WO2023097488A1 - 研磨晶圆的装置和方法 - Google Patents

研磨晶圆的装置和方法 Download PDF

Info

Publication number
WO2023097488A1
WO2023097488A1 PCT/CN2021/134546 CN2021134546W WO2023097488A1 WO 2023097488 A1 WO2023097488 A1 WO 2023097488A1 CN 2021134546 W CN2021134546 W CN 2021134546W WO 2023097488 A1 WO2023097488 A1 WO 2023097488A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
wafer
plane
fixing device
ground
Prior art date
Application number
PCT/CN2021/134546
Other languages
English (en)
French (fr)
Inventor
范荣伟
林军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180099456.6A priority Critical patent/CN117501412A/zh
Priority to PCT/CN2021/134546 priority patent/WO2023097488A1/zh
Publication of WO2023097488A1 publication Critical patent/WO2023097488A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/463Mechanical treatment, e.g. grinding, ultrasonic treatment

Definitions

  • the present application relates to the field of mechanical grinding, and more particularly, to an apparatus and method for grinding a wafer.
  • the 28nm low power process (28nm low power, 28LP) is a low-performance, low-power 28nm chip process, while the 28nm high-k metal gate process (28nm high-Kmetal gate, 28HK) introduces A high-K metal gate (high-K metal gate) can effectively solve a series of problems such as leakage caused by a weak gate dielectric.
  • Aluminum is one of the most commonly used metal gate materials. However, under the combined action of photolithography edge cleaning, chemical and mechanical polish (CMP) in the front-end process, and process window deviations in the etching process, aluminum is deposited on the Wafer edge (bezel) areas are often prone to residues.
  • the aluminum remaining on the crystal edge is subjected to dry etching, wet method and thermal stress, etc., which often become the source of various defects, such as particle defects , Crystal edge film peeling defects, mechanical scratch defects, etc.
  • the present application provides a device and method for grinding a wafer, the purpose of which is to remove aluminum residues in the edge area of the wafer without affecting the grinding thickness of the thin film in other areas inside the wafer.
  • a device for grinding a wafer including: a fixing device for fixing the wafer; a grinding platform including n grinding assemblies, wherein the first plane of each grinding assembly includes a surface for grinding the wafer Grinding area, n is a positive integer greater than or equal to 1; the first area of the plane to be ground of the wafer fixed on the fixture is in contact with the grinding area, and the second area of the plane to be ground of the wafer is closed with n grinding components Or the semi-enclosed space is relatively arranged, wherein the second area is a circular area with the center of the plane to be ground as the center radius r, and the first area is the area between the boundary of the second area and the boundary of the wafer, where r is a number greater than and less than the radius of the plane to be ground; n grinding assemblies and/or fixing devices rotate with the center of the plane to be ground as the center of rotation.
  • the present application provides a device for grinding a wafer.
  • the grinding component and the edge area of the wafer i.e. the first region
  • the non-edge region of the wafer ie. the second region
  • the device for grinding wafers can only use part of the grinding components when the space is limited, instead of using the grinding components whose opening shape is circular or polygonal, which improves the efficiency of grinding wafers. Flexibility in setting up grinding components in the unit.
  • the grinding assembly fails, only the failed grinding assembly can be replaced and adjusted, so that the grinding of the wafer does not need to be inoperable due to partial damage of the grinding assembly.
  • a first moving device is also included, and the first moving device is used to move n grinding assemblies along a direction parallel to the first plane, so as to change the n grinding assemblies The distance from each grinding assembly in the center to the center of the plane to be ground.
  • the grinding distance of the edge region of the wafer can be adjusted, thereby realizing the control of the grinding area of the wafer.
  • the grinding assembly can still only grind the edge area of the wafer.
  • the first rotating device is used to drive n grinding assemblies with the center of the plane to be ground as The rotation center rotates; the second rotation device is used to drive the fixing device to rotate with the center of the plane to be ground as the rotation center.
  • the wafer By driving the rotation of the grinding assembly and/or the fixing device, the wafer can move relative to the grinding platform, thereby realizing the grinding of the wafer, which is beneficial to the uniformity and stability of the grinding.
  • the device includes a first rotating device and a second rotating device
  • the first rotating device is specifically used to drive n grinding assemblies to grind the plane as the center and rotate along the first direction
  • the second rotating device is specifically used to drive the fixing device to rotate along the second direction centered on the plane to be ground, wherein the first direction is different from the second direction
  • the device includes In the case of the first rotating device and the second rotating device, the first rotating device is specifically used to drive n grinding assemblies centered on the plane to be ground and rotate at a first rate; the second rotating device is specifically used to drive the fixing device to be The grinding plane is centered and rotated at a second rate, wherein the first rate is different from the second rate.
  • the device for grinding wafers can flexibly change the way of relative motion between the grinding component and the fixed component, so as to meet the needs of different components for the device for grinding wafers under different circumstances. relative movement needs.
  • the grinding area includes a waste liquid removal member for removing waste liquid from the grinding area.
  • the grooves in the grinding area are mainly used to discharge the grinding by-products (such as waste liquid, etc.) generated during the grinding process, so as to reduce the damage to the wafer caused by excessive grinding by-products remaining in the grinding area.
  • the grinding by-products such as waste liquid, etc.
  • the n grinding assemblies include: a gasket, and the gasket is located on a side of the grinding assembly close to the wafer.
  • the by-products generated during grinding can be reduced, such as grinding waste liquid and grinding residue, which are in contact with the non-edge area of the wafer, thereby protecting the wafer The effect that the central area or other components are not contaminated by grinding by-products.
  • the fixing device includes a top fixing device and a bottom fixing device.
  • both sides of the wafer are effectively clamped and protected, so that the grinding stability of the wafer grinding device is effectively improved when grinding the edge of the wafer.
  • the top fixing device and/or the bottom fixing device include a vacuum suction structure for fixing the wafer.
  • the top fixing device and/or the bottom fixing device can absorb the wafer, and when the wafer is fixed, the risk of the wafer being crushed is reduced.
  • a second moving device is further included, and the second moving device is used to move the fixing device to change the relative positions of the fixing device and the n grinding assemblies.
  • the movement of the fixing device by the second moving device changes the relative position of the fixing device and the grinding assembly, so that the distance between the wafer fixed by the fixing device and the grinding assembly can also be adjusted, thereby realizing the alignment of the wafer during the grinding process. Circle for efficient teleportation.
  • a method for grinding a wafer including: using a fixture to fix the wafer; moving the fixture and/or the grinding platform so that the first area of the plane to be ground of the wafer fixed on the fixture is in contact with the grinding The area is contacted so that the second area of the plane to be ground of the wafer is opposite to the closed or semi-enclosed space formed by n grinding assemblies, wherein the grinding platform includes n grinding assemblies, and the second area is centered on the center of the plane to be ground A circular area whose center radius is r, the first area is the area between the boundary of the second area and the boundary of the wafer, wherein r is a number greater than 0 and less than the radius of the plane to be ground; making n grinding assemblies and/or Or the fixing device rotates with the center of the plane to be ground as the center of rotation.
  • the grinding component contacts and grinds the wafer edge region (i.e. the first region) , without making contact with the non-edge region (ie, the second region) of the wafer. Therefore, the aluminum residue in the edge area of the wafer is effectively removed without affecting the non-edge area of the wafer.
  • it also includes: using the first moving device to move n grinding assemblies along a direction parallel to the first plane, so as to change each of the n grinding assemblies to Distance from the center of the plane to be ground.
  • the grinding distance of the edge area of the wafer can be adjusted, thereby realizing the control of the grinding area of the wafer.
  • the grinding assembly can still only grind the edge area of the wafer.
  • making the n grinding assemblies and/or the fixing devices rotate with the center of the plane to be ground as the center of rotation includes: driving the n grinding assemblies by the first rotating device to The center of the plane to be ground is rotated as the center of rotation and/or the fixing device is driven by the second rotating device to rotate with the center of the plane to be ground as the center of rotation.
  • the rotation of the grinding assembly and/or the fixing device is driven by the rotating device, so that the wafer can move relative to the grinding platform, thereby realizing the grinding of the wafer, which is beneficial to the uniformity and stability of the grinding.
  • the n grinding assemblies are driven to rotate around the center of the plane to be ground by the first rotating device and/or the fixing device is driven by the second rotating device to be ground
  • the center of the plane is the rotation center rotation, including: starting the first rotating device to drive n grinding assemblies to rotate along the first direction centering on the plane to be ground, and starting the second rotating device to drive the fixing device to center on the plane to be ground Rotate along a second direction, wherein the first direction is different from the second direction; or, start the first rotating device to drive n grinding assemblies to rotate at a first rate centered on the plane to be ground, and start the second rotating device to The fixture is driven to rotate at a second rate about the plane to be abraded, wherein the first rate is different from the second rate.
  • using the fixing device to fix the wafer includes: vacuuming a closed space between the fixing device and the wafer.
  • the top fixture and/or the bottom fixture can absorb the wafer, and when the wafer is fixed, the chance of the wafer being crushed is reduced risk.
  • moving the fixing device and/or the grinding platform includes: moving the fixing device by a second moving device, so as to change the relative positions of the fixing device and the n grinding assemblies.
  • the second moving device drives the fixing device to move, which can change the relative position of the fixing device and the grinding assembly, so that the distance between the wafer fixed by the fixing device and the grinding assembly can also be adjusted, thereby realizing the alignment of the wafer during the grinding process. Circle for efficient teleportation.
  • the wafer grinding device and method of the embodiment of the present application can remove the wafer edge area without affecting the film grinding thickness of other areas inside the wafer by grinding only the wafer edge Aluminum residues, reducing various defect problems caused by aluminum residues in the edge area of the wafer.
  • FIG. 1 is a schematic structural view of an apparatus for grinding a wafer according to an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of the fixing device in the device shown in Fig. 1 .
  • FIG. 3 is a schematic structure diagram of a wafer fixed in a fixture according to FIG. 1 .
  • Fig. 4 is a schematic structural diagram of a grinding assembly in the device shown in Fig. 1 .
  • Fig. 5 is a schematic structural view of a plane to be ground according to an embodiment of the present application.
  • FIG. 6 is a schematic structural view of another wafer grinding device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural view of another wafer grinding device according to an embodiment of the present application.
  • Fig. 8 is a schematic structural block diagram of a grinding assembly according to an embodiment of the present application.
  • Fig. 9 is a schematic top view of another grinding assembly according to an embodiment of the present application.
  • Fig. 10 is a schematic top view of grinding assemblies arranged in an equiangular array according to an embodiment of the present application.
  • FIG. 11 is a schematic top view of an apparatus for grinding wafers according to an embodiment of the present application.
  • FIG. 12 is a schematic top view of another apparatus for grinding wafers according to an embodiment of the present application.
  • FIG. 13 is a schematic top view of another apparatus for grinding wafers according to an embodiment of the present application.
  • FIG. 14 is a schematic top view of another apparatus for grinding wafers according to an embodiment of the present application.
  • FIG. 15 is a schematic top view of another apparatus for grinding wafers according to an embodiment of the present application.
  • 16 is a schematic top view of an apparatus for grinding a wafer including a trapezoidal grinding assembly according to an embodiment of the present application.
  • 17 is a schematic cross-sectional view of a groove in an abrasive assembly according to an embodiment of the present application.
  • Fig. 18 is a schematic structural block diagram of a top fixing device and a bottom fixing device according to an embodiment of the present application.
  • Fig. 19 is a schematic structural block diagram of a bottom fixing device according to an embodiment of the present application.
  • 20 is a schematic top view of only the grinding assembly rotating according to an embodiment of the present application.
  • Fig. 21 is a schematic top view of only the fixation device rotating according to an embodiment of the present application.
  • Fig. 22 is a schematic top view of a fixing device and a grinding assembly rotating in the same direction according to an embodiment of the present application.
  • Fig. 23 is a schematic top view of the counter-rotating fixing device and grinding assembly according to an embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of another apparatus for grinding wafers according to an embodiment of the present application.
  • FIG. 25 is a schematic flowchart of a method for grinding a wafer according to an embodiment of the present application.
  • At least one in the embodiments of the present application refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an "or” relationship.
  • At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (unit) in a, b or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, wherein a, b, c can be single or multiple.
  • ordinal numerals such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority or importance of multiple objects degree.
  • the main application scenario expected by this application is the field of chemical mechanical polishing, mainly through the chemical mechanical polishing device to grind the surface of the wafer, so as to remove the residue on the surface of the wafer; however, the device of the present application can also be used for grinding other materials Or remove other residues etc.
  • chemical mechanical polishing will be used as an example to illustrate the removal of residues on the surface of the wafer, but the present application is not limited thereto, and the present application can also be applied to other fields.
  • FIG. 1 shows a schematic structural diagram of an apparatus for grinding a wafer according to an embodiment of the present application.
  • an apparatus 100 for grinding a wafer according to an embodiment of the present application includes a fixing device 110 .
  • the apparatus 100 for grinding wafers further includes a grinding platform.
  • the grinding platform includes a grinding assembly 130 .
  • the fixing device 110 of the apparatus 100 shown in FIG. 1 is fixed with a wafer 140 .
  • FIG. 1 The apparatus for grinding the wafer in FIG. 1 will be described below in conjunction with FIGS. 2 to 4 .
  • FIG. 2 is a schematic structural diagram of the fixing device 110 in the device 100 shown in FIG. 1 .
  • the fixture 110 may be used to fix the wafer 140 .
  • the wafer 140 can be fixed by the fixing device 110 by vacuum suction.
  • the way of fixing the wafer 140 by the fixing device 110 may also be fixing by pressing.
  • FIG. 3 is a schematic structure diagram of the wafer 140 fixed in the fixture 110 according to FIG. 1 .
  • the wafer 140 includes a plane to be polished 141 and a fixed plane 142 .
  • the centers of the plane to be ground 141 and the fixed plane 142 may be located on the same axis along the y direction.
  • the fixing device 110 fixes the wafer 140 through the fixing plane 142 .
  • the bottom surface of the fixing device 110 ie, the side opposite to the fixing plane 142
  • the bottom surface of the fixing device 110 can be provided with a suction cup with a through hole in the center of the suction cup.
  • a vacuum device is connected to the through hole. The vacuum device can vacuum the inside of the chuck through the through hole to fix the wafer 140 .
  • the bottom surface of the fixing device 110 ie, the side opposite to the fixing plane 142 ) may be provided with a rubber gasket.
  • the fixing device 110 may contact the wafer 140 by using a rubber washer in a pressing manner, and make the wafer 140 contact with the grinding assembly 130 to realize the fixing of the wafer.
  • FIG. 4 is a schematic structural diagram of the grinding assembly 130 in the device 100 shown in FIG. 1 .
  • the first plane 131 of the grinding assembly 130 includes a grinding area 133 .
