WO2023095869A1 - ポリイミドフィルムの接着方法、接着装置、及びポリイミドフィルムの接着部を有する接着構造体 - Google Patents

ポリイミドフィルムの接着方法、接着装置、及びポリイミドフィルムの接着部を有する接着構造体 Download PDF

Info

Publication number
WO2023095869A1
WO2023095869A1 PCT/JP2022/043521 JP2022043521W WO2023095869A1 WO 2023095869 A1 WO2023095869 A1 WO 2023095869A1 JP 2022043521 W JP2022043521 W JP 2022043521W WO 2023095869 A1 WO2023095869 A1 WO 2023095869A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
polyimide film
bonding
film
films
Prior art date
Application number
PCT/JP2022/043521
Other languages
English (en)
French (fr)
Inventor
大介 山口
あかり 長崎
遼 森垣
崚太郎 上村
和貴 高井
陽祐 加藤
Original Assignee
国立大学法人 岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 岡山大学 filed Critical 国立大学法人 岡山大学
Publication of WO2023095869A1 publication Critical patent/WO2023095869A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"

Definitions

  • the present invention relates to a polyimide film bonding method, a bonding apparatus, and a bonded structure having a polyimide film bonding portion.
  • Polyimide is an organic polymer obtained by polycondensation of acid dianhydride and diamine.
  • aromatic polyimide "KAPTON (registered trademark)" developed by DuPont has been known for a long time.
  • Aromatic polyimide containing KAPTON has high heat resistance and insulating properties, and is used as a material for articles used in extreme environments that are difficult for humans to access, such as space environments, high temperature environments, cryogenic environments, and acidic/alkaline solutions. , has attractive properties.
  • aromatic polyimide generally melts at a very high temperature, it often has a melting point close to the thermal decomposition temperature, or it is difficult to specify the melting point (in this specification, "close to the thermal decomposition temperature A polyimide that has a melting point or whose melting point is difficult to specify is referred to as a "difficult-melting polyimide"). Therefore, even if such polyimide is heated to be melted, holes are formed or the polyimide is carbonized, so it was thought that bonding (welding) by heating could not be performed.
  • difficult-to-melt polyimide films films made of difficult-to-melt polyimide (hereafter simply referred to as difficult-to-melt polyimide films). It has been.
  • adhesives when adhesives are used, adhesives generally have lower heat resistance than refractory polyimides, thus reducing the heat resistance, which is one of the attractive properties of refractory polyimides. was dependent on the performance of the adhesive. In addition, there is a strong tendency for the adhesive to thicken the bonded portion, which causes a problem of increased mass.
  • Non-Patent Document 1 and Non-Patent Document 2 a method of subjecting a polyimide film to pretreatment by plasma irradiation has been studied. This is a method of irradiating plasma on both surfaces to be welded of a polyimide film to be bonded to activate the surfaces of the two surfaces to be welded, followed by thermal welding. Since activation by plasma cannot be maintained for a long time, bonding is performed by repeating a partial irradiation process and a welding process. However, there are problems such as the need for dustproof measures such as clean rooms, the increase in the number of man-hours required for bonding, and the decrease in productivity. Since there is also a problem that it is difficult to increase the area, it is currently not used except for special purposes.
  • thermoplastic segment into aromatic polyimide to lower the glass transition temperature and melting point, thereby widening the temperature difference from the thermal decomposition temperature and enabling welding.
  • Patent Document 1 discloses a polyimide film bonding method in which a polyimide film having a specific repeating unit is heat-melted at 240°C to 430°C and pressure-bonded.
  • An object of the present invention is to provide a bonding method and a bonding apparatus capable of directly bonding a molten polyimide film, and a bonding structure having a bonding portion of a polyimide film.
  • the invention made to solve the above problems is to bring a hot plate into contact with a portion where two polyimide films are overlapped, so that when the polyimide films are bonded together, the heating temperature due to the contact of the hot plate is is 450° C. or higher, and the contact time between the polyimide film and the hot plate is 12 seconds or less.
  • Another invention that has been made to solve the above problems is to bring the conductive member and the polyimide film into contact with each other while applying pressure in advance so that they are in close contact with each other, and apply a voltage to the conductive member to A method for adhering polyimide films to each other, characterized in that the conductive member is used as the hot plate by instantaneously heating the conductive member.
  • Another invention made to solve the above problems is to irradiate a portion where two polyimide films are superimposed with a laser beam, so that when the polyimide films are bonded together, the lower surface of the polyimide film that is superimposed is adhered to a heat insulating material, and the upper surface of the polyimide film is irradiated with the laser beam.
  • difficult-to-melt polyimide films that have not undergone chemical modification such as the introduction of thermoplastic segments can be directly bonded together without using an adhesive or a fixing metal member.
  • Another invention made to solve the above problems has a support member that supports the lower surface of the film, and a laser irradiation unit that irradiates the film with a laser beam, and the support member is in contact with the lower surface of the film.
  • a heat insulating layer is provided at a position where the heat insulating layer is in contact with the film, and the heat insulating layer has a surface layer in contact with the film and a vacuum layer located below the surface layer, and the surface layer is formed of a thermosetting polyimide film.
  • polyimide films can be directly bonded together without using an adhesive, a fixing metal member, or the like.
  • difficult-to-melt polyimide films that have not undergone chemical modification such as introduction of thermoplastic segments can be directly bonded together.
  • Another invention that has been made to solve the above problems is a polyimide film having an adhesive portion in which polyimide films are adhered together using the above-described adhesion method of the present invention.
  • the polyimide film having the adhesive part since the polyimide films are directly bonded to each other, the above-mentioned problems caused by using an adhesive, a fixing metal member, or the like can be solved.
  • the above-mentioned bonding method of the present invention since the above-mentioned bonding method of the present invention is used, a polyimide film in which difficult-to-melt polyimide films having a high melting point and a high glass transition temperature are directly bonded without chemical modification such as introducing a thermoplastic segment. It is possible to
  • Another invention that has been made to solve the above problems is to heat the polyimide film while applying pressure so that one side of the polyimide film is in close contact with the metal surface.
  • a difficult-to-melt polyimide film that has not been chemically modified such as by introducing a thermoplastic segment can be directly bonded to a metal without using an adhesive, a fixing metal member, or the like.
  • Another invention made to solve the above problems is an adhesive structure comprising a polyimide film and a metal, characterized by having an adhesive portion in which the polyimide film and the metal surface are adhered using the above adhesion method. It is an adhesive structure that
  • the adhesive structure since the polyimide film and the metal surface are directly bonded, the above-mentioned problems caused by using an adhesive, a fixing metal member, or the like can be solved.
  • the above bonding method since the above bonding method is used, a bonded structure in which a difficult-to-melt polyimide film having a high melting point and glass transition temperature is directly bonded to a metal surface without chemical modification such as introduction of a thermoplastic segment. It is possible to
  • an adhesion method it is possible to provide an adhesion method, an adhesion apparatus, and an adhesion structure having an adhesion part of a polyimide film, which can directly adhere a difficult-to-melt polyimide film without using an adhesive, a fixing metal member, or the like.
  • FIG. 4 is a front view schematically showing an example of adhesion using a hot plate; 1 is a copy of a photograph showing an example of a conductive member bonded as a hot plate, and a temperature state when the conductive member is heated by applying a voltage.
  • FIG. 4 is a front view schematically showing an example of adhesion by a conductive member; 1 is a copy of a photograph showing the equipment used in performing CO 2 laser bonding.
  • FIG. 2 is a front view schematically showing an example of adhesion by CO 2 laser.
  • FIG. 2 is a front view schematically showing an example of adhesion by CO 2 laser.
  • FIG. 4 is a front view schematically showing an example of adhesion by CO 2 laser.
  • FIG. 2 is a schematic diagram for explaining the relationship between irradiation of laser light from a CO 2 laser and adhesion of a polyimide film in adhesion using a CO 2 laser.
  • 1 is a copy of a photograph taken with an optical microscope from the front of a polyimide film bonded by a hot plate.
  • 1 is a copy of a photograph taken from the front of a polyimide film when adhesion is performed using a CO 2 laser. It is a copy of a photograph taken with a scanning electron microscope of a cross section of an adhesive portion between polyimide films. It is a copy of a photograph taken with an optical microscope of a thermally decomposed polyimide film.
  • FIG. 4 is a schematic diagram showing the relationship between the spot diameter of laser light and the focal shift distance; It is a copy of a photograph showing an airbag produced by bonding polyimide films together using the bonding method of the present invention.
  • FIG. 2 is a plan view of a test piece obtained by bonding two polyimide films together, used in a peel test in Examples. It is a top view of the polyimide film before cutting out the test piece used in the peeling test of the example.
  • FIG. 3 is a copy of a photograph showing the positions where the surface temperature of the mold was measured when measuring the surface temperature of the mold in the apparatus shown in FIGS. 1 and 2 by thermography.
  • FIG. 4 is an explanatory diagram showing the relationship between the set speed of the laser beam and the speed of drawing the bonded portion with the arcuately irradiated laser beam in bonding with a CO 2 laser.
  • FIG. 4 is an explanatory diagram showing the relationship between the setting speed of the laser beam and the drawing speed of the bonded portion with the zigzag-shaped laser beam in the bonding by the CO 2 laser.
  • FIG. 10 is a graph showing the results of a CO 2 laser adhesion test with varying laser power and adhesion delineation speed.
  • FIG. 4 is a graph showing the results of an adhesion test using a CO 2 laser while changing the output of the laser and the type of heat insulating material.
  • 4 is a graph showing the results of an adhesion test using a CO 2 laser (arc irradiation) while changing the laser output and the width of the strip-shaped adhesion portion.
  • FIG. 4 is a graph showing the results of a CO 2 laser adhesion test (zigzag irradiation) while changing the laser output and the width of the strip-shaped adhesion portion.
  • FIG. 2 is a front view schematically showing an example of a method of adhering a polyimide film to metal. It is a copy of a photograph of a bonded portion (adhesion in a mold shape) in which a polyimide film is adhered to duralumin (A2017). It is a copy of a photograph taken of the adhesion part (adhesion of the entire film surface) where the polyimide film was adhered to duralumin (A2017). It is a copy of a photograph taken of a bonding portion where a polyimide film is bonded to stainless steel (SUS430).
  • the present invention includes a polyimide film bonding method, a bonding apparatus, and a bonding structure having a polyimide film bonding portion. These will be described below.
  • adheresion means that the polyimide films, which were separated from each other in advance, are joined together in direct contact with each other.
  • adheresion means that the polyimide film and the metal, which have been separated from each other in advance, are joined in direct contact with each other.
  • Polyimides are organic polymers obtained by polycondensation of dianhydrides and diamines. Aromatic polyimides have high heat resistance and insulating properties, and are particularly attractive as materials for articles used in extreme environments that are difficult for humans to access, such as space environments, high-temperature environments, cryogenic environments, and acidic/alkaline solutions. have the nature
  • aromatic polyimide generally melts at a very high temperature, it often has a melting point close to the thermal decomposition temperature, or it is difficult to specify the melting point (as described above, even in the following, "close to the thermal decomposition temperature A polyimide that has a melting point or whose melting point is difficult to specify is referred to as a "difficult-melting polyimide"). Therefore, even if such polyimide is heated to be melted, holes are formed or the polyimide is carbonized, so it was thought that bonding (welding) by heating could not be performed.
  • the difficult-to-melt polyimide film can be directly bonded.
  • polyimide films that have not been chemically modified, such as by introducing thermoplastic segments can be adhered without pretreatment or the use of adhesives.
  • complicated and special processes and manufacturing equipment are not required, and production can be easily expanded.
  • the subject of the bonding method of the present invention is particularly the difficult-to-melt polyimide film.
  • Physical properties of the difficult-to-melt polyimide film include that both the melting point and the thermal decomposition temperature are 400° C. or higher, and that the melting point and the thermal decomposition temperature are close to or coincide with each other.
  • the difficult-to-melt polyimide film which is the object of the bonding method of the present invention, preferably has a glass transition temperature of 200° C. or higher and 450° C. or lower, more preferably 220° C. or higher and 450° C. or lower, and 250° C. or higher and 420° C. or lower. is particularly preferred.
  • the glass transition temperature of the difficult-to-melt polyimide film is measured by differential scanning calorimetry (DSC).
  • the difficult-to-melt polyimide film which is the object of the bonding method of the present invention, preferably has a thermal decomposition temperature of 550°C or higher, more preferably 580°C or higher, and particularly preferably 600°C or higher. More specifically, the temperature is preferably 550°C or higher and 900°C or lower, more preferably 580°C or higher and 850°C or lower, and particularly preferably 600°C or higher and 800°C or lower.
  • the thermal decomposition temperature of the difficult-to-melt polyimide film is measured with a thermal balance (PGA).
  • the difficult-to-melt polyimide film which is the object of the bonding method of the present invention, has a very high melting temperature and has a melting point close to the thermal decomposition temperature, or the melting temperature is high and close to the thermal decomposition temperature. It is a polyimide film whose melting point is difficult to determine.
  • the melting point of the difficult-to-melt polyimide film is preferably 480° C. or higher, more preferably 500° C. or higher, and particularly preferably 530° C. or higher. More specifically, the temperature is preferably 480° C. or higher and 600° C. or lower, more preferably 500° C. or higher and 600° C. or lower, and particularly preferably 530° C. or higher and 595° C. or lower.
  • the melting point of the difficult-to-melt polyimide film is measured by differential thermal analysis (DTA).
