WO2023095787A1 - 多孔質体 - Google Patents
多孔質体 Download PDFInfo
- Publication number
- WO2023095787A1 WO2023095787A1 PCT/JP2022/043167 JP2022043167W WO2023095787A1 WO 2023095787 A1 WO2023095787 A1 WO 2023095787A1 JP 2022043167 W JP2022043167 W JP 2022043167W WO 2023095787 A1 WO2023095787 A1 WO 2023095787A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fibers
- porous body
- fiber
- resin
- body according
- Prior art date
Links
- 239000000835 fiber Substances 0.000 claims abstract description 332
- 229920005989 resin Polymers 0.000 claims abstract description 143
- 239000011347 resin Substances 0.000 claims abstract description 143
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 92
- 239000004917 carbon fiber Substances 0.000 claims abstract description 92
- 239000012783 reinforcing fiber Substances 0.000 claims abstract description 53
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 9
- 229920000412 polyarylene Polymers 0.000 claims description 9
- 239000003822 epoxy resin Substances 0.000 claims description 7
- 229920000647 polyepoxide Polymers 0.000 claims description 7
- 229920001187 thermosetting polymer Polymers 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 6
- 239000005011 phenolic resin Substances 0.000 claims description 6
- 229920005992 thermoplastic resin Polymers 0.000 claims description 6
- 229920000178 Acrylic resin Polymers 0.000 claims description 5
- 239000004925 Acrylic resin Substances 0.000 claims description 5
- 229920005672 polyolefin resin Polymers 0.000 claims description 5
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 4
- 229920006122 polyamide resin Polymers 0.000 claims description 4
- 229920006260 polyaryletherketone Polymers 0.000 claims description 4
- 229920001225 polyester resin Polymers 0.000 claims description 4
- 239000011148 porous material Substances 0.000 claims 1
- 102100040428 Chitobiosyldiphosphodolichol beta-mannosyltransferase Human genes 0.000 description 33
- 229920000139 polyethylene terephthalate Polymers 0.000 description 27
- 239000005020 polyethylene terephthalate Substances 0.000 description 27
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 23
- 101100491335 Caenorhabditis elegans mat-2 gene Proteins 0.000 description 21
- 229920000106 Liquid crystal polymer Polymers 0.000 description 20
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 20
- -1 polyethylene Polymers 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 13
- 239000000758 substrate Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 239000006185 dispersion Substances 0.000 description 9
- 229920001155 polypropylene Polymers 0.000 description 9
- 229920000728 polyester Polymers 0.000 description 8
- 230000003014 reinforcing effect Effects 0.000 description 8
- 101100495256 Caenorhabditis elegans mat-3 gene Proteins 0.000 description 7
- 239000004743 Polypropylene Substances 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 229920001971 elastomer Polymers 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000004760 aramid Substances 0.000 description 5
- 238000005452 bending Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 229920006231 aramid fiber Polymers 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- 101100495270 Caenorhabditis elegans cdc-26 gene Proteins 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 238000009863 impact test Methods 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229920001652 poly(etherketoneketone) Polymers 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 229920006127 amorphous resin Polymers 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920001470 polyketone Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229920008285 Poly(ether ketone) PEK Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- IDCBOTIENDVCBQ-UHFFFAOYSA-N TEPP Chemical compound CCOP(=O)(OCC)OP(=O)(OCC)OCC IDCBOTIENDVCBQ-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000003484 crystal nucleating agent Substances 0.000 description 1
- 229920006038 crystalline resin Polymers 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000000077 insect repellent Substances 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920013745 polyesteretherketone Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
Definitions
- the present invention relates to a fiber-reinforced resin porous body used in industrial products such as sporting goods, electronic equipment housings, and building members.
- a structure containing voids such as that of Patent Document 1
- Patent Document 2 has a problem of insufficient impact strength.
- a structure containing a resin exhibiting rubber elasticity as in Patent Document 2 exhibits excellent impact strength due to the rubber elasticity of the resin, but on the other hand, the effect of fixing the reinforcing fibers is reduced, and the reinforcing effect is sufficiently reduced. There was a problem that the rigidity and strength were insufficient.
- the present invention has been made in view of the above problems, and its object is to provide a fiber-reinforced resin porous body having excellent lightness, impact strength and rigidity.
- the present invention for solving the above problems has the following configuration.
- a porous body having a porosity of 10 to 95% in which the reinforcing fibers are fixed by the resin (C).
- the organic fibers (B) have a diameter of 15 to 50 ⁇ m.
- the organic fiber (B) has a tensile strength of 1 to 6 GPa.
- the resin (C) is a thermoplastic resin selected from polyolefin resins, polyamide resins and polyarylene sulfide resins, and/or a thermosetting resin selected from epoxy resins, phenol resins and acrylic resins.
- a composite structure in which a fiber-reinforced resin containing continuous reinforcing fibers is arranged on the surface of the porous body according to any one of [1] to [16].
- the porous body according to any one of [1] to [17] which is used for applications selected from sporting goods, housings for electronic devices and building members.
- a porous body having excellent lightness, impact strength and rigidity can be obtained.
- FIG. 1 is a schematic diagram showing a cross-sectional structure of a porous body of the present invention
- the porous body of the present invention is a so-called fiber-reinforced resin containing reinforcing fibers and resin, and as reinforcing fibers, carbon fibers (A) of more than 50% by weight and 99% by weight or less and a tensile elongation at break of 2.5 to 100% 1% by weight or more and less than 50% by weight of the organic fibers (B), and the reinforcing fibers are fixed by the resin (C).
- the carbon fiber (A) has excellent rigidity and strength, and the reinforcing effect derived from the carbon fiber (A) is sufficient by containing more than 50% by weight and not more than 99% by weight of the carbon fiber (A) as a reinforcing fiber. It is possible to impart excellent rigidity and strength.
- the organic fibers (B) are relatively superior to the carbon fibers (A) in ductility and tensile elongation at break, and are less likely to break due to impact. Therefore, in order for the porous body containing the organic fibers (B) to be broken by impact, it is necessary that the organic fibers (B) break the resin (C) or be pulled out from the resin (C). , can impart excellent impact strength to the porous body. By including 1% by weight or more of the organic fiber (B) as the reinforcing fiber, the reinforcing effect derived from the organic fiber (B) can be made sufficient, and excellent impact strength can be imparted.
- the content of the carbon fiber (A) relative to the organic fiber (B) is relatively large, and the excellent rigidity and strength imparted by the carbon fiber (A).
- the excellent impact strength imparted by the organic fibers (B) can be achieved at the same time.
- the content of carbon fibers (A) is more preferably 60 to 80% by weight, and the content of organic fibers (B) is more preferably 20 to 40% by weight.
- the tensile elongation at break of the organic fiber (B) is 2.5% or more, fiber breakage upon impact can be sufficiently suppressed, and excellent impact strength can be imparted to the porous body.
- the tensile elongation at break is 100% or less, the elongation of the organic fibers (B) at the time of impact is suppressed, so that a sufficient load can be borne, and excellent impact strength can be imparted.
- the tensile elongation at break of the organic fiber (B) is preferably 2.5-30%, more preferably 2.5-15%.
- the porous body of the present invention has a porosity of 10 to 95% by volume.
- the porosity is 10% by volume or more, the specific gravity becomes small and sufficient lightness can be obtained.
- the porosity is 95% by volume or less, the reinforcing effect of the reinforcing fibers and the resin can be made sufficient, and excellent mechanical properties can be imparted to the porous body.
- the porosity is more preferably 20% by volume or more and 90% by volume or less.
- FIG. 1 is a schematic diagram showing the cross-sectional structure of the porous body of the present invention.
- the porous body 1 of the present invention includes carbon fibers 2 , organic fibers 3 , resin 4 and voids 5 , and the carbon fibers 2 and organic fibers 3 are fixed by the resin 4 .
- the organic fibers (B) are uniformly dispersed with the carbon fibers (A).
- Uniformly dispersed in the present invention means that the coefficient of variation of the number of carbon fibers (A) intersecting with the arbitrarily selected organic fibers (B) is 50% or less.
- the term “intersection” refers to a state in which the reference organic fiber (B) intersects with the carbon fiber (A) in a two-dimensional plane to be observed, and the two must be in contact with each other. no. Locations where the carbon fiber (A) content is relatively low are weak in terms of strength and rigidity, and locations where the organic fiber (B) content is relatively low are prone to fiber breakage and are weak in impact strength.
- the porous body can have both excellent rigidity and impact strength without any local weakened portions.
- the coefficient of variation of the number of carbon fibers (A) intersecting with the organic fibers (B) is obtained by arbitrarily selecting five organic fibers (B), and carbon fibers (A ) is calculated by the following formula from the number ni .
