WO2023095504A1 - 固定式等速自在継手 - Google Patents

固定式等速自在継手 Download PDF

Info

Publication number
WO2023095504A1
WO2023095504A1 PCT/JP2022/039297 JP2022039297W WO2023095504A1 WO 2023095504 A1 WO2023095504 A1 WO 2023095504A1 JP 2022039297 W JP2022039297 W JP 2022039297W WO 2023095504 A1 WO2023095504 A1 WO 2023095504A1
Authority
WO
WIPO (PCT)
Prior art keywords
spherical surface
joint member
retainer
axial direction
constant velocity
Prior art date
Application number
PCT/JP2022/039297
Other languages
English (en)
French (fr)
Inventor
智茂 小林
正純 小林
達朗 杉山
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=85641210&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2023095504(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2023095504A1 publication Critical patent/WO2023095504A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts

Definitions

  • the present invention relates to a fixed constant velocity universal joint.
  • the drive shaft of an automobile consists of an outboard side constant velocity universal joint attached to a wheel, an inboard side constant velocity universal joint attached to a differential gear, and an intermediate shaft connecting both constant velocity universal joints.
  • a fixed constant velocity universal joint is used for the outboard side constant velocity universal joint, which can take a large operating angle but does not displace in the axial direction.
  • a sliding constant velocity universal joint is used, which has a relatively small maximum operating angle but is capable of axial displacement while maintaining an operating angle.
  • Patent Literatures 1 and 2 below disclose fixed constant velocity universal joints in which the number of balls is eight and the size and weight are reduced.
  • Fig. 7 shows a conventional general fixed constant velocity universal joint 100.
  • This fixed type constant velocity universal joint 100 has an outer joint member 101 , an inner joint member 102 , balls 103 and a retainer 104 .
  • the inner spherical surface 101 a of the outer joint member 101 fits with the outer spherical surface 104 a of the retainer 104
  • the inner spherical surface 104 b of the retainer 104 fits with the outer spherical surface 102 a of the inner joint member 102 .
  • a plurality of ball tracks are formed by a plurality of track grooves 101b formed on the inner spherical surface 101a of the outer joint member 101 and a plurality of track grooves 102b formed on the outer spherical surface 102a of the inner joint member 102.
  • Balls 103 are arranged one by one.
  • the center of curvature of the track groove 101b of the outer joint member 101 and the center of curvature of the track groove 102b of the inner joint member 102 are offset on the opposite side with respect to the joint center. It has a wedge shape that widens toward the side (right side in the figure).
  • FIG. 8 shows a state in which the fixed constant velocity universal joint 100 has an operating angle (6°).
  • the balls 103 receive a force F from the wedge-shaped ball tracks (track grooves 101b, 102b) toward the joint opening side.
  • the balls 103 are pushed into the joint opening side, and the retainer 104 in contact with the balls 103 moves toward the joint opening side.
  • the inner spherical surface 101a of the outer joint member 101 and the outer spherical surface 104a of the retainer 104 are both composed of a single spherical surface. Therefore, as shown in FIG. 9, the spherical gap between them (the gap in the perpendicular direction between the spherical surfaces) E3 is uniform. In this case, the axial clearance between the inner spherical surface 101a of the outer joint member 101 and the outer spherical surface 104a of the retainer 104 gradually decreases from the axial center toward the axial ends. is the smallest (L2>L1). Therefore, when the balls 103 receive force F (see FIG. 8) from the track grooves 101b and 102b and the retainer 104 moves toward the joint opening, as shown in FIG. The inner spherical surface 101a of the member 101 abuts on the joint opening side end (A portion in FIG. 8).
  • the inner spherical surface 104b of the retainer 4 and the outer spherical surface 102a of the inner joint member 102 are both formed of a single spherical surface. Therefore, as shown in FIG. 11, the spherical gap E4 therebetween is uniform. In this case, the axial clearance between the inner spherical surface 104b of the retainer 104 and the outer spherical surface 102a of the inner joint member 102 gradually decreases from the axial center toward the axial ends. is the smallest (L4>L3). Therefore, when the balls 103 receive force F (see FIG. 8) from the track grooves 101b and 102b and the retainer 104 moves toward the joint opening, as shown in FIG. The outer spherical surface 102a of 102 abuts on the end of the joint back side (B portion in FIG. 8).
  • an object of the present invention is to maintain the uniform velocity of both joint members and improve the durability of each component by suppressing the amount of axial movement of the retainer.
  • the present invention provides an outer joint member having a plurality of track grooves formed on an inner spherical surface, an inner joint member having a plurality of track grooves formed on an outer spherical surface, and a track of the outer joint member.
  • a fixed constant velocity universal joint comprising a retainer having an inner spherical surface in sliding contact with the outer spherical surface of the inner joint member, A fixed constant velocity spherical gap E1′ at both ends in the axial direction of the fitting portion between the inner spherical surface of the outer joint member and the outer spherical surface of the retainer is smaller than the spherical gap E1 at the center portion in the axial direction of the fitting portion.
  • the portion that contacts the outer joint member when the retainer moves in the axial direction that is, both axial ends of the fitting portion between the outer joint member and the retainer is made small.
  • the amount of movement of the cage in the axial direction can be suppressed, so even when a large operating angle is taken, it is possible to suppress the deviation of the balls from the bisecting plane and maintain the constant velocity of both joint members. can.
  • by securing the spherical gap E1 at the axial center of the fitting portion between the outer joint member and the retainer it is possible to interpose a lubricant between the spherical surfaces and improve the lubricity.
  • the diameter DO' at both ends in the axial direction of the inner spherical surface of the outer joint member can be made smaller than the diameter DO at the central portion in the axial direction.
  • the diameter DCO' of the outer spherical surface of the retainer at both ends in the axial direction can be made larger than the diameter DCO at the central portion in the axial direction.
  • the present invention provides an outer joint member having a plurality of track grooves formed on an inner spherical surface, an inner joint member having a plurality of track grooves formed on an outer spherical surface, and the outer joint member. a plurality of balls arranged on a ball track formed by the track groove of the inner joint member and the track groove of the inner joint member; a plurality of pockets for holding the plurality of balls; and an outer spherical surface in sliding contact with the inner spherical surface of the outer joint member.
  • a fixed constant velocity spherical gap E2' at both ends in the axial direction of the fitting portion between the inner spherical surface of the retainer and the outer spherical surface of the inner joint member is smaller than the spherical gap E2 at the center portion in the axial direction of the fitting portion.
  • the portion that contacts the inner joint member when the retainer moves in the axial direction that is, both axial ends of the fitting portion between the retainer and the inner joint member is made small.
  • the amount of movement of the cage in the axial direction can be suppressed, so even when a large operating angle is taken, it is possible to suppress the deviation of the balls from the bisecting plane and maintain the constant velocity of both joint members. can.
  • lubricity can be enhanced by interposing a lubricant between the spherical surfaces.
