WO2023095768A1 - Optical circuit board - Google Patents

Optical circuit board Download PDF

Info

Publication number
WO2023095768A1
WO2023095768A1 PCT/JP2022/043102 JP2022043102W WO2023095768A1 WO 2023095768 A1 WO2023095768 A1 WO 2023095768A1 JP 2022043102 W JP2022043102 W JP 2022043102W WO 2023095768 A1 WO2023095768 A1 WO 2023095768A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical component
pedestal
optical waveguide
core
Prior art date
Application number
PCT/JP2022/043102
Other languages
French (fr)
Japanese (ja)
Inventor
孝之 禰占
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023095768A1 publication Critical patent/WO2023095768A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present invention relates to an optical circuit board, an optical component mounting structure using the optical component mounting structure, and a method for manufacturing the optical component mounting structure.
  • optical fibers that can transmit large amounts of data at high speed have been used for information communication.
  • Optical signals are transmitted and received between this optical fiber and an optical component (silicon photonics device).
  • an optical component Silicon photonics device.
  • Such an optical component is mounted on a planar lightwave circuit (optical circuit board) as described in Patent Document 1, for example.
  • a pedestal When mounting an optical component on an optical circuit board, a pedestal is provided directly below the optical component in order to match the position (height) between the core of the optical waveguide included in the optical circuit board and the core of the optical component.
  • the optical waveguide and the pedestal are formed in different processes using different materials.
  • An optical circuit board includes a wiring board having an upper surface and an optical waveguide.
  • the wiring board has an optical component mounting area on a part of the upper surface.
  • the optical waveguide is positioned adjacent to the mounting area of the optical component on the wiring board, and includes a lower clad, an optical waveguide core and an upper clad from the upper surface side of the wiring board.
  • At least one pedestal made of the same material as the lower clad is positioned so as to at least partially overlap the mounting area.
  • An optical component mounting structure includes the optical circuit board described above and an optical component including an optical component core positioned in the mounting area, and a portion of the lower surface of the optical component is in contact with the pedestal.
  • a method for manufacturing an optical component mounting structure includes steps of preparing a wiring board having an optical waveguide formation region and a mounting region adjacent to each other; Forming with the same material; forming an optical waveguide core along the upper surface of the lower clad; forming an upper clad covering the upper surface of the lower clad and the optical waveguide core; A step of grinding the end faces of the core and the upper clad to form an optical waveguide; a step of preparing an optical component including the core for the optical component; a step of pressing against and mounting the optical waveguide core and the optical component core with their optical axes aligned.
  • FIG. 1 is a plan view showing an optical component mounting structure in which optical components and electronic components are mounted on an optical circuit board according to an embodiment of the present disclosure
  • FIG. 2 is an enlarged explanatory view for explaining a cross section of a region X shown in FIG. 1
  • FIG. FIG. 3 is a plan view of the region Y shown in FIG. 2 (excluding the optical component and the upper clad of the optical waveguide)
  • FIG. 4 is an explanatory diagram for explaining an arrangement example of a pedestal; It is an explanatory view for explaining a contact part of an optical component and a pedestal. It is an explanatory view for explaining a contact part of an optical component and a pedestal.
  • FIG. 4 is an explanatory diagram for explaining a process of manufacturing an optical component mounting structure according to an embodiment of the present disclosure;
  • the thickness of the lower clad included in the optical waveguide is not formed to a predetermined size, and the positional accuracy of the core of the optical waveguide may be poor. Therefore, even if the optical component is mounted in accordance with the pedestal, the positions of the core of the optical waveguide and the core of the optical component cannot be precisely aligned. As a result, transmission loss increases.
  • the position of the core of the optical waveguide included in the optical circuit board and the core of the optical component can be aligned with high accuracy, and optical signals can be transmitted between the optical waveguide and the optical component.
  • An optical circuit board with less loss is desired.
  • At least one pedestal made of the same material as the lower clad included in the optical waveguide is positioned in the region overlapping the mounting region.
  • FIG. 1 is a plan view showing an optical component mounting structure 10 in which an optical component 4 is mounted on an optical circuit board 1 according to an embodiment of the present disclosure.
  • An optical circuit board 1 includes a wiring board 2 and an optical waveguide 3.
  • a wiring board 2 included in the optical circuit board 1 according to one embodiment, a wiring board generally used for an optical circuit board can be used.
  • such a wiring board 2 includes, for example, a core board and buildup layers laminated on both sides of the core board.
  • the core substrate is not particularly limited as long as it is an insulating material. Examples of insulating materials include resins such as epoxy resins, bismaleimide-triazine resins, polyimide resins, and polyphenylene ether resins. These resins may be used in combination of two or more.
  • the core substrate usually has through-hole conductors for electrically connecting the upper and lower surfaces of the core substrate.
  • the core substrate may contain a reinforcing material.
  • reinforcing materials include insulating cloth materials such as glass fibers, glass nonwoven fabrics, aramid nonwoven fabrics, aramid fibers, and polyester fibers. Two or more reinforcing materials may be used in combination.
  • inorganic fillers such as silica, barium sulfate, talc, clay, glass, calcium carbonate, and titanium oxide may be dispersed in the core substrate.
  • the buildup layer has a structure in which insulating layers and conductor layers are alternately laminated.
  • a part of the conductor layer positioned on the outermost surface (the conductor layer positioned on the upper surface of the wiring board 2) includes a metal layer 21a on which the optical waveguide 3 is positioned.
  • the metal layer 21a is made of metal such as copper.
  • the insulating layer included in the buildup layer is not particularly limited as long as it is an insulating material, like the core substrate. Examples of insulating materials include resins such as epoxy resins, bismaleimide-triazine resins, polyimide resins, and polyphenylene ether resins. These resins may be used in combination of two or more.
  • each insulating layer may be made of the same resin or different resins.
  • the insulating layer and the core substrate included in the buildup layer may be made of the same resin or different resins.
  • the buildup layers usually have via-hole conductors for electrically connecting the layers.
  • inorganic fillers such as silica, barium sulfate, talc, clay, glass, calcium carbonate, and titanium oxide may be dispersed in the insulating layer included in the buildup layer.
  • the optical waveguide 3 included in the optical circuit board 1 is located on the surface of the metal layer 21a present on the surface of the wiring board 2.
  • FIG. 2 is an enlarged explanatory view explaining a cross section of the region X shown in FIG.
  • the optical waveguide 3 has a structure in which a lower clad 31, an optical waveguide core 32 and an upper clad 33 are laminated in this order from the metal layer 21a side.
  • the lower clad 31 included in the optical waveguide 3 is located on the surface of the wiring substrate 2, specifically, on the surface of the metal layer 21a existing on the surface of the optical waveguide formation region of the wiring substrate 2.
  • the material forming the lower clad 31 is not limited, and examples thereof include resins such as epoxy resin and silicone resin.
  • the upper clad 33 included in the optical waveguide 3 is also made of resin such as epoxy resin or silicon resin.
  • the lower clad 31 and the upper clad 33 may be made of the same material or different materials.
  • the lower clad 31 and the upper clad 33 may have the same thickness or different thicknesses.
  • the lower clad 31 and the upper clad 33 each have a thickness of approximately 5 ⁇ m or more and 150 ⁇ m or less, for example.
  • the optical waveguide core 32 included in the optical waveguide 3 is a portion through which light entering the optical waveguide 3 propagates. Specifically, the side surface of the optical component core 41 included in the optical component 4 and the side surface of the optical waveguide core 32 of the optical waveguide 3 are positioned to face each other. At this end, optical signals are transmitted and received between the optical waveguide core 32 and the optical component core 41 .
  • the material forming the optical waveguide core 32 is not limited, and is appropriately set in consideration of, for example, light transmittance and wavelength characteristics of propagating light. Examples of materials include resins such as epoxy resins and silicone resins.
  • the optical waveguide core 32 has a thickness of, for example, about 3 ⁇ m or more and 50 ⁇ m or less.
  • the optical circuit board 1 is provided with a pedestal 22 .
  • the pedestal 22 is used to precisely align the optical component core 41 included in the optical component 4 and the optical waveguide core 32 included in the optical waveguide 3 when the optical component 4 is mounted.
  • the pedestal 22 is positioned on the metal layer 21a so as to at least partially overlap the mounting area of the wiring board 2.