- the organic fibers (B ) may be substituted by the number of carbon fibers (A) crossing.
- the intersections of the reinforcing fibers are bonded with the resin (C), and voids of the porous body are formed as portions where neither the reinforcing fibers nor the resin (C) are present.
- voids of the porous body are formed as portions where neither the reinforcing fibers nor the resin (C) are present.
- voids are scattered in the porous body.
- the specific gravity can be reduced, and excellent mechanical properties can be exhibited while being lightweight.
- the load applied to the porous body is dispersed through the resin and the contact points, and the reinforcing fibers bear the load, thereby exhibiting excellent mechanical properties.
- the reinforcing fibers in order for the porous body to break due to the impact when the reinforcing fibers do not break due to the impact, it is necessary for the reinforcing fibers to break the resin at the contact point or to pull out the reinforcing fibers from the resin. It is possible to express the impact strength. Further, since the reinforcing fibers are bonded with the resin, the reinforcing effect of the reinforcing fibers can be made sufficient.
- the many intersections of the reinforcing fibers are formed by the single fibers of the carbon fibers (A) intersecting with other fibers.
- another fiber means a carbon fiber (A) or an organic fiber (B) different from the carbon fiber (A), and the other fiber may be in the state of a single fiber or in the state of a fiber bundle. may be Thereby, the load applied to the porous body is dispersed in the carbon fibers (A) having excellent strength and rigidity, and excellent strength and rigidity can be imparted to the porous body.
- at least some of the many intersections of the reinforcing fibers are formed by the single fibers of the organic fibers (B) intersecting with other fibers.
- another fiber means an organic fiber (B) or a carbon fiber (A) different from the organic fiber (B), and the other fiber may be in the state of a single fiber or in the state of a fiber bundle.
- the load applied to the porous body is dispersed in the organic fibers (B) that are difficult to break, and the resin (C) is broken or the organic fibers (B) are pulled out from the resin (C) upon impact. can impart excellent impact strength to the porous body.
- the average two-dimensional orientation angle formed by the reinforcing fibers forming the intersections is 10 to 80 degrees.
- the two-dimensional orientation angle in the present invention is defined as an acute angle within the range of 0° or more and 90° or less among the angles formed by intersecting single fibers.
- isotropy can be imparted to the mechanical properties.
- the reinforcing fibers are isotropically present, the resin (C) is broken or the reinforcing fibers are pulled out from the resin (C) regardless of the crack propagation direction at the time of impact, so it is excellent for porous bodies. impact strength.
- the average two-dimensional orientation angle is more preferably 30 to 60 degrees, still more preferably 40 to 50 degrees.
- the observation method for measuring the two-dimensional orientation angle is not particularly limited, but for example, a method of observing the orientation of the reinforcing fibers from the surface of the component can be exemplified. In this case, by polishing the surface of the porous body to expose the reinforcing fibers, it becomes easier to observe the reinforcing fibers. Moreover, the method of imaging
- the average two-dimensional orientation angle is measured by the following procedure. That is, the average value of two-dimensional orientation angles with all the single fibers intersecting with randomly selected single fibers is measured. For example, when there are many other single fibers that intersect with a certain single fiber, the arithmetic mean value obtained by randomly selecting 20 different intersecting single fibers and measuring them may be used instead. This measurement is repeated a total of 5 times using another single fiber as a reference, and the arithmetic mean value is calculated as the average two-dimensional orientation angle.
- the porous body of the present invention preferably contains 10 to 95 parts by weight of resin (C) with respect to a total of 5 to 90 parts by weight of carbon fibers (A) and organic fibers (B).
- the total amount of the carbon fiber (A) and the organic fiber (B) is 5 parts by weight or more and the resin (C) is 95 parts by weight or less, so that the reinforcing effect derived from the carbon fiber (A) and the organic fiber (B) is sufficiently obtained. and can exhibit excellent mechanical properties.
- the total amount of the carbon fiber (A) and the organic fiber (B) is 90 parts by weight or less, and the resin (C) is 10 parts by weight or more, so that the resin (C) sufficiently bonds the reinforcing fibers to each other. The reinforcing effect of can be made sufficient.
- the density of the porous body of the present invention is preferably 0.02-0.9 g/cm 3 .
- a density of 0.02 g/cm 3 or more can impart sufficient mechanical properties to the porous body.
- the density is 0.9 g/cm 3 or less, it is possible to have sufficient lightness, and it is possible to exhibit excellent mechanical properties while being lightweight.
- the carbon fiber (A) preferably has an average fiber length of 1 to 15 mm.
- the average fiber length of the carbon fibers (A) is 1 mm or more, the reinforcing effect of the carbon fibers (A) can be made sufficient, and excellent rigidity can be imparted.
- the average fiber length of the carbon fiber (A) is 15 mm or less, the carbon fiber (A) is less likely to bend in the porous body, and the high rigidity of the carbon fiber (A) is fully utilized to create a porous structure. Excellent rigidity can be imparted to the body.
- the average fiber length of the carbon fibers (A) is more preferably 2-13 mm.
- the average fiber length of the organic fibers (B) is preferably 4 to 20 mm. Since the average fiber length of the organic fibers (B) is 4 mm or more, the organic fibers (B) have many contact points with other fibers and resins, and when impacted, the resin breaks or the organic fibers (B) from the resin Therefore, it is possible to impart excellent impact strength to the porous body. On the other hand, since the average fiber length of the organic fibers (B) is 20 mm or less, the number of fibers per unit volume of the organic fibers (B) can be sufficiently increased, and the resin is broken or the organic fibers are separated from the resin at the time of impact. (B) is accompanied by a large number of withdrawals. The average fiber length of the organic fibers (B) is more preferably 6-15 mm.
- the average fiber length of the reinforcing fibers is obtained by removing the matrix resin component by a method such as burning off or eluting, randomly selecting 400 fibers from the remaining reinforcing fibers, measuring their lengths to the nearest 100 ⁇ m, and measuring their average length. can be calculated as
- Examples of carbon fibers (A) include PAN-based, rayon-based, lignin-based, and pitch-based carbon fibers.
- Organic fibers (B) include polyolefin resins such as polyethylene and polypropylene, polyamide resins such as nylon 6, nylon 66 and aromatic polyamides, polyester resins such as polyethylene terephthalate, polybutylene terephthalate and liquid crystal polyester, and polyether ketone.
- Examples include fibers obtained by spinning resins such as polyaryletherketone-based resins such as polyethersulfone, polyarylene sulfide, and fluororesins. Two or more of these fibers may be used in combination.
- the organic fiber (B) of the present invention is preferably selected from polyester-based resins, polyaryletherketone-based resins and polyarylene sulfide-based resins, from the viewpoint of suppressing fiber breakage upon impact.
- these fibers may be surface-treated.
- the surface treatment includes, in addition to metal adhesion treatment as a conductor, treatment with a coupling agent, treatment with a sizing agent, treatment with a binding agent, adhesion treatment with additives, and the like.
- the diameter of the organic fiber (B) is preferably 15-50 ⁇ m.
- the diameter of the organic fiber (B) is 15 ⁇ m or more, the load resistance of the organic fiber (B) is sufficiently increased as the cross-sectional area increases, and the breakage of the organic fiber (B) due to the load at the time of impact is sufficiently suppressed. and can impart excellent impact strength to the porous body.
- the diameter of the organic fibers (B) is 50 ⁇ m or less, the number of fibers per unit volume of the organic fibers (B) can be sufficiently increased, and the resin is broken or the organic fibers (B) are separated from the resin at the time of impact. Many pull-outs are involved, and excellent impact strength can be imparted to the porous body.
- the tensile strength of the organic fiber (B) is preferably 1-6 GPa. Within this range, breakage of the organic fibers (B) upon impact can be sufficiently suppressed, and excellent impact strength can be imparted to the porous body.
- the resin (C) may be a thermoplastic resin or a thermosetting resin, and a resin obtained by blending the two may also be used.
- Thermoplastic resins include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polyester such as liquid crystal polyester, polyethylene (PE), polypropylene (PP) , polyolefin such as polybutylene, polyoxymethylene (POM), polyamide (PA), polyarylene sulfide such as polyphenylene sulfide (PPS), polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), poly Ether ketone ketone (PEKK), polyether nitrile (PEN), fluorine resins such as polytetrafluoroethylene, crystalline resins such as liquid crystal polymer (LCP), styrene resins, polycarbonate (PC), polymethyl Methacrylate (PMMA), polyvinyl chloride (PVC), polyphenylene ether (PPE), polyimide (PI), polyamideimi
- the resin (C) is more preferably a thermoplastic resin selected from polyolefin resins, polyamide resins and polyarylene sulfide resins.
