JP6649076B2 - Manufacturing method of optical circuit board - Google Patents

Manufacturing method of optical circuit board Download PDF

Info

Publication number
JP6649076B2
JP6649076B2 JP2015249208A JP2015249208A JP6649076B2 JP 6649076 B2 JP6649076 B2 JP 6649076B2 JP 2015249208 A JP2015249208 A JP 2015249208A JP 2015249208 A JP2015249208 A JP 2015249208A JP 6649076 B2 JP6649076 B2 JP 6649076B2
Authority
JP
Japan
Prior art keywords
core
glass plate
optical waveguide
positioning
cladding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015249208A
Other languages
Japanese (ja)
Other versions
JP2017083807A (en
Inventor
逸朗 宍戸
逸朗 宍戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to US15/332,256 priority Critical patent/US9739942B2/en
Priority to CN201610948818.5A priority patent/CN106950645B/en
Publication of JP2017083807A publication Critical patent/JP2017083807A/en
Application granted granted Critical
Publication of JP6649076B2 publication Critical patent/JP6649076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

本発明は、光信号の方向変換を行う反射面を有する光回路基板の製造方法に関するものである。   The present invention relates to a method for manufacturing an optical circuit board having a reflection surface that changes the direction of an optical signal.

図5に、電子部品Dが実装される従来の光回路基板Bの一例を示す。
従来の光回路基板Bは、配線基板20と、光導波路21とを備えている。
FIG. 5 shows an example of a conventional optical circuit board B on which an electronic component D is mounted.
The conventional optical circuit board B includes a wiring board 20 and an optical waveguide 21.

配線基板20は、絶縁層22と配線導体23とを備えている。絶縁層22には、貫通孔24が形成されている。絶縁層22の上下面および貫通孔24の内側には、配線導体23が形成されている。絶縁層22の上面には、配線導体23の一部から成る電子部品接続パッド25が形成されている。電子部品接続パッド25には、電子部品Dが実装される。
絶縁層22の下面には、配線導体23の一部から成る外部接続パッド26が形成されている。外部接続パッド26は、外部回路基板の配線導体が接続される。
The wiring board 20 includes an insulating layer 22 and a wiring conductor 23. A through hole 24 is formed in the insulating layer 22. A wiring conductor 23 is formed on the upper and lower surfaces of the insulating layer 22 and inside the through hole 24. On the upper surface of the insulating layer 22, an electronic component connection pad 25 formed of a part of the wiring conductor 23 is formed. The electronic component D is mounted on the electronic component connection pad 25.
On the lower surface of the insulating layer 22, an external connection pad 26 formed of a part of the wiring conductor 23 is formed. The external connection pad 26 is connected to a wiring conductor of an external circuit board.

光導波路21は、配線基板20上に形成されている。
光導波路21は、下部クラッド層21aおよびコア21b、ならびに上部クラッド層21cにより形成されている。光導波路21には、光信号が伝送される。
光導波路21を構成する下部クラッド層21aと上部クラッド層21cは、プレーン状の絶縁層である。コア21bは、断面が四角の細い帯状である。下部クラッド層21aおよび上部クラッド層21cは、コア21bの表面に密着してコア21bを取り囲んでいる。
さらに、コア21bは、その一端に反射面Mを有している。反射面Mは、コア21bの延在方向に直角かつ配線基板20の上面に対して所定の角度を有する切断面から成る。この反射面Mを介して、光導波路21と電子部品Dとの間で光信号の授受が行われる。
The optical waveguide 21 is formed on the wiring board 20.
The optical waveguide 21 is formed by a lower cladding layer 21a and a core 21b, and an upper cladding layer 21c. An optical signal is transmitted to the optical waveguide 21.
The lower clad layer 21a and the upper clad layer 21c that constitute the optical waveguide 21 are plain insulating layers. The core 21b has a narrow band shape with a rectangular cross section. The lower cladding layer 21a and the upper cladding layer 21c are in close contact with the surface of the core 21b and surround the core 21b.
Further, the core 21b has a reflection surface M at one end. The reflection surface M is a cut surface perpendicular to the extending direction of the core 21b and having a predetermined angle with respect to the upper surface of the wiring board 20. An optical signal is transmitted and received between the optical waveguide 21 and the electronic component D via the reflection surface M.

次に、従来の光回路基板の製造方法の一例について、図6および図7を基にして説明する。なお、図5と同様の個所には同様の符号を付して説明する。   Next, an example of a conventional method for manufacturing an optical circuit board will be described with reference to FIGS. The same parts as those in FIG. 5 are described with the same reference numerals.

まず、図6(a)に示すように、複数の貫通孔24が形成された絶縁層22を準備する。
絶縁層22は、例えばガラスクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂等を含浸させて熱硬化することにより形成される。
First, as shown in FIG. 6A, an insulating layer 22 having a plurality of through holes 24 is prepared.
The insulating layer 22 is formed, for example, by impregnating a glass cloth with an epoxy resin, a bismaleimide triazine resin, or the like and thermally curing the cloth.