  • FIG. 3 is a plan view of the region Y shown in FIG. 2 (excluding the optical component 4 and the upper clad 33 of the optical waveguide 3).
  • the pedestal 22 is made of the same material as the lower clad 31 of the optical waveguide 3 . If the base 22 is made of the same material as the lower clad 31, the base 22 and the lower clad 31 have substantially the same amount of deformation during thermal expansion and contraction. Therefore, alignment (height adjustment) between the optical component core 41 and the optical waveguide core 32 included in the optical waveguide 3 can be facilitated.
  • the position of the pedestal 22 is not limited as long as it at least partially overlaps the mounting area of the wiring board 2 . That is, the pedestal 22 may partially overlap the mounting area, or may overlap the entire mounting area.
  • FIG. 4 shows an arrangement example of the pedestal 22. As shown in FIG. As shown in FIG. 4, a portion where a plurality of pads 21b are located is a mounting area.
  • At least one pedestal 22 may be provided, and one of the pedestals 22 is positioned to face the optical waveguide 3 (optical waveguide core 32) when viewed from above, for example, as shown in FIG. You may have If the pedestal 22 is positioned facing the optical waveguide core 32, it is difficult for the sealing resin to flow between the optical waveguide 3 and the pedestal 22 when using a sealing resin (underfill). Become. As a result, the transmission is less likely to be disturbed by the sealing resin.
  • a plurality of pedestals 22 rather than one pedestal 22 can stably support the optical component 4 and further improve the alignment accuracy.
  • the pedestals 22 may be provided at four corners of the mounting area, or may be positioned on the sides of the rectangular shape.
  • the size of the pedestal 22 is also not limited as long as it is a size that does not interfere with the mounting and transmission of the optical component 4 .
  • the pedestal 22 may be provided so as to be elongated on the side of the square.
  • solder resist may be partially located on the surface of the wiring board 2 .
  • the solder resist is made of a resin such as an acrylic-modified epoxy resin.
  • An optical component mounting structure 10 according to an embodiment of the present disclosure, as shown in FIG. 1, has a structure in which optical components 4 and electronic components 6 are mounted on an optical circuit board 1 according to an embodiment.
  • the optical component 4 mounted on the optical component mounting structure 10 includes an optical component core 41 .
  • Examples of the optical component 4 including such an optical component core 41 include a silicon photonics device.
  • Examples of the electronic component 6 include an ASIC (Application Specific Integrated Circuit) and a driver IC.
  • the optical component 4 is electrically connected to the pad 21b located in the mounting area of the optical component on the wiring board 2 via the solder 7.
  • Pad 21b is part of a conductor layer (metal layer 21a) located on the upper surface of wiring board 2 .
  • a silicon photonics device will be described as an example of the optical component 4 .
  • a silicon photonics device is, for example, a type of optical waveguide having a core made of silicon (Si) and a clad made of silicon dioxide (SiO 2 ).
  • the silicon photonics device includes a Si waveguide as an optical component core 41, and further includes a passivation film, a light source section, a photodetector section, and the like (not shown).
  • the optical component core 41 Si waveguide 41
  • the optical component core 41 is positioned at one end of the optical waveguide 3 so as to face the optical waveguide core 32 included in the optical waveguide 3 .
  • an electrical signal from the wiring board 2 is propagated through the solder 7 to the light source included in the optical component 4 (silicon photonics device).
  • the light source unit that receives the propagated electrical signal emits light.
  • the emitted optical signal is propagated through the optical component core 41 (Si waveguide 41) and the optical waveguide core 32 to the optical fiber 5 connected via the optical connector 5a.
  • part of the lower surface of the optical component 4 is in contact with the pedestal 22 .
  • the lower surface of the optical component 4 is partially in contact with the pedestal 22, so that the optical component 4 can be stabilized. ) can be facilitated.
  • the lower surface of the optical component 4 may be a roughened surface.
  • the resin forming the pedestal 22 is embedded in the concave portion of the roughened surface, and the resin forming the pedestal 22 and the unevenness of the roughened surface are anchored. Effective. As a result, the bonding strength between the optical component 4 and the pedestal 22 is improved, and the optical component 4 can be supported more stably.
  • the roughening treatment can be performed, for example, by plasma treatment using nitrogen gas, and the surface roughness of the roughened surface is Ra (arithmetic mean roughness) defined in JIS B0601:2013, etc., and is 0.1 ⁇ m or more. 0.5 ⁇ m or less is preferable.
  • the lower surface of the optical component 4 may be embedded in the pedestal 22 as shown in FIG. With such a configuration, the optical component 4 can be brought into contact with the pedestal 22 more stably, and the alignment between the optical component core 41 and the optical waveguide core 32 can be performed more accurately.
  • the lower surface of the optical component 4 may be located on the entire upper surface of the pedestal 22 and the area of the upper surface of the pedestal 22 may be larger than the area of the lower surface of the pedestal 22 . That is, in the base 22, the area of the contact portion with the optical component 4 should be larger than the area of the contact portion with the metal layer 21a. Also in such a configuration, the optical component 4 can be more stabilized on the pedestal 22, and the alignment between the optical component core 41 and the optical waveguide core 32 can be performed more accurately.
  • a method for manufacturing the optical component mounting structure according to the present disclosure is not particularly limited as long as the optical component mounting structure 10 can be manufactured so as to have the structure described above.
  • a method for manufacturing an optical circuit board 10 according to an embodiment of the present disclosure includes the following steps (a) to (g).
  • a wiring board 2 is prepared as shown in FIG.
  • the wiring board 2 has a mounting region R1 for the optical component 4 and an optical waveguide forming region R2 adjacent to each other on its upper surface.
  • the optical waveguide forming region R2 of the wiring board 2 includes a metal layer 21a that is part of the conductor layer positioned on the outermost surface (the conductor layer positioned on the upper surface of the wiring board 2).
  • the mounting region R1 of the wiring board 2 includes pads 21b that are part of the conductor layer located on the outermost surface.
  • the metal layer 21a and the pads 21b are made of metal such as copper.
  • step (b) the lower clad 31 is formed in the optical waveguide forming region R2 and the pedestal 22 is formed in the mounting region R1 from the same material. Specifically, a resin layer made of resin such as epoxy resin or silicon resin is laminated so as to cover the optical waveguide forming region R2 and the mounting region R1. Then, it is exposed and developed to form the lower clad 31 and the pedestal 22 at the same time.
  • an optical waveguide core 32 is formed along the upper surface of the lower clad 31 .
  • the optical waveguide core 32 is made of resin such as epoxy resin or silicone resin, as described above.
  • an upper clad 33 covering the upper surface of the lower clad 31 and the optical waveguide core 32 is formed.
  • the upper clad 33 is also made of resin such as epoxy resin or silicon resin.
  • the lower clad 31 and the upper clad 33 may be made of the same material or different materials.
  • the lower clad 31 and the upper clad 33 may have the same thickness or different thicknesses.
  • step (e) as shown in FIG. 7, the end faces of the lower clad 31, the optical waveguide core 32 and the upper clad 33 are ground to form the optical waveguide 3.
  • step (f) the optical component 4 including the optical component core 41 is prepared. Examples of such an optical component 4 include a silicon photonics device and the like, as described above.
  • step (g) the lower surface of the optical component 4 is pressed against the pedestal 22 while the optical component 4 is heated in the mounting region R1, thereby forming the optical waveguide core 32 and the optical component core.
  • 41 and the optical axis are aligned with each other. Specifically, by heating to about 200° C. or higher and 350° C. or lower, the pedestal 22 is softened and the solder 7 is melted. By pressing the optical component 4 against the softened pedestal 22, the optical axes of the optical waveguide core 41 and the optical component core 32 are aligned.
  • the optical component 4 may be embedded in the pedestal 22 when the optical waveguide core 32 and the optical component core 41 are aligned.
  • the lower surface of the optical component 4 may be located on the entire upper surface of the pedestal 22 and the area of the upper surface of the pedestal 22 may be larger than the area of the lower surface of the pedestal 22 .
  • an optical component mounting structure 10 is obtained.
  • the positions (optical axes) of the optical waveguide core 32 of the optical waveguide 3 and the optical component core 41 of the optical component 4 included in the optical circuit board 1 are highly accurate. Matching. Therefore, the optical component mounting structure 10 according to one embodiment can reduce the transmission loss of optical signals.
  • optical circuit board 1 optical circuit board 2 wiring board 21a metal layer 21b pad 22 pedestal 3 optical waveguide 31 lower clad 32 optical waveguide core 33 upper clad 4 optical component 41 optical component core (silicon waveguide (Si waveguide)) 5 optical fiber 5a optical connector 6 electronic component 7 solder 10 optical component mounting structure R1 optical waveguide forming region R2 mounting region