  • the diameter DCI' of the inner spherical surface of the retainer at both ends in the axial direction can be made smaller than the diameter DCI at the central portion in the axial direction.
  • the diameter DI' at both ends in the axial direction of the outer spherical surface of the inner joint member can be made larger than the diameter DI at the central portion in the axial direction.
  • the torque transmission efficiency is enhanced by maintaining the uniform velocity of both joint members, and the lubricity between the spherical surfaces that are fitted to each other is improved. can be increased to increase the durability of each part.
  • FIG. 1 is a longitudinal sectional view through the center of a ball of a fixed type constant velocity universal joint according to an embodiment of the present invention
  • FIG. FIG. 4 is a vertical cross-sectional view of the fixed type constant velocity universal joint that does not pass through the ball.
  • Fig. 3 is an enlarged cross-sectional view of a fitting portion between an outer joint member and a retainer of the fixed type constant velocity universal joint;
  • Fig. 4 is an enlarged cross-sectional view showing a state where the retainer and the outer joint member are in contact with each other;
  • Fig. 4 is an enlarged cross-sectional view of a fitting portion between the retainer and the inner joint member of the fixed type constant velocity universal joint;
  • FIG. 4 is an enlarged cross-sectional view showing a state where the retainer and the inner joint member are in contact with each other; It is a longitudinal cross-sectional view of a conventional fixed type constant velocity universal joint.
  • FIG. 8 is a vertical cross-sectional view showing a state in which the fixed type constant velocity universal joint of FIG. 7 has taken an operating angle;
  • FIG. 9 is an enlarged cross-sectional view of the vicinity of part A in FIG. 8 ;
  • Fig. 4 is an enlarged cross-sectional view showing a state where the retainer and the outer joint member are in contact with each other;
  • FIG. 9 is an enlarged cross-sectional view of the vicinity of a B portion in FIG. 8;
  • Fig. 4 is an enlarged cross-sectional view showing a state where the retainer and the inner joint member are in contact with each other;
  • a fixed constant velocity universal joint 10 according to one embodiment of the present invention, as shown in FIG. and a retainer 4 for holding the plurality of balls 3.
  • This fixed type constant velocity universal joint 10 is used, for example, as a constant velocity universal joint on the outboard side of a drive shaft of an automobile.
  • the outer joint member 1 has a cup shape that is open on one axial side (right side in the drawing) and closed on the other axial side (left side in the drawing).
  • a plurality of arc-shaped track grooves 1b extending in the axial direction are formed on the inner spherical surface 1a of the outer joint member.
  • the outer spherical surface 2a of the inner joint member 2 is provided with a plurality of arcuate track grooves 2b extending in the axial direction.
  • the inner joint member 2 is provided with a spline hole 2c penetrating in the axial direction.
  • the spline hole 2c of the inner joint member 2 is fitted with a spline provided on the outer circumference of the end of a shaft (for example, an intermediate shaft of an automobile drive shaft), thereby coupling the two so that torque can be transmitted.
  • the track groove 1b of the outer joint member 1 and the track groove 2b of the inner joint member 2 face each other in the radial direction to form a plurality of ball tracks, and one ball 3 is arranged on each ball track.
  • the number of balls 3 can be arbitrarily selected from 5 to 8.
  • the same number of track grooves 1b and 2b as the balls 3 are formed in the outer joint member 1 and the inner joint member 2, respectively.
  • the center of curvature O1 of the track groove 1b of the outer joint member 1 and the center of curvature O2 of the track groove 2b of the inner joint member 2 are offset from the center O of the joint in the axial direction by the same distance.
  • the center of curvature O1 of the track groove 1b of the outer joint member 1 is offset to the joint opening side (right side in the figure) with respect to the joint center O
  • the center of curvature O2 of the track groove 2b of the inner joint member 2 is offset from the center O of the joint. It is offset to the back side of the joint (left side in the figure) with respect to the center O of the joint.
  • the ball tracks formed by the track grooves 1b and 2b form a wedge shape that opens toward the joint opening side.
  • the balls 3 held by the retainer 4 are always arranged in the bisector of the working angle at any working angle, and the uniform velocity between the outer joint member 1 and the inner joint member 2 is maintained. Secured.
  • the retainer 4 has a plurality of pockets 4a that hold the balls 3.
  • the pockets 4a are arranged at equal intervals in the circumferential direction.
  • the outer spherical surface 4 b of the retainer 4 is in sliding contact with the inner spherical surface 1 a of the outer joint member 1 .
  • the inner spherical surface 4 c of the retainer 4 is in sliding contact with the outer spherical surface 2 a of the inner joint member 2 .
  • the inner spherical surface 1a of the outer joint member 1 and the outer spherical surface 4b of the retainer 4 are fitted to each other, and a spherical clearance is provided in the fitted portion. That is, the diameter of the inner spherical surface 1 a of the outer joint member is larger than the diameter of the outer spherical surface 4 b of the retainer 4 .
  • the inner spherical surface 1a of the outer joint member 1 includes a spherical portion 1a1 provided in the center in the axial direction and quasi-spherical portions 1a2 provided on both sides of the spherical portion 1a1 in the axial direction. Consists of The center of curvature of the spherical portion 1a1 coincides with the center O of the joint.
  • the quasi-spherical surface portion 1a2 is smoothly continuous with the spherical surface portion 1a1, and gradually decreases in diameter toward the outer side in the axial direction. That is, the distance RO' (see FIG.
  • the diameter DO' (twice RO') at both ends in the axial direction of the inner spherical surface 1a of the outer joint member 1 is smaller than the diameter DO at the central portion in the axial direction of the inner spherical surface 1a (the diameter of the spherical surface portion 1a1) (DO ' ⁇ DO).
  • the outer spherical surface 4b of the retainer 4 includes a spherical portion 4b1 provided in the center in the axial direction and quasi-spherical portions provided on both sides of the spherical portion 4b1 in the axial direction. 4b2.
  • the center of curvature of the spherical portion 4b1 coincides with the center O of the joint.
  • the quasi-spherical surface portion 4b2 is smoothly continuous with the spherical surface portion 4b1, and gradually expands in diameter toward the outer side in the axial direction. That is, the distance RCO' (see FIG.
  • the diameter DCO' (twice RCO') at both ends in the axial direction of the outer spherical surface 4b of the retainer 4 is larger than the diameter (diameter of the spherical surface portion 4b1) DCO at the central portion in the axial direction of the outer spherical surface 4b (DCO' >DCO).
  • the diameter DO' at both axial ends of the inner spherical surface 1a of the outer joint member 1 is made smaller than the diameter DO at the central portion in the axial direction (DO' ⁇ DO), and the outer spherical surface 4b of the retainer 4 is
  • the spherical clearance E1′ at both axial ends of the fitting portion between the inner spherical surface 1a of the outer joint member 1 and the outer spherical surface 4b of the retainer 4 is larger than the spherical clearance E1 at the axial center of the fitting portion. becomes smaller (E1' ⁇ E1).
  • a diameter difference ⁇ D1 between the inner spherical surface 1a of the outer joint member 1 and the outer spherical surface 4b of the retainer 4 at the center in the axial direction is, for example, 0.02 mm or more.