次に、図6(b)に示すように、絶縁層22の上下面および貫通孔24の内側に配線導体23を被着させることで配線基板20を形成する。   Next, as shown in FIG. 6B, the wiring substrate 20 is formed by attaching the wiring conductor 23 to the upper and lower surfaces of the insulating layer 22 and the inside of the through hole 24.

次に、図6(c)に示すように、配線基板20の上面に下部クラッド層21aを形成する。   Next, as shown in FIG. 6C, a lower cladding layer 21a is formed on the upper surface of the wiring board 20.

次に、図6(d)に示すように、下部クラッド層21aの上面にコア21bを形成する。   Next, as shown in FIG. 6D, a core 21b is formed on the upper surface of the lower cladding layer 21a.

次に、図7(e)に示すように、コア21bの上面に上部クラッド層21cを形成することで光導波路21を形成する。   Next, as shown in FIG. 7E, the optical waveguide 21 is formed by forming an upper clad layer 21c on the upper surface of the core 21b.

最後に、図7(f)に示すように、光導波路21の直上からブレードを切り込ませることでコア21bを切断して、コア21bの延在方向に直角かつ配線基板20の上面に対して所定の角度を有する切断面から成る反射面Mを形成することで図5に示すような従来の光回路基板Bが形成される。
なお、反射面Mを形成する場合は、コア21bの延在方向の中心軸と、反射面Mの中心位置とを一致させておくことで光導波路21と電子部品Dとの間で光信号の授受を正確に行うことができる。ここで、反射面Mの中心位置とは、四角形状の反射面Mの1対の対角線が交わる位置を指す。
Finally, as shown in FIG. 7F, the core 21 b is cut by cutting a blade from directly above the optical waveguide 21, and is perpendicular to the direction in which the core 21 b extends and with respect to the upper surface of the wiring board 20. A conventional optical circuit board B as shown in FIG. 5 is formed by forming a reflection surface M composed of a cut surface having a predetermined angle.
When the reflecting surface M is formed, the central axis of the extending direction of the core 21b and the center position of the reflecting surface M are made to coincide with each other, so that the optical signal between the optical waveguide 21 and the electronic component D is transmitted. Transfer can be performed accurately. Here, the center position of the reflecting surface M refers to a position where a pair of diagonal lines of the rectangular reflecting surface M intersect.

ところで、従来の製造方法によって光回路基板Bを形成するときには、反射面Mを形成する光導波路21が配線基板20の上側に形成されている。
ところが、配線基板20は、製造時の熱履歴により反りが生じていることがある。このため、反射面Mを形成するためにブレードによりコア21bを切断するときに、ブレードをコア21bの所定の位置に正確に切り込ませることができない場合がある。そのため、コア21bの延在方向の中心軸と、反射面Mの中心位置とを一致させることができず、光導波路21と電子部品Dとの間で光信号の授受を正確に行うことができないという問題がある。
Incidentally, when the optical circuit board B is formed by the conventional manufacturing method, the optical waveguide 21 forming the reflection surface M is formed above the wiring board 20.
However, the wiring board 20 may be warped due to heat history during manufacturing. For this reason, when cutting the core 21b with a blade in order to form the reflection surface M, the blade may not be able to be accurately cut into a predetermined position of the core 21b. For this reason, the central axis of the extending direction of the core 21b and the center position of the reflection surface M cannot be matched with each other, so that an optical signal cannot be transmitted and received accurately between the optical waveguide 21 and the electronic component D. There is a problem.

特開2005−99514号公報JP 2005-99514 A

本発明は、コアの延在方向の中心軸と、反射面の中心位置とを一致させておくことで、光導波路と電子部品との間で光信号の授受を正確に行うことができる光回路基板の製造方法を提供することを課題とする。   The present invention provides an optical circuit capable of accurately transmitting and receiving an optical signal between an optical waveguide and an electronic component by keeping the center axis of the extending direction of the core and the center position of the reflection surface coincident with each other. It is an object to provide a method for manufacturing a substrate.

