WO2023095516A1 - 推定装置 - Google Patents

推定装置 Download PDF

Info

Publication number
WO2023095516A1
WO2023095516A1 PCT/JP2022/039756 JP2022039756W WO2023095516A1 WO 2023095516 A1 WO2023095516 A1 WO 2023095516A1 JP 2022039756 W JP2022039756 W JP 2022039756W WO 2023095516 A1 WO2023095516 A1 WO 2023095516A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
power
population
information
power outage
Prior art date
Application number
PCT/JP2022/039756
Other languages
English (en)
French (fr)
Inventor
昌恭 角谷
郁瑛 五十嵐
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2023095516A1 publication Critical patent/WO2023095516A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the present invention relates to an estimation device for estimating power consumption in evacuation shelters.
  • Patent Literature 1 discloses a technique for supplying electric power to a stationary storage battery.
  • Patent Document 1 when a large-scale power outage occurs during a disaster, when the remaining capacity of a stationary storage battery reaches a predetermined value, a discharge command is issued to a power supply source such as an electric vehicle. Power supply to the storage battery is realized by being emitted.
  • a command is issued to an electric vehicle or the like only when the remaining capacity of the storage battery reaches a specified threshold value. could not be optimized.
  • the threshold value for the remaining capacity of the storage battery which is set in advance as a trigger for issuing commands to electric vehicles, etc., may not be the optimal value. In such cases, it is difficult to supply power at appropriate timing.
  • the present invention has been made in view of the above problems, and aims to enable timely power supply, etc. by estimating the power consumption in a shelter equipped with a storage battery.
  • an estimation device for estimating power consumption in an evacuation center, based on power failure information indicating whether or not a power failure has occurred in a wireless communication base station.
  • a power outage estimating unit that estimates area power outage information indicating whether or not a power outage has occurred in each given geographically divided area, and location information that indicates the number of mobile radio communication terminals in each area
  • the area population estimation unit estimates the area population, which is the population of each area;
  • Evacuation population estimation part that estimates based on area blackout information, and the number of power-using devices that use power in evacuation shelters are estimated based on the evacuee population for each type of power-using device, and the number of devices used.
  • a power consumption estimating unit that estimates the power consumption in the shelter by multiplying the power consumption of the given power consumption device by the power consumption, and an output unit that outputs power consumption information indicating the power consumption of each shelter.
  • whether or not a power outage has occurred for each area is recognized based on the power outage information in the wireless communication base station. Since the area population of the area where the power outage is occurring can be estimated based on the location information for each area, the evacuated population of each evacuation center can be estimated based on the correspondence relationship between the area and the evacuation center. Since the number of devices used in evacuation centers depends on the evacuees' population, it is possible to ascertain the power consumption trends in each evacuation center by estimating the number of power-using devices based on the estimated evacuees' population. Therefore, timely power supply to the storage battery of the shelter becomes possible.
  • FIG. 4 is a diagram showing an example of power failure information indicating whether or not a power failure has occurred in each wireless communication base station;
  • FIG. 2 is a diagram schematically showing a group of areas demarcating a given geographical range and the positions of wireless communication base stations;
  • FIG. 4 is a diagram schematically showing an example of power failure probabilities estimated based on the correspondence between the positions of wireless communication base stations and wiring classes associated with each area;
  • FIG. 2 is a diagram schematically showing a correspondence relationship between an area group and a geographical range to which people evacuate to each evacuation center;
  • FIG. 10 is a diagram showing an example of shelter information including the capacity of each shelter and the number of power-using devices;
  • FIG. 4 is a diagram showing an example of the estimated evacuees population and the number of devices used in each evacuation center; It is a figure which shows an example of power consumption information. It is a flowchart which shows the processing content of the estimation method in an estimation apparatus. It is a figure which shows the structure of an estimation program.
  • FIG. 1 is a diagram showing an example of the device configuration of a system including an estimating device.
  • the system 1 includes an estimation device 10, wireless communication base stations ST and an external information server SV.
  • the estimating device 10 is configured to be able to transmit and receive information to and from the wireless communication base station group ST and the external information server SV via the network N.
  • the estimation device 10 is a device for estimating power consumption in a shelter where people evacuate in the event of a disaster or the like.
  • the wireless communication base station group ST includes a plurality of wireless communication base stations sta, stb, stc, .
  • a wireless communication base station is a device that relays and manages wireless communication of mobile wireless communication terminals.
  • a wireless communication base station has a device such as a rectifier that can monitor the power supply status. Rectifiers, etc. monitor the status of the power supplied to the wireless communication base station and the status of error occurrences in the various devices installed in the wireless communication base station. Information and device failure information indicating whether or not there is a device failure can be obtained.
  • Wireless communication base stations are installed at intervals of several hundred meters in the communication area of mobile communication terminals, so it is possible to recognize whether a power failure has occurred within the communication area by referring to power failure information.
  • the external information server SV is a device that acquires and accumulates disaster information such as the presence or absence of a disaster, disaster occurrence area information indicating the geographical extent of the disaster, and disaster scale information indicating the scale of the disaster.
  • the external information server SV transmits disaster information to the estimation device 10 .
  • FIG. 2 is a block diagram showing the functional configuration of the estimation device 10.
  • the estimation device 10 includes a power outage information acquiring unit 11, a power outage estimating unit 12, a disaster information acquiring unit 13, an area information acquiring unit 14, an area population estimating unit 15, an evacuated population estimating unit 16, a consumption A power estimation unit 17 and an output unit 18 are provided.
  • the estimation device 10 is configured to be able to communicate with the shelter information storage unit 20 .
  • the shelter information storage unit 20 is storage means for storing shelter information. The shelter information will be described later with reference to FIGS. 7 and 8. FIG.
  • Each of the functional units 11 to 18 included in the estimating device 10 may be configured in one device, or may be distributed and configured in a plurality of devices. Further, the shelter information storage unit 20 may be included in the estimating device 10 or may be configured in another device that is configured to be communicable with the estimating device 10 .
  • each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separated devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, examining, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter. In either case, as described above, the implementation method is not particularly limited.
  • the estimation device 10 in one embodiment of the present invention may function as a computer.
  • FIG. 3 is a diagram showing an example of the hardware configuration of the estimation device 10 according to this embodiment.
  • Estimation device 10 may be physically configured as a computer device including processor 1001, memory 1002, storage 1003, communication device 1004, input device 1005, output device 1006, bus 1007, and the like.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the estimating device 10 may be configured to include one or more of the devices shown in FIG. 3, or may be configured without some of the devices.
  • Each function in the estimating device 10 is performed by the processor 1001 performing calculations by loading predetermined software (programs) onto hardware such as the processor 1001 and the memory 1002, and communicating with the communication device 1004, the memory 1002 and the storage 1003. It is realized by controlling the reading and/or writing of data in the .
  • the processor 1001 for example, operates an operating system and controls the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • the functional units 11 to 18 shown in FIG. 2 may be realized by the processor 1001. FIG.
  • the processor 1001 reads programs (program codes), software modules and data from the storage 1003 and/or the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data data from the storage 1003 and/or the communication device 1004
  • executes various processes according to them As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • the functional units 11 to 19 of the estimating device 10 may be stored in the memory 1002 and implemented by a control program running on the processor 1001 .
  • the above-described various processes are executed by one processor 1001, they may be executed by two or more processors 1001 simultaneously or sequentially.
  • Processor 1001 may be implemented with one or more chips.
  • the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrical Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing an estimation method according to an embodiment of the invention.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be called an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including memory 1002 and/or storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via a wired and/or wireless network, and is also called a network device, network controller, network card, communication module, etc., for example.
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be composed of a single bus, or may be composed of different buses between devices.
  • the estimation device 10 includes hardware such as a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array).
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Physical Location Deposition
  • FPGA Field Programmable Gate Array
  • processor 1001 may be implemented with at least one of these hardware.
  • the functional units of the estimation device 10 will be described with reference to FIG. 2 and the like again.
  • the power outage information acquisition unit 11 acquires power outage information indicating whether or not a power outage has occurred in the wireless communication base station.
  • FIG. 4 is a diagram showing an example of power failure information and the like that can be acquired from the wireless communication base station group ST.
  • the power failure information acquisition unit 11 acquires power failure information and the like from each wireless communication base station of the wireless communication base station group ST.
  • the power outage information acquisition unit 11 acquires power outage information, etc., such as "power failure status” and "equipment failure status” not present, from the wireless communication base station sta.
  • the power outage information acquiring unit 11 acquires power outage information, etc., such as power outage status “yes” and equipment failure status “no” from the wireless communication base station stb.
  • the power outage information acquisition unit 11 acquires power outage information, etc., such as power outage status “absent” and equipment failure status “present” from the wireless communication base station stc.
  • the estimation device 10 can recognize that power outages have occurred in the wireless communication base stations sta and stb.
  • the estimating apparatus 10 may recognize that a power failure has occurred in the wireless communication base station when the power failure state is “present” and the device failure state is “absent”.
  • the power outage estimation unit 12 estimates area power outage information indicating whether or not a power outage has occurred for each given geographically divided area, based on power outage information indicating whether or not a power outage has occurred in a wireless communication base station. Specifically, the power failure estimating unit 12 acquires the location information of the wireless communication base station where the power failure occurs as power failure occurrence location information indicating the location where the power failure occurs, Area power outage information is estimated by calculating a power outage probability, which is the probability that a power outage occurs in each area, based on the positional relationship between and each area.
  • FIG. 5 is a diagram schematically showing an area group M consisting of a plurality of areas obtained by partitioning a given geographical range into a mesh and the positions of wireless communication base stations. As shown in FIG. 5, the area group M consists of a plurality of areas m.
  • the power outage estimation unit 12 acquires the position information of the wireless communication base station sta and the wireless communication base station stb in which the power outage occurs as power outage occurrence position information.
  • the power outage estimation unit 12 may acquire the location information of the wireless communication base station from the wireless communication base station, or may acquire the information on the wireless communication base station from another device that manages and stores information on the wireless communication base station. .