  • the grinding assembly 130 shown in FIG. 4 includes a through hole 132 , and the opening of the through hole 132 near the wafer is circular. At this time, the space occupied by the through hole 132 is a cylindrical closed space.
  • the fixed wafer 140 can be in contact with the grinding assembly, therefore, the partial area of the plane to be ground 141 can be in contact with the grinding area 133, and the plane to be ground 141 can be in contact with the grinding area 133.
  • the other part of the area is located above the through hole 132 , is distributed opposite to the closed space occupied by the through hole 132 , and is not in contact with the grinding area 133 . Therefore, the area of the plane to be ground 141 located above the through hole 132 will not be ground, and only the area in contact with the grinding area 133 will be ground.
  • the area where the plane to be ground 141 is opposite to the through hole 132 may be referred to as the first area, and the area in contact with the grinding area 133 may be referred to as the second area.
  • FIG. 5 is a schematic structural diagram of a plane to be ground 141 according to an embodiment of the present application.
  • the plane to be ground 141 includes a first region 144 and a second region 143 .
  • the first area 144 is in contact with the grinding area
  • the second area 143 is opposite to the closed or semi-enclosed space formed by n grinding components
  • the first area is between the boundary of the second area and the boundary of the wafer Area.
  • the second area is a circular area with the center of the plane to be polished as the center radius r
  • the first area 144 is an annular area with r as the inner radius and the wafer radius R as the outer radius.
  • r is a number greater than 0 and less than the radius of the plane to be ground, and R is a positive number greater than r.
  • the first region is the annular edge of the wafer. Therefore, the first area can also be referred to as an edge area.
  • the second area can be referred to as the central area.
  • the difference between R and r is greater than 0 and less than or equal to 3mm.
  • the grinding of the wafer 140 can be carried out relative rotation in the axial direction through the fixing device 110 and the grinding assembly 130, and the edge region 144 in the plane 141 to be ground on the wafer 140 can be in contact with the grinding assembly 130 And produce relative rotation, and grind under the action of grinding liquid.
  • the rotating device that drives the fixing device 110 and/or the grinding assembly 130 to rotate may be a motor. In order to facilitate the understanding of the relationship between the fixing device and the grinding assembly, the embodiment of the present application does not show the rotating device that drives the rotation.
  • the wafer grinding device of the embodiment of the present application can control the metal grinding at the edge of the wafer without affecting the inner area of the wafer, and effectively remove the aluminum residue on the edge of the wafer, thereby solving the problem of Various defects caused by aluminum residues.
  • FIG. 6 is a schematic structural diagram of another wafer grinding device according to an embodiment of the present application.
  • the grinding platform includes a ring-shaped grinding assembly 630 , and the fixing device is located inside the ring structure.
  • the central area 642 of the plane to be polished of the wafer 640 is located on the upper side of the ring-shaped grinding assembly 630 , corresponding to the closed space occupied by the inner through hole of the ring-shaped grinding assembly 630 , and is arranged up and down oppositely.
  • the first plane is the area where the wafer 640 is in contact with the grinding assembly 630 during grinding.
  • the fixing device may be composed of two parts, including a top fixing device 611 and a bottom fixing device 612 , and the top fixing device 611 and the bottom fixing device 612 may be located on the same axis and distributed symmetrically about the x-axis.
  • the method of fixing the wafer by the top fixing device 611 is the same as that of the fixing device 110 shown in FIG. 1
  • the grinding assembly 630 is the same as the grinding assembly 130 in FIG. 1 .
  • the method of fixing the wafer 640 by the bottom fixing device 612 may be the same as that of the top fixing device 611 , and both of them fix the wafer 640 by vacuum suction.
  • the bottom fixing device 612 may also adopt a pressing method and the top fixing device 611 adopt a vacuum suction method to jointly fix the wafer 640 , which is not limited in this embodiment of the present application.
  • the wafer 640 can be better fixed by the joint action of the top fixing device 611 and the bottom fixing device 612 , so as to realize the fixing and protection of the wafer 640 .
  • FIG. 7 is a schematic structural view of another wafer grinding device according to an embodiment of the present application.
  • the grinding platform may also include a support structure 751, a support structure 752 (not shown) and The structure 753 provides stable and good support for the grinding platform during grinding.
  • top fixing device and the bottom fixing device fix the wafer together, they can also grind the wafer by generating relative motion with the grinding platform.
  • the edge area of the plane to be ground and the grinding area can be in contact during grinding, and the two areas can generate relative rotation, thereby grinding the grinding area on the edge of the wafer.
  • the grinding platform may include n grinding components, where n is a positive integer greater than or equal to 1.
  • the grinding platform only includes one grinding assembly.
  • Fig. 8 is a schematic structural block diagram of a grinding assembly according to an embodiment of the present application.
  • the grinding platform may include a grinding assembly 831 of an annular structure, and the internal through hole or blind hole 832 of the grinding assembly 831 The shape is round. At this time, the space occupied by the through hole 832 inside the grinding assembly 831 is a closed space.
  • the grinding platform may also include support structures 851 , 852 and 853 , and by using the above three support structures, the stability of the grinding platform can be ensured during grinding.
  • the supporting structure of the grinding platform may also be a second moving device.
  • the second moving device may have a lifting function, through which the grinding platform can flexibly change the relative height between the platform and the wafer.
  • the supporting structure of the grinding platform can also rotate along the same axis, and drive the grinding platform to rotate, so that the grinding platform can generate relative motion with the wafer, thereby realizing grinding of the wafer.
  • the embodiment of the present application only takes the grinding platform with three supporting structures as an example for illustration, and the grinding platform may also include more supporting structures, and the supporting structures may also have the above-mentioned lifting and rotating functions at the same time. Not limited.
  • the shape 832 of the through hole or the blind hole inside the grinding assembly 831 can also be an equivalent circle, such as a regular multi-deformation.
  • FIG. 9 is a schematic top view of another grinding assembly according to an embodiment of the present application.
  • the inner through hole of the grinding assembly 931 or the shape of the blind hole 932 is a regular hexagon.
  • the maximum inner circle radius r of the edge region of the plane to be ground is the radius of the maximum inscribed circle of the regular hexagonal blind hole 932
  • the minimum outer circle radius R of the edge area of the plane to be ground is the minimum circumscribed circle radius of the grinding assembly 931 .
  • the closed space occupied by the internal through hole or the blind hole 932 of the grinding assembly 931 is a regular hexagonal closed space.
  • the shape of the grinding area on the edge of the wafer is also circular, therefore, the shape of the grinding area when the shape of the internal through hole or blind hole is an equivalent circle can be compared with Similar when the shape is round.
  • the grinding platform includes a plurality of grinding components, and the n grinding components can be arranged in an equiangular array and be in contact with the wafer at the same time, so that the force on the wafer in different directions is uniform.
  • the equiangular array arrangement means that the included angles formed by the lines connecting the centers of any two adjacent grinding assemblies to the centers of the semi-enclosed spaces are the same.
  • FIG. 10 is a schematic top view of grinding assemblies arranged in an equiangular array according to an embodiment of the present application.
  • the angle between the center line 1001 and the center line 1002, the angle between the center line 1002 and the center line 1003, the angle between the center line 1003 and the center line 1004, and the center line 1004 The angle is the same as the included angle between the central lines 1001 .
  • FIG. 11 is a schematic top view of an apparatus for grinding wafers according to an embodiment of the present application.
  • the apparatus 1100 for grinding wafers shown in FIG. 11 includes a fixing device 1110 .
  • the specific function and structure of the fixing device 1110 are the same as those of the fixing device 1110 .
  • the minimum inner circle radius r of the edge area of the plane to be ground is the maximum inscribed circle radius of the four grinding assemblies
  • the maximum outer circle radius R is the minimum circumscribed circle radius of the four grinding assemblies.
  • the device 1100 also includes four sector-shaped grinding assemblies 1133, 1134, 1135, and 1136.
  • the space formed inside the four sector-shaped grinding assemblies is a semi-enclosed space, and the four sector-shaped The grinding components can be arranged in an equiangular array along the center of the semi-enclosed space.
  • the number of sector-shaped grinding assemblies shown in FIG. 11 can also be changed, as shown in FIGS. 12 to 15 .
  • FIG. 12 is a schematic top view of another apparatus for grinding wafers according to an embodiment of the present application.
  • the minimum inner radius r of the edge area of the plane to be ground is the maximum inscribed circle radius of a grinding assembly
  • the maximum outer circle radius R is the minimum circumscribed circle radius of a grinding assembly.
  • the grinding platform shown in FIG. 12 may include any one of the four fan-shaped grinding assemblies shown in FIG. 11 , for example, the grinding assembly 1133 , and the edge of the wafer can be ground through a single fan-shaped grinding assembly.
  • FIG. 13 is a schematic top view of another apparatus for grinding wafers according to an embodiment of the present application.
  • the minimum inner radius r of the edge area of the plane to be ground is the maximum inscribed circle radius of the two grinding assemblies on the same side
  • the maximum outer circle radius R is the minimum circumscribed circle radius of the two grinding assemblies on the same side.
  • the grinding platform as shown in Figure 13 can comprise two fan ring grinding assemblies on the same side in the four fan ring grinding assemblies shown in Figure 11, for example, grinding assembly 1133 and grinding assembly 1134, through the same side double fan
  • the ring grinding assembly can achieve a better grinding effect than the single fan ring grinding assembly.
  • FIG. 14 is a schematic top view of another apparatus for grinding wafers according to an embodiment of the present application.
  • the minimum inner radius r of the edge region of the plane to be ground is the maximum inscribed circle radius of the two grinding assemblies on the opposite side
  • the maximum outer circle radius R is the minimum circumscribed circle radius of the two grinding assemblies on the opposite side.
  • the grinding platform as shown in Figure 14 can comprise two fan-shaped ring-shaped grinding assemblies on the opposite side among the four fan-shaped ring-shaped grinding assemblies shown in Figure 11, for example, grinding assembly 1133 and grinding assembly 1135, through the opposite side double fan
  • the annular grinding assembly can achieve a relatively good grinding effect under the condition that the force on the wafer is relatively uniform.
  • FIG. 15 is a schematic top view of another apparatus for grinding wafers according to an embodiment of the present application.
  • the minimum inner radius r of the edge area of the plane to be ground is the largest inscribed circle radius of the three grinding assemblies, and the maximum outer circle radius R is the smallest circumscribed circle radius of the three grinding assemblies.
  • the grinding platform shown in FIG. 15 may contain any three of the four sector-shaped grinding assemblies shown in FIG. 10 , for example, grinding assembly 1133 , grinding assembly 1134 , and grinding assembly 1135 .
  • the three-fan annular grinding assembly can achieve a better grinding effect than the double-fan annular grinding assembly under the condition that the force on the wafer is relatively uniform.
  • the shape of the grinding assembly shown in FIGS. 11 to 15 may also be other shapes, such as trapezoid or rectangle.
  • FIG. 16 is a schematic top view of a device for grinding wafers including a trapezoidal grinding assembly according to an embodiment of the present application, as shown in FIG. 16 , as shown in FIG. 16
  • the apparatus 1600 for grinding wafers also includes a fixing device 1610.
  • the specific function and structure of the fixing device 1610 are the same as those of the fixing device 110, and for the sake of brevity, details are not repeated here.
  • the minimum inner circle radius r (not shown) of the edge region of the plane to be ground is the maximum inscribed circle radius of the six trapezoidal grinding assemblies
  • the maximum outer circle radius R (not shown) is the maximum radius of the six trapezoidal grinding assemblies.
  • the fixing device 1610 is surrounded by six trapezoidal grinding assemblies 1639, 16310, 16311, 16312, 16313, and 16314 arranged in an equiangular array.
  • the fixing device 1610 generates relative rotation, so that the grinding area on the edge of the wafer is also annular, thereby ensuring the uniformity and stability of grinding.
  • FIG. 16 can also be ground using only one or more of the six grinding assemblies as shown in FIG. 11 to FIG. 15 , and a similar grinding effect can be achieved.
  • the contour shape of the side of the grinding assembly close to the wafer may be a straight line instead of an arc, which is not limited in this embodiment of the present application.
  • the positions of grinding assemblies of different numbers and shapes shown in FIGS. 11 to 16 can also be adjusted through the first moving device. Can move along the parallel direction of described first plane by the first moving device to change the distance of each grinding assembly in the n grinding assemblies to the center of the plane to be ground, so that the distance between the grinding platform and the wafer when grinding The grinding area can be adjusted to achieve control of the grinding area.
  • the grinding assembly may further include a washer that may be located on a side of the grinding assembly on an inner side opposite the fixing device.
  • the height of the gasket is the same as the height of the grinding area in the grinding assembly.
  • the gasket can be in contact with the wafer during grinding, reducing the by-products produced during grinding, such as grinding waste liquid and grinding residue, and is in contact with the non-grinding area of the wafer, thereby protecting the inner effective area of the wafer (ie non-edge regions of the wafer) are not contaminated by grinding by-products.
  • the grinding assembly 1133 shown in FIG. 11 also includes a gasket 1137, which can be located on the inner side of the grinding assembly 1133 opposite to the fixing device 1110, and the height of the gasket 1137 is the same as that of the grinding assembly 1133. The heights of the regions are the same.
  • the grinding assembly may also include a waste removal component.
  • the waste liquid removal component can be a groove or a through hole, and can also be a groove and a through hole, which is not limited in the embodiment of the present application.
  • FIG. 17 is a schematic cross-sectional view of grooves in a grinding assembly according to an embodiment of the present application.
  • the grinding area of the grinding assembly 1733 includes a plurality of grooves 1738 .
  • the concave part of the groove 1738 can be rectangular in shape, and the groove 1738 can run through the side of the grinding assembly 1733 .
  • the by-products generated by the grinding can be discharged from the grinding assembly through the groove when the grinding assembly is grinding, thereby reducing the damage caused by excessive grinding by-products remaining on the grinding platform to the wafer. damage.
  • the shape of the recessed portion of the groove in the embodiment of the present application may also be other shapes, such as conical or arched, which is not limited in the present application.
  • the number of grooves in the embodiment of the present application can also be other numbers, and the shape of the grooves in the embodiment of the present application on the grinding assembly can also be other shapes besides arc and straight line. There is no limit to this.
  • the fixing device includes a top fixing device and a bottom fixing device.
  • Fig. 18 is a schematic structural block diagram of a top fixture and a bottom fixture according to an embodiment of the present application. As shown in Fig. 18, a top fixture 1811 and a bottom fixture 1812 work together on a wafer 1840 to jointly fix the wafer 1840's role. Wherein, the structures and materials of the top fixing device 1811 and the bottom fixing device 1812 may be the same, and the distribution positions may be symmetrically distributed in mirror images.
  • the wafer is effectively clamped and protected, so that the grinding stability of the wafer grinding device is effectively improved when grinding the edge of the wafer.
  • FIG. 19 is a schematic structural block diagram of a bottom fixing device according to an embodiment of the present application.
  • the bottom fixing device 1900 may include supporting components 1913 , a second moving device 1914 and a vacuum suction structure 1915 .
  • the supporting part 1913 can be in contact with the wafer, bear and cover the inner area of the wafer, and make the wafer can be uniformly stressed in all directions when it is fixed, so as to improve the uniformity and stability of grinding.