本発明における光回路基板の製造方法は、平板状のガラス板の上面に、下部クラッド層および上部クラッド層間に一定の厚みのコアを挟持して成る光導波路を上面に沿って延在するように形成すると同時に、コア以外の領域における下部クラッド層および上部クラッド層間にコアと同じ材質から成るガラス板側の位置決めマークを複数形成する工程と、 光導波路に、延在する方向と直角方向に切り込みを入れてコアを分断した切断面で構成されており、光導波路が延在する方向における断面視でコアの下面に対して一定の傾斜角度
を有しており、平面視で光導波路の切り込み個所から全面が露出する方向を向いている反射面を形成する工程と、ガラス板側の位置決めマークに対応しており、ガラス板の下面が当接した状態が光導波路を所定の高さに位置決めする高さとなるように上面から突出する複数の基板側の位置決めマークを有する配線基板を準備する工程と、ガラス板を配線基板の上面に、それぞれ対応するガラス板側の位置決めマークおよび基板側の位置決めマークを平面透視で重畳させるとともに、基板側の位置決めマークの上面とガラス板の下面と、を互いに当接することで位置決めを行い搭載する工程と、を行うことを特徴とするものである。
The method of manufacturing an optical circuit board according to the present invention is such that an optical waveguide formed by sandwiching a core having a fixed thickness between a lower clad layer and an upper clad layer is extended along the upper surface of a flat glass plate. At the same time as forming, a step of forming a plurality of positioning marks on the glass plate side made of the same material as the core between the lower cladding layer and the upper cladding layer in a region other than the core, and cutting the optical waveguide in a direction perpendicular to the extending direction. It is configured by a cut surface into which the core is inserted and divided, and has a constant inclination angle with respect to the lower surface of the core in a cross-sectional view in a direction in which the optical waveguide extends, from a cut portion of the optical waveguide in a plan view. A step of forming a reflection surface facing the direction in which the entire surface is exposed, and corresponds to the positioning mark on the glass plate side, and a state where the lower surface of the glass plate is in contact with the optical waveguide is a predetermined position. A step of preparing a wiring board having a plurality of board-side positioning marks protruding from the upper surface so as to be positioned at the height, and a glass plate on the upper surface of the wiring board, and a corresponding glass plate-side positioning mark and A step of superposing the positioning marks on the substrate side in plan perspective and positioning and mounting by bringing the upper surface of the positioning marks on the substrate side and the lower surface of the glass plate into contact with each other. is there.

本発明の光回路基板の製造方法によれば、平板状のガラス板の上面に、下部クラッド層および上部クラッド層間に一定の厚みのコアを挟持して成る光導波路を上面に沿って延在するように形成する。そして、平板状のガラス板の上面に形成された光導波路のコアを切断することにより、延在方向に直角かつガラス板の上面に対して一定の角度を有しておりコアの上面から下面に至る切断面から成る反射面をコアの一部に形成する。これにより、コアを正確な位置で切断して反射面を形成することができるため、コアの延在方向の中心軸と、反射面の中心位置とを一致させて光導波路と電子部品との間で光信号の授受を正確に行うことが可能な光回路基板の製造方法を提供することができる。   According to the method of manufacturing an optical circuit board of the present invention, an optical waveguide formed by sandwiching a core having a predetermined thickness between a lower clad layer and an upper clad layer extends on the upper surface of a flat glass plate along the upper surface. It is formed as follows. Then, by cutting the core of the optical waveguide formed on the upper surface of the flat glass plate, the optical waveguide has a certain angle with respect to the upper surface of the glass plate at right angles to the extending direction and from the upper surface of the core to the lower surface. A reflection surface composed of a cut surface leading to the core is formed on a part of the core. Thereby, since the reflection surface can be formed by cutting the core at an accurate position, the center axis in the extending direction of the core is aligned with the center position of the reflection surface, so that the optical waveguide and the electronic component are separated. Thus, it is possible to provide a method of manufacturing an optical circuit board capable of accurately transmitting and receiving optical signals.

図1は、本発明の製造方法により形成される光回路基板の実施形態の一例を示す概略断面図である。FIG. 1 is a schematic sectional view showing an example of an embodiment of an optical circuit board formed by the manufacturing method of the present invention. 図2(a)〜(d)は、本発明の光回路基板の製造方法の工程毎の実施形態の一例を示す概略断面図である。2A to 2D are schematic cross-sectional views showing an example of an embodiment for each step of the method for manufacturing an optical circuit board according to the present invention. 図3(e)および(f)は、本発明の光回路基板の製造方法の工程毎の実施形態の一例を示す概略断面図である。FIGS. 3E and 3F are schematic cross-sectional views showing an example of an embodiment for each step of the method for manufacturing an optical circuit board according to the present invention. 図4は、本発明の製造方法により形成される光回路基板に使用される配線基板の一例を示す概略上面図である。FIG. 4 is a schematic top view showing an example of a wiring board used for an optical circuit board formed by the manufacturing method of the present invention. 図5は、従来の製造方法により形成される光回路基板の実施形態の一例を示す概略断面図である。FIG. 5 is a schematic sectional view showing an example of an embodiment of an optical circuit board formed by a conventional manufacturing method. 図6(a)〜(d)は、従来の光回路基板の製造方法の工程毎の実施形態の一例を示す概略断面図である。FIGS. 6A to 6D are schematic cross-sectional views showing an example of an embodiment for each step of a conventional method for manufacturing an optical circuit board. 図7(e)および(f)は、従来の光回路基板の製造方法の工程毎の実施形態の一例を示す概略断面図である。FIGS. 7E and 7F are schematic cross-sectional views showing an example of an embodiment for each step of a conventional method for manufacturing an optical circuit board.

まず、図1を基にして本発明の製造方法によって形成される光回路基板の実施形態の一例を詳細に説明する。   First, an example of an embodiment of an optical circuit board formed by the manufacturing method of the present invention will be described in detail with reference to FIG.

図1に示すように、本発明の製造方法によって形成される光回路基板Aは、配線基板10と、光導波路形成部11とを備えている。   As shown in FIG. 1, an optical circuit board A formed by the manufacturing method of the present invention includes a wiring board 10 and an optical waveguide forming section 11.