  • the power outage estimation unit 12 may calculate the power outage probability of the area m based on the distance between the location indicated by the power outage location information and the area m. Specifically, the power failure estimation unit 12 calculates a higher power failure probability in the area m as the distance between the position indicated by the power failure occurrence position information and the area m is shorter. Further, the power failure estimation unit 12 may calculate the power failure probability of the area m so as to decrease in proportion to the distance from the position indicated by the power failure occurrence position information to the area m.
  • the power outage estimation unit 12 may calculate the power outage probability of each area m j (j is a number for identifying each area), for example, using the following formula.
  • the left side in the above formula represents the power failure probability of area mj .
  • ⁇ on the right side of the above equation is a weight for power failure estimation, and is set to an arbitrary value.
  • Distance(Base i , Area j ) is represented by the following equation. That is, Distance(Base i , Area j ) is the minimum distance among the distances between each of the wireless communication base stations 1 to N in which power failure occurs and area m j .
  • Power outage probability for each area can be calculated based on the positional relationship. Therefore, by using the power outage probability as the area power outage information, it is possible to obtain the area power outage information suitable for calculating the evacuated population.
  • FIG. 6 is a diagram showing another example of calculation of the power failure probability of area m.
  • the power failure estimation unit 12 calculates the power failure probability of each area based on the wiring class.
  • the wiring class is information indicating the system of the power supply route, and is associated with each wireless communication base station and each area as attribute information.
  • the wiring class information DC includes information that associates each area with one of the wiring classes dc1, dc2, dc3, and dc4. Areas m having the same wiring class are supplied with electric power via substations and electric wires of the same system. If there is a power outage in one area, there is a high possibility that other areas with the same wiring class also have power outages.
  • the wiring class dc1 is associated with the wireless communication base station sta
  • the wiring class dc3 is associated with the wireless communication base station stb.
  • the power outage estimation unit 12 sets the power outage probability to 100% in an area having the same wiring class as the wireless communication base station indicated by the power outage information that a power outage has occurred, and indicates that a power outage has not occurred. Assume that the probability of power outage in an area having the same wiring class as that of the wireless communication base station is 0%.
  • the power failure estimation unit 12 estimates the power failure area information PB based on the power failure information and the wiring class. Since the wireless communication base station sta in which the power failure has occurred is associated with the wiring class dc1, the power failure estimation unit 12 sets the power failure probability of the area region pb1, which is the area associated with the wiring class dc1, to 100%. do.
  • the power failure estimation unit 12 calculates the power failure probability of the area region pb3, which is the area associated with the wiring class dc3. 100%.
  • the power outage estimation unit 12 determines that the area associated with the same wiring class as the wireless communication base station indicated that no power outage has occurred, or the wireless communication base station in which the power outage has occurred It is assumed that the power failure probability of the area region pb2 made up of areas having wiring classes is 0%.
  • the estimation device 10 may include a disaster information acquisition unit 13.
  • the disaster information acquisition unit 13 acquires disaster information including at least information on a disaster occurrence area indicating a geographical range where a disaster has occurred from a given information originator.
  • the disaster information may include disaster scale information indicating the scale of the disaster.
  • the power outage estimating unit 12 selects a wireless communication base station corresponding to the power outage information used for estimating the area power outage information based on the disaster occurrence area indicated in the disaster information. and at least one of the area. That is, the power outage estimation unit 12 may estimate the area power outage information only for the area m included in the disaster area. Further, the power outage estimation unit 12 may use only the information related to the wireless communication base stations included in the disaster area to estimate the area power outage information.
  • At least one of the wireless communication base station and the area targeted for estimation of the area power outage information is limited based on the information of the disaster occurrence area indicated in the disaster information. It can reduce the load.
  • the power outage estimation unit 12 may re-estimate the area power outage information when there is a change in the power outage information. Then, according to the reestimation of the area power outage information triggered by the change in the power outage information, the reestimation of the evacuation population by the evacuation population estimation unit 16 based on the reestimated area power outage information, which will be explained later. Reestimation of the number of used devices and power consumption by the power consumption estimation unit 17 based on the evacuated population and output by the output unit 18 of power consumption information indicating the re-estimated power consumption may be performed. In this way, the latest power consumption information can be obtained by performing a series of processes for generating power consumption information with a change in the power failure information as a trigger.
  • the location information acquisition unit 14 obtains location information of the mobile wireless communication terminal in each area from a wireless communication base station that relays and manages wireless communication of the mobile wireless communication terminal and a given management device that manages location information. Get from
  • the area population estimation unit 15 estimates the area population, which is the population of each area, based on the area information indicating the number of mobile radio communication terminals existing in each area.
  • the area population estimation unit 15 may, for example, estimate the number of mobile radio communication terminals in each area indicated by the location information as the population of the area, or estimate the population of the area indicated by the area information. The number obtained by multiplying the number of terminals by a given coefficient may be estimated as the population of the area.
  • the evacuated population estimation unit 16 estimates the evacuated population, which is the population evacuated to each evacuation center, based on the correspondence relationship between the evacuation center and each area, the area population of each area, and area power outage information.
  • the evacuated population estimation unit 16 multiplies the power outage probability for each area by the area population to calculate an area evacuated population that indicates the population that is considered to evacuate to a shelter in each area. Then, the evacuated population estimating unit 16 estimates the evacuated population of each evacuation center by summing up the area evacuated population of areas having a corresponding relationship with each evacuation center.
  • FIG. 7 is a diagram schematically showing the correspondence relationship between the area group M and the geographical range to which people evacuate to each evacuation center.
  • the evacuated population estimation unit 16 acquires, for example, the evacuation area information EA indicating the geographical area where people evacuate to each evacuation area from the evacuation area information storage unit 20 .
  • the evacuation range information EA may constitute part of the evacuation center information.
  • the evacuation range information EA is Information on evacuation target areas ea1, ea2, and ea3 corresponding to each is included. Then, the evacuated population estimation unit 16 acquires information identifying areas m belonging to each of the evacuation target areas ea1, ea2, and ea3 as information on areas m to be evacuated to each evacuation center.
  • the evacuated population estimating unit 16 estimates the evacuated population of the shelter k by the following formula.
  • the left-hand side of the above equation represents the evacuees' population of shelter k.
  • M on the right side of the above equation is the total number of areas.
  • Area j 's blackout probability is the blackout probability of area mj .
  • B j indicates the correspondence relationship between shelter k and area m j , and is expressed as follows, for example.
  • B in the above formula is an M-dimensional vector whose elements are B 1 to B M , and each element indicates whether or not area m j is an area to be evacuated to shelter k.
  • B, which indicates the correspondence relationship between shelter k and area mj is set in advance based on information on area m to be evacuated to each shelter, as described with reference to FIG.
  • Area j 's recent demographic data in the above formula is the area population of area mj .
  • the evacuated population estimating unit 16 may calculate the area evacuated population by multiplying the product of the blackout probability for each area by the area population by a weighting factor ⁇ .
  • is a weight for estimating the evacuated population, and may be a coefficient for correcting the difference between the estimated evacuated population and the actual evacuated population, and is set to an arbitrary value in advance.
  • the weighting factor ⁇ may be generated by inputting into the weighting factor generation model an area feature quantity including at least the number of people in the area indicating the number of mobile radio communication terminals in each area.
  • the weighting factor generation model is a model constructed by machine learning that takes as input area feature quantities including at least the number of people in each area indicating the number of mobile radio communication terminals in each area and outputs weighting factors. .
  • the weighting factor generation model shall be constructed by machine learning using supervised data consisting of theoretical weighting factors calculated based on actual values at the time of past disasters and area feature values including at least the number of people in the area. can be done.
  • the theoretical weighting factor may be calculated by dividing the actual area evacuated population, which is the population that actually evacuated in each area during past disasters, by the product of the power outage probability and the area population.
  • the area feature quantity is not limited to the number of people in the area, which indicates the number of mobile radio communication terminals in the area. , and geographical information such as altitude.
  • the machine learning technique may be, for example, a decision tree analysis technique such as LightGBM, but is not limited to that technique, and may be another well-known analysis technique.
  • the area evacuees population can be calculated by multiplying the product of the blackout probability and the area population by the weighting factor generated by the weighting factor generation model that reflects the results of the area feature value and the area evacuees population. Therefore, highly accurate area evacuees can be obtained.
  • the power consumption estimating unit 17 estimates the number of devices using power, which is the number of devices using power in the shelter, for each type of device using power, based on the evacuated population.
  • the power consumption estimating unit 17 calculates the number of devices used by multiplying the ratio of the evacuees population to the capacity of each evacuation shelter by the number of power-using devices provided in the evacuation shelter.
  • the power consumption estimation unit 17 acquires shelter information from the shelter information storage unit 20 in order to calculate the number of devices used.
  • FIG. 8 is a diagram showing an example of shelter information stored in the shelter information storage unit 20.
  • the shelter information includes information indicating the capacity of each shelter, the number of heaters, and the presence/absence of disaster prevention wireless terminals.
  • a heater and a disaster prevention wireless terminal constitute an example of a power-using device. For example, the capacity of shelter 1 is "100", the number of heaters is "4", and the presence or absence of disaster prevention wireless terminals is "yes".
  • Fig. 9 is a diagram showing an example of the estimated evacuees population and the number of devices used in each evacuation center. Since the evacuation population of shelter 1 is 80, the power consumption estimation unit 17 calculates the ratio of the evacuation population of "80" to the capacity of evacuation shelter 1 of "100” to the number of heaters of evacuation shelter 1 of "4" ( 80/100) to obtain the product "3.2", and by rounding down the fraction, for example, the estimated number of used devices "3" is obtained.
  • the power consumption estimating unit 17 determines that the estimated number of devices to be used by the disaster prevention wireless terminal in the shelter 1 is "yes (1)”. ” is obtained.
  • the power consumption estimating unit 17 multiplies the number of heating appliances “3” by the ratio (60/80) of the evacuated population “60” to the capacity “80”, resulting in a product “2.25”. , and rounding off the fraction, for example, to obtain the estimated number of used devices “2”.
  • the evacuation population of the shelter 2 is one or more, the power consumption estimating unit 17 obtains the estimated number of devices in use of the disaster prevention wireless terminals in the shelter 2 “Yes (1)”.