  • the diameter difference ⁇ D1′ between the inner spherical surface 1a of the outer joint member 1 and the outer spherical surface 4b of the retainer 4 at both ends in the axial direction is a positive value.
  • the difference between ⁇ D1 and ⁇ D1' is, for example, 0.02 mm or less.
  • the diameter difference (DO-DO') between the axial end portion and the axial center portion of the inner spherical surface 1a of the outer joint member 1 is set to 0.01 mm or less
  • the outer spherical surface 4b of the retainer 4 A diameter difference (DCO'-DCO) between the axial ends and the axial center is set to 0.01 mm or less.
  • the inner spherical surface 4c of the retainer 4 and the outer spherical surface 2a of the inner joint member 2 are fitted to each other, and a spherical gap is provided in this fitting portion. That is, the diameter of the inner spherical surface 4 c of the retainer 4 is larger than the diameter of the outer spherical surface 2 a of the inner joint member 2 .
  • the inner spherical surface 4c of the retainer 4 includes a spherical portion 4c1 provided in the center in the axial direction and quasi-spherical portions 4c2 provided on both sides of the spherical portion 4c1 in the axial direction. consists of The center of curvature of the spherical portion 4c1 coincides with the center O of the joint.
  • the quasi-spherical surface portion 4c2 is smoothly continuous with the spherical surface portion 4c1, and gradually decreases in diameter toward the outer side in the axial direction. That is, the distance RCI' (see FIG.
  • the diameter DCI' (twice RCI') at both ends in the axial direction of the inner spherical surface 4c of the retainer 4 is smaller than the diameter (the diameter of the spherical portion 4c1) DCI at the central portion in the axial direction of the inner spherical surface 4c (DCI' ⁇ DCI).
  • the outer spherical surface 2a of the inner joint member 2 is provided in the axial center portion of the spherical portion 2a1, and the quasi-spherical portions provided on both sides of the spherical portion 2a1 in the axial direction. 2a2.
  • the center of curvature of the spherical portion 2a1 coincides with the center O of the joint.
  • the quasi-spherical surface portion 2a2 is smoothly continuous with the spherical surface portion 2a1, and gradually expands in diameter toward the outer side in the axial direction. That is, the distance RI' (see FIG.
  • the diameter DI' (twice RI') at both ends in the axial direction of the outer spherical surface 2a of the inner joint member 2 is larger than the diameter (diameter of the spherical surface portion 2a1) DI '>DI).
  • the diameter DCI' of the inner spherical surface 4c of the retainer 4 at both ends in the axial direction is made smaller than the diameter DCI at the central portion in the axial direction (DCI' ⁇ DCI), and the diameter of the outer spherical surface 2a of the inner joint member 2 is
  • the diameter DI′ at both ends in the axial direction larger than the diameter DI at the central portion in the axial direction (DI′>DI)
  • the spherical clearance E2′ at both axial ends of the fitting portion between the inner spherical surface 4c of the retainer 4 and the outer spherical surface 2a of the inner joint member 2 is larger than the spherical clearance E2 at the axial center of the fitting portion. becomes smaller (E2' ⁇ E2).
  • a diameter difference ⁇ D2 between the inner spherical surface 4c of the retainer 4 and the outer spherical surface 2a of the inner joint member 2 at the center in the axial direction is, for example, 0.02 mm or more.
  • the diameter difference ⁇ D2′ between the inner spherical surface 4c of the cage 4 and the outer spherical surface 2a of the inner joint member 2 in the axial direction is a positive value.
  • the difference between ⁇ D2 and ⁇ D2' is, for example, 0.02 mm or less.
  • the diameter difference (DCI-DCI') between the axial end portion and the axial center portion of the inner spherical surface 4c of the retainer 4 is set to 0.01 mm or less, and the outer spherical surface 2a of the inner joint member 2
  • DI'-DI diameter difference between the axial ends and the axial center
  • the spherical gap E1 at the axial center of the fitting portion between the inner spherical surface 1a of the outer joint member 1 and the outer spherical surface 4b of the retainer 4, and the inner spherical surface 4c of the retainer 4 and the outer spherical surface of the inner joint member 2 A sufficient amount of lubricant (grease) can be interposed in this gap since the spherical gap E2 is secured at the axially central portion of the fitting portion with 2a. This improves the lubricity between the outer joint member 1 and the retainer 4 and between the retainer 4 and the inner joint member 2, further increasing the durability of each part.
  • the present invention is not limited to the above embodiments. Other embodiments of the present invention will be described below, but descriptions of the same points as those of the above-described embodiments will be omitted.
  • both the inner spherical surface 1a of the outer joint member 1 and the outer spherical surface 4b of the retainer 4 that are fitted to each other are provided with a difference in diameter (DO' ⁇ DO, DCO'>DCO) were shown.
  • either one may be formed of a single spherical surface.
  • the diameter difference (DO-DO') between the axial central portion and the axial ends of the inner spherical surface 1a of the outer joint member 1 is set to, for example, 0.02 mm or less.
  • the diameter difference (DCO'-DCO) between the axial central portion and the axial ends of the outer spherical surface 4b of the retainer 4 is set at, for example, 0.02 mm or less.
  • the present invention is not limited to this, and either one may be formed with a single spherical surface.
  • the diameter difference (DCI-DCI') between the axial central portion and the axial ends of the inner spherical surface 4c of the retainer 4 is set to, for example, 0.02 mm or less.
  • the difference in diameter (DI'-DI) between the axial central portion and the axial ends of the outer spherical surface 2a of the inner joint member 2 is set at, for example, 0.02 mm or less.
  • both the fitting portion between the outer joint member 1 and the retainer 4 and the fitting portion between the retainer 4 and the inner joint member 2 have a spherical gap at both ends in the axial direction.
  • the spherical clearance is smaller than the central portion (E1' ⁇ E1, E2' ⁇ E2) is shown, the spherical clearance of any fitting portion may be made uniform.
  • the configuration of the fixed constant velocity universal joint 10 to which the present invention can be applied is not limited to the above.
  • the center of curvature of the spherical portion 4b1 of the outer spherical surface 4b of the retainer 4 that is, the center of curvature of the spherical portion 1a1 of the inner spherical surface 1a of the outer joint member 1
  • the inner spherical surface 4c of the retainer 4 i.e., the center of curvature of the spherical surface portion 2a1 of the outer spherical surface 2a of the inner joint member 2
  • the center of curvature of the spherical surface portion 4b1 of the outer spherical surface 4b of the retainer 4 and the center of curvature of the spherical surface portion 4c1 of the inner spherical surface 4c of the retainer 4 may be offset from the joint center O in the axial direction.
  • the ball tracks formed by the track grooves 1b of the outer joint member 1 and the track grooves 2b of the inner joint member 2 are wedge-shaped and open toward the joint opening side.
  • it may be a wedge shape that opens toward the back side of the joint.
  • the present invention can also be applied to an undercut type constant velocity universal joint and a cross groove type constant velocity universal joint.
  • Outer joint member 1a Inner spherical surface 1a1 Spherical surface portion 1a2 Quasi-spherical surface portion 1b Track groove 2 Inner joint member 2a Outer spherical surface 2a1 Spherical surface portion 2a2 Quasi-spherical surface portion 2b Track groove 3 Ball 4 Cage 4a Pocket 4b Outer spherical surface 4b1 Spherical surface portion 4b2 Quasi-spherical surface Part 4c Inner spherical surface 4c1 Spherical surface part 4c2 Quasi-spherical surface part 10 Fixed type constant velocity universal joint O Joint center