  • a polyimide film containing a polyimide having a repeating unit represented by the following formula (1) or a repeating unit represented by the following formula (2) A polyimide film containing polyimide is mentioned.
  • UPILEX (registered trademark) manufactured by Ube Industries, Ltd. is an example of a polyimide film containing a polyimide having a repeating unit represented by the above formula (1).
  • polyimide films containing polyimide having a repeating unit represented by the above formula (2) examples include "KAPTON (registered trademark)” manufactured by DuPont and “APICAL (registered trademark)” manufactured by Kaneka Corporation. is mentioned.
  • the thickness of the polyimide film to be used in the bonding method of the present invention is not particularly limited, but is preferably 12.5 ⁇ m or more and 125 ⁇ m or less, more preferably 12.5 ⁇ m or more and 75 ⁇ m or less, A thickness of 25 ⁇ m or more and 50 ⁇ m or less is particularly preferable.
  • FIG. 1 is a copy of a photograph showing an apparatus that can be used in hot plate bonding
  • FIG. 2 is a front view schematically showing an example of hot plate bonding. Description will be made below with reference to these drawings.
  • silica cloth 4 and two polyimide films F are superimposed on a supporting member 5 (see the lower part of the photograph in FIG. 1). ), the mold 3 heated to a high temperature by the heater 2 and turned into a hot plate is brought into contact with the polyimide films F for a short period of time to bond the polyimide films F together.
  • the support member 5 is preferably a cold water plate.
  • the method of bringing the hot plate into contact with the polyimide film for a short period of time is not particularly limited, and may be a method of bringing the hot plate into contact with the polyimide film from the lower surface, or a method of bringing the hot plate into contact with the polyimide film from both the upper surface and the lower surface.
  • a support member that supports the heater 2 and the mold 3 as shown in the upper part of the photograph 1 is provided with a cylinder, and by pressing a mold 3 (hot plate) against the polyimide film F for a short time with this cylinder, the polyimide films F can be bonded together.
  • a hot plate is brought into contact with a portion where two polyimide films are overlapped, and when the polyimide films are bonded together, the heating temperature due to the contact of the hot plate is is 450° C. or higher, and the contact time between the polyimide film and the hot plate is 12 seconds or less.
  • the temperature of the mold 3 in FIG. 2 is 450° C. or higher, and the contact time between the polyimide film F and the mold 3 is 12 seconds or less.
  • a contact type in which the film and hot plate are brought into contact with each other
  • a non-contact type in which the radiant heat of the hot plate is used to heat the film. If the film can be heated to a level equivalent to that of contact with a hot plate at the above temperature, a non-contact method can be adopted, but in the bonding method using the hot plate of the present invention, it is necessary to heat the film to a considerably high temperature. Therefore, the contact type is preferable.
  • the heating temperature due to contact with the hot plate is preferably higher than the glass transition temperature of the polyimide film to be adhered and close to the thermal decomposition temperature.
  • the temperature is preferably 500° C. or higher and 700° C. or lower, more preferably 530° C. or higher and 680° C. or lower, and 540° C. It is particularly preferable that the temperature is 660° C. or more. This temperature range is the set temperature of the heater that heats the hot plate.
  • the temperature range of the hot plate is preferably about 450° C. or higher and 650° C. or lower, more preferably about 480° C. or higher and 630° C. or lower, and 490° C. or higher. It is particularly preferable that the temperature is about 610° C. or lower.
  • the suitable range of the heating temperature for the polyimide film is the same even when a conductive member is used as the hot plate (mold/heater integrated type) as described later.
  • the heating temperature by bringing the hot plate into contact with the polyimide film is 520 ° C. or higher and 570 ° C. or lower (similarly according to Table 11 470° C. or more and 520° C. or less when converted to the temperature range of the hot plate. More preferably, it is 540° C. or higher and 560° C. or lower (similarly, when converted to the temperature range of the hot plate according to Table 11, it is approximately 480° C. or higher and 510° C. or lower).
  • the heating temperature by bringing the hot plate into contact with the polyimide film is 590 ° C. or more and 650 ° C. or less (similarly according to Table 11 It is preferably about 530° C. or more and 600° C. or less when converted to the temperature range of the hot plate.
  • the contact time between the polyimide film and the hot plate is 12 seconds or less, preferably 6 seconds or less, more preferably 5 seconds or less, and 0.3 seconds or more. It is more preferably 3 seconds or less, and particularly preferably 0.5 seconds or more and 1.5 seconds or less.
  • the hot plate In the bonding method using the hot plate of the present invention, it is preferable to bring the hot plate into contact with the polyimide film so as to apply pressing pressure.
  • the pressing pressure is preferably about 100 kPa, more preferably 50 kPa or more and 200 kPa or less, and more preferably 75 kPa or more and 150 kPa or less.
  • the hot plate in the hot plate bonding method of the present invention may be a mold connected to the heater as shown in FIGS. 1 and 2 or a mold integrated with the heater.
  • the material of the mold is not particularly limited as long as it can be heated to a high temperature and can conduct heat to the film to be bonded.
  • the shape of the mold is also not particularly limited, and a mold with convex parts that match the part to be bonded, a flat mold, and a string-shaped mold that is formed by applying the printed electronics technology described later. etc., various shapes can be adopted.
  • the conductive member and the polyimide film are brought into contact with each other while applying pressure in advance so as to adhere the conductive member and the polyimide film.
  • the conductive member may be used as a hot plate by applying a voltage to the conductive member and instantaneously heating the conductive member.
  • a silica cloth 4 and two polyimide films F are placed on a sandwiching member 8, and the sandwiching member 6 and the sandwiching member 8 are placed so that the conductive member 7 and the polyimide film F are in close contact with each other.
  • the contact is made in a state in which pressing pressure is applied in advance, and a voltage is applied to the conductive member 7 to instantaneously heat it, so that the conductive member is used as a hot plate for a short time, and the polyimide film F can be glued together.
  • an example of such a mold integrated with a heater is an electrode (conductive member) formed by applying printed electronics technology.
  • an electrode conductive member formed by applying printed electronics technology.
  • molds of various shapes can be produced easily in a short time.
  • Laser welding which is currently the mainstream, combines a laser-transmitting resin and a laser-absorbing resin, and heats and melts the laser-absorbing resin "only” by irradiating it with a laser beam, and heats the laser-transmitting resin as well.
  • ⁇ It is a method of melting and welding.
  • CO2 lasers which emit laser light that is absorbed by a wide range of resins, are not normally used for laser welding.
  • the inventors have found that a CO 2 laser, which emits laser light that is well absorbed by the resin, is suitable for bonding polyimide films that require heating to high temperatures.
  • polyimide films have problems such as carbonization when irradiated with a laser beam and holes when irradiated with a laser beam, and conventional laser bonding has been considered difficult.
  • the present inventor adheres a heat insulating material to the lower surface of the polyimide film at the position where the laser beam hits, and heats the polyimide film heated by the laser beam.
  • the present inventors discovered that by devising a method to prevent the escape of polyimide film, it is possible to heat the polyimide film to a temperature at which bonding is possible even when the polyimide film is irradiated with a laser beam having an output that does not cause carbonization.
  • a portion where two polyimide films are superimposed is irradiated with a laser beam to bond the polyimide films to each other.
  • the upper surface of the polyimide film is irradiated with the laser beam while the polyimide film is in close contact with the polyimide film.
  • the laser in this bonding method it is also possible to employ a laser other than the above-described CO 2 laser, and the inventors of the present invention have confirmed that, for example, a UV diode laser can be used to bond difficult-to-melt polyimide films together. By using a diode laser, it is possible to reduce the size of the bonding device.
  • means for adhering the heat insulating material to the lower surface of the polyimide film include, for example, a method of adhering silica cloth as the heat insulating material, and A method of providing a vacuum layer is mentioned.
  • an apparatus having a structure for adhering a vacuum layer to the lower surface of a polyimide film there is an adhesion apparatus as shown in FIGS.
  • an apparatus having a structure for adhering silica cloth to the lower surface of the polyimide film there is an adhesion apparatus as shown in FIG.
  • FIG. 5 is a copy of a photograph showing an apparatus used when performing adhesion by CO 2 laser
  • FIGS. 6 and 7 are front views schematically showing an example of adhesion by CO 2 laser. The bonding apparatus will be described below with reference to these drawings.
  • the bonding apparatus shown in FIGS. 5 and 6 has a support member 10 that supports the lower surface of the polyimide film F, and a CO 2 laser irradiation unit that irradiates the polyimide film F with laser light (see the photograph in FIG. 5),
  • the support member 10 has a heat insulating layer at a position in contact with the lower surface of the polyimide film F, the heat insulating layer has a surface layer in contact with the polyimide film F, and a vacuum layer 9 located below the surface layer, A surface layer is formed of a thermosetting polyimide film F'.
  • Two polyimide films F to be adhered are sandwiched by sandwiching members 11 and 12 so as to be in close contact with the supporting member 10 .
  • the laser bonding method of the present invention can be carried out.
  • the vacuum layer 9 in the bonding apparatus is formed by providing a thermosetting polyimide film F' on a support member 10 having a recess, and reducing the pressure in the recess by a decompression device. ing.
  • a grooved bottom plate is placed under the thermosetting polyimide film F′, and the space in the groove is evacuated by reducing the pressure around the bottom plate with a decompression device, It is configured to irradiate laser light along the groove.
  • the degree of vacuum of the vacuum layer 9 is sufficient as long as it can exhibit a heat insulating effect to the extent that the heat of the polyimide film heated by the laser beam does not escape.
  • the degree of vacuum of the vacuum layer 9 is preferably 150 hPa or less, more preferably 130 hPa or less, and particularly preferably 110 hPa or less.
  • the bonding device shown in FIG. 7 has a support member 10 that supports the lower surface of the polyimide film F, and a laser irradiation unit that irradiates the polyimide film F with laser light.
  • a silica cloth 4 and a thermosetting polyimide film F' are laminated.
  • Two polyimide films F to be adhered on the thermosetting polyimide film F' are sandwiched by sandwiching members 11 and 12 so as to be in close contact with the heat insulating material.
  • the laser bonding method of the present invention can be carried out.
  • the polyimide film F is drawn to the support member 10 by vacuuming from below the clamping member 12, and the silica cloth 4 as a heat insulating material is applied to the polyimide film F. It is preferable to keep it in close contact with the
  • the output of the laser is, for example, 2 W or more and 5 W or less, preferably around 3 W.
  • the laser beam irradiated onto the polyimide film is moved in an arc, polygonal, or zigzag shape while the polyimide film to be bonded is shifted from the focal point of the laser beam. is preferred.
  • the present inventors speculated that carbonization and holes in laser bonding are caused by the power density of the laser beam being higher than the required amount.
  • the present inventors found that if the polyimide film is shifted from the focal point of the laser beam, the spot diameter is increased, and the power density is decreased, laser bonding can be performed without carbonization or holes. rice field.
  • the focal shift distance that allows bonding without carbonization is, for example, 5 mm or more and 15 mm or less. , preferably 6 mm or more and 12 mm or less, more preferably 7 mm or more and 10 mm or less.
  • the definition of the focal point shift distance will be explained in the section of Examples.
  • the laser light from the CO 2 laser does not pass through the polyimide film (see the upper left figure in Fig. 8), the laser light is irradiated in an arc-shaped or polygonal shape (see the upper right figure in Fig. 8) so that the film can be evenly distributed. Since the inside of the polyimide film can be heated (see the lower right figure in FIG. 8), the polyimide films can be adhered together while preventing carbonization and holes.
  • the inside of the polyimide film can also be heated evenly by irradiating the laser beam in a zigzag pattern. Can be glued.
  • the drawing speed v2 of the adhesive portion in this case can also be calculated from the angle ⁇ shown in FIG .
  • the irradiation of the laser beam which draws a circle and advances in a certain direction to describe the band-shaped adhesive portion, is simply referred to as "arc irradiation", and zigzag as shown in FIG. Irradiation with a laser beam that renders a band-shaped bond upon irradiation is simply referred to as “zig-zag irradiation”.
  • the width d of the band-shaped bonding portion is also called line width.
  • the bonding strength of the bonding portion can be 50 N/m or more.
  • the first and second polyimide films are respectively "a repeating unit represented by the above formula (1) ” or “a polyimide film containing a polyimide having a repeating unit represented by the above formula (2)” can be directly bonded to form an adhesive portion.
  • a polyimide film having such adhesive portions can be produced.
  • the polyimide film having an adhesive portion of the present invention is lightweight and has excellent heat resistance and cold resistance that can be used even in extreme environments such as outer space, which is an extremely low temperature environment or an extremely high temperature environment. It is resistant to radiation and UV rays.
  • the polyimide film having the adhesive part of the present invention has the above-mentioned properties, it can be applied to robots for extreme environments, etc., which are composed of a skeletal structure formed only of the film and actuators.
  • the features of such a robot are that the actuator is made of film only, so it is extremely lightweight, and that it can be mass-produced at low cost. It is possible to create a unit that can memorize, and because it has a high aspect ratio and is extremely lightweight, it can create new movements (effectively utilizing the size effect).
  • a bag that does not contain an adhesive or a fixing metal member can be realized.
  • a bag there is an airbag shown in FIG. 15, which is suitable for use in extreme environments such as outer space or as a shock absorbing device for falling flying objects.
  • the airbag shown in FIG. 15 is formed by bonding the peripheries of two superimposed difficult-to-melt polyimide films by the bonding method according to the present invention, and the central portion of the non-bonded films is filled with gas such as air. It is an airbag manufactured only with a difficult-to-melt polyimide film.