  • the power consumption estimating unit 17 multiplies the number of heaters "3" by the ratio (0/50) of the evacuated population "0" to the capacity "50” to obtain the estimated number of used devices " 0" is obtained. In addition, since the evacuation population of the shelter 3 is 0, the power consumption estimating unit 17 obtains the estimated number of used devices of the disaster prevention wireless terminals in the shelter 3 “none (0)”.
  • the power consumption estimating unit 17 estimates the number of power-using devices of a predetermined type when the temperature in the shelter is equal to or higher than a threshold value set in advance for the power-using devices of the predetermined type. May be zero. Since the heater is not used when the temperature is high, if the temperature threshold is set to 20 degrees, for example, the power consumption estimation unit 17 will calculate the power consumption when the temperature of the evacuation shelter is 20 degrees or higher, regardless of the evacuation population. , the number of heaters used is set to zero.
  • the power consumption estimating unit 17 estimates the power consumption in the shelter by multiplying the number of devices used by the power consumption of the given power-using device. Specifically, in order to estimate the power consumption of the heaters in the shelter 1, the power consumption estimating unit 17 multiplies the power consumption of the heaters by the estimated number of devices used for the heaters, which is "3". Calculate the power consumption of the heater in Place 1.
  • the power consumption estimating unit 17 calculates the power consumption of the disaster prevention wireless terminal in the shelter 1 by multiplying the power consumption of the disaster prevention wireless terminal by the estimated number of used devices of the disaster prevention wireless terminal "1". Then, the power consumption estimating unit 17 calculates the power consumption in the shelter 1 by summing up the power consumption of all power-using devices in the shelter 1 .
  • the output unit 18 outputs power consumption information indicating the power consumption of each shelter.
  • the mode of outputting the power consumption information is not limited. It may be stored in means or transmitted to a predetermined device.
  • the output unit 18 can acquire information on the remaining power of the storage battery provided in each shelter, the remaining power of the storage battery of each shelter and each estimated by the power consumption estimation unit 17 Remaining power information indicating the remaining amount of power in the storage battery of each shelter may be output based on the power consumption at the shelter.
  • FIG. 10 is an example of power consumption information, and is a diagram showing changes in the remaining amount of power with respect to time in a storage battery in a certain evacuation shelter.
  • the output unit 18 may output a graph showing changes in the remaining amount of power in the storage battery of the shelter.
  • the example shown in FIG. 10 shows that the remaining power level decreases linearly with the passage of time after the disaster occurrence time td. In this way, by referring to the power consumption information, it is possible to timely supply power to the storage battery by recognizing the decreasing tendency of the remaining power of the storage battery in the shelter.
  • step S1 the power outage information acquisition unit 11 acquires power outage information indicating whether or not a power outage has occurred in the wireless communication base station.
  • step S2 the power outage estimation unit 12 estimates area power outage information indicating whether or not a power outage has occurred for each area m based on the power outage information.
  • step S3 the location information acquiring unit 14 obtains location information of the mobile wireless communication terminal in each area, and obtains location information from a wireless communication base station that relays and manages wireless communication of the mobile wireless communication terminal and a given location information that manages location information. obtained from the management device, etc. Then, the area population estimation unit 15 estimates the area population, which is the population of each area, based on the area information indicating the number of mobile radio communication terminals existing in each area. Either the process of step S2 or the process of step S3 may be performed first.
  • the evacuated population estimation unit 16 estimates the evacuated population, which is the population evacuated to each evacuation center, based on the correspondence relationship between the evacuation center and each area, the area population of each area, and area power outage information.
  • step S5 the power consumption estimating unit 17 estimates the number of devices using power, which is the number of devices using power in the shelter, for each type of device using power, based on the evacuated population.
  • step S6 the power consumption estimating unit 17 estimates the power consumption in the evacuation center based on the number of devices using each device and the power consumption of each device using power. Specifically, the power consumption estimating unit 17 estimates the power consumption in the shelter by multiplying the number of devices used by the power consumption of the given power-using device.
  • step S7 the output unit 18 outputs power consumption information indicating the power consumption of each shelter.
  • FIG. 12 is a diagram showing the configuration of the estimation program.
  • the estimation program P1 includes a main module m10 that comprehensively controls estimation processing in the estimation device 10, a power outage information acquisition module m11, a power outage estimation module m12, a disaster information acquisition module m13, an area information acquisition module m14, and an area population estimation module m15. , an evacuated population estimation module m16, a power consumption estimation module m17, and an output module m18. Then, by each module m11 to m18, power failure information acquisition unit 11, power failure estimation unit 12, disaster information acquisition unit 13, in-area information acquisition unit 14, area population estimation unit 15, evacuated population estimation unit 16, power consumption estimation unit 17 and each function for the output unit 18 is realized.
  • the estimation program P1 may be transmitted via a transmission medium such as a communication line, or may be stored in a recording medium M1 as shown in FIG.
  • the estimation device 10 the estimation method, and the estimation program P1 of the present embodiment described above, the presence or absence of a power outage for each area is recognized based on the power outage information in the wireless communication base station. Since the area population of the area where the power outage is occurring can be estimated based on the location information for each area, the evacuated population of each evacuation center can be estimated based on the correspondence relationship between the area and the evacuation center. Since the number of devices used in evacuation centers depends on the evacuees' population, it is possible to ascertain the power consumption trends in each evacuation center by estimating the number of power-using devices based on the estimated evacuees' population. Therefore, timely power supply to the storage battery of the shelter becomes possible.
  • the power failure estimating unit acquires the position information of the wireless communication base station in which the power failure has occurred as power failure occurrence position information indicating the position of the power failure
  • Area power outage information may be estimated by calculating a power outage probability, which is the probability that a power outage occurs in each area, based on the positional relationship between the position indicated by the position information and each area.
  • the position indicated by the power failure location information and each area Power outage probability for each area can be calculated based on the positional relationship between Therefore, by using the power outage probability as the area power outage information, it is possible to obtain the area power outage information suitable for calculating the evacuated population.
  • the wireless communication base station and each area are associated with a wiring class indicating a power supply path system
  • the power failure estimation unit Estimate the area power outage information by calculating the power outage probability, which is the probability that the , and the probability of power failure in an area having the same wiring class as that of a wireless communication base station for which no power failure has occurred may be set to 0%.
  • the power failure probability of each area is estimated based on whether or not each area has the same wiring class as the wireless communication base station in which the power failure has occurred, so area power failure information can be easily obtained. It becomes possible.
  • the power outage estimating unit generates area power outage information based on the disaster area shown in the disaster information including at least the information of the disaster area indicating the geographical range where the disaster has occurred. At least one of the wireless communication base station and the area related to the estimation of is limited.
  • At least one of the wireless communication base station and the area targeted for estimation of the area power outage information is limited based on the information of the disaster occurrence area indicated in the disaster information. This processing load can be reduced.
  • the evacuation population estimation unit multiplies the power outage probability for each area by the area population to calculate the area evacuation population indicating the population that is considered to evacuate to a shelter in each area
  • the evacuated population of each evacuation center may be estimated by aggregating the area evacuated population of areas that have a corresponding relationship with each evacuation center.
  • the evacuated population of each area is calculated based on the power outage probability and area population of each area, and the evacuated population of the evacuation center is calculated by summing the evacuated population of the areas that have a corresponding relationship with the evacuation center.
  • the evacuation population estimation unit calculates the area evacuation population by multiplying the product of the blackout probability for each area by the area population by a weighting factor, and the weighting factor is for each area.
  • the weighting factor generation model is generated by inputting an area feature quantity including at least the number of people in the area indicating the number of mobile radio communication terminals in the area into the weighting factor generation model, and the weighting factor generation model is generated by the mobile radio communication terminals in each area.
  • the input is an area feature value that includes at least the number of people in the area
  • the output is the weighting factor. It may be constructed by machine learning using teacher data composed of a theoretical weighting factor value, which is a weighting factor calculated based on the above, and an area feature amount including at least the number of people in the area.
  • the area evacuated population is calculated by multiplying the product of the power failure probability and the area population by the weighting factor generated by the weighting factor generation model that reflects the results of the area feature amount and the area evacuated population. be. Therefore, highly accurate area evacuees can be obtained.
  • the power consumption estimation unit multiplies the ratio of the evacuees population to the capacity of each evacuation shelter by the number of power-using devices provided in the evacuation shelter to obtain the number of devices used. may be calculated.
  • the ratio of the evacuation population to the capacity of the evacuation shelter is The number of devices using power is calculated by multiplying the number of devices using power provided in the . This makes it possible to accurately estimate the number of devices used.
  • the power consumption estimating unit when the temperature in the shelter is equal to or higher than a threshold value set in advance for the power-using device of the predetermined type, may be set to zero.
  • the number of power-using devices is assumed to be zero. Therefore, it is possible to estimate an appropriate number of devices to be used according to the temperature.
  • the output unit outputs the remaining power of each storage battery obtained from the storage battery provided in each evacuation shelter, and the power consumption in each evacuation shelter estimated by the power consumption estimation unit. Based on this, remaining power information indicating the remaining power of each storage battery may be output.
  • the power outage estimation unit re-estimates the area power outage information when there is a change in the power outage information
  • the evacuation population estimation unit re-estimates the area power outage information.
  • the evacuated population is re-estimated
  • the power consumption estimation unit re-estimates the number of devices used and power consumption based on the re-estimated evacuated population
  • the output unit outputs power consumption information indicating the re-estimated power consumption. It is also possible to
  • a series of processes for generating power consumption information is performed with a change in power failure information as a trigger. Therefore, it is possible to obtain the latest power consumption information.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Universal Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • Input and output information may be saved in a specific location (for example, memory) or managed in a management table. Input/output information and the like may be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, etc. may be transmitted and received via a transmission medium.
  • the software can be used to access websites, servers, or other When transmitted from a remote source, these wired and/or wireless technologies are included within the definition of transmission media.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • system and "network” used herein are used interchangeably.
  • information, parameters, etc. described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by corresponding other information. .
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure);
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Alarm Systems (AREA)