配線基板10は、絶縁層12と配線導体13とを備えている。
絶縁層12は、複数の貫通孔14を有している。絶縁層12の上下面および貫通孔14の内側には、配線導体13が形成されている。絶縁層12の上面は、光導波路形成部11が搭載される搭載部Xを備えている。搭載部Xには、後述する複数のガラス板側の位置決めマークS1に対応する複数の基板側の位置決めマークS2が形成されている。
絶縁層12の上面には、配線導体13の一部から成る複数の電子部品接続パッド15が形成されている。電子部品接続パッド15には、電子部品Dが実装される。絶縁層12の下面には、配線導体13の一部から成る複数の外部接続パッド16が形成されている。
The wiring board 10 includes an insulating layer 12 and a wiring conductor 13.
The insulating layer 12 has a plurality of through holes 14. A wiring conductor 13 is formed on the upper and lower surfaces of the insulating layer 12 and inside the through hole 14. The upper surface of the insulating layer 12 has a mounting portion X on which the optical waveguide forming portion 11 is mounted. In the mounting portion X, a plurality of substrate-side positioning marks S2 corresponding to a plurality of glass plate-side positioning marks S1 described later are formed.
On the upper surface of the insulating layer 12, a plurality of electronic component connection pads 15 formed of a part of the wiring conductor 13 are formed. The electronic component D is mounted on the electronic component connection pad 15. On the lower surface of the insulating layer 12, a plurality of external connection pads 16 formed of a part of the wiring conductor 13 are formed.

光導波路形成部11は、配線基板10の上面に接着剤Rを介して搭載されている。光導波路形成部11は、ガラス板Gおよび光導波路17を備えている。
光導波路17は、下部クラッド層17aおよびコア17b、ならびに上部クラッド層17cにより形成されている。光導波路17は、平板状のガラス板Gの上面に沿って延在するように形成されている。光導波路17には、光信号が伝送される。
光導波路17を構成する下部クラッド層17aおよび上部クラッド層17cは、プレーン状の絶縁層である。コア17bは、断面が四角の細い帯状である。下部クラッド層17aおよび上部クラッド層17cは、コア17bの表面に密着してコア17bを取り囲んでいる。
さらに、コア17bは、その一端に反射面Mを有している。反射面Mは、コア17bの延在方向に直角かつガラス板Gの上面に対して所定の角度を有しており、コア17bの上面から下面に至る切断面から成る。なお、コア17bの延在方向の中心軸と、反射面Mの中心位置とは一致しており、この反射面Mを介して光導波路17と電子部品Dとの間で光信号の授受が正確に行われる。
The optical waveguide forming section 11 is mounted on the upper surface of the wiring board 10 via an adhesive R. The optical waveguide forming section 11 includes a glass plate G and an optical waveguide 17.
The optical waveguide 17 is formed by a lower cladding layer 17a and a core 17b, and an upper cladding layer 17c. The optical waveguide 17 is formed so as to extend along the upper surface of the flat glass plate G. An optical signal is transmitted to the optical waveguide 17.
The lower clad layer 17a and the upper clad layer 17c constituting the optical waveguide 17 are plain insulating layers. The core 17b has a narrow band shape with a rectangular cross section. The lower clad layer 17a and the upper clad layer 17c are in close contact with the surface of the core 17b and surround the core 17b.
Further, the core 17b has a reflection surface M at one end. The reflection surface M is perpendicular to the extending direction of the core 17b and has a predetermined angle with respect to the upper surface of the glass plate G, and is formed by a cut surface extending from the upper surface to the lower surface of the core 17b. The central axis of the extending direction of the core 17b coincides with the center position of the reflection surface M, and the transmission and reception of an optical signal between the optical waveguide 17 and the electronic component D via the reflection surface M is accurate. Done in

次に、本発明の光回路基板の製造方法の一例について、図2および図3を基にして詳細に説明する。また、図1と同様の個所には同様の符号を付して、詳細な説明は省略する。   Next, an example of a method for manufacturing an optical circuit board according to the present invention will be described in detail with reference to FIGS. In addition, the same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description is omitted.

まず、図2(a)に示すように、ガラス板Gの上面に下部クラッド層17aを形成する。ガラス板Gは、例えばアルカリガラスや無アルカリガラス、結晶化ガラス等の無機絶縁材料から成る。
下部クラッド層17aは、例えばエポキシ樹脂やポリイミド樹脂から成る感光性シートあるいは感光性ペーストを、ガラス板G上に被着あるいは塗布して露光および現像によりガラス板G上全面に被覆した後、熱硬化することで形成される。下部クラッド層17aの厚みは、およそ10〜20μm程度である。
First, as shown in FIG. 2A, the lower clad layer 17a is formed on the upper surface of the glass plate G. The glass plate G is made of an inorganic insulating material such as alkali glass, non-alkali glass, crystallized glass, and the like.
The lower clad layer 17a is formed by applying or coating a photosensitive sheet or a photosensitive paste made of, for example, an epoxy resin or a polyimide resin on the glass plate G and covering the entire surface of the glass plate G by exposure and development, followed by thermosetting. It is formed by doing. The thickness of the lower cladding layer 17a is about 10 to 20 μm.