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

固定式等速自在継手10の外側継手部材1の内球面1aと保持器4の外球面4bとの嵌合部の軸方向両端における球面隙間E1'を、前記嵌合部の軸方向中央部における球面隙間E1よりも小さくする。

Description

固定式等速自在継手
 本発明は、固定式等速自在継手に関する。
 一般に、自動車のドライブシャフトは、車輪に取り付けられるアウトボード側の等速自在継手と、デファレンシャルギヤに取り付けられるインボード側の等速自在継手と、両等速自在継手を連結する中間シャフトとで構成される。通常、アウトボード側の等速自在継手には、大きな作動角を取れるが軸方向に変位しない固定式等速自在継手が使用される。一方、インボード側の等速自在継手には、最大作動角は比較的小さいが、作動角を取りつつ軸方向変位が可能な摺動式等速自在継手が使用される。
 近年、自動車の低燃費化に伴い、ドライブシャフトの小型・軽量化が求められ、これに設けられる等速自在継手にも小型・軽量化が求められている。例えば、下記の特許文献1及び2には、ボール数を8個として小型・軽量化を図った固定式等速自在継手が示されている。
特許第3460107号公報 特開2003-004062号公報
 図7に、従来の一般的な固定式等速自在継手100を示す。この固定式等速自在継手100は、外側継手部材101と、内側継手部材102と、ボール103と、保持器104とを有する。外側継手部材101の内球面101aは保持器104の外球面104aと嵌合し、保持器104の内球面104bは内側継手部材102の外球面102aと嵌合している。外側継手部材101の内球面101aに形成された複数のトラック溝101bと、内側継手部材102の外球面102aに形成された複数のトラック溝102bとで複数のボールトラックが形成され、各ボールトラックにボール103が一個ずつ配される。外側継手部材101のトラック溝101bの曲率中心と、内側継手部材102のトラック溝102bの曲率中心とは、継手中心に対して反対側にオフセットして配され、これにより、各ボールトラックが継手開口側(図中右側)へ向けて広がった楔形状を成している。
 図8は、固定式等速自在継手100が作動角(6°)を取った状態を示す。この状態で、固定式等速自在継手100にトルクを与えると、ボール103が、楔形状のボールトラック(トラック溝101b、102b)から継手開口側に向けた力Fを受ける。これにより、ボール103が継手開口側に押し込まれ、ボール103と接触する保持器104が継手開口側に移動する。
 上記の外側継手部材101の内球面101a及び保持器104の外球面104aは、何れも単一の球面からなる。そのため、図9に示すように、これらの間の球面隙間(球面間の面直方向の隙間)E3は均一である。この場合、外側継手部材101の内球面101aと保持器104の外球面104aとの間の軸方向隙間は、軸方向中央部から軸方向端部側に行くにつれて徐々に小さくなり、軸方向端部における軸方向隙間L1が最小となる(L2>L1)。従って、ボール103がトラック溝101b、102bから力F(図8参照)を受けて保持器104が継手開口側に移動すると、図10に示すように、保持器104の外球面104aが、外側継手部材101の内球面101aの継手開口側端部(図8のA部)に当接する。
 また、上記の保持器4の内球面104b及び内側継手部材102の外球面102aは、何れも単一の球面からなる。そのため、図11に示すように、これらの間の球面隙間E4は均一である。この場合、保持器104の内球面104bと内側継手部材102の外球面102aとの間の軸方向隙間は、軸方向中央部から軸方向端部側に行くにつれて徐々に小さくなり、軸方向端部における軸方向隙間L3が最小となる(L4>L3)。従って、ボール103がトラック溝101b、102bから力F(図8参照)を受けて保持器104が継手開口側に移動すると、図12に示すように、保持器104の内球面104bが内側継手部材102の外球面102aの継手奥側の端部(図8のB部)に当接する。
 このとき、互いに嵌合する外側継手部材101の内球面101aと保持器104の外球面104aとの間、及び、保持器104の内球面104bと内側継手部材102の外球面102aとの間の隙間が0であれば、保持器104が軸方向に移動しないため、作動角を取った状態でもボール103が作動角の二等分面内に配された理想的な状態を維持することができる。しかし、球面間の隙間を0にすると、組立性が低下すると共に、球面間に潤滑剤を介在させることができないため潤滑性が低下する。従って、実際には、互いに嵌合する球面間には隙間が設けられる。この場合、上記のように、トルク伝達時に保持器104が外側継手部材101及び内側継手部材102に対して軸方向に移動するため、ボール103が理想の位置(作動角の二等分面上)からずれて両継手部材101、102の等速性が崩れると共に、互いに接触する部品間の荷重や摺動にも影響が及んで各部品の耐久性の低下を招く恐れがある。
 そこで、本発明は、保持器の軸方向移動量を抑えることで、両継手部材の等速性を維持すると共に、各部品の耐久性を高めることを目的とする。
 前記課題を解決するために、本発明は、内球面に複数のトラック溝が形成された外側継手部材と、外球面に複数のトラック溝が形成された内側継手部材と、前記外側継手部材のトラック溝と前記内側継手部材のトラック溝とで形成されるボールトラックに配された複数のボールと、前記複数のボールを保持する複数のポケット、前記外側継手部材の内球面と摺接する外球面、及び前記内側継手部材の外球面と摺接する内球面を有する保持器とを備えた固定式等速自在継手において、
 前記外側継手部材の内球面と前記保持器の外球面との嵌合部の軸方向両端における球面隙間E1’が、前記嵌合部の軸方向中央部における球面隙間E1よりも小さい固定式等速自在継手を提供する。
 このように、本発明に係る固定式等速自在継手では、保持器が軸方向移動したときに外側継手部材と接触する部分、すなわち、外側継手部材と保持器との嵌合部の軸方向両端における球面隙間E1’を小さくしている。これにより、保持器の軸方向移動量を抑えることができるため、大きな作動角を取ったときでも、ボールの二等分面からのずれを抑えて両継手部材の等速性を維持することができる。また、外側継手部材と保持器との嵌合部の軸方向中央部における球面隙間E1を確保することで、球面間に潤滑剤を介在させて潤滑性を高めることができる。