- polyolefin-based resins are preferred from the viewpoint of lightness
- polyamide-based resins are preferred from the viewpoint of strength
- polyarylene sulfide-based resins are preferably used from the viewpoint of heat resistance.
- Thermosetting resins include unsaturated polyester resins, vinyl ester resins, epoxy resins, phenolic resins, acrylic resins, urea resins, melamine resins, thermosetting polyimide resins, their copolymers, modified products, and blends thereof. can be exemplified.
- the resin (C) is more preferably a thermosetting resin selected from epoxy resins, phenol resins and acrylic resins.
- epoxy resin is preferred from the viewpoint of strength
- phenol resin is preferred from the viewpoint of heat resistance
- acrylic resin is preferred from the viewpoint of impact strength.
- the matrix resin may contain an impact resistance improver such as an elastomer or rubber component, other fillers, and additives within a range that does not impair the purpose of the present invention.
- fillers and additives include inorganic fillers, flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, damping agents, antibacterial agents, insect repellents, deodorants, and anti-coloring agents. , heat stabilizers, release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, blowing agents, foam control agents, or coupling agents.
- the Charpy impact strength of the porous body of the present invention is preferably 10-100 kJ/m 2 .
- the Charpy impact strength of the porous body of the present invention is preferably 10-100 kJ/m 2 .
- the Charpy impact strength of the porous body is more preferably 15-90 kJ/m 2 , still more preferably 20-80 kJ/m 2 .
- the Charpy impact strength conforms to JIS K 7111 (2006), edgewise using a notched test piece with a length of 80 ⁇ 2 mm, a width of 10.0 ⁇ 0.2 mm, and a thickness of 4.0 ⁇ 0.2 mm. It can be determined by an impact test.
- Another aspect of the present invention is a composite structure in which a fiber-reinforced resin containing continuous reinforcing fibers is arranged on the surface of the porous body of the present invention. Due to the fiber-reinforced resin on the surface of the composite structure of the present invention, it is possible to exhibit rigidity, impact strength, etc. that cannot be exhibited by the porous body of the present invention alone. In addition, when at least a part of the composite structure is composed of the porous body of the present invention, it is possible to impart excellent lightness to the composite structure.
- Examples of applications of the porous body of the present invention include sporting goods, housings for electronic equipment, building members, and the like. Since the porous body of the present invention has excellent lightness, rigidity and impact strength, it can be expected to have an excellent balance between lightness and repulsive force as a sporting goods and improve the performance of the sporting goods. In addition, it has an excellent balance of lightness and rigidity necessary for maintaining its shape as a housing for electronic equipment and building materials, and is expected to improve the portability of housings for electronic equipment and increase the height of buildings. Furthermore, it can be used for sporting goods, housings for electronic equipment, and building materials, and has an excellent balance of light weight and impact resistance.
- the porous body was molded from a void-free sheet-like substrate prepared by laminating a resin sheet and a fiber mat. .
- the basis weight Wr (g/m 2 ) of the resin sheet and the number of layers Nr, the basis weight Wf (g/m 2 ) of the carbon fiber in the fiber mat and the basis weight Wo (g/m 2 ) of the organic fiber, and the number of layers Nm of the fiber mat , the weight content of the resin (C) was calculated by the following formula.
- the volume Tb of the sheet-like substrate and the volume Ts of the porous body were measured, and the volume content of voids was calculated by the following equation.
- the arithmetic mean value obtained by randomly selecting 20 different intersecting single fibers and measuring them may be used instead. This measurement is repeated a total of 5 times using another single fiber as a reference, and the arithmetic mean value is calculated as the average two-dimensional orientation angle.
- Specimen material [carbon fiber (CF)] A continuous carbon fiber having a total of 12,000 single filaments was obtained from a copolymer containing polyacrylonitrile as a main component by performing spinning, baking treatment, and surface oxidation treatment. The properties of this continuous carbon fiber were as follows.
- Polyester fiber (“Tetoron” (registered trademark) 1670T-288F-702C manufactured by Toray Industries, Inc., fiber diameter 23 ⁇ m, tensile strength 1.1 GPa, tensile elongation at break 14.0%) was used.
- Polyester fiber 2 Polyester fiber (“Tetoron” (registered trademark) manufactured by Toray Industries, Inc., fiber diameter 7 ⁇ m, tensile strength 0.5 GPa, tensile elongation at break: 46%) was used.
- Polyester fiber 3 Polyester fiber (“Tetoron” (registered trademark) manufactured by Toray Industries, Inc., melting point 260° C., fiber diameter 10 ⁇ m, tensile strength 0.5 GPa, tensile elongation at break: 42%) was used.
- Polyester fiber 4 Polyester fiber (“Tetron” (registered trademark) manufactured by Toray Industries, Inc., melting point 260° C., fiber diameter 18 ⁇ m, tensile strength 0.5 GPa, tensile elongation at break: 36.5%) was used.
- Liveras (registered trademark) 1700T-288F manufactured by Toray Industries, Inc., fiber diameter 23 ⁇ m, tensile strength 3.3 GPa, tensile elongation at break 2.8%) was used.
- Para-aramid fibers (“Kevlar” (registered trademark) manufactured by Toray Industries, Inc., fiber diameter 12 ⁇ m, tensile strength 2.9 GPa, tensile elongation at break: 3.6%) were used.
- resin sheet 3 A resin sheet 3 having a basis weight of 150 g/m 2 made of polyether ketone ketone (“Cepstan” (registered trademark) 6003 manufactured by Arkema) was produced.
- An epoxy resin composition was prepared by blending 3 parts by mass of "Matsumoto Microsphere” (registered trademark) M (manufactured by Matsumoto Yushi Seiyaku Co., Ltd.) as particles and kneading for 30 minutes at 60°C. .
- a resin sheet 4 having a basis weight of 150 g/m 2 was produced from the epoxy resin composition.
- a dispersion having a concentration of 0.1% by mass was prepared from water and a surfactant (manufactured by Nacalai Techs Co., Ltd., polyoxyethylene lauryl ether (trade name)), and the dispersion, chopped carbon fiber and chopped PET fiber 1 was used to produce a fiber mat.
- a fiber mat manufacturing apparatus is equipped with a cylindrical container with a diameter of 1000 mm having an opening cock at the bottom of the container as a dispersing tank.
- a stirrer is attached to the opening on the upper surface of the dispersion tank, and the chopped carbon fibers, the chopped PET fibers 1 and the dispersion liquid can be introduced through the opening.
- the papermaking substrate was dried in a drying oven at 200° C. for 30 minutes to obtain a web.
- a fiber mat 1 was obtained by stacking the webs.
- the average fiber lengths of the carbon fibers and the PET fibers 1 in the fiber mat were 6 mm and 13 mm, respectively, the basis weight of the carbon fibers was 72 g/m 2 , and the basis weight of the PET fibers 1 was 28 g/m 2 .
- a fiber mat 2 was obtained in the same manner as the fiber mat 1, except that LCP fibers were used instead of the PET fibers 1 in the fiber mat 1.
- the average fiber lengths of the reinforcing fibers 1 and 3 in the fiber mat were 6 mm and 13 mm, respectively, the basis weight of the reinforcing fibers 1 was 72 g/m 2 , and the basis weight of the reinforcing fibers 3 was 28 g/m 2 .
- a fiber mat 3 was obtained in the same manner as the fiber mat 1 except that the PET fiber 1 in the fiber mat 1 was changed to the PET fiber 2 .
- the average fiber lengths of the carbon fibers and the PET fibers 2 in the fiber mat were 6 mm and 13 mm, respectively, the basis weight of the carbon fibers was 72 g/m 2 , and the basis weight of the PET fibers 2 was 28 g/m 2 .
- a fiber mat 4 was obtained in the same manner as the fiber mat 1 except that the PET fiber 1 in the fiber mat 1 was changed to the PET fiber 3 .
- the average fiber lengths of the carbon fibers and the PET fibers 3 in the fiber mat were 6 mm and 13 mm, respectively, the basis weight of the carbon fibers was 72 g/m 2 , and the basis weight of the PET fibers 3 was 28 g/m 2 .
- a fiber mat 5 was obtained in the same manner as the fiber mat 1 except that the PET fibers 1 in the fiber mat 1 were changed to PET fibers 4 .
- the average fiber lengths of the carbon fibers and the PET fibers 4 in the fiber mat were 6 mm and 13 mm, respectively, the basis weight of the carbon fibers was 72 g/m 2 , and the basis weight of the PET fibers 4 was 28 g/m 2 .