  • FIG. 9 shows a copy of a photograph taken with an optical microscope from the front of the polyimide films of the adhesion portion of the polyimide films when the polyimide films were adhered to each other by a hot plate.
  • a band-shaped adhesive portion extending in the left-right direction can be confirmed.
  • the pattern on the bonded portion is caused by the color change of the polyimide film along the mesh pattern of the silica cloth 4 due to the pressure bonding of the mold 3 (hot plate) shown in FIG.
  • FIG. 10 shows a copy of a photograph taken from the front of the film, showing the bonded portion (2 mm wide strip) of the polyimide films when the polyimide films were bonded together by a CO 2 laser.
  • FIG. 10 is a photograph taken with a macro lens attached to a single-lens reflex camera, and a band-shaped adhesive portion extending in the left-right direction can be seen in the photograph.
  • FIG. 11 shows a copy of a photograph taken with a scanning electron microscope of a cross section of an adhesive portion between polyimide films.
  • FIG. 11 shows a scanning electron microscope (model: SU9000, manufactured by Hitachi High-Tech Co., Ltd.) using a scanning electron microscope (model: SU9000, manufactured by Hitachi High-Tech Co., Ltd.) to examine the cross section of the bonded portion where polyimide films (product name: Apical 25NPI, manufactured by Kaneka Corporation, film thickness: 25 ⁇ m) are bonded together by a hot plate.
  • polyimide films product name: Apical 25NPI, manufactured by Kaneka Corporation, film thickness: 25 ⁇ m
  • the vertical direction of the photograph is the thickness direction of the adhered polyimide film, and the adhesive surface is in the center.
  • the white part visible on the right side of the photograph of the bonding surface is the unbonded part (the part where the bonding operation is not performed), and the left side of the white part is the bonded part where the bonding operation was performed.
  • a third embodiment is to adhere a polyimide film to a metal.
  • the method of bonding the polyimide film of the present disclosure to metal is a bonding method characterized in that the polyimide film is heated while a pressing pressure is applied so that one side of the polyimide film adheres to the metal surface. is.
  • FIG. 28 is a front view schematically showing an example of adhesion of a polyimide film to metal.
  • a metal M, a polyimide film F and a thermosetting polyimide film F' are laminated in this order on the heater 2, and a mold 3, a silica cloth 4 and a weight 13 are further placed thereon in this order.
  • a pressing pressure is applied so that the polyimide film F adheres to the metal M.
  • the thermosetting polyimide film F' plays a role of preventing adhesion with the polyimide film F, and prevents adhesion between the polyimide film F and the mold 3.
  • a thermosetting polyimide film F' is arranged in a portion between the polyimide film F and the metal M so that the polyimide film F and the metal M are not bonded in that portion. has been
  • the heating temperature ranges from 400°C to 550°C
  • the heating time ranges from 3 minutes to 15 minutes.
  • the polyimide film bonding method according to the third embodiment it is possible to manufacture a bonded structure of a polyimide film and a metal, which has a bonding portion where the polyimide film and the metal surface are directly bonded.
  • the polyimide film is placed horizontally, and the hot plate is contacted from the upper surface side of the polyimide film, or the laser beam is irradiated.
  • the direction in which the hot plate is brought into contact, and the direction in which the laser beam is irradiated can be changed as appropriate.
  • FIG. 16 A test piece having the shape shown in FIG. 16 was cut out from the linearly adhered polyimide films F as shown in FIG. The test piece was opened as shown in FIG. 18 and subjected to a T-shaped peel test.
  • FIG. 19 shows the tensile tester used in this peel test. Although the tensile tester has a liquid nitrogen tank, it was not used in this test, and the test was performed at room temperature. A test piece to be peeled was sandwiched between the film chucks of the tensile tester, displacement in the peeling direction was applied, and the reaction force at that time was measured.
  • Fig. 20 shows an example of the result of dividing the measured reaction force by the width (15 mm) of the adhesive portion of the test piece. As shown in FIG. 20, the point at which the reaction force suddenly decreased was taken as the peeling point (peeling start point).
  • Example 1-1 Adhesion test by hot plate for UPILEX-25RN> Hot plate bonding was performed using the apparatus shown in FIGS. 1 and 2 .
  • Two polyimide films (product name: UPILEX-25RN, manufactured by Ube Industries, Ltd., film thickness: 25 ⁇ m) were placed on a water cooling plate (corresponding to the support member 5 in FIG. 2) and silica cloth.
  • the pressing pressure of the hot plate (heated mold) against the polyimide film is 100 kPa
  • the contact time between the hot plate and the polyimide film is 1 second
  • the set temperature of the heater for each sample is in the range of 530 ° C. to 580 ° C. (described later.
  • the temperature range was changed from about 480° C. to 530° C.), and the polyimide films were adhered to each other.
  • Table 1 The results are shown in Table 1 below.
  • Example 1-2 Peel test of a test piece having an adhesive portion bonded by a hot plate>
  • a peel test was performed by the method described above on a test piece in which polyimide films (product name: UPILEX-25RN, manufactured by Ube Industries, Ltd., film thickness: 25 ⁇ m) were adhered together.
  • the results are shown in Table 2 below.
  • the heating temperature (heater set temperature) is 540° C. or higher and 570° C. or lower (range of about 480° C. to 520° C. when converted to mold temperature according to Table 11 below). It was found that the test piece had sufficient adhesive strength. Among these, it was found that the adhesive strength was the highest when the temperature was 550°C (about 500°C when converted to mold temperature according to Table 11 given later).
  • Example 1-3 Adhesion test with a hot plate performed by changing the contact time> An adhesion test between polyimide films (product name: UPILEX-25RN, manufactured by Ube Industries, Ltd., film thickness: 25 ⁇ m) was conducted in the same manner as in Example 1-1. The results are shown in Tables 3 to 7 below for each heating temperature during adhesion. In addition, the evaluation criteria of the adhesion state are as follows.
  • Example 1-4 Adhesion test by hot plate for Apical 25NPI> An adhesion test between polyimide films (product name: Apical 25NPI, manufactured by Kaneka Corporation, film thickness: 25 ⁇ m) was conducted in the same manner as in Example 1-1. The results are shown in Tables 8 and 9 below. In addition, the evaluation criteria of the adhesion state are as follows.
  • thermoplastic polyimide film product name: Midfil, manufactured by Kurashiki Boseki Co., Ltd. (Kurabo), film thickness 25 ⁇ m
  • the evaluation criteria of the adhesion state are as follows.
  • Example 2-1 Laser Adhesion Test: Conditions for Focal Shift Distance>
  • a test was conducted by shifting the position of the polyimide film irradiated with the laser light from the focal point of the laser light, using the apparatus (insulating material: vacuum layer) shown in FIG.
  • the focal shift distance is increased from 0 mm to 10 mm in order from the left, and the laser beam is irradiated at a drawing speed of 37.9 mm/min and 2.4 W (40 W, output 6%) at the adhesive part (see FIG. 22).
  • Figure 1 shows the state of the polyimide film when subjected to "arc irradiation" as shown.
  • the focal point shift distance means the distance by which the position of the polyimide film to be adhered is shifted from the focal point of the laser beam toward the lens (lens included in the CO 2 laser irradiation unit).
  • the polyimide film was in focus (when the focal shift distance was 0 mm)
  • the polyimide film was carbonized by the irradiation of the laser beam. It can be seen that many areas where the surface of the polyimide film is not carbonized but deteriorated are sometimes observed. It can be seen that when the focus shift distance is 7 mm to 10 mm, adhesion can be achieved in a state in which carbonization hardly occurs.
  • FIG. 14 shows the relationship between the spot diameter of the laser beam and the focal shift distance.
  • D is the diameter of the lens L
  • a is the focal length
  • M is the spot diameter of the laser beam
  • a 1 is the distance from the lens L to the object to be adhered (distance after shifting the focus)
  • the diameter of the spot of the laser beam at the position of the object to be adhered. is M1 , M1 can be calculated by the following formula (3).
  • Example 2-2 Laser adhesion test: laser output conditions> An adhesion test using a CO 2 laser was performed by changing the output of the laser applied to the polyimide film to be adhered and the drawing speed of the adhered portion. Circular irradiation was performed under the conditions that the diameter d of the circle in FIG. 22 was 3 mm and the pitch p was 0.25 mm. As shown in FIG. 7, silica cloth is used as a heat insulating material, UPILEX-25S (product name, manufactured by Ube Industries, Ltd., film thickness 25 ⁇ m) is used as a thermosetting polyimide film, and UPILEX is used as a polyimide film to be adhered. -25RN (product name, manufactured by Ube Industries, Ltd., film thickness: 25 ⁇ m) was used.
  • the "measurement output” is the measured value of the output of the irradiated CO 2 laser
  • the "adhesion drawing speed” is the average value of three measurements. From the test results of FIG. 24, there is an example in which the drawing speed of the bonded part was in the range of 1.4 mm / min to 24.3 mm / min, and the measured output of the laser light was in the range of 3.0 W to 4.1 W. It can be seen that there is an example of adhesion. From the viewpoint of a wide allowable range of laser light output, the drawing speed of the adhesive portion is preferably 8 mm/min or more and 25 mm/min or less. From the viewpoint of preventing carbonization of the polyimide film or non-adhesion, the output of the laser beam irradiated to the object to be adhered is preferably 3.2 W or more and 4.2 W or less.
  • Adhesion test by laser Condition of heat insulating material> An adhesion test using a CO 2 laser was performed by changing the type of heat insulating material to be adhered to the lower surface of the polyimide film to be adhered. Circular irradiation was performed under the conditions that the diameter d of the circle in FIG. 22 was 2 mm and the pitch p was 0.25 mm.
  • UPILEX-25S product name, manufactured by Ube Industries, Ltd., film thickness 25 ⁇ m
  • UPILEX-25RN product name, manufactured by Ube Industries, Ltd., film thickness 25 ⁇ m
  • a vacuum layer is used as a heat insulating material, as shown in FIG. 7, a silica cloth is used as a heat insulating material, and a copper plate is used instead of the silica cloth and UPILEX-25S. to compare the bonding conditions.
  • Example 2-4 Laser Adhesion Test: Laser Light Irradiation Trajectory Conditions> An adhesion test using a CO 2 laser was performed in the case where the trajectory of the laser light irradiation was set to "arc irradiation" as shown in FIG. 22 and for the case of "zigzag irradiation" as shown in FIG. As shown in FIG. 7, silica cloth is used as a heat insulating material, UPILEX-25S (product name, manufactured by Ube Industries, Ltd., film thickness 25 ⁇ m) is used as a thermosetting polyimide film, and UPILEX is used as a polyimide film to be adhered. -25RN (product name, manufactured by Ube Industries, Ltd., film thickness: 25 ⁇ m) was used.
  • UPILEX-25S product name, manufactured by Ube Industries, Ltd., film thickness 25 ⁇ m
  • the drawing speed of the adhesive portion (v 2 in FIGS. 22 and 23) is 37.9 mm/min in the example of the line width of 2 mm in FIG. 26 (arc irradiation) and 25.3 mm in the example of the line width of 3 mm. /min, and in the example of FIG. 27 (zigzag irradiation) where the line width is 2 mm, it was 246 mm/min.
  • FIGS. 26 and 27 even if the laser beam is irradiated in an arc shape as shown in FIG. 22 or in a zigzag shape as shown in FIG.
  • the interior of the polyimide film can be evenly heated by performing the bonding operation so as to form a belt-shaped bonding portion with a width of 2 mm to 3 mm in bonding with a CO 2 laser.
  • the polyimide film when the polyimide film was linearly irradiated with laser light, the polyimide film could not be heated evenly to the inside, and adhesion could not be achieved.
  • Example 3-1 Adhesion test of polyimide film to metal: adhesion in mold shape>
  • the lower side of the superimposed polyimide film F is replaced with a metal to be adhered, and the shape of the mold is changed to a rectangular shape with a contact surface of 11.5 mm ⁇ 12.5 mm.
  • an adhesion test of the polyimide film to metal was conducted.
  • UPILEX-25RN product name, manufactured by Ube Industries, Ltd., film thickness 25 ⁇ m
  • duralumin (A2017) was used as the metal.
  • FIG. 29 shows a copy of a photograph taken of the adhesion portion where the polyimide film was adhered to duralumin (A2017) by this adhesion test. It can be seen that the hard-to-melt polyimide film was adhered to the duralumin, as can be seen in the center of this photograph, where the mold-shaped adhered portion can be confirmed.
  • Example 3-2 Adhesion test of polyimide film to metal: adhesion of entire film> Using the apparatus shown in FIG. 28, an adhesion test of the polyimide film to metal was conducted. According to the apparatus shown in FIG. 28, since the metal M is heated by the heater 2, the entire surface of the polyimide film F adheres to the metal M (a thermosetting polyimide film F' is inserted between the two to prevent adhesion). ). In this embodiment, the mold 3 has a rectangular contact surface of 10 mm ⁇ 100 mm, and the mass of the weight 13 is 3.52 kg. Therefore, the pressing pressure applied from the weight 13 to the polyimide film F is 34.5 kPa ((3.51 ⁇ 9.81)/(10 ⁇ 100) ⁇ 34.5 [kPa]).
  • the polyimide film F is heated for 5 minutes in the state shown in FIG. I tried gluing.
  • UPILEX-25RN product name, manufactured by Ube Industries, Ltd., film thickness: 25 ⁇ m
  • FIG. 30 is a copy of a photograph of the adhesion portion where the polyimide film was adhered to duralumin (A2017) by this adhesion test, and a photograph of the adhesion portion where the polyimide film was adhered to stainless steel (SUS430).
  • a copy is shown in FIG. According to FIG. 30, it can be confirmed that the entire surface of the difficult-to-melt polyimide film was strongly adhered to duralumin.
  • FIG. 31 in which the adhesive is adhered to the stainless steel it can be confirmed that the upper right portion of the adhered portion of the photograph is strongly adhered.
  • the reason why the adhesion was not strong on the entire surface in FIG. 31 is considered to be the surface roughness of the stainless steel (SUS430).
  • polyimide is lightweight, heat-resistant, cold-resistant, and highly resistant to radiation and ultraviolet rays
  • adhesives and fixing metal members had to be used in conventional polyimide film processing.
  • the beneficial properties of polyimide have not been fully exploited. According to the method and apparatus for bonding polyimide films of the present invention, it is possible to bond polyimides, particularly difficult-to-melt polyimides with high melting points and high heat resistance, thereby expanding the applicability of polyimides in extreme environments.
  • polyimide film has a tensile strength comparable to that of metal, so it can be used directly as a substitute for metal. An extension can be expected.
  • Filmotics Flexible Robotics
  • Filmotics is a robot system characterized by a mass-to-volume ratio that is significantly different from conventional robotics, and is currently being researched as a new microrobot field that is expected to have activity performance and various characteristics that exceed those of insects.
  • the bonding method, the bonding apparatus, and the polyimide film having the bonding portion bonded by the bonding method of the present invention are suitable for such application to microrobots.