 上記の固定式等速自在継手では、外側継手部材の内球面の軸方向両端における直径DO’を、軸方向中央部における直径DOよりも小さくすることができる。また、上記の固定式等速自在継手では、保持器の外球面の軸方向両端における直径DCO’を、軸方向中央部における直径DCOよりも大きくすることができる。これらの一方又は双方により、外側継手部材と保持器との嵌合部の軸方向両端における球面隙間E1’を、嵌合部の軸方向中央部における球面隙間E1よりも小さくすることができる。
 また、前記課題を解決するために、本発明は、内球面に複数のトラック溝が形成された外側継手部材と、外球面に複数のトラック溝が形成された内側継手部材と、前記外側継手部材のトラック溝と前記内側継手部材のトラック溝とで形成されるボールトラックに配された複数のボールと、前記複数のボールを保持する複数のポケット、前記外側継手部材の内球面と摺接する外球面、及び前記内側継手部材の外球面と摺接する内球面を有する保持器とを備えた固定式等速自在継手において、
 前記保持器の内球面と前記内側継手部材の外球面との嵌合部の軸方向両端における球面隙間E2’が、前記嵌合部の軸方向中央部における球面隙間E2よりも小さい固定式等速自在継手を提供する。
 このように、本発明に係る固定式等速自在継手では、保持器が軸方向移動したときに内側継手部材と接触する部分、すなわち、保持器と内側継手部材との嵌合部の軸方向両端における球面隙間E2’を小さくしている。これにより、保持器の軸方向移動量を抑えることができるため、大きな作動角を取ったときでも、ボールの二等分面からのずれを抑えて両継手部材の等速性を維持することができる。また、保持器と内側継手部材との軸方向中央部における球面隙間E2を確保することで、球面間に潤滑剤を介在させて潤滑性を高めることができる。
 上記の固定式等速自在継手では、保持器の内球面の軸方向両端における直径DCI’を、軸方向中央部における直径DCIよりも小さくすることができる。また、上記の固定式等速自在継手では、内側継手部材の外球面の軸方向両端における直径DI’を、軸方向中央部における直径DIよりも大きくすることができる。これらの一方又は双方により、保持器と内側継手部材との嵌合部の軸方向両端における球面隙間E2’を、嵌合部の軸方向中央部における球面隙間E2よりも小さくすることができる。
 以上のように、本発明によれば、保持器の軸方向移動量が抑えられるため、両継手部材の等速性を維持してトルク伝達効率を高めると共に、互いに嵌合する球面間の潤滑性を高めて各部品の耐久性を高めることができる。
本発明の一実施形態に係る固定式等速自在継手の、ボール中心を通る縦断面図である。 上記固定式等速自在継手の、ボールを通らない縦断面図である。 上記固定式等速自在継手の外側継手部材と保持器との嵌合部の拡大断面図である。 保持器と外側継手部材とが当接した状態を示す拡大断面図である。 上記固定式等速自在継手の保持器と内側継手部材との嵌合部の拡大断面図である。 保持器と内側継手部材とが当接した状態を示す拡大断面図である。 従来の固定式等速自在継手の縦断面図である。 図7の固定式等速自在継手が作動角を取った状態を示す縦断面図である。 図8のA部周辺の拡大断面図である。 保持器と外側継手部材とが当接した状態を示す拡大断面図である。 図8のB部周辺の拡大断面図である。 保持器と内側継手部材とが当接した状態を示す拡大断面図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 本発明の一実施形態に係る固定式等速自在継手10は、図1に示すように、外側継手部材1と、内側継手部材2と、外側継手部材1と内側継手部材2との間でトルクを伝達する複数のボール3と、複数のボール3を保持する保持器4とを備える。この固定式等速自在継手10は、例えば、自動車のドライブシャフトのアウトボード側の等速自在継手として使用される。
 外側継手部材1は、軸方向一方側(図中右側)が開口し、軸方向他方側(図中左側)が閉じたカップ状を成している。外側継手部材の内球面1aには、軸方向に延びる複数の円弧状のトラック溝1bが形成されている。
 内側継手部材2の外球面2aには、軸方向に延びる複数の円弧状のトラック溝2bが設けられる。内側継手部材2には、軸方向に貫通したスプライン穴2cが設けられる。内側継手部材2のスプライン穴2cには、シャフト(例えば、自動車のドライブシャフトの中間シャフト)の端部の外周に設けられたスプラインが嵌合し、これにより両者がトルク伝達可能に結合される。
 外側継手部材1のトラック溝1bと内側継手部材2のトラック溝2bとが半径方向で対向して複数のボールトラックが形成され、各ボールトラックにボール3が一個ずつ配される。ボール3の数は5~8個の中から任意に選択することができる。外側継手部材1及び内側継手部材2には、それぞれボール3と同数のトラック溝1b、2bが形成される。
 外側継手部材1のトラック溝1bの曲率中心O1と、内側継手部材2のトラック溝2bの曲率中心O2は、継手中心Oに対して軸方向反対側に等距離だけオフセットしている。図示例では、外側継手部材1のトラック溝1bの曲率中心O1が、継手中心Oに対して継手開口側(図中右側)にオフセットし、内側継手部材2のトラック溝2bの曲率中心O2が、継手中心Oに対して継手奥側(図中左側)にオフセットしている。その結果、トラック溝1b、2bで形成されるボールトラックが、継手開口側へ向けて開いた楔形状を成している。これにより、任意の作動角において、保持器4で保持されたボール3が常に作動角の二等分面内に配置され、外側継手部材1と内側継手部材2との間での等速性が確保される。
 保持器4は、ボール3を保持する複数のポケット4aを有する。ポケット4aは、円周方向等間隔に配されている。図2に示すように、保持器4の外球面4bは、外側継手部材1の内球面1aと摺接する。保持器4の内球面4cは、内側継手部材2の外球面2aと摺接する。