- a fiber mat 6 was obtained in the same manner as the fiber mat 2 except that the carbon fibers in the fiber mat 2 were cut to a length of 0.5 mm.
- the average fiber lengths of the carbon fibers and the LCP fibers in the fiber mat were 0.5 mm and 13 mm, respectively, the basis weight of the carbon fibers was 72 g/m 2 , and the basis weight of the LCP fibers was 28 g/m 2 .
- a fiber mat 7 was obtained in the same manner as the fiber mat 2 except that the carbon fibers in the fiber mat 2 were cut to a length of 20 mm.
- the average fiber lengths of the carbon fibers and LCP fibers in the fiber mat were 20 mm and 13 mm, respectively, the basis weight of the carbon fibers was 72 g/m 2 , and the basis weight of the LCP fibers was 28 g/m 2 .
- a fiber mat 8 was obtained in the same manner as the fiber mat 2 except that the LCP fibers in the fiber mat 2 were cut to a length of 2 mm.
- the average fiber lengths of the carbon fibers and LCP fibers in the fiber mat were 6 mm and 2 mm, respectively, the basis weight of the carbon fibers was 72 g/m 2 , and the basis weight of the LCP fibers was 28 g/m 2 .
- a fiber mat 9 was obtained in the same manner as the fiber mat 2 except that the LCP fibers in the fiber mat 2 were cut to a length of 30 mm.
- the average fiber lengths of the carbon fibers and LCP fibers in the fiber mat were 6 mm and 30 mm, respectively, the basis weight of the carbon fibers was 72 g/m 2 and the basis weight of the LCP fibers was 28 g/m 2 .
- a fiber mat 10 was obtained in the same manner as the fiber mat 1 except that the PET fibers 1 in the fiber mat 1 were replaced by aramid fibers.
- the average fiber lengths of the carbon fibers and the aramid fibers in the fiber mat were 6 mm and 13 mm, respectively, the basis weight of the carbon fibers was 72 g/m 2 , and the basis weight of the aramid fibers was 28 g/m 2 .
- a fiber mat 11 was obtained in the same manner as the fiber mat 2, except that in the fiber mat 2, the chopped LCP fibers were partially left in the fiber bundle having the original thickness.
- the average fiber lengths of the carbon fibers and LCP fibers in the fiber mat were 6 mm and 13 mm, respectively, the basis weight of the carbon fibers was 72 g/m 2 and the basis weight of the LCP fibers was 28 g/m 2 .
- a fiber mat 12 was obtained in the same manner as the fiber mat 2, except that the ratio of the chopped carbon fibers and the chopped LCP fibers to be put into the dispersion tank was changed.
- the average fiber lengths of the carbon fibers and LCP fibers in the fiber mat were 6 mm and 13 mm, respectively, the basis weight of the carbon fibers was 39 g/m 2 , and the basis weight of the LCP fibers was 61 g/m 2 .
- Fiber mat 13 The carbon fibers were cut to a length of 6 mm to obtain chopped carbon fibers.
- a dispersion having a concentration of 0.1% by mass was prepared from water and a surfactant (manufactured by Nacalai Techs Co., Ltd., polyoxyethylene lauryl ether (trade name)), and a fiber mat was prepared using the dispersion and chopped carbon fibers. manufactured.
- a fiber mat manufacturing apparatus is equipped with a cylindrical container with a diameter of 1000 mm having an opening cock at the bottom of the container as a dispersing tank.
- a stirrer is attached to the opening on the upper surface of the dispersion tank, and the chopped carbon fibers and the dispersion liquid can be introduced through the opening.
- the papermaking substrate was dried in a drying oven at 200° C. for 30 minutes to obtain a web.
- a fiber mat 13 was obtained by stacking the webs.
- the carbon fibers in the fiber mat had an average fiber length of 6 mm and a basis weight of 90 g/m 2 .
- Fiber mat 14 A fiber mat 14 having a basis weight of 110 g/m 2 was obtained in the same manner as the fiber mat 13 .
- Fiber mat 1 and resin sheet 1 are divided into [resin sheet 1/fiber mat 1/resin sheet 1/fiber mat 1/resin sheet 1/fiber mat 1/resin sheet 1/fiber mat 1/resin sheet 1/fiber mat 1/resin sheet 1/fiber mat 1/fiber mat 1/fiber mat 1/fiber mat 1/fiber mat 1/fiber mat 1/fiber mat 1/fiber mat 1/A laminate was prepared by arranging the resin sheets 1] in this order. Then, a sheet-like substrate was obtained through the following steps (A) to (C). (A) The laminate is placed in a press molding mold cavity preheated to 180° C. and the mold is closed. (B) After applying a pressure of 3 MPa and maintaining it for 5 minutes, the cavity temperature is cooled to 50° C. while maintaining the pressure. (C) The mold is opened and the sheet-like substrate is taken out.
- Example 2 A porous body was obtained through the same steps as in Example 1, except that the fiber mat 1 was changed to the fiber mat 2.
- Table 1 shows the properties of the obtained porous body.
- the organic fiber (B) having a higher tensile strength was used, and the impact strength was particularly high.
- Example 3 The fiber mat 1 was replaced with the fiber mat 2, the resin sheet 1 was replaced with the resin sheet 3, the preheating temperature in the step (A) was 350°C, the pressure in the step (B) was 10 MPa, and the holding time was 10 minutes.
- a porous body was obtained by going through the same steps as in 1. Table 1 shows the properties of the obtained porous body. Even when a resin having a higher melting point than in Example 2 was used, the impact strength was particularly high as in Example 2.
- Example 4 Resin sheet 1 in Example 1 was used as resin sheet 4, and a sheet-like base material was obtained through the following steps (A) to (C).
- A) Place the laminate in a press mold cavity preheated to 60° C. and close the mold.
- B) A pressure of 5 MPa is applied and held for 90 minutes.
- C) The mold is opened and the sheet-like substrate is taken out.
- a porous body was obtained through the following steps (D) to (F).
- Table 1 shows the properties of the obtained porous body. Even when a thermosetting resin was used instead of the resin in Example 2, the impact strength was particularly high as in Example 2.
- (D) Place the sheet-like substrate in a press molding mold cavity preheated to 60 ° C., apply a pressure of 5 MPa and hold for 5 minutes, then open the mold and insert a metal spacer at the end. Then, the thickness of the porous body is adjusted to 4.0 mm.
- E The mold cavity is closed again, and the temperature of the mold is raised to 150° C. while the pressure is maintained to cure for 90 minutes.
- Example 5 A porous body was obtained through the same steps as in Example 1, except that the fiber mat 1 was replaced with the fiber mat 11 . Table 1 shows the properties of the obtained porous body. The impact strength was higher than that of Comparative Example 1. Comparing Example 2 and Example 5, Example 2 had a smaller coefficient of variation in the number of carbon fibers (A) intersecting with the organic fibers (B), and had a particularly high impact strength.
- the fiber mat 1 is referred to as the fiber mat 2, and the fiber mat 2 and the resin sheet 1 are divided into [resin sheet 1/resin sheet 1/resin sheet 1/resin sheet 1/resin sheet 1/resin sheet 1/resin sheet 1/resin sheet 1. /fiber mat 2/resin sheet 1/resin sheet 1/resin sheet 1/resin sheet 1/resin sheet 1/resin sheet 1/resin sheet 1].
- a porous body was obtained by going through the steps of . Table 1 shows the structure of the obtained porous body. However, in Example 6, the content of the resin (C) was large, and the porous body did not swell to a thickness of 4 mm with good quality, so the properties of the porous body were not evaluated.
- Example 7 The same process as in Example 1 except that the fiber mat 1 is replaced with the fiber mat 2, and the fiber mat 2 and the resin sheet 1 are arranged in the order of [resin sheet 1/fiber mat 2 (65 sheets)/resin sheet 1]. A porous body was obtained by passing through. Table 1 shows the properties of the obtained porous body. Comparing Example 2 and Example 7, Example 2 had a higher resin (C) content than Example 2, and had particularly high impact strength and bending elastic modulus.
- Example 8 A porous body was obtained by performing the same steps as in Example 1, except that the fiber mat 1 was replaced by the fiber mat 6 . Table 1 shows the properties of the obtained porous body. The impact strength was higher than that of Comparative Example 1. Comparing Example 2 and Example 8, Example 2 had a longer average fiber length of the carbon fibers (A), and particularly high impact strength and bending elastic modulus.
- Example 9 A porous body was obtained through the same steps as in Example 1, except that the fiber mat 1 was changed to the fiber mat 7 .
- Table 1 shows the properties of the obtained porous body.