Abstract

推定装置は、無線通信基地局における停電情報に基づいて、エリアごとの停電の発生の有無を示すエリア停電情報を推定する停電推定部と、各エリアに在圏する移動無線通信端末の在圏情報に基づいてエリア人口を推定するエリア人口推定部と、各避難所の避難人口を、避難所と各エリアとの対応関係並びにエリア人口及びエリア停電情報に基づいて推定する避難人口推定部と、避難所における電力使用機器の利用機器数を機器の種別ごとに避難人口に基づいて推定し、利用機器数に当該電力使用機器の消費電力を乗じることにより、当該避難所の消費電力を推定する消費電力推定部と、各避難所の消費電力を示す消費電力情報を出力する出力部と、を備える。

Description

推定装置
 本発明は、避難所における消費電力を推定する推定装置に関する。
 災害時における停電に備えて、人々が避難する避難所、重要なインフラ施設、国等が運営する重要施設等に、定置型の蓄電池を備えることが勧められている。
蓄電池の容量には限りがあるので、給電されることなく停電が長期化された場合には電力が枯渇することとなり、施設等の運営が困難になる。特許文献1には、定置型の蓄電池に電力を供給するための技術が開示されている。
特開2021-124752号公報
 特許文献1に記載された技術では、災害時に大規模な停電が発生した際に、定置型蓄電池の残容量が所定値に達したことを契機として、電気自動車等の電力供給元に対する放電指令が発せられることにより、蓄電池に対する電力供給が実現される。しかしながら、特許文献1に記載された技術では、蓄電池の残容量が規定の閾値に達した時に初めて電気自動車等に指令が発せられるので、給電が必要となるタイミングに先立って、電気自動車等の行き先を最適化することはできなかった。また、災害発生時における電力の消費傾向が通常時と異なる場合には、電気自動車等に対する指令の契機ととして予め設定された蓄電池の残容量に関する閾値が最適な値ではない可能性があり、その場合には、適切なタイミングで給電することが困難であった。
 そこで、本発明は、上記問題点に鑑みてなされたものであり、蓄電池を備える避難所における消費電力を推定することにより、適時の給電等を可能とすることを目的とする。
 上記課題を解決するために、本発明の一形態に係る推定装置は、避難所における消費電力を推定する推定装置であって、無線通信基地局における停電の発生の有無を示す停電情報に基づいて、所与の地理的に区画されたエリアごとの停電の発生の有無を示すエリア停電情報を推定する停電推定部と、各エリアに在圏する移動無線通信端末の数を示す在圏情報に基づいて、各エリアの人口であるエリア人口を推定するエリア人口推定部と、各避難所に避難する人口である避難人口を、当該避難所と各エリアとの対応関係、並びに各エリアのエリア人口及びエリア停電情報に基づいて推定する避難人口推定部と、避難所において電力を使用する電力使用機器の数である利用機器数を電力使用機器の種別ごとに避難人口に基づいて推定し、利用機器数に所与の当該電力使用機器における消費電力を乗じることにより、当該避難所における消費電力を推定する消費電力推定部と、各避難所の消費電力を示す消費電力情報を出力する出力部と、を備える。
 上記の形態によれば、無線通信基地局における停電情報に基づいてエリアごとの停電の発生の有無が認識される。そして、エリアごとの在圏情報に基づいて停電が発生しているエリアのエリア人口を推定できるので、エリアと避難所との対応関係に基づいて各避難所の避難人口を推定できる。避難所における利用機器数は避難人口に依存するので、推定された避難人口に基づいて電力使用機器の利用機器数を推定することにより、各避難所における電力の消費傾向を把握できる。従って、避難所の蓄電池の適時の給電が可能となる。
 本開示の一形態によれば、蓄電池を備える避難所における消費電力を推定することにより、適時の給電等が可能となる。
本実施形態の推定装置を含むシステムの装置構成の一例を示す図である。 本実施形態の推定装置の機能的構成を示すブロック図である。 推定装置のハードブロック図である。 各無線通信基地局における停電の発生の有無を示す停電情報の一例を示す図である。 所与の地理的範囲を区画したエリア群及び無線通信基地局の位置を模式的に示す図である。 無線通信基地局の位置と各エリアに関連付けられた配線クラスとの対応関係に基づいて推定される停電確率の例を模式的に示す図である。 エリア群と、各避難所に人々が避難を行う対象の地理的範囲との対応関係を模式的に示す図である。 各避難所の定員数及び電力使用機器の数を含む避難所情報の例を示す図である。 各避難所の推定された避難人口及び利用機器数の例を示す図である。 消費電力情報の一例を示す図である。 推定装置における推定方法の処理内容を示すフローチャートである。 推定プログラムの構成を示す図である。
 本発明に係る推定装置の実施形態について図面を参照して説明する。なお、可能な場合には、同一の部分には同一の符号を付して、重複する説明を省略する。
 図1は、推定装置を含むシステムの装置構成の例を示す図である。図1に示されるように、システム1は、推定装置10、無線通信基地局群ST及び外部情報サーバSVを含む。推定装置10は、ネットワークNを介して、無線通信基地局群ST及び外部情報サーバSVと情報の送受信が可能に構成されている。推定装置10は、災害発生時等において人が避難する避難所における消費電力を推定する装置である。
 無線通信基地局群STは、複数の無線通信基地局sta、stb,stc,・・・を含む。無線通信基地局は、移動無線通信端末の無線通信を中継及び管理する装置である。無線通信基地局は、整流器等の電力の供給状況を監視可能な装置を有する。整流器等は、無線通信基地局に供給される電力に関する電力の状況、及び、無線通信基地局に備えられた各種の機器におけるエラーの発生状況を監視しており、停電の発生の有無を示す停電情報及び機器の故障の有無を示す機器故障情報等を取得できる。
 無線通信基地局は、移動通信端末の通信可能エリアにおいて数百メートル程度の間隔で設置されているので、停電情報等の参照により通信可能エリア内における停電の発生の有無を認識できる。
 外部情報サーバSVは、災害の発生の有無、災害が発生している地理的範囲を示す災害発生エリア情報、災害の規模を示す災害規模情報等の災害情報を取得及び蓄積する装置である。外部情報サーバSVは、災害情報を推定装置10に送信する。
 図2は、推定装置10の機能的構成を示すブロック図である。図2に示されるように、推定装置10は、停電情報取得部11、停電推定部12、災害情報取得部13、在圏情報取得部14、エリア人口推定部15、避難人口推定部16、消費電力推定部17及び出力部18を備える。推定装置10は、避難所情報記憶部20と通信可能に構成されている。避難所情報記憶部20は、避難所情報を記憶している記憶手段である。避難所情報については、後に図7及び図8を参照して説明する。
 推定装置10に含まれる各機能部11~18は、一の装置に構成されてもよいし、複数の装置に分散されて構成されてもよい。また、避難所情報記憶部20は、推定装置10に含まれて構成されてもよいし、推定装置10と通信可能に構成された別の装置に構成されてもよい。
 なお、図2に示したブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本発明の一実施の形態における推定装置10は、コンピュータとして機能してもよい。図3は、本実施形態に係る推定装置10のハードウェア構成の一例を示す図である。推定装置10は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。推定装置10のハードウェア構成は、図3に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 推定装置10における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信や、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、図2に示した各機能部11~18などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュールやデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、推定装置10の各機能部11~19は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る推定方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001やメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、推定装置10は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
 再び図2等を参照して、推定装置10の機能部を説明する。停電情報取得部11は、無線通信基地局における停電の発生の有無を示す停電情報を取得する。図4は、無線通信基地局群STから取得可能な停電情報等の一例を示す図である。