Abstract

2枚のポリイミドフィルムを重ね合わせた部分に熱板を接触させることで、ポリイミドフィルム同士を接着する。熱板の接触による加熱温度は450℃以上であり、ポリイミドフィルムと熱板との接触時間は12秒以下である。または、2枚のポリイミドフィルムを重ね合わせた部分にレーザー光を照射する。重ね合わせたポリイミドフィルムの下面を断熱材に密着させた状態で、ポリイミドフィルムの上面にレーザー光を照射する。これらの方法によれば、難融解ポリイミドフィルム同士を直接接着することができる。また、ポリイミドフィルムの片面を金属表面へと密着させるように押付圧力を加えた状態で、ポリイミドフィルムを加熱することで、難融解ポリイミドフィルムを金属に対して直接接着することができる。

Description

ポリイミドフィルムの接着方法、接着装置、及びポリイミドフィルムの接着部を有する接着構造体
 本発明は、ポリイミドフィルムの接着方法、接着装置、及びポリイミドフィルムの接着部を有する接着構造体に関する。
 ポリイミドは、酸二無水物とジアミンとの重縮合によって得られる有機高分子である。ポリイミドのなかでも古くから知られるものとして、DuPont社によって開発された芳香族ポリイミド「KAPTON(登録商標)」が挙げられる。このKAPTONを含む芳香族ポリイミドは耐熱性及び絶縁性が高く、特に宇宙環境、高温環境、極低温環境、酸性・アルカリ性溶液中といった、人が近づくのが困難な極限環境で利用する物品の材料として、魅力的な性質を有している。
 しかしながら、芳香族ポリイミドは一般に融解が起こる温度が非常に高いことから、熱分解温度と近接する融点を有する、又は融点の特定が難しいことが多い(本明細書中、「熱分解温度と近接する融点を有する、又は融点の特定が難しいポリイミド」のことを「難融解ポリイミド」と称する)。そのため、このようなポリイミドを融解させようと加熱していっても、孔が空いてしまったり炭化してしまったりすることから、加熱による接着(溶着)はできないと考えられていた。
 加熱による接着ができないと考えられていたため、難融解ポリイミドで形成されたフィルム(以下、単に難融解ポリイミドフィルムという)同士を接着するにあたっては、ネジ、ボルト等の固定用金属部材や接着剤が使用されてきた。しかしながら、接着剤を使用する場合、接着剤は一般的に難融解ポリイミドよりも耐熱性が低いため、難融解ポリイミドの魅力的な性質の1つである耐熱性が低下するというように、製品性能が接着剤の性能に依存してしまう問題があった。加えて、接着部分が接着剤により厚くなる傾向が強く、質量増加の要因となる問題があった。ネジ、ボルト等の固定用金属部材を使用する場合、固定用金属部材の貫通孔を起点としてフィルムが裂けやすくなる点、固定用金属部材を通じて熱の伝導が起こる点、質量が大幅に増加する点、気密室のような構造を製作するのは困難である点等の問題があった。
 難融解ポリイミドフィルム同士を接着する方法として、非特許文献1及び非特許文献2にて開示されているように、ポリイミドフィルムに対してプラズマ照射による前処理を行う方法が検討されている。これは、貼り合わせを行いたいポリイミドフィルムの両溶着面にプラズマを照射し、当該両溶着面の表面を活性化したのちに熱溶着を行う手法である。プラズマによる活性化は長時間保たれるわけではないことから、部分的な照射工程と溶着工程とを繰り返すことで貼り合わせを行う。しかし、クリーンルーム等の防塵対策が必要な点、接着に必要な工数が増加する点、生産性が低下する点等の課題があり、またフィルムを複雑な形状を貼り合わせることや、接着部を大面積化することは困難であるという課題もあることから、特殊な用途以外では現状利用されていない。
 また、芳香族ポリイミドに対し熱可塑性セグメントを導入し、ガラス転移温度及び融点を下げることで熱分解温度との温度差を広げ、溶着を可能とするというアプローチもすでに行われている。
 特許文献1には、特定の繰り返し単位を有するポリイミドフィルムを240℃~430℃で加熱溶融させ圧着するポリイミドフィルムの接着方法が開示されている。
 しかしながら、難融解ポリイミドに対して熱可塑性セグメントを導入する等の化学修飾を行うことなく、難融解ポリイミドをそのまま加熱により接着する方法は見出されていなかった。
特開平3-192177号公報
Mission Project of the Mars Society Germany(H.S. Griebel, R. Foerstner, C. Mundt, A. Mohr, W. Mai, J. Polkko, H.N. Teodorescu, G. Herdrich, S. Fasoulas, T. Marynowski, A. Stamminger, D. Heyner, "The Mission MIRIAM-2: Putting a Gossamer Ballute Through An Atmospheric Entry FLight Test", Conference: 8th Annual International Planetary Probe Workshop, 2011) 河村産業株式会社、「プラズマ表面処理」、[online]、[令和3年7月13日検索]、インターネット<URL:https://www.kawamura-s.co.jp/processing_plasma/>
 本発明は、難融解ポリイミドフィルムをそのまま簡便に加工できる方法が望まれていた上述の事情に基づいてなされたものであり、その目的は、接着剤や固定用金属部材等を用いることなく、難融解ポリイミドフィルムを直接接着できる接着方法、接着装置、及びポリイミドフィルムの接着部を有する接着構造体を提供することである。
 本発明者は、上記課題を解決するために鋭意研鑽した結果、従来加熱による接着ができないとされていた難融解ポリイミドフィルムを加熱により接着する方法や、当該方法に使用する装置等を見出し、本発明を完成するに至った。
 すなわち、上記課題を解決するためになされた発明は、2枚のポリイミドフィルムを重ね合わせた部分に熱板を接触させることで、当該ポリイミドフィルム同士を接着するにあたり、前記熱板の接触による加熱温度が450℃以上であり、前記ポリイミドフィルムと前記熱板との接触時間が12秒以下であることを特徴とするポリイミドフィルム同士の接着方法である。
 上記課題を解決するためになされた別の発明は、導電性部材とポリイミドフィルムとを密着させるように予め圧力を加えた状態で接触させておき、当該導電性部材に電圧を印加して当該導電性部材を瞬間的に加熱することで、当該導電性部材を前記熱板として使用することを特徴とするポリイミドフィルム同士の接着方法である。
 上記課題を解決するためになされた別の発明は、2枚のポリイミドフィルムを重ね合わせた部分にレーザー光を照射することで、当該ポリイミドフィルム同士を接着するにあたり、重ね合わせた前記ポリイミドフィルムの下面を断熱材に密着させた状態で、前記ポリイミドフィルムの上面に前記レーザー光を照射することを特徴とするポリイミドフィルム同士の接着方法である。
 これらの発明によれば、熱可塑性セグメントを導入する等の化学修飾を行っていない難融解ポリイミドフィルム同士を、接着剤や固定用金属部材等を用いることなく、直接接着することができる。
 上記課題を解決するためになされた別の発明は、フィルムの下面を支持する支持部材と、前記フィルムにレーザー光を照射するレーザー照射部とを有し、前記支持部材が前記フィルムの下面と接触する位置に断熱層を備え、前記断熱層が前記フィルムと接触する表面層と当該表面層の下部に位置する真空層とを有し、前記表面層が熱硬化性のポリイミドフィルムで形成されていることを特徴とするフィルムの接着装置である。
 上記フィルムの接着装置によれば、接着剤や固定用金属部材等を用いることなく、ポリイミドフィルム同士を直接接着することができる。また、熱可塑性セグメントを導入する等の化学修飾を行っていない難融解ポリイミドフィルム同士を直接接着することができる。
 上記課題を解決するためになされた別の発明は、本発明の上記接着方法を用いてポリイミドフィルム同士を接着した接着部を有するポリイミドフィルムである。
 上記接着部を有するポリイミドフィルムによれば、ポリイミドフィルム同士が直接接着しているため、接着剤や固定用金属部材等を用いることによる上述の問題を解決することができる。また、本発明の上記接着方法を用いることから、熱可塑性セグメントを導入する等の化学修飾を行っておらず、融点及びガラス転移温度が高いままの難融解ポリイミドフィルム同士が直接接着したポリイミドフィルムとすることが可能である。
 上記課題を解決するためになされた別の発明は、ポリイミドフィルムの片面を金属表面へと密着させるように押付圧力を加えた状態で当該ポリイミドフィルムを加熱することで、当該金属に対して当該ポリイミドフィルムを接着することを特徴とするポリイミドフィルムの接着方法である。
 上記接着方法によれば、熱可塑性セグメントを導入する等の化学修飾を行っていない難融解ポリイミドフィルムを、接着剤や固定用金属部材等を用いることなく、金属に対して直接接着することができる。
 上記課題を解決するためになされた別の発明は、ポリイミドフィルム及び金属を備える接着構造体であって、上記接着方法を用いてポリイミドフィルムと金属表面とを接着した接着部を有することを特徴とする接着構造体である。
 上記接着構造体によれば、ポリイミドフィルムと金属表面とが直接接着しているため、接着剤や固定用金属部材等を用いることによる上述の問題を解決することができる。また上記接着方法を用いることから、熱可塑性セグメントを導入する等の化学修飾を行っておらず、融点及びガラス転移温度が高いままの難融解ポリイミドフィルムを金属表面に対して直接接着した接着構造体とすることが可能である。
 本発明によれば、接着剤や固定用金属部材等を用いることなく、難融解ポリイミドフィルムを直接接着できる接着方法、接着装置、及びポリイミドフィルムの接着部を有する接着構造体を提供することができる。
熱板による接着を実施する際に用いた装置を示す写真の写しである。 熱板による接着の一例を模式的に示す正面図である。 導電性部材を熱板として接着する場合における導電性部材の一例、及び導電性部材に電圧を印加して加熱した際の温度状態を示す写真の写しである。 導電性部材による接着の一例を模式的に示す正面図である。 COレーザーによる接着を実施する際に用いた装置を示す写真の写しである。 COレーザーによる接着の一例を模式的に示す正面図である。 COレーザーによる接着の一例を模式的に示す正面図である。 COレーザーによる接着において、COレーザーからのレーザー光の照射とポリイミドフィルムの接着との関係を説明する模式図である。 熱板による接着を行った場合のポリイミドフィルムの接着部を、当該フィルムの正面から光学式顕微鏡で撮影した写真の写しである。 COレーザーによる接着を行った場合のポリイミドフィルムの接着部を、当該フィルムの正面から撮影した写真の写しである。 ポリイミドフィルム同士の接着部の断面を走査電子顕微鏡で撮影した写真の写しである。 熱分解が生じたポリイミドフィルムを、光学式顕微鏡で撮影した写真の写しである。 焦点ズラシ距離を0mmから10mmへと増やしていき、描写速度37.9mm/min、2.4W(40W、出力6%)でCOレーザーからレーザー光を照射したときのポリイミドフィルムの様子を示す写真の写しである。 レーザー光のスポット径と焦点ズラシ距離との関係を示す模式図である。 本発明の接着方法を用いてポリイミドフィルム同士を接着して作製したエアバッグを示す写真の写しである。 実施例の剥離試験で使用した、ポリイミドフィルムを2枚貼り合わせた試験片の平面図である。 実施例の剥離試験で使用した試験片を切り出す前のポリイミドフィルムの平面図である。 実施例の剥離試験を説明する模式図である。 実施例の剥離試験で使用した引張試験機の正面図である。 実施例の剥離試験で測定された、引張量と発生力との関係の一例を示すグラフである。 図1及び図2に示す装置における金型の表面温度をサーモグラフィにより測定するにあたって、金型の表面温度として測定した位置を示す写真の写しである。 COレーザーによる接着において、レーザー光の設定速度と、円弧状に照射したレーザー光による接着部の描写速度との関係を示す説明図である。 COレーザーによる接着において、レーザー光の設定速度と、ジグザグ状に照射したレーザー光による接着部の描写速度との関係を示す説明図である。 レーザーの出力と、接着部の描写速度とを変化させて、COレーザーによる接着試験を行った結果を示すグラフである。 レーザーの出力と、断熱材の種類とを変化させて、COレーザーによる接着試験を行った結果を示すグラフである。 レーザーの出力と、帯状の接着部の幅とを変化させて、COレーザーによる接着試験(円弧状照射)を行った結果を示すグラフである。 レーザーの出力と、帯状の接着部の幅とを変化させて、COレーザーによる接着試験(ジグザグ状照射)を行った結果を示すグラフである。 金属に対するポリイミドフィルムの接着方法の一例を模式的に示す正面図である。 ポリイミドフィルムをジュラルミン(A2017)へと接着した接着部(金型形状での接着)を撮影した写真の写しである。 ポリイミドフィルムをジュラルミン(A2017)へと接着した接着部(フィルム全面の接着)を撮影した写真の写しである。 ポリイミドフィルムをステンレス鋼(SUS430)へと接着した接着部を撮影した写真の写しである。
 本発明は、ポリイミドフィルムの接着方法、接着装置、及びポリイミドフィルムの接着部を有する接着構造体を含む。以下、これらについて説明する。なお、一の実施形態において、接着とは、あらかじめ離間して存在していたポリイミドフィルム同士が直接接した状態で、結合されることをいう。また、他の実施形態において、接着とは、あらかじめ離間して存在していたポリイミドフィルムと金属とが直接接した状態で、結合されることをいう。
<ポリイミドフィルム>
 ポリイミドは、酸二無水物とジアミンとの重縮合によって得られる有機高分子である。芳香族ポリイミドは耐熱性及び絶縁性が高く、特に宇宙環境、高温環境、極低温環境、酸性・アルカリ性溶液中といった、人が近づくのが困難な極限環境で利用する物品の材料として、魅力的な性質を有している。