  • the second moving device 1914 can be a lifting device, driving the bottom fixing device 1900 to move up and down.
  • the second moving device may also be a moving device that drives the bottom fixing device 1900 to lift and translate, which is not limited in this application.
  • the supporting member 1913 may also be in other shapes such as regular prisms or other cylinders whose surfaces are equivalent to a circle, which is not limited in this application.
  • the lifting structure 1914 may be located on a side of the supporting component 1913 away from the wafer, and connected to the supporting component 1913 .
  • the lifting structure 1914 can support and stabilize the supporting part 1913, and drive the supporting part 1913 to move up and down, so that the wafer can be in contact with the grinding platform, and the wafer can be effectively transported and positioned during the entire grinding process. Adjustment.
  • the lifting structure 1914 may also be a supporting structure without a lifting function, and only supports the supporting component 1913 , which is not limited in this embodiment of the present application.
  • this embodiment only takes one lifting structure as an example, and the lifting structure is located at the center of the supporting component, but the embodiment of the present application is not limited thereto, the number of lifting structures can be multiple, and the position of the lifting structure can also be It can be distributed in other positions of the support structure under the condition of ensuring the support and stability of the bearing part, which is not limited in this embodiment of the present application.
  • the vacuum suction structure 1915 may include a vacuum suction hole 1916 and a vacuum suction air bag 1917 .
  • the vacuum suction hole is located on the side of the supporting component 1913 close to the wafer
  • the vacuum suction air bag 1917 is located on the other side of the lifting structure 1914 that is not in contact with the support structure 1913.
  • the pipeline 1915 is connected with the vacuum suction air bag 1917, and absorbs the wafer by vacuum negative pressure.
  • the bottom fixing device 1900 can absorb the wafer 140 , and reduce the risk of the wafer being crushed when the wafer 140 is fixed.
  • the bottom fixing device 1900 can also have a rotation function. Through the rotation of the bottom fixing device 1911, the wafer can be driven to rotate, so that the wafer can move relative to the grinding platform to realize the grinding of the wafer. And ensure the uniformity and stability of grinding.
  • the apparatus for grinding a wafer may further include a top fixture.
  • the fixing device includes a top fixing device and/or a bottom fixing device.
  • the fixing device may only include a top fixing device, the fixing device may also only include a bottom fixing device, or the fixing device may also include a top fixing device and a bottom fixing device.
  • the top fixture may also include the same structure as the bottom fixture.
  • the top fixing device when the bottom fixing device includes a vacuum suction structure, the top fixing device may also include a vacuum suction structure.
  • only the top fixture includes a vacuum suction structure for holding the wafer.
  • only the bottom holding device includes a vacuum suction structure for holding the wafer.
  • both the top fixing device and the bottom fixing device may include a vacuum suction structure for fixing the wafer.
  • the embodiment of the present application only takes the bottom fixing device 1900 as an example for illustration, and the top fixing device may also have the above-mentioned supporting component and lifting structure in addition to the vacuum adsorption structure, which is not limited in the embodiment of the present application.
  • the bottom fixing device may include a supporting component, a lifting structure and a vacuum adsorption structure
  • the top fixing device may also include a supporting component, a lifting structure and a vacuum adsorption structure.
  • the bottom fixing device may include a supporting component, a lifting structure and a vacuum adsorption structure
  • the top fixing device may only include a supporting component and a lifting structure.
  • the bottom fixing device may include a supporting component, a lifting structure and a vacuum adsorption structure, and the top fixing device may only include a supporting component.
  • the bottom fixing device may only include a supporting component
  • the top fixing device may include a supporting component, a lifting structure and a vacuum adsorption structure.
  • the bottom fixing device may only include a supporting component and a lifting structure
  • the top fixing device may include a supporting component, a lifting structure and a vacuum adsorption structure
  • the bottom fixing device may only include a supporting component and a vacuum adsorption structure
  • the top fixing device may include a supporting component, a lifting structure and a vacuum adsorption structure.
  • the above part describes the assembly structure of each part in the device for grinding wafers, and the relative rotation between the fixing device and the grinding platform during grinding will be described below.
  • the n grinding assemblies and/or the fixing device rotate around the center of the plane to be ground, including: in some embodiments, the n grinding components rotate around the center of the plane to be ground, and the fixing device remains stationary.
  • the fixing device rotates around the center of the plane to be ground, and the n grinding assemblies remain stationary.
  • both the n grinding assemblies and the fixing device rotate around the center of the plane to be ground.
  • the wafer grinding device can drive the grinding assembly to rotate through at least one of the first rotating device and the second rotating device.
  • the first rotating device is used to drive the n grinding assemblies to rotate around the center of the plane to be ground
  • the second rotating device is used to drive the fixing device to rotate around the center of the plane to be ground.
  • the above-mentioned device for grinding a wafer may only include the first rotating device.
  • the first rotating device can drive the n grinding assemblies to rotate along the first direction with the plane to be ground as the center.
  • the fixture remains stationary.
  • the above-mentioned device for grinding wafers may only include the second rotating device.
  • the second rotating device can drive the fixing device to rotate along the first direction centering on the plane to be ground. The n grinding assemblies remain stationary.
  • the above-mentioned device for grinding a wafer may further include a first rotating device and a second rotating device.
  • the first rotating device can drive the n grinding assemblies to rotate along the first direction with the plane to be ground as the center.
  • the second rotating device can drive the fixing device to rotate along the second direction with the plane to be ground as the center. Wherein the first rotation direction is different from the second rotation direction.
  • the above-mentioned device for grinding a wafer may further include a first rotating device and a second rotating device.
  • the first rotating device can drive n grinding assemblies to rotate at a first speed along a first direction with the plane to be ground as the center.
  • the second rotating device can drive the fixing device to rotate at a second speed along the first direction centering on the plane to be ground. Wherein the first rate is different from the second rate.
  • the device for grinding wafers can flexibly change the way of relative motion between the grinding component and the fixed component, so as to meet the needs of different components for the device for grinding wafers under different circumstances. relative movement needs.
  • Figure 20 is a schematic top view of only the rotation of the grinding assembly according to an embodiment of the present application.
  • the grinding assembly 2030 can be driven by a first rotating device (not shown) with the center of the plane to be ground as the center of rotation
  • the fixing device 2010 may remain stationary.
  • the grinding assembly 2030 may also rotate counterclockwise with the center of the plane to be ground as the center of rotation (that is, rotate along the second direction), which is not limited in the present application.
  • Figure 21 is a schematic top view of only the rotation of the fixing device according to an embodiment of the present application.
  • the fixing device 2110 can be driven by a second rotating device (not shown) with the center of the plane to be ground as the center of rotation
  • the grinding assembly 2130 may remain stationary.
  • the fixing device 2110 may also rotate counterclockwise with the center of the plane to be ground as the center of rotation (that is, rotate along the second direction), which is not limited in the present application.
  • Fig. 22 is a schematic top view of the fixing device and the grinding assembly rotating in the same direction according to the embodiment of the present application.
  • the fixing device 2210 can be driven by the first rotating device (not shown) to The center is the center of rotation and rotates clockwise (that is, rotates in the first direction), and the grinding assembly 2230 can also be rotated clockwise with the center of the plane to be ground as the center of rotation (that is, rotated in the first direction) driven by a second rotating device (not shown). rotate along the first direction), but the rotation speed of the fixing device 2110 is the first speed, the rotation speed of the grinding assembly 2230 is the second speed, and the first speed and the second speed are different.
  • fixing device 2210 and the grinding assembly 2230 can also rotate counterclockwise with the center of the plane to be ground as the center of rotation (that is, rotate in the second direction), and the rotation speeds of the two are different, which is not limited in the present application.
  • Fig. 23 is a schematic top view of the different rotations of the fixing device and the grinding assembly according to the embodiment of the present application.
  • the fixing device 2310 can be driven by the first rotating device (not shown) to The center is the center of rotation and rotates clockwise (that is, rotates in the first direction), and the grinding assembly 2330 can be driven by the second rotating device (not shown) to rotate counterclockwise with the center of the plane to be ground as the center of rotation (that is, rotate along the first direction). rotation in the second direction).
  • fixing device 2310 can also rotate counterclockwise with the center of the plane to be ground as the center of rotation (that is, rotate in the second direction), and the grinding assembly 2330 can rotate clockwise with the center of the plane to be ground as the center of rotation (that is, rotate along the second direction). rotation in the first direction), which is not limited in this application.
  • the uniformity and stability of the grinding can be effectively improved under the condition that the edge of the wafer is evenly stressed during grinding.
  • the relative positions between the fixing device and the grinding platform shown in the embodiment of the present application are only schematic, and the present application may not limit the installation positions of the fixing device and the grinding platform.
  • the relative position between the fixing device and the grinding platform can be other positions.
  • the fixing device may be arranged outside the grinding platform, as shown in FIG. 24 , which shows a schematic structural diagram of another device for grinding wafers according to an embodiment of the present application.
  • the fixture 2410 among Fig. 24 is positioned outside the grinding platform 2430, but the edge area of the plane to be ground of the wafer 2440 and the grinding area on the grinding platform 2430 can form partial contact, so that the wafer 2440 can still be processed by the grinding platform 2440.
  • the edge area of the wafer is ground.
  • the device for grinding a wafer in the embodiment of the present application uses a new mechanical grinding device, uses a fixing device to fix the wafer, can clamp and protect the wafer, and contacts and grinds the grinding platform through the edge of the wafer. Grinding makes the aluminum residue on the edge of the wafer effectively removed, thereby reducing various defects caused by the aluminum residue on the edge of the wafer, such as particle defects, film peeling defects on the edge of the wafer, and mechanical scratch defects.
  • the above part introduced the removal of aluminum residues on the edge of the wafer through the chemical mechanical grinding device in the embodiment of the present application.
  • the embodiment of the application can also be used in combination with other technologies to remove the aluminum on the edge of the wafer.
  • the embodiment of the present application can also be combined with the wafer edge etching (bevel etch) technology, and the wafer edge etching process is added to the active area loop (AA loop) process, so that the aluminum The contact loop (contact loop) process is protected by the inter layer dielectric (ILD); or, the edge etching process is added to the metal gate process to etch the aluminum on the edge of the wafer residual.
  • the present application also provides a method for grinding a wafer.
  • FIG. 25 shows a schematic flowchart of a method for grinding a wafer according to an embodiment of the present application. As shown in FIG. 25 , the method includes the following steps.
  • the grinding platform may include n grinding assemblies, the second area is a circular area with the area to be ground as the center and a radius of r, and the first area is the area between the boundary of the second area and the boundary of the wafer , where r is a number greater than 0 and less than the radius of the plane to be ground.
  • using the fixture to fix the wafer in step 2520 includes: evacuating the enclosed space between the fixture and the wafer through the vacuum suction structure as shown in FIG. 19 .
  • the vacuum adsorption structure may include vacuum adsorption holes and vacuum adsorption airbags.
  • the vacuum suction hole is connected with the vacuum suction airbag through a vacuum suction pipeline running through the entire fixing device, and absorbs the wafer by vacuum negative pressure.
  • moving the fixing device and/or the grinding platform in step 2520 includes: moving the fixing device while the grinding platform is stationary; moving the grinding platform while the fixing device is stationary; moving both the grinding platform and the fixing device.
  • the edge area of the plane to be ground of the wafer is brought into contact with the grinding area of the grinding assembly to provide a basis for subsequent grinding of the wafer.
  • the grinding platform composed of n grinding assemblies can be moved along the parallel direction of the above-mentioned first plane under the drive of the first moving device as shown in Fig. 11 to Fig. 16, so that each grinding in the n grinding assemblies can The distance from the component to the center of the plane to be ground enables the grinding area of the grinding platform and the wafer to be adjusted during grinding, thereby realizing the control of the grinding area.
  • the fixing device can move under the drive of the second moving device as shown in FIG. 8 .
  • the second moving device can also be a moving device that drives the fixing device to lift and translate, so that the relative positions between the fixing device and the n grinding assemblies can be adjusted and changed.
  • rotating the n grinding assemblies and/or the fixing device with the center of the plane to be ground as the center of rotation in step 2530 includes: the device for grinding the wafer may pass through the first rotating device and at least one of the second rotating device to drive the grinding assembly to rotate in the manner described in FIGS. 20 to 23 .
  • the first rotating device is used to drive the n grinding assemblies to rotate around the center of the plane to be ground
  • the second rotating device is used to drive the fixing device to rotate around the center of the plane to be ground.
  • the apparatus for grinding wafers may only activate the first rotating apparatus.
  • the first rotating device can drive the n grinding assemblies to rotate along the first direction with the plane to be ground as the center.
  • the fixture remains stationary.
  • the device for grinding wafers may only activate the second rotating device.
  • the second rotating device can drive the fixing device to rotate along the first direction centering on the plane to be ground. The n grinding assemblies remain stationary.
  • the above-mentioned device for grinding wafers may also activate the first rotating device and the second rotating device.
  • the first rotating device can drive the n grinding assemblies to rotate along the first direction with the plane to be ground as the center.
  • the second rotating device can drive the fixing device to rotate along the second direction with the plane to be ground as the center. Wherein the first rotation direction is different from the second rotation direction.
  • the device for grinding wafers can also activate the first rotating device and the second rotating device.
  • the first rotating device can drive n grinding assemblies to rotate at a first speed along a first direction with the plane to be ground as the center.
  • the second rotating device can drive the fixing device to rotate at a second speed along the first direction centering on the plane to be ground. Wherein the first rate is different from the second rate.
  • the device for grinding wafers can flexibly change the way of relative motion between the grinding component and the fixed component, so as to meet the needs of different components for the device for grinding wafers under different circumstances. relative movement needs.
  • the device used in the method for grinding a wafer according to the embodiment of the present invention corresponds to the device for grinding a wafer in the above embodiment, and for the sake of brevity, the present application will not repeat them here.
  • the method for grinding the wafer of the present application can effectively remove the aluminum residue on the edge of the wafer by contacting and grinding the edge part of the wafer with the grinding platform, thereby reducing the aluminum residue caused by the edge of the wafer. of various defects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