- the impact strength was higher than that of Comparative Example 1. Comparing Example 2 and Example 9, Example 2 had a smaller average fiber length of the carbon fibers (A), and had particularly high impact strength and bending elastic modulus.
- Example 10 A porous body was obtained by performing the same steps as in Example 1, except that the fiber mat 1 was replaced by the fiber mat 8 . Table 2 shows the properties of the obtained porous body. The impact strength was higher than that of Comparative Example 1. Comparing Example 2 and Example 10, Example 2 had a longer average fiber length of the organic fibers (B) and a particularly high impact strength.
- Example 11 A porous body was obtained through the same steps as in Example 1, except that the fiber mat 1 was replaced with the fiber mat 9. Table 2 shows the properties of the obtained porous body. The impact strength was higher than that of Comparative Example 1. Comparing Example 2 and Example 11, Example 2 had a smaller average fiber length of the organic fibers (B) and had a particularly high impact strength.
- Example 12 A porous body was obtained through the same steps as in Example 1, except that the fiber mat 1 was changed to the fiber mat 10 .
- Table 2 shows the properties of the obtained porous body. The impact strength was higher than that of Comparative Example 1. Comparing Example 2 and Example 12, Example 2 has particularly high impact strength by using the organic fiber (B) having a larger diameter.
- Example 13 A porous body was obtained through the same steps as in Example 1, except that the fiber mat 1 was replaced with the fiber mat 3. Table 2 shows the properties of the obtained porous body. The impact strength was higher than that of Comparative Example 2. Comparing Example 1 and Example 13, Example 1 has a particularly high impact strength by using the organic fiber (B) having a larger diameter and tensile strength.
- Example 14 A porous body was obtained through the same steps as in Example 1, except that the fiber mat 1 was replaced with the fiber mat 4. Table 2 shows the properties of the obtained porous body. The impact strength was higher than that of Comparative Example 2. Comparing Example 1 and Example 14, Example 1 has a particularly high impact strength by using the organic fiber (B) having a larger diameter and tensile strength.
- Example 15 A porous body was obtained through the same steps as in Example 1, except that the fiber mat 1 was replaced with the fiber mat 5 .
- Table 2 shows the properties of the obtained porous body. Comparing Example 14 and Example 15, Example 15 has particularly high impact strength by using the organic fiber (B) having a larger diameter.
- a porous structural member was obtained through the following steps (D) to (F).
- Table 2 shows the properties of the obtained porous body.
- D) Place the sheet-like substrate in the same press molding mold cavity as in (A) preheated to 180 ° C., fasten the mold and hold it for 5 minutes, then open the mold and A metal spacer is inserted to adjust the thickness of the compact to 4.0 mm.
- E) Fasten the mold cavity again and cool the cavity temperature to 50° C. while maintaining the pressure.
- Example 2 A porous body was obtained through the same steps as in Example 1, except that the fiber mat 1 was replaced with the fiber mat 14 .
- Table 2 shows the properties of the obtained porous body.
- Comparative Example 3 A porous body was obtained through the same steps as in Example 1, except that the fiber mat 1 was replaced with the fiber mat 12 .
- Table 2 shows the structure of the obtained porous body.
- Comparative Example 3 the characteristics of the porous body were not evaluated because the porous body did not swell to a thickness of 4 mm with good quality.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Reinforced Plastic Materials (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
[1]強化繊維として、炭素繊維(A)50重量%超99重量%以下と、引張破断伸度2.5~100%の有機繊維(B)1重量%以上50重量%未満とを含み、該強化繊維が樹脂(C)により固定されてなる、空隙率が10~95%の多孔質体。
[2]前記有機繊維(B)が前記炭素繊維(A)と均一に分散している、[1]に記載の多孔質体。
[3]前記強化繊維の交点が前記樹脂(C)で結合されるとともに、前記強化繊維も前記樹脂(C)も存在しない部分として多孔質体の空隙が形成されている、[1]または[2]に記載の多孔質体。
[4]前記交点が、前記炭素繊維(A)の単繊維が別の繊維と交差することで形成されてなる、[3]に記載の多孔質体。
[5]前記交点が、前記有機繊維(B)の単繊維が別の繊維と交差することで形成されてなる、[3]に記載の多孔質体。
[6]前記交点を構成する強化繊維同士で形成される平均二次元配向角が10~80度である、[3]に記載の多孔質体。
[7]前記炭素繊維(A)と有機繊維(B)の合計5~90重量部に対し、前記樹脂(C)を10~95重量部含む、[1]~[6]のいずれかに記載の多孔質体。
[8]密度が0.02~0.9g/cm3である、[1]~[7]のいずれかに記載の多孔質体。
[9]前記炭素繊維(A)の平均繊維長が1~15mmである、[1]~[8]のいずれかに記載の多孔質体。
[10]前記有機繊維(B)の平均繊維長が4~20mmである、[1]~[9]のいずれかに記載の多孔質体。
[11]前記有機繊維(B)が、ポリエステル系樹脂、ポリアリールエーテルケトン系樹脂およびポリアリーレンスルフィド系樹脂より選択される、[1]~[10]のいずれかに記載の多孔質体。