 芳香族ポリイミドは一般に融解が起こる温度が非常に高いことから、熱分解温度と近接する融点を有する、又は融点の特定が難しいことが多い(上述したとおり、以下においても「熱分解温度と近接する融点を有する、又は融点の特定が難しいポリイミド」のことを「難融解ポリイミド」と称する)。そのため、このようなポリイミドを融解させようと加熱していっても、孔が空いてしまったり炭化してしまったりすることから、加熱による接着(溶着)はできないと考えられていた。
 本発明の接着方法によれば、難融解ポリイミドフィルムを直接接着することができる。換言すると、熱可塑性セグメントを導入する等の化学修飾を行っていないポリイミドフィルムを、前処理を行ったり、接着剤を使用したりすることなく接着することができる。また、後掲する第1~第3の実施形態に示すように、複雑・特殊な工程や製造装置が不要であり、生産の拡大も容易である。
 難融解ポリイミドフィルム以外のポリイミドフィルムを本発明の接着方法の対象としてもよいが、本発明の接着方法の対象は、特に難融解ポリイミドフィルムである。難融解ポリイミドフィルムが有する物性としては、融点及び熱分解温度がともに400℃以上であり、融点と熱分解温度とが近接又は一致していることが挙げられる。
 本発明の接着方法の対象とする難融解ポリイミドフィルムは、ガラス転移温度が200℃以上450℃以下であることが好ましく、220℃以上450℃以下であることがより好ましく、250℃以上420℃以下であることが特に好ましい。なお、難融解ポリイミドフィルムのガラス転移温度は、示差走査熱量測定(DSC)によって測定される。
 本発明の接着方法の対象とする難融解ポリイミドフィルムは、熱分解温度が550℃以上であることが好ましく、580℃以上であることがより好ましく、600℃以上であることが特に好ましい。より詳しくは、550℃以上900℃以下であることが好ましく、580℃以上850℃以下であることがより好ましく、600℃以上800℃以下であることが特に好ましい。なお、難融解ポリイミドフィルムの熱分解温度は、熱天秤(PGA)によって測定される。
 本発明の接着方法の対象とする難融解ポリイミドフィルムは、融解が起こる温度が非常に高く、熱分解温度に近接する融点を有するか、融解が起こる温度が高温でかつ熱分解温度と近接するため融点の特定が難しいポリイミドフィルムである。難融解ポリイミドフィルムの融点としては、480℃以上であることが好ましく、500℃以上であることがより好ましく、530℃以上であることが特に好ましい。より詳しくは、480℃以上600℃以下であることが好ましく、500℃以上600℃以下であることがより好ましく、530℃以上595℃以下であることが特に好ましい。なお、難融解ポリイミドフィルムの融点は、示差熱分析(DTA)によって測定される。
 本発明の接着方法の対象とする難融解ポリイミドフィルムとしては、下記式(1)で表される繰り返し単位を有するポリイミドを含有するポリイミドフィルムや、下記式(2)で表される繰り返し単位を有するポリイミドを含有するポリイミドフィルムが挙げられる。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 上記式(1)で表される繰り返し単位を有するポリイミドを含有するポリイミドフィルムに該当するものとしては、宇部興産株式会社製の「UPILEX(登録商標)」が挙げられる。
 上記式(2)で表される繰り返し単位を有するポリイミドを含有するポリイミドフィルムに該当するものとしては、DuPont社製の「KAPTON(登録商標)」や株式会社カネカ製の「APICAL(登録商標)」が挙げられる。
 本発明の接着方法の対象とするポリイミドフィルムの厚さは、特に限定されないが、12.5μm厚以上125μm厚以下であることが好ましく、12.5μm厚以上75μm厚以下であることがより好ましく、25μm厚以上50μm厚以下であることが特に好ましい。
<第1の実施形態:熱板によるポリイミドフィルム同士の接着>
 本発明の第1の実施形態は、ポリイミドフィルム同士を熱板により接着するものである。図1は、熱板による接着において使用することができる装置を示す写真の写しであり、図2は、熱板による接着の一例を模式的に示す正面図である。以下、これらの図面を参照しながら説明する。
 本発明の第1の実施形態においては、例えば、図2に示すように、支持部材5の上に、シリカクロス4とポリイミドフィルムF2枚とを重ねて置いたのち(図1の写真の下部参照)、ヒーター2により高温に加熱され熱板となった金型3をポリイミドフィルムFに短時間接触させることにより、ポリイミドフィルムF同士を接着する。なお、支持部材5は冷水プレートであることが好ましい。
 本発明において熱板をポリイミドフィルムに短時間接触させる方法は特に限定されず、重ね合わせたポリイミドフィルムの下面から熱板を接触させる方法であっても、上面及び下面の両方から接触させる方法であっても、2枚のポリイミドフィルムの間から接触させる方法であってもよいが、図1の写真に示す装置においては、当該写真上部に示すように、ヒーター2及び金型3を支持する支持部材1にはシリンダーが設けられており、このシリンダーにより金型3(熱板)をポリイミドフィルムFに短時間押し付けることで、ポリイミドフィルムF同士を接着することができる。
 第1の実施形態である熱板による接着方法は、2枚のポリイミドフィルムを重ね合わせた部分に熱板を接触させることで、当該ポリイミドフィルム同士を接着するにあたり、前記熱板の接触による加熱温度が450℃以上であり、前記ポリイミドフィルムと前記熱板との接触時間が12秒以下であることを特徴とする。換言すると、図2における金型3の温度が450℃以上であり、ポリイミドフィルムFと金型3との接触時間が12秒以下である。
 一般に、熱板による接着には、フィルムと熱板とを接触させる接触式と、熱板の輻射熱を利用してフィルムを加熱する非接触式がある。上記温度の熱板を接触させるのと同等にまでフィルムを加熱することができる場合は非接触式も採用し得るが、本発明の熱板による接着方法では、フィルムをかなり高温に加熱する必要があるため接触式が好ましい。
 本発明の熱板による接着方法において、熱板の接触による加熱温度は、接着するポリイミドフィルムのガラス転移温度よりも高い温度とし、熱分解温度に近い温度とすることが好ましい。接着する難融解ポリイミドフィルムの種類によっても変化するが、難融解ポリイミドフィルムを接着する場合、500℃以上700℃以下であることが好ましく、530℃以上680℃以下であることがより好ましく、540℃以上660℃以下であることが特に好ましい。この温度範囲は熱板を加熱するヒーターの設定温度であるが、これを後掲する実施例中の「熱板による接着試験における金型の表面温度とヒーターの設定温度との関係の測定」の測定結果(表11)に基づいて、熱板の温度範囲へと換算すると、450℃以上650℃以下程度であることが好ましく、480℃以上630℃以下程度であることがより好ましく、490℃以上610℃以下程度であることが特に好ましい。このポリイミドフィルムの加熱温度の好適範囲は、後掲するように熱板として導電性部材を使用した場合(金型・ヒーター一体型)でも同様である。
 上記式(1)で表される繰り返し単位を有するポリイミドを含有するポリイミドフィルムにあっては、熱板をポリイミドフィルムに接触させることによる加熱温度は520℃以上570℃以下(同様に表11に沿って熱板の温度範囲へと換算すると470℃以上520℃以下程度)であることが好ましい。より好ましくは540℃以上560℃以下(同様に表11に沿って熱板の温度範囲へと換算すると480℃以上510℃以下程度)である。加熱温度を上記範囲内とすることで、より強固にポリイミドフィルム同士を接着することができる。
 上記式(2)で表される繰り返し単位を有するポリイミドを含有するポリイミドフィルムにあっては、熱板をポリイミドフィルムに接触させることによる加熱温度は590℃以上650℃以下(同様に表11に沿って熱板の温度範囲へと換算すると530℃以上600℃以下程度)であることが好ましい。加熱温度を上記範囲内とすることで、より強固にポリイミドフィルム同士を接着することができる。
 本発明の熱板による接着方法において、ポリイミドフィルムと熱板との接触時間は12秒以下であり、6秒以下であることが好ましく、5秒以下であることがより好ましく、0.3秒以上3秒以下であることがさらに好ましく、0.5秒以上1.5秒以下であることが特に好ましい。
 本発明の熱板による接着方法においては、ポリイミドフィルムに押付圧力がかかるように熱板を接触させることが好ましい。押付圧力としては100kPa程度であることが好ましく、より詳しくは、押付圧力が50kPa以上200kPa以下であることが好ましく、75kPa以上150kPa以下であることがより好ましい。押付圧力を上記範囲内とすることで、より強固にポリイミドフィルム同士を接着することができる。
 本発明の熱板による接着方法における熱板は、図1及び図2に示すようにヒーターと連結した金型であっても、ヒーターと一体化した金型であってもよい。金型の素材は、高温に加熱することができ、接着対象のフィルムに熱を伝えることができれば特に限定されないが、例えば金属製の金型が挙げられ、鉄、銅、又は銀製の金型が好ましい。金型の形状も特に限定されず、接着したい部分に合わせて凸部が設けられた金型、平板状の金型、後述するプリンテッド・エレクトロニクス技術を応用して形成された紐状の金型等、様々な形状を採用し得る。
 本発明の熱板による接着方法において、ヒーターと一体化した金型として導電性部材を使用する場合には、導電性部材とポリイミドフィルムとを密着させるように予め押付圧力を加えた状態で接触させておき、当該導電性部材に電圧を印加して当該導電性部材を瞬間的に加熱することで、当該導電性部材を熱板として使用してもよい。
 例えば、図4に示すように、挟持部材8の上にシリカクロス4とポリイミドフィルムF2枚とを重ねて置き、導電性部材7とポリイミドフィルムFとを密着させるように挟持部材6と挟持部材8とで挟み込むことで、予め押付圧力を加えた状態で接触させておき、導電性部材7に電圧を印加して瞬間的に加熱することで、導電性部材を短時間熱板とし、ポリイミドフィルムF同士を接着することができる。
 このようなヒーターと一体化した金型としては、図3に示すように、プリンテッド・エレクトロニクス技術を応用して形成された電極(導電性部材)が挙げられる。プリンテッド・エレクトロニクス技術によれば、様々な形の金型を短時間で簡便に作製することができる。
<第2の実施形態:レーザーによるポリイミドフィルム同士の接着>
 本発明の第2の実施形態は、ポリイミドフィルム同士をレーザーにより接着するものである。
 現在主流となっているレーザー溶着は、レーザー透過性樹脂とレーザー吸収性樹脂とを組み合わせ、レーザー吸収性樹脂「のみ」をレーザー光の照射によって加熱・溶融し、その熱でレーザー透過性樹脂も加熱・溶融させて溶着する方法である。そのため、広範囲の樹脂で吸収されるレーザー光を発するCOレーザーは、レーザー溶着には通常使用されない。しかしながら、本発明者は、樹脂によく吸収されるレーザー光を発するCOレーザーが、高温への加熱を要するポリイミドフィルム同士の接着に適切であることを見出した。
 加えて、ポリイミドフィルムは、レーザー光を照射すると炭化する、レーザー光を照射すると孔があく等の問題があり、従来レーザーによる接着は困難であるとされていた。しかしながら、本発明者は、重ね合わせたポリイミドフィルムの上面にレーザー光を照射するにあたって、当該ポリイミドフィルムのレーザー光が当たる位置の下面に断熱材を密着させ、レーザー光により加熱されたポリイミドフィルムの熱が逃げない工夫をすることによって、ポリイミドフィルムに炭化が生じない程度の出力のレーザー光の照射であっても、接着可能な温度にまでポリイミドフィルムを加熱できることを見出した。
 すなわち、本発明のレーザーによる接着方法は、2枚のポリイミドフィルムを重ね合わせた部分にレーザー光を照射することで、当該ポリイミドフィルム同士を接着するにあたり、重ね合わせた前記ポリイミドフィルムの下面を断熱材に密着させた状態で、前記ポリイミドフィルムの上面に前記レーザー光を照射することを特徴とする。
 この接着方法におけるレーザーとしては、上記したCOレーザー以外のレーザーを採用することも可能であり、例えば、UVダイオードレーザーを使用して難融解ポリイミドフィルム同士を接着できることを本発明者は確認した。ダイオードレーザーを使用することで接着装置の小型化が可能である。
 本発明のレーザーによる接着方法において、ポリイミドフィルムの下面(レーザー光が照射される反対側の面)に断熱材を密着させる手段としては、例えば、断熱材としてシリカクロスを密着させる手法、断熱材として真空層を設ける手法が挙げられる。ポリイミドフィルムの下面に真空層を密着させる構造を有する装置としては、図5及び図6に示すような接着装置が挙げられる。また、ポリイミドフィルムの下面にシリカクロスを密着させる構造を有する装置としては、図7に示すような接着装置が挙げられる。図5はCOレーザーによる接着を実施する際に用いた装置を示す写真の写しであり、図6及び図7はCOレーザーによる接着の一例を模式的に示す正面図である。以下、これらの図面を参照しながら接着装置について説明する。
 図5及び図6に示す接着装置は、ポリイミドフィルムFの下面を支持する支持部材10と、ポリイミドフィルムFにレーザー光を照射するCOレーザー照射部(図5の写真参照)とを有し、支持部材10がポリイミドフィルムFの下面と接触する位置に断熱層を備え、当該断熱層がポリイミドフィルムFと接触する表面層と、当該表面層の下部に位置する真空層9とを有し、前記表面層が熱硬化性のポリイミドフィルムF′で形成されている。接着対象としての2枚のポリイミドフィルムFは、挟持部材11及び12によって挟持されることで支持部材10に密着するように配置されている。このポリイミドフィルムFに対してレーザー光を照射することで、本発明のレーザーによる接着方法を実施することができる。
 当該接着装置における真空層9は、図6に示すように、凹部を有する支持部材10の上に熱硬化性のポリイミドフィルムF′を設け、当該凹部内を減圧装置により減圧することで真空とされている。例えば図5に示す装置では、溝の入った底板を熱硬化性のポリイミドフィルムF′の下に設置して、当該底板の周囲を減圧装置で減圧することで当該溝内の空間を真空とし、当該溝に沿ってレーザー光を照射するように構成されている。
 なお、真空層9の真空度は、レーザー光により加熱されたポリイミドフィルムの熱が逃げない程度の断熱効果を発揮することができる程度であればよい。具体的には、真空層9の真空度は150hPa以下であることが好ましく、130hPa以下であることがより好ましく、110hPa以下であることが特に好ましい。