一种研磨晶圆的装置,包括:固定装置(110),用于固定晶圆(140);研磨平台包括n个研磨组件(130),每个研磨组件的第一平面包括用于研磨晶圆的研磨区域(133),n为大于等于1的正整数;固定在固定装置(110)的晶圆的待研磨平面的第一区域(144)与研磨区域(133)接触,晶圆的待研磨平面的第二区域(143)与n个研磨组件形成的封闭或半封闭空间相对设置,其中,第二区域(143)为以待研磨平面(141)的中心为圆心半径为r的圆形区域,第一区域(144)为第二区域的边界与晶圆的边界之间的区域,其中r为大于0且小于所述待研磨平面半径的数;n个研磨组件和/或固定装置以待研磨平面的中心为旋转中心旋转。还包括一种研磨晶圆的方法,研磨晶圆的装置和方法能够有效去除晶圆边缘的铝残留。

Description

研磨晶圆的装置和方法 技术领域
本申请涉及机械研磨领域,并且更具体地,涉及一种研磨晶圆的装置和方法。
背景技术
28纳米低功耗工艺(28nm low power,28LP)是一种低性能、低功耗的28nm芯片工艺,而28纳米高k值金属栅工艺(28nm high-Kmetal gate,28HK)与28LP相比引入了高K值金属栅(high-Kmetal gate),能够有效解决栅介质薄弱导致的漏电等一系列问题。铝是最常用的金属栅材料之一,然而在光刻洗边、前段工艺的化学机械研磨(chemical and mechanical polish,CMP)和刻蚀工艺等的工艺窗口偏差的共同作用下,使得铝沉积在晶圆边缘(晶边)区域后往往容易残留。
晶边残留的铝在后续工艺中,尤其是在接触孔回路(contact loop,CT loop)工艺中,受到干刻、湿法以及热应力作用等,其往往成为各类缺陷的源头,比如颗粒物缺陷、晶边薄膜剥落缺陷、机械划伤缺陷等。
因此,如何消除晶圆工艺中的晶边残留成为了亟待解决的问题。
发明内容
本申请提供一种用于研磨晶圆的装置和方法,其目的是在不影响晶圆内部其他区域的薄膜研磨厚度的基础上,去除晶圆边缘区域的铝残留。
第一方面,提供了一种研磨晶圆的装置,包括:固定装置,用于固定晶圆;研磨平台包括n个研磨组件,其中,每个研磨组件的第一平面包括用于研磨晶圆的研磨区域,n为大于等于1的正整数;固定在固定装置的晶圆的待研磨平面的第一区域与研磨区域接触,晶圆的待研磨平面的第二区域与n个研磨组件形成的封闭或半封闭空间相对设置,其中,第二区域为以待研磨平面的中心为圆心半径为r的圆形区域,第一区域为第二区域的边界与晶圆的边界之间的区域,其中r为大于且小于待研磨平面半径的数;n个研磨组件和/或固定装置以待研磨平面的中心为旋转中心旋转。
针对现有技术中的研磨装置在研磨晶圆时,因为晶圆与研磨平台完全接触而导致的无法控制晶圆边缘区域的金属研磨的问题。本申请提供了一种研磨晶圆的装置,该装置可以在研磨晶圆时,由于研磨平台的研磨组件所形成的封闭或半封闭空间的存在,使得研磨组件与晶圆边缘区域(即第一区域)进行接触并研磨,而与晶圆的非边缘区域(即第二区域)不进行接触。从而在不影响晶圆非边缘区域的情况下,使得晶圆边缘区域的铝残留得到了有效去除。
结合第一方面,在第一方面的某些实现方式中,还包括:当n=1时,研磨组件包含通孔或盲孔,通孔或盲孔靠近晶圆一侧的开口形状为圆形或多边形;当n>1时,n个研磨组件等角度阵列排布,靠近晶圆一侧的轮廓的形状为弧形或直线。
通过对研磨组件设置数量的调整,可以使得研磨晶圆的装置在空间有限时,仅使用部分研磨组件,而无需使用整个开口形状为圆形或多边形的研磨组件进行研磨,提升了研磨晶圆的装置中研磨组件的设置灵活性。此外,还可以在研磨组件发生故障时,仅对发生故障的研磨组件进行更换和调整,使得对晶圆的研磨无需因研磨组件的部分损坏而无法运行。
结合第一方面,在第一方面的某些实现方式中,还包括第一移动装置,第一移动装置用于沿所述第一平面的平行方向移动n个研磨组件,以改变n个研磨组件中的每个研磨组件到待研磨平面的中心的距离。
通过改变每个研磨组件到待研磨平面的中心的距离,可以对晶圆边缘区域的研磨距离进行调整,从而实现对晶圆研磨面积的控制。此外,当采用不同尺寸的晶圆进行研磨时,通过改变研磨组件到待研磨平面的中心的距离,仍然可以使得研磨组件仅对晶圆边缘区域进行研磨。
结合第一方面,在第一方面的某些实现方式中,还包括第一旋转装置和第二旋转装置中的至少一个,第一旋转装置用于驱动n个研磨组件以待研磨平面的中心为旋转中心旋转;第二旋转装置用于驱动固定装置以待研磨平面的中心为旋转中心旋转。
通过驱动研磨组件和/或固定装置的旋转,使得晶圆可以与研磨平台产生相对运动,从而实现对晶圆的研磨,有利于研磨的均一性和稳定性。
结合第一方面,在第一方面的某些实现方式中,还包括在装置包括第一旋转装置和第二旋转装置的情况下,第一旋转装置具体用于驱动n个研磨组件以待研磨平面为中心,沿第一方向旋转;第二旋转装置具体用于驱动固定装置以待研磨平面为中心,沿第二方向旋转,其中,第一方向不同于所述第二方向;或者,在装置包括第一旋转装置和第二旋转装置的情况下,第一旋转装置具体用于驱动n个研磨组件以待研磨平面为中心,以第一速率旋转;第二旋转装置具体用于驱动固定装置以待研磨平面为中心,以第二速率旋转,其中第一速率不同于所述第二速率。
通过对不同旋转方向和旋转速率的设置,可以使得该研磨晶圆的装置灵活改变研磨组件与固定组件之间产生相对运动的方式,以符合不同情况下该研磨晶圆的装置对于不同组件的产生相对运动的需求。
结合第一方面,在第一方面的某些实现方式中,研磨区域包括用于将废液从研磨区域排除的废液排除部件。
研磨区域的沟槽主要用于在研磨时排出研磨过程中产生的研磨副产物(如废液等),从而可以减少过多的研磨副产物残留在研磨区域中对晶圆造成损伤。
结合第一方面,在第一方面的某些实现方式中,n个研磨组件包括:垫圈,所述垫圈位于所述研磨组件靠近晶圆的一侧。
通过在研磨组件靠近晶圆的一侧设置垫圈,研磨时可以减少研磨时产生的副产物,例如研磨废液和研磨残留物,与晶圆的非边缘区域相接触,从而起到保护晶圆的中心区域或其他组件不被研磨副产物所污染的作用。
结合第一方面,在第一方面的某些实现方式中,固定装置包括顶部固定装置和底部固定装置。
通过顶部固定装置和底部固定装置的共同作用,晶圆的两侧得到了有效的夹紧与保护,使得研磨晶圆的装置在研磨晶圆边缘时研磨的稳定性得到了有效提升。
结合第一方面,在第一方面的某些实现方式中,顶部固定装置和/或底部固定装置包括用于固定晶圆的真空吸附结构。
通过该真空吸附结构,顶部固定装置和/或底部固定装置可以对晶圆进行吸附,并在实现对晶圆的固定时,减少晶圆被压碎的风险。
结合第一方面,在第一方面的某些实现方式中,还包括第二移动装置,第二移动装置用于移动固定装置,以改变固定装置与n个研磨组件的相对位置。
通过第二移动装置对固定装置的移动,改变了固定装置与研磨组件的相对位置,使得通过固定装置固定的晶圆与研磨组件之间的距离也可以得到调整,从而实现了研磨过程中对晶圆进行有效的传送。
第二方面,提供了一种研磨晶圆的方法,包括:使用固定装置固定晶圆;移动固定装置和/或研磨平台,使得固定在固定装置的晶圆的待研磨平面的第一区域与研磨区域接触,使得晶圆的待研磨平面的第二区域与n个研磨组件形成的封闭或半封闭空间相对设置,其中,研磨平台包括n个研磨组件,第二区域为以待研磨平面的中心为圆心半径为r的圆形区域,第一区域为第二区域的边界与晶圆的边界之间的区域,其中,r为大于0且小于待研磨平面半径的数;使得n个研磨组件和/或固定装置以待研磨平面的中心为旋转中心旋转。
通过上述研磨晶圆的方法,可以在研磨晶圆时,由于研磨平台的研磨组件所形成的封闭或半封闭空间的存在,使得研磨组件与晶圆边缘区域(即第一区域)进行接触并研磨,而与晶圆的非边缘区域(即第二区域)不进行接触。从而在不影响晶圆非边缘区域的情况下,使得晶圆边缘区域的铝残留得到了有效去除。
结合第二方面,在第二方面的某些实现方式中,还包括:通过第一移动装置沿第一平面的平行方向移动n个研磨组件,以改变n个研磨组件中的每个研磨组件到待研磨平面的中心的距离。
通过第一移动装置改变每个研磨组件到待研磨平面的中心的距离,可以对晶圆边缘区域的研磨距离进行调整,从而实现对晶圆研磨面积的控制。此外,当采用不同尺寸的晶圆进行研磨时,通过改变研磨组件到待研磨平面的中心的距离,仍然可以使得研磨组件仅对晶圆边缘区域进行研磨。
结合第二方面,在第二方面的某些实现方式中,使得n个研磨组件和/或固定装置以待研磨平面的中心为旋转中心旋转,包括:通过第一旋转装置驱动n个研磨组件以待研磨平面的中心为旋转中心旋转和/或通过第二旋转装置驱动固定装置以待研磨平面的中心为旋转中心旋转。
通过旋转装置驱动研磨组件和/或固定装置的旋转,使得晶圆可以与研磨平台产生相对运动,从而实现对晶圆的研磨,有利于研磨的均一性和稳定性。
结合第二方面,在第二方面的某些实现方式中,通过第一旋转装置驱动n个研磨组件以待研磨平面的中心为旋转中心旋转和/或通过第二旋转装置驱动固定装置以待研磨平面的中心为旋转中心旋转,包括:启动第一旋转装置以驱动n个研磨组件以待研磨平面为中心沿第一方向旋转,并启动第二旋转装置,以驱动固定装置以待研磨平面为中心沿第二方向旋转,其中第一方向不同于第二方向;或者,启动第一旋转装置,以驱动n个研磨组件以待研磨平面为中心以第一速率旋转,并启动第二旋转装置,以驱动固定装置以待研磨平 面为中心以第二速率旋转,其中第一速率不同于第二速率。
通过对不同旋转方向和旋转速率的设置,可以灵活改变研磨组件与固定组件之间产生相对运动的方式,从而使得不同组件在不同情况下的所产生相对运动的需求都可以得到满足。
结合第二方面,在第二方面的某些实现方式中,使用固定装置固定晶圆包括:对固定装置与晶圆之间的密闭空间进行抽真空。
通过对固定装置与晶圆之间的密闭空间进行抽真空,可以使得顶部固定装置和/或底部固定装置对晶圆进行吸附,并在实现对晶圆的固定时,减少晶圆被压碎的风险。
结合第二方面,在第二方面的某些实现方式中,移动所述固定装置和/或研磨平台包括:通过第二移动装置移动固定装置,以改变固定装置与n个研磨组件的相对位置。
通过第二移动装置驱动固定装置进行移动,可以改变固定装置与研磨组件的相对位置,使得通过固定装置固定的晶圆与研磨组件之间的距离也可以得到调整,从而实现了研磨过程中对晶圆进行有效的传送。
基于上述技术方案,本申请实施例的研磨晶圆的装置和方法,通过仅对晶圆边缘进行研磨,从而可以在不影响晶圆内部其他区域的薄膜研磨厚度的基础上,去除晶圆边缘区域的铝残留,减少了因为晶圆边缘区域的铝残留而引起的各种缺陷问题。
附图说明
图1是根据本申请实施例的研磨晶圆的装置的示意性结构图。
图2是根据图1所示的装置中的固定装置的示意性结构图。
图3是根据图1中固定在固定装置中的晶圆的示意性结构图。
图4是根据图1所示的装置中的研磨组件的示意性结构图。
图5是根据本申请实施例的待研磨平面的示意性结构图。
图6是根据本申请实施例的另一个研磨晶圆的装置的示意性结构图。
图7是根据本申请实施例的另一个研磨晶圆的装置的示意性结构图。
图8是根据本申请实施例的一个研磨组件的示意性结构框图。
图9是根据本申请实施例的另一个研磨组件的示意性俯视图。
图10是根据本申请实施例的研磨组件呈等角度阵列排布的示意性俯视图。
图11是根据本申请实施例的一个研磨晶圆的装置的示意性俯视图。
图12是根据本申请实施例的另一个研磨晶圆的装置的示意性俯视图。
图13是根据本申请实施例的另一个研磨晶圆的装置的示意性俯视图。
图14是根据本申请实施例的另一个研磨晶圆的装置的示意性俯视图。
图15是根据本申请实施例的另一个研磨晶圆的装置的示意性俯视图。
图16是根据本申请实施例的包含梯形研磨组件的研磨晶圆的装置的示意性俯视图。
图17是根据本申请实施例的一个研磨组件中沟槽的示意性截面图。
图18是根据本申请实施例的顶部固定装置和底部固定装置的示意性结构框图。
图19为根据本申请实施例的一个底部固定装置的示意性结构框图。
图20是根据本申请实施例的仅研磨组件旋转的示意性俯视图。
图21是根据本申请实施例的仅固定装置旋转的示意性俯视图。
图22是根据本申请实施例的固定装置和研磨组件同向旋转的示意性俯视图。
图23是根据本申请实施例的固定装置和研磨组件异向旋转的示意性俯视图。
图24是根据本申请实施例的另一个研磨晶圆的装置的示意性结构图。
图25是根据本申请实施例的一种研磨晶圆的方法的示意性流程图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例中的术语“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本申请期望的主要应用场景是化学机械研磨领域,主要是通过化学机械研磨装置对晶圆的表面进行研磨,从而去除晶圆表面的残留物;然而,本申请的装置还可以用于研磨其他材料或去除其他残留物等。下文中将以通过化学机械研磨去除晶圆表面的残留物为例进行说明,但本申请并不限于此,本申请还可以应用于其它领域。
图1示出了根据本申请实施例的研磨晶圆的装置的示意性结构图。如图1所示,根据本申请实施例的研磨晶圆的装置100包括固定装置110。研磨晶圆的装置100还包括研磨平台。该研磨平台包括研磨组件130。如图1所示的装置100的固定装置110固定有晶圆140。
下面将结合图2至图4对图1中研磨晶圆的装置进行阐述。
图2是根据图1所示的装置100中的固定装置110的示意性结构图。如图2所示,固定装置110可以用于固定晶圆140。
在一些实施例中,固定装置110固定晶圆140的方式可以为真空吸附固定。
在另一些实施例中,固定装置110固定晶圆140的方式还可以为压合固定。
图3是根据图1中固定在固定装置110中的晶圆140的示意性结构图。如图3所示,晶圆140包括待研磨平面141和固定平面142。其中,待研磨平面141与固定平面142的中心可以沿y方向位于同一轴线上。固定装置110通过固定平面142固定晶圆140。
例如,如果固定装置110是通过真空吸附的方式固定晶圆140,那么固定装置110的底面(即相对于固定平面142的一面)可以设置有吸盘,吸盘中心有通孔。抽真空装置与该通孔连接。该抽真空装置可以通过该通孔将吸盘内抽真空,以固定晶圆140。