次に、図2(b)に示すように、下部クラッド層17aの上面に、コア17bおよびガラス板側の位置決めマークS1を形成する。
コア17bは、例えばエポキシ樹脂やポリイミド樹脂から成る感光性シートを、真空状態で下部クラッド層17a上に被着して露光および現像により帯状に形成した後、熱硬化することで形成される。コア17b形成用の感光性シートを形成する樹脂の屈折率は、下部および上部クラッド層17a、17c形成用の感光性シートやペーストを形成する樹脂の屈折率よりも大きいものを用いる。コア17bの厚みは、およそ30〜40μm程度である。
ガラス板側の位置決めマークS1は、コア17b以外の領域における下部クラッド層17a上に、コア17bと同時に同じ材質および同じ方法で複数形成される。
Next, as shown in FIG. 2B, a core 17b and a positioning mark S1 on the glass plate side are formed on the upper surface of the lower cladding layer 17a.
The core 17b is formed by applying a photosensitive sheet made of, for example, an epoxy resin or a polyimide resin on the lower cladding layer 17a in a vacuum state, forming the photosensitive sheet into a strip by exposure and development, and then thermally curing the photosensitive sheet. The refractive index of the resin forming the photosensitive sheet for forming the core 17b is larger than the refractive index of the resin forming the photosensitive sheet or the paste for forming the lower and upper clad layers 17a and 17c. The thickness of the core 17b is about 30 to 40 μm.
The plurality of positioning marks S1 on the glass plate side are formed on the lower cladding layer 17a in a region other than the core 17b by the same material and the same method as the core 17b.

次に、図2(c)に示すように、コア17bおよびガラス板側の位置決めマークS1の上面に上部クラッド層17cを形成することで光導波路17を形成する。
上部クラッド層17cは、例えばエポキシ樹脂やポリイミド樹脂から成る感光性シートあるいは感光性ペーストを、下部クラッド層17aおよびコア17b、ならびにガラス板側の位置決めマークS1を被覆するように被着あるいは塗布して露光および現像した後、熱硬化することで形成される。上部クラッド層17cの厚みは、およそ10〜20μm程度である。
Next, as shown in FIG. 2C, the optical waveguide 17 is formed by forming the upper cladding layer 17c on the upper surface of the core 17b and the positioning mark S1 on the glass plate side.
The upper cladding layer 17c is formed by applying or applying a photosensitive sheet or a photosensitive paste made of, for example, an epoxy resin or a polyimide resin so as to cover the lower cladding layer 17a, the core 17b, and the positioning mark S1 on the glass plate side. After exposure and development, it is formed by thermosetting. The thickness of the upper cladding layer 17c is about 10 to 20 μm.

次に、図2(d)に示すように、光導波路17の直上からブレードを切り込ませることでコア17bを切断することにより、光導波路17の延在方向に直角かつガラス板Gの上面に対して一定の角度を有しておりコア17bの上面から下面に至る切断面から成る反射面Mをコア17bの一部に形成する。これにより、光導波路形成部11が形成される。   Next, as shown in FIG. 2D, the core 17b is cut by cutting a blade directly above the optical waveguide 17 so that the core 17b is perpendicular to the direction in which the optical waveguide 17 extends and on the upper surface of the glass plate G. A reflection surface M which has a certain angle with respect to the core 17b and is formed by a cut surface extending from the upper surface to the lower surface of the core 17b is formed on a part of the core 17b. Thus, the optical waveguide forming section 11 is formed.

次に、図3(e)に示すように、絶縁層12の上下面および貫通孔14の内側に配線導体13が形成されているとともに。絶縁層12の上面に搭載部Xを有する配線基板10を準備する。
絶縁層12の上面には、配線導体13の一部から成る複数の電子部品接続パッド15が形成されている。絶縁層12の下面には、配線導体13の一部から成る複数の外部接続パッド16が形成されている。搭載部Xには、配線導体13の一部から成る複数の基板側の位置決めマークS2が形成されている。
絶縁層12は、例えばガラスクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂等を含浸させて熱硬化することにより形成される。貫通孔14は、例えばドリル加工やブラスト加工により形成される。配線導体13は、例えば周知のめっき法により銅等の良導電性金属により形成される。
Next, as shown in FIG. 3E, the wiring conductor 13 is formed on the upper and lower surfaces of the insulating layer 12 and inside the through hole 14. The wiring board 10 having the mounting portion X on the upper surface of the insulating layer 12 is prepared.
On the upper surface of the insulating layer 12, a plurality of electronic component connection pads 15 formed of a part of the wiring conductor 13 are formed. On the lower surface of the insulating layer 12, a plurality of external connection pads 16 formed of a part of the wiring conductor 13 are formed. In the mounting portion X, a plurality of substrate-side positioning marks S2 formed of a part of the wiring conductor 13 are formed.
The insulating layer 12 is formed, for example, by impregnating a glass cloth with an epoxy resin, a bismaleimide triazine resin, or the like and thermally curing the cloth. The through hole 14 is formed by, for example, drilling or blasting. The wiring conductor 13 is formed of a good conductive metal such as copper by a known plating method, for example.