Abstract

An optical circuit board (1) according to the present disclosure comprises a wiring board (2) having an upper surface, and an optical waveguide (3). The wiring board (2) has a mounting region for an optical component (4) on a portion of the upper surface. The optical waveguide (3) is located adjacent to the mounting region for the optical component (4) on the wiring board (2), and includes a lower cladding (31), a core (32) for the optical waveguide, and an upper cladding (33) from the upper surface side of the wiring board (2). At least one pedestal (22) formed from the same material as that of the lower cladding (31) is located so as to at least partially overlap the mounting region.

Description

光回路基板optical circuit board
 本発明は、光回路基板、それを用いた光学部品実装構造体および光学部品実装構造体の製造方法に関する。 The present invention relates to an optical circuit board, an optical component mounting structure using the optical component mounting structure, and a method for manufacturing the optical component mounting structure.
 近年、大容量のデータを高速で通信可能な光ファイバーが情報通信に使用されている。光信号の送受信は、この光ファイバーと光学部品(シリコンフォトニクスデバイス)との間で行われる。このような光学部品は、例えば特許文献1に記載のように平面光波回路(光回路基板)に実装されている。 In recent years, optical fibers that can transmit large amounts of data at high speed have been used for information communication. Optical signals are transmitted and received between this optical fiber and an optical component (silicon photonics device). Such an optical component is mounted on a planar lightwave circuit (optical circuit board) as described in Patent Document 1, for example.
 光回路基板に光学部品を実装するに際し、光回路基板に含まれる光導波路のコアと光学部品のコアとの位置(高さ)を合わせるために、光学部品の直下に台座が設けられている。光導波路と台座とは異なる材料を用いて、別の工程で形成される。 When mounting an optical component on an optical circuit board, a pedestal is provided directly below the optical component in order to match the position (height) between the core of the optical waveguide included in the optical circuit board and the core of the optical component. The optical waveguide and the pedestal are formed in different processes using different materials.
特開2009-86238号公報JP-A-2009-86238
 本開示に係る光回路基板は、上面を有する配線基板と光導波路とを含む。配線基板は、上面の一部に光学部品の実装領域を有する。光導波路は、配線基板上における光学部品の実装領域に隣接して位置し、配線基板の上面側から下部クラッド、光導波路用コアおよび上部クラッドを含む。実装領域と少なくとも一部が重なるように、下部クラッドと同じ素材で形成された少なくとも一つの台座が位置している。 An optical circuit board according to the present disclosure includes a wiring board having an upper surface and an optical waveguide. The wiring board has an optical component mounting area on a part of the upper surface. The optical waveguide is positioned adjacent to the mounting area of the optical component on the wiring board, and includes a lower clad, an optical waveguide core and an upper clad from the upper surface side of the wiring board. At least one pedestal made of the same material as the lower clad is positioned so as to at least partially overlap the mounting area.
 本開示に係る光学部品実装構造体は、上記の光回路基板と実装領域に位置する光学部品用コアを含む光学部品とを有しており、光学部品の下面の一部は台座に当接している。 An optical component mounting structure according to the present disclosure includes the optical circuit board described above and an optical component including an optical component core positioned in the mounting area, and a portion of the lower surface of the optical component is in contact with the pedestal. there is
 本開示に係る光学部品実装構造体の製造方法は、互いに隣接している光導波路形成領域および実装領域を有する配線基板を準備する工程と、光導波路形成領域に下部クラッドおよび実装領域に台座を、同じ素材で形成する工程と、下部クラッドの上面に沿った光導波路用コアを形成する工程と、下部クラッドの上面および光導波路用コアを被覆する上部クラッドを形成する工程と、下部クラッド、光導波路用コアおよび上部クラッドの端面を研削して、光導波路を形成する工程と、光学部品用コアを含む光学部品を準備する工程と、実装領域に、光学部品を加熱しながら光学部品の下面を台座に押圧し、光導波路用コアと光学部品用コアとの光軸を合わせて実装する工程とを含む。 A method for manufacturing an optical component mounting structure according to the present disclosure includes steps of preparing a wiring board having an optical waveguide formation region and a mounting region adjacent to each other; Forming with the same material; forming an optical waveguide core along the upper surface of the lower clad; forming an upper clad covering the upper surface of the lower clad and the optical waveguide core; A step of grinding the end faces of the core and the upper clad to form an optical waveguide; a step of preparing an optical component including the core for the optical component; a step of pressing against and mounting the optical waveguide core and the optical component core with their optical axes aligned.
本開示の一実施形態に係る光回路基板に、光学部品および電子部品が実装された光学部品実装構造体を示す平面図である。1 is a plan view showing an optical component mounting structure in which optical components and electronic components are mounted on an optical circuit board according to an embodiment of the present disclosure; FIG. 図1に示す領域Xの断面を説明するための拡大説明図である。2 is an enlarged explanatory view for explaining a cross section of a region X shown in FIG. 1; FIG. 図2に示す領域Yの平面図(但し、光学部品および光導波路が有する上部クラッドを除く)である。FIG. 3 is a plan view of the region Y shown in FIG. 2 (excluding the optical component and the upper clad of the optical waveguide); 台座の配置例を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining an arrangement example of a pedestal; 光学部品と台座との当接部を説明するための説明図である。It is an explanatory view for explaining a contact part of an optical component and a pedestal. 光学部品と台座との当接部を説明するための説明図である。It is an explanatory view for explaining a contact part of an optical component and a pedestal. 本開示の一実施形態に係る光学部品実装構造体を製造する工程を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining a process of manufacturing an optical component mounting structure according to an embodiment of the present disclosure;
 従来の光回路基板は、光導波路に含まれる下部クラッドの厚みが所定の寸法に形成されず、光導波路のコアの位置精度が悪い場合がある。そのため、台座に合わせて光学部品を実装しても、光導波路のコアと光学部品のコアとの位置を精度よく合わせることができない。その結果、伝送損失が大きくなる。 In conventional optical circuit boards, the thickness of the lower clad included in the optical waveguide is not formed to a predetermined size, and the positional accuracy of the core of the optical waveguide may be poor. Therefore, even if the optical component is mounted in accordance with the pedestal, the positions of the core of the optical waveguide and the core of the optical component cannot be precisely aligned. As a result, transmission loss increases.
 したがって、光学部品を実装する際に、光回路基板に含まれる光導波路のコアと光学部品のコアとの位置を高精度で合わせることができ、光導波路と光学部品との間で光信号の伝送損失が少ない光回路基板が求められている。 Therefore, when an optical component is mounted, the position of the core of the optical waveguide included in the optical circuit board and the core of the optical component can be aligned with high accuracy, and optical signals can be transmitted between the optical waveguide and the optical component. An optical circuit board with less loss is desired.
 上記のように、本開示に係る光回路基板は、実装領域と重なる領域に、光導波路に含まれる下部クラッドと同じ素材で形成された少なくとも一つの台座が位置している。その結果、本開示に係る光回路基板によれば、光学部品を実装する際に、光回路基板に含まれる光導波路のコアと光学部品のコアとの位置を高精度で合わせることができ、伝送損失を少なくすることができる。 As described above, in the optical circuit board according to the present disclosure, at least one pedestal made of the same material as the lower clad included in the optical waveguide is positioned in the region overlapping the mounting region. As a result, according to the optical circuit board according to the present disclosure, when an optical component is mounted, the positions of the core of the optical waveguide included in the optical circuit board and the core of the optical component can be aligned with high accuracy. Loss can be reduced.
 本開示の一実施形態に係る光回路基板を、図1~4に基づいて説明する。図1は、本開示の一実施形態に係る光回路基板1に、光学部品4が実装された光学部品実装構造体10を示す平面図である。 An optical circuit board according to an embodiment of the present disclosure will be described based on FIGS. FIG. 1 is a plan view showing an optical component mounting structure 10 in which an optical component 4 is mounted on an optical circuit board 1 according to an embodiment of the present disclosure.
 本開示の一実施形態に係る光回路基板1は、配線基板2と光導波路3とを含む。一実施形態に係る光回路基板1に含まれる配線基板2としては、一般的に光回路基板に使用される配線基板が挙げられる。 An optical circuit board 1 according to an embodiment of the present disclosure includes a wiring board 2 and an optical waveguide 3. As the wiring board 2 included in the optical circuit board 1 according to one embodiment, a wiring board generally used for an optical circuit board can be used.