又如,如果固定装置110是通过压合的方式固定晶圆140,那固定装置110的底面(即相对于固定平面142的一面)可以设置有橡胶垫圈。固定装置110可以通过压合的方式使用橡胶垫圈与晶圆140相接触,并使得晶圆140与研磨组件130相接触并实现对晶圆的固定。
图4是根据图1所示的装置100中的研磨组件130的示意性结构图。如图4所示,研磨组件130的第一平面131中包括研磨区域133。如图4所示的研磨组件130包括通孔132,通孔132靠近晶圆一侧的开口为圆形。此时,通孔132所占据的空间即为圆柱形的封闭空间。
通过调整上述固定装置110和/或研磨组件130的位置,被固定的晶圆140可以与研磨组件相接触,因此,待研磨平面141的部分区域可以与研磨区域133相接触,而待研磨平面141的另一部分区域位于通孔132的上方,与通孔132所占据的封闭空间呈相对分布,并且不与研磨区域133相接触。因此,待研磨平面141位于通孔132上方的区域不会被研磨,而只有与研磨区域133接触的区域会被研磨。为了便于描述,可以将待研磨平面141与通孔132相对设置的区域(即不会被研磨的区域)称为第一区域,将与研磨区域133接触的区域称为第二区域。
图5是根据本申请实施例的待研磨平面141的示意性结构图。如图5所示,待研磨平面141包括第一区域144和第二区域143。第一区域144与研磨区域相接触,第二区域143与n个研磨组件形成的封闭或半封闭空间相对设置,且第一区域为所述第二区域的边界与所述晶圆的边界之间的区域。其中,第二区域为以所述待研磨平面的中心为圆心半径为r的圆形区域,第一区域144是以r为内圆半径,晶圆半径R为外圆半径的环形区域。r为大于0且小于所述待研磨平面半径的数,R为大于r的正数。换句话说,第一区域是晶圆的环形边缘。因此,第一区域也可以称为边缘区域。相对地,第二区域可以称为是中心区域。
在一些实施例中,R与r之间的差值要大于0且小于等于3mm。
在一些实施例中,对晶圆140进行的研磨可以是通过固定装置110和研磨组件130沿轴向进行相对旋转,晶圆140上待研磨平面141中的边缘区域144可以与研磨组件130进行接触并产生相对旋转,并在研磨液的作用下进行研磨。其中,带动固定装置110和/或研磨组件130进行旋转的旋转装置可以为电机,为了便于理解固定装置和研磨组件的关系,本申请实施例中没有示出带动旋转的旋转装置。
本申请实施例的研磨晶圆的装置,能够在不影响晶圆内部区域的情况下,可以对晶圆边缘处的金属研磨进行控制,有效去除晶圆边缘的铝残留,从而解决了晶圆边缘处铝残留导致的各种缺陷问题。
下面将结合本申请实施例对研磨晶圆的装置以及各个部件进行具体的阐述。为了便于描述,后续研磨组件的第一平面的所有区域都是研磨区域。
图6是根据本申请实施例的另一个研磨晶圆的装置的示意性结构图,如图6所示,该研磨平台包含环形结构的研磨组件630,且固定装置位于环形结构内部。其中,晶圆640的待研磨平面的中心区域642位于环形结构的研磨组件630的上侧,与环形结构的研磨组件630内部通孔所占据的封闭空间相对应,呈上下相对设置。第一平面为研磨时晶圆640与研磨组件630相接触的区域。此外,固定装置可以由两部分构成,包括顶部固定装置611和底部固定装置612,且顶部固定装置611可以与底部固定装置612位于同一轴线上且呈x轴对称分布。其中,顶部固定装置611固定晶圆的方式与图1所示的固定装置110固定晶圆的方式相同,研磨组件630与图1中的研磨组件130相同,为了简洁,在此不再赘述。
在一些实施例中,底部固定装置612固定晶圆640的方式可以与顶部固定装置611相同,两者共同通过真空吸附的方式固定晶圆640。
在另一些实施例中,底部固定装置612还可以采用压合的方式且顶部固定装置611采用真空吸附的方式共同对晶圆640进行固定,本申请实施例对此不作限定。
通过顶部固定装置611和底部固定装置612共同作用可以更好地固定晶圆640,从而实现对晶圆640的固定和保护。
此外,图7是根据本申请实施例的又一个研磨晶圆的装置的示意性结构图,如图7所示,该研磨平台还可以包含支撑结构751、支撑结构752(未示出)和支撑结构753,为研磨平台在研磨时提供平稳良好的支撑。
应理解,本申请实施例仅以图6和图7中研磨晶圆的装置600和700进行为例进行说明,该研磨晶圆的装置600和700不应对本申请构成任何限定。
此外,顶部固定装置和底部固定装置在共同固定晶圆时,还可以与研磨平台之间通过产生相对运动的方式来对晶圆进行研磨,例如,由顶部固定装置和底部固定装置在共同晶圆中的待研磨平面的边缘区域和研磨区域可以在研磨时可以进行接触,并且两个区域可以产生相对旋转,从而对晶圆边缘的研磨区域进行研磨。
在本申请实施例中,研磨平台可以包含n个研磨组件,其中,n为大于等于1的正整数。
具体地,当n=1时,研磨平台只包含一个研磨组件。
图8是根据本申请实施例的一个研磨组件的示意性结构框图,如图8所示,该研磨平台可以包含一个环状结构的研磨组件831,该研磨组件831内部通孔或盲孔832的形状为圆形。此时,该研磨组件831内部的通孔832所占据的空间即为封闭空间。此外,该研磨平台还可以包含支撑结构851、852和853,通过使用上述三个支撑结构,可以在研磨时保证研磨平台的稳定性。
在一些实施例中,研磨平台的支撑结构还可以为第二移动装置。其中,第二移动装置可以具备升降功能,通过该升降功能,研磨平台可以灵活地改变平台与晶圆之间的相对高度。
在一些实施例中,研磨平台的支撑结构还可以沿同一轴线进行旋转,并带动研磨平台进行旋转,使得研磨平台可以与晶圆产生相对运动,从而实现对晶圆的研磨。
应理解,本申请实施例仅以研磨平台具备三个支撑结构为例进行说明,研磨平台还可以包含更多的支撑结构,支撑结构还可以同时具备上述的升降和旋转等功能,本申请对此不作限定。
在一些实施例中,该研磨组件831内部通孔或盲孔的形状832还可以为等效圆形,例如正多变形。如图9所示,图9是根据本申请实施例的另一个研磨组件的示意性俯视图。
该研磨组件931的内部通孔或盲孔932的形状为正六边形,此时,待研磨平面的边缘区域的最大内圆半径r为该正六边形盲孔932的最大内切圆的半径,待研磨平面的边缘区域的最小外圆半径R为该研磨组件931的最小外接圆半径。此时,研磨组件931的内部通孔或盲孔932所占据的封闭空间为正六边形的封闭空间。当固定装置和/或研磨组件931进行相对运动时,晶圆边缘的研磨区域的形状也是圆环形,因此,内部通孔或盲孔的形状为等效圆形时的研磨区域的形状可以与形状为圆形时相似。
通过使用内部空洞为圆形或等效圆形结构的研磨组件,可以确保晶圆在不同方向上的受力均匀,保证研磨的均一性和稳定性。
当n>1时,研磨平台包含多个研磨组件,该n个研磨组件可以等角度阵列排布,并同时与晶圆相接触,使得晶圆在不同方向上的受力均匀。
其中,等角度阵列排布为任意两个相邻的研磨组件的中心到半封闭空间的中心之间连线所形成的夹角相同。以图10为例,图10是根据本申请实施例的研磨组件呈等角度阵列排布的示意性俯视图。如图10所示,研磨组件1033的中心和研磨组件所构成的半封闭空间的中心连线1001,研磨组件1034的中心和研磨组件所构成的半封闭空间的中心连线1002,研磨组件1035的中心和研磨组件所构成的半封闭空间的中心连线1003,以及研磨组件1036的中心和研磨组件所构成的半封闭空间的中心连线1004,该四条相邻研磨组件的中心连线之间的夹角相同。即中心连线1001与中心连线1002之间的夹角,中心连线1002与中心连线1003之间的夹角,中心连线1003与中心连线1004之间的夹角以及中心连线1004与中心连线1001之间的夹角的角度相同。
应理解,本申请实施例仅以该研磨晶圆的装置具有4个研磨组件时为例进行说明,当该研磨晶圆的装置具有高于1个研磨组件时同样适用该等角度阵列排布,本申请实施例对此不作限定。
图11是根据本申请实施例的一个研磨晶圆的装置的示意性俯视图。如图11所示的研磨晶圆的装置1100包括固定装置1110,固定装置1110的具体功能和结构与固定装置1110相同,为了简洁,在此就不再赘述。此时,待研磨平面的边缘区域的最小内圆半径r为四个研磨组件的最大内切圆半径,最大外圆半径R为四个研磨组件的最小外接圆半径。
装置1100还包括四个扇环形的研磨组件1133、研磨组件1134、研磨组件1135和研磨组件1136,该四个扇环形的研磨组件的内侧所构成的空间为半封闭空间,且该四个扇环形的研磨组件可以沿该半封闭空间的中心呈等角度阵列排布。
应理解,本申请实施例仅以四个扇环形的研磨组件为例进行说明,本申请实施例还可以包含其他数量的研磨组件,本申请实施例对此不作限定。
在一些实施例中,如图11所示的扇环形研磨组件的个数还可以发生变化,如图12至图15所示。
图12是根据本申请实施例的另一个研磨晶圆的装置的示意性俯视图。此时,待研磨平面的边缘区域的最小内圆半径r为一个研磨组件的最大内切圆半径,最大外圆半径R为一个研磨组件的最小外接圆半径。
如图12所示的研磨平台可以包含如图11所示的四个扇环形研磨组件中的任意一个,例如,研磨组件1133,通过单个扇环形研磨组件,可以实现对晶圆边缘的研磨。
图13是根据本申请实施例的另一个研磨晶圆的装置的示意性俯视图。此时,待研磨平面的边缘区域的最小内圆半径r为同侧的两个研磨组件的最大内切圆半径,最大外圆半径R为同侧的两个研磨组件的最小外接圆半径。
如图13所示的研磨平台可以包含如图11所示的四个扇环形研磨组件中的处于同侧的两个扇环形研磨组件,例如,研磨组件1133和研磨组件1134,通过同侧双扇环形研磨组件,可以实现比单扇环形研磨组件更好的研磨效果。
图14是根据本申请实施例的另一个研磨晶圆的装置的示意性俯视图。此时,待研磨 平面的边缘区域的最小内圆半径r为对侧的两个研磨组件的最大内切圆半径,最大外圆半径R为对侧的两个研磨组件的最小外接圆半径。
如图14所示的研磨平台可以包含如图11所示的四个扇环形研磨组件中的处于对侧的两个扇环形研磨组件,例如,研磨组件1133和研磨组件1135,通过对侧双扇环形研磨组件,可以在晶圆的受力相对均匀的情况下,实现较为良好的研磨效果。
图15是根据本申请实施例的另一个研磨晶圆的装置的示意性俯视图。此时,待研磨平面的边缘区域的最小内圆半径r为三个研磨组件的最大内切圆半径,最大外圆半径R为三个研磨组件的最小外接圆半径。
如图15所示的研磨平台可以包含如图10所示的四个扇环形研磨组件中的任意三个,例如,研磨组件1133、研磨组件1134和研磨组件1135。通过三扇环形研磨组件,可以在晶圆的受力相对均匀的情况下,实现比双扇环形研磨组件更好的研磨效果。
在另一些实施例中,如图11至图15所示的研磨组件的形状还可以为其他形状,例如,梯形或矩形等。
下面将以图16中的梯形研磨组件为例进行说明,图16是根据本申请实施例的包含梯形研磨组件的研磨晶圆的装置的示意性俯视图,如图16所示,如图16所示的研磨晶圆的装置1600也包括固定装置1610,固定装置1610的具体功能和结构与固定装置110相同,为了简洁,在此就不再赘述。此时,待研磨平面的边缘区域的最小内圆半径r(未示出)为六个梯形研磨组件的最大内切圆半径,最大外圆半径R(未示出)为六个梯形研磨组件的最小外接圆半径。
该固定装置1610四周为六个等角度阵列排布的梯形研磨组件1639、研磨组件16310、研磨组件16311、研磨组件16312、研磨组件16313和研磨组件16314,该六个梯形研磨组件在研磨时可以与固定装置1610产生相对旋转,使得晶圆边缘的研磨区域同样为环形,从而保证了研磨的均匀性与稳定性。
应理解,如图16所示的六个研磨组件同样可以如图11至图15所示只采用六个研磨组件中的一个或多个研磨组件进行研磨,并实现相近的研磨效果。
在一些实施例中,该研磨组件中靠近晶圆的一侧的轮廓形状除了为弧形外,还可以为直线,本申请实施例对此不作限定。
在一些实施例中,上述图11至图16中的不同数量、不同形状的研磨组件的位置还可以通过第一移动装置进行调整。通过第一移动装置可以沿所述第一平面的平行方向移动以改变n个研磨组件中的每个研磨组件到所述待研磨平面的中心的距离,使得该研磨平台与晶圆在研磨时的研磨区域可以进行调整,从而实现对研磨面积的控制。
在一些实施例中,研磨组件还可以包括垫圈,该垫圈可以位于该研磨组件中与固定装置相对的内侧的侧面上。该垫圈的高度与该研磨组件中研磨区域的高度相同。该垫圈在研磨时可以与晶圆相接触,减少研磨时产生的副产物,例如研磨废液和研磨残留物,与晶圆的非研磨区域相接触,从而可以保护晶圆的内部有效区域(即晶圆的非边缘区域)不被研磨副产物所污染。以图11为例,如图11所示的研磨组件1133还包含垫圈1137,该垫圈1137可以位于研磨组件1133中与固定装置1110相对的内侧的侧面上,垫圈1137的高度与研磨组件1133中研磨区域的高度相同。
在一些实施例中,该研磨组件上还可以包括废液排除部件。其中,废液排除部件可以 是沟槽或通孔,还可以是沟槽和通孔,本申请实施例对此不作限定。
下面将以研磨组件的沟槽为例进行阐述。例如,图11所示的研磨组件1133上包括沟槽1138。图17是根据本申请实施例的一个研磨组件中沟槽的示意性截面图,如图17所示,研磨组件1733的研磨区域包含多条沟槽1738。该沟槽1738的凹陷部分的形状可以为矩形,且该沟槽1738可以贯穿研磨组件1733的侧边。
通过在研磨组件上设置沟槽,可以使得研磨组件在进行研磨时,研磨产生的副产物可以通过该沟槽排出研磨组件,从而可以减少过多的研磨副产物残留在研磨平台上对晶圆造成损伤。
应理解,本申请实施例中的沟槽凹陷部分的形状还可以为其他形状,例如锥形或拱形等,本申请对此不作限定。
还应理解,本申请实施例中的沟槽的数量还可以是为其他数量,本申请实施例中的沟槽在研磨组件上的形状除了为弧形和直线,还可以是其他形状,本申请对此不作限定。
在本申请实施例中,固定装置包含顶部固定装置和底部固定装置。
图18是根据本申请实施例的顶部固定装置和底部固定装置的示意性结构框图,如图18所示,顶部固定装置1811和底部固定装置1812共同作用于晶圆1840,起到了共同固定晶圆1840的作用。其中,顶部固定装置1811和底部固定装置1812两者的结构和材料可以相同,分布的位置可以为镜像对称分布。