 図7に示す接着装置は、ポリイミドフィルムFの下面を支持する支持部材10と、ポリイミドフィルムFにレーザー光を照射するレーザー照射部とを有し、支持部材10の表面から順に、断熱材としてのシリカクロス4と、熱硬化性のポリイミドフィルムF′とが積層配置されている。熱硬化性のポリイミドフィルムF′の上に配置される接着対象としての2枚のポリイミドフィルムFは、挟持部材11及び12により挟持されることで、断熱材と密着するように配置されている。図7に示す状態にてポリイミドフィルムFの上面に対してレーザー光を照射することで、本発明のレーザーによる接着方法を実施することができる。図7に示す接着装置を用いて接着操作を行うにあっては、挟持部材12の下方から真空引きによりポリイミドフィルムFを支持部材10へと引きつけて、ポリイミドフィルムFを断熱材としてのシリカクロス4に密着させておくことが好ましい。
 本発明のレーザーによる接着方法においてCOレーザーを用いる場合、レーザーの出力は、例えば2W以上5W以下であり、3W付近であることが好ましい。
 本発明のレーザーによる接着方法にあっては、レーザー光の焦点から接着対象のポリイミドフィルムをずらした状態で、ポリイミドフィルム上に照射されるレーザー光を円弧状、多角形状、又はジグザグ状に移動させることが好ましい。
 レーザー光は、スポット径が大きいほどパワー密度が下がる。本発明者は、レーザーによる接着において、炭化したり孔があいたりするのは、レーザー光のパワー密度が必要量よりも高いことが原因であると予想した。そのうえで、本発明者は、レーザー光の焦点からポリイミドフィルムをずらして、スポット径を大きくしてパワー密度を下げていけば、炭化したり孔があいたりすることなくレーザーによる接着を行えることを見出した。
 本発明のレーザーによる接着方法において、2.4WのCOレーザー光(40W、出力6%のCOレーザー)を用いた場合、炭化することなく接着可能な焦点ズラシ距離は、例えば5mm以上15mm以下であり、好ましくは6mm以上12mm以下であり、より好ましくは7mm以上10mm以下である。なお、焦点ズラシ距離の定義は実施例の欄にて説明する。
 COレーザーからのレーザー光はポリイミドフィルムを透過しないため(図8の左上図参照)、円弧状又は多角形状を描くようにレーザー光を照射することにより(図8の右上図参照)、均等にポリイミドフィルム内部まで加熱することができるため(図8の右下図参照)、炭化したり孔があいたりすることを防ぎながらポリイミドフィルム同士を接着することができる。
 図22に示すように、直径dの円を描きつつ、一定の方向へと進行するようにレーザーを照射することで、幅dの帯状の接着部を描写することができる。ここで、レーザー光の進行速度(レーザー加工機の設定速度)をv、描写する円一周ごとに移動するピッチをpとすると、円一周を描写する時間t=πd/vであることから、接着部の描写速度vは、v=p/t=pv/πdにて算出できる。
 また、図23に示すように、ジグザグ状にレーザー光を照射することによっても、均等にポリイミドフィルム内部まで加熱することができるため、炭化したり孔があいたりすることを防ぎながらポリイミドフィルム同士を接着することができる。この場合の接着部の描写速度vも、図23に示す角度θ、帯状の接着部の幅d及びレーザー光の進行速度vから算出できる。
 なお、以下において、図22に示すように円を描きながら一定方向に進行することで帯状の接着部を描写するレーザー光の照射を単に「円弧状照射」、図23に示すようにジグザグ状に照射することで帯状の接着部を描写するレーザー光の照射を単に「ジグザグ状照射」と呼ぶ。また帯状の接着部の幅dのことを線幅とも呼ぶ。
<接着部を有するポリイミドフィルム>
 本発明のポリイミドフィルムの接着方法によれば、難融解ポリイミドフィルム同士が接着した接着部を有するポリイミドフィルムを実現することができる。また、本発明のポリイミドフィルムの接着方法によれば、当該接着部の接着強度を50N/m以上とすることができる。
 具体的には、接着する2枚のポリイミドフィルムを第1及び第2のポリイミドフィルムとしたときに、第1及び第2のポリイミドフィルムがそれぞれ、「上記式(1)で表される繰り返し単位を有するポリイミドを含有するポリイミドフィルム」又は「上記式(2)で表される繰り返し単位を有するポリイミドを含有するポリイミドフィルム」であっても、これらを直接接着した接着部を形成することができる。換言すると、このような接着部を有するポリイミドフィルムを製造することができる。
 したがって、本発明の接着部を有するポリイミドフィルムは、軽量であり、且つ極低温環境や極高温環境となる宇宙空間等の極限環境下においても使用することができるような、優れた耐熱性、耐寒性、放射線・紫外線耐性を備える。
 本発明の接着部を有するポリイミドフィルムは上述の特性を備えることから、フィルムのみで形成された骨格構造やアクチュエータで構成される極限環境向けのロボット等に応用が可能である。このようなロボットの特長としては、アクチュエータがフィルムのみで形成されているため極軽量であり、且つ安価で大量生産ができること、丸めたり折り畳んだりすることができるためコンパクトに収納できること、剛性変化や形状記憶が可能なユニットを作製可能なこと、アスペクト比が高く極軽量であるため新たな動作を創出できること(サイズ効果を有効に活用できること)が挙げられる。
 また、本発明のポリイミドフィルムの接着方法によれば、例えばポリイミドフィルムの外縁部同士を接着させることで、接着剤や固定用金属部材を含まない袋体を実現できる。このような袋体としては図15に示すエアバッグが挙げられ、飛翔体の落下等による衝撃緩和装置や、宇宙空間等の極限環境下での使用に好適である。なお、図15に示すエアバッグは、重ね合わされた2枚の難融解ポリイミドフィルムの周縁部が本発明による接着方法によって接着されてなり、接着されていないフィルムの中央部分に空気等のガスが充填されることによって、難融解ポリイミドフィルムのみで製造されたエアバッグである。
 図9に、熱板によるポリイミドフィルム同士の接着を行った場合のポリイミドフィルムの接着部を、当該フィルムの正面から光学式顕微鏡で撮影した写真の写しを示す。図9では左右方向に延びる帯状の接着部が確認できる。なお、この接着部にある模様は、図2に示す金型3(熱板)の圧着によって、シリカクロス4の編み目模様に沿ってポリイミドフィルムに色変化が生じたものである。図10に、COレーザーによるポリイミドフィルム同士の接着を行った場合のポリイミドフィルムの接着部(幅2mmの帯状)を、当該フィルムの正面から撮影した写真の写しを示す。図10は、一眼レフカメラにマクロレンズを取り付けて撮影したものであり、写真の左右方向に延びる帯状の接着部を確認できる。図11に、ポリイミドフィルム同士の接着部の断面を走査電子顕微鏡で撮影した写真の写しを示す。図11は、ポリイミドフィルム(製品名:アピカル25NPI、株式会社カネカ製、フィルム厚25μm)同士を熱板により接着した接着部の断面を走査電子顕微鏡(型式:SU9000、株式会社日立ハイテク製)を用いて撮影したものであり、写真の上下方向が接着されたポリイミドフィルムの厚み方向であり、その中央部に接着面がある。接着面の写真右側に見える白色部分は未接着部(接着操作を行っていない部分)であり、その白色部分より左側が接着操作を行った接着部であり、図11によれば隙間なく接着されていることを確認できる。つまり、本開示に係る接着方法によればポリイミドフィルム同士を直接接着できることが、図9~図11の写真で確認できる。
<第3の実施形態:金属に対するポリイミドフィルムの接着>
 第3の実施形態は、金属に対してポリイミドフィルムを接着するものである。
 上述したように、難融解ポリイミドは加熱による接着(溶着)はできないと考えられていたが、ポリイミドフィルム同士の接着に関する上記第1の実施形態から接着させる対象を金属へと変更して、ポリイミドフィルムを金属表面へと密着させるように押付圧力を加えた状態でポリイミドフィルムを加熱することで、難融解ポリイミドフィルムを金属に対しても直接接着できることを、本発明者は見出した。
 すなわち、本開示のポリイミドフィルムを金属に対して接着する方法は、ポリイミドフィルムの片面を金属表面へと密着させるように押付圧力を加えた状態で、ポリイミドフィルムを加熱することを特徴とする接着方法である。
 図28は、金属に対するポリイミドフィルムの接着の一例を模式的に示す正面図である。図28の例では、ヒーター2上に金属M、ポリイミドフィルムF及び熱硬化性のポリイミドフィルムF′をこの順に積層配置し、さらにその上から金型3、シリカクロス4及び重し13をこの順に載せることで、ポリイミドフィルムFを金属Mへと密着させるように押付圧力を加えた状態とされている。熱硬化性のポリイミドフィルムF′は、ポリイミドフィルムFとの接着を防ぐ役割を果たしており、ポリイミドフィルムFと金型3との接着を防いでいる。また、図24の例では、ポリイミドフィルムFと金属Mとの間の一部分に熱硬化性のポリイミドフィルムF′が配置されていることで、その部分ではポリイミドフィルムFと金属Mとが接着しないようにされている。
 また、第3の実施形態に係るポリイミドフィルムの接着方法は、例えば、上記第1の実施形態で用いることができる図2に示す装置において、重ね合わされたポリイミドフィルムFの下側1枚を接着対象の金属へと変更することでも実施することができる。
 第3の実施形態における接着対象のポリイミドフィルムの加熱について、例えば、加熱温度としては400℃以上550℃以下の範囲が挙げられ、加熱時間としては3分以上15分以下の範囲が挙げられる。
 第3の実施形態に係るポリイミドフィルムの接着方法によれば、ポリイミドフィルムと金属表面とが直接接着した接着部を有する、ポリイミドフィルムと金属との接着構造体を製造することができる。
<他の実施形態>
 なお、今回開示した実施形態は、すべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本発明の技術的範囲には、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
 例えば、今回開示した実施形態では、重ね合わせたポリイミドフィルムを水平に設置して、当該ポリイミドフィルムの上面側から熱板を接触、又はレーザー光を照射しているが、ポリイミドフィルムを設置する向きや、熱板を接触させる方向、レーザー光を照射する方向は適宜変更することができる。
 以下、実施例及び比較例に基づいて本発明を説明するが、本発明はこれらの実施例により限定されるものではない。
 <ポリイミドフィルムの接着部の剥離試験の方法>
 図17に示すようにポリイミドフィルムF同士を直線状に接着したものから、図16に示す形状の試験片を切り出した。当該試験片を図18に示すように開きT字剥離試験を行った。この剥離試験で使用した引張試験機を図19に示す。当該引張試験機は液体窒素タンクを備えるが、今回の試験では使用せず、室温にて試験を行った。当該引張試験機のFilm chackに剥離する試験片を挟み、剥離方向の変位を与え、その際の反力を測定した。
 図20に測定された反力を試験片の接着部の幅(15mm)で割った結果の一例を示す。図20に示すように急激に反力が低下した最初の箇所を剥離点(剥離開始点)とした。
<実施例1-1.UPILEX-25RNに対する熱板による接着試験>
 図1及び図2に示す装置を用いて熱板による接着を行った。水冷プレート(図2における支持部材5に相当)及びシリカクロスの上に、ポリイミドフィルム(製品名:UPILEX-25RN、宇部興産株式会社製、フィルム厚25μm)を2枚置いた。熱板(加熱された金型)によるポリイミドフィルムに対する押付圧力を100kPa、熱板とポリイミドフィルムとの接触時間を1秒とし、サンプル毎にヒーターの設定温度を530℃~580℃の範囲(後掲する表11に沿って金型温度へと換算すると480℃~530℃程度の範囲)にて変更して、ポリイミドフィルム同士の接着を行った。その結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000009
 表1から明らかなように、高温に加熱した熱板を短時間接触させることで、加熱による接着が困難であるとされていた難融解ポリイミドフィルム(UPILEX-25RN)同士を接着することができた。
<実施例1-2.熱板により接着した接着部を有する試験片の剥離試験>
 実施例1-1と同様にしてポリイミドフィルム(製品名:UPILEX-25RN、宇部興産株式会社製、フィルム厚25μm)同士を接着させた試験片に対して、上述した方法で剥離試験を行った。その結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000010
 表2から明らかなように、加熱温度(ヒーターの設定温度)が540℃以上570℃以下(後掲する表11に沿って金型温度へと換算すると480℃~520℃程度の範囲)である試験片において、十分な接着強度を備えていることがわかった。これらのなかで最も接着強度が高くなるのは、当該温度が550℃(後掲する表11に沿って金型温度へと換算すると500℃程度)である場合であることがわかった。
<実施例1-3.接触時間を変化させて行った熱板による接着試験>
 実施例1-1と同様にしてポリイミドフィルム(製品名:UPILEX-25RN、宇部興産株式会社製、フィルム厚25μm)同士の接着試験を行った。その結果を、接着時の加熱温度毎に以下の表3~表7に示す。なお、接着状態の評価基準は以下のとおりである。
 -評価基準-
A(優秀):強く接着しており問題がない。
B(良好):若干の課題はあるが、強く接着している。
C(可) :力をかけると手で剥がすことができる程度に接着している。
D(不可):容易に手で剥がすことができる程度の接着であるか、接着できていない。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 表3~表7に示す結果から、接着が弱くなる比較的低温度の領域で、熱板の接触時間を長くしても接着されず、熱によってポリイミドフィルムが変形してしまうことがわかる。換言すると、難融解ポリイミドフィルム同士を接着するにあたっては、高温の熱板を短時間接触させることが重要であるとわかる。