最後に、図3(f)に示すように、搭載部Xに接着剤Rを被着させるとともに、ガラス板側の位置決めマークS1と基板側の位置決めマークS2とを重畳させることで位置決めを行い、光導波路形成部11を配線基板10に押し当てるようにして搭載することで図1に示すような光回路基板Aが形成される。このように、ガラス板側の位置決めマークS1をそれぞれ対応する基板側の位置決めマークS2に対して透過で重畳させて位置決めを行うことで、光導波路形成部11を搭載部Xに対して平行方向の所定位置に正確に搭載することができる。また、搭載時に基板側の位置決めマークS2とガラス板Gの下面が当接した状態が光導波路形成部11を搭載する所定の高さとなるように基板側の位置決めマークS2の高さを形成しておくと、搭載部Xに対して垂直な方向の位置合わせも容易に行うことができる。
なお、光導波路形成部11は、コア17bと同時に形成されたガラス板側の位置決めマークS1を、基板側の位置決めマークS2に合わせて位置決めして搭載されることから、コア17bと配線基板10との位置精度は高くなる。
Lastly, as shown in FIG. 3 (f), the adhesive R is applied to the mounting portion X, and the positioning mark S1 on the glass plate and the positioning mark S2 on the substrate are overlapped to perform positioning. The optical circuit board A as shown in FIG. 1 is formed by mounting the optical waveguide forming portion 11 so as to be pressed against the wiring board 10. In this manner, the positioning mark S1 on the glass plate side is superposed on the corresponding positioning mark S2 on the corresponding substrate side by transmission so as to perform positioning, so that the optical waveguide forming portion 11 is parallel to the mounting portion X. It can be accurately mounted at a predetermined position. Also, the height of the positioning mark S2 on the substrate side is formed so that the state where the positioning mark S2 on the substrate side and the lower surface of the glass plate G contact each other at the time of mounting is a predetermined height for mounting the optical waveguide forming portion 11. In other words, the positioning in the direction perpendicular to the mounting portion X can be easily performed.
In addition, since the optical waveguide forming part 11 is mounted by positioning the positioning mark S1 on the glass plate formed simultaneously with the core 17b in accordance with the positioning mark S2 on the substrate, the core 17b and the wiring substrate 10 are mounted. Is higher in position accuracy.

上述のように、本発明の光回路基板の製造方法によれば、平板状のガラス板Gの上面に、下部クラッド層17aおよび上部クラッド層17c間に一定の厚みのコア17bを挟持して成る光導波路17をガラス板Gの上面に沿って延在するように形成する。そして、コア17bを切断することにより、光導波路17の延在方向に直角かつガラス板Gの上面に対して一定の角度を有しておりコア17bの上面から下面に至る切断面から成る反射面Mをコア17bの一部に形成する。これにより、コア17bを正確な位置で切断して反射面Mを形成することができるため、コア17bの延在方向の中心軸と、反射面Mの中心位置とを一致させて光導波路17と電子部品Dとの間で光信号の授受を正確に行うことが可能な光回路基板Aの製造方法を提供することができる。
なお、電子部品Dを実装するには、電子部品Dの光信号の授受部Pを反射面Mに対向させた状態で電子部品Dの電極Tと電子部品接続パッド15とを半田を介して接続する方法が採用される。
As described above, according to the optical circuit board manufacturing method of the present invention, the core 17b having a constant thickness is sandwiched between the lower clad layer 17a and the upper clad layer 17c on the upper surface of the flat glass plate G. The optical waveguide 17 is formed so as to extend along the upper surface of the glass plate G. Then, by cutting the core 17b, a reflection surface which is perpendicular to the direction in which the optical waveguide 17 extends and has a certain angle with respect to the upper surface of the glass plate G and is formed by a cut surface extending from the upper surface to the lower surface of the core 17b. M is formed on a part of the core 17b. Thereby, since the reflection surface M can be formed by cutting the core 17b at an accurate position, the center axis of the extending direction of the core 17b and the center position of the reflection surface M are made to coincide with each other, and the optical waveguide 17 is formed. It is possible to provide a method of manufacturing the optical circuit board A that can accurately transmit and receive an optical signal to and from the electronic component D.
In order to mount the electronic component D, the electrode T of the electronic component D and the electronic component connection pad 15 are connected via solder in a state in which the optical signal transmitting / receiving portion P of the electronic component D faces the reflection surface M. Is adopted.

なお、本発明は、上述の実施形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。例えば、本例では光導波路17の直上からブレードを切り込ませることでコア17bを切断して反射面Mを形成する一例を示したが、例えばブレードあるいはレーザーを光導波路17の斜め上方から所定の角度で切り込み、あるいは照射することでコア17bを切断して反射面Mを形成しても構わない。   Note that the present invention is not limited to the above-described example of the embodiment, and various changes can be made without departing from the spirit of the present invention. For example, in this example, an example is shown in which the core 17b is cut by forming a blade from directly above the optical waveguide 17 to form the reflection surface M. The reflecting surface M may be formed by cutting or irradiating the core 17b at an angle.