通过顶部固定装置和底部固定装置的共同作用,晶圆得到了有效的夹紧与保护,使得该研磨晶圆的装置在研磨晶圆边缘时研磨的稳定性得到了有效提升。
下面将以底部固定装置为例对固定装置的结构进行阐述,图19为根据本申请实施例的一个底部固定装置的示意性结构框图,如图19所示,底部固定装置1900可以包含承托部件1913、第二移动装置1914和真空吸附结构1915。
其中,承托部件1913可以与晶圆进行接触,承载并覆盖晶圆的内部区域,并使得晶圆在固定时可以在各个方向上受力均匀,从而可以提高研磨的均一性和稳定性,第二移动装置1914可以为升降装置,带动底部固定装置1900进行升降移动。此外,第二移动装置还可以为带动底部固定装置1900进行升降和平移的移动装置,本申请对此不作限定。
应理解,承托部件1913还可以为其他形状如正棱柱或表面为等效圆形的其他柱体,本申请对此不做限定。
升降结构1914可以位于承托部件1913远离晶圆的一侧,并与所述承托部件1913相连接。该升降结构1914可以对承托部件1913起到支撑与稳定的作用,并带动承托部件1913进行升降移动,使得晶圆可以与研磨平台进行接触,并在整个研磨过程中得到有效的传送与位置调整。
在一些实施例中,该升降结构1914还可以是不具备升降功能的支撑结构,对承托部件1913仅起到支撑作用,本申请实施例对此不作限定。
应理解,本实施例仅以一个升降结构为例进行说明,且升降结构位于承托部件的中心位置,但本申请实施例不仅限于此,升降结构的数量可以为多个,升降结构的位置也可以在确保承载部件的支撑与稳定的情况下,分布在支撑结构的其他位置,本申请实施例对此不作限定。
真空吸附结构1915可以包含真空吸附孔1916和真空吸附气囊1917。其中,真空吸 附孔位于承托部件1913靠近晶圆的一侧,真空吸附气囊1917位于升降结构1914不与支撑结构1913接触的另一侧,所述真空吸附孔1916通过贯穿整个固定装置的真空吸附管路1915与所述真空吸附气囊1917相连接,并利用真空负压吸附所述晶圆。通过该真空吸附结构1915,底部固定装置1900可以对晶圆140进行吸附,并在实现对晶圆140的固定时,减少晶圆被压碎的风险。
在一些实施例中,该底部固定装置1900还可以具备旋转功能,通过底部固定装置1911的旋转,可以带动晶圆进行旋转,使得晶圆可以与研磨平台产生相对运动,实现对晶圆的研磨,并保证了研磨的均一性和稳定性。
以上以底部固定装置为例介绍了底部固定装置的结构。在一些实施例中,研磨晶圆的装置还可以包括顶部固定装置。
具体的,固定装置包括顶部固定装置和/或底部固定装置。其中,固定装置可以只包括顶部固定装置,固定装置也可以只包括底部固定装置,固定装置也可以包括顶部固定装置和底部固定装置。
此外,顶部固定装置也可以包括与底部固定装置相同的结构。换句话说,当底部固定装置包括真空吸附结构时,顶部固定装置也可以包括真空吸附结构。
在一些实施例中,可以是仅有顶部固定装置包含用于固定晶圆的真空吸附结构。
在另一些实施例中,还可以是仅有底部固定装置包含用于固定晶圆的真空吸附结构。
在另一些实施例中,还可以是顶部固定装置和底部固定装置都包含用于固定晶圆的真空吸附结构。
应理解,本申请实施例仅以底部固定装置1900为例进行说明,顶部固定装置除了可以具真空吸附结构外,也可以具备上述承托部件和升降结构,本申请实施例对此不作限定。
例如,在一些实施例中,底部固定装置可以包含承托部件、升降结构和真空吸附结构,顶部固定装置也可以包含承托部件、升降结构和真空吸附结构。
在另一些实施例中,底部固定装置可以包含承托部件、升降结构和真空吸附结构,顶部固定装置可以只包含承托部件、升降结构。
在另一些实施例中,底部固定装置可以包含承托部件、升降结构和真空吸附结构,顶部固定装置可以只包含承托部件。
在另一些实施例中,底部固定装置可以只包含承托部件,顶部固定装置可以包含承托部件、升降结构和真空吸附结构。
在另一些实施例中,底部固定装置可以只包含承托部件和升降结构,顶部固定装置可以包含承托部件、升降结构和真空吸附结构。
在另一些实施例中,底部固定装置可以只包含承托部件和真空吸附结构,顶部固定装置可以包含承托部件、升降结构和真空吸附结构。
上述部分描述了研磨晶圆的装置中各个部分的组件结构,下面将阐述研磨时固定装置与研磨平台所进行的相对旋转。
n个研磨组件和/或固定装置以待研磨平面的中心为旋转中心旋转,包括:在一些实施例中,n个研磨组件以所述待研磨平面的中心为旋转中心旋转,固定装置保持静止。
在另一些实施例中,固定装置以所述待研磨平面的中心为旋转中心旋转,n个研磨组件保持静止。
在另一些实施例中,n个研磨组件和固定装置都以所述待研磨平面的中心为旋转中心旋转。
此外,研磨晶圆的装置可以通过第一旋转装置和第二旋转装置中的至少一个来驱动研磨组件进行旋转。其中,第一旋转装置用于驱动n个研磨组件以待研磨平面的中心为旋转中心旋转,第二旋转装置用于驱动固定装置以待研磨平面的中心为旋转中心旋转。
在一些实施例中,上述研磨晶圆的装置还可以只包括第一旋转装置。第一旋转装置可以驱动n个研磨组件以待研磨平面为中心,沿第一方向旋转。固定装置保持静止。
在另一些实施例中,上述研磨晶圆的装置还可以只包括第二旋转装置。第二旋转装置可以驱动固定装置以待研磨平面为中心,沿第一方向旋转。n个研磨组件保持静止。
在另一些实施例中,上述研磨晶圆的装置还可以包括第一旋转装置和第二旋转装置。第一旋转装置可以驱动n个研磨组件以待研磨平面为中心,沿第一方向旋转。第二旋转装置可以驱动固定装置以待研磨平面为中心,沿第二方向旋转。其中第一旋转方向不同于第二旋转方向。
在另一些实施例中,上述研磨晶圆的装置还可以包括第一旋转装置和第二旋转装置。第一旋转装置可以驱动n个研磨组件以待研磨平面为中心,沿第一方向以第一速率旋转。第二旋转装置可以驱动固定装置以待研磨平面为中心,沿第一方向以第二速率旋转。其中第一速率不同于第二速率。
通过对不同旋转方向和旋转速率的设置,可以使得该研磨晶圆的装置灵活改变研磨组件与固定组件之间产生相对运动的方式,以符合不同情况下该研磨晶圆的装置对于不同组件的产生相对运动的需求。
具体地,下面将结合图20至图23以n=1时图6中的研磨组件630位于晶圆的待研磨平面的中心区域时的相对旋转进行说明。
应理解,当n>1时,n个研磨组件和固定装置的相对运动方式可以与n=1时相同,本申请实施例对此不作限定。
图20是根据本申请实施例的仅研磨组件旋转的示意性俯视图,如图20所示,研磨组件2030可以在第一旋转装置(未示出)的驱动下以待研磨平面的中心为旋转中心进行顺时针旋转(即沿第一方向旋转),所述固定装置2010可以保持静止。
应理解,研磨组件2030还可以以待研磨平面的中心为旋转中心进行逆时针旋转(即沿第二方向旋转),本申请对此不作限定。
图21是根据本申请实施例的仅固定装置旋转的示意性俯视图,如图21所示,固定装置2110可以在第二旋转装置(未示出)的驱动下以待研磨平面的中心为旋转中心进行顺时针旋转(即沿第一方向旋转),所述研磨组件2130可以保持静止。
应理解,固定装置2110还可以以待研磨平面的中心为旋转中心进行逆时针旋转(即沿第二方向旋转),本申请对此不作限定。
图22是根据本申请实施例的固定装置和研磨组件同向旋转的示意性俯视图,如图22所示,固定装置2210可以在第一旋转装置(未示出)的驱动下以待研磨平面的中心为旋转中心进行顺时针旋转(即沿第一方向旋转),研磨组件2230也可以在第二旋转装置(未示出)的驱动下以待研磨平面的中心为旋转中心进行顺时针旋转(即沿第一方向旋转),但固定装置2110的旋转速率为第一速率,研磨组件2230的旋转速率为第二速率,且第一 速率与第二速率不相同。
应理解,固定装置2210和研磨组件2230还可以以待研磨平面的中心为旋转中心进行逆时针旋转(即沿第二方向旋转),且两者的旋转速率不相同,本申请对此不作限定。
图23是根据本申请实施例的固定装置和研磨组件异向旋转的示意性俯视图,如图23所示,固定装置2310可以在第一旋转装置(未示出)的驱动下以待研磨平面的中心为旋转中心进行顺时针旋转(即沿第一方向旋转),研磨组件2330可以在第二旋转装置(未示出)的驱动下以待研磨平面的中心为旋转中心进行逆时针旋转(即沿第二方向旋转)。
应理解,固定装置2310还可以以待研磨平面的中心为旋转中心进行逆时针旋转(即沿第二方向旋转),研磨组件2330可以以待研磨平面的中心为旋转中心进行顺时针旋转(即沿第一方向旋转),本申请对此不作限定。
通过上述固定装置2310与研磨组件2330之间的相对运动,可以使得晶圆边缘在研磨时在受力均匀的情况下,研磨的均一性和稳定性得到了有效提升。
应理解,本申请实施例示出的固定装置与研磨平台之间的相对位置仅仅是示意性的,本申请对固定装置与研磨平台的设置位置可以不作限定。在一些其他的实施例中,固定装置与研磨平台之间的相对位置可以为其他位置。例如,固定装置可以设置在研磨平台之外,如图24所示,图24示出了根据本申请实施例的另一个研磨晶圆的装置的示意性结构图。图24中的固定装置2410位于研磨平台2430之外,但晶圆2440的待研磨平面的边缘区域与研磨平台2430上的研磨区域可以形成部分接触,使得晶圆2440仍然可以通过研磨平台2440来对晶圆边缘区域进行研磨。
本申请实施例的研磨晶圆的装置,运用了新的机械研磨装置,使用固定装置固定所述晶圆,能够对晶圆进行夹紧和保护,并通过晶圆边缘部分与研磨平台进行接触和研磨,使得晶圆边缘的铝残留得到了有效的去除,从而减少了因晶圆边缘的铝残留而导致的各类缺陷,例如,颗粒物缺陷、晶圆边缘薄膜剥落缺陷和机械划伤缺陷等。
此外,上述部分介绍了本申请实施例中对于通过化学机械研磨的装置来实现对晶圆边缘的铝残留的去除,本申请实施例还可以与其他技术相结合共同用于去除晶圆边缘的铝残留,例如,本申请实施例还可以与晶圆边缘刻蚀(bevel etch)技术相结合,在有源区回路(active area loop,AA loop)工艺中加入晶圆边缘刻蚀工艺,使得铝在接触孔回路(contact loop)工艺中被内介电层(inter layer dielectric,ILD)保护住;或者,在金属栅回路(metal gate)工艺中加入晶边刻蚀工艺,刻蚀晶圆边缘的铝残留。
另一方面,本申请还提供了一种研磨晶圆的方法。
图25示出了根据本申请实施例的一种研磨晶圆的方法的示意性流程图,如图25所示,该方法包括以下步骤。
2510,使用固定装置固定晶圆。
2520,移动所述固定装置和/或研磨平台,使得固定在所述固定装置的所述晶圆的待研磨平面的第一区域与研磨区域接触,使得所述晶圆的待研磨平面的第二区域与n个研磨组件形成的封闭或半封闭空间相对设置。
2530,使得所述n个研磨组件和/或所述固定装置以所述待研磨平面的中心为旋转中心旋转。
其中,研磨平台可以包括n个研磨组件,第二区域为以所述待研磨区域为圆心、半径 为r的圆形区域,第一区域为第二区域的边界与晶圆的边界之间的区域,其中,r为大于0且小于待研磨平面半径的数。
在一些实施例中,步骤2520中的使用固定装置固定晶圆包括:通过如图19中所述的真空吸附结构对固定装置和晶圆之间的密闭空间进行抽真空。其中,真空吸附结构可以包含真空吸附孔和真空吸附气囊。其中,真空吸附孔通过贯穿整个固定装置的真空吸附管路与所述真空吸附气囊相连接,并利用真空负压吸附所述晶圆。通过该真空吸附结构,可以在实现对晶圆的固定时,减少晶圆被压碎的风险。
在一些实施例中,步骤2520中的移动所述固定装置和/或研磨平台包括:移动固定装置,研磨平台静止;移动研磨平台,固定装置静止;移动研磨平台和固定装置都进行移动。使得晶圆的待研磨平面的边缘区域与研磨组件的研磨区域相接触,为后续对晶圆的研磨提供基础。
其中,由n个研磨组件所构成的研磨平台可以在如图11至图16第一移动装置的驱动下沿上述第一平面的平行方向进行移动,从而可以改变n个研磨组件中的每个研磨组件到所述待研磨平面的中心的距离,使得该研磨平台与晶圆在研磨时的研磨区域可以进行调整,从而实现对研磨面积的控制。固定装置可以在如图8中所述的第二移动装置的驱动下进行移动。第二移动装置还可以为带动固定装置进行升降和平移的移动装置,使得固定装置与n个研磨组件之间的相对位置可以进行调整和改变。
在一些实施例中,步骤2530中到的使得所述n个研磨组件和/或所述固定装置以所述待研磨平面的中心为旋转中心旋转包括:研磨晶圆的装置可以通过第一旋转装置和第二旋转装置中的至少一个来驱动研磨组件进行如图20至图23中所述的方式进行旋转。其中,第一旋转装置用于驱动n个研磨组件以待研磨平面的中心为旋转中心旋转,第二旋转装置用于驱动固定装置以待研磨平面的中心为旋转中心旋转。
在一些实施例中,研磨晶圆的装置可以只启动第一旋转装置。第一旋转装置可以驱动n个研磨组件以待研磨平面为中心,沿第一方向旋转。固定装置保持静止。
在另一些实施例中,研磨晶圆的装置还可以只启动第二旋转装置。第二旋转装置可以驱动固定装置以待研磨平面为中心,沿第一方向旋转。n个研磨组件保持静止。
在另一些实施例中,上述研磨晶圆的装置还可以启动第一旋转装置和第二旋转装置。第一旋转装置可以驱动n个研磨组件以待研磨平面为中心,沿第一方向旋转。第二旋转装置可以驱动固定装置以待研磨平面为中心,沿第二方向旋转。其中第一旋转方向不同于第二旋转方向。
在另一些实施例中,研磨晶圆的装置还可以启动第一旋转装置和第二旋转装置。第一旋转装置可以驱动n个研磨组件以待研磨平面为中心,沿第一方向以第一速率旋转。第二旋转装置可以驱动固定装置以待研磨平面为中心,沿第一方向以第二速率旋转。其中第一速率不同于第二速率。
通过对不同旋转方向和旋转速率的设置,可以使得该研磨晶圆的装置灵活改变研磨组件与固定组件之间产生相对运动的方式,以符合不同情况下该研磨晶圆的装置对于不同组件的产生相对运动的需求。
应理解,根据本发明实施例的研磨晶圆的方法所采用的装置与上述实施例中的研磨晶圆的装置相对应,为了简洁,本申请在此不再赘述。
因此,本申请研磨晶圆的方法,可以通过对晶圆边缘部分与研磨平台进行接触和研磨,使得晶圆边缘的铝残留得到了有效的去除,从而减少了因晶圆边缘的铝残留而导致的各类缺陷。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (16)