 このような配線基板2には、具体的に図示していないが、例えば、コア基板と、コア基板の両面に積層されたビルドアップ層とを含む。コア基板は、絶縁性を有する素材であれば特に限定されない。絶縁性を有する素材としては、例えば、エポキシ樹脂、ビスマレイミド-トリアジン樹脂、ポリイミド樹脂、ポリフェニレンエーテル樹脂などの樹脂が挙げられる。これらの樹脂は2種以上を混合して用いてもよい。コア基板は、通常、コア基板の上下面を電気的に接続するために、スルーホール導体を有している。 Although not specifically illustrated, such a wiring board 2 includes, for example, a core board and buildup layers laminated on both sides of the core board. The core substrate is not particularly limited as long as it is an insulating material. Examples of insulating materials include resins such as epoxy resins, bismaleimide-triazine resins, polyimide resins, and polyphenylene ether resins. These resins may be used in combination of two or more. The core substrate usually has through-hole conductors for electrically connecting the upper and lower surfaces of the core substrate.
 コア基板は、補強材を含んでいてもよい。補強材としては、例えば、ガラス繊維、ガラス不織布、アラミド不織布、アラミド繊維、ポリエステル繊維などの絶縁性布材が挙げられる。補強材は2種以上を併用してもよい。さらに、コア基板には、シリカ、硫酸バリウム、タルク、クレー、ガラス、炭酸カルシウム、酸化チタンなどの無機フィラーが、分散されていてもよい。 The core substrate may contain a reinforcing material. Examples of reinforcing materials include insulating cloth materials such as glass fibers, glass nonwoven fabrics, aramid nonwoven fabrics, aramid fibers, and polyester fibers. Two or more reinforcing materials may be used in combination. Furthermore, inorganic fillers such as silica, barium sulfate, talc, clay, glass, calcium carbonate, and titanium oxide may be dispersed in the core substrate.
 ビルドアップ層は、絶縁層と導体層とが交互に積層された構造を有している。最表面に位置する導体層(配線基板2の上面に位置する導体層)の一部は、光導波路3が位置する金属層21aを含んでいる。金属層21aは、例えば銅などの金属で形成されている。ビルドアップ層に含まれる絶縁層は、コア基板と同様、絶縁性を有する素材であれば特に限定されない。絶縁性を有する素材としては、例えば、エポキシ樹脂、ビスマレイミド-トリアジン樹脂、ポリイミド樹脂、ポリフェニレンエーテル樹脂などの樹脂が挙げられる。これらの樹脂は2種以上を混合して用いてもよい。 The buildup layer has a structure in which insulating layers and conductor layers are alternately laminated. A part of the conductor layer positioned on the outermost surface (the conductor layer positioned on the upper surface of the wiring board 2) includes a metal layer 21a on which the optical waveguide 3 is positioned. The metal layer 21a is made of metal such as copper. The insulating layer included in the buildup layer is not particularly limited as long as it is an insulating material, like the core substrate. Examples of insulating materials include resins such as epoxy resins, bismaleimide-triazine resins, polyimide resins, and polyphenylene ether resins. These resins may be used in combination of two or more.
 ビルドアップ層に絶縁層が2層以上存在する場合、それぞれの絶縁層は、同じ樹脂でもよく、異なる樹脂でもよい。ビルドアップ層に含まれる絶縁層とコア基板とは、同じ樹脂でもよく、異なる樹脂でもよい。ビルドアップ層は、通常、層間を電気的に接続するためのビアホール導体を有している。 When there are two or more insulating layers in the buildup layer, each insulating layer may be made of the same resin or different resins. The insulating layer and the core substrate included in the buildup layer may be made of the same resin or different resins. The buildup layers usually have via-hole conductors for electrically connecting the layers.
 さらに、ビルドアップ層に含まれる絶縁層には、シリカ、硫酸バリウム、タルク、クレー、ガラス、炭酸カルシウム、酸化チタンなどの無機フィラーが、分散されていてもよい。 Furthermore, inorganic fillers such as silica, barium sulfate, talc, clay, glass, calcium carbonate, and titanium oxide may be dispersed in the insulating layer included in the buildup layer.
 図2に示すように、一実施形態に係る光回路基板1に含まれる光導波路3は、配線基板2の表面に存在している金属層21aの表面に位置している。図2は、図1に示す領域Xの断面を説明する拡大説明図である。光導波路3は、金属層21a側から下部クラッド31、光導波路用コア32および上部クラッド33の順に積層された構造を有している。 As shown in FIG. 2, the optical waveguide 3 included in the optical circuit board 1 according to one embodiment is located on the surface of the metal layer 21a present on the surface of the wiring board 2. As shown in FIG. FIG. 2 is an enlarged explanatory view explaining a cross section of the region X shown in FIG. The optical waveguide 3 has a structure in which a lower clad 31, an optical waveguide core 32 and an upper clad 33 are laminated in this order from the metal layer 21a side.
 光導波路3に含まれる下部クラッド31は、配線基板2の表面、具体的には配線基板2の光導波路形成領域の表面に存在している金属層21aの表面に位置している。下部クラッド31を形成している材料は限定されず、例えば、エポキシ樹脂、シリコン樹脂などの樹脂が挙げられる。 The lower clad 31 included in the optical waveguide 3 is located on the surface of the wiring substrate 2, specifically, on the surface of the metal layer 21a existing on the surface of the optical waveguide formation region of the wiring substrate 2. The material forming the lower clad 31 is not limited, and examples thereof include resins such as epoxy resin and silicone resin.
 光導波路3に含まれる上部クラッド33についても、下部クラッド31と同様、エポキシ樹脂、シリコン樹脂などの樹脂で形成されている。下部クラッド31と上部クラッド33とは同じ材料であってもよく、異なる材料であってもよい。さらに、下部クラッド31および上部クラッド33は、同じ厚みを有していてもよく、異なる厚みを有していてもよい。下部クラッド31および上部クラッド33は、例えば、それぞれ5μm以上150μm以下程度の厚みを有する。 Similarly to the lower clad 31, the upper clad 33 included in the optical waveguide 3 is also made of resin such as epoxy resin or silicon resin. The lower clad 31 and the upper clad 33 may be made of the same material or different materials. Furthermore, the lower clad 31 and the upper clad 33 may have the same thickness or different thicknesses. The lower clad 31 and the upper clad 33 each have a thickness of approximately 5 μm or more and 150 μm or less, for example.
 光導波路3に含まれる光導波路用コア32は、光導波路3に侵入した光が伝搬する部分である。具体的には、光学部品4に含まれる光学部品用コア41の側面と、光導波路3の光導波路用コア32の側面とが対向するように位置している。この端部において、光導波路用コア32と光学部品用コア41との間で光信号の送受信が行われる。光導波路用コア32を形成している材料は限定されず、例えば、光の透過性や伝搬する光の波長特性などを考慮して、適宜設定される。材料としては、例えば、エポキシ樹脂、シリコン樹脂などの樹脂が挙げられる。光導波路用コア32は、例えば、3μm以上50μm以下程度の厚みを有する。 The optical waveguide core 32 included in the optical waveguide 3 is a portion through which light entering the optical waveguide 3 propagates. Specifically, the side surface of the optical component core 41 included in the optical component 4 and the side surface of the optical waveguide core 32 of the optical waveguide 3 are positioned to face each other. At this end, optical signals are transmitted and received between the optical waveguide core 32 and the optical component core 41 . The material forming the optical waveguide core 32 is not limited, and is appropriately set in consideration of, for example, light transmittance and wavelength characteristics of propagating light. Examples of materials include resins such as epoxy resins and silicone resins. The optical waveguide core 32 has a thickness of, for example, about 3 μm or more and 50 μm or less.
 図2に示すように、一実施形態に係る光回路基板1には、台座22が備えられている。台座22は、光学部品4を実装する際に、光学部品4に含まれる光学部品用コア41と光導波路3に含まれる光導波路用コア32とを、精度よく位置合わせするために使用される。 As shown in FIG. 2, the optical circuit board 1 according to one embodiment is provided with a pedestal 22 . The pedestal 22 is used to precisely align the optical component core 41 included in the optical component 4 and the optical waveguide core 32 included in the optical waveguide 3 when the optical component 4 is mounted.
 図3に示すように、台座22は、配線基板2の実装領域と少なくとも一部が重なるように金属層21a上に位置している。図3は、図2に示す領域Yの平面図(但し、光学部品4および光導波路3が有する上部クラッド33を除く)である。 As shown in FIG. 3, the pedestal 22 is positioned on the metal layer 21a so as to at least partially overlap the mounting area of the wiring board 2. As shown in FIG. FIG. 3 is a plan view of the region Y shown in FIG. 2 (excluding the optical component 4 and the upper clad 33 of the optical waveguide 3).
 台座22は、光導波路3が有する下部クラッド31と同じ素材で形成されている。台座22が下部クラッド31と同じ素材で形成されていると、台座22と下部クラッド31との熱伸縮時の変形量が、ほぼ同じとなる。そのため、光学部品用コア41と光導波路3に含まれる光導波路用コア32との位置合わせ(高さ調節)を容易にすることができる。 The pedestal 22 is made of the same material as the lower clad 31 of the optical waveguide 3 . If the base 22 is made of the same material as the lower clad 31, the base 22 and the lower clad 31 have substantially the same amount of deformation during thermal expansion and contraction. Therefore, alignment (height adjustment) between the optical component core 41 and the optical waveguide core 32 included in the optical waveguide 3 can be facilitated.