 また表7の結果から、ポリイミドフィルムを接着できる温度領域の上限付近で接触時間を長くすると、ポリイミドフィルムの焼失や、ポリイミドフィルムが金型に貼り付いて離れなくなる(溶融したポリイミドが金型に貼り付いているように見受けられる)等の問題があることがわかる。また、難融解のポリイミドフィルムであっても、長時間の加熱・加圧によって変形してしまう問題があることがわかる。換言すると、難融解ポリイミドフィルム同士を接着するにあたっては接触時間を短時間することで、接着部(熱板の接触部分)以外の部分が、撓んだり波打ったりすることを抑制できる。
<実施例1-4.アピカル25NPIに対する熱板による接着試験>
 実施例1-1と同様にしてポリイミドフィルム(製品名:アピカル25NPI、株式会社カネカ製、フィルム厚25μm)同士の接着試験を行った。その結果を以下の表8及び表9に示す。なお、接着状態の評価基準は以下のとおりである。
 -評価基準-
A(良好):力をかけると手で剥がすことができる程度に接着している。
B(可) :容易に手で剥がすことができる程度に接着している。
C(不可):接着できていない。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 表8及び表9に示すように、本発明の接着方法によれば、加熱による接着(溶着)ができないとされていた難融解ポリイミドフィルムのひとつであるアピカル25NPIにおいても、加熱による接着ができることがわかる。
<参考例.熱可塑性ポリイミドフィルムに対する熱板による接着試験>
 参考例として、難融解ポリイミドフィルムではない熱可塑性のポリイミドフィルム(製品名:Midfil、倉敷紡績株式会社(クラボウ)製、フィルム厚25μm)同士についても、実施例1-1と同様にして接着試験を行った。その結果を以下の表10に示す。なお、接着状態の評価基準は以下のとおりである。
 -評価基準-
A(良好):接着している。
B(不可):接着できていない。
Figure JPOXMLDOC01-appb-T000018
<熱板による接着試験における金型の表面温度とヒーターの設定温度との関係の測定>
 上記の実施例1-1~1-4及び参考例における表では、加熱温度としてヒーターの設定温度を用いていたが、ヒーターの設定温度毎に、熱板としての金型の表面温度を測定した。図2に示す金型3の側面に黒色スプレー(JSC-3号、放射率0.94)を塗布し、サーモグラフィによって金型の表面温度を測定した。金型の表面温度として測定した位置を図21に示す。なお、室温からヒーターにより加熱した金型の表面温度が安定するまでの時間が約20分であったことから、ヒーターによる加熱開始から20分以上経った後に測定を行うことで金型の表面温度を決定した。測定した金型の表面温度とヒーターの設定温度との関係を以下の表11に示す。
Figure JPOXMLDOC01-appb-T000019
<実施例2-1.レーザーによる接着試験:焦点ズラシ距離の条件>
 COレーザーによる接着試験として、レーザー光を照射するポリイミドフィルムの位置を、レーザー光の焦点からずらしていく試験を、図6の装置(断熱材:真空層)を用いて行った。図13に、左から順に焦点ズラシ距離を0mmから10mmへと増やしていき、接着部の描写速度37.9mm/min、2.4W(40W、出力6%)でレーザー光を照射(図22に示すような「円弧状照射」)したときのポリイミドフィルムの様子を示す。なお、焦点ズラシ距離とは、接着対象のポリイミドフィルムの位置を、レーザー光の焦点からレンズ(COレーザー照射部が備えるレンズ)側へとずらした距離を意味する。ポリイミドフィルムが焦点にあるとき(焦点ズラシ距離が0mmのとき)にはレーザー光の照射でポリイミドフィルムが炭化してしまっているが、焦点ズラシ距離を増加させていくと、焦点ズラシ距離が6mmのときにポリイミドフィルム表面が炭化せずに変質している領域が多くみられるようになることがわかる。焦点ズラシ距離が7mm~10mmになると、炭化がほとんど起こらない状態で接着可能であることがわかる。
 ここで図14に、レーザー光のスポット径と焦点ズラシ距離との関係を示す。レンズLの直径をD、焦点距離をa、レーザー光のスポット径をM、レンズLから接着対象までの距離(焦点ズラシ後の距離)をa、接着対象の位置でのレーザー光のスポット径をMとすると、Mは下記式(3)にて算出できる。
Figure JPOXMLDOC01-appb-M000020
 この実施例で使用したレンズLは、直径(D)が20mm、焦点距離(a)が50.8mm、厚さが2mm、レーザー光のスポット径(M)が約0.2mmである。焦点ズラシ距離が10mmのときa=60.8mmであることから、これらの値を上記式(3)に代入することで、接着時のレーザー光のスポット径M=約4.2mmと算出できる。焦点ズラシ距離が7mmの場合も同様に算出するとM=約3.0mmであることから、接着時のレーザー光のスポット径が3mm~4.2mmの範囲では、炭化がほとんど起こらない状態で接着可能であることがわかる。
<実施例2-2.レーザーによる接着試験:レーザーの出力条件>
 接着対象のポリイミドフィルムに対して照射するレーザーの出力と、接着部の描写速度とを変化させて、COレーザーによる接着試験を行った。図22における円の直径d=3mm、ピッチp=0.25mmとなる条件で円弧状照射を行った。図7に示すように断熱材としてはシリカクロスを使用し、熱硬化性のポリイミドフィルムとしてはUPILEX-25S(製品名、宇部興産株式会社製、フィルム厚25μm)、接着対象のポリイミドフィルムとしてはUPILEX-25RN(製品名、宇部興産株式会社製、フィルム厚25μm)を使用した。
 この試験結果を図24に示す。なお、図24~図27中の「測定出力」とは照射されたCOレーザーの出力の実測値であり、「接着部の描写速度」は3回測定の平均値とした。図24の試験結果から、接着部の描写速度は1.4mm/min~24.3mm/minの範囲で接着できた例があり、レーザー光の測定出力は3.0W~4.1Wの範囲で接着できた例があることがわかる。レーザー光の出力の許容範囲の広さの観点から、接着部の描写速度は8mm/min以上25mm/min以下であることが好ましい。ポリイミドフィルムが炭化すること又は不接着となることを防止する観点から、接着対象に照射するレーザー光の出力は3.2W以上4.2W以下であることが好ましい。
<実施例2-3.レーザーによる接着試験:断熱材の条件>
 接着対象のポリイミドフィルムの下面に密着させる断熱材の種類を変化させて、COレーザーによる接着試験を行った。図22における円の直径d=2mm、ピッチp=0.25mmとなる条件で円弧状照射を行った。熱硬化性のポリイミドフィルムとしてはUPILEX-25S(製品名、宇部興産株式会社製、フィルム厚25μm)、接着対象のポリイミドフィルムとしてはUPILEX-25RN(製品名、宇部興産株式会社製、フィルム厚25μm)を使用した。図6に示すように断熱材として真空層を用いたものと、図7に示すように断熱材としてシリカクロスを用いたものと、このシリカクロス及びUPILEX-25Sに代えて銅板を用いたものとで、接着状態を比較した。
 この試験結果を図25に示す。図25の試験結果から、断熱材に代えて銅を用いた例では接着することができず、断熱材として真空層又はシリカクロスを用いた例ではポリイミドフィルムを接着可能であることがわかる。また、断熱材として真空層を用いた例ではレーザー光の測定出力が3.5W~4W程度の範囲にて接着操作をするのが好ましいことがわかり、断熱材としてシリカクロスを用いた例ではレーザー光の測定出力が3W~5W程度の範囲にて接着操作をするのが好ましいことがわかる。
<実施例2-4.レーザーによる接着試験:レーザー光照射の軌道の条件>
 レーザー光照射の軌道を図22に示す「円弧状照射」とした場合と、図23に示す「ジグザグ状照射」とした場合とで、COレーザーによる接着試験を行った。図7に示すように断熱材としてはシリカクロスを使用し、熱硬化性のポリイミドフィルムとしてはUPILEX-25S(製品名、宇部興産株式会社製、フィルム厚25μm)、接着対象のポリイミドフィルムとしてはUPILEX-25RN(製品名、宇部興産株式会社製、フィルム厚25μm)を使用した。
 この試験結果を図26,27に示す。なお、接着部の描写速度(図22及び図23におけるv)は、図26(円弧状照射)の線幅が2mmの例では37.9mm/min、線幅が3mmの例では25.3mm/min、図27(ジグザグ状照射)の線幅が2mmの例では246mm/minであった。図26,27の試験結果に示すように、レーザー光を図22に示すように円弧状に照射しても、図23に示すようにジグザグ状に照射しても、幅が2mm~3mmの帯状に接着することが可能であった。このようにCOレーザーによる接着において、幅が2mm~3mmの帯状の接着部となるように接着操作をすることで、均等にポリイミドフィルムの内部まで加熱することができると考えられる。なお、図8を用いて説明したように、ポリイミドフィルム上にレーザー光を直線状に照射した場合には、ポリイミドフィルムを均等に内部まで加熱することができず、接着させることはできなかった。
<実施例3-1.金属に対するポリイミドフィルムの接着試験:金型形状での接着>
 図2に示す装置において、重ね合わされたポリイミドフィルムFの下側1枚を、接着させる対象としての金属に置き換え、金型の形状を接触面が11.5mm×12.5mmの長方形状のものへと変更したうえで、金属に対するポリイミドフィルムの接着試験を行った。接着対象のポリイミドフィルムとしてはUPILEX-25RN(製品名、宇部興産株式会社製、フィルム厚25μm)を使用し、金属としてはジュラルミン(A2017)を使用した。
 ヒーターの設定温度を500℃、加熱された金型(熱板)によるポリイミドフィルムに対する押付圧力を2.5MPa、金型とポリイミドフィルムとの接触時間を5分とし、金属に対するポリイミドフィルムの接着を試みた。この接着試験により、ポリイミドフィルムをジュラルミン(A2017)へと接着した接着部を撮影した写真の写しを図29に示す。この写真の中央部に金型形状の接着部が確認できるように、難融解ポリイミドフィルムをジュラルミンに対して接着できたことがわかる。
<実施例3-2.金属に対するポリイミドフィルムの接着試験:フィルム全面の接着>
 図28に示す装置を用いて、金属に対するポリイミドフィルムの接着試験を行った。図28に示す装置によれば、金属Mがヒーター2によって加熱されるため、ポリイミドフィルムFの全面が金属Mと接着する(接着しないように熱硬化性ポリイミドフィルムF′が両者の間に挿入されている部分を除く)。この実施例では、金型3には接触面が10mm×100mmの長方形状のものを使用し、重し13の質量は3.52kgとした。そのため、重し13からポリイミドフィルムFにかかる押付圧力は34.5kPaである((3.51×9.81)/(10×100)≒34.5[kPa])。金属Mをヒーター2により加熱して、金属Mの温度が実測値で450℃に到達した後に、図28に示す状態にてポリイミドフィルムFを5分間加熱することで、金属Mに対するポリイミドフィルムFの接着を試みた。接着対象のポリイミドフィルムとしては、UPILEX-25RN(製品名、宇部興産株式会社製、フィルム厚25μm)を使用した。
 この接着試験により、ポリイミドフィルムをジュラルミン(A2017)に対して接着した接着部を撮影した写真の写しを図30に、ポリイミドフィルムをステンレス鋼(SUS430)に対して接着した接着部を撮影した写真の写しを図31に示す。図30によれば、難融解ポリイミドフィルムの全面をジュラルミンに対して強く接着できたことが確認できる。また、ステンレス鋼に対して接着した図31では、接着部の写真右上部分が強く接着できていることが確認できる。なお、図31において全面では強く接着しなかった理由としては、ステンレス鋼(SUS430)の表面粗さが原因であると考えられる。
 実施例3-1及び3-2の結果から、ポリイミドフィルムの片面を金属表面へと密着させるように押付圧力を加えた状態でポリイミドフィルムを加熱することで、難融解ポリイミドフィルムであっても金属に対して直接接着できることがわかった。
 ポリイミドは、軽量で、耐熱性も、耐寒性も、放射線や紫外線に対する耐性も高いにもかかわらず、従来ポリイミドフィルムの加工にあたっては接着剤や固定用金属部材を使用しなければならなかったために、ポリイミドの有益な特性を生かしきれてなかった。本発明のポリイミドフィルムの接着方法、接着装置によれば、ポリイミド、特に融点が高く耐熱性も高い難融解ポリイミドを接着できることにより、極限環境下でのポリイミドの利用可能性を広めることができる。
 情報機器産業や宇宙産業においては、ポリイミドフィルムの耐性を落とすことなく、ポリイミドフィルム本来の高い特性を利用した製品が製造可能となり、安価に極限環境への耐性を持った宇宙用デバイスの生産が可能となる。また、深海、原子力発電所内部等の特殊環境に適用させる必要があるデバイスへの応用に好適である。
 自動車産業においては、例えば、極低温の液体水素を利用する燃料電池自動車、高い絶縁性及び耐熱性を必要とする電気自動車のバッテリー部、ハーネス周辺部等への応用が可能であると予想される。
 自動車・航空産業においては、ポリイミドフィルムは金属並みの引張強度を持つことから、直接貼り合わせられる特性を活かし、金属の代替として利用が拡大することで、車体の軽量化やそれに伴う航続可能距離の延長等が期待できる。
 ロボット産業において、本発明者は、骨格構造、アクチュエータ、センサの全てをフィルムのみで構成した極軽量・極薄なロボティクスとして、Filmotics(Film + Robotics)という学術分野を提唱している。Filmoticsは従来のロボティクスと大きくかけ離れた質量体積比が特長のロボット体系であり、昆虫を超える活動性能や各種特性を有することが期待される新たなマイクロロボット分野として、現在研究を進めている。本発明の接着方法、接着装置、及び当該接着方法により接着した接着部を有するポリイミドフィルムは、このようなマイクロロボットへの応用に好適である。
1  支持部材
2  ヒーター
3  金型(熱板)
4  シリカクロス
5  支持部材
6  挟持部材
7  導電性部材(熱板)
8  挟持部材
9  真空層
10 支持部材
11 挟持部材
12 挟持部材
13 重し
F  接着対象のポリイミドフィルム
F′ 熱硬化性のポリイミドフィルム
L  レーザー照射部が備えるレンズ