 外側継手部材1の内球面1aと保持器4の外球面4bとは互いに嵌合しており、この嵌合部には球面隙間が設けられる。すなわち、外側継手部材の内球面1aの直径は、保持器4の外球面4bの直径よりも大きい。
 本実施形態では、図3に示すように、外側継手部材1の内球面1aが、軸方向中央部に設けられた球面部1a1と、球面部1a1の軸方向両側に設けられた準球面部1a2とからなる。球面部1a1の曲率中心は、継手中心Oと一致している。準球面部1a2は、球面部1a1と滑らかに連続し、軸方向外側に行くにつれて徐々に縮径している。すなわち、準球面部1a2と、球面部1a1の曲率中心(継手中心O)との距離RO’(図2参照)が、軸方向外側に行くほど小さくなっている。そのため、外側継手部材1の内球面1aの軸方向両端における直径DO’(RO’の2倍)は、内球面1aの軸方向中央部における直径(球面部1a1の直径)DOよりも小さい(DO’<DO)。
 また、本実施形態では、図3に示すように、保持器4の外球面4bが、軸方向中央部に設けられた球面部4b1と、球面部4b1の軸方向両側に設けられた準球面部4b2とからなる。球面部4b1の曲率中心は、継手中心Oと一致している。準球面部4b2は、球面部4b1と滑らかに連続し、軸方向外側に行くにつれて徐々に拡径している。すなわち、準球面部4b2と、球面部4b1の曲率中心(継手中心O)との距離RCO’(図2参照)が、軸方向外側に行くほど大きくなっている。そのため、保持器4の外球面4bの軸方向両端における直径DCO’(RCO’の2倍)は、外球面4bの軸方向中央部における直径(球面部4b1の直径)DCOよりも大きい(DCO’>DCO)。
 以上のように、外側継手部材1の内球面1aの軸方向両端における直径DO’を軸方向中央部における直径DOよりも小さくし(DO’<DO)、且つ、保持器4の外球面4bの軸方向両端における直径DCO’を軸方向中央部における直径DCOよりも大きくする(DCO’>DCO)ことにより、これらの球面の軸方向両端における直径差ΔD1’(=DO’-DCO’)が軸方向中央部における直径差ΔD1(=DO-DCO)よりも小さくなる。その結果、外側継手部材1の内球面1aと保持器4の外球面4bとの嵌合部の軸方向両端における球面隙間E1’が、上記嵌合部の軸方向中央部における球面隙間E1よりも小さくなる(E1’<E1)。
 外側継手部材1の内球面1aと保持器4の外球面4bとの軸方向中央部における直径差ΔD1は、例えば0.02mm以上とされる。一方、外側継手部材1の内球面1aと保持器4の外球面4bとの軸方向両端における直径差ΔD1’は、正の値とされる。ΔD1とΔD1’との差は、例えば0.02mm以下とされる。本実施形態では、外側継手部材1の内球面1aの軸方向端部と軸方向中央部との直径差(DO-DO’)が0.01mm以下に設定され、保持器4の外球面4bの軸方向端部と軸方向中央部との直径差(DCO’-DCO)が0.01mm以下に設定される。
 保持器4の内球面4cと内側継手部材2の外球面2aとは互いに嵌合しており、この嵌合部には球面隙間が設けられる。すなわち、保持器4の内球面4cの直径は、内側継手部材2の外球面2aの直径よりも大きい。
 本実施形態では、図5に示すように、保持器4の内球面4cが、軸方向中央部に設けられた球面部4c1と、球面部4c1の軸方向両側に設けられた準球面部4c2とからなる。球面部4c1の曲率中心は、継手中心Oと一致している。準球面部4c2は、球面部4c1と滑らかに連続し、軸方向外側に行くにつれて徐々に縮径している。すなわち、準球面部4c2と、球面部4c1の曲率中心(継手中心O)との距離RCI’(図2参照)が、軸方向外側に行くほど小さくなっている。そのため、保持器4の内球面4cの軸方向両端における直径DCI’(RCI’の2倍)は、内球面4cの軸方向中央部における直径(球面部4c1の直径)DCIよりも小さい(DCI’<DCI)。
 また、本実施形態では、図5に示すように、内側継手部材2の外球面2aが軸方向中央部に設けられた球面部2a1と、球面部2a1の軸方向両側に設けられた準球面部2a2とからなる。球面部2a1の曲率中心は、継手中心Oと一致している。準球面部2a2は、球面部2a1と滑らかに連続し、軸方向外側に行くにつれて徐々に拡径している。すなわち、準球面部2a2と、球面部2a1の曲率中心(継手中心O)との距離RI’(図2参照)が、軸方向外側に行くほど大きくなっている。そのため、内側継手部材2の外球面2aの軸方向両端における直径DI’(RI’の2倍)は、外球面2aの軸方向中央部における直径(球面部2a1の直径)DIよりも大きい(DI’>DI)。
 以上のように、保持器4の内球面4cの軸方向両端における直径DCI’を軸方向中央部における直径DCIよりも小さくし(DCI’<DCI)、且つ、内側継手部材2の外球面2aの軸方向両端における直径DI’を軸方向中央部における直径DIよりも大きくする(DI’>DI)ことにより、これらの球面の軸方向両端における直径差ΔD2’(=DCI’-DI’)が軸方向中央部における直径差ΔD2(=DCI-DI)よりも小さくなる。その結果、保持器4の内球面4cと内側継手部材2の外球面2aとの嵌合部の軸方向両端における球面隙間E2’が、上記嵌合部の軸方向中央部における球面隙間E2よりも小さくなる(E2’<E2)。
 保持器4の内球面4cと内側継手部材2の外球面2aとの軸方向中央部における直径差ΔD2は、例えば0.02mm以上とされる。一方、保持器4の内球面4cと内側継手部材2の外球面2aとの軸方向両端における直径差ΔD2’は、正の値とされる。ΔD2とΔD2’との差は、例えば0.02mm以下とされる。本実施形態では、保持器4の内球面4cの軸方向端部と軸方向中央部との直径差(DCI-DCI’)が0.01mm以下に設定され、内側継手部材2の外球面2aの軸方向端部と軸方向中央部との直径差(DI’-DI)が0.01mm以下に設定される。
 上記のように、外側継手部材1の内球面1aと保持器4の外球面4bとの嵌合部の軸方向端部における球面隙間E1’を小さくすることで、外側継手部材1の内球面1aと保持器4の外球面4bとの嵌合部の軸方向端部における軸方向隙間L1’(図3参照)が、従来品における軸方向隙間L1(図9参照)よりも小さくなる(L1’<L1)。これにより、図4に示すように、保持器4が継手開口側(図中右側)に移動して外側継手部材1の内球面1aの継手開口側端部に当接したときの軸方向移動量(=軸方向隙間L1’)を、従来品の保持器104の軸方向移動量(=軸方向隙間L1)よりも小さくすることができる。