 台座22の位置は、配線基板2の実装領域と少なくとも一部が重なっていれば限定されない。すなわち、台座22は、実装領域と一部が重なっていてもよく、全てが重なっていてもよい。図4に、台座22の配置例を示す。図4に示すように、複数のパッド21bが位置している部分が実装領域であり、便宜上、図4では、実装領域を実線で四角形状に囲っている。 The position of the pedestal 22 is not limited as long as it at least partially overlaps the mounting area of the wiring board 2 . That is, the pedestal 22 may partially overlap the mounting area, or may overlap the entire mounting area. FIG. 4 shows an arrangement example of the pedestal 22. As shown in FIG. As shown in FIG. 4, a portion where a plurality of pads 21b are located is a mounting area.
 台座22は、少なくとも1つ備えられていればよく、そのうちの1つの台座22は、例えば図3に示すように、平面視した場合、光導波路3(光導波路用コア32)と対向して位置していてもよい。台座22が光導波路用コア32と対向して位置していると、封止樹脂(アンダーフィル)を使用する場合に、光導波路3と台座22との間には、封止樹脂が流入しにくくなる。その結果、封止樹脂によって伝送を妨害されにくくなる。 At least one pedestal 22 may be provided, and one of the pedestals 22 is positioned to face the optical waveguide 3 (optical waveguide core 32) when viewed from above, for example, as shown in FIG. You may have If the pedestal 22 is positioned facing the optical waveguide core 32, it is difficult for the sealing resin to flow between the optical waveguide 3 and the pedestal 22 when using a sealing resin (underfill). Become. As a result, the transmission is less likely to be disturbed by the sealing resin.
 台座22は、1つよりも複数備える方が光学部品4を安定して支えることができ、位置合わせの精度もより向上する。具体的には、実装領域が四角形状を有する場合、実装領域の4つの角に台座22が備えられていてもよく、四角形状の辺上に位置していてもよい。台座22の大きさも、光学部品4の実装や伝送を妨害しないような大きさであれば、限定されない。例えば、平面視した場合に、台座22が四角形状の辺上に長細く位置するように備えられていてもよい。 A plurality of pedestals 22 rather than one pedestal 22 can stably support the optical component 4 and further improve the alignment accuracy. Specifically, when the mounting area has a rectangular shape, the pedestals 22 may be provided at four corners of the mounting area, or may be positioned on the sides of the rectangular shape. The size of the pedestal 22 is also not limited as long as it is a size that does not interfere with the mounting and transmission of the optical component 4 . For example, when viewed from above, the pedestal 22 may be provided so as to be elongated on the side of the square.
 配線基板2の表面には、図示していないが、部分的にソルダーレジストが位置していてもよい。ソルダーレジストは樹脂で形成されており、樹脂としては、例えばアクリル変性エポキシ樹脂などが挙げられる。 Although not shown, a solder resist may be partially located on the surface of the wiring board 2 . The solder resist is made of a resin such as an acrylic-modified epoxy resin.
 次に、本開示の光学部品実装構造体について説明する。本開示の一実施形態に係る光学部品実装構造体10は、図1に示すように、一実施形態に係る光回路基板1に光学部品4および電子部品6が実装された構造を有している。一実施形態に係る光学部品実装構造体10に実装される光学部品4には、光学部品用コア41が含まれる。このような光学部品用コア41を含む光学部品4としては、例えば、シリコンフォトニクスデバイスなどが挙げられる。電子部品6としては、例えば、ASIC(Application Specific Integrated Circuit)、ドライバICなどが挙げられる。 Next, the optical component mounting structure of the present disclosure will be described. An optical component mounting structure 10 according to an embodiment of the present disclosure, as shown in FIG. 1, has a structure in which optical components 4 and electronic components 6 are mounted on an optical circuit board 1 according to an embodiment. . The optical component 4 mounted on the optical component mounting structure 10 according to one embodiment includes an optical component core 41 . Examples of the optical component 4 including such an optical component core 41 include a silicon photonics device. Examples of the electronic component 6 include an ASIC (Application Specific Integrated Circuit) and a driver IC.
 光学部品4は、図2に示すように、配線基板2の光学部品の実装領域に位置するパッド21bとはんだ7を介して電気的に接続されている。パッド21bは、配線基板2の上面に位置する導体層(金属層21a)の一部である。 As shown in FIG. 2, the optical component 4 is electrically connected to the pad 21b located in the mounting area of the optical component on the wiring board 2 via the solder 7. As shown in FIG. Pad 21b is part of a conductor layer (metal layer 21a) located on the upper surface of wiring board 2 .
 光学部品4の一例として、シリコンフォトニクスデバイスについて説明する。シリコンフォトニクスデバイスは、例えば、ケイ素(Si)をコアとし、二酸化ケイ素(SiO)をクラッドとする光導波路の1種である。シリコンフォトニクスデバイスは、光学部品用コア41としてSi導波路を含み、図示していないが、パッシベーション膜、光源部、光検出部などをさらに含んでいる。上述のように、光学部品用コア41(Si導波路41)は、光導波路3の一方の端部において、光導波路3に含まれる光導波路用コア32と対向するように位置している。 A silicon photonics device will be described as an example of the optical component 4 . A silicon photonics device is, for example, a type of optical waveguide having a core made of silicon (Si) and a clad made of silicon dioxide (SiO 2 ). The silicon photonics device includes a Si waveguide as an optical component core 41, and further includes a passivation film, a light source section, a photodetector section, and the like (not shown). As described above, the optical component core 41 (Si waveguide 41 ) is positioned at one end of the optical waveguide 3 so as to face the optical waveguide core 32 included in the optical waveguide 3 .
 例えば、配線基板2からの電気信号が、はんだ7を介して光学部品4(シリコンフォトニクスデバイス)に含まれる光源部に伝搬される。伝搬された電気信号を受信した光源部は発光する。発光した光信号が光学部品用コア41(Si導波路41)および光導波路用コア32を経由して、光コネクター5aを介して接続されている光ファイバー5に伝播される。 For example, an electrical signal from the wiring board 2 is propagated through the solder 7 to the light source included in the optical component 4 (silicon photonics device). The light source unit that receives the propagated electrical signal emits light. The emitted optical signal is propagated through the optical component core 41 (Si waveguide 41) and the optical waveguide core 32 to the optical fiber 5 connected via the optical connector 5a.
 一実施形態に係る光学部品実装構造体10において、光学部品4の下面の一部は、台座22に当接している。このように、光学部品4の下面の一部が台座22に当接することによって、光学部品4を安定させることができ、光学部品用コア41と光導波路用コア32との位置合わせ(高さ調節)を容易にすることができる。 In the optical component mounting structure 10 according to one embodiment, part of the lower surface of the optical component 4 is in contact with the pedestal 22 . In this way, the lower surface of the optical component 4 is partially in contact with the pedestal 22, so that the optical component 4 can be stabilized. ) can be facilitated.
 光学部品4をより安定に支えるために、光学部品4の下面は粗化面であってもよい。光学部品4の下面が粗化面であると、粗化面の凹部内に台座22を形成している樹脂が埋入され、台座22を形成している樹脂と粗化面の凹凸とでアンカー効果が発揮される。その結果、光学部品4と台座22との接合強度が向上し光学部品4をより安定に支えることができる。粗化処理は、例えば窒素ガスによるプラズマ処理で行うことができ、粗化面の表面粗さは、JIS B0601:2013などで定義されているRa(算術平均粗さ)で、0.1μm以上0.5μm以下程度であるのがよい。 In order to support the optical component 4 more stably, the lower surface of the optical component 4 may be a roughened surface. When the lower surface of the optical component 4 is a roughened surface, the resin forming the pedestal 22 is embedded in the concave portion of the roughened surface, and the resin forming the pedestal 22 and the unevenness of the roughened surface are anchored. Effective. As a result, the bonding strength between the optical component 4 and the pedestal 22 is improved, and the optical component 4 can be supported more stably. The roughening treatment can be performed, for example, by plasma treatment using nitrogen gas, and the surface roughness of the roughened surface is Ra (arithmetic mean roughness) defined in JIS B0601:2013, etc., and is 0.1 μm or more. 0.5 μm or less is preferable.
 図5に示すように、光学部品4の下面は台座22に埋設されていてもよい。このような構成によって、台座22に光学部品4をより安定して当接させることができ、光学部品用コア41と光導波路用コア32との位置合わせを、より精度よく行うことができる。 The lower surface of the optical component 4 may be embedded in the pedestal 22 as shown in FIG. With such a configuration, the optical component 4 can be brought into contact with the pedestal 22 more stably, and the alignment between the optical component core 41 and the optical waveguide core 32 can be performed more accurately.
 あるいは、図6に示すように、光学部品4の下面は、台座22の上面全体に位置しており、台座22の上面の面積が台座22の下面の面積よりも大きくてもよい。すなわち、台座22において、光学部品4との当接部分の面積が金属層21aとの当接部分の面積よりも大きい方がよい。このような構成の場合も、台座22に光学部品4をより安定させることができ、光学部品用コア41と光導波路用コア32との位置合わせを、より精度よく行うことができる。 Alternatively, as shown in FIG. 6 , the lower surface of the optical component 4 may be located on the entire upper surface of the pedestal 22 and the area of the upper surface of the pedestal 22 may be larger than the area of the lower surface of the pedestal 22 . That is, in the base 22, the area of the contact portion with the optical component 4 should be larger than the area of the contact portion with the metal layer 21a. Also in such a configuration, the optical component 4 can be more stabilized on the pedestal 22, and the alignment between the optical component core 41 and the optical waveguide core 32 can be performed more accurately.