  1. 一种研磨晶圆的装置,其特征在于,包括:研磨平台和固定装置;
    所述固定装置,用于固定晶圆;
    所述研磨平台包括n个研磨组件,其中,每个所述研磨组件的第一平面包括用于研磨所述晶圆的研磨区域,n为大于等于1的正整数;
    固定在所述固定装置的所述晶圆的待研磨平面的第一区域与所述研磨区域接触,所述晶圆的待研磨平面的第二区域与所述n个研磨组件形成的封闭或半封闭空间相对设置,其中,所述第二区域为以所述待研磨平面的中心为圆心半径为r的圆形区域,所述第一区域为所述第二区域的边界与所述晶圆的边界之间的区域,其中r为大于0且小于所述待研磨平面半径的数;
    所述n个研磨组件和/或所述固定装置以所述待研磨平面的中心为旋转中心旋转。
  2. 根据权利要求1所述的装置,其特征在于,
    当n=1时,所述研磨组件包含通孔或盲孔,所述通孔或所述盲孔靠近所述晶圆一侧的开口形状为圆形或多边形;
    当n>1时,所述n个研磨组件等角度阵列排布,靠近所述晶圆一侧的轮廓的形状为弧形或直线。
  3. 根据权利要求1或2所述的装置,其特征在于,还包括第一移动装置,所述第一移动装置用于沿所述第一平面的平行方向移动所述n个研磨组件,以改变所述n个研磨组件中的每个所述研磨组件到所述待研磨平面的中心的距离。
  4. 根据权利要求1至3中任一项所述的装置,其特征在于,还包括第一旋转装置和第二旋转装置中的至少一个,
    所述第一旋转装置用于驱动所述n个研磨组件以所述待研磨平面的中心为旋转中心旋转;
    所述第二旋转装置用于驱动所述固定装置以所述待研磨平面的中心为旋转中心旋转。
  5. 根据权利要求4所述的装置,其特征在于,在所述装置包括所述第一旋转装置和所述第二旋转装置的情况下,所述第一旋转装置具体用于驱动所述n个研磨组件以所述待研磨平面为中心,沿第一方向旋转;所述第二旋转装置具体用于驱动所述固定装置以所述待研磨平面为中心,沿第二方向旋转,其中所述第一方向不同于所述第二方向;或者,
    在所述装置包括所述第一旋转装置和所述第二旋转装置的情况下,所述第一旋转装置具体用于驱动所述n个研磨组件以所述待研磨平面为中心,以第一速率旋转;所述第二旋转装置具体用于驱动所述固定装置以所述待研磨平面为中心,以第二速率旋转,其中所述第一速率不同于所述第二速率。
  6. 根据权利要求1至5中任一项所述的装置,其特征在于,所述研磨区域包括用于将废液从所述研磨区域排除的废液排除部件。
  7. 根据权利要求1至6中任一项所述的装置,其特征在于,所述n个研磨组件包括垫圈,所述垫圈位于每个所述研磨组件靠近所述晶圆的一侧。
  8. 根据权利要求1至7中任一项所述的装置,其特征在于,所述固定装置包括顶部 固定装置和/或底部固定装置。
  9. 根据权利要求8所述的装置,其特征在于,所述顶部固定装置和/或所述底部固定装置包括用于固定所述晶圆的真空吸附结构。
  10. 根据权利要求1至9中任一项所述的装置,其特征在于,还包括第二移动装置,所述第二移动装置用于移动所述固定装置,以改变所述固定装置与所述n个研磨组件的相对位置。
  11. 一种研磨晶圆的方法,其特征在于,包括:
    使用固定装置固定晶圆;
    移动所述固定装置和/或研磨平台,使得固定在所述固定装置的所述晶圆的待研磨平面的第一区域与研磨区域接触,使得所述晶圆的待研磨平面的第二区域与n个研磨组件形成的封闭或半封闭空间相对设置,其中,所述研磨平台包括所述n个研磨组件,所述第二区域为以所述待研磨平面的中心为圆心半径为r的圆形区域,所述第一区域为所述第二区域的边界与所述晶圆的边界之间的区域,其中,r为大于0且小于所述待研磨平面半径的数;
    使得所述n个研磨组件和/或所述固定装置以所述待研磨平面的中心为旋转中心旋转。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    通过第一移动装置沿所述第一平面的平行方向移动所述n个研磨组件,以改变所述n个研磨组件中的每个所述研磨组件到所述待研磨平面的中心的距离。
  13. 根据权利要求11或12所述的方法,其特征在于,所述使得所述n个研磨组件和/或所述固定装置以所述待研磨平面的中心为旋转中心旋转,包括:
    通过第一旋转装置驱动所述n个研磨组件以所述待研磨平面的中心为旋转中心旋转和/或通过第二旋转装置驱动所述固定装置以所述待研磨平面的中心为旋转中心旋转。
  14. 根据权利要求13所述的方法,其特征在于,所述通过第一旋转装置驱动所述n个研磨组件以所述待研磨平面的中心为旋转中心旋转和/或通过第二旋转装置驱动所述固定装置以所述待研磨平面的中心为旋转中心旋转,包括:
    启动所述第一旋转装置以驱动所述n个研磨组件以所述待研磨平面为中心沿第一方向旋转,并启动所述第二旋转装置,以驱动所述固定装置以所述待研磨平面为中心沿第二方向旋转,其中所述第一方向不同于所述第二方向;或者,
    启动第一旋转装置,以驱动所述n个研磨组件以所述待研磨平面为中心以第一速率旋转,并启动所述第二旋转装置,以驱动所述固定装置以所述待研磨平面为中心以第二速率旋转,其中所述第一速率不同于所述第二速率。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述使用固定装置固定晶圆包括:
    对所述固定装置与所述晶圆之间的密闭空间进行抽真空。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述方法还包括:
    通过第二移动装置移动所述固定装置,以改变所述固定装置与所述n个研磨组件的相对位置。
PCT/CN2021/134546 2021-11-30 2021-11-30 研磨晶圆的装置和方法 WO2023097488A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180099456.6A CN117501412A (zh) 2021-11-30 2021-11-30 研磨晶圆的装置和方法
PCT/CN2021/134546 WO2023097488A1 (zh) 2021-11-30 2021-11-30 研磨晶圆的装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/134546 WO2023097488A1 (zh) 2021-11-30 2021-11-30 研磨晶圆的装置和方法