 停電情報取得部11は、無線通信基地局群STの各無線通信基地局から停電情報等を取得する。図4に示される例では、停電情報取得部11は、停電状態「有」、機器故障状態「無」という内容の停電情報等を無線通信基地局staから取得する。また、停電情報取得部11は、停電状態「有」、機器故障状態「無」という内容の停電情報等を無線通信基地局stbから取得する。また、停電情報取得部11は、停電状態「無」、機器故障状態「有」という内容の停電情報等を無線通信基地局stcから取得する。
 図4に例示される停電情報が取得されることにより、推定装置10は、無線通信基地局sta,stbにおいて停電が発生していることを認識できる。また、推定装置10は、停電状態「有」且つ機器故障状態「無」である場合に、当該無線通信基地局において停電が発生していることを認識することとしてもよい。
 停電推定部12は、無線通信基地局における停電の発生の有無を示す停電情報に基づいて、所与の地理的に区画されたエリアごとの停電の発生の有無を示すエリア停電情報を推定する。具体的には、停電推定部12は、停電が発生している無線通信基地局の位置情報を停電が発生している位置を示す停電発生位置情報として取得し、停電発生位置情報に示される位置と各エリアとの位置関係に基づいて、各エリアにおける停電が発生している確率である停電確率を算出することにより、エリア停電情報を推定する。
 図5は、所与の地理的範囲をメッシュ状に区画して得られた複数のエリアからなるエリア群M及び無線通信基地局の位置を模式的に示す図である。図5に示されるように、エリア群Mは複数のエリアmからなる。停電推定部12は、停電が発生している無線通信基地局sta及び無線通信基地局stbの位置情報を、停電発生位置情報として取得する。停電推定部12は、無線通信基地局の位置情報を、当該無線通信基地局から取得してもよいし、無線通信基地局の情報を管理及び記憶している他の装置から取得してもよい。
 停電推定部12は、停電発生位置情報に示される位置とエリアmとの距離に基づいて、当該エリアmの停電確率を算出してもよい。具体的には、停電推定部12は、停電発生位置情報に示される位置とエリアmとの距離が近いほど、当該エリアmにおける停電確率を高く算出する。また、停電推定部12は、停電発生位置情報に示される位置からエリアmまでの距離に比例して低くなるように、エリアmの停電確率を算出してもよい。
 停電推定部12は、例えば、以下の式により各エリアm(jは、各エリアを識別する番号)の停電確率を算出してもよい。
Figure JPOXMLDOC01-appb-M000001
上記式における左辺は、エリアmの停電確率を表す。上記式における右辺のαは、停電推定のための重みであり、任意の値が設定される。また、Distance(Base,Area)は、以下の式により表される。
Figure JPOXMLDOC01-appb-M000002
即ち、Distance(Base,Area)は、1~Nまでの停電が発生している無線通信基地局のそれぞれとエリアmとの間の距離のうちの最小の距離である。
 このように、停電が発生している無線通信基地局が存在する位置周辺のエリアでは停電が発生している可能性が高いことに鑑みて、停電発生位置情報に示される位置と各エリアとの位置関係に基づいて、エリア毎の停電確率を算出できる。従って、停電確率をエリア停電情報とすることにより、避難人口の算出に好適なエリア停電情報を得ることができる。
 図6は、エリアmの停電確率の算出の他の例を示す図である。図6に示す例では、停電推定部12は、配線クラスに基づいて、各エリアの停電確率を算出する。配線クラスは、電力供給の経路の系統を示す情報であって、各無線通信基地局及び各エリアに属性情報として関連付けられている。
 図6に示されるように、配線クラス情報DCは、各エリアのそれぞれに配線クラスdc1,dc2,dc3,dc4のいずれかを関連付けた情報を含む。同じ配線クラスを有するエリアmは、同じ系統の変電所及び電線等を介して電力の供給を受けていることを示す。あるエリアにおいて停電が発生している場合には、同じ配線クラスを有する他のエリアでも停電が発生している可能性が高い。
 また、図6に示されるように、無線通信基地局staには配線クラスdc1が関連付けられており、無線通信基地局stbには配線クラスdc3が関連付けられている。停電推定部12は、停電情報により停電が発生していることが示されている無線通信基地局と同じ配線クラスを有するエリアにおける停電確率を100%とし、停電が発生していないことが示されている無線通信基地局と同じ配線クラスを有するエリアの停電確率を0%とする。
 具体的には、停電推定部12は、停電情報及び配線クラスに基づいて、停電エリア情報PBを推定する。停電が発生している無線通信基地局staは、配線クラスdc1に関連付けられているので、停電推定部12は、配線クラスdc1に関連付けられているエリアからなるエリア領域pb1の停電確率を100%とする。
 同様に、停電が発生している無線通信基地局stbは、配線クラスdc3に関連付けられているので、停電推定部12は、配線クラスdc3に関連付けられているエリアからなるエリア領域pb3の停電確率を100%とする。
 また、停電推定部12は、停電が発生していないことが示されている無線通信基地局と同じ配線クラスに関連付けられているエリア、又は、停電が発生している無線通信基地局とは異なる配線クラスを有するエリアからなるエリア領域pb2の停電確率を0%とする。
 このように、停電が発生している無線通信基地局と同じ配線クラスを各エリアが有するか否かにより、各エリアの停電確率が推定されることにより、エリア停電情報を容易に得ることが可能となる。
 再び図2を参照して、推定装置10は、災害情報取得部13を備えてもよい。災害情報取得部13は、災害が発生している地理的範囲を示す災害発生エリアの情報を少なくとも含む災害情報を所与の情報発信元から取得する。災害情報は、災害の規模を示す災害規模情報を含んでもよい。災害情報取得部13により災害情報が取得される場合には、停電推定部12は、災害情報に示される災害発生エリアに基づいて、エリア停電情報の推定に用いる停電情報に対応する無線通信基地局及びエリアのうちの少なくとも一方を限定する。即ち、停電推定部12は、災害発生エリアに含まれるエリアmのみのエリア停電情報を推定することとしてもよい。また、停電推定部12は、災害発生エリアに含まれる無線通信基地局に関する情報のみをエリア停電情報の推定に用いることとしてもよい。
 このように、災害情報に示される災害発生エリアの情報に基づいて、エリア停電情報の推定の対象となる無線通信基地局及びエリアの少なくとも一方が限定されるので、エリア停電情報の算出に係る処理負荷を軽減できる。
 なお、停電推定部12は、停電情報に変化が生じた場合に、エリア停電情報を再推定してもよい。そして、停電情報の変化を契機とするエリア停電情報の再推定に応じて、後に説明される、再推定されたエリア停電情報に基づく避難人口推定部16による避難人口の再推定、再推定された避難人口に基づく消費電力推定部17による利用機器数及び消費電力の再推定、及び、再推定された消費電力を示す消費電力情報の出力部18による出力、が実施されてもよい。このように、停電情報の変化を契機として、消費電力情報の生成のための一連の処理が実施されることにより、最新の消費電力情報を得ることが可能となる。
 在圏情報取得部14は、各エリアにおける移動無線通信端末の在圏情報を、移動無線通信端末の無線通信を中継及び管理する無線通信基地局及び在圏情報を管理する所与の管理装置等から取得する。
 エリア人口推定部15は、各エリアに在圏する移動無線通信端末の数を示す在圏情報に基づいて、各エリアの人口であるエリア人口を推定する。エリア人口推定部15は、例えば、在圏情報に示されるエリアごとの移動無線通信端末の数を当該エリアの人口として推定することとしてもよいし、在圏情報に示されるエリアごとの移動無線通信端末の数に所与の係数を乗じて得られた数を当該エリアの人口として推定することとしてもよい。
 避難人口推定部16は、各避難所に避難する人口である避難人口を、当該避難所と各エリアとの対応関係並びに各エリアのエリア人口及びエリア停電情報に基づいて推定する。
 具体的には、避難人口推定部16は、エリアごとの停電確率にエリア人口を乗じることにより、各エリアにおいて避難所に避難するとみなされる人口を示すエリア避難人口を算出する。そして、避難人口推定部16は、各避難所と対応関係を有するエリアのエリア避難人口を総計することにより、各避難所の避難人口を推定する。
 図7は、エリア群Mと、各避難所に人々が避難を行う対象の地理的範囲との対応関係を模式的に示す図である。 避難人口推定部16は、各避難所に人々が避難を行う対象の地理的範囲を示す避難範囲情報EAを、例えば避難所情報記憶部20から取得する。避難範囲情報EAは、避難所情報の一部を構成することとしてもよい。
 図7に示される例では、エリア群Mに対応する地理的範囲に3つの避難所1,2,3が設けられていることとすると、避難範囲情報EAは、避難所1,2,3のそれぞれに対応する避難対象領域ea1,ea2,ea3の情報を含む。そして、避難人口推定部16は、避難対象領域ea1,ea2,ea3のそれぞれに属するエリアmを識別する情報を、各避難所に避難を行う対象のエリアmの情報として取得する。