また、本例では配線基板10にソルダーレジスト層が被着されていない一例を示したが、電子部品接続パッド15や外部接続パッド16の中央部を露出する開口部を有するソルダーレジスト層を絶縁層12の上下面に形成しても構わない。   Further, in this example, an example in which the solder resist layer is not attached to the wiring board 10 is shown, but the solder resist layer having an opening exposing the central part of the electronic component connection pad 15 or the external connection pad 16 is replaced with an insulating layer. 12 may be formed on the upper and lower surfaces.

また、図4に示すように、配線基板10上面の電子部品接続パッド15について、コア17bの延在方向における径の長さを延在方向に垂直な方向における径の長さよりも大きく形成しておいても構わない。
これにより、反射面M形成時の精度バラツキ等によって反射面Mの中心位置が延在方向に沿ってズレが生じた場合でも、延在方向に大きな径を有する電子部品接続パッド15内において実装する電子部品Dの電極をズレに合わせて移動して接続することができる。
その結果、反射面Mの中心位置と、電子部品Dにおける光信号の授受部Pとの位置合わせを細やかに調整することが可能になり、光導波路17と電子部品Dとの間で光信号の授受をより正確に行うことが可能になる。ソルダーレジスト層を被着する場合は、延在方向における径の長さが、延在方向に垂直な方向における径の長さよりも大きな開口部を形成しておけばよい。
Further, as shown in FIG. 4, the electronic component connection pads 15 on the upper surface of the wiring board 10 are formed such that the diameter of the core 17b in the extending direction is larger than the diameter of the core 17b in the direction perpendicular to the extending direction. It does not matter.
Accordingly, even when the center position of the reflecting surface M is displaced along the extending direction due to a variation in accuracy at the time of forming the reflecting surface M, the mounting is performed in the electronic component connection pad 15 having a large diameter in the extending direction. The electrodes of the electronic component D can be moved and connected according to the displacement.
As a result, it becomes possible to finely adjust the alignment between the center position of the reflection surface M and the optical signal transmitting / receiving portion P in the electronic component D, and the optical signal between the optical waveguide 17 and the electronic component D can be adjusted. Transfer can be performed more accurately. When the solder resist layer is applied, an opening having a diameter in the extending direction that is larger than a diameter in a direction perpendicular to the extending direction may be formed.

10 配線基板
17 光導波路
17a 下部クラッド層
17b コア
17c 上部クラッド層
A 光回路基板
G ガラス板
M 反射面
S1 ガラス板側の位置決めマーク
S2 基板側の位置決めマーク
Reference Signs List 10 Wiring board 17 Optical waveguide 17a Lower cladding layer 17b Core 17c Upper cladding layer A Optical circuit board G Glass plate M Reflection surface S1 Glass plate side positioning mark S2 Substrate side positioning mark

Claims (2)

平板状のガラス板の上面に、下部クラッド層および上部クラッド層間に一定の厚みのコアを挟持して成る光導波路を前記上面に沿って延在するように形成すると同時に、前記コア以外の領域における前記下部クラッド層および上部クラッド層間に前記コアと同じ材質から成るガラス板側の位置決めマークを複数形成する工程と、
前記光導波路に、延在する方向と直角方向に切り込みを入れて前記コアを分断した切断面で構成されており、前記光導波路が延在する方向における断面視で前記コアの下面に対して一定の傾斜角度を有しており、平面視で前記光導波路の切り込み個所から全面が露出する方向を向いている反射面を形成する工程と、
前記ガラス板側の位置決めマークに対応しており、前記ガラス板の下面が当接した状態が前記光導波路を所定の高さに位置決めする高さとなるように上面から突出する複数の基板側の位置決めマークを有する配線基板を準備する工程と、前記ガラス板を前記配線基板の上面に、それぞれ対応する前記ガラス板側の位置決めマークおよび前記基板側の位置決めマークを平面透視で重畳させるとともに、前記基板側の位置決めマークの上面と前記ガラス板の下面と、を互いに当接することで位置決めを行い搭載する工程と、を行うことを特徴とする光回路基板の製造方法。
On the upper surface of a flat glass plate, an optical waveguide formed by sandwiching a core having a constant thickness between a lower cladding layer and an upper cladding layer is formed so as to extend along the upper surface, and at the same time, in a region other than the core, Forming a plurality of positioning marks on the glass plate side made of the same material as the core between the lower cladding layer and the upper cladding layer,
The optical waveguide includes a cut surface in which a cut is made in a direction perpendicular to an extending direction to divide the core, and the cut surface is constant with respect to a lower surface of the core in a cross-sectional view in a direction in which the optical waveguide extends. Forming a reflective surface that has a tilt angle of, and faces in a direction such that the entire surface is exposed from the cut portion of the optical waveguide in plan view;
It corresponds to the positioning mark on the glass plate side, and positioning on the plurality of substrate sides protruding from the upper surface so that the state in which the lower surface of the glass plate is in contact with the glass plate has a height for positioning the optical waveguide at a predetermined height. A step of preparing a wiring board having a mark, the glass plate is placed on the upper surface of the wiring board, and the corresponding positioning mark on the glass plate side and the positioning mark on the substrate side are respectively superimposed in plan view, and the substrate side A step of positioning and mounting by bringing the upper surface of the positioning mark and the lower surface of the glass plate into contact with each other.
前記コアとの間で前記反射面を介して光信号の送受信を行う電子部品を実装するために、前記延在方向における径の長さが前記延在方向に垂直な方向における径の長さよりも大きな電子部品接続パッドを前記配線基板の上面に形成しておくことを特徴とする請求項1に記載の光回路基板の製造方法。   In order to mount an electronic component that transmits and receives an optical signal to and from the core through the reflection surface, the length of the diameter in the extending direction is larger than the length of the diameter in a direction perpendicular to the extending direction. 2. The method according to claim 1, wherein a large electronic component connection pad is formed on an upper surface of the wiring board.
JP2015249208A 2015-10-26 2015-12-22 Manufacturing method of optical circuit board Active JP6649076B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/332,256 US9739942B2 (en) 2015-10-26 2016-10-24 Method for manufacturing optical circuit board
CN201610948818.5A CN106950645B (en) 2015-10-26 2016-10-26 The manufacturing method and photoelectricity base board of photoelectricity base board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015209522 2015-10-26
JP2015209522 2015-10-26