Publications (1)

Publication Number Publication Date
WO2023097488A1 true WO2023097488A1 (zh) 2023-06-08

Family

ID=86611370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134546 WO2023097488A1 (zh) 2021-11-30 2021-11-30 研磨晶圆的装置和方法

Country Status (2)

Country Link
CN (1) CN117501412A (zh)
WO (1) WO2023097488A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048254A (en) * 1997-03-06 2000-04-11 Keltech Engineering Lapping apparatus and process with annular abrasive area
TW201836767A (zh) * 2017-03-31 2018-10-16 台灣積體電路製造股份有限公司 研磨頭及研磨半導體晶圓的背側的方法
TW201935542A (zh) * 2018-02-14 2019-09-01 台灣積體電路製造股份有限公司 研磨系統、晶圓夾持裝置及晶圓的研磨方法
CN111300259A (zh) * 2020-02-18 2020-06-19 北京芯之路企业管理中心(有限合伙) 一种碳化硅晶圆的研磨抛光装置与其制程方法
CN112497046A (zh) * 2020-11-26 2021-03-16 上海新昇半导体科技有限公司 晶圆边缘抛光设备及方法
CN113510609A (zh) * 2021-07-12 2021-10-19 长鑫存储技术有限公司 晶圆以及晶圆的处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048254A (en) * 1997-03-06 2000-04-11 Keltech Engineering Lapping apparatus and process with annular abrasive area
TW201836767A (zh) * 2017-03-31 2018-10-16 台灣積體電路製造股份有限公司 研磨頭及研磨半導體晶圓的背側的方法
TW201935542A (zh) * 2018-02-14 2019-09-01 台灣積體電路製造股份有限公司 研磨系統、晶圓夾持裝置及晶圓的研磨方法
CN111300259A (zh) * 2020-02-18 2020-06-19 北京芯之路企业管理中心(有限合伙) 一种碳化硅晶圆的研磨抛光装置与其制程方法
CN112497046A (zh) * 2020-11-26 2021-03-16 上海新昇半导体科技有限公司 晶圆边缘抛光设备及方法
CN113510609A (zh) * 2021-07-12 2021-10-19 长鑫存储技术有限公司 晶圆以及晶圆的处理方法

Also Published As

Publication number Publication date
CN117501412A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
TWI678750B (zh) 基板處理裝置及處理方法
TWI600078B (zh) 硏磨洗淨機構、基板處理裝置及基板處理方法
CN108705422B (zh) 真空吸附垫和基板保持装置
US6193586B1 (en) Method and apparatus for grinding wafers using a grind chuck having high elastic modulus
TWI577498B (zh) 基板研磨裝置
WO2023097488A1 (zh) 研磨晶圆的装置和方法
KR102523271B1 (ko) 연마 패드, 연마 장치 및 실리콘 웨이퍼를 연마하기 위한 방법
JP6345988B2 (ja) 基板処理装置
JPH0917768A (ja) 半導体ウェハシールエッチング装置
TW201347016A (zh) 基板處理刷具及基板處理裝置以及基板處理方法
JP6721967B2 (ja) バフ処理装置および基板処理装置
JP2010080840A (ja) 回転式処理装置、処理システム及び回転式処理方法
US20220203411A1 (en) Substrate cleaning device and method of cleaning substrate
TWI801516B (zh) 基板之翹曲修正方法、電腦記錄媒體及基板之翹曲修正裝置
CN111037457B (zh) 晶圆的研磨装置及研磨方法
KR100618868B1 (ko) 스핀 장치
KR102342472B1 (ko) 약액 배출 장치 및 약액 배출 방법
WO2019208265A1 (ja) 基板処理装置および基板処理方法
KR101125740B1 (ko) 웨이퍼 연마 장치
TW202018794A (zh) 基板處理系統及基板處理方法
WO2022260128A1 (ja) 基板処理システム、及び基板処理方法
TW201932209A (zh) 基板處理方法
JP7145283B2 (ja) バフ処理装置および基板処理装置
CN117245542B (zh) 晶圆双面抛光设备及工艺
KR101123968B1 (ko) 정전척 재생 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965927

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180099456.6

Country of ref document: CN