 本開示に係る光学部品実装構造体の製造方法は、上述の構造を有するように光学部品実装構造体10が製造できれば、特に限定されない。本開示の一実施形態に係る光回路基板10の製造方法は、下記の工程(a)~(g)を含む。 The method for manufacturing the optical component mounting structure according to the present disclosure is not particularly limited as long as the optical component mounting structure 10 can be manufactured so as to have the structure described above. A method for manufacturing an optical circuit board 10 according to an embodiment of the present disclosure includes the following steps (a) to (g).
  工程(a):互いに隣接している光導波路形成領域および実装領域を有する配線基板を準備する工程。
  工程(b):光導波路形成領域に下部クラッドおよび実装領域に台座を、同じ素材で形成する工程。
  工程(c):下部クラッドの上面に沿った光導波路用コアを形成する工程。
  工程(d):下部クラッドの上面および光導波路用コアを被覆する上部クラッドを形成する工程。
  工程(e):下部クラッド、光導波路用コアおよび上部クラッドの端面を研削して、光導波路を形成する工程。
  工程(f):光学部品用コアを含む光学部品を準備する工程。
  工程(g):実装領域に、光学部品を加熱しながら光学部品の下面を台座に押圧し、光導波路用コアと光学部品用コアとの光軸を合わせて実装する工程。
Step (a): A step of preparing a wiring board having an optical waveguide formation region and a mounting region adjacent to each other.
Step (b): A step of forming a lower clad in the optical waveguide forming region and a pedestal in the mounting region from the same material.
Step (c): forming an optical waveguide core along the upper surface of the lower clad.
Step (d): A step of forming an upper clad that covers the upper surface of the lower clad and the optical waveguide core.
Step (e): A step of grinding the end faces of the lower clad, the optical waveguide core and the upper clad to form an optical waveguide.
Step (f): A step of preparing an optical component including a core for an optical component.
Step (g): A step of pressing the lower surface of the optical component against the pedestal while heating the optical component in the mounting area, and mounting the optical waveguide core and the optical component core with their optical axes aligned.
 工程(a)では、図7に示すように、配線基板2を準備する。配線基板2は、互いに隣接している光学部品4の実装領域R1および光導波路形成領域R2を上面に有している。配線基板2の光導波路形成領域R2には、最表面に位置する導体層(配線基板2の上面に位置する導体層)の一部である金属層21aを含んでいる。配線基板2の実装領域R1には、最表面に位置する導体層の一部であるパッド21bを含んでいる。金属層21aおよびパッド21bは、例えば銅などの金属で形成されている。 In step (a), a wiring board 2 is prepared as shown in FIG. The wiring board 2 has a mounting region R1 for the optical component 4 and an optical waveguide forming region R2 adjacent to each other on its upper surface. The optical waveguide forming region R2 of the wiring board 2 includes a metal layer 21a that is part of the conductor layer positioned on the outermost surface (the conductor layer positioned on the upper surface of the wiring board 2). The mounting region R1 of the wiring board 2 includes pads 21b that are part of the conductor layer located on the outermost surface. The metal layer 21a and the pads 21b are made of metal such as copper.
 次いで、工程(b)では、図7に示すように、光導波路形成領域R2に下部クラッド31および実装領域R1に台座22を、同じ素材で形成する。具体的には、光導波路形成領域R2および実装領域R1を被覆するように、エポキシ樹脂、シリコン樹脂などの樹脂で形成された樹脂層を積層させる。次いで、露光および現像し、下部クラッド31および台座22を同時に形成する。 Next, in step (b), as shown in FIG. 7, the lower clad 31 is formed in the optical waveguide forming region R2 and the pedestal 22 is formed in the mounting region R1 from the same material. Specifically, a resin layer made of resin such as epoxy resin or silicon resin is laminated so as to cover the optical waveguide forming region R2 and the mounting region R1. Then, it is exposed and developed to form the lower clad 31 and the pedestal 22 at the same time.
 次いで、工程(c)では、図7に示すように、下部クラッド31の上面に沿った光導波路用コア32を形成する。光導波路用コア32は、上述のようにエポキシ樹脂、シリコン樹脂などの樹脂で形成される。 Next, in step (c), as shown in FIG. 7, an optical waveguide core 32 is formed along the upper surface of the lower clad 31 . The optical waveguide core 32 is made of resin such as epoxy resin or silicone resin, as described above.
 次いで、工程(d)では、図7に示すように、下部クラッド31の上面および光導波路用コア32を被覆する上部クラッド33を形成する。上部クラッド33も下部クラッド31と同様、エポキシ樹脂、シリコン樹脂などの樹脂で形成されている。下部クラッド31と上部クラッド33とは同じ材料であってもよく、異なる材料であってもよい。さらに、下部クラッド31および上部クラッド33は、同じ厚みを有していてもよく、異なる厚みを有していてもよい。 Next, in step (d), as shown in FIG. 7, an upper clad 33 covering the upper surface of the lower clad 31 and the optical waveguide core 32 is formed. Like the lower clad 31, the upper clad 33 is also made of resin such as epoxy resin or silicon resin. The lower clad 31 and the upper clad 33 may be made of the same material or different materials. Furthermore, the lower clad 31 and the upper clad 33 may have the same thickness or different thicknesses.
 次いで、工程(e)では、図7に示すように、下部クラッド31、光導波路用コア32および上部クラッド33の端面を研削して、光導波路3を形成する。次いで、工程(f)では、光学部品用コア41を含む光学部品4を準備する。このような光学部品4としては、上述のように、シリコンフォトニクスデバイスなどが挙げられる。 Next, in step (e), as shown in FIG. 7, the end faces of the lower clad 31, the optical waveguide core 32 and the upper clad 33 are ground to form the optical waveguide 3. FIG. Next, in step (f), the optical component 4 including the optical component core 41 is prepared. Examples of such an optical component 4 include a silicon photonics device and the like, as described above.
 最後に、工程(g)では、図7に示すように、実装領域R1に、光学部品4を加熱しながら光学部品4の下面を台座22に押圧し、光導波路用コア32と光学部品用コア41との光軸を合わせて実装する。具体的には、200℃以上350℃以下程度に加熱することによって、台座22が軟化し、はんだ7が溶融する。軟化した状態の台座22に光学部品4を押圧することによって、光導波路用コア41と光学部品用コア32との光軸を合わせる。光導波路用コア32と光学部品用コア41との位置合わせの際に、台座22に光学部品4が埋入されてもよい。あるいは、光学部品4の下面は、台座22の上面全体に位置しており、台座22の上面の面積が台座22の下面の面積よりも大きくてもよい。光導波路用コア41と光学部品用コア32との光軸を合わせた後、光学部品4を常温まで冷却することによって台座22は硬化し、はんだ7は固化し、光学部品4が配線基板2の実装領域R1に精度よく実装される。 Finally, in step (g), as shown in FIG. 7, the lower surface of the optical component 4 is pressed against the pedestal 22 while the optical component 4 is heated in the mounting region R1, thereby forming the optical waveguide core 32 and the optical component core. 41 and the optical axis are aligned with each other. Specifically, by heating to about 200° C. or higher and 350° C. or lower, the pedestal 22 is softened and the solder 7 is melted. By pressing the optical component 4 against the softened pedestal 22, the optical axes of the optical waveguide core 41 and the optical component core 32 are aligned. The optical component 4 may be embedded in the pedestal 22 when the optical waveguide core 32 and the optical component core 41 are aligned. Alternatively, the lower surface of the optical component 4 may be located on the entire upper surface of the pedestal 22 and the area of the upper surface of the pedestal 22 may be larger than the area of the lower surface of the pedestal 22 . After aligning the optical axes of the optical waveguide core 41 and the optical component core 32 , the optical component 4 is cooled to room temperature to harden the pedestal 22 , solidify the solder 7 , and attach the optical component 4 to the wiring board 2 . It is accurately mounted in the mounting region R1.
 このようにして、一実施形態に係る光学部品実装構造体10が得られる。一実施形態に係る光学部品実装構造体10は、光回路基板1に含まれる光導波路3の光導波路用コア32と光学部品4の光学部品用コア41との位置(光軸)が高精度で合っている。そのため、一実施形態に係る光学部品実装構造体10は、光信号の伝送損失を少なくすることができる。 Thus, an optical component mounting structure 10 according to one embodiment is obtained. In the optical component mounting structure 10 according to one embodiment, the positions (optical axes) of the optical waveguide core 32 of the optical waveguide 3 and the optical component core 41 of the optical component 4 included in the optical circuit board 1 are highly accurate. Matching. Therefore, the optical component mounting structure 10 according to one embodiment can reduce the transmission loss of optical signals.
 1  光回路基板
 2  配線基板
 21a 金属層
 21b パッド
 22 台座
 3  光導波路
 31 下部クラッド
 32 光導波路用コア
 33 上部クラッド
 4  光学部品
 41 光学部品用コア(シリコン導波路(Si導波路))
 5  光ファイバー
 5a 光コネクター
 6  電子部品
 7  はんだ
 10 光学部品実装構造体
 R1 光導波路形成領域
 R2 実装領域
REFERENCE SIGNS LIST 1 optical circuit board 2 wiring board 21a metal layer 21b pad 22 pedestal 3 optical waveguide 31 lower clad 32 optical waveguide core 33 upper clad 4 optical component 41 optical component core (silicon waveguide (Si waveguide))
5 optical fiber 5a optical connector 6 electronic component 7 solder 10 optical component mounting structure R1 optical waveguide forming region R2 mounting region