Claims (14)

  1.  ポリイミドフィルムの接着方法であって、
     2枚のポリイミドフィルムを重ね合わせた部分に熱板を接触させることで、当該ポリイミドフィルム同士を接着し、
     前記熱板の接触による前記ポリイミドフィルムの加熱温度が450℃以上であり、
     前記ポリイミドフィルムと前記熱板との接触時間が12秒以下であることを特徴とするポリイミドフィルム同士の接着方法。
  2.  請求項1に記載のポリイミドフィルム同士の接着方法であって、
     前記2枚のポリイミドフィルムがそれぞれ、下記式(1)で表される繰り返し単位を有するポリイミドを含有するポリイミドフィルム、又は下記式(2)で表される繰り返し単位を有するポリイミドを含有するポリイミドフィルムであることを特徴とするポリイミドフィルム同士の接着方法。
    Figure JPOXMLDOC01-appb-C000001
     
    Figure JPOXMLDOC01-appb-C000002
     
  3.  請求項1又は請求項2に記載のポリイミドフィルム同士の接着方法であって、
     前記ポリイミドフィルムに押付圧力がかかるように前記熱板を接触させることを特徴とするポリイミドフィルム同士の接着方法。
  4.  請求項3に記載のポリイミドフィルム同士の接着方法であって、
     導電性部材と前記ポリイミドフィルムとを密着させるように予め押付圧力を加えた状態で接触させておき、当該導電性部材に電圧を印加して当該導電性部材を瞬間的に加熱することで、当該導電性部材を前記熱板として使用することを特徴とするポリイミドフィルム同士の接着方法。
  5.  ポリイミドフィルムの接着方法であって、
     2枚のポリイミドフィルムを重ね合わせた部分にレーザー光を照射することで、当該ポリイミドフィルム同士を接着し、
     重ね合わせた前記ポリイミドフィルムの下面を断熱材に密着させた状態で、前記ポリイミドフィルムの上面に前記レーザー光を照射することを特徴とするポリイミドフィルム同士の接着方法。
  6.  請求項5に記載のポリイミドフィルム同士の接着方法であって、
     前記レーザー光の焦点から前記ポリイミドフィルムをずらした状態で、前記ポリイミドフィルムの上面に前記レーザー光を照射することを特徴とするポリイミドフィルム同士の接着方法。
  7.  請求項5又は請求項6に記載のポリイミドフィルム同士の接着方法であって、
     前記ポリイミドフィルム上の前記レーザー光を円弧状、多角形状又はジグザグ状に移動させながら照射することを特徴とするポリイミドフィルム同士の接着方法。
  8.  請求項5又は請求項6に記載のポリイミドフィルム同士の接着方法であって、
     帯状の接着部を形成することを特徴とするポリイミドフィルム同士の接着方法。
  9.  フィルムの下面を支持する支持部材と、前記フィルムにレーザー光を照射するレーザー照射部とを有し、
     前記支持部材が、前記フィルムの下面と接触する位置に断熱層を備え、
     前記断熱層が、前記フィルムと接触する表面層と、当該表面層の下部に位置する真空層とを有し、
     前記表面層が、熱硬化性のポリイミドフィルムで形成されていることを特徴とするフィルムの接着装置。
  10.  請求項1又は請求項5に記載の接着方法を用いてポリイミドフィルム同士が接着した接着部を有するポリイミドフィルム。
  11.  第1のポリイミドフィルムと第2のポリイミドフィルムとが接着した接着部を有するポリイミドフィルムであって、
     前記第1及び第2のポリイミドフィルムはそれぞれ、下記式(1)で表される繰り返し単位を有するポリイミドを含有するポリイミドフィルム、又は下記式(2)で表される繰り返し単位を有するポリイミドを含有するポリイミドフィルムである
     ことを特徴とするポリイミドフィルム。
    Figure JPOXMLDOC01-appb-C000003
     
    Figure JPOXMLDOC01-appb-C000004
     
  12.  ポリイミドフィルムの接着方法であって、
     ポリイミドフィルムの片面を金属表面へと密着させるように押付圧力を加えた状態で当該ポリイミドフィルムを加熱することで、当該金属に対して当該ポリイミドフィルムを接着することを特徴とするポリイミドフィルムの接着方法。
  13.  ポリイミドフィルム及び金属を備える接着構造体であって、
     請求項12に記載の接着方法を用いて前記ポリイミドフィルムと前記金属表面とが接着した接着部を有することを特徴とする接着構造体。
  14.  ポリイミドフィルム及び金属を備える接着構造体であって、
     前記ポリイミドフィルムと前記金属表面とが接着した接着部を有し、
     前記ポリイミドフィルムは、下記式(1)で表される繰り返し単位を有するポリイミドを含有するポリイミドフィルム、又は下記式(2)で表される繰り返し単位を有するポリイミドを含有するポリイミドフィルムである
     ことを特徴とする接着構造体。
    Figure JPOXMLDOC01-appb-C000005
     
    Figure JPOXMLDOC01-appb-C000006
     
PCT/JP2022/043521 2021-11-26 2022-11-25 ポリイミドフィルムの接着方法、接着装置、及びポリイミドフィルムの接着部を有する接着構造体 WO2023095869A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021192505 2021-11-26
JP2021-192505 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023095869A1 true WO2023095869A1 (ja) 2023-06-01

Family

ID=86539603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043521 WO2023095869A1 (ja) 2021-11-26 2022-11-25 ポリイミドフィルムの接着方法、接着装置、及びポリイミドフィルムの接着部を有する接着構造体

Country Status (2)

Country Link
TW (1) TW202337679A (ja)
WO (1) WO2023095869A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192177A (ja) * 1989-12-22 1991-08-22 Mitsui Toatsu Chem Inc ポリイミドフィルムの接着方法
JP2020121333A (ja) * 2019-01-31 2020-08-13 日本ゼオン株式会社 熱プレス装置および成形体の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192177A (ja) * 1989-12-22 1991-08-22 Mitsui Toatsu Chem Inc ポリイミドフィルムの接着方法
JP2020121333A (ja) * 2019-01-31 2020-08-13 日本ゼオン株式会社 熱プレス装置および成形体の製造方法

Also Published As

Publication number Publication date
TW202337679A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
JP4626687B2 (ja) 樹脂と金属との接合方法
US4022648A (en) Bonding of organic thermoplastic materials
US5840147A (en) Plastic joining method
JP4666532B2 (ja) 金属樹脂接合方法及び金属樹脂複合体
US20140318591A1 (en) Self-corrugating laminates useful in the manufacture of thermoelectric devices and corrugated structures therefrom
JP6990343B2 (ja) 熱可塑性材料の部品を溶着する方法
US10710333B2 (en) Heat transport structure and manufacturing method thereof
JP7372679B2 (ja) 接合物の製造方法
CN110722802A (zh) 基于超声辅助的轻质合金与热塑性复合材料的连接方法
US20070131347A1 (en) Method of forming a fabric covered article
JP4371147B2 (ja) 積層体およびその製造方法、波長板ならびに光学フィルム
KR870011411A (ko) 열회복성물품
JP5214838B2 (ja) 積層体及びその製造方法
WO2023095869A1 (ja) ポリイミドフィルムの接着方法、接着装置、及びポリイミドフィルムの接着部を有する接着構造体
JP4607872B2 (ja) ハニカムコアを含む構造の要素を集成する方法
US11826964B2 (en) Method of bonding thermoplastic resin and metal
US4664738A (en) Process for laminating film to woven fabric
US8129011B2 (en) Polymer seaming with diffusion welds
US20190118490A1 (en) Apparatus and method for establishing or for separating a connection having material continuity or having material continuity and shape matching of at least one metal or ceramic component and of a component formed from or by a thermoplastic polymer
JP2019217699A (ja) 熱溶着性フィルム、積層体、異種材接合体、及び異種材接合体の製造方法
JP2016203469A (ja) 積層体の製造方法
JP3909136B2 (ja) 溶着可能な樹脂製品の製造方法
JP2016502475A (ja) 熱可塑性材料接合相手材とガラス接合相手材の接合方法
JP2014213540A (ja) 繊維強化樹脂積層体の接合方法及び繊維強化樹脂成形体
JP7081828B2 (ja) 金属体-フッ素樹脂体接合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898651

Country of ref document: EP

Kind code of ref document: A1