 また、上記のように、保持器4の内球面4cと内側継手部材2の外球面2aとの嵌合部の軸方向端部における球面隙間E2’を小さくすることで、保持器4の内球面4cと内側継手部材2の外球面2aとの嵌合部の軸方向端部における軸方向隙間L3’(図5参照)が、従来品における軸方向隙間L3(図11参照)よりも小さくなる(L3’<L3)。これにより、図6に示すように、保持器4が継手開口側(図中右側)に移動して内側継手部材2の外球面2aの継手奥側(図中左側)端部に当接したときの軸方向移動量(=軸方向隙間L3’)を、従来品の保持器104の軸方向移動量(=軸方向隙間L3)よりも小さくすることができる。
 以上のように、保持器4の軸方向移動量を抑えることにより、作動角の二等分面からのボール3のずれを抑えることができる。これにより、作動角を取ったときの両継手部材1、2の間の等速性を維持することができるため、トルクの伝達効率を高めることができる。また、ボールを常に理想の位置(作動角の二等分面上)に配することで、トルク伝達がスムーズになり、各部品の耐久性が高められる。一方、外側継手部材1の内球面1aと保持器4の外球面4bとの嵌合部の軸方向中央部における球面隙間E1、及び、保持器4の内球面4cと内側継手部材2の外球面2aとの嵌合部の軸方向中央部における球面隙間E2は確保されるため、この隙間に十分な量の潤滑剤(グリース)を介在させることができる。これにより、外側継手部材1と保持器4との間、及び、保持器4と内側継手部材2との間の潤滑性が向上し、各部品の耐久性がさらに高められる。
 本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と同様の点については説明を省略する。
 上記の実施形態では、互いに嵌合する外側継手部材1の内球面1a及び保持器4の外球面4bの双方に直径差を設けた場合(DO’<DO、DCO’>DCO)を示したが、これに限らず、何れか一方を単一の球面で形成しもよい。例えば、外側継手部材1の内球面1aに上記の実施形態と同様の直径差を設け、保持器4の外球面4bを単一の球面で形成してもよい(DO’<DO、DCO’=DCO)。この場合、外側継手部材1の内球面1aの軸方向中央部と軸方向両端との直径差(DO-DO’)は、例えば0.02mm以下に設定される。あるいは、保持器4の外球面4bに上記の実施形態と同様の直径差を設け、外側継手部材1の内球面1aを単一の球面で形成してもよい(DO’=DO、DCO’>DCO)。この場合、保持器4の外球面4bの軸方向中央部と軸方向両端との直径差(DCO’-DCO)は、例えば0.02mm以下に設定される。
 また、上記の実施形態では、互いに嵌合する保持器4の内球面4cと内側継手部材2の外球面2aの双方に直径差を設けた場合(DCI’<DCI、DI’>DI)を示したが、これに限らず、何れか一方を単一の球面で形成しもよい。例えば、保持器4の内球面4cに上記の実施形態と同様の直径差を設け、内側継手部材2の外球面2aを単一の球面で形成してもよい(DCI’<DCI、DI’=DI)。この場合、保持器4の内球面4cの軸方向中央部と軸方向両端との直径差(DCI-DCI’)は、例えば0.02mm以下に設定される。あるいは、内側継手部材2の外球面2aに上記の実施形態と同様の直径差を設け、保持器4の内球面4cを単一の球面で形成してもよい(DCI’=DCI、DI’>DI)。この場合、内側継手部材2の外球面2aの軸方向中央部と軸方向両端との直径差(DI’-DI)は、例えば0.02mm以下に設定される。
 また、上記の実施形態では、外側継手部材1と保持器4との嵌合部、及び、保持器4と内側継手部材2との嵌合部の双方において、軸方向両端における球面隙間を軸方向中央部における球面隙間よりも小さくした場合(E1’<E1、E2’<E2)を示したが、これに限らず、何れかの嵌合部の球面隙間を均一にしてもよい。例えば、外側継手部材1と保持器4との嵌合部の球面隙間を上記の実施形態と同様に軸方向端部側で小さくする一方で、保持器4の内球面4c及び内側継手部材2の外球面2aをそれぞれ単一の球面で形成して、これらの嵌合部の球面隙間を均一にしてもよい(E1’<E1、E2’=E2)。あるいは、保持器4と内側継手部材2との嵌合部の球面隙間を上記の実施形態と同様に軸方向端部側で小さくする一方で、外側継手部材1の内球面1a及び保持器4の外球面4bをそれぞれ単一の球面で形成して、これらの嵌合部の球面隙間を均一にしてもよい(E1’=E1、E2’<E2)。
 本発明を適用可能な固定式等速自在継手10の構成は上記に限られない。例えば、上記の実施形態では、保持器4の外球面4bの球面部4b1の曲率中心(すなわち、外側継手部材1の内球面1aの球面部1a1の曲率中心)と、保持器4の内球面4cの球面部4c1の曲率中心(すなわち、内側継手部材2の外球面2aの球面部2a1の曲率中心)とが継手中心Oと一致した場合を示したが、これに限らず、例えば、保持器4の外球面4bの球面部4b1の曲率中心と、保持器4の内球面4cの球面部4c1の曲率中心とを、継手中心Oに対して軸方向で反対側にオフセットさせてもよい。
 また、上記の実施形態では、外側継手部材1のトラック溝1bと内側継手部材2のトラック溝2bとで形成されるボールトラックが、継手開口側へ向けて開いた楔形状である場合を示したが、これとは逆に、継手奥側へ向けて開いた楔形状としてもよい。この他、アンダーカット型の等速自在継手や、クロスグルーブ型の等速自在継手に、本発明を適用することもできる。
1     外側継手部材
1a   内球面
1a1 球面部
1a2 準球面部
1b   トラック溝
2     内側継手部材
2a   外球面
2a1 球面部
2a2 準球面部
2b   トラック溝
3     ボール
4     保持器
4a   ポケット
4b   外球面
4b1 球面部
4b2 準球面部
4c   内球面
4c1 球面部
4c2 準球面部
10   固定式等速自在継手
O     継手中心