Claims (10)

  1.  上面を有する配線基板と光導波路とを含み、
     前記配線基板は、前記上面の一部に光学部品の実装領域を有し、
     前記光導波路は、前記配線基板上における前記光学部品の実装領域に隣接して位置し、前記配線基板の前記上面側から下部クラッド、光導波路用コアおよび上部クラッドを含み、
     前記実装領域と少なくとも一部が重なるように、前記下部クラッドと同じ素材で形成された少なくとも一つの台座が位置している、
    光回路基板。
    including a wiring board having a top surface and an optical waveguide;
    The wiring board has an optical component mounting area on a part of the upper surface,
    The optical waveguide is positioned adjacent to the mounting area of the optical component on the wiring board, and includes a lower clad, an optical waveguide core and an upper clad from the upper surface side of the wiring board,
    At least one pedestal made of the same material as the lower clad is positioned so as to at least partially overlap with the mounting area.
    optical circuit board.
  2.  前記光導波路および前記台座は、前記配線基板に位置する金属層を介して、前記配線基板上に位置している、請求項1に記載の光回路基板。 The optical circuit board according to claim 1, wherein the optical waveguide and the pedestal are positioned on the wiring board via a metal layer positioned on the wiring board.
  3.  前記台座の1つが、平面視で前記光導波路用コアと対向して位置している、請求項1または2に記載の光回路基板。 3. The optical circuit board according to claim 1, wherein one of said pedestals is positioned facing said optical waveguide core in plan view.
  4.  請求項1~3のいずれかに記載の前記光回路基板と、
     前記実装領域に位置する光学部品用コアを含む光学部品と、
     を有しており、
     前記光学部品の下面の一部は、前記台座に当接している、
    光学部品実装構造体。
    the optical circuit board according to any one of claims 1 to 3;
    an optical component including an optical component core located in the mounting area;
    and
    a portion of the lower surface of the optical component is in contact with the pedestal;
    Optical component mounting structure.
  5.  前記光学部品の下面は、粗化面である、請求項4に記載の光学部品実装構造体。 The optical component mounting structure according to claim 4, wherein the lower surface of the optical component is a roughened surface.
  6.  前記光学部品の下面は、前記台座に埋設されている、請求項4または5に記載の光学部品実装構造体。 The optical component mounting structure according to claim 4 or 5, wherein the lower surface of the optical component is embedded in the pedestal.
  7.  前記光学部品の下面は、前記台座の上面全体に位置しており、前記台座の上面の面積が前記台座の下面の面積よりも大きい、請求項4または5に記載の光学部品実装構造体。 The optical component mounting structure according to claim 4 or 5, wherein the lower surface of the optical component is located on the entire upper surface of the pedestal, and the area of the upper surface of the pedestal is larger than the area of the lower surface of the pedestal.
  8.  前記台座の一部が、前記粗下面の凹部内に埋入されている、請求項5~7のいずれかに記載の光学部品実装構造体。 The optical component mounting structure according to any one of claims 5 to 7, wherein a part of the pedestal is embedded in the concave portion of the rough lower surface.
  9.  互いに隣接している光導波路形成領域および実装領域を有する配線基板を準備する工程と、
     前記光導波路形成領域に下部クラッドおよび前記実装領域に台座を、同じ素材で形成する工程と、
     前記下部クラッドの上面に沿った光導波路用コアを形成する工程と、
     前記下部クラッドの上面および前記光導波路用コアを被覆する上部クラッドを形成する工程と、
     前記下部クラッド、前記光導波路用コアおよび前記上部クラッドの端面を研削して、光導波路を形成する工程と、
     光学部品用コアを含む光学部品を準備する工程と、
     前記実装領域に、前記光学部品を加熱しながら該光学部品の下面を前記台座に押圧し、前記光導波路用コアと前記光学部品用コアとの光軸を合わせて実装する工程と、
    を含む、光学部品実装構造体の製造方法。
    preparing a wiring substrate having an optical waveguide forming region and a mounting region adjacent to each other;
    forming a lower clad in the optical waveguide forming region and a pedestal in the mounting region from the same material;
    forming an optical waveguide core along the upper surface of the lower clad;
    forming an upper clad covering the upper surface of the lower clad and the optical waveguide core;
    grinding end surfaces of the lower clad, the optical waveguide core and the upper clad to form an optical waveguide;
    providing an optical component including a core for the optical component;
    a step of pressing the lower surface of the optical component against the pedestal while heating the optical component in the mounting area, and mounting the optical waveguide core and the optical component core with their optical axes aligned;
    A method of manufacturing an optical component mounting structure, comprising:
  10.  前記台座は、前記下部クラッドと同時に形成する、請求項9に記載の製造方法。 The manufacturing method according to claim 9, wherein the pedestal is formed simultaneously with the lower clad.
PCT/JP2022/043102 2021-11-26 2022-11-22 Optical circuit board WO2023095768A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-192471 2021-11-26
JP2021192471 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023095768A1 true WO2023095768A1 (en) 2023-06-01

