery, and electric device
WO2023025104A1 (zh) 电池单体、电池以及用电装置
WO2023000184A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023082150A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023065186A1 (zh) 电池单体、电池、用电设备、电池单体的制备方法及装置
WO2023082155A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023004822A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法及设备
WO2023097574A1 (zh) 电池单体及其制造方法和设备、电池以及用电装置
EP4354556A1 (en) Current-collecting component, battery cell, battery and electric device
WO2024055167A1 (zh) 电池单体、电池和用电设备
WO2023065241A1 (zh) 电池单体及其制造方法和制造设备、电池及用电装置
WO2023092459A1 (zh) 电极组件、电池单体、电池以及用电装置
WO2023133781A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
US20240006687A1 (en) Battery, electric device, and method and device for preparing battery cell
WO2024055236A1 (zh) 电池、用电装置和电池的制备方法
US20230378574A1 (en) End cover assembly, battery cell, battery, and electric device
JP7445823B2 (ja) 電池セル及びその製造方法と製造システム、電池及び電力消費装置
CN220066057U (zh) 绝缘片、电池单体、电池及用电设备
WO2023130279A1 (zh) 电池单体及其制造设备和制造方法、电池以及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966008

Country of ref document: EP

Kind code of ref document: A1