[12]前記有機繊維(B)の直径が15~50μmである、[1]~[11]のいずれかに記載に記載の多孔質体。
[13]前記有機繊維(B)の引張強度が1~6GPaである、[1]~[12]のいずれかに記載の多孔質体。
[14]前記有機繊維(B)の引張破断伸度が2.5~30%である、[1]~[13]のいずれかに記載の多孔質体。
[15]前記樹脂(C)が、ポリオレフィン系樹脂、ポリアミド系樹脂およびポリアリーレンスルフィド系樹脂より選択される熱可塑性樹脂、および/または、エポキシ樹脂、フェノール樹脂およびアクリル樹脂より選択される熱硬化性樹脂である、[1]~[14]のいずれかに記載の多孔質体。
[16]前記多孔質体のシャルピー衝撃強度が10~100kJ/m2である、[1]~[15]のいずれかに記載の多孔質体。
[17][1]~[16]のいずれかに記載の多孔質体の表面に、連続した強化繊維を含む繊維強化樹脂が配置されてなる複合構造体。
[18]スポーツ用品、電子機器筐体および建築部材より選択される用途に用いられる、[1]~[17]のいずれかに記載の多孔質体。
本発明の多孔質体は空隙率が10~95体積%である。空隙率が10体積%以上であることにより、比重が小さくなり十分な軽量性が得られる。一方、空隙率が95体積%以下であることにより、強化繊維および樹脂による補強効果を十分なものとすることができ、多孔質体に優れた力学特性を付与することができる。空隙率は、より好ましくは20体積%以上、90体積%以下である。
多孔質体は、樹脂シートと繊維マットを積層して作製した空隙を含まないシート状基材から成形した。樹脂シートの目付Wr(g/m2)と積層枚数Nr、繊維マット中の炭素繊維の目付Wf(g/m2)と有機繊維の目付Wo(g/m2)および繊維マットの積層枚数Nmから、樹脂(C)の重量含有量を次式により算出した。また、シート状基材の体積Tbと多孔質体の体積Tsを測定し、空隙の体積含有率を次式により算出した。
樹脂(C)の重量含有量(重量部)=(Wr×Nr)/{(Wf×Nm)+(Wo×Nm)+(Wr×Nr)}×100
空隙の体積含有率(体積%)=(Ts-Tb)/Ts×100
(2)多孔質体中、交点を構成する強化繊維同士で形成される平均二次元配向角
交点を構成する強化繊維同士で形成される平均二次元配向角は、次の手順で測定する。すなわち、無作為に選択した単繊維に対して交差している全ての単繊維との二次元配向角の平均値を測定する。例えば、ある単繊維に交差する別の単繊維が多数の場合には、交差する別の単繊維を無作為に20本選び測定した算術平均値を代用してもよい。この測定を別の単繊維を基準として合計5回繰り返し、その算術平均値を平均二次元配向角として算出する。
多孔質体から試験片を切り出し、JIS K 7222(2005)を参考にして多孔質体の見かけ密度を測定した。試験片の寸法は縦100mm、横100mmとした。試験片の縦、横、厚みをマイクロメーターで測定し、得られた値より試験片の体積V(mm3)を算出した。また、切り出した試験片の質量M(g)を電子天秤で測定した。得られた質量Mおよび体積Vを次式に代入することにより多孔質体の密度ρを算出した。
ρ(g/cm3)=103×M/V
(4)多孔質体のシャルピー衝撃試験
多孔質体から試験片を切り出し、JIS K 7111(2006)を参考にして多孔質体のシャルピー衝撃強度を測定した。試験片は、長さ80±2mm、幅10.0±0.2mm、厚さ4.0±0.2mmに切り出した。なお、ノッチなし試験片を用いたエッジワイズ衝撃試験とした。測定n=3とし、算術平均値を衝撃強度Ac(kJ/m2)とした。
多孔質体から試験片を切り出し、ISO178法(1993)を参考にして曲げ弾性率を測定した。試験片は、任意の方向を0°方向とした場合に+45°、-45°、90°方向の4方向について切り出した試験片を作製し、それぞれの方向について測定数n=3とし、算術平均値を曲げ弾性率Ec(GPa)とした。
有機繊維(B)の連続した1mmの範囲を5箇所任意に選択し、該選択範囲にて有機繊維(B)と交差する炭素繊維(A)の数niから下記式で計算した。
[炭素繊維(CF)]
ポリアクリロニトリルを主成分とする共重合体から紡糸、焼成処理、及び表面酸化処理を行い、総単糸数12,000本の連続炭素繊維を得た。この連続炭素繊維の特性は次に示す通りであった。
単繊維径:7μm
密度:1.8g/cm3
引張強度:4,600MPa
引張弾性率:220GPa
引張破断伸度:2.1%
[PET繊維1]
ポリエステル繊維(東レ(株)製“テトロン”(登録商標)1670T-288F-702C、繊維径23μm、引張強度1.1GPa、引張破断伸度14.0%)を用いた。
ポリエステル繊維(東レ(株)製“テトロン”(登録商標)、繊維径7μm、引張強度0.5GPa、引張破断伸度:46%)を用いた。
ポリエステル繊維(東レ(株)製“テトロン”(登録商標)、融点260℃、繊維径10μm、引張強度0.5GPa、引張破断伸度:42%)を用いた。
ポリエステル繊維(東レ(株)製“テトロン”(登録商標)、融点260℃、繊維径18μm、引張強度0.5GPa、引張破断伸度:36.5%)を用いた。
液晶ポリエステル繊維(東レ(株)製“シベラス”(登録商標)1700T-288F、繊維径23μm、引張強度3.3GPa、引張破断伸度2.8%)を用いた。
パラ系アラミド繊維(東レ(株)製“ケブラー”(登録商標)、繊維径12μm、引張強度2.9GPa、引張破断伸度:3.6%)を用いた。
未変性ポリプロピレン樹脂(プライムポリマー(株)製“プライムポリプロ”(登録商標)J105G)80質量%と、酸変性ポリプロピレン樹脂(三井化学(株)製“アドマー”(登録商標)QB510)20質量%とからなる目付150g/m2の樹脂シート1を作製した。
未変性ポリプロピレン樹脂(プライムポリマー(株)製“プライムポリプロ”(登録商標)J105G)80質量%と、酸変性ポリプロピレン樹脂(三井化学(株)製“アドマー”(登録商標)QB510)20質量%とからなる目付200g/m2の樹脂シート2を作製した。
ポリエーテルケトンケトン(アルケマ社製“ケプスタン”(登録商標)6003)からなる目付150g/m2の樹脂シート3を作製した。
“jER”(登録商標)828(三菱化学(株)製)を30質量部、“jER”(登録商標)1001を35質量部、“jER”(登録商標)154を35質量部、ニーダー中に投入し、混練しながら150℃まで昇温し、150℃において1時間混練することで透明な粘調液を得た。粘調液を60℃まで混練しながら降温させた後、硬化剤としてDYCY7(三菱化学(株)製)を3.7質量部、硬化促進剤としてDCMU99(保土谷化学工業(株)製)を3質量部、粒子として“マツモトマイクロスフェアー”(登録商標)M(松本油脂製薬(株)製)を3質量部配合し、60℃において30分間混練することにより、エポキシ樹脂組成物を調製した。該エポキシ樹脂組成物からなる目付150g/m2の樹脂シート4を作製した。
炭素繊維とPET繊維1をそれぞれ長さ6mmと13mmにカットし、チョップド炭素繊維とチョップドPET繊維1を得た。水と 界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))とからなる濃度0.1質量%の分散液を作製し、分散液とチョップド炭素繊維およびチョップドPET繊維1とを用いて繊維マットを製造した。繊維マットの製造装置は、分散槽としての容器下部に開口コックを有する直径1000mmの円筒形状の容器を備えている。分散槽の上面の開口部には撹拌機が付属し、開口部からチョップド炭素繊維とチョップドPET繊維1および分散液を投入可能である。抄紙基材を200℃の乾燥炉で30分間乾燥し、ウェブを得た。このウェブを重ねて繊維マット1を得た。また、繊維マット中の炭素繊維とPET繊維1の平均繊維長はそれぞれ6mmと13mm、炭素繊維の目付は72g/m2、PET繊維1の目付は28g/m2であった。
繊維マット1におけるPET繊維1をLCP繊維とした以外は、繊維マット1と同様にして繊維マット2を得た。繊維マット中の強化繊維1と強化繊維3の平均繊維長はそれぞれ6mmと13mm、強化繊維1の目付は72g/m2、強化繊維3の目付は28g/m2であった。
繊維マット1におけるPET繊維1をPET繊維2とした以外は、繊維マット1と同様にして繊維マット3を得た。繊維マット中の炭素繊維とPET繊維2の平均繊維長はそれぞれ6mmと13mm、炭素繊維の目付は72g/m2、PET繊維2の目付は28g/m2であった。
繊維マット1におけるPET繊維1をPET繊維3とした以外は、繊維マット1と同様にして繊維マット4を得た。繊維マット中の炭素繊維とPET繊維3の平均繊維長はそれぞれ6mmと13mm、炭素繊維の目付は72g/m2、PET繊維3の目付は28g/m2であった。
繊維マット1におけるPET繊維1をPET繊維4とした以外は、繊維マット1と同様にして繊維マット5を得た。繊維マット中の炭素繊維とPET繊維4の平均繊維長はそれぞれ6mmと13mm、炭素繊維の目付は72g/m2、PET繊維4の目付は28g/m2であった。
繊維マット2における炭素繊維を長さ0.5mmにカットした以外は、繊維マット2と同様にして繊維マット6を得た。繊維マット中の炭素繊維とLCP繊維の平均繊維長はそれぞれ0.5mmと13mm、炭素繊維の目付は72g/m2、LCP繊維の目付は28g/m2であった。
繊維マット2における炭素繊維を長さ20mmにカットした以外は、繊維マット2と同様にして繊維マット7を得た。繊維マット中の炭素繊維とLCP繊維の平均繊維長はそれぞれ20mmと13mm、炭素繊維の目付は72g/m2、LCP繊維の目付は28g/m2であった。
繊維マット2におけるLCP繊維を長さ2mmにカットした以外は、繊維マット2と同様にして繊維マット8を得た。繊維マット中の炭素繊維とLCP繊維の平均繊維長はそれぞれ6mmと2mm、炭素繊維の目付は72g/m2、LCP繊維の目付は28g/m2であった。
繊維マット2におけるLCP繊維を長さ30mmにカットした以外は、繊維マット2と同様にして繊維マット9を得た。繊維マット中の炭素繊維とLCP繊維の平均繊維長はそれぞれ6mmと30mm、炭素繊維の目付は72g/m2、LCP繊維の目付は28g/m2であった。
繊維マット1におけるPET繊維1をアラミド繊維とした以外は、繊維マット1と同様にして繊維マット10を得た。繊維マット中の炭素繊維とアラミド繊維の平均繊維長はそれぞれ6mmと13mm、炭素繊維の目付は72g/m2、アラミド繊維の目付は28g/m2であった。
繊維マット2において、チョップドLCP繊維を当初の太さの繊維束が一部残る状態とした以外は、繊維マット2と同様にして繊維マット11を得た。繊維マット中の炭素繊維とLCP繊維の平均繊維長はそれぞれ6mmと13mm、炭素繊維の目付は72g/m2、LCP繊維の目付は28g/m2であった。