Family

ID=86539396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043102 WO2023095768A1 (en) 2021-11-26 2022-11-22 Optical circuit board

Country Status (2)

Country Link
TW (1) TW202326193A (en)
WO (1) WO2023095768A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007133011A (en) * 2005-11-08 2007-05-31 Nec Corp Optical coupling structure, manufacturing method therefor, and optical module
WO2010106995A1 (en) * 2009-03-17 2010-09-23 日本電気株式会社 Light waveguide device and method for manufacturing same
US20110085760A1 (en) * 2009-10-13 2011-04-14 Electronics And Telecommunications Research Institute Optical devices and methods of fabricating the same
JP2011209516A (en) * 2010-03-30 2011-10-20 Kyocera Corp Optical transmission substrate and optical module
WO2014118836A1 (en) * 2013-02-01 2014-08-07 日本電気株式会社 Optical function integration unit and method for producing same
JP2019186467A (en) * 2018-04-16 2019-10-24 ルネサスエレクトロニクス株式会社 Semiconductor device and method for manufacturing the same
JP2020016780A (en) * 2018-07-26 2020-01-30 京セラ株式会社 Light guide and optical circuit board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007133011A (en) * 2005-11-08 2007-05-31 Nec Corp Optical coupling structure, manufacturing method therefor, and optical module
WO2010106995A1 (en) * 2009-03-17 2010-09-23 日本電気株式会社 Light waveguide device and method for manufacturing same
US20110085760A1 (en) * 2009-10-13 2011-04-14 Electronics And Telecommunications Research Institute Optical devices and methods of fabricating the same
JP2011209516A (en) * 2010-03-30 2011-10-20 Kyocera Corp Optical transmission substrate and optical module
WO2014118836A1 (en) * 2013-02-01 2014-08-07 日本電気株式会社 Optical function integration unit and method for producing same
JP2019186467A (en) * 2018-04-16 2019-10-24 ルネサスエレクトロニクス株式会社 Semiconductor device and method for manufacturing the same
JP2020016780A (en) * 2018-07-26 2020-01-30 京セラ株式会社 Light guide and optical circuit board

Also Published As

Publication number Publication date
TW202326193A (en) 2023-07-01

Similar Documents

Publication Publication Date Title
US8041159B2 (en) Optical/electrical hybrid substrate and method of manufacturing the same
KR101287117B1 (en) Photoelectric composite wiring module and method for manufacturing same
WO2001001176A1 (en) Photoelectric wiring board, packaging board, and photoelectric wiring board producing method
US10168495B1 (en) Optical waveguide and optical circuit board
JP2001196643A (en) Chip carrier for mounting light/electric element and mounting method thereof, light/electric wiring board and manufacturing method thereof, and mounting board
JP4677651B2 (en) Optical wiring layer manufacturing method, optical / electrical wiring substrate, manufacturing method thereof, and mounting substrate
WO2023095768A1 (en) Optical circuit board
JPH1195062A (en) Optical connection structure
JPH1152198A (en) Optical connecting structure
JP4865600B2 (en) Optical coupler
WO2023162964A1 (en) Optical circuit board
JP7337167B2 (en) Optical circuit board and electronic component mounting structure using the same
JP4304764B2 (en) Optical / electrical wiring board, manufacturing method, and mounting board
JP3343837B2 (en) Manufacturing method of electro-optical hybrid module
WO2022210230A1 (en) Optical circuit board and optical component mounting structure using same
WO2022163481A1 (en) Optical circuit board and electronic component mounting structure using same
JP2005037531A (en) Optoelectric composite wiring board
JP2001196494A (en) Chip carrier for mounting opto-electric element, manufacturing and mounting method therefor, opto- electric wiring board, manufacturing method therefor and mounted substrate
JP4441980B2 (en) Optical / electrical wiring substrate, manufacturing method thereof, manufacturing method of optical wiring film, and mounting substrate
WO2023190186A1 (en) Optical circuit board
JP6649076B2 (en) Manufacturing method of optical circuit board
WO2023145593A1 (en) Optical circuit board
WO2023210672A1 (en) Optical circuit board and optical component mounting structure
WO2023038132A1 (en) Optical circuit board and optical component mounting structure using same
TWI831167B (en) Optical circuit board and optical component mounting structure using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898551

Country of ref document: EP

Kind code of ref document: A1