Publications (2)

Publication Number Publication Date
JP2017083807A JP2017083807A (en) 2017-05-18
JP6649076B2 true JP6649076B2 (en) 2020-02-19

Family

ID=58711078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015249208A Active JP6649076B2 (en) 2015-10-26 2015-12-22 Manufacturing method of optical circuit board

Country Status (2)

Country Link
JP (1) JP6649076B2 (en)
CN (1) CN106950645B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12038602B2 (en) * 2019-03-15 2024-07-16 Kyocera Corporation Optical circuit substrate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3285539B2 (en) * 1998-06-05 2002-05-27 日本電信電話株式会社 Optical module mounting structure
JP4366751B2 (en) * 1999-04-13 2009-11-18 凸版印刷株式会社 Optical / electrical wiring board, manufacturing method, and mounting board
US7271461B2 (en) * 2004-02-27 2007-09-18 Banpil Photonics Stackable optoelectronics chip-to-chip interconnects and method of manufacturing
US20080252401A1 (en) * 2007-04-13 2008-10-16 Emag Technologies, Inc. Evanescent Mode Resonator Including Tunable Capacitive Post
CN101226261A (en) * 2008-02-18 2008-07-23 武汉电信器件有限公司 Method for coupling optical fiber and face type photoelectricity chip as well as structure thereof
JP5055193B2 (en) * 2008-04-24 2012-10-24 日東電工株式会社 Manufacturing method of opto-electric hybrid board
JP2010117380A (en) * 2008-10-14 2010-05-27 Nitto Denko Corp Method for manufacturing light guide device
JP4754613B2 (en) * 2008-11-27 2011-08-24 日東電工株式会社 Opto-electric hybrid board and manufacturing method thereof
US8290319B2 (en) * 2010-08-25 2012-10-16 Oracle America, Inc. Optical communication in a ramp-stack chip package

Also Published As

Publication number Publication date
CN106950645A (en) 2017-07-14
CN106950645B (en) 2019-11-01
JP2017083807A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
KR100720854B1 (en) Photoelectric wiring board, packaging board, and photoelectric wiring board producing method
US7869670B2 (en) Substrate for mounting an optical element, optical circuit substrate, and substrate on which an optical element is mounted
TWI426307B (en) Optical/electrical hybrid substrate
US10168495B1 (en) Optical waveguide and optical circuit board
EP2096473B1 (en) Optical / electrical hybrid circuit board and manufacturing method of the same
KR20090028435A (en) Optical waveguide mounted substrate and method of producing the same
US9632263B2 (en) Opto-electric hybrid board and method of manufacturing same
US7801399B2 (en) Method of forming optical waveguide
JP7032942B2 (en) Optical waveguide and optical circuit board
KR102245398B1 (en) Optical waveguide and optical circuit board
JP4677651B2 (en) Optical wiring layer manufacturing method, optical / electrical wiring substrate, manufacturing method thereof, and mounting substrate
JP6649076B2 (en) Manufacturing method of optical circuit board
US9739942B2 (en) Method for manufacturing optical circuit board
JP5506643B2 (en) Wiring board and manufacturing method thereof
JP4304764B2 (en) Optical / electrical wiring board, manufacturing method, and mounting board
US8698007B2 (en) Printed circuit board
JP7305234B2 (en) Manufacturing method of flexible multilayer substrate
JP6787716B2 (en) Optical circuit board and its manufacturing method
JP2018164021A (en) Wiring board with cavity
US20240094485A1 (en) Optical circuit board and electronic component mounting structure using the same
JP2018164023A (en) Wiring board with cavity and method for manufacturing the same
JP2019061065A (en) Optical waveguide and optical circuit board
JP2001004855A (en) Optical and electrical wiring board and mounting substrate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200116

R150 Certificate of patent or registration of utility model

Ref document number: 6649076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150