繊維マット2において、分散槽に投入するチョップド炭素繊維とチョップドLCP繊維の割合を変更した以外は、繊維マット2と同様にして繊維マット12を得た。繊維マット中の炭素繊維とLCP繊維の平均繊維長はそれぞれ6mmと13mm、炭素繊維の目付は39g/m2、LCP繊維の目付は61g/m2であった。
炭素繊維を長さ6mmにカットし、チョップド炭素繊維を得た。水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))とからなる濃度0.1質量%の分散液を作製し、分散液とチョップド炭素繊維を用いて繊維マットを製造した。繊維マットの製造装置は、分散槽としての容器下部に開口コックを有する直径1000mmの円筒形状の容器を備えている。分散槽の上面の開口部には撹拌機が付属し、開口部からチョップド炭素繊維および分散液を投入可能である。抄紙基材を200℃の乾燥炉で30分間乾燥し、ウェブを得た。このウェブを重ねて繊維マット13を得た。また、繊維マット中の炭素繊維の平均繊維長は6mm、目付は90g/m2であった。
繊維マット13と同様にして目付110g/m2の繊維マット14を得た。
繊維マット1と樹脂シート1を、[樹脂シート1/繊維マット1/樹脂シート1/繊維マット1/樹脂シート1/繊維マット1/樹脂シート1/繊維マット1/樹脂シート1/繊維マット1/樹脂シート1]の順番に配置した積層物を作製した。次いで、以下の工程(A)~(C)を経ることによりシート状基材を得た。
(A)積層体を180℃に予熱したプレス成形用金型キャビティ内に配置して金型を閉じる。
(B)3MPaの圧力を付与して5分間保持した後、圧力を保持した状態でキャビティ温度を50℃まで冷却する。
(C)金型を開いてシート状基材を取り出す。
(D)シート状基材を180℃に予熱した(A)と同じプレス成形用金型キャビティ内に配置し、金型を締結して5分保持した後、金型を開放し、その末端に金属スペーサーを挿入し、成形体の厚みが4.0mmとなるように調整する。
(E)再度、金型キャビティを締結し、圧力を保持した状態でキャビティ温度を50℃まで冷却する。
(F)金型を開いて成形体を取り出す。
繊維マット1を繊維マット2とした以外は、実施例1と同様の工程を経ることにより多孔質体を得た。得られた多孔質体の特性を表1に示す。実施例1に比べて、引張強度がより大きい有機繊維(B)を用い、衝撃強度が特に高いものとなった。
繊維マット1を繊維マット2とし、樹脂シート1を樹脂シート3とし、工程(A)における予熱温度を350℃、工程(B)における圧力を10MPa、保持時間を10分間とした以外は、実施例1と同様の工程を経ることにより多孔質体を得た。得られた多孔質体の特性を表1に示す。実施例2に比べてより高融点の樹脂を用いた場合にも、実施例2と同様に特に衝撃強度の高いものとなった。
実施例1における樹脂シート1を樹脂シート4とし、以下の工程(A)~(C)を経ることによりシート状基材を得た。
(A)積層体を60℃に予熱したプレス成形用金型キャビティ内に配置して金型を閉じる。
(B)5MPaの圧力を付与して90分間保持する。
(C)金型を開いてシート状基材を取り出す。
(D)シート状基材を60℃に予熱したプレス成形用金型キャビティ内に配置し、5MPaの圧力を付与して5分保持した後、金型を開放し、その末端に金属スペーサーを挿入し、多孔質体の厚みが4.0mmとなるように調整する。
(E)再度、金型キャビティを締結し、圧力を保持した状態で金型を150℃まで昇温して、90分間硬化する。
(F)金型を開いて多孔質体を取り出す。
繊維マット1を繊維マット11とした以外は、実施例1と同様の工程を経ることにより多孔質体を得た。得られた多孔質体の特性を表1に示す。比較例1に比べて衝撃強度が高いものとなった。実施例2と実施例5を比較すると、実施例2は有機繊維(B)と交差する炭素繊維(A)の数の変動係数がより小さく、衝撃強度が特に高いものとなった。
繊維マット1を繊維マット2とし、繊維マット2と樹脂シート1を、[樹脂シート1/樹脂シート1/樹脂シート1/樹脂シート1/樹脂シート1/樹脂シート1/樹脂シート1/樹脂シート1/繊維マット2/樹脂シート1/樹脂シート1/樹脂シート1/樹脂シート1/樹脂シート1/樹脂シート1/樹脂シート1/樹脂シート1]の順番に配置した以外は、実施例1と同様の工程を経ることにより多孔質体を得た。得られた多孔質体の構成を表1に示す。ただし、実施例6では樹脂(C)の含有率が大きく、多孔質体が4mm厚さまで品位よく膨張しなかったため、多孔質体の各特性を評価しなかった。
繊維マット1を繊維マット2とし、繊維マット2と樹脂シート1を、[樹脂シート1/繊維マット2(65枚)/樹脂シート1]の順番に配置した以外は、実施例1と同様の工程を経ることにより多孔質体を得た。得られた多孔質体の特性を表1に示す。実施例2と実施例7を比較すると、実施例2はに比べて樹脂(C)の含有率がより大きく、衝撃強度および曲げ弾性率が特に高いものとなった。
繊維マット1を繊維マット6とした以外は、実施例1と同様の工程を経ることにより多孔質体を得た。得られた多孔質体の特性を表1に示す。比較例1に比べて衝撃強度が高いものとなった。実施例2と実施例8を比較すると、実施例2は炭素繊維(A)の平均繊維長がより大きく、衝撃強度と曲げ弾性率が特に高いものとなった。
繊維マット1を繊維マット7とした以外は、実施例1と同様の工程を経ることにより多孔質体を得た。得られた多孔質体の特性を表1に示す。比較例1に比べて衝撃強度が高いものとなった。実施例2と実施例9を比較すると、実施例2は炭素繊維(A)の平均繊維長がより小さく、衝撃強度と曲げ弾性率が特に高いものとなった。
繊維マット1を繊維マット8とした以外は、実施例1と同様の工程を経ることにより多孔質体を得た。得られた多孔質体の特性を表2に示す。比較例1に比べて衝撃強度が高いものとなった。実施例2と実施例10を比較すると、実施例2は有機繊維(B)の平均繊維長がより大きく、衝撃強度が特に高いものとなった。
繊維マット1を繊維マット9とした以外は、実施例1と同様の工程を経ることにより多孔質体を得た。得られた多孔質体の特性を表2に示す。比較例1に比べて衝撃強度が高いものとなった。実施例2と実施例11を比較すると、実施例2は有機繊維(B)の平均繊維長がより小さく、衝撃強度が特に高いものとなった。
繊維マット1を繊維マット10とした以外は、実施例1と同様の工程を経ることにより多孔質体を得た。得られた多孔質体の特性を表2に示す。比較例1に比べて衝撃強度が高いものとなった。実施例2と実施例12を比較すると、実施例2は直径がより大きい有機繊維(B)を用いることで、衝撃強度が特に高いものとなった。
繊維マット1を繊維マット3とした以外は、実施例1と同様の工程を経ることにより多孔質体を得た。得られた多孔質体の特性を表2に示す。比較例2に比べて衝撃強度が高いものとなった。実施例1と実施例13を比較すると、実施例1は直径と引張強度がより大きい有機繊維(B)を用いることで、衝撃強度が特に高いものとなった。
繊維マット1を繊維マット4とした以外は、実施例1と同様の工程を経ることにより多孔質体を得た。得られた多孔質体の特性を表2に示す。比較例2に比べて衝撃強度が高いものとなった。実施例1と実施例14を比較すると、実施例1は直径と引張強度がより大きい有機繊維(B)を用いることで、衝撃強度が特に高いものとなった。
繊維マット1を繊維マット5とした以外は、実施例1と同様の工程を経ることにより多孔質体を得た。得られた多孔質体の特性を表2に示す。実施例14と実施例15を比較すると、実施例15は直径がより大きい有機繊維(B)を用いることで、衝撃強度が特に高いものとなった。
繊維マット13と樹脂シート2を、[樹脂シート2/繊維マット3/樹脂シート2/繊維マット3/樹脂シート2/繊維マット3/樹脂シート2/繊維マット3/樹脂シート2]の順番に配置した積層物を作製した。次いで、以下の工程(A)~(C)を経ることによりシート状基材を得た。
(A)積層体を180℃に予熱したプレス成形用金型キャビティ内に配置して金型を閉じる。
(B)3MPaの圧力を付与して5分間保持した後、圧力を保持した状態でキャビティ温度を50℃まで冷却する。
(C)金型を開いてシート状基材を取り出す。
(D)シート状基材を180℃に予熱した(A)と同じプレス成形用金型キャビティ内に配置し、金型を締結して5分保持した後、金型を開放し、その末端に金属スペーサーを挿入し、成形体の厚みが4.0mmとなるように調整する。
(E)再度、金型キャビティを締結し、圧力を保持した状態でキャビティ温度を50℃まで冷却する。
(F)金型を開いて成形体を取り出す。
繊維マット1を繊維マット14とした以外は、実施例1と同様の工程を経ることにより多孔質体を得た。得られた多孔質体の特性を表2に示す。
繊維マット1を繊維マット12とした以外は、実施例1と同様の工程を経ることにより多孔質体を得た。得られた多孔質体の構成を表2に示す。ただし、比較例3では多孔質体が4mm厚さまで品位よく膨張しなかったため、多孔質体の各特性を評価しなかった。
2 炭素繊維(A)
3 有機繊維(B)
4 樹脂(C)
5 空隙
Claims (18)
- 強化繊維として、炭素繊維(A)50重量%超99重量%以下と、引張破断伸度2.5~100%の有機繊維(B)1重量%以上50重量%未満とを含み、該強化繊維が樹脂(C)により固定されてなる、空隙率が10~95体積%の多孔質体。
- 前記有機繊維(B)が前記炭素繊維(A)と均一に分散している、請求項1に記載の多孔質体。
- 前記強化繊維の交点が前記樹脂(C)で結合されるとともに、前記強化繊維も前記樹脂(C)も存在しない部分として多孔質体の空隙が形成されている、請求項1に記載の多孔質体。
- 前記交点が、前記炭素繊維(A)の単繊維が別の繊維と交差することで形成されてなる、請求項3に記載の多孔質体。
- 前記交点が、前記有機繊維(B)の単繊維が別の繊維と交差することで形成されてなる、請求項3に記載の多孔質体。
- 前記交点を構成する強化繊維同士で形成される平均二次元配向角が10~80度である、請求項3に記載の多孔質体。
- 前記炭素繊維(A)と有機繊維(B)の合計5~90重量部に対し、前記樹脂(C)を10~95重量部含む、請求項1に記載の多孔質体。
- 密度が0.02~0.9g/cm3である、請求項1に記載の多孔質体。
- 前記炭素繊維(A)の平均繊維長が1~15mmである、請求項1に記載の多孔質体。
- 前記有機繊維(B)の平均繊維長が4~20mmである、請求項1に記載の多孔質体。