 避難人口推定部16は、以下の式により、避難所kの避難人口を推定する。
Figure JPOXMLDOC01-appb-M000003
上記式における左辺は、避難所kの避難人口を表す。上記式の右辺におけるMはエリアの総数である。Area’s blackout probabilityは、エリアmの停電確率である。Bは、避難所kとエリアmとの対応関係を示し、例えば以下のように表現される。
Figure JPOXMLDOC01-appb-M000004
上記式におけるBはB~Bを要素とするM次元のベクトルであって、各要素は、エリアmが避難所kに避難を行う対象のエリアであるか否かを示す。避難所kとエリアmとの対応関係を示すBは、図7を参照して説明したように、各避難所に避難を行う対象のエリアmの情報に基づいて予め設定される。
 上記式におけるArea’s recent demographic dataは、エリアmのエリア人口である。
 また、上記式に示されるように、避難人口推定部16は、エリアごとの停電確率にエリア人口を乗じた積に重み係数βを乗じることによりエリア避難人口を算出してもよい、重み係数βは、避難人口の推定のための重みであり、推定された避難人口と実際の避難人口との差異を補正するための係数であってもよく、予め任意の値が設定される。
 また、重み係数βは、各エリアに在圏する移動無線通信端末の数を示す在圏者数を少なくとも含むエリア特徴量を重み係数生成モデルに入力することにより生成されてもよい。重み係数生成モデルは、各エリアに在圏する移動無線通信端末の数を示す在圏者数を少なくとも含むエリア特徴量を入力とし、重み係数を出力とする、機械学習により構築されたモデルである。重み係数生成モデルは、過去の災害発生時における実績値に基づいて算出された理論重み係数と、在圏者数を少なくとも含むエリア特徴量とからなる教師データを用いた機械学習により構築されることができる。
 理論重み係数は、過去の災害時において各エリアにおいて実際に避難した人口である実績エリア避難人口を、停電確率とエリア人口との積で除すことにより算出してもよい。エリア特徴量は、在圏する移動無線通信端末の数を示す在圏者数に限定されず、例えば、平時平均人口、時間帯毎の在圏者数、当該エリアにおける重要施設または重要拠点の有無、標高等の地理的情報等を含んでもよい。機械学習の手法は、例えば、LightGBM等の決定木分析手法であってもよいが、その手法には限定されず、その他の周知の分析手法であってもよい。
 このように、エリア特徴量及びエリア避難人口等の実績が反映された重み係数生成モデルにより生成された重み係数を、停電確率とエリア人口との積に乗じることによりエリア避難人口を算出できる。従って、精度の高いエリア避難人口が得られる。
 消費電力推定部17は、避難所において電力を使用する電力使用機器の数である利用機器数を電力使用機器の種別ごとに避難人口に基づいて推定する。
 具体的には、消費電力推定部17は、各避難所における定員数に対する避難人口の割合を、当該避難所に備えられた電力使用機器の数に乗じることにより、利用機器数を算出する。消費電力推定部17は、利用機器数の算出のために、避難所情報記憶部20から避難所情報を取得する。図8は、避難所情報記憶部20に記憶されている避難所情報の一例を示す図である。避難所情報は、各避難所の定員数、暖房器具数及び防災無線端末の有無を示す情報を含む。暖房器具及び防災無線端末は、電力使用機器の一例を構成する。例えば、避難所1の定員数は「100」であり、暖房器具数は「4」であり、防災無線端末の有無は「有」である。
 図9は、各避難所における推定された避難人口及び利用機器数の例を示す図である。避難所1の避難人口が80人であるので、消費電力推定部17は、避難所1の暖房器具数「4」に、避難所1における定員数「100」に対する避難人口「80」の割合(80/100)を乗じることにより積「3.2」を得て、その端数を例えば切り捨てることにより、推定利用機器数「3」を得る。
 また、防災無線端末は、避難人口が1人以上であれば利用される電力使用機器であるので、消費電力推定部17は、避難所1における防災無線端末の推定利用機器数「有(1)」を得る。
 同様に、避難所2に関して、消費電力推定部17は、暖房器具数「3」に、定員数「80」に対する避難人口「60」の割合(60/80)を乗じることにより積「2.25」を得て、その端数を例えば切り捨てることにより、推定利用機器数「2」を得る。また、避難所2の避難人口は1人以上であるので、消費電力推定部17は、避難所2における防災無線端末の推定利用機器数「有(1)」を得る。
 また、避難所3に関して、消費電力推定部17は、暖房器具数「3」に、定員数「50」に対する避難人口「0」の割合(0/50)を乗じることにより、推定利用機器数「0」を得る。また、避難所3の避難人口は0人であるので、消費電力推定部17は、避難所3における防災無線端末の推定利用機器数「無(0)」を得る。
 なお、消費電力推定部17は、避難所の気温が所定の種別の電力使用機器に対して予め設定された閾値以上である場合に、所定の種別の電力使用機器の利用機器数の推定値をゼロとしてもよい。暖房器具は気温が高い場合には使用されないので、気温に関する閾値を例えば20度とすると、消費電力推定部17は、避難所の気温が20度以上である場合には、避難人口に依らずに、暖房器具の利用機器数をゼロとする。
 消費電力推定部17は、利用機器数に所与の当該電力使用機器における消費電力を乗じることにより、避難所における消費電力を推定する。具体的には、避難所1の暖房器具による消費電力を推定するために、消費電力推定部17は、暖房器具の消費電力に、暖房器具の推定利用機器数「3」を乗じることにより、避難所1における暖房器具による消費電力を算出する。
 また、消費電力推定部17は、防災無線端末の消費電力に、防災無線端末の推定利用機器数「1」を乗じることにより、避難所1における防災無線端末による消費電力を算出する。そして、消費電力推定部17は、避難所1における全ての電力使用機器の消費電力を総計することにより、避難所1における消費電力を算出する。
 再び図2を参照して、出力部18は、各避難所の消費電力を示す消費電力情報を出力する。消費電力情報の出力の態様は限定されず、出力部18は、消費電力推定部17により推定された各避難所の消費電力を示す消費電力情報を、所定の表示装置に表示させ、所定の記憶手段に記憶させ、又は、所定の装置に送信してもよい。
 また、出力部18は、各避難所に備えられた蓄電池の電力残量の情報を取得できる場合には、各避難所の蓄電池の電力残量、及び、消費電力推定部17により推定された各避難所における消費電力に基づいて、各避難所の蓄電池の電力残量を示す残電力情報を出力してもよい。
 図10は、消費電力情報の一例であって、ある避難所の蓄電池における時刻に対する電力残量の推移を示す図である。図10に示されるように、出力部18は、避難所の蓄電池における電力残量の推移を示すグラフを出力してもよい。図10に示される例では、災害発生時td以後の時間の経過に応じて、電力残量がリニアに減少することが示されている。このように、消費電力情報の参照により、避難所の蓄電池の電力残量の減少傾向が認識されることにより、蓄電池に対する適時の給電が可能となる。
 次に、図11を参照して、推定装置10における推定方法の処理内容について説明する。
 ステップS1において、停電情報取得部11は、無線通信基地局における停電の発生の有無を示す停電情報を取得する。
 ステップS2において、停電推定部12は、停電情報に基づいて、エリアmごとの停電の発生の有無を示すエリア停電情報を推定する。
 ステップS3において、在圏情報取得部14は、各エリアにおける移動無線通信端末の在圏情報を、移動無線通信端末の無線通信を中継及び管理する無線通信基地局及び在圏情報を管理する所与の管理装置等から取得する。そして、エリア人口推定部15は、各エリアに在圏する移動無線通信端末の数を示す在圏情報に基づいて、各エリアの人口であるエリア人口を推定する。なお、ステップS2の処理とステップS3の処理とは、いずれの処理が先に実施されてもよい。
 ステップS4において、避難人口推定部16は、各避難所に避難する人口である避難人口を、当該避難所と各エリアとの対応関係並びに各エリアのエリア人口及びエリア停電情報に基づいて推定する。
 ステップS5において、消費電力推定部17は、避難所において電力を使用する電力使用機器の数である利用機器数を電力使用機器の種別ごとに避難人口に基づいて推定する。
 ステップS6において、消費電力推定部17は、電力使用機器ごとの利用機器数及び各電力使用機器における消費電力に基づいて、避難所における消費電力を推定する。具体的には、消費電力推定部17は、利用機器数に所与の当該電力使用機器における消費電力を乗じることにより、避難所における消費電力を推定する。
 ステップS7において、出力部18は、各避難所の消費電力を示す消費電力情報を出力する。
 次に、図12を参照して、コンピュータを、本実施形態の推定装置10として機能させるための推定プログラムについて説明する。