Claims (6)

  1.  内球面に複数のトラック溝が形成された外側継手部材と、
     外球面に複数のトラック溝が形成された内側継手部材と、
     前記外側継手部材のトラック溝と前記内側継手部材のトラック溝とで形成されるボールトラックに配された複数のボールと、
     前記複数のボールを保持する複数のポケット、前記外側継手部材の内球面と摺接する外球面、及び前記内側継手部材の外球面と摺接する内球面を有する保持器とを備えた固定式等速自在継手において、
     前記外側継手部材の内球面と前記保持器の外球面との嵌合部の軸方向両端における球面隙間E1’が、前記嵌合部の軸方向中央部における球面隙間E1よりも小さい固定式等速自在継手。
  2.  前記外側継手部材の内球面の軸方向両端における直径DO’が、前記外側継手部材の内球面の軸方向中央部における直径DOよりも小さい請求項1に記載の固定式等速自在継手。
  3.  前記保持器の外球面の軸方向両端における直径DCO’が、前記保持器の外球面の軸方向中央部における直径DCOよりも大きい請求項1又は2に記載の固定式等速自在継手。
  4.  内球面に複数のトラック溝が形成された外側継手部材と、
     外球面に複数のトラック溝が形成された内側継手部材と、
     前記外側継手部材のトラック溝と前記内側継手部材のトラック溝とで形成されるボールトラックに配された複数のボールと、
     前記複数のボールを保持する複数のポケット、前記外側継手部材の内球面と摺接する外球面、及び前記内側継手部材の外球面と摺接する内球面を有する保持器とを備えた固定式等速自在継手において、
     前記保持器の内球面と前記内側継手部材の外球面との嵌合部の軸方向両端における球面隙間E2’が、前記嵌合部の軸方向中央部における球面隙間E2よりも小さい固定式等速自在継手。
  5.  前記保持器の内球面の軸方向両端における直径DCI’が、前記保持器の内球面の軸方向中央部における直径DCIよりも小さい請求項4に記載の固定式等速自在継手。
  6.  前記内側継手部材の外球面の軸方向両端における直径DI’が、前記内側継手部材の外球面の軸方向中央部における直径DIよりも大きい請求項4又は5に記載の固定式等速自在継手。
PCT/JP2022/039297 2021-11-29 2022-10-21 固定式等速自在継手 WO2023095504A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-193108 2021-11-29
JP2021193108A JP7242817B1 (ja) 2021-11-29 2021-11-29 固定式等速自在継手

Publications (1)

Publication Number Publication Date
WO2023095504A1 true WO2023095504A1 (ja) 2023-06-01

Family

ID=85641210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039297 WO2023095504A1 (ja) 2021-11-29 2022-10-21 固定式等速自在継手

Country Status (2)

Country Link
JP (1) JP7242817B1 (ja)
WO (1) WO2023095504A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507195A (ja) * 2005-09-08 2009-02-19 ゲー カー エヌ ドライブライン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 制限された軸方向移動を有するカウンタトラックジョイント
JP2009079684A (ja) * 2007-09-26 2009-04-16 Ntn Corp 固定式等速自在継手

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507195A (ja) * 2005-09-08 2009-02-19 ゲー カー エヌ ドライブライン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 制限された軸方向移動を有するカウンタトラックジョイント
JP2009079684A (ja) * 2007-09-26 2009-04-16 Ntn Corp 固定式等速自在継手

Also Published As

Publication number Publication date
JP2023079584A (ja) 2023-06-08
JP7242817B1 (ja) 2023-03-20

Similar Documents

Publication Publication Date Title
US7097567B2 (en) Constant velocity universal joint
US8079913B2 (en) Slide-type constant velocity universal joint
US8292749B2 (en) Fixed type constant velocity universal joint
US7258616B2 (en) Fixed type constant velocity universal joint
US7018297B2 (en) Tripod joint
US7214134B2 (en) Fixed constant velocity universal joint
US6910970B2 (en) Constant velocity universal joint
US20240052893A1 (en) Plunging type constant velocity universal joint for propeller shaft
US8608578B2 (en) Constant velocity joint of tripod type
WO2023095504A1 (ja) 固定式等速自在継手
US11248657B2 (en) Tripod constant-velocity joint
US20200063802A1 (en) Plunging type constant velocity universal joint
JPH01250619A (ja) 等速ジョイント
WO2023100522A1 (ja) 摺動式等速自在継手
US20230323921A1 (en) Constant velocity joint
WO2023026831A1 (ja) 摺動式等速自在継手
WO2023026826A1 (ja) 摺動式等速自在継手
JP5340548B2 (ja) 固定式等速自在継手
JP2002250359A (ja) 等速自在継手
JP2007120665A (ja) 固定式等速自在継手
WO2017145844A1 (ja) 摺動式等速自在継手
JP2009127638A (ja) 等速自在継手
JP2008267407A (ja) 固定式等速自在継手
JP2017166578A (ja) 摺動式等速自在継手
JP2014101936A (ja) 等速自在継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898288

Country of ref document: EP

Kind code of ref document: A1