- 前記有機繊維(B)が、ポリエステル系樹脂、ポリアリールエーテルケトン系樹脂およびポリアリーレンスルフィド系樹脂より選択される、請求項1に記載の多孔質体。
- 前記有機繊維(B)の直径が15~50μmである、請求項1に記載の多孔質体。
- 前記有機繊維(B)の引張強度が1~6GPaである、請求項1に記載の多孔質体。
- 前記有機繊維(B)の引張破断伸度が2.5~30%である、請求項1に記載の多孔質体。
- 前記樹脂(C)が、ポリオレフィン系樹脂、ポリアミド系樹脂およびポリアリーレンスルフィド系樹脂より選択される熱可塑性樹脂、および/または、エポキシ樹脂、フェノール樹脂およびアクリル樹脂より選択される熱硬化性樹脂である、請求項1に記載の多孔質体。
- 前記多孔質体のシャルピー衝撃強度が10~100kJ/m2である、請求項1に記載の多孔質体。
- 請求項1に記載の多孔質体の表面に、連続した強化繊維を含む繊維強化樹脂が配置されてなる複合構造体。
- スポーツ用品、電子機器筐体および建築部材より選択される用途に用いられる、請求項1に記載の多孔質体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022574717A JP7367883B1 (ja) | 2021-11-29 | 2022-11-22 | 多孔質体 |
CN202280068130.1A CN118076475A (zh) | 2021-11-29 | 2022-11-22 | 多孔质体 |
EP22898570.1A EP4442440A1 (en) | 2021-11-29 | 2022-11-22 | Porous body |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021192794 | 2021-11-29 | ||
JP2021-192794 | 2021-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023095787A1 true WO2023095787A1 (ja) | 2023-06-01 |
Family
ID=86539490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/043167 WO2023095787A1 (ja) | 2021-11-29 | 2022-11-22 | 多孔質体 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4442440A1 (ja) |
JP (1) | JP7367883B1 (ja) |
CN (1) | CN118076475A (ja) |
TW (1) | TW202323445A (ja) |
WO (1) | WO2023095787A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006142819A (ja) * | 2004-10-22 | 2006-06-08 | Toray Ind Inc | 強化繊維積層体、プリフォーム、frp、強化繊維積層体の製造方法およびその製造装置 |
JP2010155460A (ja) * | 1999-03-23 | 2010-07-15 | Toray Ind Inc | 複合炭素繊維基材、プリフォームおよび炭素繊維強化プラスチックの製造方法 |
WO2017110528A1 (ja) | 2015-12-25 | 2017-06-29 | 東レ株式会社 | 構造体 |
WO2018117188A1 (ja) | 2016-12-22 | 2018-06-28 | 東レ株式会社 | 構造体 |
JP2020514131A (ja) * | 2017-03-13 | 2020-05-21 | ハンファ アズデル インコーポレイテッド | 強化熱可塑性表面層およびコア層を含む多層アセンブリ |
-
2022
- 2022-11-22 WO PCT/JP2022/043167 patent/WO2023095787A1/ja active Application Filing
- 2022-11-22 EP EP22898570.1A patent/EP4442440A1/en active Pending
- 2022-11-22 JP JP2022574717A patent/JP7367883B1/ja active Active
- 2022-11-22 CN CN202280068130.1A patent/CN118076475A/zh active Pending
- 2022-11-24 TW TW111145055A patent/TW202323445A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010155460A (ja) * | 1999-03-23 | 2010-07-15 | Toray Ind Inc | 複合炭素繊維基材、プリフォームおよび炭素繊維強化プラスチックの製造方法 |
JP2006142819A (ja) * | 2004-10-22 | 2006-06-08 | Toray Ind Inc | 強化繊維積層体、プリフォーム、frp、強化繊維積層体の製造方法およびその製造装置 |
WO2017110528A1 (ja) | 2015-12-25 | 2017-06-29 | 東レ株式会社 | 構造体 |
WO2018117188A1 (ja) | 2016-12-22 | 2018-06-28 | 東レ株式会社 | 構造体 |
JP2020514131A (ja) * | 2017-03-13 | 2020-05-21 | ハンファ アズデル インコーポレイテッド | 強化熱可塑性表面層およびコア層を含む多層アセンブリ |
Also Published As
Publication number | Publication date |
---|---|
CN118076475A (zh) | 2024-05-24 |
TW202323445A (zh) | 2023-06-16 |
JP7367883B1 (ja) | 2023-10-24 |
EP4442440A1 (en) | 2024-10-09 |
JPWO2023095787A1 (ja) | 2023-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Thipperudrappa et al. | Influence of zinc oxide nanoparticles on the mechanical and thermal responses of glass fiber‐reinforced epoxy nanocomposites | |
JP6822147B2 (ja) | 構造体 | |
JP6481778B2 (ja) | 複合構造体およびその製造方法 | |
TWI698476B (zh) | 構造體 | |
CN105579211B (zh) | 碳纤维增强成型材料和成形制品 | |
JP5703542B2 (ja) | 炭素繊維強化樹脂シート及びそのロール巻回体 | |
JP6699986B2 (ja) | プリフォーム、および一体化シート材料の製造方法 | |
WO2019189384A1 (ja) | 成形品の製造方法 | |
Ren et al. | Hybrid effect on mechanical properties of M40‐T300 carbon fiber reinforced Bisphenol A Dicyanate ester composites | |
Gkikas et al. | Optimisation and analysis of the reinforcement effect of carbon nanotubes in a typical matrix system | |
JP6822120B2 (ja) | 遮音構造体 | |
JP2011207048A (ja) | 繊維強化樹脂積層体 | |
JP2006044260A (ja) | 一体化構造部材およびその製造方法 | |
WO2023095787A1 (ja) | 多孔質体 | |
WO2020003926A1 (ja) | 積層体 | |
Zaheer et al. | Improving the performance of conventional glass fiber epoxy matrix composites by incorporating nanodiamonds | |
JP2008174610A (ja) | 耐衝撃性プリプレグ及びその製造方法 | |
WO2023095786A1 (ja) | プリプレグ、プリフォームおよび繊維強化樹脂成形品 | |
Uppin et al. | Effects of carbon/glass nonwoven interleaving veils and their areal density on opening and shearing mode interlaminar fracture toughness of glass epoxy composites | |
WO2023162991A1 (ja) | 成形基材、多孔質体、スキン-コア構造体および構造部材 | |
JPWO2017110532A1 (ja) | 構造体 | |
JP6863298B2 (ja) | 構造体 | |
WO2023153256A1 (ja) | 一体化成形体 | |
KR20240157638A (ko) | 성형 기재, 다공질체, 스킨-코어 구조체 및 구조 부재 | |
Gupta et al. | Harnessing nanostructures and fiber architecture: A synergistic leap in shape memory polymer composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2022574717 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22898570 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280068130.1 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022898570 Country of ref document: EP Effective date: 20240701 |