 図12は、推定プログラムの構成を示す図である。推定プログラムP1は、推定装置10における推定処理を統括的に制御するメインモジュールm10、停電情報取得モジュールm11、停電推定モジュールm12、災害情報取得モジュールm13、在圏情報取得モジュールm14、エリア人口推定モジュールm15、避難人口推定モジュールm16、消費電力推定モジュールm17及び出力モジュールm18を備えて構成される。そして、各モジュールm11~m18により、停電情報取得部11、停電推定部12、災害情報取得部13、在圏情報取得部14、エリア人口推定部15、避難人口推定部16、消費電力推定部17及び出力部18のための各機能が実現される。
 なお、推定プログラムP1は、通信回線等の伝送媒体を介して伝送される態様であってもよいし、図12に示されるように、記録媒体M1に記憶される態様であってもよい。
 以上説明した本実施形態の推定装置10、推定方法及び推定プログラムP1によれば、無線通信基地局における停電情報に基づいてエリアごとの停電の発生の有無が認識される。そして、エリアごとの在圏情報に基づいて停電が発生しているエリアのエリア人口を推定できるので、エリアと避難所との対応関係に基づいて各避難所の避難人口を推定できる。避難所における利用機器数は避難人口に依存するので、推定された避難人口に基づいて電力使用機器の利用機器数を推定することにより、各避難所における電力の消費傾向を把握できる。従って、避難所の蓄電池の適時の給電が可能となる。
 また、別の形態に係る推定装置では、停電推定部は、停電が発生している無線通信基地局の位置情報を停電が発生している位置を示す停電発生位置情報として取得し、該停電発生位置情報に示される位置と各エリアとの位置関係に基づいて、各エリアにおける停電が発生している確率である停電確率を算出することにより、エリア停電情報を推定することとしてもよい。
 上記形態によれば、停電が発生している無線通信基地局が存在する位置周辺のエリアでは停電が発生している可能性が高いことに鑑みて、停電発生位置情報に示される位置と各エリアとの位置関係に基づいて、エリア毎の停電確率を算出できる。従って、停電確率をエリア停電情報とすることにより、避難人口の算出に好適なエリア停電情報を得ることができる。
 また、別の形態に係る推定装置では、無線通信基地局及び各エリアには、電力供給の経路の系統を示す配線クラスが関連付けられており、停電推定部は、各エリアにおける停電が発生している確率である停電確率を算出することによりエリア停電情報を推定し、停電情報により停電が発生していることが示されている無線通信基地局と同じ配線クラスを有するエリアにおける停電確率を100%とし、停電が発生していないことが示されている無線通信基地局と同じ配線クラスを有するエリアの停電確率を0%とすることとしてもよい。
 上記形態によれば、停電が発生している無線通信基地局と同じ配線クラスを各エリアが有するか否かにより、各エリアの停電確率が推定されるので、エリア停電情報を容易に得ることが可能となる。
 また、別の形態に係る推定装置では、停電推定部は、災害が発生している地理的範囲を示す災害発生エリアの情報を少なくとも含む災害情報に示される災害発生エリアに基づいて、エリア停電情報の推定に係る無線通信基地局及びエリアのうちの少なくとも一方を限定することとしてもよい。
 上記形態によれば、災害情報に示される災害発生エリアの情報に基づいて、エリア停電情報の推定の対象となる無線通信基地局及びエリアの少なくとも一方が限定されるので、エリア停電情報の算出に係る処理負荷を軽減できる。
 また、別の形態に係る推定装置では、避難人口推定部は、エリアごとの停電確率にエリア人口を乗じることにより、各エリアにおいて避難所に避難するとみなされる人口を示すエリア避難人口を算出し、各避難所と対応関係を有するエリアのエリア避難人口を総計することにより、各避難所の避難人口を推定することとしてもよい。
 上記形態によれば、各エリアの停電確率及びエリア人口に基づいて、各エリアの避難人口が算出され、避難所と対応関係を有するエリアの避難人口の合算により当該避難所の避難人口が算出される。これにより、精度の高い避難人口が得られる。
 また、別の形態に係る推定装置では、避難人口推定部は、エリアごとの停電確率にエリア人口を乗じた積に重み係数を乗じることによりエリア避難人口を算出し、重み係数は、各エリアに在圏する移動無線通信端末の数を示す在圏者数を少なくとも含むエリア特徴量を重み係数生成モデルに入力することにより生成され、重み係数生成モデルは、各エリアに在圏する移動無線通信端末の数を示す在圏者数を少なくとも含むエリア特徴量を入力とし、重み係数を出力とし、過去の災害発生時における、各エリアにおいて避難した人口である実績エリア避難人口、停電確率及びエリア人口に基づいて算出された重み係数である理論重み係数値と、在圏者数を少なくとも含むエリア特徴量と、からなる教師データを用いた機械学習により構築されることとしてもよい。
 上記形態によれば、エリア特徴量及びエリア避難人口等の実績が反映された重み係数生成モデルにより生成された重み係数を、停電確率とエリア人口との積に乗じることによりエリア避難人口が算出される。従って、精度の高いエリア避難人口が得られる。
 また、別の形態に係る推定装置では、消費電力推定部は、各避難所における定員数に対する避難人口の割合を、当該避難所に備えられた電力使用機器の数に乗じることにより、利用機器数を算出することとしてもよい。
 上記形態によれば、暖房器具等に例示される電力使用機器の利用機器数が、それを利用する人員の数に比例することに鑑み、避難所の定員数に対する避難人口の割合を当該避難所に備えられた電力使用機器の数の乗じることにより利用機器数が算出される。これにより、利用機器数を精度良く推定することが可能となる。
 また、別の形態に係る推定装置では、消費電力推定部は、避難所の気温が所定の種別の電力使用機器に対して予め設定された閾値以上である場合に、所定の種別の電力使用機器の利用機器数の推定値をゼロとすることとしてもよい。
 上記形態によれば、暖房器具等に例示される電力使用機器は、気温が高い場合には使用されない可能性が高いことに鑑みて、気温が所与の閾値以上である場合に、利用機器数の推定値がゼロとされる。従って、気温に応じた適切な利用機器数を推定することが可能となる。
 また、別の形態に係る推定装置では、出力部は、各避難所に備えられた蓄電池から取得した各蓄電池の電力残量、及び、消費電力推定部により推定された各避難所における消費電力に基づいて、各蓄電池の電力残量を示す残電力情報を出力することとしてもよい。
 上記形態によれば、避難所の蓄電池の電力残量の減少傾向を認識できるので、蓄電池に対する適時の給電が可能となる。
 また、別の形態に係る推定装置では、停電推定部は、停電情報に変化が生じた場合に、エリア停電情報を再推定し、避難人口推定部は、再推定されたエリア停電情報に基づいて避難人口を再推定し、消費電力推定部は、再推定された避難人口に基づいて利用機器数及び消費電力を再推定し、出力部は、再推定された消費電力を示す消費電力情報を出力することとしてもよい。
 上記形態によれば、停電情報の変化を契機として、消費電力情報の生成のための一連の処理が実施される。従って、最新の消費電力情報を得ることが可能となる。
 以上、本実施形態について詳細に説明したが、当業者にとっては、本実施形態が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本実施形態は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本実施形態に対して何ら制限的な意味を有するものではない。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。
 本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で「第1の」、「第2の」などの呼称を使用した場合においては、その要素へのいかなる参照も、それらの要素の量または順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1および第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 「含む(include)」、「含んでいる(including)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本明細書において、文脈または技術的に明らかに1つのみしか存在しない装置である場合以外は、複数の装置をも含むものとする。
 本開示の全体において、文脈から明らかに単数を示したものではなければ、複数のものを含むものとする。
 1…システム、10…推定装置、11…停電情報取得部、12…停電推定部、13…災害情報取得部、14…在圏情報取得部、15…エリア人口推定部、16…避難人口推定部、17…消費電力推定部、18…出力部、20…避難所情報記憶部、M1…記録媒体、m10…メインモジュール、m11…停電情報取得モジュール、m12…停電推定モジュール、m13…災害情報取得モジュール、m14…在圏情報取得モジュール、m15…エリア人口推定モジュール、m16…避難人口推定モジュール、m17…消費電力推定モジュール、m18…出力モジュール、N…ネットワーク、P1…推定プログラム、ST…無線通信基地局群、sta,stb…無線通信基地局、SV…外部情報サーバ。
 

Claims (10)

  1.  避難所における消費電力を推定する推定装置であって、
     無線通信基地局における停電の発生の有無を示す停電情報に基づいて、所与の地理的に区画されたエリアごとの停電の発生の有無を示すエリア停電情報を推定する停電推定部と、
     各エリアに在圏する移動無線通信端末の数を示す在圏情報に基づいて、各エリアの人口であるエリア人口を推定するエリア人口推定部と、
     各避難所に避難する人口である避難人口を、当該避難所と各エリアとの対応関係、並びに各エリアの前記エリア人口及び前記エリア停電情報に基づいて推定する避難人口推定部と、
     避難所において電力を使用する電力使用機器の数である利用機器数を前記電力使用機器の種別ごとに前記避難人口に基づいて推定し、前記利用機器数に所与の当該電力使用機器における消費電力を乗じることにより、当該避難所における消費電力を推定する消費電力推定部と、
     各避難所の消費電力を示す消費電力情報を出力する出力部と、
     を備える推定装置。
  2.  前記停電推定部は、停電が発生している前記無線通信基地局の位置情報を停電が発生している位置を示す停電発生位置情報として取得し、該停電発生位置情報に示される位置と各エリアとの位置関係に基づいて、各エリアにおける停電が発生している確率である停電確率を算出することにより、前記エリア停電情報を推定する、
     請求項1に記載の推定装置。
  3.  前記無線通信基地局及び各エリアには、電力供給の経路の系統を示す配線クラスが関連付けられており、
     前記停電推定部は、各エリアにおける停電が発生している確率である停電確率を算出することにより前記エリア停電情報を推定し、前記停電情報により停電が発生していることが示されている前記無線通信基地局と同じ前記配線クラスを有するエリアにおける前記停電確率を100%とし、停電が発生していないことが示されている前記無線通信基地局と同じ前記配線クラスを有するエリアの前記停電確率を0%とする、
     請求項1に記載の推定装置。
  4.  前記停電推定部は、災害が発生している地理的範囲を示す災害発生エリアの情報を少なくとも含む災害情報に示される前記災害発生エリアに基づいて、前記エリア停電情報の推定に係る前記無線通信基地局及びエリアのうちの少なくとも一方を限定する、
     請求項2または3に記載の推定装置。
  5.  前記避難人口推定部は、エリアごとの前記停電確率に前記エリア人口を乗じることにより、各エリアにおいて避難所に避難するとみなされる人口を示すエリア避難人口を算出し、各避難所と対応関係を有するエリアの前記エリア避難人口を総計することにより、各避難所の前記避難人口を推定する、
     請求項2~4のいずれか一項に記載の推定装置。
  6.  前記避難人口推定部は、エリアごとの前記停電確率に前記エリア人口を乗じた積に重み係数を乗じることにより前記エリア避難人口を算出し、
     前記重み係数は、各エリアに在圏する移動無線通信端末の数を示す在圏者数を少なくとも含むエリア特徴量を重み係数生成モデルに入力することにより生成され、
     前記重み係数生成モデルは、
      各エリアに在圏する移動無線通信端末の数を示す在圏者数を少なくとも含むエリア特徴量を入力とし、前記重み係数を出力とし、
      過去の災害発生時における、各エリアにおいて避難した人口である実績エリア避難人口、前記停電確率及び前記エリア人口に基づいて算出された重み係数である理論重み係数値と、前記在圏者数を少なくとも含む前記エリア特徴量と、からなる教師データを用いた機械学習により構築される、
     請求項5に記載の推定装置。
  7.  前記消費電力推定部は、各避難所における定員数に対する前記避難人口の割合を、当該避難所に備えられた電力使用機器の数に乗じることにより、前記利用機器数を算出する、
     請求項1~6のいずれか一項に記載の推定装置。
  8.  前記消費電力推定部は、避難所の気温が所定の種別の電力使用機器に対して予め設定された閾値以上である場合に、所定の種別の電力使用機器の前記利用機器数の推定値をゼロとする、
     請求項1~7のいずれか一項に記載の推定装置。
  9.  前記出力部は、各避難所に備えられた蓄電池から取得した各蓄電池の電力残量、及び、前記消費電力推定部により推定された各避難所における消費電力に基づいて、各蓄電池の電力残量を示す残電力情報を出力する、
     請求項1~8のいずれか一項に記載の推定装置。
  10.  前記停電推定部は、前記停電情報に変化が生じた場合に、前記エリア停電情報を再推定し、
     前記避難人口推定部は、再推定された前記エリア停電情報に基づいて前記避難人口を再推定し、
     前記消費電力推定部は、再推定された前記避難人口に基づいて前記利用機器数及び前記消費電力を再推定し、
     前記出力部は、前記再推定された前記消費電力を示す前記消費電力情報を出力する、
     請求項1~9のいずれか一項に記載の推定装置。
     
     
PCT/JP2022/039756 2021-11-25 2022-10-25 推定装置 WO2023095516A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-190856 2021-11-25
JP2021190856 2021-11-25

Publications (1)

Publication Number Publication Date
WO2023095516A1 true WO2023095516A1 (ja) 2023-06-01

Family

ID=86539335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039756 WO2023095516A1 (ja) 2021-11-25 2022-10-25 推定装置

Country Status (1)

Country Link
WO (1) WO2023095516A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083908A (ja) * 2010-10-08 2012-04-26 Ntt Docomo Inc 避難計画評価システム及び避難計画評価方法
JP6842142B1 (ja) * 2020-10-14 2021-03-17 シンメトリー・ディメンションズ・インク 電力供給制御システム、災害分析装置、及び、電力供給制御方法
JP2021124752A (ja) * 2020-01-31 2021-08-30 Nttアノードエナジー株式会社 電力供給システムおよび電力供給方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083908A (ja) * 2010-10-08 2012-04-26 Ntt Docomo Inc 避難計画評価システム及び避難計画評価方法
JP2021124752A (ja) * 2020-01-31 2021-08-30 Nttアノードエナジー株式会社 電力供給システムおよび電力供給方法
JP6842142B1 (ja) * 2020-10-14 2021-03-17 シンメトリー・ディメンションズ・インク 電力供給制御システム、災害分析装置、及び、電力供給制御方法

Similar Documents

Publication Publication Date Title
JP7478226B2 (ja) 充電ステーション監視方法および装置
US11016515B2 (en) System operation decision-making assistance device and method
EP3379283B1 (en) Position measuring system including a server and a plurality of beacons
US11313894B2 (en) Automobile battery failure prediction method and system
WO2023095516A1 (ja) 推定装置
JPWO2018154845A1 (ja) 管理装置、管理方法及びプログラム
US20230236590A1 (en) Method and system for providing maintenance service for recording medium included in electronic device
JP2020078113A (ja) 制御装置
US11202175B2 (en) At-home prediction device
WO2019167685A1 (ja) 訪問時刻決定装置
WO2020209180A1 (ja) プロファイル生成装置
US20220207546A1 (en) Demand forecasting device
US20220187895A1 (en) Information processing device
JP2023028343A (ja) 配送先決定装置
JP7372937B2 (ja) 移動手段判断装置
JP2020095293A (ja) 人間関係推定装置
CN113011665A (zh) 物流时效预测方法、装置、设备及存储介质
US8943361B2 (en) Geospatial optimization for resilient power management equipment
WO2024048035A1 (ja) 滞在判定装置
JP7377678B2 (ja) 異常検知モデル学習装置、異常検知モデル及び異常検知装置
WO2023062969A1 (ja) レコメンドシステム
WO2023062968A1 (ja) レコメンドシステム
JP2022094737A (ja) 配備情報生成装置
US20220157174A1 (en) Information processing device, information processing method, and system
WO2023223672A1 (ja) 乗降数予測装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898300

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023563567

Country of ref document: JP

Kind code of ref document: A